WO2020039985A1 - Method for producing ammoxidation catalyst, and method for producing acrylonitrile - Google Patents

Method for producing ammoxidation catalyst, and method for producing acrylonitrile Download PDF

Info

Publication number
WO2020039985A1
WO2020039985A1 PCT/JP2019/031717 JP2019031717W WO2020039985A1 WO 2020039985 A1 WO2020039985 A1 WO 2020039985A1 JP 2019031717 W JP2019031717 W JP 2019031717W WO 2020039985 A1 WO2020039985 A1 WO 2020039985A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
molybdenum
ammoxidation
producing
firing
Prior art date
Application number
PCT/JP2019/031717
Other languages
French (fr)
Japanese (ja)
Inventor
孝平 守屋
章喜 福澤
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2020039985A1 publication Critical patent/WO2020039985A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/06Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
    • C07C255/07Mononitriles
    • C07C255/08Acrylonitrile; Methacrylonitrile
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing an oxide catalyst, and a method for producing acrylonitrile using an oxide catalyst produced by the method.
  • The method of producing acrylonitrile by reacting molecular oxygen with propylene and ammonia is widely known as “ammoxidation reaction”, and is currently practiced on an industrial scale.
  • a composite oxide catalyst is used to achieve a good acrylonitrile yield.
  • catalysts containing Mo-Bi-Fe or Fe-Sb as an essential component are used industrially, and studies are being made on improving the metal composition to achieve a better acrylonitrile yield ( For example, refer to Patent Documents 1 and 2).
  • Patent Literature 3 discloses a method for preparing an ammoxidation catalyst containing molybdenum, bismuth, and iron as essential components, in which a coordinating organic compound is added to a raw material slurry.
  • Patent Document 4 discloses that in the process of preparing an ammoxidation catalyst containing molybdenum, bismuth, and iron as essential components, a thermally decomposable nitrogen compound (containing no metal, ammonium compound, nitrate compound, nitrite compound, amide compound, A nitrobenzoic acid compound and an ammonium hydroxide compound).
  • Patent Literature 5 discloses a method of adjusting the pH of a slurry containing a catalyst component to a predetermined range
  • Patent Literature 6 discloses a method in which the slurry is subjected to specific conditions during the process. A method of holding for a certain period of time is disclosed below.
  • Patent Document 7 discloses a method for producing a catalyst for producing acrylonitrile, in which the temperature of a slurry containing molybdenum, bismuth, iron, tungsten and the like is adjusted to a range of 30 to 70 ° C.
  • the present invention has been made in view of the above circumstances, and has as its object to provide a method for producing an ammoxidation catalyst capable of synthesizing acrylonitrile with high yield.
  • the present inventors have paid attention to the state of dry particles obtained by drying a slurry containing a catalyst component, based on the fact that catalyst performance is not always the same even when the composite oxides have the same metal composition. As a result, a correlation was found between the calorific value when firing the dried particles and the final catalyst performance (acrylonitrile yield), and the present invention was completed.
  • the present invention is as follows.
  • a preparation step of preparing a precursor slurry to be a catalyst precursor A drying step of drying the precursor slurry to obtain dry particles, A firing step of firing the dried particles to obtain an ammoxidation catalyst, Has,
  • the calorific value calculated from the area value of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. observed by TG-DTA measurement of the dried particles before firing is 45 J / g or more and 200 J / g or less.
  • a method for producing an ammoxidation catalyst is 80 J / g or more and 200 J / g or less.
  • 0.1 ⁇ a ⁇ 2.0, b represents the atomic ratio of iron to 12 atoms of molybdenum, 0.1 ⁇ b ⁇ 3.0, and c represents the atomic ratio of X to 12 atoms of molybdenum.
  • 0.1 ⁇ c ⁇ 10.0, d represents the atomic ratio of Y to 12 molybdenum atoms, and 0.1 ⁇ d ⁇ 3.
  • the catalyst for ammoxidation according to any one of [1] to [5], wherein in the preparation step of preparing the precursor slurry, the raw material includes a molybdenum solution, and includes adding ammonia water or water to the molybdenum solution. Production method. [7] In the drying step of drying the precursor slurry to obtain dried particles, the inlet air temperature of the dryer is maintained at 180 to 280 ° C and the outlet temperature is maintained at 100 to 170 ° C. A method for producing the ammoxidation catalyst according to any one of the above.
  • a denitration treatment is performed before the main firing, and the denitration treatment is performed by heating at 150 to 450 ° C. for 1.5 to 3 hours, [1] to The method for producing an ammoxidation catalyst according to any one of [7].
  • a preparation step of preparing a precursor slurry to be a catalyst precursor A drying step of drying the precursor slurry to obtain dry particles, A firing step of firing the dried particles to obtain an ammoxidation catalyst, The step of supplying the catalyst for ammoxidation in advance to a fluidized reaction vessel and, while circulating the catalyst in the fluidized reaction vessel, reacting propylene, molecular oxygen, and ammonia to obtain acrylonitrile,
  • the calorific value calculated from the area value of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. observed by TG-DTA measurement of the dried particles before firing is 45 J / g or more and 200 J / g or less.
  • a method for producing acrylonitrile [11] The method for producing acrylonitrile according to [10], wherein the calorific value is 80 J / g or more and 200 J / g or less. [12] The source of molecular oxygen is air; [10] or [11], wherein the molar ratio of ammonia and air to propylene is in the range of 1 / (0.8 to 1.4) / (7 to 12) in the ratio of propylene / ammonia / air. A method for producing acrylonitrile.
  • the source of molecular oxygen is air;
  • X is at least one element selected from the group consisting of nickel, cobalt, magnesium, calcium, zinc, strontium, and barium
  • Y is cerium, chromium, lanthanum, neodymium, yttrium, praseodymium, samarium
  • Z represents one or more elements selected from the group consisting of potassium, rubidium and cesium
  • a represents the atomic ratio of bismuth to 12 molybdenum atoms.
  • b represents the atomic ratio of iron to 12 atoms of molybdenum
  • c represents the atomic ratio of X to 12 atoms of molybdenum.
  • the method for producing acrylonitrile according to any one of the above [21] In the firing step of firing the dried particles to obtain an ammoxidation catalyst, a denitration treatment is performed before the main firing, and the denitration treatment is performed by heating at 150 to 450 ° C. for 1.5 to 3 hours, [10] to The method for producing acrylonitrile according to any one of [20]. [22] The method for producing acrylonitrile according to any one of [10] to [21], wherein in the firing step of firing the dried particles to obtain an ammoxidation catalyst, the main firing temperature is 550 to 650 ° C.
  • the ammoxidation catalyst obtained by the production method of the present invention exhibits a good acrylonitrile yield in the ammoxidation reaction of propylene.
  • the present embodiment a mode for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiment, and does not depart from the gist of the present invention. Various deformations are possible within.
  • the method for producing a catalyst for ammoxidation of the present embodiment includes a preparation step of preparing a precursor slurry to be a catalyst precursor (step 1), and a drying step of drying the precursor slurry to obtain dry particles (step 2).
  • the precursor slurry can be obtained, for example, by mixing raw materials of components constituting a catalyst such as a metal component and a carrier.
  • TG-DTA measurement of the dried particles before firing is 45 J / g or more and 200 J / g or less. , Preferably from 80 J / g to 200 J / g, more preferably from 100 J / g to 180 J / g.
  • the calorific value (weight reduction as required) of the dried particles before firing in the TG-DTA measurement can be controlled by, for example, optimizing and combining various preparation conditions in step 1 and drying conditions in step 2. it can.
  • step 1 when aqueous ammonia or water is added to the raw material (preferably, aqueous ammonia or water is added to the molybdenum solution described below), the precipitation of molybdenum in the molybdenum-containing solution can be suppressed, and the calorific value is reduced. It tends to be within the range.
  • the calorific value and weight loss in the firing step of the dried particles can be measured by a known method.
  • the calorific value of the dried particles before calcining is calculated using differential thermal-thermogravimetric simultaneous measurement (TG-DTA), and the calorific value calculated is used as the calorific value in the calcining step of the dried particles.
  • TG-DTA differential thermal-thermogravimetric simultaneous measurement
  • Can be estimated as Differential heat retention measurement is a method of detecting a temperature difference between a reference and a sample using an electromotive force of a thermocouple provided in a measuring device, and measuring a change in calorific value with respect to temperature. Is called the DTA curve. It is known that when an exothermic reaction occurs, a positive peak appears on the DTA curve.
  • Thermogravimetry measures the change in weight of a sample due to an increase in the temperature of the sample with respect to the temperature, and the weight change curve with respect to the temperature change is called a TG curve.
  • thermogravimetry and the differential heat retention measurement simultaneous differential thermo-thermogravimetry is known. In this method, since the change in weight of the sample and the endothermic and exothermic reactions during heating can be simultaneously observed, the composition and thermal properties of the substance can be evaluated widely.
  • the calorific value and the weight loss during the firing process of the dried particles are measured using a differential thermo-thermogravimeter (manufactured by Rigaku Co., Ltd., Thermo + plus EVO2 series @ TG8121). It can be estimated by performing a DTA measurement. Specifically, first, the dried particles (20 mg) before firing are placed in a platinum sample container (cylindrical container having an outer diameter of 5.2 mm and a height of 2.5 mm) and subjected to measurement. The measurement conditions are as follows. The temperature range is 10 ° C./min in an air atmosphere, and the temperature range is from room temperature (20 ° C.) to 600 ° C.
  • the weight loss rate of the dry particles is defined as the value obtained by dividing the sample weight at 450 ° C. by the sample weight at the start of measurement.
  • the measured value (unit: ⁇ m ⁇ s / g) obtained by the above-described apparatus and conditions was converted to a standard substance (1.Pb melting temperature: 327.5 ° C.) having a known calorific value. (Melting energy: 23.1 J / g, 2. Al melting temperature: 660.3 ° C, melting energy: 399.9 J / g, 3. Sn melting temperature: 231.9 ° C, melting energy: 60.4 J / g).
  • a calculated value (unit: J / g) is obtained by conversion using a calibration curve obtained from the measurement results. Note that, in the differential heat retention measurement, the dried particles before firing in Examples and Comparative Examples described below have a maximum value within a temperature range of 200 ° C. to 300 ° C. when the X-axis is the temperature and the Y-axis is the calorific value. And a positive DTA peak derived from the exothermic reaction.
  • the TG-DTA measurement measures the sum of the exothermic reaction and the endothermic reaction, and the high calorific value suggests that the local endothermic reaction rarely occurs simultaneously with the exothermic reaction in the dried particles. are doing. For this reason, it is expected that the crystal precursor constituting the ammoxidation catalyst is heated uniformly and the degree of crystal growth becomes uniform.
  • thermogravimetric loss rate in the range of 20 ° C. to 450 ° C. measured by TG-DTA measurement of the dried particles before firing is 35% or less
  • the acrylonitrile yield tends to be improved. This indicates that the amount of gas released due to the decomposition reaction of the substance contained in the dried particles is suppressed, and the release of gas is suppressed as the measurement sample is scattered from the sample container during measurement, This is associated with a reduced frequency of cracks and chippings in the ammoxidation catalyst.
  • the weight change rate and the calorific value in the baking process of the dried particles were used for adjusting the composition (metal composition, raw materials used, the mass ratio of the metal component to the carrier), the type and amount of additives used in preparing the catalyst precursor slurry, and the pH adjustment. It can be controlled by optimizing and combining the amounts of acid and base, drying conditions, and the like. There are no particular restrictions on the slurry preparation step (step 1), the drying conditions (step 2), and the baking step (step 3) as long as the requirements relating to the weight change and the calorific value during the baking step of the dried particles are satisfied. .
  • the composition of the ammoxidation catalyst used in the present embodiment is not particularly limited, but as an example, a composition containing molybdenum represented by the following general formula (1), bismuth, and iron is preferable.
  • Molybdenum serves as an adsorption site for propylene and an active site for ammonia.
  • Bismuth also plays a role in activating propylene and extracting ⁇ -position hydrogen to generate ⁇ allyl species.
  • iron plays a role of supplying oxygen present in a gas phase to a catalytically active site by trivalent / divalent redox. By having such a composition, acrylonitrile selectivity tends to be further improved.
  • X is at least one element selected from the group consisting of nickel, cobalt, magnesium, calcium, zinc, strontium and barium
  • Y is cerium, chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, aluminum , Gallium, and indium, at least one element selected from the group consisting of potassium, rubidium, and cesium
  • Z represents at least one element selected from the group consisting of potassium, rubidium, and cesium.
  • a represents the atomic ratio of bismuth to 12 molybdenum atoms, and is 0.1 ⁇ a ⁇ 2.0, preferably 0.15 ⁇ a ⁇ 1.0, and more preferably 0.2 ⁇ a ⁇ 0. 7 b indicates the atomic ratio of iron to 12 molybdenum atoms, and is 0.1 ⁇ b ⁇ 3.0, preferably 0.5 ⁇ b ⁇ 2.5, and more preferably 1.0 ⁇ b ⁇ 2.
  • 0. c indicates the atomic ratio of X to 12 molybdenum atoms, and is 0.1 ⁇ c ⁇ 10.0, preferably 3.0 ⁇ c ⁇ 9.0, and more preferably 5.0 ⁇ c ⁇ 8.0.
  • 5 d indicates the atomic ratio of Y to 12 molybdenum atoms, and is 0.1 ⁇ d ⁇ 3.0, preferably 0.2 ⁇ d ⁇ 2.0, and more preferably 0.3 ⁇ d ⁇ 1.
  • 5 e indicates the atomic ratio of Z to 12 molybdenum atoms, and satisfies 0.01 ⁇ e ⁇ 2.0, preferably 0.05 ⁇ e ⁇ 1.0.
  • f indicates the atomic ratio of oxygen to 12 molybdenum atoms, and is the number of oxygen atoms necessary to satisfy the valence requirement of the other elements present.
  • a step of preparing a precursor slurry (precursor slurry) serving as a catalyst precursor by mixing raw materials of components constituting the catalyst such as a metal component and a carrier (Step 1), a step of drying the precursor slurry to obtain dry particles (Step 2), and a step of firing the dry particles (for example, a denitration step and a main firing step) to obtain an ammoxidation catalyst (Step 3).
  • a step of preparing a precursor slurry (precursor slurry) serving as a catalyst precursor by mixing raw materials of components constituting the catalyst such as a metal component and a carrier Step 1
  • a step of drying the precursor slurry to obtain dry particles (Step 2)
  • a step of firing the dry particles for example, a denitration step and a main firing step
  • Step (1) is a step of preparing a precursor slurry by mixing raw materials of components constituting a catalyst such as a metal component and a carrier.
  • a catalyst such as a metal component and a carrier.
  • the element source of each metal element include ammonium salts, nitrates, and organic acid salts that are soluble in water or an aqueous acidic solution. These are preferred because they do not cause residual chlorine that occurs when a hydrochloride is used or sulfur that occurs when a sulfate is used.
  • the raw material of the carrier is not particularly limited as long as it is commonly used, and examples thereof include oxides such as silica, alumina, titania, and zirconia. Of these, silica is preferable. Silica is itself inert compared to other oxides and has a good binding effect on active catalyst components.
  • the order of mixing the components when preparing the precursor slurry is not particularly limited.
  • the following is an example of the embodiment of the composition represented by the general formula (1).
  • an ammonium salt of molybdenum hereinafter, referred to as a molybdenum solution
  • a silica sol hereinafter, referred to as a silica solution
  • a solution obtained by dissolving a nitrate as an element source of each element such as bismuth, cerium, iron, chromium, nickel, magnesium, zinc, manganese, cobalt, rubidium, cesium, and potassium in an aqueous nitric acid solution (hereinafter, referred to as an aqueous metal nitrate solution) )
  • an aqueous metal nitrate solution aqueous metal nitrate solution
  • the precursor slurry does not necessarily need to contain all the elements constituting the catalyst, and the raw materials of the elements not contained in the precursor slurry may be added in each step before the firing step. Or by impregnating the dried catalyst.
  • the pH of the slurry can be changed by adjusting the concentration of nitric acid used or adding various additives to the silica sol, molybdenum solution, or metal nitrate aqueous solution in the above-described method for preparing the raw material slurry.
  • ammonia water or water is added to the molybdenum solution from the viewpoint of suppressing the precipitation of molybdenum oxide.
  • the addition of ammonia water or water can change the form of the metal in the slurry or increase the amount of ammonium nitrate in the slurry.
  • the amount of heat generated in the firing step of the dried particles tends to increase with the addition of, and the amount of heat generated can be within the above range.
  • the concentration of the aqueous ammonia may be, for example, about 5 to 30% by mass.
  • the addition amount of ammonia water or water may be, for example, about 1 to 10 parts by mass with respect to 100 parts by mass of the molybdenum solution.
  • water-soluble polymers such as polyethylene glycol, methylcellulose, polyvinyl alcohol, polyacrylic acid, and polyacrylamide, amines, carboxylic acids, aminocarboxylic acids, and other organic acids are appropriately added to silica sol or
  • a precursor slurry can be prepared by adding to a molybdenum solution or an aqueous metal nitrate solution.
  • oxalic acid, iminodiacetic acid, and pyridine are more preferable.
  • the content of the additive is preferably 0.01 to 0.10 molar equivalents relative to the total amount of the metal elements constituting the ammoxidation catalyst in the precursor slurry. More preferably, it is 0.02 to 0.07 molar equivalent.
  • the content of the additive is 0.01 molar equivalent or more, there is an effect on the calorific value, and the effect of the additive is exhibited.
  • the content of the additive is 0.10 molar equivalent or less, the weight loss due to the decomposition and burning of the additive is suppressed, and the weight change rate of the dried particles is suppressed.
  • the content of the carrier is increased, the calorific value derived from the metal raw material decreases.
  • the content of the carrier is preferably 35% by mass or more from the viewpoint of strength such as crush resistance and wear resistance under practical conditions.
  • Step 2 is a step of drying the precursor slurry to obtain dried particles.
  • it is a step of spray-drying the precursor slurry to obtain dry particles.
  • spray drying the precursor slurry By spray drying the precursor slurry, spherical fine particles suitable for a fluidized bed reaction can be obtained.
  • the spray drying device a general device such as a rotating disk type or a nozzle type can be used.
  • the spray-drying conditions it becomes possible to control the calorific value and weight loss during the calcination of the dried particles and to adjust the particle size of the catalyst.
  • the particle size of the ammoxidation catalyst is preferably 25 to 180 ⁇ m.
  • An example of preferable spray drying conditions is as follows.
  • the inlet air temperature of the dryer is 180 to 280 ° C.
  • the outlet temperature is Conditions for maintaining the temperature at 100 to 170 ° C. are mentioned.
  • Step 3 is a step of calcining the dried particles obtained by drying to obtain an ammoxidation catalyst. Since the dried particles can contain nitric acid, it is preferable to perform a denitration treatment before the main baking. In the denitration treatment, heating is preferably performed at 150 to 450 ° C. for 1.5 to 3 hours.
  • the firing temperature is preferably 550 to 650 ° C. When the firing temperature is 570 ° C. or higher, crystal growth proceeds sufficiently, and the acrylonitrile selectivity of the resulting ammoxidation catalyst tends to be further improved. Further, when the calcination temperature is 650 ° C. or lower, the surface area of the obtained catalyst for ammoxidation is increased, and the reaction activity of propylene tends to be further improved.
  • the gas atmosphere used for denitration and firing may be an oxidizing gas atmosphere containing oxygen or an inert gas atmosphere such as nitrogen, for example, but it is convenient to use air.
  • the method for producing acrylonitrile of the present embodiment is a reaction step of producing acrylonitrile by reacting propylene, molecular oxygen, and ammonia (ammoxidation reaction) in the presence of the ammoxidation catalyst obtained by the above-described method. Having.
  • the production of acrylonitrile by an ammoxidation reaction can be carried out in a fixed-bed reactor or a fluidized-bed reactor (fluidized reactor). Among these, a fluidized bed reactor (fluidized reaction tank) is preferable from the viewpoint of efficiently removing heat generated during the reaction and increasing the yield of acrylonitrile.
  • an ammoxidation catalyst is supplied to the fluidized reaction tank in advance, and the ammoxidation reaction is performed while the catalyst is circulated in the fluidized reaction tank.
  • the raw materials for the ammoxidation reaction, propylene and ammonia do not necessarily need to be of high purity, and industrial grade ones can be used.
  • the molecular oxygen source is air
  • the molar ratio of propylene, ammonia and air in the raw material gas is preferably 1 / (0.8 to 1.4) / (7 to 12).
  • the reaction temperature is more preferably in the range of 1 / (0.9 to 1.3) / (8 to 11), preferably 350 to 550 ° C, more preferably 400 to 500 ° C. Range.
  • the reaction pressure is preferably from normal pressure to 0.3 MPa.
  • the contact time between the raw material gas and the ammoxidation catalyst is preferably 3 to 6 seconds.
  • the reaction tube used for the propylene ammoxidation reaction is not particularly limited, and for example, a Pyrex (registered trademark) glass tube having an internal diameter of 25 mm and 16 10-mesh wire nets incorporated at 1 cm intervals can be used.
  • Specific examples of the ammoxidation reaction are not particularly limited. For example, first, the amount of the ammoxidation catalyst is set to 50 cc, the reaction temperature is set to 430 ° C., the reaction pressure is set to 0.17 MPa, and the mixed gas (propylene, ammonia , Oxygen and helium). The volume ratio of ammonia to propylene is set so that the specific sulfuric acid unit defined by the following equation is 20 kg / T-AN.
  • the molar ratio of ammonia / propylene at this time is defined as N / C.
  • the volume ratio of oxygen to propylene is set such that the oxygen concentration of the gas at the outlet of the reactor is 0.2 ⁇ 0.02% by volume.
  • the molar amount of oxygen at that time is converted to the molar amount of air on the assumption that the air contains 21% of oxygen.
  • the molar ratio of air / propylene at this time is defined as A / C.
  • the contact time defined by the following equation can be changed.
  • the propylene conversion defined by the following equation can be set to 99.3 ⁇ 0.2%.
  • Sulfuric acid unit, contact time, propylene conversion, and acrylonitrile yield are defined as follows.
  • TG-DTA measurement The calorific value and weight loss during the firing process of the dried particles are determined by TG-DTA measurement of the dried particles before firing using a differential thermo-thermogravimeter (Thermo plus EVO2 series TG8121 manufactured by Rigaku Corporation). Estimated by Specifically, first, the dried particles (20 mg) before firing were placed in a platinum sample container (cylindrical container having an outer diameter of 5.2 mm and a height of 2.5 mm) and subjected to measurement. The measurement conditions were as follows: the temperature was raised at a rate of 10 ° C./min in an air atmosphere; The weight loss rate of the dry particles was defined as the value obtained by dividing the sample weight at 450 ° C. by the sample weight at the start of measurement.
  • the measured value (unit: ⁇ m ⁇ s / g) obtained by the above-described apparatus and conditions was converted into a standard substance (1.
  • Pb melting temperature: 327.5 ° C. Melting energy: 23.1 J / g, 2. Al melting temperature: 660.3 ° C, melting energy: 399.9 J / g, 3. Sn melting temperature: 231.9 ° C, melting energy: 60.4 J / g).
  • the calculated value (unit: J / g) was obtained by conversion using a calibration curve obtained from the measurement results.
  • the maximum value is in a temperature range of 200 ° C to 300 ° C. It had a positive DTA peak from the exothermic reaction shown.
  • the volume ratio of ammonia to propylene was set so that the specific sulfuric acid unit defined by the following formula was 20 kg / T-AN.
  • the molar ratio of ammonia / propylene at this time was defined as N / C.
  • the volume ratio of oxygen to propylene was set so that the oxygen concentration of the gas at the outlet of the reactor was 0.2 ⁇ 0.02% by volume.
  • the molar amount of oxygen at that time was converted to the molar amount of air, assuming that the air contained 21% of oxygen.
  • the molar ratio of air / propylene at this time was defined as A / C.
  • the contact time defined by the following equation was changed by changing the flow rate of the mixed gas. Thereby, the propylene conversion defined by the following equation was set to 99.3 ⁇ 0.2%.
  • Sulfuric acid unit, contact time, propylene conversion, and acrylonitrile yield were defined as in the following formula.
  • Example 1 Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure. First, 1333 g of silica sol containing 30% by mass of SiO 2 was put in a container with a lid, kept at 40 ° C., and stirred at a rotation speed of 120 rpm while oxalic acid dihydrate 25 dissolved in 287.5 g of water.
  • aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution.
  • the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry.
  • a precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes.
  • the obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles.
  • the air temperature at the dryer inlet was 230 ° C
  • the air temperature at the outlet was 110 ° C.
  • the rotation speed of the disk was set at 12,500 rpm.
  • the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 104 J / g
  • the weight loss was 31. 5%.
  • the dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes.
  • the denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst.
  • the obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
  • Example 2 Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure. First, 1333 g of silica sol containing 30% by mass of SiO 2 was placed in a container with a lid, kept at 40 ° C., and stirred at a stirring rotation speed of 120 rpm to obtain a silica aqueous solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 ⁇ 4H 2 O], was dissolved in warm water at 60 ° C.
  • aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution.
  • the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry.
  • a precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes.
  • the obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles.
  • the air temperature at the dryer inlet was 230 ° C
  • the air temperature at the outlet was 110 ° C.
  • the rotation speed of the disk was set at 12,500 rpm.
  • the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 98 J / g, and the weight loss was 27. 2%.
  • the dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes.
  • the denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst.
  • the obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
  • Example 3 Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure. First, 1333 g of silica sol containing 30% by mass of SiO 2 was put in a container with a lid, kept at 40 ° C., and stirred at a rotation speed of 120 rpm while oxalic acid dihydrate 25 dissolved in 287.5 g of water.
  • aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution.
  • the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry.
  • a precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes.
  • the obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles.
  • the air temperature at the dryer inlet was 235 ° C
  • the air temperature at the outlet was 110 ° C.
  • the rotation speed of the disk was set at 12,500 rpm.
  • the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 101 J / g, and the weight loss was 30. 5%.
  • the dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes.
  • the denitrated dry particles were calcined at 595 ° C.
  • ammoxidation catalyst for 2 hours to obtain an ammoxidation catalyst.
  • the obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
  • Example 4 Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure. First, 1333 g of silica sol containing 30% by mass of SiO 2 was placed in a container with a lid, kept at 40 ° C., and stirred at a stirring rotation speed of 120 rpm to obtain a silica aqueous solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 ⁇ 4H 2 O], was dissolved in warm water at 60 ° C.
  • aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution.
  • the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry.
  • a precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes.
  • the obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles.
  • the air temperature at the dryer inlet was 235 ° C
  • the air temperature at the outlet was 110 ° C.
  • the rotation speed of the disk was set at 12,500 rpm.
  • the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 95 J / g, and the weight loss was 26. 1%.
  • the dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes.
  • the denitrated dry particles were calcined at 595 ° C.
  • ammoxidation catalyst for 2 hours to obtain an ammoxidation catalyst.
  • the obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
  • Example 5 Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure. First, 1333 g of silica sol containing 30% by mass of SiO 2 was placed in a container with a lid, kept at 40 ° C., and stirred at a stirring rotation speed of 120 rpm to obtain a silica aqueous solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 ⁇ 4H 2 O], was dissolved in warm water at 60 ° C.
  • aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution.
  • the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry.
  • a precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes.
  • the obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles.
  • the air temperature at the dryer inlet was 230 ° C
  • the air temperature at the outlet was 110 ° C.
  • the rotation speed of the disk was set at 12,500 rpm.
  • the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 52 J / g, and the weight loss was 26. 3%.
  • the dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes.
  • the denitrated dry particles were calcined at 595 ° C.
  • ammoxidation catalyst for 2 hours to obtain an ammoxidation catalyst.
  • the obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
  • Example 6 Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure. First, 1333 g of silica sol containing 30% by mass of SiO 2 was put in a container with a lid, kept at 40 ° C., and stirred at a rotation speed of 120 rpm while oxalic acid dihydrate 25 dissolved in 287.5 g of water.
  • aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution.
  • the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry.
  • a precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes.
  • the obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles.
  • the air temperature at the dryer inlet was 270 ° C
  • the air temperature at the outlet was 155 ° C.
  • the rotation speed of the disk was set at 12,500 rpm.
  • the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 94 J / g, and the weight loss was 26. 9%.
  • the dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes.
  • the denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst.
  • the obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
  • Example 7 A metal oxide represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 was supported on silica.
  • a catalyst metal oxide: 60% by mass, silica: 40% by mass
  • 1333 g of silica sol containing 30% by mass of SiO 2 was placed in a container with a lid, and 25.0 g of oxalic acid dissolved in 287.5 g of water was added while stirring at 40 ° C. and stirring at a rotation speed of 120 rpm. Then, after covering, the mixture was stirred for 10 minutes to obtain an aqueous silica solution.
  • aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution.
  • the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry.
  • the raw material slurry was stirred at 40 ° C.
  • a precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles.
  • the air temperature at the dryer inlet was 270 ° C
  • the air temperature at the outlet was 155 ° C.
  • the rotation speed of the disk was set at 12,500 rpm.
  • ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
  • Example 8 Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure. First, 1333 g of silica sol containing 30% by mass of SiO 2 was placed in a container with a lid, kept at 40 ° C., and 25.0 g of iminodiacetic acid dissolved in 287.5 g of water while stirring at a stirring rotation speed of 120 rpm ( (Equivalent to 2.5% by mass of the finally obtained catalyst powder) was added, and the mixture was capped and stirred for 10 minutes to obtain an aqueous silica solution.
  • aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution.
  • the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry.
  • a precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes.
  • the obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles.
  • the air temperature at the dryer inlet was 270 ° C
  • the air temperature at the outlet was 155 ° C.
  • the rotation speed of the disk was set at 12,500 rpm.
  • the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 81 J / g
  • the weight loss rate was 27. 0.5%.
  • the dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes.
  • the denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst.
  • the obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
  • Example 9 Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure. First, 1333 g of silica sol containing 30% by mass of SiO 2 was placed in a container with a lid, and 25.0 g of pyridine dissolved in 287.5 g of water (final) while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 120 rpm (final).
  • aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution.
  • the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry.
  • a precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes.
  • the obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles.
  • the air temperature at the dryer inlet was 270 ° C
  • the air temperature at the outlet was 155 ° C.
  • the rotation speed of the disk was set at 12,500 rpm.
  • the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 175 J / g, and the weight loss rate was 26. 0.0%.
  • the dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes.
  • the denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst.
  • the obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
  • Example 10 Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure. First, 1333 g of ammonium polyacrylate dissolved in 287.5 g of water was placed in a vessel with a lid, and 1333 g of silica sol containing 30% by mass of SiO 2 was kept at 40 ° C. and stirred at 120 rpm. (Equivalent to 1.5% by mass of the finally obtained catalyst powder) was added, and the mixture was capped and stirred for 10 minutes to obtain an aqueous silica solution.
  • aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution.
  • the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry.
  • a precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes.
  • the obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles.
  • the air temperature at the dryer inlet was 270 ° C
  • the air temperature at the outlet was 155 ° C.
  • the rotation speed of the disk was set at 12,500 rpm.
  • the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 62 J / g
  • the weight loss rate was 27. 0.8%.
  • the dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes.
  • the denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst.
  • the obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
  • Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 55% by mass, silica: 45% by mass) was produced by the following procedure. First, 1500 g of silica sol containing 30% by mass of SiO 2 was placed in a container with a lid, kept at 40 ° C., and stirred at a rotation speed of 120 rpm while oxalic acid dihydrate 25 dissolved in 287.5 g of water.
  • aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution.
  • the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry.
  • a precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes.
  • the obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles.
  • the air temperature at the dryer inlet was 270 ° C
  • the air temperature at the outlet was 155 ° C.
  • the rotation speed of the disk was set at 12,500 rpm.
  • the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 75 J / g, and the weight loss was 26. 9%.
  • the dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes.
  • the denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst.
  • the obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
  • Example 12 Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure. First, 1333 g of silica sol containing 30% by mass of SiO 2 was put in a container with a lid, kept at 40 ° C., and stirred at a rotation speed of 120 rpm while oxalic acid dihydrate 25 dissolved in 287.5 g of water.
  • aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution.
  • the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry.
  • a precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes.
  • the obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles.
  • the air temperature at the dryer inlet was 280 ° C
  • the air temperature at the outlet was 160 ° C.
  • the rotation speed of the disk was set at 12,500 rpm.
  • the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 73 J / g, and the weight loss was 27. 5%.
  • the dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes.
  • the denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst.
  • the obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
  • aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution.
  • the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry.
  • a precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes.
  • the obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles.
  • the air temperature at the dryer inlet was 270 ° C
  • the air temperature at the outlet was 155 ° C.
  • the rotation speed of the disk was set at 12,500 rpm.
  • the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C to 300 ° C was 43 J / g, and the weight loss rate was 25. 0.0%.
  • the dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes.
  • the denitrated dry particles were calcined at 595 ° C.
  • ammoxidation catalyst for 2 hours to obtain an ammoxidation catalyst.
  • the obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
  • aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution.
  • the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry.
  • a precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes.
  • the obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles.
  • the air temperature at the dryer inlet was 270 ° C
  • the air temperature at the outlet was 155 ° C.
  • the rotation speed of the disk was set at 12,500 rpm.
  • the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 42 J / g
  • the weight loss rate was 36. 0.0%.
  • the dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes.
  • the denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst.
  • the obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
  • aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution.
  • the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry.
  • a precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes.
  • the obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles.
  • the air temperature at the dryer inlet was 305 ° C
  • the air temperature at the outlet was 195 ° C.
  • the rotation speed of the disk was set at 12,500 rpm.
  • the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 40 J / g
  • the weight loss rate was 23. 0.2%.
  • the dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes.
  • the denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst.
  • the obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
  • aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution.
  • the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry.
  • a precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes.
  • the obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles.
  • the air temperature at the dryer inlet was 270 ° C
  • the air temperature at the outlet was 155 ° C.
  • the rotation speed of the disk was set at 12,500 rpm.
  • the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 41 J / g
  • the weight loss rate was 24. 0.1%.
  • the dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes.
  • the denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst.
  • the obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.

Abstract

The purpose of the present invention is to provide a method for producing an ammoxidation catalyst which enables synthesizing acrylonitrile with high yield. This method for producing an ammoxidation catalyst involves a preparation step for preparing a precursor slurry that will become the catalyst precursor, a drying step for drying the precursor slurry to obtain dry particles, and a firing step for firing the dry particles to obtain an ammoxidation catalyst, wherein the calorific value of the dried particles prior to firing, calculated from the area value of the exothermic peaks that have a maximum value in the range from 200°C to 300°C observed with TG-DTA measurement, is 45-200 J/g.

Description

アンモ酸化用触媒の製造方法、及び、アクリロニトリルの製造方法Method for producing catalyst for ammoxidation and method for producing acrylonitrile
 本発明は酸化物触媒の製造方法、並びに当該方法により製造された酸化物触媒を用いたアクリロニトリルの製造方法に関する。 The present invention relates to a method for producing an oxide catalyst, and a method for producing acrylonitrile using an oxide catalyst produced by the method.
 分子状酸素とプロピレンとアンモニアとを反応させてアクリロニトリルを製造する方法は「アンモ酸化反応」として広く知られており、現在、工業的規模で実施されている。この反応において、良好なアクリロニトリル収率を達成するために複合酸化物触媒が利用されている。例えば、Mo-Bi-Fe又はFe-Sbを必須成分とした触媒が工業的に用いられており、更に良好なアクリロニトリル収率を達成するために、金属組成の改良の検討が続けられている(例えば、特許文献1及び2参照)。 方法 The method of producing acrylonitrile by reacting molecular oxygen with propylene and ammonia is widely known as “ammoxidation reaction”, and is currently practiced on an industrial scale. In this reaction, a composite oxide catalyst is used to achieve a good acrylonitrile yield. For example, catalysts containing Mo-Bi-Fe or Fe-Sb as an essential component are used industrially, and studies are being made on improving the metal composition to achieve a better acrylonitrile yield ( For example, refer to Patent Documents 1 and 2).
 一方、金属組成は共通であっても、触媒調製方法を工夫することでアクリロニトリル収率を向上させる試みも実施されている。例えば、特許文献3にはモリブデン、ビスマス、及び鉄を必須成分として含むアンモ酸化用触媒の調製方法において、原料スラリーに配位性有機化合物を添加する方法が記載されている。また、特許文献4にはモリブデン、ビスマス、及び鉄を必須成分として含むアンモ酸化用触媒の調製過程で熱分解性窒素化合物(金属は含まず、アンモニウム化合物、硝酸塩化合物、亜硝酸塩化合物、アミド化合物、ニトロ安息香酸化合物、及び水酸化アンモニウム化合物からなる群から選ばれる)を添加する方法が記載されている。 On the other hand, even if the metal composition is common, attempts have been made to improve the acrylonitrile yield by devising a catalyst preparation method. For example, Patent Literature 3 discloses a method for preparing an ammoxidation catalyst containing molybdenum, bismuth, and iron as essential components, in which a coordinating organic compound is added to a raw material slurry. Further, Patent Document 4 discloses that in the process of preparing an ammoxidation catalyst containing molybdenum, bismuth, and iron as essential components, a thermally decomposable nitrogen compound (containing no metal, ammonium compound, nitrate compound, nitrite compound, amide compound, A nitrobenzoic acid compound and an ammonium hydroxide compound).
 触媒調製過程に添加剤を加える方法以外にも、例えば、特許文献5には触媒成分を含有するスラリーのpHを所定の範囲に調整する方法、特許文献6には工程途中においてスラリーを特定の条件下で一定時間保持する方法が開示されている。また、例えば、特許文献7にはモリブデン、ビスマス、鉄、タングステン等を含むスラリーの温度を30~70℃の範囲に調節するアクリロニトリル製造用触媒の製造方法が記載されている。 In addition to the method of adding an additive during the catalyst preparation process, for example, Patent Literature 5 discloses a method of adjusting the pH of a slurry containing a catalyst component to a predetermined range, and Patent Literature 6 discloses a method in which the slurry is subjected to specific conditions during the process. A method of holding for a certain period of time is disclosed below. Further, for example, Patent Document 7 discloses a method for producing a catalyst for producing acrylonitrile, in which the temperature of a slurry containing molybdenum, bismuth, iron, tungsten and the like is adjusted to a range of 30 to 70 ° C.
特許第5491037号Patent No. 5491037 特開平11-246504号公報JP-A-11-246504 特許第6118016号Patent No. 6118016 特表2015-536821号公報JP-T-2015-536821A 特許第4159759号Patent No. 4159759 特許第4425743号Patent No. 4425743 特開2008-237963号公報JP 2008-237963 A
 しかし、アクリロニトリルの収率向上の観点からこれらの触媒製造方法の改良はある程度の効果が見られるものの、未だに十分ではなく、更なる改良が望まれている。本発明は上記事情を鑑みてなされたものであり、高収率でアクリロニトリルを合成できるアンモ酸化用触媒の製造方法を提供することを目的とする。 However, from the viewpoint of improving the yield of acrylonitrile, these catalyst production methods have been improved to some extent, but are still not sufficient, and further improvement is desired. The present invention has been made in view of the above circumstances, and has as its object to provide a method for producing an ammoxidation catalyst capable of synthesizing acrylonitrile with high yield.
 本発明者らは金属組成が同じ複合酸化物であっても、触媒性能は同じとは限らないことを踏まえて、触媒成分を含むスラリーを乾燥して得られる乾燥粒子の状態に着目した。その結果、乾燥粒子を焼成する際の発熱量と最終的な触媒性能(アクリロニトリル収率)との間に相関関係を見出し、本発明を完成させるに至った。 者 The present inventors have paid attention to the state of dry particles obtained by drying a slurry containing a catalyst component, based on the fact that catalyst performance is not always the same even when the composite oxides have the same metal composition. As a result, a correlation was found between the calorific value when firing the dried particles and the final catalyst performance (acrylonitrile yield), and the present invention was completed.
 すなわち本発明は以下のとおりである。
[1]
 触媒の前駆体となる前駆体スラリーを調製する調製工程と、
 前記前駆体スラリーを乾燥して乾燥粒子を得る乾燥工程と、
 前記乾燥粒子を焼成してアンモ酸化用触媒を得る焼成工程と、
を有し、
 焼成前の乾燥粒子のTG-DTA測定により観測される200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量が、45J/g以上、200J/g以下である、アンモ酸化用触媒の製造方法。
[2]
 前記発熱量が、80J/g以上、200J/g以下である、[1]に記載のアンモ酸化用触媒の製造方法。
[3]
 前記アンモ酸化用触媒が、下記一般式(1)で表される組成を有する複合金属酸化物を含む、[1]又は[2]に記載のアンモ酸化用触媒の製造方法。
Mo12BiFe (1)
(式(1)中、Xはニッケル、コバルト、マグネシウム、カルシウム、亜鉛、ストロンチウム、バリウムからなる群より選ばれる1種類以上の元素、Yはセリウム、クロム、ランタン、ネオジム、イットリウム、プラセオジウム、サマリウム、アルミニウム、ガリウム、及びインジウムからなる群より選ばれる1種以上の元素、Zはカリウム、ルビジウム及びセシウムからなる群より選ばれる1種以上の元素を示す。aはモリブデン12原子に対するビスマスの原子比を示し、0.1≦a≦2.0であり、bはモリブデン12原子に対する鉄の原子比を示し、0.1≦b≦3.0であり、cはモリブデン12原子に対するXの原子比を示し、0.1≦c≦10.0であり、dはモリブデン12原子に対するYの原子比を示し、0.1≦d≦3.0であり、eはモリブデン12原子に対するZの原子比を示し、0.01≦e≦2.0であり、fはモリブデン12原子に対する酸素の原子比を示し、存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。)
[4]
 前記アンモ酸化用触媒が担体を含み、前記アンモ酸化用触媒における担体の含有量が35~45質量%である、[1]~[3]のいずれかに記載のアンモ酸化用触媒の製造方法。
[5]
 前記前駆体スラリーを調製する調製工程において、原料にアンモニア水又は水を添加することを含む、[1]~[4]のいずれかに記載のアンモ酸化用触媒の製造方法。
[6]
 前記前駆体スラリーを調製する調製工程において、原料がモリブデン溶液を含み、モリブデン溶液にアンモニア水又は水を添加することを含む、[1]~[5]のいずれかに記載のアンモ酸化用触媒の製造方法。
[7]
 前記前駆体スラリーを乾燥して乾燥粒子を得る乾燥工程において、乾燥機の入口空気温度を180~280℃に保持し、出口温度を100~170℃に保持する、[1]~[6]のいずれかに記載のアンモ酸化用触媒の製造方法。
[8]
 前記乾燥粒子を焼成してアンモ酸化用触媒を得る焼成工程において、本焼成の前に脱硝処理を含み、脱硝処理が150~450℃で1.5~3時間の加熱を行う、[1]~[7]のいずれかに記載のアンモ酸化用触媒の製造方法。
[9]
 前記乾燥粒子を焼成してアンモ酸化用触媒を得る焼成工程において、本焼成温度が550~650℃である、[1]~[8]のいずれかに記載のアンモ酸化用触媒の製造方法。
[10]
 触媒の前駆体となる前駆体スラリーを調製する調製工程と、
 前記前駆体スラリーを乾燥して乾燥粒子を得る乾燥工程と、
 前記乾燥粒子を焼成してアンモ酸化用触媒を得る焼成工程と、
 前記アンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応させてアクリロニトリルを得る工程を含み、
 焼成前の乾燥粒子のTG-DTA測定により観測される200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量が、45J/g以上、200J/g以下である、アクリロニトリルの製造方法。
[11]
 前記発熱量が、80J/g以上、200J/g以下である、[10]に記載のアクリロニトリルの製造方法。
[12]
 前記分子状酸素源が空気であり、
 プロピレンに対するアンモニア及び空気のモル比が、プロピレン/アンモニア/空気の比で1/(0.8~1.4)/(7~12)の範囲である、[10]又は[11]に記載のアクリロニトリルの製造方法。
[13]
 前記分子状酸素源が空気であり、
 プロピレンに対するアンモニア及び空気のモル比が、プロピレン/アンモニア/空気の比で1/(0.9~1.3)/(8~11)の範囲である、[10]又は[11]に記載のアクリロニトリルの製造方法。
[14]
 前記アンモ酸化用触媒の存在下、プロピレンと、分子状酸素と、アンモニアと、を反応させる温度が、350~550℃の温度範囲である、[10]~[13]のいずれかに記載のアクリロニトリルの製造方法。
[15]
 前記アンモ酸化用触媒の存在下、プロピレンと、分子状酸素と、アンモニアと、を反応させる温度が、400~500℃の温度範囲である、[10]~[13]のいずれかに記載のアクリロニトリルの製造方法。
[16]
 前記アンモ酸化用触媒が、下記一般式(1)で表される組成を有する複合金属酸化物を含む、[10]~[15]のいずれかに記載のアクリロニトリルの製造方法。
Mo12BiFe (1)
(式(1)中、Xはニッケル、コバルト、マグネシウム、カルシウム、亜鉛、ストロンチウム、バリウムからなる群より選ばれる1種類以上の元素、Yはセリウム、クロム、ランタン、ネオジム、イットリウム、プラセオジウム、サマリウム、アルミニウム、ガリウム、及びインジウムからなる群より選ばれる1種以上の元素、Zはカリウム、ルビジウム及びセシウムからなる群より選ばれる1種以上の元素を示す。aはモリブデン12原子に対するビスマスの原子比を示し、0.1≦a≦2.0であり、bはモリブデン12原子に対する鉄の原子比を示し、0.1≦b≦3.0であり、cはモリブデン12原子に対するXの原子比を示し、0.1≦c≦10.0であり、dはモリブデン12原子に対するYの原子比を示し、0.1≦d≦3.0であり、eはモリブデン12原子に対するZの原子比を示し、0.01≦e≦2.0であり、fはモリブデン12原子に対する酸素の原子比を示し、存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。)
[17]
 前記アンモ酸化用触媒が担体を含み、前記アンモ酸化用触媒における担体の含有量が35~45質量%である、[10]~[16]のいずれかに記載のアクリロニトリルの製造方法。
[18]
 前記前駆体スラリーを調製する調製工程において、原料にアンモニア水又は水を添加することを含む、[10]~[17]のいずれかに記載のアクリロニトリルの製造方法。
[19]
 前記前駆体スラリーを調製する調製工程において、原料がモリブデン溶液を含み、モリブデン溶液にアンモニア水又は水を添加することを含む、[10]~[18]のいずれかに記載のアクリロニトリルの製造方法。
[20]
 前記前駆体スラリーを乾燥して乾燥粒子を得る乾燥工程において、乾燥機の入口空気温度を180~280℃に保持し、出口温度を100~170℃に保持する、[10]~[19]のいずれかに記載のアクリロニトリルの製造方法。
[21]
 前記乾燥粒子を焼成してアンモ酸化用触媒を得る焼成工程において、本焼成の前に脱硝処理を含み、脱硝処理が150~450℃で1.5~3時間の加熱を行う、[10]~[20]のいずれかに記載のアクリロニトリルの製造方法。
[22]
 前記乾燥粒子を焼成してアンモ酸化用触媒を得る焼成工程において、本焼成温度が550~650℃である、[10]~[21]のいずれかに記載のアクリロニトリルの製造方法。
That is, the present invention is as follows.
[1]
A preparation step of preparing a precursor slurry to be a catalyst precursor,
A drying step of drying the precursor slurry to obtain dry particles,
A firing step of firing the dried particles to obtain an ammoxidation catalyst,
Has,
The calorific value calculated from the area value of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. observed by TG-DTA measurement of the dried particles before firing is 45 J / g or more and 200 J / g or less. And a method for producing an ammoxidation catalyst.
[2]
The method for producing an ammoxidation catalyst according to [1], wherein the calorific value is 80 J / g or more and 200 J / g or less.
[3]
The method for producing an ammoxidation catalyst according to [1] or [2], wherein the ammoxidation catalyst includes a composite metal oxide having a composition represented by the following general formula (1).
Mo 12 Bi a Fe b X c Y d Z e O f (1)
(In the formula (1), X is one or more elements selected from the group consisting of nickel, cobalt, magnesium, calcium, zinc, strontium, and barium, and Y is cerium, chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, Z represents one or more elements selected from the group consisting of potassium, rubidium and cesium, and a represents the atomic ratio of bismuth to 12 atoms of molybdenum. 0.1 ≦ a ≦ 2.0, b represents the atomic ratio of iron to 12 atoms of molybdenum, 0.1 ≦ b ≦ 3.0, and c represents the atomic ratio of X to 12 atoms of molybdenum. 0.1 ≦ c ≦ 10.0, d represents the atomic ratio of Y to 12 molybdenum atoms, and 0.1 ≦ d ≦ 3. 0, e indicates the atomic ratio of Z to 12 atoms of molybdenum, 0.01 ≦ e ≦ 2.0, f indicates the atomic ratio of oxygen to 12 atoms of molybdenum, and the valence of other elements present This is the number of oxygen atoms required to satisfy the requirement.)
[4]
The method for producing an ammoxidation catalyst according to any one of [1] to [3], wherein the ammoxidation catalyst contains a carrier, and the content of the carrier in the ammoxidation catalyst is 35 to 45% by mass.
[5]
The method for producing an ammoxidation catalyst according to any one of [1] to [4], wherein the preparation step of preparing the precursor slurry includes adding aqueous ammonia or water to the raw material.
[6]
The catalyst for ammoxidation according to any one of [1] to [5], wherein in the preparation step of preparing the precursor slurry, the raw material includes a molybdenum solution, and includes adding ammonia water or water to the molybdenum solution. Production method.
[7]
In the drying step of drying the precursor slurry to obtain dried particles, the inlet air temperature of the dryer is maintained at 180 to 280 ° C and the outlet temperature is maintained at 100 to 170 ° C. A method for producing the ammoxidation catalyst according to any one of the above.
[8]
In the firing step of firing the dried particles to obtain an ammoxidation catalyst, a denitration treatment is performed before the main firing, and the denitration treatment is performed by heating at 150 to 450 ° C. for 1.5 to 3 hours, [1] to The method for producing an ammoxidation catalyst according to any one of [7].
[9]
The method for producing an ammoxidation catalyst according to any one of [1] to [8], wherein in the firing step of firing the dried particles to obtain an ammoxidation catalyst, the main firing temperature is 550 to 650 ° C.
[10]
A preparation step of preparing a precursor slurry to be a catalyst precursor,
A drying step of drying the precursor slurry to obtain dry particles,
A firing step of firing the dried particles to obtain an ammoxidation catalyst,
The step of supplying the catalyst for ammoxidation in advance to a fluidized reaction vessel and, while circulating the catalyst in the fluidized reaction vessel, reacting propylene, molecular oxygen, and ammonia to obtain acrylonitrile,
The calorific value calculated from the area value of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. observed by TG-DTA measurement of the dried particles before firing is 45 J / g or more and 200 J / g or less. And a method for producing acrylonitrile.
[11]
The method for producing acrylonitrile according to [10], wherein the calorific value is 80 J / g or more and 200 J / g or less.
[12]
The source of molecular oxygen is air;
[10] or [11], wherein the molar ratio of ammonia and air to propylene is in the range of 1 / (0.8 to 1.4) / (7 to 12) in the ratio of propylene / ammonia / air. A method for producing acrylonitrile.
[13]
The source of molecular oxygen is air;
The method according to [10] or [11], wherein the molar ratio of ammonia and air to propylene is in the range of 1 / (0.9 to 1.3) / (8 to 11) in the ratio of propylene / ammonia / air. A method for producing acrylonitrile.
[14]
The acrylonitrile according to any one of [10] to [13], wherein a temperature at which propylene, molecular oxygen, and ammonia are reacted in the presence of the ammoxidation catalyst is in a temperature range of 350 to 550 ° C. Manufacturing method.
[15]
The acrylonitrile according to any one of [10] to [13], wherein a temperature at which propylene, molecular oxygen, and ammonia are reacted in the presence of the ammoxidation catalyst is in a temperature range of 400 to 500 ° C. Manufacturing method.
[16]
The method for producing acrylonitrile according to any one of [10] to [15], wherein the ammoxidation catalyst contains a composite metal oxide having a composition represented by the following general formula (1).
Mo 12 Bi a Fe b X c Y d Z e O f (1)
(In the formula (1), X is at least one element selected from the group consisting of nickel, cobalt, magnesium, calcium, zinc, strontium, and barium, and Y is cerium, chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, Z represents one or more elements selected from the group consisting of potassium, rubidium and cesium, and a represents the atomic ratio of bismuth to 12 molybdenum atoms. 0.1 ≦ a ≦ 2.0, b represents the atomic ratio of iron to 12 atoms of molybdenum, 0.1 ≦ b ≦ 3.0, and c represents the atomic ratio of X to 12 atoms of molybdenum. 0.1 ≦ c ≦ 10.0, d represents the atomic ratio of Y to 12 molybdenum atoms, and 0.1 ≦ d ≦ 3 0, e indicates the atomic ratio of Z to 12 atoms of molybdenum, 0.01 ≦ e ≦ 2.0, f indicates the atomic ratio of oxygen to 12 atoms of molybdenum, and the valence of other elements present The number of oxygen atoms required to satisfy the requirement.)
[17]
The method for producing acrylonitrile according to any one of [10] to [16], wherein the catalyst for ammoxidation contains a carrier, and the content of the carrier in the catalyst for ammoxidation is 35 to 45% by mass.
[18]
The method for producing acrylonitrile according to any one of [10] to [17], wherein the step of preparing the precursor slurry includes adding ammonia water or water to the raw material.
[19]
The method for producing acrylonitrile according to any one of [10] to [18], wherein in the preparation step of preparing the precursor slurry, the raw material includes a molybdenum solution, and the method includes adding ammonia water or water to the molybdenum solution.
[20]
In the drying step of drying the precursor slurry to obtain dried particles, the inlet air temperature of the dryer is maintained at 180 to 280 ° C. and the outlet temperature is maintained at 100 to 170 ° C. [10] to [19]. The method for producing acrylonitrile according to any one of the above.
[21]
In the firing step of firing the dried particles to obtain an ammoxidation catalyst, a denitration treatment is performed before the main firing, and the denitration treatment is performed by heating at 150 to 450 ° C. for 1.5 to 3 hours, [10] to The method for producing acrylonitrile according to any one of [20].
[22]
The method for producing acrylonitrile according to any one of [10] to [21], wherein in the firing step of firing the dried particles to obtain an ammoxidation catalyst, the main firing temperature is 550 to 650 ° C.
 本発明の製造方法で得られるアンモ酸化用触媒は、プロピレンのアンモ酸化反応において、良好なアクリロニトリル収率を示す。 ア ン The ammoxidation catalyst obtained by the production method of the present invention exhibits a good acrylonitrile yield in the ammoxidation reaction of propylene.
 以下に、本発明を実施するための形態(以下、単に「本実施形態」という)について詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、その要旨を逸脱しない範囲内で様々に変形が可能である。 Hereinafter, a mode for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail. However, the present invention is not limited to the following embodiment, and does not depart from the gist of the present invention. Various deformations are possible within.
 本実施形態のアンモ酸化用触媒の製造方法は、触媒の前駆体となる前駆体スラリーを調製する調製工程(工程1)、前記前駆体スラリーを乾燥して乾燥粒子を得る乾燥工程(工程2)、前記乾燥粒子を焼成(例えば、脱硝工程及び本焼成工程)してアンモ酸化用触媒を得る焼成工程(工程3)を有している。前記前駆体スラリーは、例えば、金属成分や担体などの触媒を構成する成分の原料を混合することにより得ることができる。また、焼成前の乾燥粒子のTG―DTA測定により観測される200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は、45J/g以上、200J/g以下、好ましくは80J/g以上、200J/g以下、より好ましくは100J/g以上、180J/g以下である。焼成前の乾燥粒子の前記TG-DTA測定における発熱量(必要に応じて重量減少)は、例えば、工程1の様々な調製条件及び工程2の乾燥条件を最適化して組み合わせることにより制御することができる。
 特に、工程1において、原料にアンモニア水又は水を添加する(好ましくは後述するモリブデン溶液にアンモニア水又は水を添加する)と、モリブデン含有溶液中のモリブデンの析出を抑制でき、上記発熱量が上記範囲内になりやすい傾向にある。
The method for producing a catalyst for ammoxidation of the present embodiment includes a preparation step of preparing a precursor slurry to be a catalyst precursor (step 1), and a drying step of drying the precursor slurry to obtain dry particles (step 2). A firing step (step 3) of firing the dried particles (for example, a denitration step and a main firing step) to obtain an ammoxidation catalyst. The precursor slurry can be obtained, for example, by mixing raw materials of components constituting a catalyst such as a metal component and a carrier. The calorific value calculated from the area value of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. observed by TG-DTA measurement of the dried particles before firing is 45 J / g or more and 200 J / g or less. , Preferably from 80 J / g to 200 J / g, more preferably from 100 J / g to 180 J / g. The calorific value (weight reduction as required) of the dried particles before firing in the TG-DTA measurement can be controlled by, for example, optimizing and combining various preparation conditions in step 1 and drying conditions in step 2. it can.
In particular, in step 1, when aqueous ammonia or water is added to the raw material (preferably, aqueous ammonia or water is added to the molybdenum solution described below), the precipitation of molybdenum in the molybdenum-containing solution can be suppressed, and the calorific value is reduced. It tends to be within the range.
 乾燥粒子の焼成工程での発熱量及び重量減少は公知の方法により測定することができる。本実施形態においては、示差熱-熱重量同時測定(TG-DTA)を用いて、焼成前の乾燥粒子の発熱量を算出し、当該算出した発熱量を、乾燥粒子の焼成工程での発熱量として見積もることができる。示差熱保持測定とは、測定装置に設けられた熱電対の起電力により、リファレンスと試料との温度差を検出し、熱量変化を温度に対して測定するものであり、温度変化に対する熱量変化曲線はDTA曲線と呼ばれている。発熱反応が生じた場合は、DTA曲線において正のピークが現れることが知られている。熱重量測定とは試料の温度の上昇による試料の重量変化を温度に対して測定するものであり、温度変化に対する重量変化曲線はTG曲線と呼ばれている。熱重量測定と示差熱保持測定とを同時に測定する方法として示差熱-熱重量同時測定が知られている。この方法では加熱時における試料の重量変化と吸熱及び発熱反応とを同時に観測できるため、幅広く物質の組成や熱的特性の評価が可能である。 (4) The calorific value and weight loss in the firing step of the dried particles can be measured by a known method. In the present embodiment, the calorific value of the dried particles before calcining is calculated using differential thermal-thermogravimetric simultaneous measurement (TG-DTA), and the calorific value calculated is used as the calorific value in the calcining step of the dried particles. Can be estimated as Differential heat retention measurement is a method of detecting a temperature difference between a reference and a sample using an electromotive force of a thermocouple provided in a measuring device, and measuring a change in calorific value with respect to temperature. Is called the DTA curve. It is known that when an exothermic reaction occurs, a positive peak appears on the DTA curve. Thermogravimetry measures the change in weight of a sample due to an increase in the temperature of the sample with respect to the temperature, and the weight change curve with respect to the temperature change is called a TG curve. As a method for simultaneously measuring the thermogravimetry and the differential heat retention measurement, simultaneous differential thermo-thermogravimetry is known. In this method, since the change in weight of the sample and the endothermic and exothermic reactions during heating can be simultaneously observed, the composition and thermal properties of the substance can be evaluated widely.
 本実施形態において、乾燥粒子の焼成工程中の発熱量及び重量減少は、示差熱‐熱重量測定装置(株式会社Rigaku製、Thermo plus EVO2シリーズ TG8121)を用いて、焼成前の乾燥粒子のTG-DTA測定を実施することにより見積もることができる。具体的には、まず、焼成前の乾燥粒子(20mg)を白金製の試料容器(外径 5.2mm、高さ2.5mmの円筒形のうつわ)に入れ、測定に供する。測定条件は空気雰囲気下、昇温速度を10℃/分、室温(20℃)から600℃を温度範囲とする。乾燥粒子の重量減少率は450℃時点での試料重量を測定開始時の試料重量で除したものと定義する。また、乾燥粒子の発熱量に関しては、上記装置及び条件により得られた測定値(単位:μm・s/g)を発熱量が既知である標準物質(1.Pb 融解温度:327.5℃、融解エネルギー:23.1J/g、2.Al 融解温度:660.3℃、融解エネルギー:399.9J/g、3.Sn 融解温度:231.9℃、融解エネルギー:60.4J/g)の測定結果から得られた検量線を用いて換算することにより、算出値(単位:J/g)を得る。なお、後述の実施例及び比較例の焼成前の乾燥粒子はいずれも示差熱保持測定において、X軸を温度、Y軸を発熱量としたときに、200℃から300℃の温度範囲に極大値を示す発熱反応に由来する正のDTAピークを有していた。 In the present embodiment, the calorific value and the weight loss during the firing process of the dried particles are measured using a differential thermo-thermogravimeter (manufactured by Rigaku Co., Ltd., Thermo + plus EVO2 series @ TG8121). It can be estimated by performing a DTA measurement. Specifically, first, the dried particles (20 mg) before firing are placed in a platinum sample container (cylindrical container having an outer diameter of 5.2 mm and a height of 2.5 mm) and subjected to measurement. The measurement conditions are as follows. The temperature range is 10 ° C./min in an air atmosphere, and the temperature range is from room temperature (20 ° C.) to 600 ° C. The weight loss rate of the dry particles is defined as the value obtained by dividing the sample weight at 450 ° C. by the sample weight at the start of measurement. Regarding the calorific value of the dried particles, the measured value (unit: μm · s / g) obtained by the above-described apparatus and conditions was converted to a standard substance (1.Pb melting temperature: 327.5 ° C.) having a known calorific value. (Melting energy: 23.1 J / g, 2. Al melting temperature: 660.3 ° C, melting energy: 399.9 J / g, 3. Sn melting temperature: 231.9 ° C, melting energy: 60.4 J / g). A calculated value (unit: J / g) is obtained by conversion using a calibration curve obtained from the measurement results. Note that, in the differential heat retention measurement, the dried particles before firing in Examples and Comparative Examples described below have a maximum value within a temperature range of 200 ° C. to 300 ° C. when the X-axis is the temperature and the Y-axis is the calorific value. And a positive DTA peak derived from the exothermic reaction.
 焼成前の乾燥粒子のTG-DTA測定により観測される200℃から300℃の範囲に極大値を有する発熱ピークの面積値が200J/g以下の場合はアクリロニトリル収率が向上する傾向にある。これは局所的な発熱や乾燥粒子に含有されている物質の急激な分解反応とそれに伴う気体の放出が抑制されることにより、アンモ酸化用触媒のヒビや欠けの発生頻度が減少することに起因していると考えられる。また、当該発熱ピークの面積値が45J/g以上である場合も、アクリロニトリル収率が向上する傾向にある。TG-DTA測定は発熱反応と吸熱反応との総和の発熱量を測定しており、発熱量が多いことは乾燥粒子中で局所的な吸熱反応が発熱反応と同時に発生することが少ないことを示唆している。そのため、アンモ酸化用触媒を構成している結晶前駆体が均一に加熱され、結晶の成長程度が均一になることに起因していると予想される。 場合 When the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. observed by TG-DTA measurement of the dried particles before firing is 200 J / g or less, the acrylonitrile yield tends to be improved. This is because the frequency of cracking and chipping of the ammoxidation catalyst is reduced by suppressing local heat generation and rapid decomposition of the substance contained in the dried particles and accompanying gas release. it seems to do. Also, when the area value of the exothermic peak is 45 J / g or more, the acrylonitrile yield tends to be improved. The TG-DTA measurement measures the sum of the exothermic reaction and the endothermic reaction, and the high calorific value suggests that the local endothermic reaction rarely occurs simultaneously with the exothermic reaction in the dried particles. are doing. For this reason, it is expected that the crystal precursor constituting the ammoxidation catalyst is heated uniformly and the degree of crystal growth becomes uniform.
 焼成前の乾燥粒子のTG-DTA測定により測定される20℃から450℃の範囲における熱重量減少率が35%以下である場合はアクリロニトリル収率が向上する傾向にある。これは乾燥粒子に含有されている物質の分解反応に伴う気体の放出量が抑制されることや測定試料が測定中に試料容器から散乱するほど気体の放出が抑制されることを示しており、アンモ酸化用触媒のヒビや欠けの発生頻度が減少することと関連している。 場合 When the thermogravimetric loss rate in the range of 20 ° C. to 450 ° C. measured by TG-DTA measurement of the dried particles before firing is 35% or less, the acrylonitrile yield tends to be improved. This indicates that the amount of gas released due to the decomposition reaction of the substance contained in the dried particles is suppressed, and the release of gas is suppressed as the measurement sample is scattered from the sample container during measurement, This is associated with a reduced frequency of cracks and chippings in the ammoxidation catalyst.
 乾燥粒子の焼成工程における重量変化率や発熱量は組成(金属組成、使用原料、金属成分と担体の質量比)や触媒の前駆体スラリー調製時に用いる添加剤の種類・量、pH調節に用いた酸及び塩基の量、乾燥条件などを最適化して組み合わせることにより、制御することができる。乾燥粒子の焼成工程中の重量変化や発熱量に関係する要件を満たしていれば、スラリー調製工程(工程1)や乾燥条件(工程2)及び、焼成工程(工程3)に関して、特に制限はない。 The weight change rate and the calorific value in the baking process of the dried particles were used for adjusting the composition (metal composition, raw materials used, the mass ratio of the metal component to the carrier), the type and amount of additives used in preparing the catalyst precursor slurry, and the pH adjustment. It can be controlled by optimizing and combining the amounts of acid and base, drying conditions, and the like. There are no particular restrictions on the slurry preparation step (step 1), the drying conditions (step 2), and the baking step (step 3) as long as the requirements relating to the weight change and the calorific value during the baking step of the dried particles are satisfied. .
 本実施形態に用いるアンモ酸化用触媒の組成については特に限定されないが、一例として下記一般式(1)で表されるモリブデンと、ビスマスと、鉄と、を含有する組成が好ましい。モリブデンはプロピレンの吸着サイト及びアンモニアの活性サイトとしての役割を担っている。また、ビスマスはプロピレンを活性させ、α位水素を引き抜いてπアリル種を生成させる役割を担っている。さらに鉄は3価/2価のレドックスにより気相に存在する酸素を触媒活性点に供給する役割を担っている。このような組成を有することにより、アクリロニトリル選択率がより向上する傾向にある。
Mo12BiFe (1)
 式(1)中、Xはニッケル、コバルト、マグネシウム、カルシウム、亜鉛、ストロンチウム、バリウムからなる群より選ばれる1種類以上の元素、Yはセリウム、クロム、ランタン、ネオジム、イットリウム、プラセオジウム、サマリウム、アルミニウム、ガリウム、及びインジウムからなる群より選ばれる1種以上の元素、Zはカリウム、ルビジウム及びセシウムからなる群より選ばれる1種以上の元素を示す。aはモリブデン12原子に対するビスマスの原子比を示し、0.1≦a≦2.0であり、好ましくは0.15≦a≦1.0であり、より好ましくは0.2≦a≦0.7である。bはモリブデン12原子に対する鉄の原子比を示し、0.1≦b≦3.0であり、好ましくは0.5≦b≦2.5であり、より好ましくは1.0≦b≦2.0である。cはモリブデン12原子に対するXの原子比を示し、0.1≦c≦10.0であり、好ましくは3.0≦c≦9.0であり、より好ましくは5.0≦c≦8.5である。dはモリブデン12原子に対するYの原子比を示し、0.1≦d≦3.0であり、好ましくは0.2≦d≦2.0であり、より好ましくは0.3≦d≦1.5である。eはモリブデン12原子に対するZの原子比を示し、0.01≦e≦2.0であり、好ましくは0.05≦e≦1.0である。fはモリブデン12原子に対する酸素の原子比を示し、存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。
The composition of the ammoxidation catalyst used in the present embodiment is not particularly limited, but as an example, a composition containing molybdenum represented by the following general formula (1), bismuth, and iron is preferable. Molybdenum serves as an adsorption site for propylene and an active site for ammonia. Bismuth also plays a role in activating propylene and extracting α-position hydrogen to generate π allyl species. Further, iron plays a role of supplying oxygen present in a gas phase to a catalytically active site by trivalent / divalent redox. By having such a composition, acrylonitrile selectivity tends to be further improved.
Mo 12 Bi a Fe b X c Y d Z e O f (1)
In the formula (1), X is at least one element selected from the group consisting of nickel, cobalt, magnesium, calcium, zinc, strontium and barium, and Y is cerium, chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, aluminum , Gallium, and indium, at least one element selected from the group consisting of potassium, rubidium, and cesium; Z represents at least one element selected from the group consisting of potassium, rubidium, and cesium. a represents the atomic ratio of bismuth to 12 molybdenum atoms, and is 0.1 ≦ a ≦ 2.0, preferably 0.15 ≦ a ≦ 1.0, and more preferably 0.2 ≦ a ≦ 0. 7 b indicates the atomic ratio of iron to 12 molybdenum atoms, and is 0.1 ≦ b ≦ 3.0, preferably 0.5 ≦ b ≦ 2.5, and more preferably 1.0 ≦ b ≦ 2. 0. c indicates the atomic ratio of X to 12 molybdenum atoms, and is 0.1 ≦ c ≦ 10.0, preferably 3.0 ≦ c ≦ 9.0, and more preferably 5.0 ≦ c ≦ 8.0. 5 d indicates the atomic ratio of Y to 12 molybdenum atoms, and is 0.1 ≦ d ≦ 3.0, preferably 0.2 ≦ d ≦ 2.0, and more preferably 0.3 ≦ d ≦ 1. 5 e indicates the atomic ratio of Z to 12 molybdenum atoms, and satisfies 0.01 ≦ e ≦ 2.0, preferably 0.05 ≦ e ≦ 1.0. f indicates the atomic ratio of oxygen to 12 molybdenum atoms, and is the number of oxygen atoms necessary to satisfy the valence requirement of the other elements present.
 本実施形態のアンモ酸化用触媒の製造方法は、例えば、金属成分や担体などの触媒を構成する成分の原料を混合し、触媒の前駆体となる前駆体スラリー(前駆体スラリー)を調製する工程(工程1)、前記前駆体スラリーを乾燥して乾燥粒子を得る工程(工程2)、前記乾燥粒子を焼成(例えば、脱硝工程及び本焼成工程)してアンモ酸化用触媒を得る工程(工程3)を有している。 In the method for producing an ammoxidation catalyst according to the present embodiment, for example, a step of preparing a precursor slurry (precursor slurry) serving as a catalyst precursor by mixing raw materials of components constituting the catalyst such as a metal component and a carrier (Step 1), a step of drying the precursor slurry to obtain dry particles (Step 2), and a step of firing the dry particles (for example, a denitration step and a main firing step) to obtain an ammoxidation catalyst (Step 3). )have.
 工程(1)は、例えば、金属成分や担体などの触媒を構成する成分の原料を混合し、前駆体スラリーを調製する工程である。各金属元素の元素源としては、例えば、水又は酸性水溶液に可溶なアンモニウム塩、硝酸塩、有機酸塩等が挙げられる。これらは塩酸塩を使用した場合に生じる塩素の残留や硫酸塩を使用した場合に生じる硫黄の残留を生じない点で好ましい。 Step (1) is a step of preparing a precursor slurry by mixing raw materials of components constituting a catalyst such as a metal component and a carrier. Examples of the element source of each metal element include ammonium salts, nitrates, and organic acid salts that are soluble in water or an aqueous acidic solution. These are preferred because they do not cause residual chlorine that occurs when a hydrochloride is used or sulfur that occurs when a sulfate is used.
 担体の原料は通常用いられるものであれば、特に限定されないが、例えば、シリカ、アルミナ、チタニア、ジルコニアなどの酸化物が挙げられるが、中でもシリカが好ましい。シリカは他の酸化物と比較してそれ自体は不活性であり、活性触媒成分に対し良好なバインド作用を有する。 (4) The raw material of the carrier is not particularly limited as long as it is commonly used, and examples thereof include oxides such as silica, alumina, titania, and zirconia. Of these, silica is preferable. Silica is itself inert compared to other oxides and has a good binding effect on active catalyst components.
 前駆体スラリーを調製する際の各成分の混合順は特に限定されないが、例えば、上記一般式(1)で表される組成の実施形態に関する一例としては下記の通りである。まず、温水に溶解させたモリブデンのアンモニウム塩(以下、モリブデン溶液と称する)をシリカゾル(以下、シリカ溶液と称する)に添加する。次にビスマス、セリウム、鉄、クロム、ニッケル、マグネシウム、亜鉛、マンガン、コバルト、ルビジウム、セシウム、カリウム等の各元素の元素源の硝酸塩を硝酸水溶液に溶解させた溶液(以下、金属硝酸塩水溶液と称する)を加え、前駆体スラリーが得られる。また、前駆体スラリー中には必ずしも触媒を構成するすべての元素を含有している必要はなく、前駆体スラリー中に含有されていない元素の原料は焼成工程までに各工程で添加してもよく、乾燥後の触媒に含浸するなどの方法により添加してもよい。 (4) The order of mixing the components when preparing the precursor slurry is not particularly limited. For example, the following is an example of the embodiment of the composition represented by the general formula (1). First, an ammonium salt of molybdenum (hereinafter, referred to as a molybdenum solution) dissolved in warm water is added to a silica sol (hereinafter, referred to as a silica solution). Next, a solution obtained by dissolving a nitrate as an element source of each element such as bismuth, cerium, iron, chromium, nickel, magnesium, zinc, manganese, cobalt, rubidium, cesium, and potassium in an aqueous nitric acid solution (hereinafter, referred to as an aqueous metal nitrate solution) ) To obtain a precursor slurry. Further, the precursor slurry does not necessarily need to contain all the elements constituting the catalyst, and the raw materials of the elements not contained in the precursor slurry may be added in each step before the firing step. Or by impregnating the dried catalyst.
 前述の原料スラリーの調製法に対して、使用する硝酸の濃度調整や各種添加剤をシリカゾルやモリブデン溶液、金属硝酸塩水溶液に添加して、スラリーのpHを変化させることができる。本実施例形態においては、例えば、酸化モリブデンの析出抑制の観点でアンモニア水又は水をモリブデン溶液に添加している。本実施形態においては、アンモニア水又は水の添加により、スラリー中の金属の形態が変化したり、スラリー中の硝酸アンモニウム量が増加するなど理由を一つに限定することはできないが、アンモニア水又は水を添加するに従い、乾燥粒子の焼成工程における発熱量は増加する傾向にあり、発熱量を上記範囲内とすることができる。
 アンモニア水の濃度は、例えば、5~30質量%程度であってもよい。
 アンモニア水又は水の添加量は、例えば、モリブデン溶液100質量部に対して、1~10質量部程度であってもよい。
The pH of the slurry can be changed by adjusting the concentration of nitric acid used or adding various additives to the silica sol, molybdenum solution, or metal nitrate aqueous solution in the above-described method for preparing the raw material slurry. In the present embodiment, for example, ammonia water or water is added to the molybdenum solution from the viewpoint of suppressing the precipitation of molybdenum oxide. In the present embodiment, the addition of ammonia water or water can change the form of the metal in the slurry or increase the amount of ammonium nitrate in the slurry. The amount of heat generated in the firing step of the dried particles tends to increase with the addition of, and the amount of heat generated can be within the above range.
The concentration of the aqueous ammonia may be, for example, about 5 to 30% by mass.
The addition amount of ammonia water or water may be, for example, about 1 to 10 parts by mass with respect to 100 parts by mass of the molybdenum solution.
 前駆体スラリー調製時に加える添加剤に関しては、ポリエチレングリコール、メチルセルロース、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミドなどの水溶性ポリマーやアミン類、カルボン酸、アミノカルボン酸類、その他の有機酸を適宜、シリカゾルやモリブデン溶液、金属硝酸塩水溶液に添加して前駆体スラリーを調製することができる。これらの添加剤の中でも、シュウ酸、イミノ二酢酸、ピリジンがより好ましい。 As for the additives to be added at the time of preparing the precursor slurry, water-soluble polymers such as polyethylene glycol, methylcellulose, polyvinyl alcohol, polyacrylic acid, and polyacrylamide, amines, carboxylic acids, aminocarboxylic acids, and other organic acids are appropriately added to silica sol or A precursor slurry can be prepared by adding to a molybdenum solution or an aqueous metal nitrate solution. Among these additives, oxalic acid, iminodiacetic acid, and pyridine are more preferable.
 添加剤の分解及び燃焼時の発熱(吸熱)量は種類により異なるため、添加量の増減と発熱(吸熱)量との関係を一義的に定義することはできないが、添加量を調節することにより、乾燥粒子の発熱量を調節することがアクリロニトリル収率向上の観点から好ましい。一般に添加剤の含有量は前駆体スラリーにおいてアンモ酸化用触媒を構成する金属元素の総和に対して、0.01~0.10モル当量となることが好ましい。より好ましくは0.02~0.07モル当量である。添加剤の含有量が0.01モル当量以上である場合、発熱量への影響が有り、添加剤の効果が発現する。また、添加剤の含有量が0.10モル当量以下であることにより、添加剤の分解及び燃焼時による重量減少が抑制され、乾燥粒子の重量変化率が抑制される。 Since the amount of heat generated (endothermic) during decomposition and combustion of additives differs depending on the type, the relationship between the increase / decrease of the amount of addition and the amount of heat generated (endothermic) cannot be defined uniquely, but by adjusting the amount of addition It is preferable to adjust the calorific value of the dried particles from the viewpoint of improving the yield of acrylonitrile. Generally, the content of the additive is preferably 0.01 to 0.10 molar equivalents relative to the total amount of the metal elements constituting the ammoxidation catalyst in the precursor slurry. More preferably, it is 0.02 to 0.07 molar equivalent. When the content of the additive is 0.01 molar equivalent or more, there is an effect on the calorific value, and the effect of the additive is exhibited. Further, when the content of the additive is 0.10 molar equivalent or less, the weight loss due to the decomposition and burning of the additive is suppressed, and the weight change rate of the dried particles is suppressed.
 アンモ酸化用触媒中の金属酸化物と担体との質量比率は金属酸化物:担体=55:45~65:35であることが好ましい。担体の含有量を増加させた場合、金属原料由来の発熱量が減少する。また、実用条件下において耐破砕性や耐摩耗性といった強度の観点から担体の含有量が35質量%以上であることが好ましい。 質量 The mass ratio of metal oxide to carrier in the ammoxidation catalyst is preferably metal oxide: carrier = 55: 45 to 65:35. When the content of the carrier is increased, the calorific value derived from the metal raw material decreases. Further, the content of the carrier is preferably 35% by mass or more from the viewpoint of strength such as crush resistance and wear resistance under practical conditions.
 工程2は、前駆体スラリーを乾燥して乾燥粒子を得る工程である。好ましくは、前駆体スラリーを噴霧乾燥し、乾燥粒子を得る工程である。前駆体スラリーを噴霧乾燥することによって流動層反応に適した球形微粒子を得ることができる。噴霧乾燥装置としては、回転円盤式、ノズル式等の一般的なものを用いることができる。噴霧乾燥条件を調節することにより、乾燥粒子の焼成時の発熱量及び重量減少の制御や触媒の粒径調整が可能になる。得られるアンモ酸化用触媒を流動層触媒として用いる場合には、アンモ酸化用触媒の粒径は、好ましくは25~180μmである。好ましい噴霧乾燥条件の一例を記載すると、乾燥器上部の中央に設置された、皿型回転子を備えた遠心式噴霧化装置を用い、乾燥器の入口空気温度を180~280℃、出口温度を100~170℃に保持する条件が挙げられる。 Step 2 is a step of drying the precursor slurry to obtain dried particles. Preferably, it is a step of spray-drying the precursor slurry to obtain dry particles. By spray drying the precursor slurry, spherical fine particles suitable for a fluidized bed reaction can be obtained. As the spray drying device, a general device such as a rotating disk type or a nozzle type can be used. By adjusting the spray-drying conditions, it becomes possible to control the calorific value and weight loss during the calcination of the dried particles and to adjust the particle size of the catalyst. When the resulting ammoxidation catalyst is used as a fluidized bed catalyst, the particle size of the ammoxidation catalyst is preferably 25 to 180 μm. An example of preferable spray drying conditions is as follows. Using a centrifugal atomizer equipped with a dish-shaped rotor installed at the center of the upper part of the dryer, the inlet air temperature of the dryer is 180 to 280 ° C., and the outlet temperature is Conditions for maintaining the temperature at 100 to 170 ° C. are mentioned.
 工程3は、乾燥によって得られた乾燥粒子を焼成してアンモ酸化用触媒を得る工程である。乾燥粒子は硝酸を含有し得るため、本焼成の前に脱硝処理を行うことが好ましい。脱硝処理は150~450℃で1.5~3時間の加熱を行うことが好ましい。本焼成温度は、好ましくは550~650℃である。焼成温度が570℃以上であることにより、結晶成長が十分に進行し、得られるアンモ酸化用触媒のアクリロニトリル選択性がより向上する傾向にある。また、焼成温度が650℃以下であることにより、得られるアンモ酸化用触媒の表面積が増大し、プロピレンの反応活性がより向上する傾向にある。脱硝及び焼成の際に用いるガス雰囲気は、酸素を含んだ酸化性ガス雰囲気でも、例えば、窒素などの不活性ガス雰囲気でもよいが、空気を用いるのが便利である。 Step 3 is a step of calcining the dried particles obtained by drying to obtain an ammoxidation catalyst. Since the dried particles can contain nitric acid, it is preferable to perform a denitration treatment before the main baking. In the denitration treatment, heating is preferably performed at 150 to 450 ° C. for 1.5 to 3 hours. The firing temperature is preferably 550 to 650 ° C. When the firing temperature is 570 ° C. or higher, crystal growth proceeds sufficiently, and the acrylonitrile selectivity of the resulting ammoxidation catalyst tends to be further improved. Further, when the calcination temperature is 650 ° C. or lower, the surface area of the obtained catalyst for ammoxidation is increased, and the reaction activity of propylene tends to be further improved. The gas atmosphere used for denitration and firing may be an oxidizing gas atmosphere containing oxygen or an inert gas atmosphere such as nitrogen, for example, but it is convenient to use air.
 本実施形態のアクリロニトリルの製造方法は、前述した方法により得られるアンモ酸化用触媒の存在下、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させてアクリロニトリルを製造する反応工程を有する。アンモ酸化反応によるアクリロニトリルの製造は固定床反応器又は流動床反応器(流動反応槽)により実施することができる。これらの中でも、反応の際に発生する熱を効率的に除去し、アクリロニトリルの収率を高める観点から、流動床反応器(流動反応槽)が好ましい。また、反応工程を流動反応槽で行う場合、アンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、アンモ酸化反応を行うことが好ましい。アンモ酸化反応の原料であるプロピレン及びアンモニアは必ずしも高純度である必要はなく、工業グレードのものを使用することができる。前記分子状酸素源が空気の場合、原料ガス中のプロピレンとアンモニアと空気のモル比(プロピレン/アンモニア/空気)は、好ましくは1/(0.8~1.4)/(7~12)の範囲であり、より好ましくは1/(0.9~1.3)/(8~11)の範囲である反応温度は、好ましくは350~550℃であり、より好ましくは400~500℃の範囲である。また、反応圧力は、好ましくは常圧~0.3MPaである。原料ガスとアンモ酸化用触媒との接触時間は、好ましくは3~6秒である。 The method for producing acrylonitrile of the present embodiment is a reaction step of producing acrylonitrile by reacting propylene, molecular oxygen, and ammonia (ammoxidation reaction) in the presence of the ammoxidation catalyst obtained by the above-described method. Having. The production of acrylonitrile by an ammoxidation reaction can be carried out in a fixed-bed reactor or a fluidized-bed reactor (fluidized reactor). Among these, a fluidized bed reactor (fluidized reaction tank) is preferable from the viewpoint of efficiently removing heat generated during the reaction and increasing the yield of acrylonitrile. When the reaction step is performed in a fluidized reaction tank, it is preferable that an ammoxidation catalyst is supplied to the fluidized reaction tank in advance, and the ammoxidation reaction is performed while the catalyst is circulated in the fluidized reaction tank. The raw materials for the ammoxidation reaction, propylene and ammonia, do not necessarily need to be of high purity, and industrial grade ones can be used. When the molecular oxygen source is air, the molar ratio of propylene, ammonia and air in the raw material gas (propylene / ammonia / air) is preferably 1 / (0.8 to 1.4) / (7 to 12). The reaction temperature is more preferably in the range of 1 / (0.9 to 1.3) / (8 to 11), preferably 350 to 550 ° C, more preferably 400 to 500 ° C. Range. The reaction pressure is preferably from normal pressure to 0.3 MPa. The contact time between the raw material gas and the ammoxidation catalyst is preferably 3 to 6 seconds.
 プロピレンのアンモ酸化反応に使用する反応管には、特に限定されないが、例えば、10メッシュの金網を1cm間隔で16枚内蔵した内径25mmのパイレックス(登録商標)ガラス管を使用することができる。アンモ酸化反応の具体例としては、特に限定されないが、例えば、まず、アンモ酸化用触媒量50cc、反応温度430℃、反応圧力0.17MPaに設定し、プロピレン容積9%の混合ガス(プロピレン、アンモニア、酸素、ヘリウム)を通過させる。そして、プロピレンに対するアンモニアの容積比は、下記式で定義される硫酸原単位が20kg/T‐ANとなるように設定する。この時のアンモニア/プロピレンのモル比をN/Cと定義する。プロピレンに対する酸素の容積比は、反応器出口ガスの酸素濃度が0.2±0.02容積%になるように設定する。その際の酸素のモル量を空気は酸素を21%含有しているとして空気のモル量に換算する。この時の空気/プロピレンのモル比をA/Cと定義する。また混合ガスの流速を変更することで、下記式で定義される接触時間を変更することができる。これによって下記式で定義されるプロピレン転化率が99.3±0.2%となるように設定することができる。硫酸原単位、接触時間、プロピレン転化率、アクリロニトリル収率は下記式のように定義される。
Figure JPOXMLDOC01-appb-M000001
The reaction tube used for the propylene ammoxidation reaction is not particularly limited, and for example, a Pyrex (registered trademark) glass tube having an internal diameter of 25 mm and 16 10-mesh wire nets incorporated at 1 cm intervals can be used. Specific examples of the ammoxidation reaction are not particularly limited. For example, first, the amount of the ammoxidation catalyst is set to 50 cc, the reaction temperature is set to 430 ° C., the reaction pressure is set to 0.17 MPa, and the mixed gas (propylene, ammonia , Oxygen and helium). The volume ratio of ammonia to propylene is set so that the specific sulfuric acid unit defined by the following equation is 20 kg / T-AN. The molar ratio of ammonia / propylene at this time is defined as N / C. The volume ratio of oxygen to propylene is set such that the oxygen concentration of the gas at the outlet of the reactor is 0.2 ± 0.02% by volume. The molar amount of oxygen at that time is converted to the molar amount of air on the assumption that the air contains 21% of oxygen. The molar ratio of air / propylene at this time is defined as A / C. Also, by changing the flow rate of the mixed gas, the contact time defined by the following equation can be changed. Thus, the propylene conversion defined by the following equation can be set to 99.3 ± 0.2%. Sulfuric acid unit, contact time, propylene conversion, and acrylonitrile yield are defined as follows.
Figure JPOXMLDOC01-appb-M000001
 以下に実施例を示して、本実施形態をより詳細に説明するが、本実施形態は以下に記載の実施例によって制限されるものではない。なお、実施例及び比較例に記載した触媒組成は各元素の仕込み組成と同じ値である。 本 The present embodiment will be described in more detail with reference to examples below, but the present embodiment is not limited to the examples described below. The catalyst compositions described in Examples and Comparative Examples have the same values as the charged compositions of the respective elements.
[TG-DTA測定]
 乾燥粒子の焼成工程中の発熱量及び重量減少は、示差熱‐熱重量測定装置(株式会社Rigaku製、Thermo plus EVO2シリーズ TG8121)を用いて、焼成前の乾燥粒子のTG-DTA測定を実施することにより見積もった。具体的には、まず、焼成前の乾燥粒子(20mg)を白金製の試料容器(外径 5.2mm、高さ2.5mmの円筒形のうつわ)に入れ、測定に供した。測定条件は空気雰囲気下、昇温速度を10℃/分、室温(20℃)から600℃を温度範囲とした。乾燥粒子の重量減少率は450℃時点での試料重量を測定開始時の試料重量で除したものと定義した。また、乾燥粒子の発熱量に関しては、上記装置及び条件により得られた測定値(単位:μm・s/g)を発熱量が既知である標準物質(1.Pb 融解温度:327.5℃、融解エネルギー:23.1J/g、2.Al 融解温度:660.3℃、融解エネルギー:399.9J/g、3.Sn 融解温度:231.9℃、融解エネルギー:60.4J/g)の測定結果から得られた検量線を用いて換算することにより、算出値(単位:J/g)を得た。なお、本実施例及び比較例の焼成前の乾燥粒子はいずれも示差熱保持測定において、X軸を温度、Y軸を発熱量としたときに、200℃から300℃の温度範囲に極大値を示す発熱反応に由来する正のDTAピークを有していた。
[TG-DTA measurement]
The calorific value and weight loss during the firing process of the dried particles are determined by TG-DTA measurement of the dried particles before firing using a differential thermo-thermogravimeter (Thermo plus EVO2 series TG8121 manufactured by Rigaku Corporation). Estimated by Specifically, first, the dried particles (20 mg) before firing were placed in a platinum sample container (cylindrical container having an outer diameter of 5.2 mm and a height of 2.5 mm) and subjected to measurement. The measurement conditions were as follows: the temperature was raised at a rate of 10 ° C./min in an air atmosphere; The weight loss rate of the dry particles was defined as the value obtained by dividing the sample weight at 450 ° C. by the sample weight at the start of measurement. Regarding the calorific value of the dried particles, the measured value (unit: μm · s / g) obtained by the above-described apparatus and conditions was converted into a standard substance (1. Pb melting temperature: 327.5 ° C. (Melting energy: 23.1 J / g, 2. Al melting temperature: 660.3 ° C, melting energy: 399.9 J / g, 3. Sn melting temperature: 231.9 ° C, melting energy: 60.4 J / g). The calculated value (unit: J / g) was obtained by conversion using a calibration curve obtained from the measurement results. Note that, in each of the dried particles before firing in the present example and the comparative example, when the X-axis is temperature and the Y-axis is the calorific value in the differential heat retention measurement, the maximum value is in a temperature range of 200 ° C to 300 ° C. It had a positive DTA peak from the exothermic reaction shown.
[硫酸原単位、接触時間、プロピレン転化率、アクリロニトリル収率]
 プロピレンのアンモ酸化反応に使用する反応管には、10メッシュの金網を1cm間隔で16枚内蔵した内径25mmのパイレックス(登録商標)ガラス管を使用した。アンモ酸化反応において、アンモ酸化用触媒量50cc、反応温度430℃、反応圧力0.17MPaに設定し、プロピレン容積9%の混合ガス(プロピレン、アンモニア、酸素、ヘリウム)を通過させた。そして、プロピレンに対するアンモニアの容積比は、下記式で定義される硫酸原単位が20kg/T‐ANとなるように設定した。この時のアンモニア/プロピレンのモル比をN/Cと定義した。プロピレンに対する酸素の容積比は、反応器出口ガスの酸素濃度が0.2±0.02容積%になるように設定した。その際の酸素のモル量を空気は酸素を21%含有しているとして空気のモル量に換算した。この時の空気/プロピレンのモル比をA/Cと定義した。また混合ガスの流速を変更することで、下記式で定義される接触時間を変更した。これによって下記式で定義されるプロピレン転化率が99.3±0.2%となるように設定した。硫酸原単位、接触時間、プロピレン転化率、アクリロニトリル収率は下記式のように定義した。
Figure JPOXMLDOC01-appb-M000002
[Sulfuric acid unit, contact time, propylene conversion, acrylonitrile yield]
As a reaction tube used for the propylene ammoxidation reaction, a Pyrex (registered trademark) glass tube having an inner diameter of 25 mm and containing 16 10-mesh metal meshes at 1 cm intervals was used. In the ammoxidation reaction, the amount of the ammoxidation catalyst was set at 50 cc, the reaction temperature was set at 430 ° C., the reaction pressure was set at 0.17 MPa, and a mixed gas (propylene, ammonia, oxygen, helium) having a propylene volume of 9% was passed. The volume ratio of ammonia to propylene was set so that the specific sulfuric acid unit defined by the following formula was 20 kg / T-AN. The molar ratio of ammonia / propylene at this time was defined as N / C. The volume ratio of oxygen to propylene was set so that the oxygen concentration of the gas at the outlet of the reactor was 0.2 ± 0.02% by volume. The molar amount of oxygen at that time was converted to the molar amount of air, assuming that the air contained 21% of oxygen. The molar ratio of air / propylene at this time was defined as A / C. The contact time defined by the following equation was changed by changing the flow rate of the mixed gas. Thereby, the propylene conversion defined by the following equation was set to 99.3 ± 0.2%. Sulfuric acid unit, contact time, propylene conversion, and acrylonitrile yield were defined as in the following formula.
Figure JPOXMLDOC01-appb-M000002
[実施例1]
 金属成分の組成がMo12.00Bi0.47Ce0.99Fe1.88Ni3.08Co3.90Rb0.15で表される金属酸化物をシリカに担持した触媒(金属酸化物:60質量%、シリカ:40質量%)を以下の手順で製造した。
 まず、30質量%のSiOを含有するシリカゾル1333gを蓋つきの容器に入れ、40℃に保持し、撹拌回転数120rpmで撹拌しながら、水287.5gに溶解させたシュウ酸二水和物25.0g(最終的に得られる触媒粉の2.5質量%相当量)を添加し、蓋をした後に10分間撹拌し、シリカ水溶液とした。別の蓋つき容器に476.7gのパラモリブデン酸アンモニウム[(NHMo24・4HO]を入れ、850.8gの60℃の温水に溶解させた。45℃に冷却した後に、35.8gの15質量%のアンモニア水溶液を添加し、モリブデン水溶液とした。さらに、別の蓋つき容器に51.6gの硝酸ビスマス[Bi(NO・5HO]、96.1gの硝酸セリウム[Ce(NO・6HO]、171.2gの硝酸鉄[Fe(NO・9HO]、203.4gの硝酸ニッケル[Ni(NO・6HO]、258.8gの硝酸コバルト[Co(NO・6HO]、及び5.0gの硝酸ルビジウム[RbNO]を、16.6質量%の硝酸393.3gに溶解させ、40℃に保持し、硝酸塩水溶液とした。上記シリカ水溶液に対し、40℃に保持し、撹拌回転数200rpmで撹拌しながら、上記モリブデン水溶液を添加してシリカ・モリブデン水溶液を得た。5分間撹拌後、引き続き40℃に保持し、撹拌回転数250rpmで撹拌しながら上記シリカ・モリブデン水溶液に上記硝酸塩水溶液を添加し、原料スラリーを調製した。上記原料スラリーを40℃で蓋をして45分間撹拌することにより、前駆体スラリーを調製した。得られた前駆体スラリーは回転円盤式の噴霧乾燥器を用いて乾燥させて乾燥粒子を得た。このとき、乾燥器入口の空気温度は230℃とし、出口の空気温度は110℃とした。また、円盤の回転数は12500rpmに設定した。得られた乾燥粒子を用いてTG-DTA測定を実施したところ、200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は104J/g、重量減少は31.5%であった。乾燥粒子は200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分保持することで脱硝した。脱硝した乾燥粒子を595℃で2時間焼成して、アンモ酸化用触媒を得た。得られたアンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させることにより、アクリロニトリルを製造し、アンモニア/プロピレンのモル比(N/C)、空気/プロピレンのモル比(A/C)、アクリロニトリル収率を求めた。その結果を表1に示す。
[Example 1]
Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure.
First, 1333 g of silica sol containing 30% by mass of SiO 2 was put in a container with a lid, kept at 40 ° C., and stirred at a rotation speed of 120 rpm while oxalic acid dihydrate 25 dissolved in 287.5 g of water. 0.0 g (equivalent to 2.5% by mass of the finally obtained catalyst powder) was added, and the mixture was capped and stirred for 10 minutes to obtain an aqueous silica solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 · 4H 2 O], was dissolved in warm water at 60 ° C. of 850.8G. After cooling to 45 ° C., 35.8 g of a 15% by mass aqueous ammonia solution was added to obtain a molybdenum aqueous solution. Furthermore, 51.6 g of bismuth nitrate into another lidded container [Bi (NO 3) 3 · 5H 2 O], cerium nitrate 96.1g [Ce (NO 3) 3 · 6H 2 O], of 171.2g iron nitrate [Fe (NO 3) 3 · 9H 2 O], 203.4g of nickel nitrate [Ni (NO 3) 2 · 6H 2 O], cobalt nitrate 258.8g [Co (NO 3) 2 · 6H 2 O] and 5.0 g of rubidium nitrate [RbNO 3 ] were dissolved in 13.3% by mass of nitric acid (393.3 g) and kept at 40 ° C. to obtain a nitrate aqueous solution. The aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution. After stirring for 5 minutes, the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry. A precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes. The obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles. At this time, the air temperature at the dryer inlet was 230 ° C, and the air temperature at the outlet was 110 ° C. The rotation speed of the disk was set at 12,500 rpm. When TG-DTA measurement was performed using the obtained dried particles, the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 104 J / g, and the weight loss was 31. 5%. The dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes. The denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst. The obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
[実施例2]
 金属成分の組成がMo12.00Bi0.47Ce0.99Fe1.88Ni3.08Co3.90Rb0.15で表される金属酸化物をシリカに担持した触媒(金属酸化物:60質量%、シリカ:40質量%)を以下の手順で製造した。
 まず、30質量%のSiOを含有するシリカゾル1333gを蓋つきの容器に入れ、40℃に保持し、撹拌回転数120rpmで撹拌し、シリカ水溶液とした。別の蓋つき容器に476.7gのパラモリブデン酸アンモニウム[(NHMo24・4HO]を入れ、850.8gの60℃の温水に溶解させた。45℃に冷却した後に、35.8gの15質量%のアンモニア水溶液を添加し、モリブデン水溶液とした。さらに、別の蓋つき容器に51.6gの硝酸ビスマス[Bi(NO・5HO]、96.1gの硝酸セリウム[Ce(NO・6HO]、171.2gの硝酸鉄[Fe(NO・9HO]、203.4gの硝酸ニッケル[Ni(NO・6HO]、258.8gの硝酸コバルト[Co(NO・6HO]、及び5.0gの硝酸ルビジウム[RbNO]を、16.6質量%の硝酸393.3gに溶解させ、40℃に保持し、硝酸塩水溶液とした。上記シリカ水溶液に対し、40℃に保持し、撹拌回転数200rpmで撹拌しながら、上記モリブデン水溶液を添加してシリカ・モリブデン水溶液を得た。5分間撹拌後、引き続き40℃に保持し、撹拌回転数250rpmで撹拌しながら上記シリカ・モリブデン水溶液に上記硝酸塩水溶液を添加し、原料スラリーを調製した。上記原料スラリーを40℃で蓋をして45分間撹拌することにより、前駆体スラリーを調製した。得られた前駆体スラリーは回転円盤式の噴霧乾燥器を用いて乾燥させて乾燥粒子を得た。このとき、乾燥器入口の空気温度は230℃とし、出口の空気温度は110℃とした。また、円盤の回転数は12500rpmに設定した。得られた乾燥粒子を用いてTG-DTA測定を実施したところ、200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は98J/g、重量減少は27.2%であった。乾燥粒子は200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分保持することで脱硝した。脱硝した乾燥粒子を595℃で2時間焼成して、アンモ酸化用触媒を得た。得られたアンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させることにより、アクリロニトリルを製造し、アンモニア/プロピレンのモル比(N/C)、空気/プロピレンのモル比(A/C)、アクリロニトリル収率を求めた。その結果を表1に示す。
[Example 2]
Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure.
First, 1333 g of silica sol containing 30% by mass of SiO 2 was placed in a container with a lid, kept at 40 ° C., and stirred at a stirring rotation speed of 120 rpm to obtain a silica aqueous solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 · 4H 2 O], was dissolved in warm water at 60 ° C. of 850.8G. After cooling to 45 ° C., 35.8 g of a 15% by mass aqueous ammonia solution was added to obtain a molybdenum aqueous solution. Furthermore, 51.6 g of bismuth nitrate into another lidded container [Bi (NO 3) 3 · 5H 2 O], cerium nitrate 96.1g [Ce (NO 3) 3 · 6H 2 O], of 171.2g iron nitrate [Fe (NO 3) 3 · 9H 2 O], 203.4g of nickel nitrate [Ni (NO 3) 2 · 6H 2 O], cobalt nitrate 258.8g [Co (NO 3) 2 · 6H 2 O] and 5.0 g of rubidium nitrate [RbNO 3 ] were dissolved in 13.3% by mass of nitric acid (393.3 g) and kept at 40 ° C. to obtain a nitrate aqueous solution. The aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution. After stirring for 5 minutes, the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry. A precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes. The obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles. At this time, the air temperature at the dryer inlet was 230 ° C, and the air temperature at the outlet was 110 ° C. The rotation speed of the disk was set at 12,500 rpm. When TG-DTA measurement was performed using the obtained dried particles, the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 98 J / g, and the weight loss was 27. 2%. The dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes. The denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst. The obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
[実施例3]
 金属成分の組成がMo12.00Bi0.47Ce0.99Fe1.88Ni3.08Co3.90Rb0.15で表される金属酸化物をシリカに担持した触媒(金属酸化物:60質量%、シリカ:40質量%)を以下の手順で製造した。
 まず、30質量%のSiOを含有するシリカゾル1333gを蓋つきの容器に入れ、40℃に保持し、撹拌回転数120rpmで撹拌しながら、水287.5gに溶解させたシュウ酸二水和物25.0g(最終的に得られる触媒粉の2.5質量%相当量)を添加し、蓋をした後に10分間撹拌し、シリカ水溶液とした。別の蓋つき容器に476.7gのパラモリブデン酸アンモニウム[(NHMo24・4HO]を入れ、850.8gの60℃の温水に溶解させた。45℃に冷却した後に、53.7gの水を添加し、モリブデン水溶液とした。さらに、別の蓋つき容器に51.6gの硝酸ビスマス[Bi(NO・5HO]、96.1gの硝酸セリウム[Ce(NO・6HO]、171.2gの硝酸鉄[Fe(NO・9HO]、203.4gの硝酸ニッケル[Ni(NO・6HO]、258.8gの硝酸コバルト[Co(NO・6HO]、及び5.0gの硝酸ルビジウム[RbNO]を、16.6質量%の硝酸393.3gに溶解させ、40℃に保持し、硝酸塩水溶液とした。上記シリカ水溶液に対し、40℃に保持し、撹拌回転数200rpmで撹拌しながら、上記モリブデン水溶液を添加してシリカ・モリブデン水溶液を得た。5分間撹拌後、引き続き40℃に保持し、撹拌回転数250rpmで撹拌しながら上記シリカ・モリブデン水溶液に上記硝酸塩水溶液を添加し、原料スラリーを調製した。上記原料スラリーを40℃で蓋をして45分間撹拌することにより、前駆体スラリーを調製した。得られた前駆体スラリーは回転円盤式の噴霧乾燥器を用いて乾燥させて乾燥粒子を得た。このとき、乾燥器入口の空気温度は235℃とし、出口の空気温度は110℃とした。また、円盤の回転数は12500rpmに設定した。得られた乾燥粒子を用いてTG-DTA測定を実施したところ、200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は101J/g、重量減少は30.5%であった。乾燥粒子は200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分保持することで脱硝した。脱硝した乾燥粒子を595℃で2時間焼成して、アンモ酸化用触媒を得た。得られたアンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させることにより、アクリロニトリルを製造し、アンモニア/プロピレンのモル比(N/C)、空気/プロピレンのモル比(A/C)、アクリロニトリル収率を求めた。その結果を表1に示す。
[Example 3]
Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure.
First, 1333 g of silica sol containing 30% by mass of SiO 2 was put in a container with a lid, kept at 40 ° C., and stirred at a rotation speed of 120 rpm while oxalic acid dihydrate 25 dissolved in 287.5 g of water. 0.0 g (equivalent to 2.5% by mass of the finally obtained catalyst powder) was added, and the mixture was capped and stirred for 10 minutes to obtain an aqueous silica solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 · 4H 2 O], was dissolved in warm water at 60 ° C. of 850.8G. After cooling to 45 ° C., 53.7 g of water was added to obtain a molybdenum aqueous solution. Furthermore, 51.6 g of bismuth nitrate into another lidded container [Bi (NO 3) 3 · 5H 2 O], cerium nitrate 96.1g [Ce (NO 3) 3 · 6H 2 O], of 171.2g iron nitrate [Fe (NO 3) 3 · 9H 2 O], 203.4g of nickel nitrate [Ni (NO 3) 2 · 6H 2 O], cobalt nitrate 258.8g [Co (NO 3) 2 · 6H 2 O] and 5.0 g of rubidium nitrate [RbNO 3 ] were dissolved in 13.3% by mass of nitric acid (393.3 g) and kept at 40 ° C. to obtain a nitrate aqueous solution. The aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution. After stirring for 5 minutes, the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry. A precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes. The obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles. At this time, the air temperature at the dryer inlet was 235 ° C, and the air temperature at the outlet was 110 ° C. The rotation speed of the disk was set at 12,500 rpm. When TG-DTA measurement was performed using the obtained dried particles, the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 101 J / g, and the weight loss was 30. 5%. The dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes. The denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst. The obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
[実施例4]
 金属成分の組成がMo12.00Bi0.47Ce0.99Fe1.88Ni3.08Co3.90Rb0.15で表される金属酸化物をシリカに担持した触媒(金属酸化物:60質量%、シリカ:40質量%)を以下の手順で製造した。
 まず、30質量%のSiOを含有するシリカゾル1333gを蓋つきの容器に入れ、40℃に保持し、撹拌回転数120rpmで撹拌し、シリカ水溶液とした。別の蓋つき容器に476.7gのパラモリブデン酸アンモニウム[(NHMo24・4HO]を入れ、850.8gの60℃の温水に溶解させた。45℃に冷却した後に、53.7gの水を添加し、モリブデン水溶液とした。さらに、別の蓋つき容器に51.6gの硝酸ビスマス[Bi(NO・5HO]、96.1gの硝酸セリウム[Ce(NO・6HO]、171.2gの硝酸鉄[Fe(NO・9HO]、203.4gの硝酸ニッケル[Ni(NO・6HO]、258.8gの硝酸コバルト[Co(NO・6HO]、及び5.0gの硝酸ルビジウム[RbNO]を、16.6質量%の硝酸393.3gに溶解させ、40℃に保持し、硝酸塩水溶液とした。上記シリカ水溶液に対し、40℃に保持し、撹拌回転数200rpmで撹拌しながら、上記モリブデン水溶液を添加してシリカ・モリブデン水溶液を得た。5分間撹拌後、引き続き40℃に保持し、撹拌回転数250rpmで撹拌しながら上記シリカ・モリブデン水溶液に上記硝酸塩水溶液を添加し、原料スラリーを調製した。上記原料スラリーを40℃で蓋をして45分間撹拌することにより、前駆体スラリーを調製した。得られた前駆体スラリーは回転円盤式の噴霧乾燥器を用いて乾燥させて乾燥粒子を得た。このとき、乾燥器入口の空気温度は235℃とし、出口の空気温度は110℃とした。また、円盤の回転数は12500rpmに設定した。得られた乾燥粒子を用いてTG-DTA測定を実施したところ、200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は95J/g、重量減少は26.1%であった。乾燥粒子は200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分保持することで脱硝した。脱硝した乾燥粒子を595℃で2時間焼成して、アンモ酸化用触媒を得た。得られたアンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させることにより、アクリロニトリルを製造し、アンモニア/プロピレンのモル比(N/C)、空気/プロピレンのモル比(A/C)、アクリロニトリル収率を求めた。その結果を表1に示す。
[Example 4]
Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure.
First, 1333 g of silica sol containing 30% by mass of SiO 2 was placed in a container with a lid, kept at 40 ° C., and stirred at a stirring rotation speed of 120 rpm to obtain a silica aqueous solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 · 4H 2 O], was dissolved in warm water at 60 ° C. of 850.8G. After cooling to 45 ° C., 53.7 g of water was added to obtain a molybdenum aqueous solution. Furthermore, 51.6 g of bismuth nitrate into another lidded container [Bi (NO 3) 3 · 5H 2 O], cerium nitrate 96.1g [Ce (NO 3) 3 · 6H 2 O], of 171.2g iron nitrate [Fe (NO 3) 3 · 9H 2 O], 203.4g of nickel nitrate [Ni (NO 3) 2 · 6H 2 O], cobalt nitrate 258.8g [Co (NO 3) 2 · 6H 2 O] and 5.0 g of rubidium nitrate [RbNO 3 ] were dissolved in 13.3% by mass of nitric acid (393.3 g) and kept at 40 ° C. to obtain a nitrate aqueous solution. The aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution. After stirring for 5 minutes, the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry. A precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes. The obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles. At this time, the air temperature at the dryer inlet was 235 ° C, and the air temperature at the outlet was 110 ° C. The rotation speed of the disk was set at 12,500 rpm. When TG-DTA measurement was performed using the obtained dried particles, the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 95 J / g, and the weight loss was 26. 1%. The dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes. The denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst. The obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
[実施例5]
 金属成分の組成がMo12.00Bi0.47Ce0.99Fe1.88Ni3.08Co3.90Rb0.15で表される金属酸化物をシリカに担持した触媒(金属酸化物:60質量%、シリカ:40質量%)を以下の手順で製造した。
 まず、30質量%のSiOを含有するシリカゾル1333gを蓋つきの容器に入れ、40℃に保持し、撹拌回転数120rpmで撹拌し、シリカ水溶液とした。別の蓋つき容器に476.7gのパラモリブデン酸アンモニウム[(NHMo24・4HO]を入れ、850.8gの60℃の温水に溶解させた。55℃に冷却した後に、26.9gの水を添加し、55℃で保持し、モリブデン水溶液とした。さらに、別の蓋つき容器に51.6gの硝酸ビスマス[Bi(NO・5HO]、96.1gの硝酸セリウム[Ce(NO・6HO]、171.2gの硝酸鉄[Fe(NO・9HO]、203.4gの硝酸ニッケル[Ni(NO・6HO]、258.8gの硝酸コバルト[Co(NO・6HO]、及び5.0gの硝酸ルビジウム[RbNO]を、16.6質量%の硝酸393.3gに溶解させ、40℃に保持し、硝酸塩水溶液とした。上記シリカ水溶液に対し、40℃に保持し、撹拌回転数200rpmで撹拌しながら、上記モリブデン水溶液を添加してシリカ・モリブデン水溶液を得た。5分間撹拌後、引き続き40℃に保持し、撹拌回転数250rpmで撹拌しながら上記シリカ・モリブデン水溶液に上記硝酸塩水溶液を添加し、原料スラリーを調製した。上記原料スラリーを40℃で蓋をして45分間撹拌することにより、前駆体スラリーを調製した。得られた前駆体スラリーは回転円盤式の噴霧乾燥器を用いて乾燥させて乾燥粒子を得た。このとき、乾燥器入口の空気温度は230℃とし、出口の空気温度は110℃とした。また、円盤の回転数は12500rpmに設定した。得られた乾燥粒子を用いてTG-DTA測定を実施したところ、200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は52J/g、重量減少は26.3%であった。乾燥粒子は200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分保持することで脱硝した。脱硝した乾燥粒子を595℃で2時間焼成して、アンモ酸化用触媒を得た。得られたアンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させることにより、アクリロニトリルを製造し、アンモニア/プロピレンのモル比(N/C)、空気/プロピレンのモル比(A/C)、アクリロニトリル収率を求めた。その結果を表1に示す。
[Example 5]
Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure.
First, 1333 g of silica sol containing 30% by mass of SiO 2 was placed in a container with a lid, kept at 40 ° C., and stirred at a stirring rotation speed of 120 rpm to obtain a silica aqueous solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 · 4H 2 O], was dissolved in warm water at 60 ° C. of 850.8G. After cooling to 55 ° C., 26.9 g of water was added and kept at 55 ° C. to obtain an aqueous molybdenum solution. Furthermore, 51.6 g of bismuth nitrate into another lidded container [Bi (NO 3) 3 · 5H 2 O], cerium nitrate 96.1g [Ce (NO 3) 3 · 6H 2 O], of 171.2g iron nitrate [Fe (NO 3) 3 · 9H 2 O], 203.4g of nickel nitrate [Ni (NO 3) 2 · 6H 2 O], cobalt nitrate 258.8g [Co (NO 3) 2 · 6H 2 O] and 5.0 g of rubidium nitrate [RbNO 3 ] were dissolved in 13.3% by mass of nitric acid (393.3 g) and kept at 40 ° C. to obtain a nitrate aqueous solution. The aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution. After stirring for 5 minutes, the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry. A precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes. The obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles. At this time, the air temperature at the dryer inlet was 230 ° C, and the air temperature at the outlet was 110 ° C. The rotation speed of the disk was set at 12,500 rpm. When TG-DTA measurement was performed using the obtained dried particles, the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 52 J / g, and the weight loss was 26. 3%. The dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes. The denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst. The obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
[実施例6]
 金属成分の組成がMo12.00Bi0.47Ce0.99Fe1.88Ni3.08Co3.90Rb0.15で表される金属酸化物をシリカに担持した触媒(金属酸化物:60質量%、シリカ:40質量%)を以下の手順で製造した。
 まず、30質量%のSiOを含有するシリカゾル1333gを蓋つきの容器に入れ、40℃に保持し、撹拌回転数120rpmで撹拌しながら、水287.5gに溶解させたシュウ酸二水和物25.0g(最終的に得られる触媒粉の2.5質量%相当量)を添加し、蓋をした後に10分間撹拌し、シリカ水溶液とした。別の蓋つき容器に476.7gのパラモリブデン酸アンモニウム[(NHMo24・4HO]を入れ、850.8gの60℃の温水に溶解させた。45℃に冷却した後に、35.8gの15質量%のアンモニア水溶液を添加し、モリブデン水溶液とした。さらに、別の蓋つき容器に51.6gの硝酸ビスマス[Bi(NO・5HO]、96.1gの硝酸セリウム[Ce(NO・6HO]、171.2gの硝酸鉄[Fe(NO・9HO]、203.4gの硝酸ニッケル[Ni(NO・6HO]、258.8gの硝酸コバルト[Co(NO・6HO]、及び5.0gの硝酸ルビジウム[RbNO]を、16.6質量%の硝酸393.3gに溶解させ、40℃に保持し、硝酸塩水溶液とした。上記シリカ水溶液に対し、40℃に保持し、撹拌回転数200rpmで撹拌しながら、上記モリブデン水溶液を添加してシリカ・モリブデン水溶液を得た。5分間撹拌後、引き続き40℃に保持し、撹拌回転数250rpmで撹拌しながら上記シリカ・モリブデン水溶液に上記硝酸塩水溶液を添加し、原料スラリーを調製した。上記原料スラリーを40℃で蓋をして45分間撹拌することにより、前駆体スラリーを調製した。得られた前駆体スラリーは回転円盤式の噴霧乾燥器を用いて乾燥させて乾燥粒子を得た。このとき、乾燥器入口の空気温度は270℃とし、出口の空気温度は155℃とした。また、円盤の回転数は12500rpmに設定した。得られた乾燥粒子を用いてTG-DTA測定を実施したところ、200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は94J/g、重量減少は26.9%であった。乾燥粒子は200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分保持することで脱硝した。脱硝した乾燥粒子を595℃で2時間焼成して、アンモ酸化用触媒を得た。得られたアンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させることにより、アクリロニトリルを製造し、アンモニア/プロピレンのモル比(N/C)、空気/プロピレンのモル比(A/C)、アクリロニトリル収率を求めた。その結果を表1に示す。
[Example 6]
Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure.
First, 1333 g of silica sol containing 30% by mass of SiO 2 was put in a container with a lid, kept at 40 ° C., and stirred at a rotation speed of 120 rpm while oxalic acid dihydrate 25 dissolved in 287.5 g of water. 0.0 g (equivalent to 2.5% by mass of the finally obtained catalyst powder) was added, and the mixture was capped and stirred for 10 minutes to obtain an aqueous silica solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 · 4H 2 O], was dissolved in warm water at 60 ° C. of 850.8G. After cooling to 45 ° C., 35.8 g of a 15% by mass aqueous ammonia solution was added to obtain a molybdenum aqueous solution. Furthermore, 51.6 g of bismuth nitrate into another lidded container [Bi (NO 3) 3 · 5H 2 O], cerium nitrate 96.1g [Ce (NO 3) 3 · 6H 2 O], of 171.2g iron nitrate [Fe (NO 3) 3 · 9H 2 O], 203.4g of nickel nitrate [Ni (NO 3) 2 · 6H 2 O], cobalt nitrate 258.8g [Co (NO 3) 2 · 6H 2 O] and 5.0 g of rubidium nitrate [RbNO 3 ] were dissolved in 13.3% by mass of nitric acid (393.3 g) and kept at 40 ° C. to obtain a nitrate aqueous solution. The aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution. After stirring for 5 minutes, the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry. A precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes. The obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles. At this time, the air temperature at the dryer inlet was 270 ° C, and the air temperature at the outlet was 155 ° C. The rotation speed of the disk was set at 12,500 rpm. When TG-DTA measurement was performed using the obtained dried particles, the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 94 J / g, and the weight loss was 26. 9%. The dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes. The denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst. The obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
[実施例7]金属成分の組成がMo12.00Bi0.47Ce0.99Fe1.88Ni3.08Co3.90Rb0.15で表される金属酸化物をシリカに担持した触媒(金属酸化物:60質量%、シリカ:40質量%)を以下の手順で製造した。
 まず、30質量%のSiOを含有するシリカゾル1333gを蓋つきの容器に入れ、40℃に保持し、撹拌回転数120rpmで撹拌しながら、水287.5gに溶解させたシュウ酸25.0gを添加し、蓋をした後に10分間撹拌し、シリカ水溶液とした。別の蓋つき容器に476.7gのパラモリブデン酸アンモニウム[(NHMo24・4HO]を入れ、850.8gの60℃の温水に溶解させた。45℃に冷却した後に、35.8gの15質量%のアンモニア水溶液を添加し、モリブデン水溶液とした。さらに、別の蓋つき容器に51.6gの硝酸ビスマス[Bi(NO・5HO]、96.1gの硝酸セリウム[Ce(NO・6HO]、171.2gの硝酸鉄[Fe(NO・9HO]、203.4gの硝酸ニッケル[Ni(NO・6HO]、258.8gの硝酸コバルト[Co(NO・6HO]、及び5.0gの硝酸ルビジウム[RbNO]を、16.6質量%の硝酸393.3gに溶解させ、40℃に保持し、硝酸塩水溶液とした。上記シリカ水溶液に対し、40℃に保持し、撹拌回転数200rpmで撹拌しながら、上記モリブデン水溶液を添加してシリカ・モリブデン水溶液を得た。5分間撹拌後、引き続き40℃に保持し、撹拌回転数250rpmで撹拌しながら上記シリカ・モリブデン水溶液に上記硝酸塩水溶液を添加し、原料スラリーを調製した。上記原料スラリーを40℃で蓋をして45分間撹拌し、さらに28質量%のアンモニア水溶液20.0gを加えて、前駆体スラリーを調製した。得られた前駆体スラリーは回転円盤式の噴霧乾燥器を用いて乾燥させて乾燥粒子を得た。このとき、乾燥器入口の空気温度は270℃とし、出口の空気温度は155℃とした。また、円盤の回転数は12500rpmに設定した。得られた乾燥粒子を用いてTG-DTA測定を実施したところ、200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は114J/g、重量減少は27.4%であった。乾燥粒子は200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分保持することで脱硝した。脱硝した乾燥粒子を595℃で2時間焼成して、アンモ酸化用触媒を得た。得られたアンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させることにより、アクリロニトリルを製造し、アンモニア/プロピレンのモル比(N/C)、空気/プロピレンのモル比(A/C)、アクリロニトリル収率を求めた。その結果を表1に示す。
[Example 7] A metal oxide represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 was supported on silica. A catalyst (metal oxide: 60% by mass, silica: 40% by mass) was produced by the following procedure.
First, 1333 g of silica sol containing 30% by mass of SiO 2 was placed in a container with a lid, and 25.0 g of oxalic acid dissolved in 287.5 g of water was added while stirring at 40 ° C. and stirring at a rotation speed of 120 rpm. Then, after covering, the mixture was stirred for 10 minutes to obtain an aqueous silica solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 · 4H 2 O], was dissolved in warm water at 60 ° C. of 850.8G. After cooling to 45 ° C., 35.8 g of a 15% by mass aqueous ammonia solution was added to obtain a molybdenum aqueous solution. Furthermore, 51.6 g of bismuth nitrate into another lidded container [Bi (NO 3) 3 · 5H 2 O], cerium nitrate 96.1g [Ce (NO 3) 3 · 6H 2 O], of 171.2g iron nitrate [Fe (NO 3) 3 · 9H 2 O], 203.4g of nickel nitrate [Ni (NO 3) 2 · 6H 2 O], cobalt nitrate 258.8g [Co (NO 3) 2 · 6H 2 O] and 5.0 g of rubidium nitrate [RbNO 3 ] were dissolved in 13.3% by mass of nitric acid (393.3 g) and kept at 40 ° C. to obtain a nitrate aqueous solution. The aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution. After stirring for 5 minutes, the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry. The raw material slurry was stirred at 40 ° C. for 45 minutes with a lid, and 20.0 g of a 28% by mass aqueous ammonia solution was added to prepare a precursor slurry. The obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles. At this time, the air temperature at the dryer inlet was 270 ° C, and the air temperature at the outlet was 155 ° C. The rotation speed of the disk was set at 12,500 rpm. When TG-DTA measurement was performed using the obtained dried particles, the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 114 J / g, and the weight loss was 27. 4%. The dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes. The denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst. The obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
[実施例8]
 金属成分の組成がMo12.00Bi0.47Ce0.99Fe1.88Ni3.08Co3.90Rb0.15で表される金属酸化物をシリカに担持した触媒(金属酸化物:60質量%、シリカ:40質量%)を以下の手順で製造した。
 まず、30質量%のSiOを含有するシリカゾル1333gを蓋つきの容器に入れ、40℃に保持し、撹拌回転数120rpmで撹拌しながら、水287.5gに溶解させたイミノ二酢酸25.0g(最終的に得られる触媒粉の2.5質量%相当量)を添加し、蓋をした後に10分間撹拌し、シリカ水溶液とした。別の蓋つき容器に476.7gのパラモリブデン酸アンモニウム[(NHMo24・4HO]を入れ、850.8gの60℃の温水に溶解させた。45℃に冷却した後に、35.8gの15質量%のアンモニア水溶液を添加し、モリブデン水溶液とした。さらに、別の蓋つき容器に51.6gの硝酸ビスマス[Bi(NO・5HO]、96.1gの硝酸セリウム[Ce(NO・6HO]、171.2gの硝酸鉄[Fe(NO・9HO]、203.4gの硝酸ニッケル[Ni(NO・6HO]、258.8gの硝酸コバルト[Co(NO・6HO]、及び5.0gの硝酸ルビジウム[RbNO]を、16.6質量%の硝酸393.3gに溶解させ、40℃に保持し、硝酸塩水溶液とした。上記シリカ水溶液に対し、40℃に保持し、撹拌回転数200rpmで撹拌しながら、上記モリブデン水溶液を添加してシリカ・モリブデン水溶液を得た。5分間撹拌後、引き続き40℃に保持し、撹拌回転数250rpmで撹拌しながら上記シリカ・モリブデン水溶液に上記硝酸塩水溶液を添加し、原料スラリーを調製した。上記原料スラリーを40℃で蓋をして45分間撹拌することにより、前駆体スラリーを調製した。得られた前駆体スラリーは回転円盤式の噴霧乾燥器を用いて乾燥させて乾燥粒子を得た。このとき、乾燥器入口の空気温度は270℃とし、出口の空気温度は155℃とした。また、円盤の回転数は12500rpmに設定した。得られた乾燥粒子を用いてTG-DTA測定を実施したところ、200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は81J/g、重量減少率は27.5%であった。乾燥粒子は200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分保持することで脱硝した。脱硝した乾燥粒子を595℃で2時間焼成して、アンモ酸化用触媒を得た。得られたアンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させることにより、アクリロニトリルを製造し、アンモニア/プロピレンのモル比(N/C)、空気/プロピレンのモル比(A/C)、アクリロニトリル収率を求めた。その結果を表1に示す。
Example 8
Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure.
First, 1333 g of silica sol containing 30% by mass of SiO 2 was placed in a container with a lid, kept at 40 ° C., and 25.0 g of iminodiacetic acid dissolved in 287.5 g of water while stirring at a stirring rotation speed of 120 rpm ( (Equivalent to 2.5% by mass of the finally obtained catalyst powder) was added, and the mixture was capped and stirred for 10 minutes to obtain an aqueous silica solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 · 4H 2 O], was dissolved in warm water at 60 ° C. of 850.8G. After cooling to 45 ° C., 35.8 g of a 15% by mass aqueous ammonia solution was added to obtain a molybdenum aqueous solution. Furthermore, 51.6 g of bismuth nitrate into another lidded container [Bi (NO 3) 3 · 5H 2 O], cerium nitrate 96.1g [Ce (NO 3) 3 · 6H 2 O], of 171.2g iron nitrate [Fe (NO 3) 3 · 9H 2 O], 203.4g of nickel nitrate [Ni (NO 3) 2 · 6H 2 O], cobalt nitrate 258.8g [Co (NO 3) 2 · 6H 2 O] and 5.0 g of rubidium nitrate [RbNO 3 ] were dissolved in 13.3% by mass of nitric acid (393.3 g) and kept at 40 ° C. to obtain a nitrate aqueous solution. The aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution. After stirring for 5 minutes, the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry. A precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes. The obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles. At this time, the air temperature at the dryer inlet was 270 ° C, and the air temperature at the outlet was 155 ° C. The rotation speed of the disk was set at 12,500 rpm. When TG-DTA measurement was performed using the obtained dried particles, the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 81 J / g, and the weight loss rate was 27. 0.5%. The dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes. The denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst. The obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
[実施例9]
 金属成分の組成がMo12.00Bi0.47Ce0.99Fe1.88Ni3.08Co3.90Rb0.15で表される金属酸化物をシリカに担持した触媒(金属酸化物:60質量%、シリカ:40質量%)を以下の手順で製造した。
 まず、30質量%のSiOを含有するシリカゾル1333gを蓋つきの容器に入れ、40℃に保持し、撹拌回転数120rpmで撹拌しながら、水287.5gに溶解させたピリジン25.0g(最終的に得られる触媒粉の2.5質量%相当量)を添加し、蓋をした後に10分間撹拌し、シリカ水溶液とした。別の蓋つき容器に476.7gのパラモリブデン酸アンモニウム[(NHMo24・4HO]を入れ、850.8gの60℃の温水に溶解させた。45℃に冷却した後に、35.8gの15質量%のアンモニア水溶液を添加し、モリブデン水溶液とした。さらに、別の蓋つき容器に51.6gの硝酸ビスマス[Bi(NO・5HO]、96.1gの硝酸セリウム[Ce(NO・6HO]、171.2gの硝酸鉄[Fe(NO・9HO]、203.4gの硝酸ニッケル[Ni(NO・6HO]、258.8gの硝酸コバルト[Co(NO・6HO]、及び5.0gの硝酸ルビジウム[RbNO]を、16.6質量%の硝酸393.3gに溶解させ、40℃に保持し、硝酸塩水溶液とした。上記シリカ水溶液に対し、40℃に保持し、撹拌回転数200rpmで撹拌しながら、上記モリブデン水溶液を添加してシリカ・モリブデン水溶液を得た。5分間撹拌後、引き続き40℃に保持し、撹拌回転数250rpmで撹拌しながら上記シリカ・モリブデン水溶液に上記硝酸塩水溶液を添加し、原料スラリーを調製した。上記原料スラリーを40℃で蓋をして45分間撹拌することにより、前駆体スラリーを調製した。得られた前駆体スラリーは回転円盤式の噴霧乾燥器を用いて乾燥させて乾燥粒子を得た。このとき、乾燥器入口の空気温度は270℃とし、出口の空気温度は155℃とした。また、円盤の回転数は12500rpmに設定した。得られた乾燥粒子を用いてTG-DTA測定を実施したところ、200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は175J/g、重量減少率は26.0%であった。乾燥粒子は200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分保持することで脱硝した。脱硝した乾燥粒子を595℃で2時間焼成して、アンモ酸化用触媒を得た。得られたアンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させることにより、アクリロニトリルを製造し、アンモニア/プロピレンのモル比(N/C)、空気/プロピレンのモル比(A/C)、アクリロニトリル収率を求めた。その結果を表1に示す。
[Example 9]
Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure.
First, 1333 g of silica sol containing 30% by mass of SiO 2 was placed in a container with a lid, and 25.0 g of pyridine dissolved in 287.5 g of water (final) while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 120 rpm (final). (Equivalent to 2.5% by mass of the obtained catalyst powder), and the mixture was capped and stirred for 10 minutes to obtain an aqueous silica solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 · 4H 2 O], was dissolved in warm water at 60 ° C. of 850.8G. After cooling to 45 ° C., 35.8 g of a 15% by mass aqueous ammonia solution was added to obtain a molybdenum aqueous solution. Furthermore, 51.6 g of bismuth nitrate into another lidded container [Bi (NO 3) 3 · 5H 2 O], cerium nitrate 96.1g [Ce (NO 3) 3 · 6H 2 O], of 171.2g iron nitrate [Fe (NO 3) 3 · 9H 2 O], 203.4g of nickel nitrate [Ni (NO 3) 2 · 6H 2 O], cobalt nitrate 258.8g [Co (NO 3) 2 · 6H 2 O] and 5.0 g of rubidium nitrate [RbNO 3 ] were dissolved in 13.3% by mass of nitric acid (393.3 g) and kept at 40 ° C. to obtain a nitrate aqueous solution. The aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution. After stirring for 5 minutes, the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry. A precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes. The obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles. At this time, the air temperature at the dryer inlet was 270 ° C, and the air temperature at the outlet was 155 ° C. The rotation speed of the disk was set at 12,500 rpm. When TG-DTA measurement was performed using the obtained dried particles, the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 175 J / g, and the weight loss rate was 26. 0.0%. The dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes. The denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst. The obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
[実施例10]
 金属成分の組成がMo12.00Bi0.47Ce0.99Fe1.88Ni3.08Co3.90Rb0.15で表される金属酸化物をシリカに担持した触媒(金属酸化物:60質量%、シリカ:40質量%)を以下の手順で製造した。
 まず、30質量%のSiOを含有するシリカゾル1333gを蓋つきの容器に入れ、40℃に保持し、撹拌回転数120rpmで撹拌しながら、水287.5gに溶解させたポリアクリル酸アンモニウム15.0g(最終的に得られる触媒粉の1.5質量%相当量)を添加し、蓋をした後に10分間撹拌し、シリカ水溶液とした。別の蓋つき容器に476.7gのパラモリブデン酸アンモニウム[(NHMo24・4HO]を入れ、850.8gの60℃の温水に溶解させた。45℃に冷却した後に、35.8gの15質量%のアンモニア水溶液を添加し、モリブデン水溶液とした。さらに、別の蓋つき容器に51.6gの硝酸ビスマス[Bi(NO・5HO]、96.1gの硝酸セリウム[Ce(NO・6HO]、171.2gの硝酸鉄[Fe(NO・9HO]、203.4gの硝酸ニッケル[Ni(NO・6HO]、258.8gの硝酸コバルト[Co(NO・6HO]、及び5.0gの硝酸ルビジウム[RbNO]を、16.6質量%の硝酸393.3gに溶解させ、40℃に保持し、硝酸塩水溶液とした。上記シリカ水溶液に対し、40℃に保持し、撹拌回転数200rpmで撹拌しながら、上記モリブデン水溶液を添加してシリカ・モリブデン水溶液を得た。5分間撹拌後、引き続き40℃に保持し、撹拌回転数250rpmで撹拌しながら上記シリカ・モリブデン水溶液に上記硝酸塩水溶液を添加し、原料スラリーを調製した。上記原料スラリーを40℃で蓋をして45分間撹拌することにより、前駆体スラリーを調製した。得られた前駆体スラリーは回転円盤式の噴霧乾燥器を用いて乾燥させて乾燥粒子を得た。このとき、乾燥器入口の空気温度は270℃とし、出口の空気温度は155℃とした。また、円盤の回転数は12500rpmに設定した。得られた乾燥粒子を用いてTG-DTA測定を実施したところ、200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は62J/g、重量減少率は27.8%であった。乾燥粒子は200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分保持することで脱硝した。脱硝した乾燥粒子を595℃で2時間焼成して、アンモ酸化用触媒を得た。得られたアンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させることにより、アクリロニトリルを製造し、アンモニア/プロピレンのモル比(N/C)、空気/プロピレンのモル比(A/C)、アクリロニトリル収率を求めた。その結果を表1に示す。
[Example 10]
Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure.
First, 1333 g of ammonium polyacrylate dissolved in 287.5 g of water was placed in a vessel with a lid, and 1333 g of silica sol containing 30% by mass of SiO 2 was kept at 40 ° C. and stirred at 120 rpm. (Equivalent to 1.5% by mass of the finally obtained catalyst powder) was added, and the mixture was capped and stirred for 10 minutes to obtain an aqueous silica solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 · 4H 2 O], was dissolved in warm water at 60 ° C. of 850.8G. After cooling to 45 ° C., 35.8 g of a 15% by mass aqueous ammonia solution was added to obtain a molybdenum aqueous solution. Furthermore, 51.6 g of bismuth nitrate into another lidded container [Bi (NO 3) 3 · 5H 2 O], cerium nitrate 96.1g [Ce (NO 3) 3 · 6H 2 O], of 171.2g iron nitrate [Fe (NO 3) 3 · 9H 2 O], 203.4g of nickel nitrate [Ni (NO 3) 2 · 6H 2 O], cobalt nitrate 258.8g [Co (NO 3) 2 · 6H 2 O] and 5.0 g of rubidium nitrate [RbNO 3 ] were dissolved in 13.3% by mass of nitric acid (393.3 g) and kept at 40 ° C. to obtain a nitrate aqueous solution. The aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution. After stirring for 5 minutes, the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry. A precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes. The obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles. At this time, the air temperature at the dryer inlet was 270 ° C, and the air temperature at the outlet was 155 ° C. The rotation speed of the disk was set at 12,500 rpm. When TG-DTA measurement was performed using the obtained dried particles, the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 62 J / g, and the weight loss rate was 27. 0.8%. The dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes. The denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst. The obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
[実施例11]
 金属成分の組成がMo12.00Bi0.47Ce0.99Fe1.88Ni3.08Co3.90Rb0.15で表される金属酸化物をシリカに担持した触媒(金属酸化物:55質量%、シリカ:45質量%)を以下の手順で製造した。
 まず、30質量%のSiOを含有するシリカゾル1500gを蓋つきの容器に入れ、40℃に保持し、撹拌回転数120rpmで撹拌しながら、水287.5gに溶解させたシュウ酸二水和物25.0g(最終的に得られる触媒粉の2.5質量%相当量)を添加し、蓋をした後に10分間撹拌し、シリカ水溶液とした。別の蓋つき容器に437.0gのパラモリブデン酸アンモニウム[(NHMo24・4HO]を入れ、779.9gの60℃の温水に溶解させた。45℃に冷却した後に、29.8gの15質量%のアンモニア水溶液を添加し、モリブデン水溶液とした。さらに、別の蓋つき容器に47.3gの硝酸ビスマス[Bi(NO・5HO]、88.1gの硝酸セリウム[Ce(NO・6HO]、157.0gの硝酸鉄[Fe(NO・9HO]、186.5gの硝酸ニッケル[Ni(NO・6HO]、237.3gの硝酸コバルト[Co(NO・6HO]、及び4.6gの硝酸ルビジウム[RbNO]を、16.6質量%の硝酸392.2gに溶解させ、40℃に保持し、硝酸塩水溶液とした。上記シリカ水溶液に対し、40℃に保持し、撹拌回転数200rpmで撹拌しながら、上記モリブデン水溶液を添加してシリカ・モリブデン水溶液を得た。5分間撹拌後、引き続き40℃に保持し、撹拌回転数250rpmで撹拌しながら上記シリカ・モリブデン水溶液に上記硝酸塩水溶液を添加し、原料スラリーを調製した。上記原料スラリーを40℃で蓋をして45分間撹拌することにより、前駆体スラリーを調製した。得られた前駆体スラリーは回転円盤式の噴霧乾燥器を用いて乾燥させて乾燥粒子を得た。このとき、乾燥器入口の空気温度は270℃とし、出口の空気温度は155℃とした。また、円盤の回転数は12500rpmに設定した。得られた乾燥粒子を用いてTG-DTA測定を実施したところ、200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は75J/g、重量減少は26.9%であった。乾燥粒子は200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分保持することで脱硝した。脱硝した乾燥粒子を595℃で2時間焼成して、アンモ酸化用触媒を得た。得られたアンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させることにより、アクリロニトリルを製造し、アンモニア/プロピレンのモル比(N/C)、空気/プロピレンのモル比(A/C)、アクリロニトリル収率を求めた。その結果を表1に示す。
[Example 11]
Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 55% by mass, silica: 45% by mass) was produced by the following procedure.
First, 1500 g of silica sol containing 30% by mass of SiO 2 was placed in a container with a lid, kept at 40 ° C., and stirred at a rotation speed of 120 rpm while oxalic acid dihydrate 25 dissolved in 287.5 g of water. 0.0 g (equivalent to 2.5% by mass of the finally obtained catalyst powder) was added, and the mixture was capped and stirred for 10 minutes to obtain an aqueous silica solution. Put ammonium paramolybdate in 437.0g to another lidded container [(NH 4) 6 Mo 7 O 24 · 4H 2 O], was dissolved in warm water at 60 ° C. of 779.9G. After cooling to 45 ° C., 29.8 g of a 15% by mass aqueous ammonia solution was added to obtain a molybdenum aqueous solution. Further, 47.3 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O], 88.1 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O], and 157.0 g of another container with a lid were placed. iron nitrate [Fe (NO 3) 3 · 9H 2 O], 186.5g of nickel nitrate [Ni (NO 3) 2 · 6H 2 O], cobalt nitrate 237.3g [Co (NO 3) 2 · 6H 2 O] and 4.6 g of rubidium nitrate [RbNO 3 ] were dissolved in 392.2 g of 16.6% by mass of nitric acid, and kept at 40 ° C. to obtain a nitrate aqueous solution. The aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution. After stirring for 5 minutes, the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry. A precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes. The obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles. At this time, the air temperature at the dryer inlet was 270 ° C, and the air temperature at the outlet was 155 ° C. The rotation speed of the disk was set at 12,500 rpm. When TG-DTA measurement was performed using the obtained dried particles, the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 75 J / g, and the weight loss was 26. 9%. The dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes. The denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst. The obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
[実施例12]
 金属成分の組成がMo12.00Bi0.47Ce0.99Fe1.88Ni3.08Co3.90Rb0.15で表される金属酸化物をシリカに担持した触媒(金属酸化物:60質量%、シリカ:40質量%)を以下の手順で製造した。
 まず、30質量%のSiOを含有するシリカゾル1333gを蓋つきの容器に入れ、40℃に保持し、撹拌回転数120rpmで撹拌しながら、水287.5gに溶解させたシュウ酸二水和物25.0g(最終的に得られる触媒粉の2.5質量%相当量)を添加し、蓋をした後に10分間撹拌し、シリカ水溶液とした。別の蓋つき容器に476.7gのパラモリブデン酸アンモニウム[(NHMo24・4HO]を入れ、850.8gの60℃の温水に溶解させた。45℃に冷却した後に、35.8gの15質量%のアンモニア水溶液を添加し、モリブデン水溶液とした。さらに、別の蓋つき容器に51.6gの硝酸ビスマス[Bi(NO・5HO]、96.1gの硝酸セリウム[Ce(NO・6HO]、171.2gの硝酸鉄[Fe(NO・9HO]、203.4gの硝酸ニッケル[Ni(NO・6HO]、258.8gの硝酸コバルト[Co(NO・6HO]、及び5.0gの硝酸ルビジウム[RbNO]を、16.6質量%の硝酸393.3gに溶解させ、40℃に保持し、硝酸塩水溶液とした。上記シリカ水溶液に対し、40℃に保持し、撹拌回転数200rpmで撹拌しながら、上記モリブデン水溶液を添加してシリカ・モリブデン水溶液を得た。5分間撹拌後、引き続き40℃に保持し、撹拌回転数250rpmで撹拌しながら上記シリカ・モリブデン水溶液に上記硝酸塩水溶液を添加し、原料スラリーを調製した。上記原料スラリーを40℃で蓋をして45分間撹拌することにより、前駆体スラリーを調製した。得られた前駆体スラリーは回転円盤式の噴霧乾燥器を用いて乾燥させて乾燥粒子を得た。このとき、乾燥器入口の空気温度は280℃とし、出口の空気温度は160℃とした。また、円盤の回転数は12500rpmに設定した。得られた乾燥粒子を用いてTG-DTA測定を実施したところ、200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は73J/g、重量減少は27.5%であった。乾燥粒子は200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分保持することで脱硝した。脱硝した乾燥粒子を595℃で2時間焼成して、アンモ酸化用触媒を得た。得られたアンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させることにより、アクリロニトリルを製造し、アンモニア/プロピレンのモル比(N/C)、空気/プロピレンのモル比(A/C)、アクリロニトリル収率を求めた。その結果を表1に示す。
[Example 12]
Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure.
First, 1333 g of silica sol containing 30% by mass of SiO 2 was put in a container with a lid, kept at 40 ° C., and stirred at a rotation speed of 120 rpm while oxalic acid dihydrate 25 dissolved in 287.5 g of water. 0.0 g (equivalent to 2.5% by mass of the finally obtained catalyst powder) was added, and the mixture was capped and stirred for 10 minutes to obtain an aqueous silica solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 · 4H 2 O], was dissolved in warm water at 60 ° C. of 850.8G. After cooling to 45 ° C., 35.8 g of a 15% by mass aqueous ammonia solution was added to obtain a molybdenum aqueous solution. Furthermore, 51.6 g of bismuth nitrate into another lidded container [Bi (NO 3) 3 · 5H 2 O], cerium nitrate 96.1g [Ce (NO 3) 3 · 6H 2 O], of 171.2g iron nitrate [Fe (NO 3) 3 · 9H 2 O], 203.4g of nickel nitrate [Ni (NO 3) 2 · 6H 2 O], cobalt nitrate 258.8g [Co (NO 3) 2 · 6H 2 O] and 5.0 g of rubidium nitrate [RbNO 3 ] were dissolved in 13.3% by mass of nitric acid (393.3 g) and kept at 40 ° C. to obtain a nitrate aqueous solution. The aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution. After stirring for 5 minutes, the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry. A precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes. The obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles. At this time, the air temperature at the dryer inlet was 280 ° C, and the air temperature at the outlet was 160 ° C. The rotation speed of the disk was set at 12,500 rpm. When TG-DTA measurement was performed using the obtained dried particles, the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 73 J / g, and the weight loss was 27. 5%. The dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes. The denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst. The obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
[比較例1]
 金属成分の組成がMo12.00Bi0.47Ce0.99Fe1.88Ni3.08Co3.90Rb0.15で表される金属酸化物をシリカに担持した触媒(金属酸化物:60質量%、シリカ:40質量%)を以下の手順で製造した。
 まず、30質量%のSiOを含有するシリカゾル1333gを蓋つきの容器に入れ、40℃に保持し、撹拌回転数120rpmで撹拌し、シリカ水溶液とした。別の蓋つき容器に476.7gのパラモリブデン酸アンモニウム[(NHMo24・4HO]を入れ、850.8gの70℃の温水に溶解させた。70℃で保持し、モリブデン水溶液とした。さらに、別の蓋つき容器に51.6gの硝酸ビスマス[Bi(NO・5HO]、96.1gの硝酸セリウム[Ce(NO・6HO]、171.2gの硝酸鉄[Fe(NO・9HO]、203.4gの硝酸ニッケル[Ni(NO・6HO]、258.8gの硝酸コバルト[Co(NO・6HO]、及び5.0gの硝酸ルビジウム[RbNO]を、16.6質量%の硝酸393.3gに溶解させ、40℃に保持し、硝酸塩水溶液とした。上記シリカ水溶液に対し、40℃に保持し、撹拌回転数200rpmで撹拌しながら、上記モリブデン水溶液を添加してシリカ・モリブデン水溶液を得た。5分間撹拌後、引き続き40℃に保持し、撹拌回転数250rpmで撹拌しながら上記シリカ・モリブデン水溶液に上記硝酸塩水溶液を添加し、原料スラリーを調製した。上記原料スラリーを40℃で蓋をして45分間撹拌することにより、前駆体スラリーを調製した。得られた前駆体スラリーは回転円盤式の噴霧乾燥器を用いて乾燥させて乾燥粒子を得た。このとき、乾燥器入口の空気温度は270℃とし、出口の空気温度は155℃とした。また、円盤の回転数は12500rpmに設定した。得られた乾燥粒子を用いてTG-DTA測定を実施したところ、200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は43J/g、重量減少率は25.0%であった。乾燥粒子は200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分保持することで脱硝した。脱硝した乾燥粒子を595℃で2時間焼成して、アンモ酸化用触媒を得た。得られたアンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させることにより、アクリロニトリルを製造し、アンモニア/プロピレンのモル比(N/C)、空気/プロピレンのモル比(A/C)、アクリロニトリル収率を求めた。その結果を表1に示す。
[Comparative Example 1]
Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure.
First, 1333 g of silica sol containing 30% by mass of SiO 2 was placed in a container with a lid, kept at 40 ° C., and stirred at a stirring rotation speed of 120 rpm to obtain a silica aqueous solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 · 4H 2 O], was dissolved in warm water at 70 ° C. of 850.8G. It was kept at 70 ° C. to obtain a molybdenum aqueous solution. Furthermore, 51.6 g of bismuth nitrate into another lidded container [Bi (NO 3) 3 · 5H 2 O], cerium nitrate 96.1g [Ce (NO 3) 3 · 6H 2 O], of 171.2g iron nitrate [Fe (NO 3) 3 · 9H 2 O], 203.4g of nickel nitrate [Ni (NO 3) 2 · 6H 2 O], cobalt nitrate 258.8g [Co (NO 3) 2 · 6H 2 O] and 5.0 g of rubidium nitrate [RbNO 3 ] were dissolved in 13.3% by mass of nitric acid (393.3 g) and kept at 40 ° C. to obtain a nitrate aqueous solution. The aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution. After stirring for 5 minutes, the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry. A precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes. The obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles. At this time, the air temperature at the dryer inlet was 270 ° C, and the air temperature at the outlet was 155 ° C. The rotation speed of the disk was set at 12,500 rpm. When TG-DTA measurement was performed using the obtained dried particles, the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C to 300 ° C was 43 J / g, and the weight loss rate was 25. 0.0%. The dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes. The denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst. The obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
[比較例2]
 金属成分の組成がMo12.00Bi0.47Ce0.99Fe1.88Ni3.08Co3.90Rb0.15で表される金属酸化物をシリカに担持した触媒(金属酸化物:60質量%、シリカ:40質量%)を以下の手順で製造した。
 まず、30質量%のSiOを含有するシリカゾル1333gを蓋つきの容器に入れ、40℃に保持し、撹拌回転数120rpmで撹拌し、シリカ水溶液とした。別の蓋つき容器に476.7gのパラモリブデン酸アンモニウム[(NHMo24・4HO]を入れ、850.8gの60℃の温水に溶解させた。45℃に冷却し、モリブデン水溶液とした。さらに、別の蓋つき容器に51.6gの硝酸ビスマス[Bi(NO・5HO]、96.1gの硝酸セリウム[Ce(NO・6HO]、171.2gの硝酸鉄[Fe(NO・9HO]、203.4gの硝酸ニッケル[Ni(NO・6HO]、258.8gの硝酸コバルト[Co(NO・6HO]、及び5.0gの硝酸ルビジウム[RbNO]を、16.6質量%の硝酸393.3gに溶解させ、40℃に保持し、硝酸塩水溶液とした。上記シリカ水溶液に対し、40℃に保持し、撹拌回転数200rpmで撹拌しながら、上記モリブデン水溶液を添加してシリカ・モリブデン水溶液を得た。5分間撹拌後、引き続き40℃に保持し、撹拌回転数250rpmで撹拌しながら上記シリカ・モリブデン水溶液に上記硝酸塩水溶液を添加し、原料スラリーを調製した。上記原料スラリーを40℃で蓋をして45分間撹拌することにより、前駆体スラリーを調製した。得られた前駆体スラリーは回転円盤式の噴霧乾燥器を用いて乾燥させて乾燥粒子を得た。このとき、乾燥器入口の空気温度は270℃とし、出口の空気温度は155℃とした。また、円盤の回転数は12500rpmに設定した。得られた乾燥粒子を用いてTG-DTA測定を実施したところ、200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は42J/g、重量減少率は36.0%であった。乾燥粒子は200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分保持することで脱硝した。脱硝した乾燥粒子を595℃で2時間焼成して、アンモ酸化用触媒を得た。得られたアンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させることにより、アクリロニトリルを製造し、アンモニア/プロピレンのモル比(N/C)、空気/プロピレンのモル比(A/C)、アクリロニトリル収率を求めた。その結果を表1に示す。
[Comparative Example 2]
Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure.
First, 1333 g of silica sol containing 30% by mass of SiO 2 was placed in a container with a lid, kept at 40 ° C., and stirred at a stirring rotation speed of 120 rpm to obtain a silica aqueous solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 · 4H 2 O], was dissolved in warm water at 60 ° C. of 850.8G. It was cooled to 45 ° C. to obtain a molybdenum aqueous solution. Furthermore, 51.6 g of bismuth nitrate into another lidded container [Bi (NO 3) 3 · 5H 2 O], cerium nitrate 96.1g [Ce (NO 3) 3 · 6H 2 O], of 171.2g iron nitrate [Fe (NO 3) 3 · 9H 2 O], 203.4g of nickel nitrate [Ni (NO 3) 2 · 6H 2 O], cobalt nitrate 258.8g [Co (NO 3) 2 · 6H 2 O] and 5.0 g of rubidium nitrate [RbNO 3 ] were dissolved in 13.3% by mass of nitric acid (393.3 g) and kept at 40 ° C. to obtain a nitrate aqueous solution. The aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution. After stirring for 5 minutes, the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry. A precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes. The obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles. At this time, the air temperature at the dryer inlet was 270 ° C, and the air temperature at the outlet was 155 ° C. The rotation speed of the disk was set at 12,500 rpm. When TG-DTA measurement was performed using the obtained dried particles, the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 42 J / g, and the weight loss rate was 36. 0.0%. The dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes. The denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst. The obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
[比較例3]
 金属成分の組成がMo12.00Bi0.47Ce0.99Fe1.88Ni3.08Co3.90Rb0.15で表される金属酸化物をシリカに担持した触媒(金属酸化物:60質量%、シリカ:40質量%)を以下の手順で製造した。
 まず、30質量%のSiOを含有するシリカゾル1333gを蓋つきの容器に入れ、40℃に保持し、撹拌回転数120rpmで撹拌しながら、水287.5gに溶解させたシュウ酸二水和物25.0g(最終的に得られる触媒粉の2.5質量%相当量)を添加し、蓋をした後に10分間撹拌し、シリカ水溶液とした。別の蓋つき容器に476.7gのパラモリブデン酸アンモニウム[(NHMo24・4HO]を入れ、850.8gの60℃の温水に溶解させた。45℃に冷却した後に、35.8gの15質量%のアンモニア水溶液を添加し、モリブデン水溶液とした。さらに、別の蓋つき容器に51.6gの硝酸ビスマス[Bi(NO・5HO]、96.1gの硝酸セリウム[Ce(NO・6HO]、171.2gの硝酸鉄[Fe(NO・9HO]、203.4gの硝酸ニッケル[Ni(NO・6HO]、258.8gの硝酸コバルト[Co(NO・6HO]、及び5.0gの硝酸ルビジウム[RbNO]を、16.6質量%の硝酸393.3gに溶解させ、40℃に保持し、硝酸塩水溶液とした。上記シリカ水溶液に対し、40℃に保持し、撹拌回転数200rpmで撹拌しながら、上記モリブデン水溶液を添加してシリカ・モリブデン水溶液を得た。5分間撹拌後、引き続き40℃に保持し、撹拌回転数250rpmで撹拌しながら上記シリカ・モリブデン水溶液に上記硝酸塩水溶液を添加し、原料スラリーを調製した。上記原料スラリーを40℃で蓋をして45分間撹拌することにより、前駆体スラリーを調製した。得られた前駆体スラリーは回転円盤式の噴霧乾燥器を用いて乾燥させて乾燥粒子を得た。このとき、乾燥器入口の空気温度は305℃とし、出口の空気温度は195℃とした。また、円盤の回転数は12500rpmに設定した。得られた乾燥粒子を用いてTG-DTA測定を実施したところ、200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は40J/g、重量減少率は23.2%であった。乾燥粒子は200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分保持することで脱硝した。脱硝した乾燥粒子を595℃で2時間焼成して、アンモ酸化用触媒を得た。得られたアンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させることにより、アクリロニトリルを製造し、アンモニア/プロピレンのモル比(N/C)、空気/プロピレンのモル比(A/C)、アクリロニトリル収率を求めた。その結果を表1に示す。
[Comparative Example 3]
Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure.
First, 1333 g of silica sol containing 30% by mass of SiO 2 was put in a container with a lid, kept at 40 ° C., and stirred at a rotation speed of 120 rpm while oxalic acid dihydrate 25 dissolved in 287.5 g of water. 0.0 g (equivalent to 2.5% by mass of the finally obtained catalyst powder) was added, and the mixture was capped and stirred for 10 minutes to obtain an aqueous silica solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 · 4H 2 O], was dissolved in warm water at 60 ° C. of 850.8G. After cooling to 45 ° C., 35.8 g of a 15% by mass aqueous ammonia solution was added to obtain a molybdenum aqueous solution. Furthermore, 51.6 g of bismuth nitrate into another lidded container [Bi (NO 3) 3 · 5H 2 O], cerium nitrate 96.1g [Ce (NO 3) 3 · 6H 2 O], of 171.2g iron nitrate [Fe (NO 3) 3 · 9H 2 O], 203.4g of nickel nitrate [Ni (NO 3) 2 · 6H 2 O], cobalt nitrate 258.8g [Co (NO 3) 2 · 6H 2 O] and 5.0 g of rubidium nitrate [RbNO 3 ] were dissolved in 13.3% by mass of nitric acid (393.3 g) and kept at 40 ° C. to obtain a nitrate aqueous solution. The aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution. After stirring for 5 minutes, the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry. A precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes. The obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles. At this time, the air temperature at the dryer inlet was 305 ° C, and the air temperature at the outlet was 195 ° C. The rotation speed of the disk was set at 12,500 rpm. When TG-DTA measurement was performed using the obtained dried particles, the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 40 J / g, and the weight loss rate was 23. 0.2%. The dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes. The denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst. The obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
[比較例4]
 金属成分の組成がMo12.00Bi0.47Ce0.99Fe1.88Ni3.08Co3.90Rb0.15で表される金属酸化物をシリカに担持した触媒(金属酸化物:60質量%、シリカ:40質量%)を以下の手順で製造した。
 まず、30質量%のSiOを含有するシリカゾル1333gを蓋つきの容器に入れ、40℃に保持し、撹拌回転数120rpmで撹拌しながら、水287.5gに溶解させたシュウ酸二水和物25.0g(最終的に得られる触媒粉の2.5質量%相当量)を添加し、蓋をした後に10分間撹拌し、シリカ水溶液とした。別の蓋つき容器に476.7gのパラモリブデン酸アンモニウム[(NHMo24・4HO]を入れ、850.8gの60℃の温水に溶解させた。45℃に冷却し、モリブデン水溶液とした。さらに、別の蓋つき容器に51.6gの硝酸ビスマス[Bi(NO・5HO]、96.1gの硝酸セリウム[Ce(NO・6HO]、171.2gの硝酸鉄[Fe(NO・9HO]、203.4gの硝酸ニッケル[Ni(NO・6HO]、258.8gの硝酸コバルト[Co(NO・6HO]、及び5.0gの硝酸ルビジウム[RbNO]を、16.6質量%の硝酸393.3gに溶解させ、40℃に保持し、硝酸塩水溶液とした。上記シリカ水溶液に対し、40℃に保持し、撹拌回転数200rpmで撹拌しながら、上記モリブデン水溶液を添加してシリカ・モリブデン水溶液を得た。5分間撹拌後、引き続き40℃に保持し、撹拌回転数250rpmで撹拌しながら上記シリカ・モリブデン水溶液に上記硝酸塩水溶液を添加し、原料スラリーを調製した。上記原料スラリーを40℃で蓋をして45分間撹拌することにより、前駆体スラリーを調製した。得られた前駆体スラリーは回転円盤式の噴霧乾燥器を用いて乾燥させて乾燥粒子を得た。このとき、乾燥器入口の空気温度は270℃とし、出口の空気温度は155℃とした。また、円盤の回転数は12500rpmに設定した。得られた乾燥粒子を用いてTG-DTA測定を実施したところ、200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量は41J/g、重量減少率は24.1%であった。乾燥粒子は200℃で5分間保持し、200℃から450℃まで2.5℃/分で昇温し、450℃で20分保持することで脱硝した。脱硝した乾燥粒子を595℃で2時間焼成して、アンモ酸化用触媒を得た。得られたアンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応(アンモ酸化反応)させることにより、アクリロニトリルを製造し、アンモニア/プロピレンのモル比(N/C)、空気/プロピレンのモル比(A/C)、アクリロニトリル収率を求めた。その結果を表1に示す。
[Comparative Example 4]
Catalyst (metal oxide) in which a metal oxide whose composition is represented by Mo 12.00 Bi 0.47 Ce 0.99 Fe 1.88 Ni 3.08 Co 3.90 Rb 0.15 is supported on silica. : 60% by mass, silica: 40% by mass) according to the following procedure.
First, 1333 g of silica sol containing 30% by mass of SiO 2 was put in a container with a lid, kept at 40 ° C., and stirred at a rotation speed of 120 rpm while oxalic acid dihydrate 25 dissolved in 287.5 g of water. 0.0 g (equivalent to 2.5% by mass of the finally obtained catalyst powder) was added, and the mixture was capped and stirred for 10 minutes to obtain an aqueous silica solution. Put ammonium paramolybdate in 476.7g to another lidded container [(NH 4) 6 Mo 7 O 24 · 4H 2 O], was dissolved in warm water at 60 ° C. of 850.8G. It was cooled to 45 ° C. to obtain a molybdenum aqueous solution. Furthermore, 51.6 g of bismuth nitrate into another lidded container [Bi (NO 3) 3 · 5H 2 O], cerium nitrate 96.1g [Ce (NO 3) 3 · 6H 2 O], of 171.2g iron nitrate [Fe (NO 3) 3 · 9H 2 O], 203.4g of nickel nitrate [Ni (NO 3) 2 · 6H 2 O], cobalt nitrate 258.8g [Co (NO 3) 2 · 6H 2 O] and 5.0 g of rubidium nitrate [RbNO 3 ] were dissolved in 13.3% by mass of nitric acid (393.3 g) and kept at 40 ° C. to obtain a nitrate aqueous solution. The aqueous molybdenum solution was added to the aqueous silica solution while maintaining the temperature at 40 ° C. and stirring at a stirring rotation speed of 200 rpm to obtain an aqueous silica / molybdenum solution. After stirring for 5 minutes, the mixture was kept at 40 ° C. and the nitrate aqueous solution was added to the silica / molybdenum aqueous solution while stirring at a stirring rotation speed of 250 rpm to prepare a raw material slurry. A precursor slurry was prepared by stirring the raw slurry at 40 ° C for 45 minutes. The obtained precursor slurry was dried using a rotating disk type spray dryer to obtain dried particles. At this time, the air temperature at the dryer inlet was 270 ° C, and the air temperature at the outlet was 155 ° C. The rotation speed of the disk was set at 12,500 rpm. When TG-DTA measurement was performed using the obtained dried particles, the calorific value calculated from the area of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. was 41 J / g, and the weight loss rate was 24. 0.1%. The dried particles were held at 200 ° C. for 5 minutes, heated from 200 ° C. to 450 ° C. at a rate of 2.5 ° C./minute, and denitrated by holding at 450 ° C. for 20 minutes. The denitrated dry particles were calcined at 595 ° C. for 2 hours to obtain an ammoxidation catalyst. The obtained ammoxidation catalyst is supplied in advance to a fluidized reaction vessel, and propylene, molecular oxygen, and ammonia are reacted (ammoxidation reaction) while circulating the catalyst in the fluidized reaction vessel, Acrylonitrile was produced and the molar ratio of ammonia / propylene (N / C), the molar ratio of air / propylene (A / C), and the acrylonitrile yield were determined. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1から明らかなように、実施例1~12で得られたアンモ酸化用触媒はいずれも高収率でアクリロニトリルを合成できた。一方、比較例1~3で得られたアンモ酸化用触媒は実施例1~12と同じ金属組成であるにもかかわらず、実施例1~12と比較して、アクリロニトリルの収率が低かった。さらに、比較例4で得られたアンモ酸化用触媒は実施例1~12と類似の金属組成であるにもかかわらず、実施例1~12と比較して、アクリロニトリルの収率が低かった。 As is clear from Table 1, all of the ammoxidation catalysts obtained in Examples 1 to 12 were able to synthesize acrylonitrile in high yield. On the other hand, although the catalysts for ammoxidation obtained in Comparative Examples 1 to 3 had the same metal composition as Examples 1 to 12, the yield of acrylonitrile was lower than those of Examples 1 to 12. Furthermore, although the catalyst for ammoxidation obtained in Comparative Example 4 had a metal composition similar to those of Examples 1 to 12, the yield of acrylonitrile was lower than that of Examples 1 to 12.
 本出願は、2018年8月24日出願の日本特許出願(特願2018-157543号)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on August 24, 2018 (Japanese Patent Application No. 2018-157543), the contents of which are incorporated herein by reference.

Claims (22)

  1.  触媒の前駆体となる前駆体スラリーを調製する調製工程と、
     前記前駆体スラリーを乾燥して乾燥粒子を得る乾燥工程と、
     前記乾燥粒子を焼成してアンモ酸化用触媒を得る焼成工程と、
    を有し、
     焼成前の乾燥粒子のTG-DTA測定により観測される200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量が、45J/g以上、200J/g以下である、アンモ酸化用触媒の製造方法。
    A preparation step of preparing a precursor slurry to be a catalyst precursor,
    A drying step of drying the precursor slurry to obtain dry particles,
    A firing step of firing the dried particles to obtain an ammoxidation catalyst,
    Has,
    The calorific value calculated from the area value of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. observed by TG-DTA measurement of the dried particles before firing is 45 J / g or more and 200 J / g or less. And a method for producing an ammoxidation catalyst.
  2.  前記発熱量が、80J/g以上、200J/g以下である、請求項1に記載のアンモ酸化用触媒の製造方法。 The method for producing an ammoxidation catalyst according to claim 1, wherein the calorific value is 80 J / g or more and 200 J / g or less.
  3.  前記アンモ酸化用触媒が、下記一般式(1)で表される組成を有する複合金属酸化物を含む、請求項1又は2に記載のアンモ酸化用触媒の製造方法。
    Mo12BiFe (1)
    (式(1)中、Xはニッケル、コバルト、マグネシウム、カルシウム、亜鉛、ストロンチウム、バリウムからなる群より選ばれる1種類以上の元素、Yはセリウム、クロム、ランタン、ネオジム、イットリウム、プラセオジウム、サマリウム、アルミニウム、ガリウム、及びインジウムからなる群より選ばれる1種以上の元素、Zはカリウム、ルビジウム及びセシウムからなる群より選ばれる1種以上の元素を示す。aはモリブデン12原子に対するビスマスの原子比を示し、0.1≦a≦2.0であり、bはモリブデン12原子に対する鉄の原子比を示し、0.1≦b≦3.0であり、cはモリブデン12原子に対するXの原子比を示し、0.1≦c≦10.0であり、dはモリブデン12原子に対するYの原子比を示し、0.1≦d≦3.0であり、eはモリブデン12原子に対するZの原子比を示し、0.01≦e≦2.0であり、fはモリブデン12原子に対する酸素の原子比を示し、存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。)
    The method for producing an ammoxidation catalyst according to claim 1 or 2, wherein the ammoxidation catalyst includes a composite metal oxide having a composition represented by the following general formula (1).
    Mo 12 Bi a Fe b X c Y d Z e O f (1)
    (In the formula (1), X is one or more elements selected from the group consisting of nickel, cobalt, magnesium, calcium, zinc, strontium, and barium, and Y is cerium, chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, Z represents one or more elements selected from the group consisting of potassium, rubidium and cesium, and a represents the atomic ratio of bismuth to 12 atoms of molybdenum. 0.1 ≦ a ≦ 2.0, b represents the atomic ratio of iron to 12 atoms of molybdenum, 0.1 ≦ b ≦ 3.0, and c represents the atomic ratio of X to 12 atoms of molybdenum. 0.1 ≦ c ≦ 10.0, d represents the atomic ratio of Y to 12 molybdenum atoms, and 0.1 ≦ d ≦ 3. 0, e indicates the atomic ratio of Z to 12 atoms of molybdenum, 0.01 ≦ e ≦ 2.0, f indicates the atomic ratio of oxygen to 12 atoms of molybdenum, and the valence of other elements present This is the number of oxygen atoms required to satisfy the requirement.)
  4.  前記アンモ酸化用触媒が担体を含み、前記アンモ酸化用触媒における担体の含有量が35~45質量%である、請求項1~3のいずれか1項に記載のアンモ酸化用触媒の製造方法。 The method for producing an ammoxidation catalyst according to any one of claims 1 to 3, wherein the ammoxidation catalyst contains a carrier, and the content of the carrier in the ammoxidation catalyst is 35 to 45% by mass.
  5.  前記前駆体スラリーを調製する調製工程において、原料にアンモニア水又は水を添加することを含む、請求項1~4のいずれか1項に記載のアンモ酸化用触媒の製造方法。 The method for producing an ammoxidation catalyst according to any one of claims 1 to 4, wherein the preparation step of preparing the precursor slurry includes adding aqueous ammonia or water to the raw material.
  6.  前記前駆体スラリーを調製する調製工程において、原料がモリブデン溶液を含み、モリブデン溶液にアンモニア水又は水を添加することを含む、請求項1~5のいずれか1項に記載のアンモ酸化用触媒の製造方法。 The catalyst for ammoxidation according to any one of claims 1 to 5, wherein in the preparation step of preparing the precursor slurry, the raw material includes a molybdenum solution, and includes adding ammonia water or water to the molybdenum solution. Production method.
  7.  前記前駆体スラリーを乾燥して乾燥粒子を得る乾燥工程において、乾燥機の入口空気温度を180~280℃に保持し、出口温度を100~170℃に保持する、請求項1~6のいずれか1項に記載のアンモ酸化用触媒の製造方法。 7. The drying step of drying the precursor slurry to obtain dried particles, wherein the inlet air temperature of the dryer is maintained at 180 to 280 ° C. and the outlet temperature is maintained at 100 to 170 ° C. 2. The method for producing an ammoxidation catalyst according to claim 1.
  8.  前記乾燥粒子を焼成してアンモ酸化用触媒を得る焼成工程において、本焼成の前に脱硝処理を含み、脱硝処理が150~450℃で1.5~3時間の加熱を行う、請求項1~7のいずれか1項に記載のアンモ酸化用触媒の製造方法。 The firing step for firing the dried particles to obtain an ammoxidation catalyst includes a denitration treatment before the main firing, wherein the denitration treatment is performed at 150 to 450 ° C. for 1.5 to 3 hours. 8. The method for producing an ammoxidation catalyst according to any one of items 7 to 7.
  9.  前記乾燥粒子を焼成してアンモ酸化用触媒を得る焼成工程において、本焼成温度が550~650℃である、請求項1~8のいずれか1項に記載のアンモ酸化用触媒の製造方法。 The method for producing an ammoxidation catalyst according to any one of claims 1 to 8, wherein in the firing step of firing the dried particles to obtain an ammoxidation catalyst, the main firing temperature is 550 to 650 ° C.
  10.  触媒の前駆体となる前駆体スラリーを調製する調製工程と、
     前記前駆体スラリーを乾燥して乾燥粒子を得る乾燥工程と、
     前記乾燥粒子を焼成してアンモ酸化用触媒を得る焼成工程と、
     前記アンモ酸化用触媒を流動反応槽に予め供給し、前記触媒を流動反応槽内で循環させながら、プロピレンと、分子状酸素と、アンモニアと、を反応させてアクリロニトリルを得る工程を含み、
     焼成前の乾燥粒子のTG-DTA測定により観測される200℃から300℃の範囲に極大値を有する発熱ピークの面積値から算出される発熱量が、45J/g以上、200J/g以下である、アクリロニトリルの製造方法。
    A preparation step of preparing a precursor slurry to be a catalyst precursor,
    A drying step of drying the precursor slurry to obtain dry particles,
    A firing step of firing the dried particles to obtain an ammoxidation catalyst,
    The step of supplying the catalyst for ammoxidation in advance to a fluidized reaction vessel and, while circulating the catalyst in the fluidized reaction vessel, reacting propylene, molecular oxygen, and ammonia to obtain acrylonitrile,
    The calorific value calculated from the area value of the exothermic peak having a maximum value in the range of 200 ° C. to 300 ° C. observed by TG-DTA measurement of the dried particles before firing is 45 J / g or more and 200 J / g or less. And a method for producing acrylonitrile.
  11.  前記発熱量が、80J/g以上、200J/g以下である、請求項10に記載のアクリロニトリルの製造方法。 The method for producing acrylonitrile according to claim 10, wherein the calorific value is 80 J / g or more and 200 J / g or less.
  12.  前記分子状酸素源が空気であり、
     プロピレンに対するアンモニア及び空気のモル比が、プロピレン/アンモニア/空気の比で1/(0.8~1.4)/(7~12)の範囲である、請求項10又は11に記載のアクリロニトリルの製造方法。
    The source of molecular oxygen is air;
    The acrylonitrile according to claim 10 or 11, wherein the molar ratio of ammonia and air to propylene is in the range of 1 / (0.8 to 1.4) / (7 to 12) in the ratio of propylene / ammonia / air. Production method.
  13.  前記分子状酸素源が空気であり、
     プロピレンに対するアンモニア及び空気のモル比が、プロピレン/アンモニア/空気の比で1/(0.9~1.3)/(8~11)の範囲である、請求項10又は11に記載のアクリロニトリルの製造方法。
    The source of molecular oxygen is air;
    The acrylonitrile according to claim 10 or 11, wherein the molar ratio of ammonia and air to propylene is in the range of 1 / (0.9 to 1.3) / (8 to 11) in the ratio of propylene / ammonia / air. Production method.
  14.  前記アンモ酸化用触媒の存在下、プロピレンと、分子状酸素と、アンモニアと、を反応させる温度が、350~550℃の温度範囲である、請求項10~13のいずれか1項に記載のアクリロニトリルの製造方法。 The acrylonitrile according to any one of claims 10 to 13, wherein a temperature at which propylene, molecular oxygen, and ammonia are reacted in the presence of the ammoxidation catalyst is in a temperature range of 350 to 550 ° C. Manufacturing method.
  15.  前記アンモ酸化用触媒の存在下、プロピレンと、分子状酸素と、アンモニアと、を反応させる温度が、400~500℃の温度範囲である、請求項10~13のいずれか1項に記載のアクリロニトリルの製造方法。 The acrylonitrile according to any one of claims 10 to 13, wherein a temperature at which propylene, molecular oxygen, and ammonia are reacted in the presence of the ammoxidation catalyst is in a temperature range of 400 to 500 ° C. Manufacturing method.
  16.  前記アンモ酸化用触媒が、下記一般式(1)で表される組成を有する複合金属酸化物を含む、請求項10~15のいずれか1項に記載のアクリロニトリルの製造方法。
    Mo12BiFe (1)
    (式(1)中、Xはニッケル、コバルト、マグネシウム、カルシウム、亜鉛、ストロンチウム、バリウムからなる群より選ばれる1種類以上の元素、Yはセリウム、クロム、ランタン、ネオジム、イットリウム、プラセオジウム、サマリウム、アルミニウム、ガリウム、及びインジウムからなる群より選ばれる1種以上の元素、Zはカリウム、ルビジウム及びセシウムからなる群より選ばれる1種以上の元素を示す。aはモリブデン12原子に対するビスマスの原子比を示し、0.1≦a≦2.0であり、bはモリブデン12原子に対する鉄の原子比を示し、0.1≦b≦3.0であり、cはモリブデン12原子に対するXの原子比を示し、0.1≦c≦10.0であり、dはモリブデン12原子に対するYの原子比を示し、0.1≦d≦3.0であり、eはモリブデン12原子に対するZの原子比を示し、0.01≦e≦2.0であり、fはモリブデン12原子に対する酸素の原子比を示し、存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。)
    The method for producing acrylonitrile according to any one of claims 10 to 15, wherein the catalyst for ammoxidation contains a composite metal oxide having a composition represented by the following general formula (1).
    Mo 12 Bi a Fe b X c Y d Z e O f (1)
    (In the formula (1), X is one or more elements selected from the group consisting of nickel, cobalt, magnesium, calcium, zinc, strontium, and barium, and Y is cerium, chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, Z represents one or more elements selected from the group consisting of potassium, rubidium and cesium, and a represents the atomic ratio of bismuth to 12 atoms of molybdenum. 0.1 ≦ a ≦ 2.0, b represents the atomic ratio of iron to 12 atoms of molybdenum, 0.1 ≦ b ≦ 3.0, and c represents the atomic ratio of X to 12 atoms of molybdenum. 0.1 ≦ c ≦ 10.0, d represents the atomic ratio of Y to 12 molybdenum atoms, and 0.1 ≦ d ≦ 3. 0, e indicates the atomic ratio of Z to 12 atoms of molybdenum, 0.01 ≦ e ≦ 2.0, f indicates the atomic ratio of oxygen to 12 atoms of molybdenum, and the valence of other elements present This is the number of oxygen atoms required to satisfy the requirement.)
  17.  前記アンモ酸化用触媒が担体を含み、前記アンモ酸化用触媒における担体の含有量が35~45質量%である、請求項10~16のいずれか1項に記載のアクリロニトリルの製造方法。 The process for producing acrylonitrile according to any one of claims 10 to 16, wherein the catalyst for ammoxidation contains a carrier, and the content of the carrier in the catalyst for ammoxidation is 35 to 45% by mass.
  18.  前記前駆体スラリーを調製する調製工程において、原料にアンモニア水又は水を添加することを含む、請求項10~17のいずれか1項に記載のアクリロニトリルの製造方法。 18. The method for producing acrylonitrile according to claim 10, wherein the step of preparing the precursor slurry includes adding aqueous ammonia or water to the raw material.
  19.  前記前駆体スラリーを調製する調製工程において、原料がモリブデン溶液を含み、モリブデン溶液にアンモニア水又は水を添加することを含む、請求項10~18のいずれか1項に記載のアクリロニトリルの製造方法。 The method for producing acrylonitrile according to any one of claims 10 to 18, wherein in the preparation step of preparing the precursor slurry, the raw material includes a molybdenum solution, and the method includes adding ammonia water or water to the molybdenum solution.
  20.  前記前駆体スラリーを乾燥して乾燥粒子を得る乾燥工程において、乾燥機の入口空気温度を180~280℃に保持し、出口温度を100~170℃に保持する、請求項10~19のいずれか1項に記載のアクリロニトリルの製造方法。 20. The drying step of drying the precursor slurry to obtain dried particles, wherein the inlet air temperature of the dryer is maintained at 180 to 280 ° C. and the outlet temperature is maintained at 100 to 170 ° C. Item 2. The method for producing acrylonitrile according to item 1.
  21.  前記乾燥粒子を焼成してアンモ酸化用触媒を得る焼成工程において、本焼成の前に脱硝処理を含み、脱硝処理が150~450℃で1.5~3時間の加熱を行う、請求項10~20のいずれか1項に記載のアクリロニトリルの製造方法。 The calcination step of calcining the dried particles to obtain an ammoxidation catalyst includes a denitration treatment before the main calcination, and the denitration treatment is performed at 150 to 450 ° C. for 1.5 to 3 hours. 21. The method for producing acrylonitrile according to any one of 20.
  22.  前記乾燥粒子を焼成してアンモ酸化用触媒を得る焼成工程において、本焼成温度が550~650℃である、請求項10~21のいずれか1項に記載のアクリロニトリルの製造方法。 The method for producing acrylonitrile according to any one of claims 10 to 21, wherein in the firing step of firing the dried particles to obtain an ammoxidation catalyst, the main firing temperature is 550 to 650 ° C.
PCT/JP2019/031717 2018-08-24 2019-08-09 Method for producing ammoxidation catalyst, and method for producing acrylonitrile WO2020039985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018157543 2018-08-24
JP2018-157543 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020039985A1 true WO2020039985A1 (en) 2020-02-27

Family

ID=69593223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031717 WO2020039985A1 (en) 2018-08-24 2019-08-09 Method for producing ammoxidation catalyst, and method for producing acrylonitrile

Country Status (2)

Country Link
TW (1) TWI710404B (en)
WO (1) WO2020039985A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828322A (en) * 2020-06-24 2021-12-24 中国石油化工股份有限公司 Molybdenum oxide, preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214543A (en) * 1989-02-16 1990-08-27 Nitto Chem Ind Co Ltd Production of molybdenum-containing metal oxide fluid catalyst fit for oxidation reaction
WO2013129363A1 (en) * 2012-02-29 2013-09-06 三菱レイヨン株式会社 Method for producing acrylonitrile
WO2014051090A1 (en) * 2012-09-28 2014-04-03 旭化成ケミカルズ株式会社 Oxide catalyst, method for producing same, and method for producing unsaturated aldehyde, diolefin or unsaturated nitrile
JP2015188802A (en) * 2014-03-27 2015-11-02 旭化成ケミカルズ株式会社 Oxide catalyst and production method thereof, and method for producing acrylonitrile
JP2015188801A (en) * 2014-03-27 2015-11-02 旭化成ケミカルズ株式会社 Oxide catalyst and production method thereof, and method for producing unsaturated aldehyde or unsaturated nitrile

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919428B2 (en) * 2007-12-04 2011-04-05 Ineos Usa Llc Method of making mixed metal oxide catalysts for ammoxidation and/or oxidation of lower alkane hydrocarbons
US10328418B1 (en) * 2016-08-31 2019-06-25 Asahi Kasei Kabushiki Kaisha Method for producing catalyst and method for producing acrylonitrile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214543A (en) * 1989-02-16 1990-08-27 Nitto Chem Ind Co Ltd Production of molybdenum-containing metal oxide fluid catalyst fit for oxidation reaction
WO2013129363A1 (en) * 2012-02-29 2013-09-06 三菱レイヨン株式会社 Method for producing acrylonitrile
WO2014051090A1 (en) * 2012-09-28 2014-04-03 旭化成ケミカルズ株式会社 Oxide catalyst, method for producing same, and method for producing unsaturated aldehyde, diolefin or unsaturated nitrile
JP2015188802A (en) * 2014-03-27 2015-11-02 旭化成ケミカルズ株式会社 Oxide catalyst and production method thereof, and method for producing acrylonitrile
JP2015188801A (en) * 2014-03-27 2015-11-02 旭化成ケミカルズ株式会社 Oxide catalyst and production method thereof, and method for producing unsaturated aldehyde or unsaturated nitrile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828322A (en) * 2020-06-24 2021-12-24 中国石油化工股份有限公司 Molybdenum oxide, preparation method and application thereof
CN113828322B (en) * 2020-06-24 2024-01-30 中国石油化工股份有限公司 Molybdenum oxide, preparation method and application thereof

Also Published As

Publication number Publication date
TWI710404B (en) 2020-11-21
TW202015806A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
JP4030740B2 (en) Method for producing ammoxidation catalyst
JP5547057B2 (en) Catalytic conversion of mixed metal oxide catalysts and lower alkane hydrocarbons
RU2709012C1 (en) Method of producing catalyst and method of producing acrylonitrile
JP4242197B2 (en) Catalyst for acrylonitrile synthesis
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
MX2011001164A (en) Method of making mixed metal oxide catalysts for ammoxidation and/or oxidation of lower alkane hydrocarbons.
KR101956520B1 (en) Process for producing catalyst for ammonia oxidation and process for producing acrylonitrile
CN110557941B (en) Catalyst, method for producing catalyst, and method for producing acrylonitrile
US11701648B2 (en) Method for producing catalyst for ammoxidation, and method for producing acrylonitrile
WO2020039985A1 (en) Method for producing ammoxidation catalyst, and method for producing acrylonitrile
JP5020514B2 (en) Method for producing fluidized bed catalyst and method for producing nitriles
JP5042658B2 (en) Method for producing catalyst for producing acrylonitrile, and method for producing acrylonitrile
JP7102286B2 (en) A method for producing an ammoxidation catalyst and a method for producing acrylonitrile.
JP3796132B2 (en) Preparation of composite oxide catalyst for gas phase ammoxidation reaction
CN110869126B (en) Method for producing catalyst and method for producing unsaturated nitrile
TWI738245B (en) Acrylonitrile synthesis catalyst, acrylonitrile synthesis catalyst manufacturing method, acrylonitrile manufacturing method
JP2002097015A (en) Method for producing hydrogen cyanide
JP4565712B2 (en) Nitrile production catalyst and nitrile production method using the same
JP2005029528A (en) Method for producing acrylonitrile
JPH11309374A (en) Production of molybdenum-containing oxide catalyst
JPWO2014129566A1 (en) Method for producing catalyst for producing acrylonitrile and method for producing acrylonitrile
JPS6248663B2 (en)
JP2011240220A (en) Method for producing composite oxide catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP