WO2020039916A1 - Distance measuring device, and mobile body - Google Patents

Distance measuring device, and mobile body Download PDF

Info

Publication number
WO2020039916A1
WO2020039916A1 PCT/JP2019/030986 JP2019030986W WO2020039916A1 WO 2020039916 A1 WO2020039916 A1 WO 2020039916A1 JP 2019030986 W JP2019030986 W JP 2019030986W WO 2020039916 A1 WO2020039916 A1 WO 2020039916A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
distance measuring
light
distance
distance measurement
Prior art date
Application number
PCT/JP2019/030986
Other languages
French (fr)
Japanese (ja)
Inventor
智浩 江川
和穂 江川
佐伯 哲夫
岡本 修治
石丸 裕
裕多 堀
凡乃 小川
健吾 井上
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2020039916A1 publication Critical patent/WO2020039916A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves

Definitions

  • the present disclosure relates to a distance measuring device and a moving object.
  • the moving object is equipped with a distance measuring device that detects surrounding objects and identifies its own position.
  • Japanese Patent Laid-Open Publication No. 2007-2057775 teaches a photoelectric sensor in which light emitted from a light emitting element and reflected by a work is received by a photodiode. .
  • the photoelectric sensor captures a light receiving signal at a timing synchronized with a light emitting timing of the light emitting element.
  • the distance measuring device receives laser light emitted from another moving object, or receives laser light emitted from another moving object. It may receive reflected light. In such a case, the distance measuring device for the moving object may erroneously detect a non-existent object and its position.
  • An object of the present disclosure is to provide a distance measuring device and a moving object that can prevent erroneous detection of a non-existent object and its position.
  • An exemplary distance measurement device of the present disclosure includes a plurality of distance measurement units, a measurement unit, a scan control unit, and a determination unit.
  • the distance measuring unit is a light irradiating unit that irradiates a laser beam to the outside of the distance measuring unit, a light receiving unit that receives reflected light of the laser beam, and scans the laser beam in a rotational direction about a rotation axis. Scanning mechanism.
  • the scanning control unit controls the driving of the scanning mechanism of each of the distance measurement units, and irradiates the laser light emitted from the light irradiation unit of each of the distance measurement units in different directions.
  • the measurement unit calculates a relative position of an object located outside the distance measurement unit with respect to a predetermined reference position based on the irradiation timing of the laser beam, the irradiation direction, and a light reception result of the light receiving unit. .
  • the determination unit compares each of the relative positions calculated for each of the distance measurement units, and determines whether or not the object actually exists at the relative position based on a result of the comparison.
  • An exemplary moving object of the present disclosure is a moving object that travels on a road surface and includes the above-described distance measuring device.
  • the exemplary distance measurement device and the moving object of the present disclosure it is possible to prevent a non-existent object and its position from being erroneously detected.
  • FIG. 1 is a perspective view illustrating a configuration example of the automatic guided vehicle according to the embodiment.
  • FIG. 2 is a top view of the automatic guided vehicle according to the embodiment.
  • FIG. 3A is a cross-sectional view illustrating a configuration example of a distance measuring unit of the distance measuring unit according to the embodiment.
  • FIG. 3B is a block diagram illustrating a configuration example of a distance measurement unit and a measurement control unit of the distance measurement unit according to the embodiment.
  • FIG. 4 is a diagram illustrating the difference in the irradiation direction of the laser light emitted from each of the two distance measurement units.
  • FIG. 5 is a block diagram illustrating a configuration example of a control unit.
  • FIG. 1 is a perspective view illustrating a configuration example of the automatic guided vehicle according to the embodiment.
  • FIG. 2 is a top view of the automatic guided vehicle according to the embodiment.
  • FIG. 3A is a cross-sectional view illustrating a configuration example of a distance measuring unit of the distance measuring
  • FIG. 6 is a perspective view illustrating a case where a plurality of automatic guided vehicles are present.
  • FIG. 7 is a flowchart illustrating a method for adjusting the irradiation direction of laser light in the embodiment.
  • FIG. 8 is a top view illustrating another example of the arrangement of the distance measurement unit of the distance measurement unit.
  • FIG. 9 is a top view of an automatic guided vehicle according to a modification.
  • FIG. 10 is a cross-sectional view illustrating a configuration example of a distance measurement unit of a distance measurement unit according to a modification.
  • FIG. 11 is a flowchart for explaining a method of adjusting the irradiation direction of laser light in the modification.
  • a symbol “D1d” is given below vertically, and a symbol “D1t” is given above it vertically.
  • the end in the vertically lower direction D1d is referred to as “lower end”, and the position of the lower end in the vertical direction D1 is referred to as “lower end”.
  • an end in the vertically upper direction D1t is referred to as an “upper end”, and a position of the upper end in the vertical direction D1 is referred to as an “upper end”.
  • a surface facing vertically downward D1d is referred to as “lower surface”
  • a surface facing vertically upward D1t is referred to as “upper surface”.
  • front D2f In the horizontal direction, the direction perpendicular to the vertically lower portion D1d and in which the unmanned transport vehicle 100 described later advances is referred to as “front D2f”, and the direction opposite to the front D2f is referred to as “rear D2b”.
  • front end the end of the front D2f
  • front end the position of the front end of the front D2f
  • rear D2b the end at the rear D2b
  • the position of the rear end at the rear D2b is referred to as a "rear end”.
  • a surface facing the front D2f is referred to as a “front surface”
  • rear D2b is referred to as a “back surface”.
  • a direction that is perpendicular to both the vertically lower part D1d and the front part D2f is referred to as a “lateral direction D3”.
  • a direction from a driving wheel 105R described later to a driving wheel 105L described later is referred to as “left D3L”
  • a direction from the driving wheel 105L to the driving wheel 105R is referred to as “right D3R”.
  • an end in the left side D3L is called a "left end”
  • a position of the left end in the left-right direction D3 is called a "left end”.
  • an end in the right D3R is called a “right end”, and a position of the right end in the left / right direction D3 is called a “right end”.
  • a surface facing the left D3L is called a "left surface”
  • a surface facing the right D3R is called a "right surface”.
  • a laser beam emitted from each distance measuring unit 2 is generically referred to as a laser beam La.
  • the generic name of the reflected light of the laser light La is referred to as reflected light Lb.
  • the scanning range Rs1 of the laser beam L1a emitted from the first distance measurement unit 21 and the scanning range Rs2 of the laser beam L2a emitted from the second distance measurement unit 22 are collectively referred to as a scanning range Rs.
  • axial direction a direction parallel to the rotation axis J extending in the up-down direction.
  • the axial direction is parallel to the vertical direction D1 in the present embodiment, but is not limited to the example of the present embodiment, and may be a direction that intersects the vertical direction D1.
  • the direction perpendicular to the rotation axis J is referred to as “radial direction”.
  • the direction toward the rotation axis J is referred to as “radially inward”, and the direction away from the rotation axis J is referred to as “radially outward”.
  • a circumferential direction around the rotation axis J is referred to as a “rotation direction”.
  • the lower end is referred to as “axial lower end”, and the position of the lower end is referred to as “axial lower end”.
  • the upper end is referred to as “axial upper end”, and the position of the upper end is referred to as “axial upper end”.
  • a face facing downward is referred to as a "lower face”
  • a face facing upward is referred to as an "upper face”.
  • FIG. 1 is a perspective view showing a configuration example of an automatic guided vehicle 100 according to the embodiment.
  • FIG. 2 is a top view of the automatic guided vehicle 100 according to the embodiment.
  • FIG. 2 is a view of the automatic guided vehicle 100 as viewed from vertically above D1t. Since FIG. 2 illustrates the vicinity of the automatic guided vehicle 100, a part of the scanning ranges Rs1 and Rs2 of each distance measuring unit 2 is illustrated.
  • the automatic guided vehicle 100 is an example of a moving object that travels on a road surface G, and is generally called an AGV (Automatic Guided Vehicle).
  • AGV Automatic Guided Vehicle
  • the automatic guided vehicle 100 autonomously travels on the road surface G by two-wheel drive and transports a load.
  • the moving object exemplified by the automatic guided vehicle 100 is not limited to this example, and may be used for purposes other than the conveyance of luggage.
  • the automatic guided vehicle 100 includes a plurality of distance measurement units 2 including a first distance measurement unit 21 and a second distance measurement unit 22.
  • the number of the distance measurement units 2 is two in the present embodiment, but is not limited to this example, and may be three or more.
  • Each distance measuring unit 2 has a common configuration. The configuration of the distance measuring unit 2 will be described later.
  • the automatic guided vehicle 100 includes a vehicle body 101, a carrier 102, support portions 103L and 103R, drive motors 104L and 104R, drive wheels 105L and 105R, and driven wheels 106F. , 106R, a battery 107, a communication unit 108, and a control unit 109.
  • the vehicle body 101 houses a battery 107, a communication unit 108, a control unit 109, and the like.
  • a plate-shaped carrier 102 is fixed to the upper surface of the vehicle body 101. Luggage can be placed on the upper surface of the loading platform 102.
  • the support portions 103L and 103R are fixed to the left end of the vehicle body 101, and support the drive motors 104L and 104R.
  • As the drive motors 104L and 104R for example, AC servomotors are used.
  • Each of the drive motors 104L and 104R has a built-in speed reducer (not shown).
  • the drive wheels 105L and 105R are attached to shafts (not shown) of the drive motors 104L and 104R, respectively, and contact the road surface G.
  • the drive wheels 105L and 105R are rotatable together with the shafts by the drive of the drive motors 104L and 104R.
  • the driven wheel 106F is rotatably attached to the front end of the vehicle body 101.
  • the driven wheel 106R is rotatably mounted at the rear end of the vehicle body 101.
  • the driven wheels 106F and 106R come into contact with the road surface G and rotate passively according to the rotation of the drive wheels 105L and 105R.
  • the automatic guided vehicle 100 By driving and driving the drive wheels 105L and 105R by the drive motors 104L and 104R, the automatic guided vehicle 100 can be moved forward and backward on the road surface G. In addition, by controlling the rotational speeds of the drive wheels 105L and 105R to provide a difference, the automatic guided vehicle 100 can be rotated clockwise or counterclockwise to change the direction.
  • the battery 107 is a power source of the automatic guided vehicle 100, and supplies power to, for example, the plurality of distance measurement units 2, the communication unit 108, the control unit 109, and the like.
  • a lithium ion battery is used as the battery 107.
  • the communication unit 108 performs communication with a tablet terminal (not shown) outside the automatic guided vehicle 100, for example, in compliance with Bluetooth (registered trademark).
  • a tablet terminal not shown
  • Bluetooth registered trademark
  • the control unit 109 is connected to the drive motors 104L and 104R, the communication unit 108, and the like.
  • the control unit 109 controls the drive of the drive motors 104L and 104R.
  • the control unit 109 is further connected to the distance measurement unit 2 and receives various signals from the distance measurement unit 2 to perform various controls. A more detailed configuration of the control unit 109 will be described later.
  • the distance measurement unit 2 is a so-called LRF (Laser Range Finder), and detects an object OJ located outside the automatic guided vehicle 100.
  • the distance measurement unit 2 includes a distance measurement unit 3A and a measurement control unit 3B that controls the distance measurement unit 3A.
  • FIG. 3A is a cross-sectional view illustrating a configuration example of a distance measuring unit 3A of the distance measuring unit 2 according to the embodiment.
  • FIG. 3B is a block diagram illustrating a configuration example of the distance measurement unit 3A and the measurement control unit 3B of the distance measurement unit 2 according to the embodiment.
  • FIG. 3A shows a cross-sectional structure when the distance measurement unit 3A is virtually cut along a plane including the rotation axis J.
  • the distance measuring unit 3A includes a housing 30, a light irradiation unit 31, a light receiving unit 32, a rotating housing 33, and a motor 34, as shown in FIG. 3A.
  • the housing 30 has a hollow cylindrical shape extending in the axial direction.
  • the housing 30 houses the light irradiation unit 31, the light receiving unit 32, the rotating housing 33, and the motor 34 in an internal space.
  • the housing 30 has a light transmitting portion 301.
  • the light-transmitting portion 301 is provided on the radial side surface of the housing 30 using a material such as a light-transmitting resin or glass in the middle of the housing 30 in the axial direction.
  • the light transmitting portion 301 is provided in an annular shape around the rotation axis J. More specifically, the light transmitting portions 301 are continuously connected over the entire circumference in the rotation direction about the rotation axis J as shown in FIG. 3A. Alternatively, without being limited to the example shown in FIG. 3A, the light transmitting portion 301 may have an arc shape extending along the rotation direction.
  • the distance measurement unit 3A includes the light irradiation unit 31.
  • the light irradiation unit 31 irradiates the laser beam La to the outside of the distance measurement unit 3A.
  • the laser light La is light in the infrared band in the present embodiment, but is not limited to this example, and may be light in a wavelength band other than the infrared band.
  • the light irradiation unit 31 includes an LD (Laser @ Diode) 311, a substrate 312, a collimating lens 313, and a light projecting mirror 314.
  • the LD 311 is an example of a light source that emits laser light La.
  • the substrate 312 mounts an LD driver 311a (see FIG. 3B) that controls light emission of the LD 311.
  • the LD 311 and the substrate 312 are fixed to the lower end surface of the upper end of the housing 30.
  • the collimating lens 313 is arranged below the LD 311.
  • the light projecting mirror 314 is arranged below the collimating lens 313 and is fixed to the upper end surface of the upper end of the rotating housing 33.
  • the LD 311 emits the laser light La downward.
  • the laser light La emitted from the LD 311 is collimated by the collimator lens 313.
  • the laser light La emitted downward from the collimating lens 313 is reflected by the light projecting mirror 314, passes through the light transmitting unit 301, and is emitted to the outside of the housing 30.
  • the distance measuring unit 3A includes the light receiving unit 32.
  • the light receiving unit 32 receives the incident light, and in particular, receives the reflected light Lb of the laser light La reflected by the object OJ located outside the automatic guided vehicle 100, for example.
  • the intensity of the incident light received by the light receiving unit 32 is lower than a predetermined threshold level, the detection result of the incident light is invalidated.
  • the light receiving unit 32 includes a light receiving lens 321, a light receiving mirror 322, a wavelength filter 323, and a light receiving element 324, as shown in FIG. 3A.
  • the light receiving lens 321 is fitted and fixed in an opening 33 a provided on a radial side surface of the rotating housing 33.
  • the light receiving mirror 322 is fixed to the lower end surface of the upper end of the rotating housing 33.
  • the wavelength filter 323 is arranged below the light receiving mirror 322.
  • the light receiving element 324 is arranged below the wavelength filter 323 and is fixed to the upper end surface of the lower end of the rotating housing 33.
  • the laser light La emitted from the distance measurement unit 2 is reflected by an object OJ outside the distance measurement unit 2 to become diffused light.
  • Part of the diffused light passes through the light transmitting portion 301 and enters the light receiving portion 32 as reflected light Lb.
  • the reflected light Lb first enters the light receiving lens 321.
  • the reflected light Lb transmitted through the light receiving lens 321 is reflected downward by the light receiving mirror 322 and transmitted through the wavelength filter 323.
  • the wavelength filter 323 transmits, for example, only light in the same wavelength band as the laser light La.
  • the reflected light Lb is received by the light receiving element 324.
  • the light receiving element 324 photoelectrically converts the received reflected light Lb into an electric signal and outputs the electric signal.
  • the light receiving section 32 receives the reflected light Lb incident from a direction parallel to the irradiation direction of the laser light La scanned in the rotation direction by the motor 34 when viewed from the direction in which the rotation axis J extends (see FIG. 2). .
  • the incident direction of the reflected light Lb received by the light receiving unit 32 changes according to the change in the irradiation direction of the laser light La scanned by the motor. Therefore, it is possible to suppress or prevent the light other than the reflected light Lb of the laser light La emitted from the light emitting unit 31 from being received.
  • the light receiving section 32 further includes a comparator 325 as shown in FIG. 3B.
  • the comparator 325 is mounted on, for example, a substrate (not shown) in the housing 30 and compares the level of an electric signal output from the light receiving element 324 with a predetermined threshold level.
  • the electric signal indicates a result of light reception by the light receiving element 324.
  • the comparator 325 outputs a high-level or low-level measurement pulse Pm according to the above-described comparison result. For example, when the level of the electric signal is lower than the predetermined threshold level, the comparator 325 invalidates the detection result of the incident light on the light receiving element 324 and outputs a low-level measurement pulse Pm.
  • the comparator 325 validates the detection result of the incident light by the light receiving element 324 and outputs a high-level measurement pulse Pm.
  • the rotating housing 33 has a hollow cylindrical shape extending in the vertical direction, and accommodates a light receiving mirror 322, a wavelength filter 323, and a light receiving element 324 in an internal space.
  • the rotating housing 33 is fixed to a shaft 34 a of a motor 34 and can be driven to rotate by the motor 34. Due to the rotation of the rotating housing 33, the light projecting mirror 314 is also driven to rotate about the rotation axis J. Therefore, the irradiation direction of the laser beam La reflected by the light projecting mirror 314 rotates around the rotation axis J. In other words, the laser beam La is irradiated to the outside of the housing 30 while changing the irradiation direction within a range of 360 ° around the rotation axis J. Therefore, the laser beam La emitted from the light emitting unit 31 is scanned in the rotation direction about the rotation axis J in accordance with the rotation of the motor 34.
  • the scanning range Rs1 in the rotation direction of the laser beam L1a is a measurement range in which the first distance measurement unit 21 can measure the distance to the external object OJ (see FIG. 2).
  • the scanning range Rs1 is formed by the rotation of the laser beam L1a around the rotation axis J. Note that the scanning range Rs1 changes according to the output level of the laser light L1a.
  • the scanning range Rs2 in the rotation direction of the laser light L2a is a measurement range in which the second distance measurement unit 22 can measure a distance to an external object.
  • the scanning range Rs2 is formed by the rotation of the laser beam L2a around the rotation axis J. Note that the scanning range Rs2 changes according to the output level of the laser light L2a. For example, as shown in FIG.
  • the motor 34 has a shaft 34a and a position detector 34b.
  • the motor 34 rotates the rotating housing 33 at a predetermined rotation speed by rotating the shaft 34a.
  • the rotation of the motor 34 causes the laser beam La to scan in the rotation direction. That is, the motor 34 is a scanning mechanism that scans the laser beam La in the rotation direction about the rotation axis J.
  • the distance measuring unit 3A has the scanning mechanism.
  • the motors 34 of the respective distance measurement units 2 rotate the rotary housing 33 in the same rotation direction and at the same rotation speed. Therefore, the scanning direction and the scanning speed of the laser beam La emitted from each distance measuring unit 2 are the same.
  • the scanning direction and scanning speed of the laser light L1a emitted from the first distance measurement unit 21 and the laser light L2a emitted from the second distance measurement unit 22 are the same in the present embodiment.
  • the laser beam La emitted from each of the distance measurement units 2 is scanned in a state where the respective irradiation directions maintain a predetermined angular width ⁇ in the rotation direction.
  • the first irradiation direction of the laser light L1a irradiated from the first distance measurement unit 21 and the second irradiation direction of the laser light L2a irradiated from the second distance measurement unit 22 are predetermined.
  • Each of the laser beams L1a and L2a is scanned while maintaining the angular width ⁇ . Therefore, each distance measurement unit 2 can always irradiate the laser beam La in a different direction so that the irradiation directions are not parallel.
  • the present invention is not limited to this example, and the motors 34 of some of the distance measurement units 2 may rotate the rotating housing 33 in a rotation direction opposite to that of the motors of the remaining some of the distance measurement units 2. . That is, the scanning direction of the laser beam La emitted from some of the distance measurement units 2 may be opposite to the scanning direction of the laser beam La emitted from the remaining one of the distance measurement units 2. For example, the scanning direction of the laser light L1a emitted from the first distance measuring unit 21 may be opposite to the scanning direction of the laser light L2a emitted from the second distance measuring unit 22.
  • the angle width ⁇ formed by the first irradiation direction and the second irradiation direction may be 0 ° ⁇ ⁇ 180 °, preferably 0 ° ⁇ ⁇ 180 °.
  • the angle width ⁇ is more preferably 90 °. That is, when viewed from the axial direction, the first irradiation direction of the laser light L1a irradiated from the first distance measurement unit 21 is more preferably the second irradiation direction of the laser light L2a irradiated from the second distance measurement unit 22. And orthogonal.
  • the laser beam La emitted from one of the first distance measuring unit 21 and the second distance measuring unit 22 is not affected by the spread of the irradiation angle of the laser beams L1a and L2a. Direct reception of light by the light receiving section 32 of the other distance measuring unit 2 can be reliably prevented.
  • the position detection unit 34b detects the rotation angle position of the rotor of the motor 34.
  • the motor 34 has the position detection unit 34b.
  • the position detection unit 34b detects the rotation angle position of the laser beam La scanned in the rotation direction by the motor 34 by detecting the rotation angle position of the rotor of the motor 34.
  • a Hall element, an encoder, or the like can be used as the position detector 34b.
  • the measurement control unit 3B of the distance measurement unit 2 will be described with reference to FIG. 3B.
  • the measurement control unit 3B includes a measurement unit 35, an arithmetic processing unit 36, a motor driver 37, and a communication I / F 38.
  • the measuring unit 35 and the arithmetic processing unit 36 are functional components of one or a plurality of microcomputers (not shown) provided in the measurement control unit 3B.
  • the present invention is not limited to this example, and at least one of the measuring unit 35 and the arithmetic processing unit 36 may be a physical component realized by an electric circuit, an element, an electric device, or the like.
  • the arithmetic processing unit 36 outputs a laser emission pulse Pe to the light irradiation unit 31.
  • the light irradiation unit 31 causes the LD 311 to emit pulsed laser light La using the laser emission pulse Pe as a trigger.
  • the arithmetic processing unit 36 outputs the reference pulse Ps to the measuring unit 35.
  • the measuring unit 35 calculates the relative position of the object OJ located outside the distance measuring unit 3A with respect to the predetermined reference position based on the irradiation timing and irradiation direction of the laser beam La and the light receiving result of the light receiving unit 32. . More specifically, the measurement pulse Pm output from the comparator 325 and the reference pulse Ps output from the arithmetic processing unit 36 are input to the measurement unit 35. The measurement unit 35 acquires the distance to the object OJ by measuring the elapsed time from the rising timing of the reference pulse Ps to the rising timing of the measurement pulse Pm. That is, the measuring unit 35 measures the distance by a so-called TOF (Time @ of @ Flight) method. The measurement unit 35 outputs the measurement result to the arithmetic processing unit 36 as measurement data Dm.
  • TOF Time @ of @ Flight
  • the measuring unit 35 sets the relative position according to the light receiving result of the light receiving unit 32. calculate. In other words, when the light receiving intensity of the light incident on the light receiving unit 32 exceeds the upper limit in the light receiving unit 32 of each distance measuring unit 2, the measuring unit 35 determines the relative position according to the light receiving result of the light receiving unit 32. Do not calculate.
  • the upper limit is, for example, set to a value equal to or less than the light receiving intensity when the laser beam La is directly processed and received, and larger than the light receiving intensity of the reflected light Lb.
  • the distance measuring unit 2 when the distance measuring unit 2 directly receives the laser beam La emitted from, for example, another distance measuring unit or the distance measuring unit mounted on another automatic guided vehicle 100a, the distance measuring unit 2 measures the received light.
  • the unit 35 does not calculate the relative position according to the light receiving result of the light receiving unit 32 (see FIG. 6 described later). Therefore, erroneous detection of a non-existent object and its relative position can be prevented.
  • the motor driver 37 controls driving of the motor 34 of the distance measuring unit 3A.
  • the motor 34 is driven to rotate at a predetermined rotation speed by a motor driver 37.
  • the arithmetic processing unit 36 outputs a laser emission pulse Pe every time the motor 34 rotates by a predetermined unit angle.
  • the light irradiation unit 31 emits the laser beam La.
  • the arithmetic processing unit 36 uses the distance measurement unit 2 as a reference based on the rotation angle position of the motor 34 at the timing when the laser emission pulse Pe is output and the measurement data Dm obtained corresponding to the laser emission pulse Pe. Generate position information on a rectangular coordinate system. That is, the relative position of the object OJ is obtained based on the rotation angle position of the light projecting mirror 314 and the measured distance. The position information acquired in this way is output from the arithmetic processing unit 36 as measured distance data Dd. Thus, the position information of the object OJ is obtained by the scanning of the laser beam La within the rotation scanning angle range.
  • the communication I / F 38 transmits the measured distance data Dd output from the arithmetic processing unit 36 to the automatic guided vehicle 100 (see FIG. 5 described later).
  • FIG. 5 is a block diagram illustrating a configuration example of the control unit 109.
  • the control unit 109 includes the control unit 4 and the storage unit 5, as shown in FIG.
  • the control unit 4 communicates with an information device (not shown) such as a tablet terminal via the communication unit 108.
  • control unit 4 receives, via communication unit 108, an operation signal indicating the content of the operation input on the information device.
  • an operation signal indicating the content of the operation input on the information device.
  • one or more CPUs are used for the control unit 4.
  • the present invention is not limited to this example, and at least a part of the control unit 4 may be an electric circuit, an element, an electronic device, or the like other than the CPU.
  • the control unit 4 includes a drive control unit 41, a scan control unit 42, a determination unit 43, a map creation unit 44, and a position identification unit 45.
  • the drive control unit 41, the scan control unit 42, the determination unit 43, the map creation unit 44, and the position identification unit 45 are functional components of the above-described CPU in the present embodiment.
  • the present invention is not limited to this example, and at least one of the drive control unit 41, the scan control unit 42, the determination unit 43, the map creation unit 44, and the position identification unit 45 is an electric circuit, an element, an electric device, or the like. It may be a realized physical component.
  • the drive control unit 41 controls the rotational drive of the drive motors 104L and 104R, and controls the rotational speed and the rotational direction of the drive wheels 105L and 105R, for example.
  • the scanning control unit 42 controls the driving of the motor 34 of each distance measuring unit 3A, and adjusts the irradiation direction of the laser beam La emitted from each distance measuring unit 3A. More specifically, the scanning control unit 42 irradiates the laser beams La emitted from the light irradiation units 31 of the respective distance measurement units 2 in different directions. For example, the scanning control unit 42 of the first distance measurement unit 21 irradiates the laser light L1a emitted from the first distance measurement unit 21 in a direction different from the laser light L2a emitted from the second distance measurement unit 22. .
  • each of the distance measurement units 2 irradiates the laser beam La in a different direction
  • the incident direction of the incident light that can be received by the light receiving unit 32 of each of the distance measurement units 2 is also different. Therefore, for example, the reflected light Lb of the laser beam La emitted from the light irradiation unit 31 of one of the first distance measuring unit 21 and the second distance measuring unit 22 is changed to the other distance measuring unit 2 (See FIG. 2).
  • the distance measurement unit 2 can prevent the reflected light L3b of the laser light L3a emitted from the distance measurement unit mounted on another automatic guided vehicle 100a from being received by the light receiving unit 32 (see FIG. 6). ). Therefore, erroneous detection of a non-existent object and its relative position due to the reception of the reflected light Lb as described above can be prevented.
  • the method of adjusting the irradiation direction of the laser beam La will be described later.
  • the determination unit 43 performs various types of determination.
  • the determination unit 43 compares the relative positions calculated for each distance measurement unit 3A of the distance measurement unit 2.
  • the relative position refers to the relative position of the object OJ located outside the distance measuring unit 3A with respect to the predetermined reference position, as described above.
  • the determining unit 43 determines whether or not an object is actually present at the relative position based on the result of the comparison. That is, unless a plurality of the same relative positions are calculated between the respective distance measurement units 2, the determination unit 43 determines that the object does not exist at the relative positions. For example, when the relative position calculated based on the measurement data Dm in the first distance measurement unit 21 is not calculated in the second distance measurement unit 22, the determination unit 43 determines that the object does not exist at the relative position.
  • the respective relative positions calculated based on the measured distance data Dd of the respective distance measuring units 2 are compared. Then, based on the result of the comparison, it is determined whether or not the object OJ exists at each relative position. For example, when there are a plurality of automatic guided vehicles 100 as shown in FIG. 6, a laser beam L4a emitted from another automatic guided vehicle 100a and a laser beam L3a emitted from another automatic guided vehicle 100a are external objects. Even if the reflected light L3b reflected by the OJ is received by one of the first distance measuring unit 21 and the second distance measuring unit 22, it is not received by the other distance measuring unit 2.
  • the determination unit 43 determines that the object does not exist at the relative position. Therefore, erroneous detection of a non-existent object and its position can be prevented.
  • the determination unit 43 may determine that the object OJ actually exists at the relative positions. In this way, for example, if the relative positions corresponding to the results of receiving the reflected lights Lb at at least two distance measurement units 2 are the same, it is determined that the object OJ exists at the relative positions. Therefore, whether or not the object OJ actually exists at the relative position can be determined according to whether or not the same relative position is calculated between the respective distance measurement units 2.
  • the determination unit 43 compares the received light intensity of the reflected light Lb corresponding to the same relative position for each distance measurement unit 2. Then, the determination unit 43 may determine that the object OJ actually exists at the relative position if the difference in the received light intensity between the respective distance measurement units 2 is equal to or smaller than a predetermined value. On the other hand, if the difference between the received light intensities is larger than a predetermined value, the determination unit 43 may determine that the object does not exist at the relative position. In this way, for example, even if the relative position corresponding to the result of receiving the reflected light Lb at each distance measuring unit 2 is calculated, the measurement is performed based on the difference in the received light intensity between each distance measuring unit 2. Whether or not the object OJ actually exists at the relative position calculated by the unit 35 can be further determined. Therefore, it is possible to more reliably prevent a non-existent object and its position from being erroneously detected.
  • the map creation unit 44 creates map information based on the measured distance data Dd output from the distance measurement unit 2 and stores the map information in the storage unit 5.
  • the map information is position information of the object OJ arranged at a place where the automatic guided vehicle 100 travels, and indicates a relative position of each object OJ located outside the distance measurement unit 2 with respect to a predetermined reference position. Show. For example, when the automatic guided vehicle 100 travels in a warehouse, it is a wall of the warehouse, shelves arranged in the warehouse, luggage loaded on a road surface G in the warehouse, and the like.
  • the map creating unit 44 excludes the relative position of the object determined not to exist by the determining unit 43 without including the relative position in the map information.
  • the position identification unit 45 compares the measured distance data Dd output from the distance measurement unit 2 with the map information stored in the storage unit 5, and specifies the position of the automatic guided vehicle 100 itself based on the comparison result. Self-position identification. By performing the self-position identification, the control unit 4 can control the autonomous traveling of the automatic guided vehicle 100 along a predetermined route.
  • the storage unit 5 is a non-transitory storage medium that can retain storage even when power supply is stopped.
  • the storage unit 5 stores programs and information used by the control unit 109 or the control unit 4.
  • FIG. 7 is a flowchart for explaining a method of adjusting the irradiation direction of the laser beam La in the embodiment.
  • step S101 When the operation of each distance measurement unit 2 is started (step S101), the rotation angle position of the rotor of the motor 34 is detected by the position detection unit 34b in each distance measurement unit 2 (step S102). That is, the irradiation direction of the laser beam La emitted from each distance measurement unit 2 is detected.
  • the scanning control unit 42 calculates the angular width ⁇ between the irradiation directions of the respective laser beams La by calculating the difference between the rotation angle positions of the rotors in the respective distance measurement units 2. If the angle width ⁇ is not the predetermined constant value ⁇ c (NO in step S103), the scanning control unit 42 controls the motor 34 in at least one distance measuring unit 2 so that the angle width ⁇ becomes the constant value ⁇ c. Is adjusted (step S104). Thereafter, the scanning control unit 42 returns the processing to Step S102. Alternatively, without being limited to this example, the scanning control unit 42 may end the processing in FIG.
  • the scanning control unit 42 ends the processing in FIG.
  • the predetermined constant value ⁇ c is, for example, 90 °, but is not limited to this example, and may be a predetermined value within a predetermined range. That is, the scanning control unit 42 may adjust the angle width ⁇ to a predetermined value within a predetermined range.
  • the predetermined range is, for example, 0 ° ⁇ ⁇ 180 °, preferably 0 ° ⁇ ⁇ 180 °.
  • the scanning control unit 42 adjusts the scanning speed of the at least one distance measuring unit 3A in the irradiation direction of the laser beam La based on the detection result of the position detecting unit 34b. With this adjustment, the scanning control unit 42 sets the difference between the rotation angle positions of the irradiation directions of the laser light La in the respective distance measurement units 3A to a predetermined constant value. This makes it possible to maintain a constant angular width ⁇ (see FIG. 4) between the irradiation directions of the laser beam La in each of the distance measurement units 3A.
  • the automatic guided vehicle 100 includes the distance measuring device 1.
  • the distance measuring device 1 detects an object OJ located outside the automatic guided vehicle 100, and detects a distance to the object OJ and an azimuth where the object OJ is located with respect to the position of the automatic guided vehicle 100. Thereby, the automatic guided vehicle 100 can create map information around itself and identify its own position.
  • the distance measurement device 1 includes a plurality of distance measurement units 2 including a first distance measurement unit 21 and a second distance measurement unit 22, and a part of the control unit 109 (see FIG. 5). More specifically, in the present embodiment, the distance measurement device 1 includes a plurality of distance measurement units 3A, a measurement unit 35, a scan control unit 42, a determination unit 43, a map creation unit 44, a position identification unit 45.
  • the plurality of distance measurement units 3A included in the distance measurement device 1 include a distance measurement unit of the first distance measurement unit 21 and a distance measurement unit of the second distance measurement unit 22.
  • the distance measuring unit of the first distance measuring unit 21 is disposed on the right D3R side at the front end of the automatic guided vehicle 100.
  • the distance measuring unit of the second distance measuring unit 22 is disposed on the left D3L side at the front end of the automatic guided vehicle 100.
  • the “right D3R side” and the “left D3L side” are respectively examples of one side and the other side in a horizontal direction intersecting with the direction D1f in which the automatic guided vehicle 100 moves forward.
  • the distance measuring unit of the first distance measuring unit 21 and the distance measuring unit of the second distance measuring unit 22 can be arranged apart in the left-right direction D3. Therefore, the object OJ located outside the distance measuring device 1 and its relative position can be detected in a wider range.
  • the laser beam La emitted from the distance measuring device mounted on the other automatic guided vehicle 100a and / or the reflected light Lb derived from the distance measuring device mounted on the other automatic guided vehicle 100a is the first distance. It is difficult for both the distance measurement unit of the measurement unit 21 and the distance measurement unit of the second distance measurement unit 22 to receive light. It becomes easier to prevent erroneous detection of a non-existent object and its position.
  • FIG. 8 is a top view illustrating another arrangement example of the distance measuring unit 3A of the distance measuring unit 2.
  • the distance measuring unit of the second distance measuring unit 22 may be disposed on the left D3L side at the rear end of the automatic guided vehicle 100.
  • the “right D3R side” and the “left D3L side” are respectively examples of one side and the other side in a horizontal direction intersecting with the direction D1f in which the automatic guided vehicle 100 moves forward.
  • the distance measurement unit of the first distance measurement unit 21 and the distance measurement unit of the second distance measurement unit 22 can be arranged apart from each other in the diagonal direction of the automatic guided vehicle 100 across the front D1f. Therefore, the distance between the distance measuring unit of the first distance measuring unit 21 and the distance measuring unit of the second distance measuring unit 22 is further increased. Therefore, the object OJ located outside the distance measuring device 1 and its relative position can be detected in a wider range.
  • the laser beam La emitted from the distance measuring device mounted on the other automatic guided vehicle 100a and / or the reflected light Lb derived from the distance measuring device mounted on the other automatic guided vehicle 100a is the first distance. It is difficult for both the distance measurement unit of the measurement unit 21 and the distance measurement unit of the second distance measurement unit 22 to receive light. Therefore, it becomes easier to prevent erroneous detection of a non-existent object and its position.
  • the distance measuring unit of the first distance measuring unit 21 is not limited to the example illustrated in FIG. 8 and may be disposed on the right D3R side at the rear end of the automatic guided vehicle 100. Further, the distance measuring unit of the second distance measuring unit 22 may be disposed on the right D3R side at the front end of the automatic guided vehicle 100.
  • the automatic guided vehicle 100 includes the distance measuring device 1.
  • the distance measuring device 1 that can prevent the object OJ located outside the distance measuring device 1 and its position from being erroneously detected can be mounted on the automatic guided vehicle 100.
  • FIG. 9 is a top view of the automatic guided vehicle 100 according to the modification.
  • FIG. 10 is a cross-sectional view illustrating a configuration example of a distance measuring unit 3A of a distance measuring unit 2 according to a modification. Since FIG. 9 illustrates the vicinity of the automatic guided vehicle 100, a part of the scanning ranges Rs1 and Rs2 of each distance measuring unit 2 is illustrated.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof may be omitted.
  • the housing 30 of the distance measurement unit 3A shields light between the light irradiation unit 31 and the light reception unit 32 and the distance measurement unit of another distance measurement unit. Therefore, the light transmitting portion 301 has an arc shape extending along the rotation direction. As shown in FIG. 9, by the light shielding of the housing 30, as shown in FIG. And the laser beam La can be more reliably prevented from entering.
  • the distance measurement unit 3A further includes a light reflecting member 39.
  • the light reflecting member 39 is provided on the inner side surface of the housing 30 radially outward of the rotating housing 33.
  • the light reflecting member 39 is fixed at a predetermined rotation angle position, and reflects the pulsed laser light La emitted from the light emitting unit 31 toward the light receiving unit 32.
  • the light receiving unit 32 detects the reflected light Lp incident from the light reflecting member 39. Note that the reflected light Lp is a pulse light in which the pulsed laser light La is reflected by the light reflecting member 39.
  • FIG. 11 is a flowchart for explaining a method of adjusting the irradiation direction of laser light in the modification.
  • Step S201 When the measuring operation of each distance measuring unit 2 is started (Step S201), the measuring unit 35 of each distance measuring unit 3A measures the light receiving timing of the reflected light Lp (Step S202).
  • the scanning control unit 42 calculates the difference ⁇ T between the light receiving timings of the reflected light Lp in each distance measuring unit 3A. If the difference ⁇ T between the light receiving timings is not the predetermined constant value ⁇ Tc (NO in step S203), the scanning control unit 42 controls the at least one distance measuring unit 2 so that the difference ⁇ T between the light receiving timings becomes the constant value ⁇ Tc. The rotation speed of the motor 34 is adjusted (step S204). Thereafter, the scanning control unit 42 returns the processing to Step S202. Alternatively, without being limited to this example, the scanning control unit 42 may end the processing in FIG.
  • the scanning control unit 42 ends the processing in FIG.
  • the scanning control unit 42 adjusts the scanning speed of the laser beam La by the motor 34 in the distance measuring unit 3A of at least one distance measuring unit 2 so that the pulse shape in each distance measuring unit 3A is adjusted.
  • the light receiving timing of the reflected light Lp is set to a predetermined constant value ⁇ Tc.
  • the difference between the light receiving timings of the pulse-like reflected light Lp reflected by the light reflecting member 39 in each of the distance measuring units 3A is set to a predetermined constant value, so that the laser in each of the distance measuring units 3A is changed.
  • the scanning speed of the light and the angular width ⁇ in the irradiation direction of the laser light between the respective distance measuring units 3A can be kept constant.
  • the scanning control unit 42 is not limited to the example illustrated in FIG. 11, and may perform adjustment in steps S ⁇ b> 203 and S ⁇ b> 204 so that the difference ⁇ T between the light receiving timings is within a predetermined constant value ⁇ Tc.
  • the measurement control unit 3B that controls the distance measurement unit 3A is provided for each distance measurement unit 2.
  • the present invention is not limited to this example, and the measurement control unit 3B may be provided separately from each of the distance measurement units 2 and control a plurality of distance measurement units 3A. Further, at least a part of the measurement control unit 3B may be provided in the control unit 4.
  • the measurement unit 35 may be provided in the control unit 4.
  • the present disclosure is useful for an apparatus having a plurality of distance measurement units.

Abstract

This distance measuring device comprises: a plurality of distance measuring units; a measuring unit; a scanning control unit; and a determination unit. The distance measuring units have a light radiating part for radiating a laser beam to outside, a light receiving part for receiving reflected light of the laser beam, and a scanning mechanism for scanning the laser beam in a rotational direction. The scanning control unit controls the driving of the scanning mechanism of each of the distance measuring units, and causes the laser beams of the respective distance measuring units to each be radiated in different directions. The measuring unit calculates a relative position of an external object on the basis of the radiation timings and the radiation directions of the laser beams, and the light receiving results of the light receiving parts. The determination unit determines whether the object is actually present at the relative position on the basis of results from comparing the relative positions calculated by the respective distance measuring units.

Description

距離測定装置、移動体Distance measuring device, moving body
本開示は、距離測定装置、移動体に関する。 The present disclosure relates to a distance measuring device and a moving object.
近年、物品の運搬作業を行う無人搬送車などの移動体が工場、倉庫などに導入されてきている。移動体には、周囲の物体を検知し、自己の位置を同定する距離測定装置が搭載される。  2. Description of the Related Art In recent years, mobile objects such as unmanned transport vehicles that transport goods have been introduced into factories and warehouses. The moving object is equipped with a distance measuring device that detects surrounding objects and identifies its own position.
なお、本開示に関連する先行技術として、日本国公開公報特開2007-2057775号公報は、投光素子から出射され且つワークで反射された反射光がフォトダイオードで受光される光電センサを教示する。該光電センサでは、投光素子の投光タイミングに同期したタイミングで受光信号を取り込む。これにより、光電センサを複数並べて使用する際、隣接する光電センサから出射され且つ干渉光として入光する光の影響を排除する。 As a prior art related to the present disclosure, Japanese Patent Laid-Open Publication No. 2007-2057775 teaches a photoelectric sensor in which light emitted from a light emitting element and reflected by a work is received by a photodiode. . The photoelectric sensor captures a light receiving signal at a timing synchronized with a light emitting timing of the light emitting element. Thus, when a plurality of photoelectric sensors are used side by side, the effect of light emitted from adjacent photoelectric sensors and entering as interference light is eliminated.
日本国公開公報:特開2007-2057775号公報Japanese Unexamined Patent Publication: JP-A-2007-2057775
ここで、上述のような移動体が同一の場所に複数存在する場合、距離測定装置が、他の移動体から照射されるレーザ光を受光したり、他の移動体から照射されるレーザ光の反射光を受光したりすることがある。このような場合、移動体の距離測定装置は、実在しない物体及びその位置を誤って検知する虞がある。  Here, when a plurality of moving objects as described above are present in the same place, the distance measuring device receives laser light emitted from another moving object, or receives laser light emitted from another moving object. It may receive reflected light. In such a case, the distance measuring device for the moving object may erroneously detect a non-existent object and its position.
本開示は、実在しない物体及びその位置を誤って検知することを防止できる距離測定装置、移動体を提供することを目的とする。 An object of the present disclosure is to provide a distance measuring device and a moving object that can prevent erroneous detection of a non-existent object and its position.
本開示の例示的な距離測定装置は、複数の距離測定部と、計測部と、走査制御部と、判定部と、を備える。前記距離測定部は、レーザ光を該距離測定部の外部に照射する光照射部と、前記レーザ光の反射光を受光する受光部と、回転軸を中心にして前記レーザ光を回転方向に走査する走査機構と、を有する。前記走査制御部は、各々の前記距離測定部の前記走査機構の駆動を制御し、各々の前記距離測定部の前記光照射部から照射される前記レーザ光をそれぞれ異なる方向に照射させる。前記計測部は、前記レーザ光の照射タイミング及び前記照射方向と前記受光部の受光結果とに基づいて、所定の基準位置に対して前記距離測定部の外部に位置する物体の相対位置を算出する。前記判定部は、前記距離測定部毎に算出される各々の前記相対位置の比較を行い、該比較の結果に基づいて前記相対位置に前記物体が実在するか否かを判定する。  An exemplary distance measurement device of the present disclosure includes a plurality of distance measurement units, a measurement unit, a scan control unit, and a determination unit. The distance measuring unit is a light irradiating unit that irradiates a laser beam to the outside of the distance measuring unit, a light receiving unit that receives reflected light of the laser beam, and scans the laser beam in a rotational direction about a rotation axis. Scanning mechanism. The scanning control unit controls the driving of the scanning mechanism of each of the distance measurement units, and irradiates the laser light emitted from the light irradiation unit of each of the distance measurement units in different directions. The measurement unit calculates a relative position of an object located outside the distance measurement unit with respect to a predetermined reference position based on the irradiation timing of the laser beam, the irradiation direction, and a light reception result of the light receiving unit. . The determination unit compares each of the relative positions calculated for each of the distance measurement units, and determines whether or not the object actually exists at the relative position based on a result of the comparison.
本開示の例示的な移動体は、路面を走行する移動体であって、上記の距離測定装置を備える。 An exemplary moving object of the present disclosure is a moving object that travels on a road surface and includes the above-described distance measuring device.
本開示の例示的な距離測定装置、移動体によれば、実在しない物体及びその位置を誤って検知することを防止できる。 According to the exemplary distance measurement device and the moving object of the present disclosure, it is possible to prevent a non-existent object and its position from being erroneously detected.
図1は、実施形態に係る無人搬送車の構成例を示す斜視図である。FIG. 1 is a perspective view illustrating a configuration example of the automatic guided vehicle according to the embodiment. 図2は、実施形態に係る無人搬送車の上面図である。FIG. 2 is a top view of the automatic guided vehicle according to the embodiment. 図3Aは、実施形態に係る距離測定ユニットの距離測定部の構成例を示す断面図である。FIG. 3A is a cross-sectional view illustrating a configuration example of a distance measuring unit of the distance measuring unit according to the embodiment. 図3Bは、実施形態に係る距離測定ユニットの距離測定部及び測定制御部の構成例を示すブロック図である。FIG. 3B is a block diagram illustrating a configuration example of a distance measurement unit and a measurement control unit of the distance measurement unit according to the embodiment. 図4は、2つの距離測定ユニットからそれぞれ照射されるレーザ光の照射方向の違いを示す図である。FIG. 4 is a diagram illustrating the difference in the irradiation direction of the laser light emitted from each of the two distance measurement units. 図5は、制御ユニットの構成例を示すブロック図である。FIG. 5 is a block diagram illustrating a configuration example of a control unit. 図6は、複数の無人搬送車が存在する場合を例示する斜視図である。FIG. 6 is a perspective view illustrating a case where a plurality of automatic guided vehicles are present. 図7は、実施形態においてレーザ光の照射方向を調整する方法を説明するためのフローチャートである。FIG. 7 is a flowchart illustrating a method for adjusting the irradiation direction of laser light in the embodiment. 図8は、距離測定ユニットの距離測定部の他の配置例を示す上面図である。FIG. 8 is a top view illustrating another example of the arrangement of the distance measurement unit of the distance measurement unit. 図9は、変形例に係る無人搬送車の上面図である。FIG. 9 is a top view of an automatic guided vehicle according to a modification. 図10は、変形例に係る距離測定ユニットの距離測定部の構成例を示す断面図である。FIG. 10 is a cross-sectional view illustrating a configuration example of a distance measurement unit of a distance measurement unit according to a modification. 図11は、変形例においてレーザ光の照射方向を調整する方法を説明するためのフローチャートである。FIG. 11 is a flowchart for explaining a method of adjusting the irradiation direction of laser light in the modification.
以下に図面を参照して本開示の例示的な実施形態を説明する。  Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings.
本明細書では、鉛直方向D1のうち、鉛直下方には符号「D1d」を付し、鉛直上方には符号「D1t」を付す。各々の構成要素において、鉛直下方D1dにおける端部を「下端部」と呼び、鉛直方向D1における下端部の位置を「下端」と呼ぶ。さらに、鉛直上方D1tにおける端部を「上端部」と呼び、鉛直方向D1における上端部の位置を「上端」と呼ぶ。また、各々の構成要素の端面において、鉛直下方D1dを向く面を「下面」と呼び、鉛直上方D1tを向く面を「上面」と呼ぶ。  In the present specification, in the vertical direction D1, a symbol “D1d” is given below vertically, and a symbol “D1t” is given above it vertically. In each component, the end in the vertically lower direction D1d is referred to as “lower end”, and the position of the lower end in the vertical direction D1 is referred to as “lower end”. Further, an end in the vertically upper direction D1t is referred to as an “upper end”, and a position of the upper end in the vertical direction D1 is referred to as an “upper end”. Further, in the end faces of the respective components, a surface facing vertically downward D1d is referred to as “lower surface”, and a surface facing vertically upward D1t is referred to as “upper surface”.
水平方向のうち、鉛直下方D1dと垂直であり且つ後述する無人搬送車100が前進する方向を「前方D2f」と呼び、前方D2fとは逆の方向を「後方D2b」と呼ぶ。各々の構成要素において、前方D2fにおける端部を「前端部」と呼び、前方D2fにおける前端部の位置を「前端」と呼ぶ。さらに、後方D2bにおける端部を「後端部」と呼び、後方D2bにおける後端部の位置を「後端」と呼ぶ。また、各々の構成要素の側面において、前方D2fを向く面を「前面」と呼び、後方D2bを向く面を「背面」と呼ぶ。  In the horizontal direction, the direction perpendicular to the vertically lower portion D1d and in which the unmanned transport vehicle 100 described later advances is referred to as “front D2f”, and the direction opposite to the front D2f is referred to as “rear D2b”. In each component, the end of the front D2f is referred to as “front end”, and the position of the front end of the front D2f is referred to as “front end”. Further, the end at the rear D2b is referred to as a "rear end", and the position of the rear end at the rear D2b is referred to as a "rear end". In addition, a surface facing the front D2f is referred to as a “front surface”, and a surface facing the rear D2b is referred to as a “back surface”.
水平方向のうち、鉛直下方D1d及び前方D2fの両方と垂直である方向を「左右方向D3」と呼ぶ。左右方向D3のうち、後述する駆動輪105Rから後述する駆動輪105Lに向く方向を「左方D3L」と呼び、駆動輪105Lから駆動輪105Rに向く方向を「右方D3R」と呼ぶ。各々の構成要素において、左方D3Lにおける端部を「左端部」と呼び、左右方向D3における左端部の位置を「左端」と呼ぶ。さらに、右方D3Rにおける端部を「右端部」と呼び、左右方向D3における右端部の位置を「右端」と呼ぶ。また、各々の構成要素の側面において、左方D3Lを向く面を「左側面」と呼び、右方D3Rを向く面を「右側面」と呼ぶ。  In the horizontal direction, a direction that is perpendicular to both the vertically lower part D1d and the front part D2f is referred to as a “lateral direction D3”. In the left-right direction D3, a direction from a driving wheel 105R described later to a driving wheel 105L described later is referred to as “left D3L”, and a direction from the driving wheel 105L to the driving wheel 105R is referred to as “right D3R”. In each component, an end in the left side D3L is called a "left end", and a position of the left end in the left-right direction D3 is called a "left end". Further, an end in the right D3R is called a “right end”, and a position of the right end in the left / right direction D3 is called a “right end”. Further, in the side surfaces of the respective components, a surface facing the left D3L is called a "left surface", and a surface facing the right D3R is called a "right surface".
また、以下では、後述する第1距離測定ユニット21及び第2距離測定ユニット22を含む複数の距離測定ユニットの総称を距離測定ユニット2とする。また、各々の距離測定ユニット2から照射されるレーザ光の総称をレーザ光Laとする。該レーザ光Laの反射光の総称を反射光Lbとする。また、第1距離測定ユニット21から照射されるレーザ光L1aの走査範囲Rs1、及び、第2距離測定ユニット22から照射されるレーザ光L2aの走査範囲Rs2の総称を走査範囲Rsとする。  In the following, a plurality of distance measurement units including a first distance measurement unit 21 and a second distance measurement unit 22, which will be described later, are collectively referred to as a distance measurement unit 2. In addition, a laser beam emitted from each distance measuring unit 2 is generically referred to as a laser beam La. The generic name of the reflected light of the laser light La is referred to as reflected light Lb. The scanning range Rs1 of the laser beam L1a emitted from the first distance measurement unit 21 and the scanning range Rs2 of the laser beam L2a emitted from the second distance measurement unit 22 are collectively referred to as a scanning range Rs.
また、距離測定ユニット2において、上下方向に延びる回転軸Jと平行な方向を「軸方向」と呼ぶ。軸方向のうち、後述する受光素子324から後述するLD311に向く方向を「軸方向上方」と呼び、LD311から受光素子324に向く方向を「軸方向下方」と呼ぶ。なお、軸方向は、本実施形態では鉛直方向D1と平行であるが、本実施形態の例示に限定されず鉛直方向D1と交わる方向であってもよい。また、回転軸Jと垂直な方向を「径方向」と呼ぶ。径方向のうち、回転軸Jに向かう方向を「径方向内方」と呼び、回転軸Jから離れる方向を「径方向外方」と呼ぶ。また、回転軸Jを中心とする周方向を「回転方向」と呼ぶ。距離測定ユニット2における各々の構成要素において、下方における端部を「軸方向下端部」と呼び、下端部の位置を「軸方向下端」と呼ぶ。さらに、上方における端部を「軸方向上端部」と呼び、上端部の位置を「軸方向上端」と呼ぶ。また、距離測定ユニット2における各々の構成要素の端面において、下方を向く面を「下端面」と呼び、上方を向く面を「上端面」と呼ぶ。  In the distance measurement unit 2, a direction parallel to the rotation axis J extending in the up-down direction is referred to as an “axial direction”. Among the axial directions, the direction from the light receiving element 324 described later to the LD 311 described later is referred to as “axially upper”, and the direction from the LD 311 to the light receiving element 324 is referred to as “axially lower”. The axial direction is parallel to the vertical direction D1 in the present embodiment, but is not limited to the example of the present embodiment, and may be a direction that intersects the vertical direction D1. The direction perpendicular to the rotation axis J is referred to as “radial direction”. Of the radial directions, the direction toward the rotation axis J is referred to as “radially inward”, and the direction away from the rotation axis J is referred to as “radially outward”. In addition, a circumferential direction around the rotation axis J is referred to as a “rotation direction”. In each component of the distance measuring unit 2, the lower end is referred to as “axial lower end”, and the position of the lower end is referred to as “axial lower end”. Further, the upper end is referred to as “axial upper end”, and the position of the upper end is referred to as “axial upper end”. Further, among the end faces of the respective components in the distance measuring unit 2, a face facing downward is referred to as a "lower face", and a face facing upward is referred to as an "upper face".
なお、以上に説明した方向、端部、位置、及び面などの呼称は、実際の機器に組み込まれた場合での位置関係及び方向などを示すものではない。  It should be noted that the names of the directions, ends, positions, surfaces, and the like described above do not indicate the positional relationship, the directions, and the like when incorporated in actual equipment.
<1.実施形態> <1-1.無人搬送車> 図1は、実施形態に係る無人搬送車100の構成例を示す斜視図である。図2は、実施形態に係る無人搬送車100の上面図である。なお、図2は、無人搬送車100を鉛直上方D1tから見た図である。なお、図2は、無人搬送車100近傍を図示しているため、各々の距離測定ユニット2の走査範囲Rs1、Rs2の一部を示している。  <1. Embodiment> <1-1. Automatic guided vehicle> FIG. 1 is a perspective view showing a configuration example of an automatic guided vehicle 100 according to the embodiment. FIG. 2 is a top view of the automatic guided vehicle 100 according to the embodiment. FIG. 2 is a view of the automatic guided vehicle 100 as viewed from vertically above D1t. Since FIG. 2 illustrates the vicinity of the automatic guided vehicle 100, a part of the scanning ranges Rs1 and Rs2 of each distance measuring unit 2 is illustrated.
無人搬送車100は、路面Gを走行する移動体の一例であり、一般にAGV(Automatic Guided Vehicle)とも呼ばれる。無人搬送車100は、本実施形態では、二輪駆動により自律的に路面Gを走行し、荷物を搬送する。但し、無人搬送車100により例示される移動体は、この例示に限定されず、荷物の搬送以外の用途に用いられてもよい。  The automatic guided vehicle 100 is an example of a moving object that travels on a road surface G, and is generally called an AGV (Automatic Guided Vehicle). In the present embodiment, the automatic guided vehicle 100 autonomously travels on the road surface G by two-wheel drive and transports a load. However, the moving object exemplified by the automatic guided vehicle 100 is not limited to this example, and may be used for purposes other than the conveyance of luggage.
無人搬送車100は、図1及び図2に示すように、第1距離測定ユニット21と、第2距離測定ユニット22と、を含む複数の距離測定ユニット2を備える。なお、距離測定ユニット2の数は、本実施形態では2個であるが、この例示に限定されず、3個以上であってもよい。各々の距離測定ユニット2は、共通する構成を有している。距離測定ユニット2の該構成は、後に説明する。  As shown in FIGS. 1 and 2, the automatic guided vehicle 100 includes a plurality of distance measurement units 2 including a first distance measurement unit 21 and a second distance measurement unit 22. The number of the distance measurement units 2 is two in the present embodiment, but is not limited to this example, and may be three or more. Each distance measuring unit 2 has a common configuration. The configuration of the distance measuring unit 2 will be described later.
また、無人搬送車100は、図1及び図2に示すように、車体101と、荷台102と、支持部103L,103Rと、駆動モータ104L,104Rと、駆動輪105L,105Rと、従動輪106F,106Rと、バッテリー107と、通信部108と、制御ユニット109と、をさらに備える。  As shown in FIGS. 1 and 2, the automatic guided vehicle 100 includes a vehicle body 101, a carrier 102, support portions 103L and 103R, drive motors 104L and 104R, drive wheels 105L and 105R, and driven wheels 106F. , 106R, a battery 107, a communication unit 108, and a control unit 109.
車体101は、バッテリー107、通信部108、及び制御ユニット109などを内部に収容する。車体101の上面には、板状の荷台102が固定される。荷台102の上面には、荷物を載置することが可能である。  The vehicle body 101 houses a battery 107, a communication unit 108, a control unit 109, and the like. A plate-shaped carrier 102 is fixed to the upper surface of the vehicle body 101. Luggage can be placed on the upper surface of the loading platform 102.
支持部103L,103Rはそれぞれ、車体101の左端部に固定され、駆動モータ104L,104Rを支持する。駆動モータ104L,104Rには、たとえばACサーボモータが用いられる。駆動モータ104L,104Rはそれぞれ、減速機(図示省略)を内蔵する。駆動輪105L,105Rはそれぞれ、駆動モータ104L,104Rのシャフト(図示省略)に取り付けられ、路面Gに接する。駆動輪105L,105Rは、駆動モータ104L,104Rの回転駆動により該シャフトとともに回転可能である。  The support portions 103L and 103R are fixed to the left end of the vehicle body 101, and support the drive motors 104L and 104R. As the drive motors 104L and 104R, for example, AC servomotors are used. Each of the drive motors 104L and 104R has a built-in speed reducer (not shown). The drive wheels 105L and 105R are attached to shafts (not shown) of the drive motors 104L and 104R, respectively, and contact the road surface G. The drive wheels 105L and 105R are rotatable together with the shafts by the drive of the drive motors 104L and 104R.
従動輪106Fは、車体101の前端部において回転可能に取り付けられる。従動輪106Rは、車体101の後端部において回転可能に取り付けられる。従動輪106F,106Rは、路面Gに接し、駆動輪105L,105Rの回転に応じて受動的に回転する。  The driven wheel 106F is rotatably attached to the front end of the vehicle body 101. The driven wheel 106R is rotatably mounted at the rear end of the vehicle body 101. The driven wheels 106F and 106R come into contact with the road surface G and rotate passively according to the rotation of the drive wheels 105L and 105R.
駆動モータ104L,104Rにより駆動輪105L,105Rを回転駆動することで、路面G上において無人搬送車100を前進及び後進させることができる。また、駆動輪105L,105Rの回転速度に差を設けるよう制御することで、無人搬送車100を右回りまたは左回りに回転させ、方向転換させることができる。  By driving and driving the drive wheels 105L and 105R by the drive motors 104L and 104R, the automatic guided vehicle 100 can be moved forward and backward on the road surface G. In addition, by controlling the rotational speeds of the drive wheels 105L and 105R to provide a difference, the automatic guided vehicle 100 can be rotated clockwise or counterclockwise to change the direction.
バッテリー107は、無人搬送車100の電力源であり、たとえば複数の距離測定ユニット2、通信部108、制御ユニット109などに電力を供給する。バッテリー107には、たとえばリチウムイオン電池が用いられる。  The battery 107 is a power source of the automatic guided vehicle 100, and supplies power to, for example, the plurality of distance measurement units 2, the communication unit 108, the control unit 109, and the like. As the battery 107, for example, a lithium ion battery is used.
通信部108は、無人搬送車100の外部のタブレット端末(図示省略)との間で、たとえばBluetooth(登録商標)に準拠する通信を行う。これにより、たとえばタブレット端末などの外部の情報装置によって、無人搬送車100を遠隔操作することができる。  The communication unit 108 performs communication with a tablet terminal (not shown) outside the automatic guided vehicle 100, for example, in compliance with Bluetooth (registered trademark). Thus, the automatic guided vehicle 100 can be remotely controlled by an external information device such as a tablet terminal.
制御ユニット109は、駆動モータ104L,104R及び通信部108などに接続される。制御ユニット109は、駆動モータ104L,104Rの駆動制御を行う。また、制御ユニット109は、さらに、距離測定ユニット2に接続され、距離測定ユニット2から各種信号を受信して各種の制御を行う。制御ユニット109のより詳細な構成は、後に説明する。  The control unit 109 is connected to the drive motors 104L and 104R, the communication unit 108, and the like. The control unit 109 controls the drive of the drive motors 104L and 104R. The control unit 109 is further connected to the distance measurement unit 2 and receives various signals from the distance measurement unit 2 to perform various controls. A more detailed configuration of the control unit 109 will be described later.
   <1-1-1.距離測定ユニット>
 次に、距離測定ユニット2を説明する。距離測定ユニット2は、所謂LRF(Laser Range Finder)であり、無人搬送車100の外部に位置する物体OJを検知する。距離測定ユニット2は、図3A及び図3Bに示すように、距離測定部3Aと、距離測定部3Aを制御する測定制御部3Bと、を有する。図3Aは、実施形態に係る距離測定ユニット2の距離測定部3Aの構成例を示す断面図である。図3Bは、実施形態に係る距離測定ユニット2の距離測定部3A及び測定制御部3Bの構成例を示すブロック図である。なお、図3Aは、回転軸Jを含む平面で距離測定部3Aを仮想的に切断した場合の断面構造を示す。 
<1-1-1. Distance measurement unit>
Next, the distance measuring unit 2 will be described. The distance measurement unit 2 is a so-called LRF (Laser Range Finder), and detects an object OJ located outside the automatic guided vehicle 100. As shown in FIGS. 3A and 3B, the distance measurement unit 2 includes a distance measurement unit 3A and a measurement control unit 3B that controls the distance measurement unit 3A. FIG. 3A is a cross-sectional view illustrating a configuration example of a distance measuring unit 3A of the distance measuring unit 2 according to the embodiment. FIG. 3B is a block diagram illustrating a configuration example of the distance measurement unit 3A and the measurement control unit 3B of the distance measurement unit 2 according to the embodiment. FIG. 3A shows a cross-sectional structure when the distance measurement unit 3A is virtually cut along a plane including the rotation axis J.
   <1-1-1-1.距離測定部> 距離測定部3Aは、図3Aに示すように、筐体30と、光照射部31と、受光部32と、回転筐体33と、モータ34と、を有する。  <1-1-1-1. Distance measuring unit> The distance measuring unit 3A includes a housing 30, a light irradiation unit 31, a light receiving unit 32, a rotating housing 33, and a motor 34, as shown in FIG. 3A.
筐体30は、軸方向に延びる中空の円柱形状である。筐体30は、光照射部31、受光部32、回転筐体33、及びモータ34を内部空間に収容する。また、筐体30は、透光部301を有する。透光部301は、筐体30の軸方向における途中において、たとえば透光性の樹脂、硝子などの材料を用いて筐体30の径方向側面に設けられる。透光部301は、回転軸Jを中心とする環状に設けられる。より具体的には、透光部301は、図3Aのように回転軸Jを中心とする回転方向の全周に渡って連続的に繋がっている。或いは、図3Aの例示に限定されず、透光部301は、回転方向に沿って延びる円弧形状であってもよい。  The housing 30 has a hollow cylindrical shape extending in the axial direction. The housing 30 houses the light irradiation unit 31, the light receiving unit 32, the rotating housing 33, and the motor 34 in an internal space. Further, the housing 30 has a light transmitting portion 301. The light-transmitting portion 301 is provided on the radial side surface of the housing 30 using a material such as a light-transmitting resin or glass in the middle of the housing 30 in the axial direction. The light transmitting portion 301 is provided in an annular shape around the rotation axis J. More specifically, the light transmitting portions 301 are continuously connected over the entire circumference in the rotation direction about the rotation axis J as shown in FIG. 3A. Alternatively, without being limited to the example shown in FIG. 3A, the light transmitting portion 301 may have an arc shape extending along the rotation direction.
前述の如く、距離測定部3Aは、光照射部31を有する。光照射部31は、レーザ光Laを距離測定部3Aの外部に照射する。該レーザ光Laは、本実施形態では、赤外線帯域の光であるが、この例示に限定されず、赤外線帯域以外の波長帯域の光であってもよい。  As described above, the distance measurement unit 3A includes the light irradiation unit 31. The light irradiation unit 31 irradiates the laser beam La to the outside of the distance measurement unit 3A. The laser light La is light in the infrared band in the present embodiment, but is not limited to this example, and may be light in a wavelength band other than the infrared band.
光照射部31は、図3Aに示すように、LD(Laser Diode)311と、基板312と、コリメートレンズ313と、投光ミラー314と、を有する。LD311は、レーザ光Laを出射する光源の一例である。基板312は、LD311の発光制御を行うLDドライバ311a(図3B参照)を搭載する。LD311及び基板312は、本実施形態では筐体30の上端部の下端面に固定される。コリメートレンズ313は、LD311の下方に配置される。投光ミラー314は、コリメートレンズ313の下方に配置されるとともに、回転筐体33の上端部の上端面に固定される。  As shown in FIG. 3A, the light irradiation unit 31 includes an LD (Laser @ Diode) 311, a substrate 312, a collimating lens 313, and a light projecting mirror 314. The LD 311 is an example of a light source that emits laser light La. The substrate 312 mounts an LD driver 311a (see FIG. 3B) that controls light emission of the LD 311. In this embodiment, the LD 311 and the substrate 312 are fixed to the lower end surface of the upper end of the housing 30. The collimating lens 313 is arranged below the LD 311. The light projecting mirror 314 is arranged below the collimating lens 313 and is fixed to the upper end surface of the upper end of the rotating housing 33.
LD311は、レーザ光Laを下方に出射する。LD311から出射されたレーザ光Laは、コリメートレンズ313で平行光とされる。コリメートレンズ313から下方に出射されたレーザ光Laは、投光ミラー314で反射され、透光部301を透過して筐体30の外部に照射される。  The LD 311 emits the laser light La downward. The laser light La emitted from the LD 311 is collimated by the collimator lens 313. The laser light La emitted downward from the collimating lens 313 is reflected by the light projecting mirror 314, passes through the light transmitting unit 301, and is emitted to the outside of the housing 30.
次に、前述の如く、距離測定部3Aは、受光部32を有する。受光部32は、入射した光を受光し、特に、たとえば無人搬送車100の外部に位置する物体OJで反射されたレーザ光Laの反射光Lbを受光する。なお、受光部32で受光された入射光の受光強度が所定の閾値レベル未満である場合、該入射光の検出結果は無効とされる。  Next, as described above, the distance measuring unit 3A includes the light receiving unit 32. The light receiving unit 32 receives the incident light, and in particular, receives the reflected light Lb of the laser light La reflected by the object OJ located outside the automatic guided vehicle 100, for example. When the intensity of the incident light received by the light receiving unit 32 is lower than a predetermined threshold level, the detection result of the incident light is invalidated.
受光部32は、図3Aに示すように、受光レンズ321と、受光ミラー322と、波長フィルタ323と、受光素子324と、を有する。受光レンズ321は、回転筐体33の径方向側面に設けられた開口33aに嵌め込まれて固定される。受光ミラー322は、回転筐体33の上端部の下端面に固定される。波長フィルタ323は、受光ミラー322の下方に配置される。受光素子324は、波長フィルタ323の下方に配置され、回転筐体33の下端部の上端面に固定される。  The light receiving unit 32 includes a light receiving lens 321, a light receiving mirror 322, a wavelength filter 323, and a light receiving element 324, as shown in FIG. 3A. The light receiving lens 321 is fitted and fixed in an opening 33 a provided on a radial side surface of the rotating housing 33. The light receiving mirror 322 is fixed to the lower end surface of the upper end of the rotating housing 33. The wavelength filter 323 is arranged below the light receiving mirror 322. The light receiving element 324 is arranged below the wavelength filter 323 and is fixed to the upper end surface of the lower end of the rotating housing 33.
距離測定ユニット2から照射されるレーザ光Laは、距離測定ユニット2の外部の物体OJで反射されて拡散光となる。該拡散光の一部は、透光部301を透過し、反射光Lbとして受光部32に入射する。反射光Lbは、まず受光レンズ321に入射する。受光レンズ321を透過した反射光Lbは、受光ミラー322で下方に反射され、波長フィルタ323を透過する。この際、波長フィルタ323は、たとえばレーザ光Laと同じ波長帯域の光のみを透過させる。その後、該反射光Lbは、受光素子324により受光される。受光素子324は、受光した反射光Lbを電気信号に光電変換して出力する。  The laser light La emitted from the distance measurement unit 2 is reflected by an object OJ outside the distance measurement unit 2 to become diffused light. Part of the diffused light passes through the light transmitting portion 301 and enters the light receiving portion 32 as reflected light Lb. The reflected light Lb first enters the light receiving lens 321. The reflected light Lb transmitted through the light receiving lens 321 is reflected downward by the light receiving mirror 322 and transmitted through the wavelength filter 323. At this time, the wavelength filter 323 transmits, for example, only light in the same wavelength band as the laser light La. Thereafter, the reflected light Lb is received by the light receiving element 324. The light receiving element 324 photoelectrically converts the received reflected light Lb into an electric signal and outputs the electric signal.
また、受光部32は、回転軸Jが延びる方向から見て、モータ34により回転方向に走査されるレーザ光Laの照射方向と平行な方向から入射する反射光Lbを受光する(図2参照)。こうすれば、各々の距離測定ユニット2において、受光部32が受光する反射光Lbの入射方向が、モータ34により走査されるレーザ光Laの照射方向の変化に応じて変化する。従って、光照射部31から照射されたレーザ光Laの反射光Lb以外の光の受光を抑制又は防止できる。  The light receiving section 32 receives the reflected light Lb incident from a direction parallel to the irradiation direction of the laser light La scanned in the rotation direction by the motor 34 when viewed from the direction in which the rotation axis J extends (see FIG. 2). . In this case, in each of the distance measurement units 2, the incident direction of the reflected light Lb received by the light receiving unit 32 changes according to the change in the irradiation direction of the laser light La scanned by the motor. Therefore, it is possible to suppress or prevent the light other than the reflected light Lb of the laser light La emitted from the light emitting unit 31 from being received.
また、受光部32は、図3Bに示すように、コンパレータ325をさらに有する。コンパレータ325は、たとえば筐体30内の基板(図示省略)に搭載され、受光素子324から出力される電気信号のレベルを所定の閾値レベルと比較する。該電気信号は、受光素子324での受光結果を示す。コンパレータ325は、上述の比較結果に応じて、Highレベル又はLowレベルの計測パルスPmを出力する。たとえば、コンパレータ325は、上記の電気信号のレベルが所定の閾値レベル未満である場合、受光素子324での入射光の検出結果を無効とし、Lowレベルの計測パルスPmを出力する。また、コンパレータ325は、上記の電気信号のレベルが所定の閾値レベル以上である場合、受光素子324での入射光の検出結果を有効とし、Highレベルの計測パルスPmを出力する。  Further, the light receiving section 32 further includes a comparator 325 as shown in FIG. 3B. The comparator 325 is mounted on, for example, a substrate (not shown) in the housing 30 and compares the level of an electric signal output from the light receiving element 324 with a predetermined threshold level. The electric signal indicates a result of light reception by the light receiving element 324. The comparator 325 outputs a high-level or low-level measurement pulse Pm according to the above-described comparison result. For example, when the level of the electric signal is lower than the predetermined threshold level, the comparator 325 invalidates the detection result of the incident light on the light receiving element 324 and outputs a low-level measurement pulse Pm. When the level of the electric signal is equal to or higher than the predetermined threshold level, the comparator 325 validates the detection result of the incident light by the light receiving element 324 and outputs a high-level measurement pulse Pm.
回転筐体33は、上下方向に延びる中空の円柱形状であり、内部空間に受光ミラー322、波長フィルタ323、及び受光素子324を収容する。回転筐体33は、モータ34のシャフト34aに固定され、モータ34により回転駆動可能である。回転筐体33の回転により、投光ミラー314も回転軸J周りに回転駆動される。そのため、投光ミラー314で反射されるレーザ光Laの照射方向は、回転軸Jを中心に回転する。言い換えると、該レーザ光Laは、回転軸J周りの360°の範囲で照射方向を変えながら、筐体30の外部に照射される。従って、光照射部31から照射されるレーザ光Laは、モータ34の回転駆動に応じて、回転軸Jを中心にして回転方向に走査される。  The rotating housing 33 has a hollow cylindrical shape extending in the vertical direction, and accommodates a light receiving mirror 322, a wavelength filter 323, and a light receiving element 324 in an internal space. The rotating housing 33 is fixed to a shaft 34 a of a motor 34 and can be driven to rotate by the motor 34. Due to the rotation of the rotating housing 33, the light projecting mirror 314 is also driven to rotate about the rotation axis J. Therefore, the irradiation direction of the laser beam La reflected by the light projecting mirror 314 rotates around the rotation axis J. In other words, the laser beam La is irradiated to the outside of the housing 30 while changing the irradiation direction within a range of 360 ° around the rotation axis J. Therefore, the laser beam La emitted from the light emitting unit 31 is scanned in the rotation direction about the rotation axis J in accordance with the rotation of the motor 34.
ここで、レーザ光L1aの回転方向における走査範囲Rs1は、第1距離測定ユニット21が外部の物体OJまでの距離を測定可能な測定範囲である(図2参照)。走査範囲Rs1は、レーザ光L1aが回転軸J周りに回転することにより形成される。なお、走査範囲Rs1は、レーザ光L1aの出力レベルに応じて変化する。また、レーザ光L2aの回転方向における走査範囲Rs2は、第2距離測定ユニット22が外部の物体までの距離を測定可能な測定範囲である。走査範囲Rs2は、レーザ光L2aが回転軸J周りに回転することにより形成される。なお、走査範囲Rs2は、レーザ光L2aの出力レベルに応じて変化する。たとえば図2に示すように、測定範囲内に照射されたレーザ光L1aが走査範囲Rs1内に位置する物体OJで反射されると、反射光L1bが第1距離測定ユニット21の透光部301を透過して受光レンズ321に入射する。同様に、測定範囲内に照射されたレーザ光L2aが走査範囲Rs2内に位置する物体で反射されると、レーザ光L2aの反射光が第2距離測定ユニット22の透光部301を透過して受光レンズ321に入射する。  Here, the scanning range Rs1 in the rotation direction of the laser beam L1a is a measurement range in which the first distance measurement unit 21 can measure the distance to the external object OJ (see FIG. 2). The scanning range Rs1 is formed by the rotation of the laser beam L1a around the rotation axis J. Note that the scanning range Rs1 changes according to the output level of the laser light L1a. The scanning range Rs2 in the rotation direction of the laser light L2a is a measurement range in which the second distance measurement unit 22 can measure a distance to an external object. The scanning range Rs2 is formed by the rotation of the laser beam L2a around the rotation axis J. Note that the scanning range Rs2 changes according to the output level of the laser light L2a. For example, as shown in FIG. 2, when the laser light L1a irradiated within the measurement range is reflected by the object OJ located within the scanning range Rs1, the reflected light L1b passes through the light transmitting portion 301 of the first distance measurement unit 21. The light passes through and enters the light receiving lens 321. Similarly, when the laser light L2a irradiated within the measurement range is reflected by an object located within the scanning range Rs2, the reflected light of the laser light L2a transmits through the light transmission part 301 of the second distance measurement unit 22. The light enters the light receiving lens 321.
モータ34は、シャフト34aと、位置検出部34bと、を有する。モータ34は、シャフト34aを回転させることにより、回転筐体33を所定の回転速度で回転駆動する。モータ34の回転駆動によって、レーザ光Laは回転方向に走査される。つまり、モータ34は、回転軸Jを中心にしてレーザ光Laを回転方向に走査する走査機構である。距離測定部3Aは、該走査機構を有する。  The motor 34 has a shaft 34a and a position detector 34b. The motor 34 rotates the rotating housing 33 at a predetermined rotation speed by rotating the shaft 34a. The rotation of the motor 34 causes the laser beam La to scan in the rotation direction. That is, the motor 34 is a scanning mechanism that scans the laser beam La in the rotation direction about the rotation axis J. The distance measuring unit 3A has the scanning mechanism.
また、本実施形態では、各々の距離測定ユニット2のモータ34は、同じ回転方向且つ同じ回転速度で回転筐体33を回転させる。そのため、各々の距離測定ユニット2から照射されるレーザ光Laの走査方向及び走査速度は同じである。たとえば、第1距離測定ユニット21から照射されるレーザ光L1a、及び、第2距離測定ユニット22から照射されるレーザ光L2aの走査方向及び走査速度は、本実施形態では同じである。  Further, in the present embodiment, the motors 34 of the respective distance measurement units 2 rotate the rotary housing 33 in the same rotation direction and at the same rotation speed. Therefore, the scanning direction and the scanning speed of the laser beam La emitted from each distance measuring unit 2 are the same. For example, the scanning direction and scanning speed of the laser light L1a emitted from the first distance measurement unit 21 and the laser light L2a emitted from the second distance measurement unit 22 are the same in the present embodiment.
こうすれば、各々の距離測定ユニット2から照射されるレーザ光Laは、それぞれの照射方向が回転方向において所定の角度幅θを保った状態で走査される。たとえば図4に示すように、第1距離測定ユニット21から照射されるレーザ光L1aの第1照射方向と、第2距離測定ユニット22から照射されるレーザ光L2aの第2照射方向とは、所定の角度幅θで異なる。各々のレーザ光L1a、L2aは該角度幅θを維持した状態で走査される。従って、各々の距離測定ユニット2は、照射方向が平行にならないように、常に異なる方向にレーザ光Laを照射できる。  In this case, the laser beam La emitted from each of the distance measurement units 2 is scanned in a state where the respective irradiation directions maintain a predetermined angular width θ in the rotation direction. For example, as shown in FIG. 4, the first irradiation direction of the laser light L1a irradiated from the first distance measurement unit 21 and the second irradiation direction of the laser light L2a irradiated from the second distance measurement unit 22 are predetermined. At different angular widths θ. Each of the laser beams L1a and L2a is scanned while maintaining the angular width θ. Therefore, each distance measurement unit 2 can always irradiate the laser beam La in a different direction so that the irradiation directions are not parallel.
但し、この例示に限定されず、一部の距離測定ユニット2のモータ34は、残りの一部の距離測定ユニット2のモータ34とは逆の回転方向に回転筐体33を回転させてもよい。すなわち、一部の距離測定ユニット2から照射されるレーザ光Laの走査方向は、残りの一部の距離測定ユニット2から照射されるレーザ光Laの走査方向とは逆であってもよい。たとえば、第1距離測定ユニット21から照射されるレーザ光L1aの走査方向は、第2距離測定ユニット22から照射されるレーザ光L2aの走査方向とは逆であってもよい。  However, the present invention is not limited to this example, and the motors 34 of some of the distance measurement units 2 may rotate the rotating housing 33 in a rotation direction opposite to that of the motors of the remaining some of the distance measurement units 2. . That is, the scanning direction of the laser beam La emitted from some of the distance measurement units 2 may be opposite to the scanning direction of the laser beam La emitted from the remaining one of the distance measurement units 2. For example, the scanning direction of the laser light L1a emitted from the first distance measuring unit 21 may be opposite to the scanning direction of the laser light L2a emitted from the second distance measuring unit 22.
第1照射方向と第2照射方向とが成す角度幅θは、0°<θ≦180°であればよく、好ましくは0°<θ<180°である。また、角度幅θは、さらに好ましくは90°である。つまり、軸方向から見て、第1距離測定ユニット21から照射されるレーザ光L1aの第1照射方向は、さらに好ましくは、第2距離測定ユニット22から照射されるレーザ光L2aの第2照射方向と直交する。こうすれば、レーザ光L1a、L2aの照射角度の広がりを考慮しても、第1距離測定ユニット21及び第2距離測定ユニット22のうちの一方の距離測定ユニット2から照射されるレーザ光Laが他方の距離測定ユニット2の受光部32にて直接に受光されることを確実に防止できる。  The angle width θ formed by the first irradiation direction and the second irradiation direction may be 0 ° <θ ≦ 180 °, preferably 0 ° <θ <180 °. The angle width θ is more preferably 90 °. That is, when viewed from the axial direction, the first irradiation direction of the laser light L1a irradiated from the first distance measurement unit 21 is more preferably the second irradiation direction of the laser light L2a irradiated from the second distance measurement unit 22. And orthogonal. In this way, the laser beam La emitted from one of the first distance measuring unit 21 and the second distance measuring unit 22 is not affected by the spread of the irradiation angle of the laser beams L1a and L2a. Direct reception of light by the light receiving section 32 of the other distance measuring unit 2 can be reliably prevented.
また、位置検出部34bは、モータ34の回転子の回転角度位置を検出する。前述の如く、モータ34は、位置検出部34bを有する。位置検出部34bは、モータ34の回転子の回転角度位置を検出することにより、モータ34により回転方向に走査されるレーザ光Laの照射方向の回転角度位置を検出する。位置検出部34bには、たとえばホール素子、エンコーダなどを用いることができる。  The position detection unit 34b detects the rotation angle position of the rotor of the motor 34. As described above, the motor 34 has the position detection unit 34b. The position detection unit 34b detects the rotation angle position of the laser beam La scanned in the rotation direction by the motor 34 by detecting the rotation angle position of the rotor of the motor 34. As the position detector 34b, for example, a Hall element, an encoder, or the like can be used.
<1-1-1-2.測定制御部> 次に、図3Bを参照して、距離測定ユニット2の測定制御部3Bを説明する。図3Bに示すように、測定制御部3Bは、計測部35と、演算処理部36と、モータドライバ37と、通信I/F38と、を有する。なお、計測部35及び演算処理部36は、本実施形態では、測定制御部3Bに設けられる1又は複数のマイクロコンピュータ(図示省略)の機能的構成要素である。但し、この例示に限定されず、計測部35及び演算処理部36のうちの少なくとも一方は、電気回路、素子、電気装置などで実現される物理的構成要素であってもよい。  <1-1-1-2. Measurement Control Unit> Next, the measurement control unit 3B of the distance measurement unit 2 will be described with reference to FIG. 3B. As shown in FIG. 3B, the measurement control unit 3B includes a measurement unit 35, an arithmetic processing unit 36, a motor driver 37, and a communication I / F 38. In the present embodiment, the measuring unit 35 and the arithmetic processing unit 36 are functional components of one or a plurality of microcomputers (not shown) provided in the measurement control unit 3B. However, the present invention is not limited to this example, and at least one of the measuring unit 35 and the arithmetic processing unit 36 may be a physical component realized by an electric circuit, an element, an electric device, or the like.
演算処理部36は、光照射部31にレーザ発光パルスPeを出力する。この際、光照射部31は、レーザ発光パルスPeをトリガーとしてパルス状のレーザ光LaをLD311から出射させる。また、演算処理部36は、レーザ発光パルスPeを出力する際、計測部35に基準パルスPsを出力する。  The arithmetic processing unit 36 outputs a laser emission pulse Pe to the light irradiation unit 31. At this time, the light irradiation unit 31 causes the LD 311 to emit pulsed laser light La using the laser emission pulse Pe as a trigger. When outputting the laser emission pulse Pe, the arithmetic processing unit 36 outputs the reference pulse Ps to the measuring unit 35.
 計測部35は、レーザ光Laの照射タイミング及び照射方向と受光部32の受光結果とに基づいて、所定の基準位置に対して距離測定部3Aの外部に位置する物体OJの相対位置を算出する。より具体的には、計測部35には、コンパレータ325から出力される計測パルスPmと、演算処理部36から出力される基準パルスPsとが入力される。計測部35は、基準パルスPsの立ち上がりタイミングから計測パルスPmの立ち上がりタイミングまでの経過時間を計測することにより、物体OJまでの距離を取得する。すなわち、計測部35は、所謂TOF(Time of Flight)方式により距離を計測する。計測部35は、計測結果を計測データDmとして演算処理部36に出力する。  The measuring unit 35 calculates the relative position of the object OJ located outside the distance measuring unit 3A with respect to the predetermined reference position based on the irradiation timing and irradiation direction of the laser beam La and the light receiving result of the light receiving unit 32. . More specifically, the measurement pulse Pm output from the comparator 325 and the reference pulse Ps output from the arithmetic processing unit 36 are input to the measurement unit 35. The measurement unit 35 acquires the distance to the object OJ by measuring the elapsed time from the rising timing of the reference pulse Ps to the rising timing of the measurement pulse Pm. That is, the measuring unit 35 measures the distance by a so-called TOF (Time @ of @ Flight) method. The measurement unit 35 outputs the measurement result to the arithmetic processing unit 36 as measurement data Dm.
この際、好ましくは、計測部35は、各々の距離測定ユニット2において、受光部32に入射する光の受光強度が上限値以下であれば、該受光部32の受光結果に応じた相対位置を算出する。言い換えると、計測部35は、各々の距離測定ユニット2の受光部32において、受光部32に入射する光の受光強度が上限値を越える際、該受光部32の受光結果に応じた相対位置を算出しない。なお、上限値は、たとえば、レーザ光Laを直接に治受光した場合の受光強度以下であり且つ反射光Lbの受光強度よりも大きい値に設定される。従って、距離測定ユニット2は、たとえば他の距離測定ユニット、又は他の無人搬送車100aに搭載された距離測定ユニットから照射されるレーザ光Laを直接に受光すると、受光した距離測定ユニット2の計測部35は、受光部32の受光結果に応じた相対位置を算出しない(後述する図6参照)。従って、実在しない物体及びその相対位置を誤って検知することを防止できる。  At this time, preferably, in each of the distance measurement units 2, if the light receiving intensity of the light incident on the light receiving unit 32 is equal to or less than the upper limit, the measuring unit 35 sets the relative position according to the light receiving result of the light receiving unit 32. calculate. In other words, when the light receiving intensity of the light incident on the light receiving unit 32 exceeds the upper limit in the light receiving unit 32 of each distance measuring unit 2, the measuring unit 35 determines the relative position according to the light receiving result of the light receiving unit 32. Do not calculate. The upper limit is, for example, set to a value equal to or less than the light receiving intensity when the laser beam La is directly processed and received, and larger than the light receiving intensity of the reflected light Lb. Accordingly, when the distance measuring unit 2 directly receives the laser beam La emitted from, for example, another distance measuring unit or the distance measuring unit mounted on another automatic guided vehicle 100a, the distance measuring unit 2 measures the received light. The unit 35 does not calculate the relative position according to the light receiving result of the light receiving unit 32 (see FIG. 6 described later). Therefore, erroneous detection of a non-existent object and its relative position can be prevented.
モータドライバ37は、距離測定部3Aのモータ34の駆動を制御する。モータ34は、モータドライバ37によって所定の回転速度で回転駆動される。この際、演算処理部36は、モータ34が所定単位角度回転するたびにレーザ発光パルスPeを出力する。これにより、回転筐体33及び投光ミラー314が所定単位角度回転するたびに、光照射部31は、レーザ光Laを照射する。  The motor driver 37 controls driving of the motor 34 of the distance measuring unit 3A. The motor 34 is driven to rotate at a predetermined rotation speed by a motor driver 37. At this time, the arithmetic processing unit 36 outputs a laser emission pulse Pe every time the motor 34 rotates by a predetermined unit angle. Thus, each time the rotating housing 33 and the light projecting mirror 314 rotate by a predetermined unit angle, the light irradiation unit 31 emits the laser beam La.
演算処理部36は、レーザ発光パルスPeを出力したタイミングでのモータ34の回転角度位置と、レーザ発光パルスPeに対応して得られる計測データDmとに基づいて、距離測定ユニット2を基準とする直交座標系上の位置情報を生成する。すなわち、投光ミラー314の回転角度位置と計測された距離とに基づき、物体OJの相対位置が取得される。このように取得される位置情報は、測定距離データDdとして演算処理部36から出力される。こうして、回転走査角度範囲内でのレーザ光Laの走査により、物体OJの位置情報が取得される。  The arithmetic processing unit 36 uses the distance measurement unit 2 as a reference based on the rotation angle position of the motor 34 at the timing when the laser emission pulse Pe is output and the measurement data Dm obtained corresponding to the laser emission pulse Pe. Generate position information on a rectangular coordinate system. That is, the relative position of the object OJ is obtained based on the rotation angle position of the light projecting mirror 314 and the measured distance. The position information acquired in this way is output from the arithmetic processing unit 36 as measured distance data Dd. Thus, the position information of the object OJ is obtained by the scanning of the laser beam La within the rotation scanning angle range.
通信I/F38は、演算処理部36から出力される測定距離データDdを無人搬送車100側に伝送する(後述する図5参照)。  The communication I / F 38 transmits the measured distance data Dd output from the arithmetic processing unit 36 to the automatic guided vehicle 100 (see FIG. 5 described later).
<1-1-2.制御ユニット> 次に、無人搬送車100の制御ユニット109の構成を説明する。図5は、制御ユニット109の構成例を示すブロック図である。制御ユニット109は、図5に示すように、制御部4と、記憶部5と、を有する。  <1-1-2. Control Unit> Next, the configuration of the control unit 109 of the automatic guided vehicle 100 will be described. FIG. 5 is a block diagram illustrating a configuration example of the control unit 109. The control unit 109 includes the control unit 4 and the storage unit 5, as shown in FIG.
制御部4は、通信部108を介して、タブレット端末などの情報装置(図示省略)と通信を行う。たとえば、制御部4は、通信部108を介して、情報装置での操作入力の内容を示す操作信号を受信する。制御部4には、本実施形態では1又は複数のCPU(図子省略)が用いられている。但し、この例示に限定されず、制御部4の少なくとも一部は、CPU以外の電気回路、素子、電子装置などであってもよい。  The control unit 4 communicates with an information device (not shown) such as a tablet terminal via the communication unit 108. For example, control unit 4 receives, via communication unit 108, an operation signal indicating the content of the operation input on the information device. In the present embodiment, one or more CPUs (illustration omitted) are used for the control unit 4. However, the present invention is not limited to this example, and at least a part of the control unit 4 may be an electric circuit, an element, an electronic device, or the like other than the CPU.
また、制御部4は、図5に示すように、駆動制御部41と、走査制御部42と、判定部43と、地図作成部44と、位置同定部45と、を有する。なお、駆動制御部41、走査制御部42、判定部43、地図作成部44、及び位置同定部45は、本実施形態では上述のCPUの機能的構成要素である。但し、この例示に限定されず、駆動制御部41、走査制御部42、判定部43、地図作成部44、及び位置同定部45のうちの少なくとも1つは、電気回路、素子、電気装置などで実現される物理的構成要素であってもよい。  Further, as shown in FIG. 5, the control unit 4 includes a drive control unit 41, a scan control unit 42, a determination unit 43, a map creation unit 44, and a position identification unit 45. Note that the drive control unit 41, the scan control unit 42, the determination unit 43, the map creation unit 44, and the position identification unit 45 are functional components of the above-described CPU in the present embodiment. However, the present invention is not limited to this example, and at least one of the drive control unit 41, the scan control unit 42, the determination unit 43, the map creation unit 44, and the position identification unit 45 is an electric circuit, an element, an electric device, or the like. It may be a realized physical component.
駆動制御部41は、駆動モータ104L,104Rの回転駆動を制御し、たとえば駆動輪105L,105Rの回転速度及び回転方向を駆動制御する。 The drive control unit 41 controls the rotational drive of the drive motors 104L and 104R, and controls the rotational speed and the rotational direction of the drive wheels 105L and 105R, for example.
走査制御部42は、各々の距離測定部3Aのモータ34の駆動を制御し、各々の距離測定部3Aから照射されるレーザ光Laの照射方向をそれぞれ調整する。より具体的には、走査制御部42は、各々の距離測定ユニット2の光照射部31から照射されるレーザ光Laをそれぞれ異なる方向に照射させる。たとえば、第1距離測定ユニット21の走査制御部42は、該第1距離測定ユニット21から照射されるレーザ光L1aを第2距離測定ユニット22から照射されるレーザ光L2aとは異なる方向に照射させる。こうすれば、各々の距離測定ユニット2がそれぞれ異なる方向にレーザ光Laを照射するため、各々の距離測定ユニット2の受光部32で受光可能な入射光の入射方向もそれぞれ異なる。従って、たとえば、第1距離測定ユニット21及び第2距離測定ユニット22のうちの一方の距離測定ユニット2の光照射部31から照射されたレーザ光Laの反射光Lbが、他方の距離測定ユニット2の受光部32で受光されることを防止できる(図2参照)。さらに、距離測定ユニット2は、たとえば、他の無人搬送車100aに搭載された距離測定ユニットから照射されるレーザ光L3aの反射光L3bが受光部32で受光されることを防止できる(図6参照)。よって、上記のような反射光Lbの受光に起因する実在しない物体及びその相対位置の誤検知を防止できる。なお、レーザ光Laの照射方向の調整方法は後に説明する。  The scanning control unit 42 controls the driving of the motor 34 of each distance measuring unit 3A, and adjusts the irradiation direction of the laser beam La emitted from each distance measuring unit 3A. More specifically, the scanning control unit 42 irradiates the laser beams La emitted from the light irradiation units 31 of the respective distance measurement units 2 in different directions. For example, the scanning control unit 42 of the first distance measurement unit 21 irradiates the laser light L1a emitted from the first distance measurement unit 21 in a direction different from the laser light L2a emitted from the second distance measurement unit 22. . In this case, since each of the distance measurement units 2 irradiates the laser beam La in a different direction, the incident direction of the incident light that can be received by the light receiving unit 32 of each of the distance measurement units 2 is also different. Therefore, for example, the reflected light Lb of the laser beam La emitted from the light irradiation unit 31 of one of the first distance measuring unit 21 and the second distance measuring unit 22 is changed to the other distance measuring unit 2 (See FIG. 2). Further, the distance measurement unit 2 can prevent the reflected light L3b of the laser light L3a emitted from the distance measurement unit mounted on another automatic guided vehicle 100a from being received by the light receiving unit 32 (see FIG. 6). ). Therefore, erroneous detection of a non-existent object and its relative position due to the reception of the reflected light Lb as described above can be prevented. The method of adjusting the irradiation direction of the laser beam La will be described later.
判定部43は、各種の判定を行う。また、判定部43は、距離測定ユニット2の距離測定部3A毎に算出される各々の相対位置の比較を行う。ここで、相対位置とは、前述のように、所定の基準位置に対して距離測定部3Aの外部に位置する物体OJの相対的な位置を指す。判定部43は、該比較の結果に基づいて上記の相対位置に物体が実在するか否かを判定する。すなわち、判定部43は、各々の距離測定ユニット2間において同じ相対位置が複数算出されなければ、該相対位置に物体が実在しないと判定する。たとえば、第1距離測定ユニット21での計測データDmに基づいて算出される相対位置が第2距離測定ユニット22では算出されない場合、判定部43は、該相対位置に物体が実在しないと判定する。  The determination unit 43 performs various types of determination. In addition, the determination unit 43 compares the relative positions calculated for each distance measurement unit 3A of the distance measurement unit 2. Here, the relative position refers to the relative position of the object OJ located outside the distance measuring unit 3A with respect to the predetermined reference position, as described above. The determining unit 43 determines whether or not an object is actually present at the relative position based on the result of the comparison. That is, unless a plurality of the same relative positions are calculated between the respective distance measurement units 2, the determination unit 43 determines that the object does not exist at the relative positions. For example, when the relative position calculated based on the measurement data Dm in the first distance measurement unit 21 is not calculated in the second distance measurement unit 22, the determination unit 43 determines that the object does not exist at the relative position.
こうすれば、各々の距離測定ユニット2の測定距離データDdに基づいてそれぞれ算出される各々の相対位置の比較が行われる。そして、該比較の結果に基づいて、各々の相対位置に物体OJが実在するか否かが判定される。たとえば、図6のように無人搬送車100が複数ある場合に、他の無人搬送車100aから照射されるレーザ光L4a、及び、他の無人搬送車100aから照射されるレーザ光L3aが外部の物体OJで反射された反射光L3bは、第1距離測定ユニット21及び第2距離測定ユニット22のうちの一方の距離測定ユニット2で受光されたとしても、他方の距離測定ユニット2では受光されない。このような場合、実在しない物体の相対位置が、一方の距離測定ユニット2では算出されるが、他方の距離測定ユニット2では算出されない。従って、判定部43は、該相対位置には物体が実在しないと判別する。よって、実在しない物体及びその位置を誤って検知することを防止できる。  In this way, the respective relative positions calculated based on the measured distance data Dd of the respective distance measuring units 2 are compared. Then, based on the result of the comparison, it is determined whether or not the object OJ exists at each relative position. For example, when there are a plurality of automatic guided vehicles 100 as shown in FIG. 6, a laser beam L4a emitted from another automatic guided vehicle 100a and a laser beam L3a emitted from another automatic guided vehicle 100a are external objects. Even if the reflected light L3b reflected by the OJ is received by one of the first distance measuring unit 21 and the second distance measuring unit 22, it is not received by the other distance measuring unit 2. In such a case, the relative position of the non-existent object is calculated by one of the distance measurement units 2, but is not calculated by the other distance measurement unit 2. Therefore, the determination unit 43 determines that the object does not exist at the relative position. Therefore, erroneous detection of a non-existent object and its position can be prevented.
この際、判定部43は、各々の距離測定ユニット2間において同じ相対位置が複数算出されれば、該相対位置に物体OJが実在すると判定してもよい。こうすれば、たとえば、少なくとも2つの距離測定ユニット2での反射光Lbの受光結果に対応する相対位置が同じであれば、該相対位置には物体OJが実在すると判定される。従って、各々の距離測定ユニット2間において同じ相対位置が算出されるか否かに応じて、該相対位置に物体OJが実在するか否かを判定できる。  At this time, if a plurality of the same relative positions are calculated between the respective distance measurement units 2, the determination unit 43 may determine that the object OJ actually exists at the relative positions. In this way, for example, if the relative positions corresponding to the results of receiving the reflected lights Lb at at least two distance measurement units 2 are the same, it is determined that the object OJ exists at the relative positions. Therefore, whether or not the object OJ actually exists at the relative position can be determined according to whether or not the same relative position is calculated between the respective distance measurement units 2.
或いは、判定部43は、同じ相対位置に対応する反射光Lbの受光強度を距離測定ユニット2毎に比較する。そして、判定部43は、各々の距離測定ユニット2間における受光強度の差が所定値以下であれば、該相対位置に物体OJが実在すると判定してもよい。一方、判定部43は、該受光強度の差が所定値より大きければ、該相対位置に物体が実在しないと判定してもよい。こうすれば、たとえば、各々の距離測定ユニット2での反射光Lbの受光結果に対応する相対位置がそれぞれ算出されていても、各々の距離測定ユニット2間における受光強度の差に基づいて、計測部35が算出した相対位置に物体OJが実在するか否かをさらに判定できる。従って、実在しない物体及びその位置を誤って検知することをより確実に防止できる。  Alternatively, the determination unit 43 compares the received light intensity of the reflected light Lb corresponding to the same relative position for each distance measurement unit 2. Then, the determination unit 43 may determine that the object OJ actually exists at the relative position if the difference in the received light intensity between the respective distance measurement units 2 is equal to or smaller than a predetermined value. On the other hand, if the difference between the received light intensities is larger than a predetermined value, the determination unit 43 may determine that the object does not exist at the relative position. In this way, for example, even if the relative position corresponding to the result of receiving the reflected light Lb at each distance measuring unit 2 is calculated, the measurement is performed based on the difference in the received light intensity between each distance measuring unit 2. Whether or not the object OJ actually exists at the relative position calculated by the unit 35 can be further determined. Therefore, it is possible to more reliably prevent a non-existent object and its position from being erroneously detected.
地図作成部44は、距離測定ユニット2から出力される測定距離データDdに基づいて地図情報を作成し、該地図情報を記憶部5に記憶させる。なお、地図情報は、無人搬送車100が走行する場所に配置される物体OJの位置情報であり、所定の基準位置に対して距離測定ユニット2の外部に位置する各々の物体OJの相対位置を示す。たとえば、無人搬送車100を倉庫内で走行させる場合、倉庫の壁、倉庫内に配列された棚、倉庫内の路面G上に積まれた荷物などである。  The map creation unit 44 creates map information based on the measured distance data Dd output from the distance measurement unit 2 and stores the map information in the storage unit 5. Note that the map information is position information of the object OJ arranged at a place where the automatic guided vehicle 100 travels, and indicates a relative position of each object OJ located outside the distance measurement unit 2 with respect to a predetermined reference position. Show. For example, when the automatic guided vehicle 100 travels in a warehouse, it is a wall of the warehouse, shelves arranged in the warehouse, luggage loaded on a road surface G in the warehouse, and the like.
なお、地図作成部44は、判定部43にて実在しないと判定された物体の相対位置を地図情報に含めずに除外する。  The map creating unit 44 excludes the relative position of the object determined not to exist by the determining unit 43 without including the relative position in the map information.
位置同定部45は、距離測定ユニット2から出力される測定距離データDdと、記憶部5が記憶する地図情報との比較を行い、該比較の結果に基づいて無人搬送車100自身の位置を特定する自己位置同定を行う。該自己位置同定を行うことで、制御部4は、予め定められた経路に沿った無人搬送車100の自律的な走行を制御できる。  The position identification unit 45 compares the measured distance data Dd output from the distance measurement unit 2 with the map information stored in the storage unit 5, and specifies the position of the automatic guided vehicle 100 itself based on the comparison result. Self-position identification. By performing the self-position identification, the control unit 4 can control the autonomous traveling of the automatic guided vehicle 100 along a predetermined route.
記憶部5は、電力供給が停止されても記憶を保持できる非一過性の記憶媒体である。記憶部5は、制御ユニット109又は制御部4で使用されるプログラム及び情報などを記憶する。  The storage unit 5 is a non-transitory storage medium that can retain storage even when power supply is stopped. The storage unit 5 stores programs and information used by the control unit 109 or the control unit 4.
<1-1-3.照射方向の調整方法> 次に、走査制御部42が各々の距離測定ユニット2から照射されるレーザ光Laの照射方向を調整する方法を説明する。図7は、実施形態においてレーザ光Laの照射方向を調整する方法を説明するためのフローチャートである。  <1-1-3. Method of Adjusting Irradiation Direction> Next, a method of adjusting the irradiation direction of the laser beam La emitted from each distance measurement unit 2 by the scanning control unit 42 will be described. FIG. 7 is a flowchart for explaining a method of adjusting the irradiation direction of the laser beam La in the embodiment.
各々の距離測定ユニット2の動作が開始されると(ステップS101)、各々の距離測定ユニット2において、モータ34の回転子の回転角度位置が、位置検出部34bにより検出される(ステップS102)。つまり、各々の距離測定ユニット2から照射されるレーザ光Laの照射方向がそれぞれ検出される。  When the operation of each distance measurement unit 2 is started (step S101), the rotation angle position of the rotor of the motor 34 is detected by the position detection unit 34b in each distance measurement unit 2 (step S102). That is, the irradiation direction of the laser beam La emitted from each distance measurement unit 2 is detected.
走査制御部42は、各々の距離測定ユニット2における回転子の回転角度位置の差を算出することにより、各々のレーザ光Laの照射方向間の角度幅θを算出する。該角度幅θが予め定めた一定値θcでなければ(ステップS103でNO)、走査制御部42は、該角度幅θが一定値θcとなるように、少なくとも1つの距離測定ユニット2においてモータ34の回転速度を調整する(ステップS104)。その後、走査制御部42は、処理をステップS102に戻す。或いは、この例示に限定されず、走査制御部42は、図7の処理を終了してもよい。  The scanning control unit 42 calculates the angular width θ between the irradiation directions of the respective laser beams La by calculating the difference between the rotation angle positions of the rotors in the respective distance measurement units 2. If the angle width θ is not the predetermined constant value θc (NO in step S103), the scanning control unit 42 controls the motor 34 in at least one distance measuring unit 2 so that the angle width θ becomes the constant value θc. Is adjusted (step S104). Thereafter, the scanning control unit 42 returns the processing to Step S102. Alternatively, without being limited to this example, the scanning control unit 42 may end the processing in FIG.
一方、該角度幅θが予め定めた一定値θcであれば(ステップS103でYES)、走査制御部42は、図7の処理を終了する。  On the other hand, if the angle width θ is the predetermined constant value θc (YES in step S103), the scanning control unit 42 ends the processing in FIG.
なお、予め定めた一定値θcは、たとえば90°であるが、この例示に限定されず、予め定めた範囲内の所定値であってもよい。つまり、走査制御部42は、角度幅θを予め定めた範囲内の所定値に調整してもよい。予め定めた範囲は、たとえば、0°<θ≦180°であり、好ましくは0°<θ<180°である。  Note that the predetermined constant value θc is, for example, 90 °, but is not limited to this example, and may be a predetermined value within a predetermined range. That is, the scanning control unit 42 may adjust the angle width θ to a predetermined value within a predetermined range. The predetermined range is, for example, 0 ° <θ ≦ 180 °, preferably 0 ° <θ <180 °.
以上に説明したように、走査制御部42は、少なくとも1つの距離測定部3Aにおけるレーザ光Laの照射方向の走査速度を位置検出部34bの検出結果に基づいて調整する。この調整により、走査制御部42は、各々の距離測定部3Aにおけるレーザ光Laの照射方向の回転角度位置の差を予め定められた一定値にする。こうすれば、各々の距離測定部3Aにおけるレーザ光Laの照射方向間の角度幅θ(図4参照)を一定に維持することができる。  As described above, the scanning control unit 42 adjusts the scanning speed of the at least one distance measuring unit 3A in the irradiation direction of the laser beam La based on the detection result of the position detecting unit 34b. With this adjustment, the scanning control unit 42 sets the difference between the rotation angle positions of the irradiation directions of the laser light La in the respective distance measurement units 3A to a predetermined constant value. This makes it possible to maintain a constant angular width θ (see FIG. 4) between the irradiation directions of the laser beam La in each of the distance measurement units 3A.
<1-2.距離測定装置> また、無人搬送車100は、距離測定装置1を備える。距離測定装置1は、無人搬送車100の外部に位置する物体OJを検知し、該物体OJまでの距離と無人搬送車100の位置に対して該物体OJが位置する方位とを検出する。これにより、無人搬送車100は、自己の周囲の地
図情報作成及び自己位置同定などを行うことができる。 
<1-2. Distance measuring device> The automatic guided vehicle 100 includes the distance measuring device 1. The distance measuring device 1 detects an object OJ located outside the automatic guided vehicle 100, and detects a distance to the object OJ and an azimuth where the object OJ is located with respect to the position of the automatic guided vehicle 100. Thereby, the automatic guided vehicle 100 can create map information around itself and identify its own position.
距離測定装置1は、第1距離測定ユニット21と第2距離測定ユニット22とを含む、複数の距離測定ユニット2と、制御ユニット109の一部と、を備える(図5参照)。より具体的には、距離測定装置1は、本実施形態では、複数の距離測定部3Aと、計測部35と、走査制御部42と、判定部43と、地図作成部44と、位置同定部45と、を備える。  The distance measurement device 1 includes a plurality of distance measurement units 2 including a first distance measurement unit 21 and a second distance measurement unit 22, and a part of the control unit 109 (see FIG. 5). More specifically, in the present embodiment, the distance measurement device 1 includes a plurality of distance measurement units 3A, a measurement unit 35, a scan control unit 42, a determination unit 43, a map creation unit 44, a position identification unit 45.
距離測定装置1が有する複数の距離測定部3Aは、第1距離測定ユニット21の距離測定部と、第2距離測定ユニット22の距離測定部と、を含む。本実施形態(図2参照)では、第1距離測定ユニット21の距離測定部は、無人搬送車100の前端部において右方D3R側に配置される。また、第2距離測定ユニット22の距離測定部は、無人搬送車100の前端部において左方D3L側に配置される。なお、ここでの「右方D3R側」及び「左方D3L側」はそれぞれ、無人搬送車100が前進する方向D1fと交わる水平な方向の一方側及び他方側の一例である。  The plurality of distance measurement units 3A included in the distance measurement device 1 include a distance measurement unit of the first distance measurement unit 21 and a distance measurement unit of the second distance measurement unit 22. In the present embodiment (see FIG. 2), the distance measuring unit of the first distance measuring unit 21 is disposed on the right D3R side at the front end of the automatic guided vehicle 100. The distance measuring unit of the second distance measuring unit 22 is disposed on the left D3L side at the front end of the automatic guided vehicle 100. Here, the “right D3R side” and the “left D3L side” are respectively examples of one side and the other side in a horizontal direction intersecting with the direction D1f in which the automatic guided vehicle 100 moves forward.
こうすれば、無人搬送車100の前端部において、第1距離測定ユニット21の距離測定部と第2距離測定ユニット22の距離測定部を左右方向D3に離して配置できる。従って、距離測定装置1の外部に位置する物体OJ及びその相対位置をより広範囲に検知できる。また、他の無人搬送車100aに搭載される距離測定装置から照射されるレーザ光La、及び/又は他の無人搬送車100aに搭載される距離測定装置に由来する反射光Lbが、第1距離測定ユニット21の距離測定部及び第2距離測定ユニット22の距離測定部の両方で受光され難くなる。実在しない物体及びその位置を誤って検知することがより防止し易くなる。  In this case, at the front end of the automatic guided vehicle 100, the distance measuring unit of the first distance measuring unit 21 and the distance measuring unit of the second distance measuring unit 22 can be arranged apart in the left-right direction D3. Therefore, the object OJ located outside the distance measuring device 1 and its relative position can be detected in a wider range. In addition, the laser beam La emitted from the distance measuring device mounted on the other automatic guided vehicle 100a and / or the reflected light Lb derived from the distance measuring device mounted on the other automatic guided vehicle 100a is the first distance. It is difficult for both the distance measurement unit of the measurement unit 21 and the distance measurement unit of the second distance measurement unit 22 to receive light. It becomes easier to prevent erroneous detection of a non-existent object and its position.
なお、第1距離測定ユニット21及び第2距離測定ユニット22の距離測定部3Aの配置は、本実施形態の例示に限定されない。図8は、距離測定ユニット2の距離測定部3Aの他の配置例を示す上面図である。図8に示すように、第2距離測定ユニット22の距離測定部は、無人搬送車100の後端部において左方D3L側に配置されてもよい。なお、ここでの「右方D3R側」及び「左方D3L側」はそれぞれ、無人搬送車100が前進する方向D1fと交わる水平な方向の一方側及び他方側の一例である。  The arrangement of the distance measuring units 3A of the first distance measuring unit 21 and the second distance measuring unit 22 is not limited to the example of the present embodiment. FIG. 8 is a top view illustrating another arrangement example of the distance measuring unit 3A of the distance measuring unit 2. As illustrated in FIG. 8, the distance measuring unit of the second distance measuring unit 22 may be disposed on the left D3L side at the rear end of the automatic guided vehicle 100. Here, the “right D3R side” and the “left D3L side” are respectively examples of one side and the other side in a horizontal direction intersecting with the direction D1f in which the automatic guided vehicle 100 moves forward.
こうすれば、第1距離測定ユニット21の距離測定部と第2距離測定ユニット22の距離測定部とを、前方D1fを挟む無人搬送車100の対角方向に離して配置できる。そのため、第1距離測定ユニット21の距離測定部と第2距離測定ユニット22の距離測定部との間の間隔がさらに広くなる。従って、距離測定装置1の外部に位置する物体OJ及びその相対位置がさらに広範囲に検知できる。  In this case, the distance measurement unit of the first distance measurement unit 21 and the distance measurement unit of the second distance measurement unit 22 can be arranged apart from each other in the diagonal direction of the automatic guided vehicle 100 across the front D1f. Therefore, the distance between the distance measuring unit of the first distance measuring unit 21 and the distance measuring unit of the second distance measuring unit 22 is further increased. Therefore, the object OJ located outside the distance measuring device 1 and its relative position can be detected in a wider range.
また、他の無人搬送車100aに搭載される距離測定装置から照射されるレーザ光La、及び/又は他の無人搬送車100aに搭載される距離測定装置に由来する反射光Lbが、第1距離測定ユニット21の距離測定部及び第2距離測定ユニット22の距離測定部の両方で受光され難くなる。よって、実在しない物体及びその位置を誤って検出することがさらに防止し易くなる。  In addition, the laser beam La emitted from the distance measuring device mounted on the other automatic guided vehicle 100a and / or the reflected light Lb derived from the distance measuring device mounted on the other automatic guided vehicle 100a is the first distance. It is difficult for both the distance measurement unit of the measurement unit 21 and the distance measurement unit of the second distance measurement unit 22 to receive light. Therefore, it becomes easier to prevent erroneous detection of a non-existent object and its position.
なお、図8の例示に限定されず、第1距離測定ユニット21の距離測定部は、無人搬送車100の後端部において、右方D3R側に配置されてもよい。さらに、第2距離測定ユニット22の距離測定部は、無人搬送車100の前端部において、右方D3R側に配置されてもよい。  Note that the distance measuring unit of the first distance measuring unit 21 is not limited to the example illustrated in FIG. 8 and may be disposed on the right D3R side at the rear end of the automatic guided vehicle 100. Further, the distance measuring unit of the second distance measuring unit 22 may be disposed on the right D3R side at the front end of the automatic guided vehicle 100.
以上に説明したように、無人搬送車100は、距離測定装置1を備える。これにより、距離測定装置1の外部に位置する物体OJ及びその位置を誤って検出することを防止できる距離測定装置1を無人搬送車100に搭載できる。  As described above, the automatic guided vehicle 100 includes the distance measuring device 1. Thereby, the distance measuring device 1 that can prevent the object OJ located outside the distance measuring device 1 and its position from being erroneously detected can be mounted on the automatic guided vehicle 100.
<2.変形例> 次に、実施形態の変形例について、上述の実施形態と異なる構成を説明する。図9は、変形例に係る無人搬送車100の上面図である。図10は、変形例に係る距離測定ユニット2の距離測定部3Aの構成例を示す断面図である。なお、図9は、無人搬送車100近傍を図示しているため、各々の距離測定ユニット2の走査範囲Rs1、Rs2の一部を示している。また、以下では、上述の実施形態と同様の構成要素には同じ符号を付し、その説明を省略することがある。  <2. Modified Example> Next, a modified example of the embodiment will be described, which is different from the above-described embodiment. FIG. 9 is a top view of the automatic guided vehicle 100 according to the modification. FIG. 10 is a cross-sectional view illustrating a configuration example of a distance measuring unit 3A of a distance measuring unit 2 according to a modification. Since FIG. 9 illustrates the vicinity of the automatic guided vehicle 100, a part of the scanning ranges Rs1 and Rs2 of each distance measuring unit 2 is illustrated. In the following, the same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof may be omitted.
変形例では、各々の距離測定ユニット2において、距離測定部3Aの筐体30は、光照射部31及び受光部32と他の距離測定ユニットの距離測定部との間を遮光する。そのため、透光部301は、透光部301は、回転方向に沿って延びる円弧形状である。このような筐体30の遮光により、図9に示すように、距離測定ユニット2の光照射部31から他の距離測定ユニットへのレーザ光Laの照射と、他の距離測定ユニットから受光部32へのレーザ光Laの入射と、をより確実に防止できる。  In a modified example, in each distance measurement unit 2, the housing 30 of the distance measurement unit 3A shields light between the light irradiation unit 31 and the light reception unit 32 and the distance measurement unit of another distance measurement unit. Therefore, the light transmitting portion 301 has an arc shape extending along the rotation direction. As shown in FIG. 9, by the light shielding of the housing 30, as shown in FIG. And the laser beam La can be more reliably prevented from entering.
また、各々の距離測定ユニット2において、図10に示すように、距離測定部3Aは、光反射部材39をさらに有する。光反射部材39は、回転筐体33よりも径方向外方において筐体30の内側面に設けられる。光反射部材39は、予め定められた回転角度位置に固定され、且つ、光照射部31から照射されるパルス状のレーザ光Laを受光部32に向けて反射する。受光部32は、光反射部材39から入射する反射光Lpを検出する。なお、反射光Lpは、パルス発光されるレーザ光Laが光反射部材39で反射されたパルス光である。  Further, in each of the distance measurement units 2, as shown in FIG. 10, the distance measurement unit 3A further includes a light reflecting member 39. The light reflecting member 39 is provided on the inner side surface of the housing 30 radially outward of the rotating housing 33. The light reflecting member 39 is fixed at a predetermined rotation angle position, and reflects the pulsed laser light La emitted from the light emitting unit 31 toward the light receiving unit 32. The light receiving unit 32 detects the reflected light Lp incident from the light reflecting member 39. Note that the reflected light Lp is a pulse light in which the pulsed laser light La is reflected by the light reflecting member 39.
次に、変形例において、走査制御部42が各々の距離測定ユニット2から照射されるレーザ光Laの照射方向を調整する方法を説明する。図11は、変形例においてレーザ光の照射方向を調整する方法を説明するためのフローチャートである。  Next, a description will be given of a method in which the scanning control unit 42 adjusts the irradiation direction of the laser beam La emitted from each of the distance measurement units 2 in a modified example. FIG. 11 is a flowchart for explaining a method of adjusting the irradiation direction of laser light in the modification.
各々の距離測定ユニット2の測定動作が開始されると(ステップS201)、各々の距離測定部3Aの計測部35は、反射光Lpの受光タイミングを計測する(ステップS202)。  When the measuring operation of each distance measuring unit 2 is started (Step S201), the measuring unit 35 of each distance measuring unit 3A measures the light receiving timing of the reflected light Lp (Step S202).
走査制御部42は、各々の距離測定部3Aにおける反射光Lpの受光タイミングの差ΔTを算出する。受光タイミングの差ΔTが予め定めた一定値ΔTcでなければ(ステップS203でNO)、走査制御部42は、受光タイミングの差ΔTが一定値ΔTcとなるように、少なくとも1つの距離測定ユニット2においてモータ34の回転速度を調整する(ステップS204)。その後、走査制御部42は、処理をステップS202に戻す。或いは、この例示に限定されず、走査制御部42は、図11の処理を終了してもよい。  The scanning control unit 42 calculates the difference ΔT between the light receiving timings of the reflected light Lp in each distance measuring unit 3A. If the difference ΔT between the light receiving timings is not the predetermined constant value ΔTc (NO in step S203), the scanning control unit 42 controls the at least one distance measuring unit 2 so that the difference ΔT between the light receiving timings becomes the constant value ΔTc. The rotation speed of the motor 34 is adjusted (step S204). Thereafter, the scanning control unit 42 returns the processing to Step S202. Alternatively, without being limited to this example, the scanning control unit 42 may end the processing in FIG.
一方、受光タイミングの差ΔTが予め定めた一定値θcであれば(ステップS203でYES)、走査制御部42は、図11の処理を終了する。  On the other hand, if the difference ΔT between the light receiving timings is a predetermined constant value θc (YES in step S203), the scanning control unit 42 ends the processing in FIG.
図11のステップ204では、走査制御部42は、少なくとも1つの距離測定ユニット2の距離測定部3Aにおけるモータ34によるレーザ光Laの走査速度を調整することにより、各々の距離測定部3Aにおけるパルス状の反射光Lpの受光タイミングの差ΔTを予め定められた一定値ΔTcにする。こうすれば、光反射部材39で反射されるパルス状の反射光Lpの各々の距離測定部3Aにおける受光タイミングの差を予め定められた一定値にすることにより、各々の距離測定部3Aにおけるレーザ光の走査速度と、各々の距離測定部3A間におけるレーザ光の照射方向の角度幅θとを一定に維持することができる。  In step 204 of FIG. 11, the scanning control unit 42 adjusts the scanning speed of the laser beam La by the motor 34 in the distance measuring unit 3A of at least one distance measuring unit 2 so that the pulse shape in each distance measuring unit 3A is adjusted. Of the light receiving timing of the reflected light Lp is set to a predetermined constant value ΔTc. In this case, the difference between the light receiving timings of the pulse-like reflected light Lp reflected by the light reflecting member 39 in each of the distance measuring units 3A is set to a predetermined constant value, so that the laser in each of the distance measuring units 3A is changed. The scanning speed of the light and the angular width θ in the irradiation direction of the laser light between the respective distance measuring units 3A can be kept constant.
なお、図11の例示に限定されず、走査制御部42は、ステップS203及びS204において、受光タイミングの差ΔTが予め定めた一定値ΔTc以内となるような調整を行ってもよい。  The scanning control unit 42 is not limited to the example illustrated in FIG. 11, and may perform adjustment in steps S <b> 203 and S <b> 204 so that the difference ΔT between the light receiving timings is within a predetermined constant value ΔTc.
<3.その他> 以上、本開示の例示的な実施形態を説明した。なお、本発明の範囲は上述の開示に限定されない。本開示は、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。また、本開示で説明した事項は、矛盾を生じない範囲で適宜任意に組み合わせることができる。  <3. Others> The exemplary embodiments of the present disclosure have been described above. Note that the scope of the present invention is not limited to the above disclosure. The present disclosure can be implemented with various modifications without departing from the spirit of the invention. In addition, matters described in the present disclosure can be arbitrarily combined as appropriate without causing contradiction.
たとえば、上述の実施形態及びその変形例では、距離測定部3Aを制御する測定制御部3Bは、距離測定ユニット2毎に設けられる。但し、この例示に限定されず、測定制御部3Bは、各々の距離測定ユニット2とは別に設けられ、複数の距離測定部3Aを制御してもよい。さらに、測定制御部3Bの少なくとも一部は、制御部4に設けられてもよい。たとえば、計測部35は、制御部4に設けられてもよい。  For example, in the above-described embodiment and its modifications, the measurement control unit 3B that controls the distance measurement unit 3A is provided for each distance measurement unit 2. However, the present invention is not limited to this example, and the measurement control unit 3B may be provided separately from each of the distance measurement units 2 and control a plurality of distance measurement units 3A. Further, at least a part of the measurement control unit 3B may be provided in the control unit 4. For example, the measurement unit 35 may be provided in the control unit 4.
本開示は、複数の距離測定ユニットを有する装置に有用である。 The present disclosure is useful for an apparatus having a plurality of distance measurement units.
100,100a・・・無人搬送車、101・・・車体、102・・・荷台、103L,103R・・・支持部、104L,104R・・・駆動モータ、105L,105R・・・駆動輪、106F,106R・・・従動輪、107・・・バッテリー、108・・・通信部、109・・・制御ユニット、1・・・距離測定装置、2・・・距離測定ユニット、21・・・第1距離測定ユニット、22・・・第2距離測定ユニット、3A・・・距離測定部、3B・・・測定制御部、30・・・筐体、301・・・透光部、31・・・光照射部311・・・LD、311a・・・LDドライバ、312・・・基板、313・・・コリメートレンズ、314・・・投光ミラー、32・・・受光部、321・・・受光レンズ、322・・・受光ミラー、323・・・波長フィルタ、324・・・受光素子、325・・・コンパレータ、33・・・回転筐体、33a・・・開口、34・・・モータ、34a・・・シャフト、34b・・・位置検出部、35・・・計測部、36・・・演算処理部、37・・・モータドライバ、38・・・通信I/F、39・・・光反射部材、4・・・制御部、41・・・駆動制御部、42・・・走査制御部、43・・・判定部、44・・・地図作成部、45・・・位置同定部、5・・・記憶部、・・・回転軸、La,L1a,L2a・・・レーザ光、Lb,L1b,L3b,Lp・・・反射光、G・・・路面、OJ・・・物体、θ・・・角度幅、θc・・・一定値、ΔT・・・受光タイミングの差、ΔTc・・・一定値、Rs,Rs1,Rs2・・・走査範囲、D1・・・鉛直方向、D1d・・・鉛直下方、D1t・・・鉛直上方、D2f・・・前方、D2r・・・後方、D3・・・左右方向、D3L・・・左方、D3R・・・右方 100, 100a: automatic guided vehicle, 101: body, 102: carrier, 103L, 103R: support, 104L, 104R: drive motor, 105L, 105R: drive wheel, 106F , 106R: driven wheel, 107: battery, 108: communication unit, 109: control unit, 1 ... distance measuring device, 2 ... distance measuring unit, 21 ... first Distance measuring unit, 22: second distance measuring unit, 3A: distance measuring unit, 3B: measuring control unit, 30: housing, 301: translucent unit, 31: light Irradiating unit 311 LD, 311a LD driver, 312 substrate, 313 collimating lens, 314 projecting mirror, 32 light receiving unit, 321 light receiving lens 322: light receiving mirror, 23 ... wavelength filter, 324 ... light receiving element, 325 ... comparator, 33 ... rotary housing, 33a ... opening, 34 ... motor, 34a ... shaft, 34b ... Position detecting section, 35 measuring section, 36 processing section, 37 motor driver, 38 communication I / F, 39 light reflecting member, 4 control section, 41: drive control unit, 42: scan control unit, 43: determination unit, 44: map creation unit, 45: position identification unit, 5: storage unit, rotation Axes, La, L1a, L2a: laser light, Lb, L1b, L3b, Lp: reflected light, G: road surface, OJ: object, θ: angular width, θc: constant Value, ΔT: difference in light receiving timing, ΔTc: constant value, Rs, Rs1, Rs2: scanning range, D1 ·・ ・ Vertical direction, D1d ・ ・ ・ Vertical downward, D1t ・ ・ ・ Vertical upward, D2f ・ ・ ・ Front, D2r ・ ・ ・ Backward, D3 ・ ・ ・ Left and right direction, D3L ・ ・ ・ Left, D3R ・ ・ ・ Right One

Claims (13)

  1. 複数の距離測定部と、計測部と、走査制御部と、判定部と、を備え、 前記距離測定部は、  レーザ光を該距離測定部の外部に照射する光照射部と、  前記レーザ光の反射光を受光する受光部と、  回転軸を中心にして前記レーザ光を回転方向に走査する走査機構と、を有し、 前記走査制御部は、各々の前記距離測定部の前記走査機構の駆動を制御し、各々の前記距離測定部の前記光照射部から照射される前記レーザ光をそれぞれ異なる方向に照射させ、 前記計測部は、前記レーザ光の照射タイミング及び前記照射方向と前記受光部の受光結果とに基づいて、所定の基準位置に対して前記距離測定部の外部に位置する物体の相対位置を算出し、 前記判定部は、前記距離測定部毎に算出される各々の前記相対位置の比較を行い、該比較の結果に基づいて前記相対位置に前記物体が実在するか否かを判定する、距離測定装置。 A plurality of distance measuring units, a measuring unit, a scanning control unit, and a determining unit, wherein the distance measuring unit is: a light irradiating unit that irradiates a laser beam outside the distance measuring unit; A light receiving unit that receives the reflected light; and a scanning mechanism that scans the laser light in a rotational direction about a rotation axis, and the scanning control unit drives the scanning mechanism of each of the distance measuring units. Controlling the laser light emitted from the light irradiating unit of each of the distance measuring units in different directions, the measuring unit, the irradiation timing of the laser light and the irradiation direction and the light receiving unit Based on the light receiving result, a relative position of an object located outside the distance measurement unit with respect to a predetermined reference position is calculated, and the determination unit calculates each of the relative positions calculated for each of the distance measurement units. And compare the It said object on the relative position based on the result of the compare and determines whether the actual distance measuring device.
  2. 前記受光部は、前記回転軸が延びる方向から見て、前記走査機構により回転方向に走査される前記レーザ光の照射方向と平行な方向から入射する前記反射光を受光する、請求項1に記載の距離測定装置。 2. The light receiving unit according to claim 1, wherein the light receiving unit receives the reflected light incident from a direction parallel to an irradiation direction of the laser light scanned in the rotation direction by the scanning mechanism when viewed from a direction in which the rotation axis extends. 3. Distance measuring device.
  3. 前記判定部は、  各々の前記距離測定部間において同じ前記相対位置が複数算出されれば、該相対位置に前記物体が実在すると判定する、請求項1又は請求項2に記載の距離測定装置。 3. The distance measuring device according to claim 1, wherein the determining unit determines that the object is actually present at the relative position if a plurality of the same relative positions are calculated between the distance measuring units. 4.
  4. 前記判定部は、  同じ前記相対位置に対応する前記反射光の受光強度を前記距離測定部毎に比較し、  各々の前記距離測定部間における前記受光強度の差が所定値以下であれば、該相対位置に前記物体が実在すると判定する、請求項1又は請求項2に記載の距離測定装置。 The determination unit compares the received light intensity of the reflected light corresponding to the same relative position for each of the distance measuring units, and if the difference in the received light intensity between each of the distance measuring units is equal to or less than a predetermined value, The distance measuring device according to claim 1, wherein it is determined that the object exists at a relative position.
  5. 前記計測部は、各々の前記距離測定部において、前記受光部に入射する光の受光強度が上限値以下であれば、該受光部の受光結果に応じた
    前記相対位置を算出する、請求項1から請求項4のいずれか1項に記載の距離測定装置。
    The said measurement part calculates the said relative position according to the light-receiving result of this light-receiving part, if the light-receiving intensity of the light which injects into the said light-receiving part is less than an upper limit in each said distance measurement part. The distance measuring device according to any one of claims 1 to 4.
  6. 各々の前記距離測定部から照射される前記レーザ光の走査方向及び走査速度は同じである、請求項1から請求項5のいずれか1項に記載の距離測定装置。 The distance measuring device according to any one of claims 1 to 5, wherein a scanning direction and a scanning speed of the laser light emitted from each of the distance measuring units are the same.
  7. 複数の前記距離測定部は、第1距離測定部と、第2距離測定部と、を含み、 軸方向から見て、前記第1距離測定部から照射される前記レーザ光の第1照射方向は、前記第2距離測定部から照射される前記レーザ光の第2照射方向と直交する、請求項6に記載の距離測定装置。 The plurality of distance measurement units include a first distance measurement unit and a second distance measurement unit, and when viewed from the -axis direction, the first irradiation direction of the laser light emitted from the first distance measurement unit is 7. The distance measuring device according to claim 6, wherein the laser beam emitted from the second distance measuring unit is orthogonal to a second irradiation direction.
  8. 前記走査機構は、前記走査機構により回転方向に走査される前記レーザ光の照射方向の回転角度位置を検出する位置検出部を有し、 前記走査制御部は、少なくとも1つの前記距離測定部における前記レーザ光の照射方向の走査速度を前記位置検出部の検出結果に基づいて調整することにより、各々の前記距離測定部における前記レーザ光の照射方向の回転角度位置の差を予め定められた一定値にする、請求項1から請求項7のいずれか1項に記載の距離測定装置。 The scanning mechanism has a position detection unit that detects a rotation angle position in an irradiation direction of the laser light that is scanned in a rotation direction by the scanning mechanism. By adjusting the scanning speed in the irradiation direction of the laser light based on the detection result of the position detection unit, the difference between the rotation angle positions in the irradiation direction of the laser light in each of the distance measurement units is a predetermined constant value. The distance measuring device according to any one of claims 1 to 7, wherein:
  9. 前記距離測定部は、前記光照射部及び前記受光部を収容する筐体をさらに有し、  前記筐体は、前記光照射部及び前記受光部と他の距離測定部との間を遮光する、請求項1から請求項8のいずれか1項に記載の距離測定装置。 The distance measurement unit further includes a housing that houses the light irradiation unit and the light receiving unit, and the housing shields light between the light irradiation unit and the light reception unit and another distance measurement unit. The distance measuring device according to any one of claims 1 to 8.
  10. 前記距離測定部は、予め定められた回転角度位置に固定され且つ前記光照射部から照射されるパルス光を前記受光部に向けて反射する光反射部材をさらに有し、 前記走査制御部は、少なくとも1つの前記距離測定部における前記走査機構による前記レーザ光の走査速度を調整することにより、各々の前記距離測定部における前記パルス光の受光タイミングの差を予め定められた一定値にする、請求項1から請求項9のいずれか1項に記載の距離測定装置。 The distance measuring unit further includes a light reflecting member fixed at a predetermined rotation angle position and reflecting the pulse light emitted from the light emitting unit toward the light receiving unit, and the scanning control unit includes: Adjusting a scanning speed of the laser beam by the scanning mechanism in at least one of the distance measurement units to make a difference between light reception timings of the pulse light in each of the distance measurement units a predetermined constant value. The distance measuring device according to any one of claims 1 to 9.
  11. 路面を走行する移動体であって、 請求項1から請求項10のいずれか1項に記載の距離測定装置を備える、移動体。 A moving object that travels on a road surface, and is provided with the distance measuring device according to any one of claims 1 to 10.
  12. 前記距離測定装置が有する複数の距離測定部は、第1距離測定部と、第2距離測定部と、を含み、  前記第1距離測定部は、前記移動体の前端部において前記移動体が前進する方向と交わる水平な方向の一方側に配置され、  前記第2距離測定部は、前記移動体の前端部において前記水平な方向の他方側に配置される、請求項11に記載の移動体。 The plurality of distance measuring units included in the distance measuring device include a first distance measuring unit and a second distance measuring unit, and the first distance measuring unit is configured such that the moving body moves forward at a front end of the moving body. The moving body according to claim 11, wherein the moving body is arranged on one side in a horizontal direction intersecting with the moving direction, and the second distance measuring unit is arranged on the other side in the horizontal direction at a front end of the moving body.
  13. 前記距離測定装置が有する複数の前記距離測定部は、第1距離測定部と、第2距離測定部と、を含み、  前記第1距離測定部は、前記移動体の前端部において前記移動体が前進する方向と交わる水平な方向の一方側に配置され、  前記第2距離測定部は、前記移動体の後端部において前記水平な方向の他方側に配置される、請求項11に記載の移動体。 The plurality of distance measuring units included in the distance measuring device include a first distance measuring unit and a second distance measuring unit, and the first distance measuring unit includes a moving body at a front end of the moving body. The movement according to claim 11, wherein the second distance measurement unit is disposed on one side in a horizontal direction intersecting with the forward direction, and the second distance measurement unit is disposed on the other end in the horizontal direction at a rear end of the moving body. body.
PCT/JP2019/030986 2018-08-24 2019-08-06 Distance measuring device, and mobile body WO2020039916A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-157138 2018-08-24
JP2018157138 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020039916A1 true WO2020039916A1 (en) 2020-02-27

Family

ID=69592886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030986 WO2020039916A1 (en) 2018-08-24 2019-08-06 Distance measuring device, and mobile body

Country Status (1)

Country Link
WO (1) WO2020039916A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101274A (en) * 1994-09-30 1996-04-16 Nissan Motor Co Ltd Obstacle detector
JP2014052274A (en) * 2012-09-06 2014-03-20 Fujitsu Ltd Object detection apparatus, object detection program, and vehicle
JP2018059846A (en) * 2016-10-06 2018-04-12 オムロンオートモーティブエレクトロニクス株式会社 Laser radar system
JP2018059879A (en) * 2016-10-07 2018-04-12 富士通株式会社 Distance measurement device, distance measurement method, and distance measurement program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101274A (en) * 1994-09-30 1996-04-16 Nissan Motor Co Ltd Obstacle detector
JP2014052274A (en) * 2012-09-06 2014-03-20 Fujitsu Ltd Object detection apparatus, object detection program, and vehicle
JP2018059846A (en) * 2016-10-06 2018-04-12 オムロンオートモーティブエレクトロニクス株式会社 Laser radar system
JP2018059879A (en) * 2016-10-07 2018-04-12 富士通株式会社 Distance measurement device, distance measurement method, and distance measurement program

Similar Documents

Publication Publication Date Title
CN110121660B (en) Laser radar sensor assembly calibration based on reference surface
US8406950B2 (en) Optoelectronic sensor
US20180222581A1 (en) Gas Detection Device and Gas Detection Method
TWI684084B (en) Mobile device
US10816663B2 (en) Distance measuring device and distance measuring method
US20160170412A1 (en) Autonomous mobile device and method for controlling same
WO2019064750A1 (en) Distance measurement device and moving body
JP4525473B2 (en) Mobile robot position control system and position control method
KR20170063196A (en) Lidar and controlling method for the same
KR101213987B1 (en) Apparatus for measurementing distance and method for controlling the same
US9798005B2 (en) Three-dimensional space measurement device and method for operating same
KR101814129B1 (en) Optical Apparatus for Lidar System
WO2018173595A1 (en) Movement device
WO2020071465A1 (en) Distance measurement device
JP2018151286A (en) Object detector
KR102595870B1 (en) Compact Lidar Sensor
WO2020039916A1 (en) Distance measuring device, and mobile body
WO2020045474A1 (en) Sensor unit and mobile body
WO2018173594A1 (en) Distance measurement device and transport vehicle
US20230135740A1 (en) Distance measurement device, and mounting orientation sensing method and mounting orientation sensing program for same
WO2020045445A1 (en) Distance measuring device, distance measuring device group, and distance measuring device system
WO2019181692A1 (en) Distance measurement device and moving body
WO2019146440A1 (en) Distance measurement device, and mobile body
US20230139369A1 (en) Micro-lidar sensor
WO2018173589A1 (en) Distance measurement device and movement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP