WO2020071465A1 - Distance measurement device - Google Patents

Distance measurement device

Info

Publication number
WO2020071465A1
WO2020071465A1 PCT/JP2019/039044 JP2019039044W WO2020071465A1 WO 2020071465 A1 WO2020071465 A1 WO 2020071465A1 JP 2019039044 W JP2019039044 W JP 2019039044W WO 2020071465 A1 WO2020071465 A1 WO 2020071465A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
correction method
angular position
light
measured
Prior art date
Application number
PCT/JP2019/039044
Other languages
French (fr)
Japanese (ja)
Inventor
和穂 江川
岡本 修治
石丸 裕
智浩 江川
佐伯 哲夫
裕多 堀
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2020550526A priority Critical patent/JPWO2020071465A1/en
Publication of WO2020071465A1 publication Critical patent/WO2020071465A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves

Definitions

  • the present invention relates to a distance measuring device.
  • Patent Document 1 discloses the following signal processing device for a distance measuring device.
  • the signal processing device disclosed in Patent Document 1 corresponds to a light projecting unit that outputs pulsed measurement light to a measurement target space via an optical window by detecting reflected light from an object to be measured existing in the measurement target space. And a light receiving unit that outputs a reflected signal to be processed.
  • the signal processing device includes a differential processing unit, a waveform determination unit, and a calculation unit.
  • the differentiation processing section differentiates the reflection signal output from the light receiving section.
  • the waveform judging section is configured to determine the reflected light based on the rising and falling characteristics of the first-order differential reflection signal obtained by first-order differentiation of the reflected signal by the differentiation processing section and the rising characteristic of the second-order differential reflection signal obtained by secondarily differentiating the reflected signal. Is a reflected light from a plurality of objects to be measured is a superimposed reflected light.
  • the calculation unit calculates and outputs the distance to the device under test based on the reflection signal according to the determination result by the waveform determination unit.
  • Patent Document 1 there is no problem to improve the distance measurement accuracy of the translucent reflector or the small object. Further, in Patent Document 1, it is necessary to detect a situation in which the distance to the measured object may not be accurately calculated based on the processing by the differential processing unit, so that the calculation processing load increases. That is, in Patent Document 1, there is a possibility that the calculation load is large and the distance measurement accuracy is insufficient depending on the characteristics of the distance measurement target.
  • an object of the present invention is to provide a distance measuring device capable of improving the distance measuring accuracy while suppressing the processing load and irrespective of the characteristics of the distance measuring object.
  • An exemplary distance measuring device includes a light emitting unit that includes a light emitting unit and performs rotational scanning of emitted light, a light receiving unit that outputs a light receiving signal based on light reception, an emission of the emitted light, and the light receiving unit.
  • a distance measurement unit that measures a distance to a measurement target based on light reception by the first and second light sources, wherein the distance measurement unit performs correction in accordance with detection of both rising and falling in the light reception signal.
  • the distance measurement unit is configured to calculate at least the distance measured using the first correction method, of the distance measured using the first correction method and the distance measured using the second correction method. Based on the distance comparison processing used, the second And outputs the distance measured by using a positive method as the measurement distance.
  • the exemplary distance measuring device of the present invention it is possible to improve the distance measuring accuracy while suppressing the processing load.
  • FIG. 1 is a diagram illustrating an example of an ideal light receiving signal and an actual light receiving signal.
  • FIG. 2 is a diagram of a light receiving signal for explaining pulse width correction.
  • FIG. 3 is a diagram of a light receiving signal for explaining slew rate correction.
  • FIG. 4 is a diagram illustrating an example of a light-transmitting object and emission of light emitted to the object.
  • FIG. 5 is a diagram illustrating an example of emission of emitted light to non-light-transmitting objects located on the near side and the far side.
  • FIG. 6 is a waveform diagram illustrating an example of a case where two light receiving signal components are separated.
  • FIG. 7 is a waveform diagram showing an example of a case where two light receiving signal components overlap.
  • FIG. 1 is a diagram illustrating an example of an ideal light receiving signal and an actual light receiving signal.
  • FIG. 2 is a diagram of a light receiving signal for explaining pulse width correction.
  • FIG. 3 is a diagram of a
  • FIG. 8 is a diagram illustrating an example of a relationship between a preset pulse width used for pulse width correction and a correction amount.
  • FIG. 9 is a diagram illustrating an example of a relationship between the emission angle of the laser light and the measurement distance by the pulse width correction in the situation illustrated in FIG.
  • FIG. 10 is a schematic overall perspective view of the automatic guided vehicle according to one embodiment of the present invention.
  • FIG. 11 is a schematic side view of the automatic guided vehicle according to one embodiment of the present invention.
  • FIG. 12 is a plan view of the automatic guided vehicle according to one embodiment of the present invention as viewed from above.
  • FIG. 13 is a schematic side sectional view of the distance measuring device.
  • FIG. 14 is a block diagram illustrating an electrical configuration of the distance measuring device.
  • FIG. 15 is a block diagram illustrating an electrical configuration of the automatic guided vehicle.
  • FIG. 16 is a block diagram illustrating a first configuration example of the distance measurement unit.
  • FIG. 17 is a diagram showing the relationship between the light receiving signal and each threshold (reference voltage).
  • FIG. 18 is a diagram illustrating an example of rotational scanning of emitted light by the distance measuring device.
  • FIG. 19 is a flowchart relating to a first example of the distance measurement control process.
  • FIG. 20 is a flowchart relating to a first example of the distance measurement control process.
  • FIG. 21 is a diagram illustrating an example of distance measurement on a wall protruding forward.
  • FIG. 22 is a diagram illustrating an example of a case where the attitude of the distance measurement device changes.
  • FIG. 23 is a diagram illustrating another example of the case where the distance measurement device changes its posture.
  • FIG. 24 is a block diagram illustrating a second configuration example of the distance measurement unit.
  • FIG. 25 is a flowchart relating to a second example of the distance measurement control process.
  • FIG. 26 is a flowchart relating to a third example of the distance measurement control process.
  • FIG. 27 is a flowchart relating to a third example of the distance measurement control process.
  • the distance correction method used for distance measurement in the present embodiment will be described.
  • the distance is acquired by emitting a laser beam and receiving the reflected light reflected by the measurement target object, and measuring the time from emission to light reception.
  • the light receiving signal has a pulse waveform like the light receiving signal Ps' shown in FIG.
  • the distance to the measurement target can be accurately measured by measuring the elapsed time T 'from the emission timing t0 of the laser light to the rising timing of the light receiving signal Ps'.
  • the light receiving signal Ps shown in FIG. 1 has a rising edge and a falling edge having an inclination with respect to time.
  • an accurate distance to the measurement target cannot be measured only by measuring the elapsed time T from the laser light emission timing t0 to the rising timing of the light receiving signal Ps. Therefore, it is necessary to correct the elapsed time T by the correction amount ⁇ T, with the time from when the light receiving signal Ps shown in FIG. 1 rises from the zero level to the predetermined level as the correction amount ⁇ T. That is, it is necessary to subtract the correction amount ⁇ T from the elapsed time T.
  • the peak of the received light signal Ps increases or decreases due to a difference in the reflectance of the measurement target or the like.
  • the rising and falling slopes of the light receiving signal Ps change according to the increase and decrease of the peak of the light receiving signal Ps, and the correction amount ⁇ T changes. Therefore, it is necessary to consider such a change in the correction amount ⁇ T for accurate distance measurement.
  • pulse width correction and slew rate correction are employed as a method for correcting the distance.
  • the pulse width correction as the first correction method will be described using the waveform of the light receiving signal Ps shown in FIG.
  • the elapsed time T1 from the laser light emission timing t0 to the timing t1 at which the light receiving signal Ps rises and crosses the first threshold Vth1 is measured.
  • the pulse width W is calculated from the difference between the elapsed times T1 and T2.
  • the correction amount ⁇ T is the time from when the light receiving signal Ps rises from the zero level to the first threshold value Vth1. Therefore, the correction amount ⁇ T is determined from the relationship between the preset pulse width W and the correction amount ⁇ T and the actually calculated pulse width W. The distance is measured by subtracting the determined correction amount ⁇ T from the measured elapsed time T1.
  • the light receiving signal Ps is inverted, and the elapsed time from the laser light emission timing t0 to the timing t1 at which the light receiving signal Ps falls and crosses the first threshold value, and the light receiving signal Ps rises from the laser light emitting timing t0
  • the pulse width W may be calculated by measuring the elapsed time until the timing t2 crossing the first threshold.
  • the first correction method performs the correction in accordance with both the detection of the rising edge and the falling edge of the received light signal.
  • the slew rate correction as the second correction method will be described using the waveform of the light receiving signal Ps shown in FIG.
  • the light receiving signal Ps rises from the laser light emission timing t0 to the second threshold Vth2
  • the elapsed time T12 up to the timing t12 crossing Note that the second threshold value Vth2 is larger than the first threshold value Vth1.
  • the slew rate SR is calculated from the difference between the elapsed times T11 and T12.
  • the correction amount ⁇ T is the time from when the light receiving signal Ps rises from the zero level to the first threshold value Vth1. Therefore, the correction amount ⁇ T is determined from the relationship between the preset slew rate SR and the correction amount ⁇ T and the actually calculated slew rate SR. The distance is measured by subtracting the determined correction amount ⁇ T from the measured elapsed time T11.
  • the slew rate SR may be calculated by measuring the elapsed time until the timing when the second threshold ( ⁇ first threshold) is crossed.
  • the second correction method performs correction according to detection of one of the rising edge and the falling edge of the received light signal.
  • the first correction method is a pulse width correction in which the correction is performed based on the time between the timing at which the rising crosses the first threshold value and the timing at which the falling crosses the first threshold value.
  • the light reception signal component Ps200 due to the light reflected by the light transmission object 200 and the rear object The light receiving signal component Ps250 due to the reflected light at 250 is separated in time. For this reason, since the rising and falling of the light receiving signal component Ps200 cross the first threshold value Vth1, the accurate pulse width W1 can be calculated, and the accurate distance to the translucent object 200 is measured by the pulse width correction. It becomes possible.
  • the light receiving signal component Ps200 and the light receiving signal component Ps250 overlap as shown in the upper part of FIG.
  • the light receiving signal Ps is generated by combining the light receiving signal component Ps200 and the light receiving signal component Ps250. Therefore, the pulse width W2 calculated as a period from the time when the light receiving signal Ps rises to cross the first threshold Vth1 to the time when the light receiving signal Ps falls to cross the first threshold Vth1 is longer than the accurate pulse width W1.
  • FIG. 8 is a diagram illustrating an example of a relationship between a preset pulse width W used for pulse width correction and a correction amount ⁇ T.
  • the correction amount ⁇ T determined by the above relationship with the pulse width W2 is smaller by the error ⁇ Terr than the correction amount ⁇ T determined by the accurate pulse width W1 and the above relationship. Therefore, when the distance is measured by the pulse width correction, the distance to the translucent object 200 is measured to be longer than the actual distance.
  • FIG. 9 is a diagram illustrating an example of a relationship between the emission angle ⁇ L of the laser beam L and the measurement distance D by the pulse width correction in the situation illustrated in FIG. Note that the emission angle ⁇ L indicates a deviation angle of the emission direction of the laser light L from the front direction with respect to the translucent object 200.
  • the emission angle ⁇ L is small, the amount of reflected light from the translucent object 200 is large, and the amount of reflected light from the object 250 is small, so that an accurate pulse width can be detected.
  • the distance to the translucent object 200 can be accurately measured by the width correction.
  • the emission angle ⁇ L further increases, the amount of light reflected from the translucent object 200 decreases and the amount of light reflected from the object 250 increases, so that the phenomenon shown in FIG. 7 occurs.
  • the pulse width is detected to be longer, the correction amount decreases, and the distance to the translucent object 200 is measured to be longer than the actual distance, as in the hatched portion shown in FIG.
  • a distance position at which the distance is measured to be longer when pulse width correction is used as in the hatched portion is referred to as an intermediate point MP.
  • the emission angle ⁇ L is further increased, the amount of reflected light from the translucent object 200 is further reduced, and the amount of reflected light from the object 250 is further increased. Therefore, an accurate pulse width of the object 250 can be detected, as shown in FIG. Like a black portion, the distance to the object 250 can be accurately measured by pulse width correction.
  • a similar phenomenon is that, for example, the laser beam L is emitted when there is a non-translucent object 300 such as a front wall shown in FIG. 5 and a non-translucent object 350 such as a rear wall. It can happen in some cases.
  • the non-translucent object 300 may be a thin object such as a chair leg, in addition to a wall.
  • the use of the pulse width correction may cause an intermediate point.
  • the slew rate correction even if the situation shown in FIG. Since the rate is calculated, the slew rate can be accurately obtained. Therefore, an accurate distance can be measured.
  • the rising edge cannot be detected unless the peak of the light receiving signal is sufficiently large, so that the range in which the distance can be measured is smaller than that in the pulse width correction.
  • the distance measuring device of the present embodiment is configured to use the respective advantages of the pulse width correction and the slew rate correction.
  • the distance measuring device of the present embodiment will be described in detail below.
  • an example in which the distance measuring device is configured as a laser range finder will be described.
  • an automatic guided vehicle that is used to carry a load will be described as an example.
  • the automatic guided vehicle is also generally called an AGV (Automatic Guided Vehicle).
  • FIG. 10 is a schematic overall perspective view of the automatic guided vehicle 15 according to one embodiment of the present invention.
  • FIG. 11 is a schematic side view of the automatic guided vehicle 15 according to one embodiment of the present invention.
  • FIG. 12 is a plan view of the automatic guided vehicle 15 according to one embodiment of the present invention as viewed from above.
  • the automatic guided vehicle 15 travels autonomously by two-wheel drive and transports luggage.
  • the automatic guided vehicle 15 includes the vehicle body 1, the carrier 2, the support portions 3L and 3R, the drive motors 4L and 4R, the drive wheels 5L and 5R, the driven wheels 6F and 6R, and the distance measuring device 7. .
  • the vehicle body 1 includes a base 1A and a base 1B.
  • the plate-like base 1B is fixed to the rear upper surface of the base 1A.
  • the base 1B has a triangular portion Tr protruding forward.
  • the plate-shaped carrier 2 is fixed to the upper surface of the platform 1B. Luggage can be placed on the upper surface of the bed 2.
  • the carrier 2 extends further forward than the platform 1B. Thereby, a gap S is formed between the front of the base 1A and the front of the carrier 2.
  • the distance measuring device 7 is disposed in the gap S at a position in front of the vertex of the triangular portion Tr of the base 1B.
  • the distance measuring device 7 is configured as a laser range finder, and measures a distance to a measurement target while scanning a laser beam.
  • the distance measurement device 7 is used for obstacle detection, map information creation, and self-position identification described later. The detailed configuration of the distance measuring device 7 itself will be described later.
  • the support 3L is fixed to the left side of the base 1A, and supports the drive motor 4L.
  • the drive motor 4L is configured by, for example, an AC servomotor.
  • the drive motor 4L incorporates a speed reducer (not shown).
  • the drive wheel 5L is fixed to a rotating shaft of the drive motor 4L.
  • the support 3R is fixed to the right side of the base 1A and supports the drive motor 4R.
  • the drive motor 4R is configured by, for example, an AC servomotor.
  • the drive motor 4R incorporates a speed reducer (not shown).
  • the drive wheel 5R is fixed to a rotating shaft of the drive motor 4R.
  • the driven wheel 6F is fixed to the front side of the base 1A.
  • the driven wheel 6R is fixed to the rear side of the base 1A.
  • the driven wheels 6F, 6R rotate passively according to the rotation of the drive wheels 5L, 5R.
  • the automatic guided vehicle 15 By driving the drive wheels 5L, 5R by the drive motors 4L, 4R, the automatic guided vehicle 15 can be moved forward and backward. In addition, by controlling the rotational speeds of the drive wheels 5L and 5R to provide a difference, the automatic guided vehicle 15 can be turned clockwise or counterclockwise to change the direction. Further, by rotating the drive wheels 5L and 5R in the opposite direction, the automatic guided vehicle 15 can be rotated on the spot.
  • the base 1A houses therein a control unit U, a battery B, and a communication unit T.
  • the control unit U is connected to the distance measuring device 7, the drive motors 4L and 4R, the communication unit T, and the like.
  • the control unit U communicates various signals with the distance measuring device 7 as described later.
  • the control unit U also controls the drive of the drive motors 4L and 4R.
  • the communication unit T communicates with an external tablet terminal (not shown) and conforms to, for example, Bluetooth (registered trademark). Thereby, the automatic guided vehicle 15 can be remotely controlled by the tablet terminal.
  • the battery B is composed of, for example, a lithium ion battery, and supplies power to each unit such as the distance measuring device 7, the control unit U, and the communication unit T.
  • FIG. 13 is a schematic side sectional view of the distance measuring device 7.
  • the distance measuring device 13 configured as a laser range finder includes a laser light source 71, a collimating lens 72, a light projecting mirror 73, a light receiving lens 74, a light receiving mirror 75, a wavelength filter 76, a light receiving element 77, A housing 78, a motor 79, a housing 80, a substrate 81, and a wiring 82 are provided.
  • the housing 80 has a substantially columnar shape extending in the vertical direction when viewed from the outside, and accommodates various components including the laser light source 71 in the internal space.
  • the laser light source 71 is mounted on the lower surface of a substrate 81 fixed to the lower surface of the upper end of the housing 80.
  • the laser light source 71 emits, for example, laser light in the infrared region downward.
  • the collimating lens 72 is disposed below the laser light source 71.
  • the collimating lens 72 emits the laser light emitted from the laser light source 71 downward as parallel light.
  • a light projecting mirror 73 is arranged below the collimating lens 72.
  • the light projecting mirror 73 is fixed to the rotating housing 78.
  • the rotating housing 78 is fixed to a shaft 79 ⁇ / b> A of the motor 79, and is driven to rotate around the rotation axis J by the motor 79. With the rotation of the rotating housing 78, the light projecting mirror 73 is also driven to rotate about the rotation axis J.
  • the light projecting mirror 73 reflects the laser light emitted from the collimating lens 72, and emits the reflected laser light as emission light L1. Since the light projecting mirror 73 is driven to rotate as described above, the emission light L1 is emitted while changing the emission direction within a range of 360 degrees around the rotation axis J.
  • the housing 80 has a transmission part 801 in the middle in the vertical direction.
  • the transmissive portion 801 is made of a translucent resin or the like.
  • the predetermined rotation scanning angle range ⁇ is set to 270 degrees around the rotation axis J as an example, as shown in FIG. More specifically, the range of 270 degrees includes 180 degrees in the front and 45 degrees in the left and right directions.
  • the emitted light L1 is transmitted through the transmission part 801 at least within a range of 270 degrees around the rotation axis J. In a range where the rear transmission part 801 is not disposed, the emitted light L1 is blocked by the inner wall of the housing 80, the wiring 82, or the like.
  • the light receiving mirror 75 is fixed to the rotating housing 78 at a position below the light projecting mirror 73.
  • the light receiving lens 74 is fixed to a circumferential side surface of the rotating housing 78.
  • the wavelength filter 76 is located below the light receiving mirror 75 and is fixed to the rotating housing 78.
  • the light receiving element 77 is located below the wavelength filter 76 and is fixed to the rotating housing 78.
  • the outgoing light L1 emitted from the distance measuring device 7 is reflected by the object to be measured and becomes diffused light. Part of the diffused light is transmitted through the gap S and the transmission portion 801 as incident light L2 and is incident on the light receiving lens 74.
  • the incident light L2 transmitted through the light receiving lens 74 is incident on the light receiving mirror 75, and is reflected downward by the light receiving mirror 75.
  • the reflected incident light L2 passes through the wavelength filter 76 and is received by the light receiving element 77.
  • the wavelength filter 76 transmits light in the infrared region.
  • the light receiving element 77 converts the received light into an electric signal by photoelectric conversion.
  • the rotating housing 78 When the rotating housing 78 is driven to rotate by the motor 79, the light receiving lens 74, the light receiving mirror 75, the wavelength filter 76, and the light receiving element 77 are driven to rotate together with the light projecting mirror 73.
  • a range formed by rotating around the rotation axis J with a predetermined radius in the rotation scanning angle range ⁇ is defined as the measurement range Rs.
  • the predetermined radius changes according to the output level of the emitted light L1.
  • the motor 79 is connected to the substrate 81 by a wiring 82 and is driven to rotate by being energized from the substrate 81.
  • the motor 79 rotates the rotating housing 78 at a predetermined rotation speed.
  • the rotating housing 78 is driven to rotate at about 3000 rpm.
  • the wiring 82 is routed vertically along the rear inner wall of the housing 80.
  • FIG. 14 is a block diagram illustrating an electrical configuration of the distance measuring device 7.
  • the distance measuring device 7 includes a laser emitting unit 701, a laser receiving unit 702, a distance measuring unit 703, a data communication interface 704, a second arithmetic processing unit 705, a driving unit 706, And a motor 79.
  • the laser light emitting unit 701 includes a laser light source 71 (FIG. 13), an LD driver (not shown) for driving the laser light source 71, and the like.
  • the LD driver is mounted on the substrate 81.
  • the laser emitting unit 701, the light projecting mirror 73, the rotating housing 78, and the motor 79 constitute a light projecting unit 83 (FIG. 13). That is, the distance measuring device 7 includes the light projecting unit 83 that includes the light emitting unit (laser light emitting unit 701) and performs rotational scanning of the emitted light L1.
  • Laser light receiving section 702 includes light receiving element 77 (FIG. 13) and the like, and outputs a light receiving signal based on the received light. That is, the distance measuring device 7 includes a light receiving unit (laser light receiving unit 702) that outputs a light receiving signal based on light reception. The more specific configuration of the laser light receiving unit 702 will be described later.
  • the distance measuring unit 703 receives a light receiving signal output from the laser light receiving unit 702.
  • the distance measuring unit 703 has a first arithmetic processing unit 703A.
  • the laser emission unit 701 emits a pulsed laser beam using the laser emission pulse LP output from the first arithmetic processing unit 703A as a trigger. At this time, the outgoing light L1 is emitted.
  • the incident light L2 is received by the laser light receiving unit 702.
  • Laser light receiving section 702 outputs a light receiving signal to distance measuring section 703 based on the reception of incident light L2.
  • the first arithmetic processing unit 703A outputs a reference pulse (not shown in FIG. 14) output together with the laser emission pulse LP.
  • the distance measuring unit 703 can acquire the distance to the measurement target OJ by measuring the elapsed time from the rising timing of the reference pulse to the rising and falling timings of the light receiving signal. That is, the distance measuring unit 703 measures the distance by a so-called TOF (Time @ Of @ Flight) method.
  • the distance measurement unit 703 performs distance measurement using the above-described pulse width correction and slew rate correction.
  • the distance measuring device 7 includes the distance measuring unit 703 that measures the distance to the measurement target OJ based on the emission of the emitted light and the light reception by the light receiving unit 702. The more specific configuration of the distance measurement unit 703 will be described later.
  • the drive unit 706 controls the rotation of the motor 79.
  • the motor 79 is driven to rotate at a predetermined rotation speed by the drive unit 706.
  • the first arithmetic processing unit 703A outputs a laser emission pulse LP each time the motor 79 rotates by a predetermined unit angle.
  • the laser light emitting unit 701 emits light, and the emitted light L1 is emitted.
  • FIG. 12 shows the emission of the emission light L1.
  • the first arithmetic processing unit 703A uses the distance measurement device 7 as a reference based on the rotation angle position of the motor 79 at the timing when the laser emission pulse LP is output and the distance measurement data obtained corresponding to the laser emission pulse LP. To generate position information on the orthogonal coordinate system. That is, the position of the measurement object OJ is acquired based on the rotation angle position of the light projecting mirror 73 and the measured distance. The acquired position information is output from the first arithmetic processing unit 703A as measured distance data DT. In this manner, a distance image of the measurement object OJ can be obtained by rotational scanning of the emitted light L1 in the rotational scanning angle range ⁇ .
  • the measured distance data DT output from the first arithmetic processing unit 703A is transmitted via the data communication interface 704 to the automatic guided vehicle 15 shown in FIG.
  • the second arithmetic processing unit 705 determines whether or not the measurement target is located within a predetermined area based on the measurement distance data DT. Specifically, if the position of a certain measurement target indicated by the measurement distance data DT is located within the predetermined area, it is determined that the measurement target is located within the predetermined area. When determining that the measurement target is located within the predetermined area, the second arithmetic processing unit 705 outputs the detection signal Ds, which is a flag, as a High level. On the other hand, when the measurement object is not located within the predetermined area, the detection signal Ds having a low level is output. The detection signal Ds is transmitted to the automatic guided vehicle 15 shown in FIG.
  • FIG. 15 is a block diagram illustrating an electrical configuration of the automatic guided vehicle 15.
  • the automatic guided vehicle 15 includes a distance measuring device 7, a control unit 8, a driving unit 9, and a communication unit T.
  • the control unit 8 is provided in the control unit U (FIG. 10).
  • the drive unit 9 includes a motor driver (not shown) and drive motors 4L and 4R.
  • the motor driver is provided in the control unit U.
  • the control unit 8 issues a command to the drive unit 9 and controls the drive unit 9.
  • the driving unit 9 controls the driving speed and the rotating direction of the driving wheels 5L and 5R.
  • the control unit 8 communicates with a tablet terminal (not shown) via the communication unit T.
  • the control unit 8 can receive an operation signal according to the content operated on the tablet terminal via the communication unit T.
  • the control unit 8 receives the measured distance data DT output from the distance measuring device 7.
  • the control unit 8 can create map information based on the measured distance data DT.
  • the map information is information generated for performing self-position identification for specifying the position of the automatic guided vehicle 15 and is generated as position information of a stationary object at a place where the automatic guided vehicle 15 runs. For example, when the location where the automatic guided vehicle 15 travels is a warehouse, the stationary object is a wall of the warehouse, shelves arranged in the warehouse, or the like.
  • the map information is generated, for example, when a manual operation of the automatic guided vehicle 15 is performed by the tablet terminal.
  • an operation signal corresponding to the operation of, for example, the joystick of the tablet terminal is transmitted to the control unit 8 via the communication unit T, and the control unit 8 instructs the driving unit 9 in accordance with the operation signal, The traveling control of the transport vehicle 15 is performed.
  • the control unit 8 specifies the position of the measurement target at the place where the automatic guided vehicle 15 travels as map information. I do.
  • the position of the automatic guided vehicle 15 is specified based on the drive information of the drive unit 9.
  • the map information generated as described above is stored in the storage unit 85 of the control unit 8.
  • the control unit 8 compares the measured distance data DT input from the distance measuring device 7 with the map information stored in advance in the storage unit 85, thereby identifying the position of the automatic guided vehicle 15 itself. I do. That is, the control unit 8 functions as a position identification unit. By performing the self-position identification, the control unit 8 can perform autonomous traveling control of the automatic guided vehicle 15 along a predetermined route.
  • the control unit 8 can also control the driving unit 9 based on the detection signal Ds output from the distance measuring device 7.
  • FIG. 16 is a block diagram showing a first configuration example of the distance measurement unit 703.
  • FIG. 16 also shows a specific configuration example of the laser light receiving unit 702.
  • FIG. 17 shows the relationship between the light receiving signal Ps and each threshold (reference voltage).
  • the laser light receiving section 702 has an APD (avalanche photodiode) 702A and an amplifier circuit (transimpedance amplifier) 702B.
  • the APD 702A corresponds to the light receiving element 77, and converts the received laser light into a current signal.
  • the amplifier circuit 702B converts the current signal output from the APD 702A into a light receiving signal Ps by current / voltage conversion and outputs the light receiving signal Ps.
  • the distance measuring unit 703 includes a first comparator 703B, a second comparator 703C, a first TDC (time to digital converter) 703D, a second TDC 703E, and a selector 703F, in addition to the first arithmetic processing unit 703A described above. Have.
  • the first comparator 703B compares the light receiving signal Ps input to the non-inverting input terminal (+) with the first threshold value Vth1 input to the inverting input terminal (-). The output signal of the first comparator 703B is input to the first TDC 703D and to the selector 703F.
  • the second comparator 703C compares the light receiving signal Ps input to the non-inverting input terminal (+) with the second threshold value Vth2 input to the inverting input terminal (-). The output signal of the second comparator 703C is input to the selector 703F.
  • the second threshold value Vth2 is larger than the first threshold value Vth1.
  • the first TDC 703D measures a first elapsed time T10 (FIG. 17) from the rising timing of the reference pulse SP output from the first arithmetic processing unit 703A to the rising timing of the output signal input from the first comparator 703B to High. I do.
  • the selector 703F selects one of the output signal of the first comparator 703B and the output signal of the second comparator 703C in accordance with the selection signal SS output from the first arithmetic processing unit 703A, and outputs the selected output signal to the Input to 2TDC703E.
  • the second TDC 703E When the output signal of the first comparator 703B is selected and input from the selector 703F, the second TDC 703E outputs the Low of the output signal input from the selector 703F from the rising timing of the reference pulse SP output from the first arithmetic processing unit 703A.
  • the second elapsed time T20 (FIG. 17) until the falling timing of the time is measured.
  • the second TDC 703E When the output signal of the second comparator 703C is selected and input from the selector 703F, the second TDC 703E outputs the High of the output signal input from the selector 703F from the rising timing of the reference pulse SP output from the first arithmetic processing unit 703A.
  • a third elapsed time T30 (FIG. 17) up to the rising timing of the measurement is measured.
  • the first arithmetic processing unit 703A calculates the pulse width from the difference between the first elapsed time T10 and the second elapsed time T20 to correct the pulse width. To measure the distance.
  • the first arithmetic processing unit 703A calculates the through rate by calculating the slew rate from the difference between the first elapsed time T10 and the third elapsed time T30. Perform distance measurement by rate correction. Therefore, the distance measurement unit 703 can perform the distance measurement using the first correction method and the distance measurement using the second correction method.
  • the distance measurement unit 703 includes a first comparator 703B that compares the received light signal Ps with the first reference voltage Vth1, a second comparator 703C that compares the received light signal Ps with the second reference voltage Vth2, a reference pulse SP, and a first comparator 703C.
  • the distance measurement unit 703 can switch between pulse width correction as the first correction method and slew rate correction as the second correction method.
  • FIG. 18 is a diagram illustrating an example of rotational scanning of the emitted light L1 by the distance measuring device 7.
  • the distance measuring device 7 emits the emission light L1 at each scanning position shifted by a predetermined unit angle in the rotation scanning angle range ⁇ of 270 ° as an example.
  • the emitted light L1 is emitted while shifting the scanning position counterclockwise.
  • FIGS. 19 and 20 show processing for each angular position n shown in FIG. When the power is turned on, the processing shown in FIG. 19 is started, and thereafter, the processing is continued until the power is turned off.
  • the first arithmetic processing unit 703A performs distance measurement by pulse width correction by selecting the output signal of the first comparator 703B by the selection signal SS in step S2. Then, in step S3, the first arithmetic processing unit 703A outputs the distance measured in step S2.
  • step S4 if the distance acquired in step S2 is an error (YES in step S4), the first arithmetic processing unit 703A performs a pulse in step S2 in the next round (step S1). Distance measurement by width correction is performed.
  • the error refers to a case where distance measurement cannot be performed because the distance to the measurement target is long, the peak of the light receiving signal Ps is too small, and the light receiving signal Ps does not exceed the first threshold Vth1.
  • step S5 the first arithmetic processing unit 703A calculates a difference between the distance obtained in step S2 and the distance obtained at the immediately preceding angular position (n-1).
  • the difference from the distance at the immediately preceding angular position becomes large.
  • the measurement object includes a light-transmitting object 200 and an object 250 located on the back side of the light-transmitting object. This makes it possible to detect an intermediate point caused by the overlap of the light reception signal component due to the light reflected by the light transmissive object and the light reception signal component due to the light transmitted through the light transmissive object and reflected by the object located on the back side. .
  • the measurement target includes a non-light-transmitting object 300 and another non-light-transmitting object 350 located on the back side of the non-light-transmitting object. This makes it possible to detect an intermediate point caused by the overlap of the light receiving signal component due to the reflected light from the non-light-transmitting object and the light receiving signal component due to the light reflected from the other non-light-transmitting object.
  • step S5 the difference value calculated in step S5 is not smaller than the set value (NO in step S6), it is determined that an intermediate point has been detected, and the process proceeds to step S8 in the next round (step S7).
  • step S8 the first arithmetic processing unit 703A performs distance measurement by slew rate correction by selecting the output signal of the second comparator 703C using the selection signal SS. Then, in step S9, the first arithmetic processing unit 703A outputs the distance measured in step S8.
  • step S5 if the difference value calculated in step S5 is equal to or smaller than the set value (YES in step S6), it is determined that the intermediate point has not been detected, and in the next round (step S1), the pulse in step S2 is determined. Distance measurement by width correction is performed.
  • the distance measurement is switched to the distance measurement by the slew rate correction with high distance measurement accuracy at the intermediate point, and otherwise, the distance measurement is performed by the pulse width correction having a large distance measurable range. .
  • the distance measurement unit 703 performs at least the first correction of the distance measured using the first correction method (pulse width correction) and the distance measured using the second correction method (slew rate correction). Based on the distance comparison processing using the distance measured using the technique, the distance measured using the second correction technique is output as the measured distance.
  • the received light signal component based on the reflected light from the first object and the received light signal component based on the reflected light from the second object overlap, so that the distance position where the distance is measured to be longer when the first correction method is used is increased.
  • the (intermediate point) it is possible to output a measured distance using the second correction method that can more accurately measure the distance. Since the detection of the intermediate point is based on the distance comparison processing, the processing load can be reduced.
  • the distance measurement unit 703 determines that the distance measured by using the first correction method at the first angular position (n ⁇ 1) in the rotational scan and that the scan should be performed later than the first angular position in the rotational scan. Is compared with the distance measured using the first correction method at the second angle position (n), and based on the comparison result, the distance measured using the second correction method is calculated at the second angle position. Is output as the measured distance.
  • the first angular position (n-1) and the second angular position (n) are adjacent angular positions.
  • the adjacent angular positions are the respective angular positions of the temporally adjacent timings among the timings at which the emission light is emitted in the rotational scanning. Thereby, the intermediate point can be detected with high accuracy.
  • the distance measuring unit 703 calculates the second angle of the (m + 1) th rotation following the mth rotation (m is a natural number) whose distance has been measured at the second angular position using the first correction method.
  • the method used for distance measurement at the position is switched from the first correction method to the second correction method.
  • the distance measurement unit 703 calculates a difference between the distance measured at the first angular position and the distance measured at the second angular position using the first correction method, and obtains a calculation result obtained by calculating the difference between the first angular position and the first angular position. If the predetermined value is exceeded, the method used for measuring the distance at the second angular position of the (m + 1) rotation is switched from the first correction method to the second correction method.
  • the intermediate point can be detected when the difference between the distance measured at the first angular position and the distance measured at the second angular position exceeds the first predetermined value.
  • the distance measurement unit 703 sets a method used for distance measurement at the second angular position of the (m + 1) th rotation as a first correction method.
  • the measurable range of the distance can be ensured by using the first correction method except for the intermediate point.
  • step S10 if the distance acquired in step S8 is an error (YES in step S10), in the next round (step S1), distance measurement by pulse width correction is performed in step S2. .
  • the error refers to a case where the distance to the measurement target is long, the peak of the light receiving signal Ps is too small, and the distance cannot be measured because the light receiving signal Ps does not exceed the second threshold value Vth2.
  • step S10 the first arithmetic processing unit 703A determines whether or not the distance measurement in the immediately preceding round is based on pulse width correction. If the distance measurement in the immediately preceding lap is pulse width correction (YES in step S11), the process proceeds to step S12, where the first arithmetic processing unit 703A determines the distance acquired in step S8 and the immediately preceding lap. Calculate the difference from the distance obtained in.
  • step S5 when the distance of an object having an inclination such as a wall protruding forward as shown in FIG. 21 is measured, the difference value calculated in step S5 increases (NO in step S6), and the difference value is calculated at the intermediate point. May be erroneously detected. In this case, the difference value calculated in step S12 becomes small, so that erroneous detection of the intermediate point can be detected.
  • step S12 if the difference value calculated in step S12 is equal to or smaller than the set value (YES in step S13), in the next round (step S1), distance measurement by pulse width correction is performed in step S2.
  • the distance measurement unit 703 calculates the difference between the distance measured using the second correction method at the (m + 1) -turn second angular position and the distance measured at the m-th round second angular position. If the calculated result obtained is equal to or less than the second predetermined value, the method used for the distance measurement used at the (m + 2) -th second angular position following the (m + 1) -th rotation is changed from the second correction method to the second correction method. Switch to one correction method.
  • the range can be measured by returning to the first correction method.
  • step S11 when the distance measurement of the immediately preceding circuit is not based on the pulse width correction (NO in step S11), or when the difference value is not smaller than the set value (NO in step S13), the process proceeds to step S14.
  • step S14 the first arithmetic processing unit 703A calculates a difference value by subtracting the distance obtained at the immediately preceding angular position from the distance obtained in step S8.
  • the emitted light L1 emitted at the angular position n due to a change in the attitude of the automatic guided vehicle 15 including the distance measuring device 7 causes an object positioned behind the translucent object 400 to be positioned.
  • the outgoing light L1 that has been directed toward 450 and emitted at the immediately preceding angular position (n ⁇ 1) may be directed toward the translucent object 400.
  • the distance obtained at the angular position n is longer than the distance obtained at the angular position (n-1), and the difference value calculated in step S14 is a positive value.
  • step S2 distance measurement is performed by pulse width correction.
  • the distance measurement unit 703 determines that the difference value obtained by subtracting the distance measured at the first angular position from the distance measured using the second correction method at the second angular position exceeds the third predetermined value and is positive. If the value is the value, the method used for the distance measurement used at the second angular position in the next circuit is switched from the second correction method to the first correction method.
  • step S15 When the calculated difference value is equal to or smaller than the set value (YES in step S15), or when the calculated difference value is not equal to or smaller than the set value but is not a positive value (NO in step S16). ), And proceed to step S17.
  • step S17 the first arithmetic processing unit 703A calculates a difference value by subtracting the distance acquired in step S8 from the distance acquired in the immediately following angular position.
  • the emitted light L1 emitted at the angular position n is an object positioned behind the translucent object 400.
  • the outgoing light L ⁇ b> 1 that is directed to 450 and emitted at the immediately subsequent angular position (n + 1) may be in a state of being directed to the translucent object 400.
  • the distance obtained at the angular position n is longer than the distance obtained at the angular position (n + 1), and the difference value calculated at step S17 is a negative value.
  • step S1 distance measurement is performed by pulse width correction.
  • the distance measuring unit 703 subtracts the distance measured using the second correction method at the second angular position from the distance measured at the third angular position that is later in the scanning order than the second angular position. If the difference value is greater than the fourth predetermined value and is a negative value, the method used for distance measurement used at the second angular position in the next round is changed from the second correction method to the first correction method. Switch to
  • step S7 distance measurement by slew rate correction is performed in step S8.
  • FIG. 24 is a block diagram showing a second configuration example of the distance measurement unit 703.
  • the distance measuring unit 703 according to the second configuration example shown in FIG. 24 has a third TDC 703G instead of the selector 703F as a configuration difference from the first configuration example shown in FIG.
  • the output signal of the first comparator 703B is input to the second TDC 703E.
  • the output signal of the second comparator 703C is input to the third TDC 703G together with the reference pulse SP.
  • the first TDC 703D measures a first elapsed time T10 (FIG. 17) from the rising timing of the reference pulse SP output from the first arithmetic processing unit 703A to the rising timing of the output signal input from the first comparator 703B to High. I do.
  • the second TDC 703E calculates a second elapsed time T20 (FIG. 17) from the rising timing of the reference pulse SP output from the first arithmetic processing unit 703A to the falling timing of the output signal input from the first comparator 703B to Low. measure.
  • the third TDC 703G measures a third elapsed time T30 (FIG. 17) from the rising timing of the reference pulse SP output from the first arithmetic processing unit 703A to the rising timing of the output signal input from the second comparator 703C to High. I do.
  • the first arithmetic processing unit 703A calculates the pulse width from the difference between the first elapsed time T10 and the second elapsed time T20, performs distance measurement by pulse width correction, and performs the first elapsed time T10 and the third elapsed time.
  • the first arithmetic processing unit 703A calculates the pulse width from the difference between the first elapsed time T10 and the second elapsed time T20, performs distance measurement by pulse width correction, and performs the first elapsed time T10 and the third elapsed time.
  • the distance measurement unit 703 can perform the distance measurement using the first correction method and the distance measurement using the second correction method at the same angular position in the rotation scan of the same rotation. .
  • the distance measuring unit 703 includes a first comparator 703B for comparing the received light signal with the first reference voltage Vth1, a second comparator 703C for comparing the received light signal with the second reference voltage Vth2, a reference pulse SP and the first comparator 703B.
  • the flowchart shown in FIG. 25 shows the processing for each angular position n shown in FIG. 18 described above.
  • the processing shown in FIG. 25 is started, and thereafter, the processing is continued until the power is turned off.
  • m shown in FIG. 25 indicates the rotation of the rotation scanning.
  • m 0.
  • step S22 the first arithmetic processing unit 703A performs distance measurement by pulse width correction. Then, in step S23, the first arithmetic processing unit 703A performs distance measurement by slew rate correction.
  • step S24 the first arithmetic processing unit 703A determines whether the distance obtained by the slew rate correction is an error. If the distance is an error (YES in step S24), the process proceeds to step S27. In step S27, the first arithmetic processing unit 703A outputs the distance measured by the pulse width correction. Thereafter, the process proceeds to the next round (step S21).
  • step S24 if the distance obtained by the slew rate correction is not an error (NO in step S24), the process proceeds to step S25, where the first arithmetic processing unit 703A calculates the distance obtained by the pulse width correction in step S22, In step S23, a difference from the distance acquired by the slew rate correction is calculated.
  • step S25 If the difference value calculated in step S25 is not smaller than or equal to the set value (NO in step S26), it is determined that an intermediate point has been detected, the process proceeds to step S28, and the first arithmetic processing unit 703A measures the difference by slew rate correction. Output distance. Thereafter, the process proceeds to the next round (step S21).
  • step S26 if the difference value is equal to or smaller than the set value (YES in step S26), it is determined that the intermediate point has not been detected, and the process proceeds to step S27, where the first arithmetic processing unit 703A measures the difference by the pulse width correction. Output distance.
  • the distance measurement unit 703 compares the distance measured using the first correction method and the distance measured using the second correction method at the same angular position, and based on the comparison result, The distance measured using the two correction method is output as the measured distance.
  • the received light signal component based on the reflected light from the first object and the received light signal component based on the reflected light from the second object overlap, so that the distance position where the distance is measured to be longer when the first correction method is used is increased.
  • the (intermediate point) it is possible to output a measured distance using the second correction method that can more accurately measure the distance.
  • the detection of the intermediate point can be performed by a method that suppresses the processing load.
  • the real-time property of the measured distance data can be improved.
  • FIGS. 26 and 27 show the above-described processing for each angular position n shown in FIG.
  • the processing shown in FIG. 26 is started, and thereafter, the processing is continued until the power is turned off.
  • m shown in FIG. 26 indicates the rotation of the rotation scanning.
  • m 0, and the first arithmetic processing unit 703A holds m as a variable.
  • step S31 the first arithmetic processing unit 703A determines whether m is greater than 3, and if m is greater (YES in step S31), the process proceeds to step S32.
  • the first arithmetic processing unit 703A outputs the latest measured distance stored in the buffer. At this time, the first arithmetic processing unit 703A deletes the measured distance stored in the buffer and initializes the variable m to 0.
  • step S32 or when m is 3 or less in step S31 (NO in step S31), the process proceeds to step S33, and the first arithmetic processing unit 703A increases the variable m by one.
  • step S34 the first arithmetic processing unit 703A determines whether m is greater than 3, and if m is greater (YES in step S34), the process proceeds to step S35.
  • step S35 the first arithmetic processing unit 703A determines whether the measurement method in the (m-1) circuit is different from the measurement method in the (m-2) circuit. NO), and proceed to step S38.
  • step S35 the process proceeds to step S36, where the first arithmetic processing unit 703A obtains the distance acquired in (m-1) revolutions and the distance acquired in (m-2) revolutions. Calculate the difference from the distance.
  • the first arithmetic processing unit 703A determines whether the calculated difference value is equal to or less than the set value, and if it is equal to or less than the set value (YES in step S37), the process proceeds to step S38. If the difference value is not smaller than the set value (NO in step S37), the process proceeds to step S42.
  • step S38 the first arithmetic processing unit 703A performs distance measurement by pulse width correction.
  • the first arithmetic processing unit 703A stores the acquired distance in the buffer. If the distance acquired in step S38 is an error (YES in step S39), the process returns to step S31.
  • step S40 the first arithmetic processing unit 703A calculates a difference between the distance obtained in step S38 and the distance obtained at the immediately preceding angular position (n-1).
  • step S41 the first arithmetic processing unit 703A determines whether the calculated difference value is equal to or smaller than the set value. If the calculated difference value is equal to or smaller than the set value (YES in step S41), the process returns to step S31. On the other hand, if the calculated difference value is not smaller than the set value (NO in step S41), the process proceeds to step S42.
  • step S42 the first arithmetic processing unit 703A determines whether m is greater than 3; if m is greater than 3 (YES in step S42), the process proceeds to step S43, where the first arithmetic processing unit 703A is stored in the buffer. The latest measured distance is output. At this time, the first arithmetic processing unit 703A deletes the measured distance stored in the buffer and initializes the variable m to 0.
  • step S43 or when m is equal to or smaller than 3 in step S42 (NO in step S42), the process proceeds to step S44, and the first arithmetic processing unit 703A increases the variable m by one.
  • step S45 the first arithmetic processing unit 703A performs distance measurement by slew rate correction.
  • the first arithmetic processing unit 703A stores the acquired distance in the buffer. If the distance acquired in step S45 is an error (YES in step S46), the process returns to step S31.
  • step S45 if the distance acquired in step S45 is not an error (NO in step S46), the process proceeds to step S47 in FIG.
  • the processing in steps S47 to S55 is the same as the processing in steps S11 to S19 in FIG. 20 described above.
  • the process returns to step S31. If YES in step S54 or NO in step S55, the process returns to step S42.
  • the distance measurement device 7 further includes a storage unit (buffer) that stores the distance measured at the second angle position using the first correction method, and the distance measurement unit 703 determines that the calculation result is the first predetermined value.
  • the distance stored in the storage unit is output (step S32).
  • the distance measured by using the first correction method at the second angle position is output after detecting that the point is not the intermediate point. Therefore, when the first correction method is not appropriate, the first correction method is used. Output of the measured distance can be avoided.
  • the second correction method is not limited to the slew rate correction, and a method of performing correction based on, for example, differential processing of a received light signal may be employed.
  • the first derivative may be performed at the rising or falling of the light receiving signal, so that the calculation load can be suppressed as compared with the conventional method that needs to perform the first differentiation and the second differentiation.
  • an unmanned carrier is described as an example of a moving body equipped with a distance measuring device.
  • the present invention is not limited to this. May be.
  • This invention can be utilized for the automatic guided vehicle which conveys a load, for example.

Abstract

This distance measurement device comprises a distance measurement unit that measured the distance to a measurement object on the basis of emission of emitted light and reception by a light-receiving unit. The distance measurement unit is capable of conducting a distance measurement in which there is used a first correction method for performing correction in accordance with detection of both the beginning and the end of a light-reception signal, and a distance measurement in which there is used a second correction method for performing correction in accordance with detection of one of the beginning and the end of the light-reception signal. The distance measurement unit outputs, as a measured distance, a distance measured using the second correction method on the basis of a distance comparison process in which there is used, from among a distance measured using the first correction method and the distance measured using the second correction method, at least the distance measured using the first correction method.

Description

距離測定装置Distance measuring device
本発明は、距離測定装置に関する。 The present invention relates to a distance measuring device.
従来、距離測定装置が種々開発されている。例えば、特許文献1には、次のような測距装置用の信号処理装置が開示される。  Conventionally, various distance measuring devices have been developed. For example, Patent Document 1 discloses the following signal processing device for a distance measuring device.
特許文献1の信号処理装置は、パルス状の測定光を光学窓を介して測定対象空間に出力する投光部と、上記測定対象空間に存在する被測定物からの反射光を検出して対応する反射信号を出力する受光部と、を備える測距装置から出力された信号を処理する。  The signal processing device disclosed in Patent Document 1 corresponds to a light projecting unit that outputs pulsed measurement light to a measurement target space via an optical window by detecting reflected light from an object to be measured existing in the measurement target space. And a light receiving unit that outputs a reflected signal to be processed.
上記信号処理装置は、微分処理部と、波形判定部と、演算部と、を備える。微分処理部は、受光部から出力された反射信号を微分する。波形判定部は、微分処理部により反射信号が一次微分された一次微分反射信号の立上りおよび立下り特性と、反射信号が二次微分された二次微分反射信号の立上り特性に基づいて、反射光が複数の被測定物からの反射光が重畳した反射光であるか否かを判定する。演算部は、波形判定部による判定結果に応じて、反射信号に基づいて被測定物までの距離を算出して出力する。 The signal processing device includes a differential processing unit, a waveform determination unit, and a calculation unit. The differentiation processing section differentiates the reflection signal output from the light receiving section. The waveform judging section is configured to determine the reflected light based on the rising and falling characteristics of the first-order differential reflection signal obtained by first-order differentiation of the reflected signal by the differentiation processing section and the rising characteristic of the second-order differential reflection signal obtained by secondarily differentiating the reflected signal. Is a reflected light from a plurality of objects to be measured is a superimposed reflected light. The calculation unit calculates and outputs the distance to the device under test based on the reflection signal according to the determination result by the waveform determination unit.
日本国公開公報:特開2011-215005号公報Japanese Unexamined Patent Publication: JP-A-2011-215005
測距装置と真に検出する必要がある被測定物との間にガラス等半透明の反射物が存在し、反射物が被測定物に近接しているとき、反射物からの反射信号が被測定物からの反射信号に重畳して、真に検出する必要がある被測定物に対する正確な距離が算出できない虞があるが、このような場合に特許文献1によると、被測定物に対する距離を正確に算出することが可能になるとされている。また、特許文献1では、上記半透明の反射物に限らず、測距装置と被測定物との間に樹木の枝等、測定光の光芒に比べ小さな物体が存在する場合などでも同様であるとしている。  When a translucent reflector such as glass exists between the distance measuring device and the object to be truly detected, and when the reflector is close to the object to be measured, a reflection signal from the object is reflected. There is a possibility that an accurate distance to the object to be measured that is superimposed on a reflected signal from the object to be detected and cannot be accurately calculated may be calculated. In such a case, according to Patent Document 1, the distance to the object to be measured is reduced. It is said that it is possible to calculate accurately. Further, in Patent Literature 1, the same applies to a case where an object smaller than the beam of measurement light, such as a tree branch, is not limited to the translucent reflector, but is located between the distance measuring device and the object to be measured. And
しかしながら、特許文献1では、上記半透明の反射物または上記小さな物体などの距離測定精度を向上させることは課題としていない。さらに、特許文献1では、被測定物に対する距離を正確に算出できない虞のある状況を上記微分処理部による処理に基づいて検出する必要があるので、演算処理負荷が大きくなる。すなわち、特許文献1では、演算負荷が大きく、且つ距離測定対象の特性によっては距離測定精度が不十分となる虞があった。  However, in Patent Document 1, there is no problem to improve the distance measurement accuracy of the translucent reflector or the small object. Further, in Patent Document 1, it is necessary to detect a situation in which the distance to the measured object may not be accurately calculated based on the processing by the differential processing unit, so that the calculation processing load increases. That is, in Patent Document 1, there is a possibility that the calculation load is large and the distance measurement accuracy is insufficient depending on the characteristics of the distance measurement target.
上記状況に鑑み、本発明は、演算処理負荷を抑えつつ、且つ距離測定対象の特性によらず、距離測定精度を向上させることができる距離測定装置を提供することを目的とする。 In view of the above situation, an object of the present invention is to provide a distance measuring device capable of improving the distance measuring accuracy while suppressing the processing load and irrespective of the characteristics of the distance measuring object.
本発明の例示的な距離測定装置は、発光部を含んで出射光の回転走査を行う投光部と、受光に基づいて受光信号を出力する受光部と、前記出射光の出射と前記受光部による受光とに基づいて計測対象物までの距離を計測する距離計測部と、を備え、前記距離計測部は、前記受光信号における立上りと立下りの両方の検出に応じて補正を行う第1補正手法を用いた距離の計測と、前記受光信号における前記立上りと前記立下りのうち一方の検出に応じた補正を行う第2補正手法を用いた距離の計測と、を行うことが可能であり、前記距離計測部は、前記第1補正手法を用いて計測された距離と、前記第2補正手法を用いて計測された距離とのうち、少なくとも前記第1補正手法を用いて計測された距離を用いた距離比較処理に基づき、前記第2補正手法を用いて計測された距離を計測距離として出力する。 An exemplary distance measuring device according to the present invention includes a light emitting unit that includes a light emitting unit and performs rotational scanning of emitted light, a light receiving unit that outputs a light receiving signal based on light reception, an emission of the emitted light, and the light receiving unit. A distance measurement unit that measures a distance to a measurement target based on light reception by the first and second light sources, wherein the distance measurement unit performs correction in accordance with detection of both rising and falling in the light reception signal. It is possible to perform the measurement of the distance using a method and the measurement of the distance using the second correction method that performs correction according to the detection of one of the rising edge and the falling edge in the light receiving signal, The distance measurement unit is configured to calculate at least the distance measured using the first correction method, of the distance measured using the first correction method and the distance measured using the second correction method. Based on the distance comparison processing used, the second And outputs the distance measured by using a positive method as the measurement distance.
本発明の例示的な距離測定装置によれば、演算処理負荷を抑えつつ、距離測定精度を向上させることができる。 According to the exemplary distance measuring device of the present invention, it is possible to improve the distance measuring accuracy while suppressing the processing load.
図1は、理想的な受光信号と実際の受光信号の一例を示す図である。FIG. 1 is a diagram illustrating an example of an ideal light receiving signal and an actual light receiving signal. 図2は、パルス幅補正を説明するための受光信号の図である。FIG. 2 is a diagram of a light receiving signal for explaining pulse width correction. 図3は、スルーレート補正を説明するための受光信号の図である。FIG. 3 is a diagram of a light receiving signal for explaining slew rate correction. 図4は、透光性物体と物体への出射光の出射の一例を示す図である。FIG. 4 is a diagram illustrating an example of a light-transmitting object and emission of light emitted to the object. 図5は、手前と奥側に位置する非透光性物体への出射光の出射の一例を示す図である。FIG. 5 is a diagram illustrating an example of emission of emitted light to non-light-transmitting objects located on the near side and the far side. 図6は、2つの受光信号成分が離れている場合の一例を示す波形図である。FIG. 6 is a waveform diagram illustrating an example of a case where two light receiving signal components are separated. 図7は、2つの受光信号成分が重なる場合の一例を示す波形図である。FIG. 7 is a waveform diagram showing an example of a case where two light receiving signal components overlap. 図8は、パルス幅補正に用いられる予め設定されたパルス幅と補正量との関係の一例を示す図である。FIG. 8 is a diagram illustrating an example of a relationship between a preset pulse width used for pulse width correction and a correction amount. 図9は、図4に示す状況でのレーザ光の出射角度とパルス幅補正による計測距離との関係の一例を示す図である。FIG. 9 is a diagram illustrating an example of a relationship between the emission angle of the laser light and the measurement distance by the pulse width correction in the situation illustrated in FIG. 図10は、本発明の一実施形態に係る無人搬送車の概略全体斜視図である。FIG. 10 is a schematic overall perspective view of the automatic guided vehicle according to one embodiment of the present invention. 図11は、本発明の一実施形態に係る無人搬送車の概略側面図である。FIG. 11 is a schematic side view of the automatic guided vehicle according to one embodiment of the present invention. 図12は、本発明の一実施形態に係る無人搬送車の上方から視た平面図である。FIG. 12 is a plan view of the automatic guided vehicle according to one embodiment of the present invention as viewed from above. 図13は、距離測定装置の概略側面断面図である。FIG. 13 is a schematic side sectional view of the distance measuring device. 図14は、距離測定装置の電気的構成を示すブロック図である。FIG. 14 is a block diagram illustrating an electrical configuration of the distance measuring device. 図15は、無人搬送車の電気的構成を示すブロック図である。FIG. 15 is a block diagram illustrating an electrical configuration of the automatic guided vehicle. 図16は、距離計測部の第1構成例を示すブロック図である。FIG. 16 is a block diagram illustrating a first configuration example of the distance measurement unit. 図17は、受光信号と各閾値(基準電圧)との関係を示す図である。FIG. 17 is a diagram showing the relationship between the light receiving signal and each threshold (reference voltage). 図18は、距離測定装置による出射光の回転走査の一例を示す図である。FIG. 18 is a diagram illustrating an example of rotational scanning of emitted light by the distance measuring device. 図19は、距離測定制御処理の第1例に関するフローチャートである。FIG. 19 is a flowchart relating to a first example of the distance measurement control process. 図20は、距離測定制御処理の第1例に関するフローチャートである。FIG. 20 is a flowchart relating to a first example of the distance measurement control process. 図21は、手前に突出した壁における距離計測の一例を示す図である。FIG. 21 is a diagram illustrating an example of distance measurement on a wall protruding forward. 図22は、距離測定装置が姿勢変化した場合の一例を示す図である。FIG. 22 is a diagram illustrating an example of a case where the attitude of the distance measurement device changes. 図23は、距離測定装置が姿勢変化した場合の他の一例を示す図である。FIG. 23 is a diagram illustrating another example of the case where the distance measurement device changes its posture. 図24は、距離計測部の第2構成例を示すブロック図である。FIG. 24 is a block diagram illustrating a second configuration example of the distance measurement unit. 図25は、距離測定制御処理の第2例に関するフローチャートである。FIG. 25 is a flowchart relating to a second example of the distance measurement control process. 図26は、距離測定制御処理の第3例に関するフローチャートである。FIG. 26 is a flowchart relating to a third example of the distance measurement control process. 図27は、距離測定制御処理の第3例に関するフローチャートである。FIG. 27 is a flowchart relating to a third example of the distance measurement control process.
以下に本発明の例示的な実施形態について図面を参照して説明する。  Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings.
<1.距離補正手法> まず、本実施形態での距離測定に用いる距離補正手法について説明する。本実施形態の距離測定では、レーザ光を出射し、計測対象物でレーザ光が反射した反射光を受光することで、出射から受光までの時間を計測することで距離を取得する。  <1. Distance Correction Method> First, a distance correction method used for distance measurement in the present embodiment will be described. In the distance measurement according to the present embodiment, the distance is acquired by emitting a laser beam and receiving the reflected light reflected by the measurement target object, and measuring the time from emission to light reception.
理想的には、図1に示す受光信号Ps’のように、受光信号はパルス波形である。この場合、レーザ光の出射タイミングt0から受光信号Ps’の立上りタイミングまでの経過時間T’を計測することで、計測対象物までの距離を正確に測定することができる。  Ideally, the light receiving signal has a pulse waveform like the light receiving signal Ps' shown in FIG. In this case, the distance to the measurement target can be accurately measured by measuring the elapsed time T 'from the emission timing t0 of the laser light to the rising timing of the light receiving signal Ps'.
しかしながら、実際には、図1に示す受光信号Psのように、受光信号は時間に対して傾きを持った立上りおよび立下りを有する。これにより、レーザ光の出射タイミングt0から受光信号Psの立上りタイミングまでの経過時間Tを計測しただけでは、計測対象物までの正確な距離は測定できない。そのため、図1に示す受光信号Psのゼロレベルから所定レベルまで立上るまでの時間を補正量ΔTとして、経過時間Tを補正量ΔTによって補正する必要がある。すなわち、経過時間Tから補正量ΔTを差し引く必要がある。  However, in reality, like the light receiving signal Ps shown in FIG. 1, the light receiving signal has a rising edge and a falling edge having an inclination with respect to time. Thus, an accurate distance to the measurement target cannot be measured only by measuring the elapsed time T from the laser light emission timing t0 to the rising timing of the light receiving signal Ps. Therefore, it is necessary to correct the elapsed time T by the correction amount ΔT, with the time from when the light receiving signal Ps shown in FIG. 1 rises from the zero level to the predetermined level as the correction amount ΔT. That is, it is necessary to subtract the correction amount ΔT from the elapsed time T.
また、同じ距離であっても計測対象物の反射率の違いなどによって受光信号Psのピークは増減する。受光信号Psのピークの増減に応じて受光信号Psの立上り・立下りの傾きが変化し、補正量ΔTが変化する。従って、正確な距離測定には、このような補正量ΔTの変化も考慮する必要がある。  Further, even at the same distance, the peak of the received light signal Ps increases or decreases due to a difference in the reflectance of the measurement target or the like. The rising and falling slopes of the light receiving signal Ps change according to the increase and decrease of the peak of the light receiving signal Ps, and the correction amount ΔT changes. Therefore, it is necessary to consider such a change in the correction amount ΔT for accurate distance measurement.
本実施形態では、距離を補正する手法として、パルス幅補正とスルーレート補正を採用している。  In the present embodiment, pulse width correction and slew rate correction are employed as a method for correcting the distance.
まず、第1補正手法としてのパルス幅補正について、図2に示す受光信号Psの波形を用いて説明する。パルス幅補正では、レーザ光の出射タイミングt0から受光信号Psが立ち上がって第1閾値Vth1を横切るタイミングt1までの経過時間T1と、レーザ光の出射タイミングt0から受光信号Psが立ち下がって第1閾値Vth1を横切るタイミングt2までの経過時間T2と、を計測する。そして、経過時間T1とT2との差分からパルス幅Wを算出する。  First, the pulse width correction as the first correction method will be described using the waveform of the light receiving signal Ps shown in FIG. In the pulse width correction, the elapsed time T1 from the laser light emission timing t0 to the timing t1 at which the light receiving signal Ps rises and crosses the first threshold Vth1, and the light receiving signal Ps falls from the laser light emission timing t0 to the first threshold An elapsed time T2 up to a timing t2 crossing Vth1 is measured. Then, the pulse width W is calculated from the difference between the elapsed times T1 and T2.
受光信号Psのピークが大きくなる程、受光信号Psの立上り・立下りの傾きが急峻となり、パルス幅Wは大きくなり、補正量ΔTは小さくなる。補正量ΔTは、受光信号Psがゼロレベルから第1閾値Vth1まで立ち上がるまでの時間である。そこで、予め設定されたパルス幅Wと補正量ΔTとの関係と、実際に算出されたパルス幅Wとから、補正量ΔTを決定する。計測された経過時間T1から決定された補正量ΔTを差し引くことで、距離を計測する。  As the peak of the light receiving signal Ps increases, the rising and falling slopes of the light receiving signal Ps become steeper, the pulse width W increases, and the correction amount ΔT decreases. The correction amount ΔT is the time from when the light receiving signal Ps rises from the zero level to the first threshold value Vth1. Therefore, the correction amount ΔT is determined from the relationship between the preset pulse width W and the correction amount ΔT and the actually calculated pulse width W. The distance is measured by subtracting the determined correction amount ΔT from the measured elapsed time T1.
なお、受光信号Psを反転させて、レーザ光の出射タイミングt0から受光信号Psが立ち下がって第1閾値を横切るタイミングt1までの経過時間と、レーザ光の出射タイミングt0から受光信号Psが立ち上がって第1閾値を横切るタイミングt2までの経過時間と、を計測することでパルス幅Wを算出してもよい。  The light receiving signal Ps is inverted, and the elapsed time from the laser light emission timing t0 to the timing t1 at which the light receiving signal Ps falls and crosses the first threshold value, and the light receiving signal Ps rises from the laser light emitting timing t0 The pulse width W may be calculated by measuring the elapsed time until the timing t2 crossing the first threshold.
すなわち、第1補正手法は、受光信号における立上りと立下りの両方の検出に応じて補正を行う。  That is, the first correction method performs the correction in accordance with both the detection of the rising edge and the falling edge of the received light signal.
次に、第2補正手法としてのスルーレート補正について、図3に示す受光信号Psの波形を用いて説明する。スルーレート補正では、レーザ光の出射タイミングt0から受光信号Psが立ち上がって第1閾値Vth1を横切るタイミングt1までの経過時間T11と、レーザ光の出射タイミングt0から受光信号Psが立ち上がって第2閾値Vth2を横切るタイミングt12までの経過時間T12と、を計測する。なお、第2閾値Vth2は、第1閾値Vth1よりも大きい。そして、経過時間T11とT12との差分からスルーレートSRを算出する。  Next, the slew rate correction as the second correction method will be described using the waveform of the light receiving signal Ps shown in FIG. In the slew rate correction, the elapsed time T11 from the laser light emission timing t0 to the timing t1 at which the light receiving signal Ps rises and crosses the first threshold Vth1, and the light receiving signal Ps rises from the laser light emission timing t0 to the second threshold Vth2 And the elapsed time T12 up to the timing t12 crossing. Note that the second threshold value Vth2 is larger than the first threshold value Vth1. Then, the slew rate SR is calculated from the difference between the elapsed times T11 and T12.
受光信号Psのピークが大きくなる程、受光信号Psの立上りの傾きが急峻となり、スルーレートSRは小さくなり、補正量ΔTは小さくなる。補正量ΔTは、受光信号Psがゼロレベルから第1閾値Vth1まで立ち上がるまでの時間である。そこで、予め設定されたスルーレートSRと補正量ΔTとの関係と、実際に算出されたスルーレートSRとから、補正量ΔTを決定する。計測された経過時間T11から決定された補正量ΔTを差し引くことで、距離を計測する。  As the peak of the light receiving signal Ps increases, the rising slope of the light receiving signal Ps becomes steeper, the slew rate SR decreases, and the correction amount ΔT decreases. The correction amount ΔT is the time from when the light receiving signal Ps rises from the zero level to the first threshold value Vth1. Therefore, the correction amount ΔT is determined from the relationship between the preset slew rate SR and the correction amount ΔT and the actually calculated slew rate SR. The distance is measured by subtracting the determined correction amount ΔT from the measured elapsed time T11.
なお、受光信号Psを反転させて、レーザ光の出射タイミングt0から受光信号Psが立ち下がって第1閾値を横切るタイミングまでの経過時間と、レーザ光の出射タイミングt0から受光信号Psが立ち下がって第2閾値(<第1閾値)を横切るタイミングまでの経過時間と、を計測することでスルーレートSRを算出してもよい。  Note that the light receiving signal Ps is inverted so that the elapsed time from the laser light emission timing t0 to the timing at which the light receiving signal Ps falls and crosses the first threshold value, and the time at which the laser light emitting timing t0 causes the light receiving signal Ps to fall The slew rate SR may be calculated by measuring the elapsed time until the timing when the second threshold (<first threshold) is crossed.
すなわち、第2補正手法は、受光信号における立上りと立下りのうち一方の検出に応じた補正を行う。  That is, the second correction method performs correction according to detection of one of the rising edge and the falling edge of the received light signal.
このように、第1補正手法は、立上りが第1閾値と交わるタイミングと、立下りが第1閾値と交わるタイミングとの間の時間に基づいて補正を行うパルス幅補正であり、第2補正手法は、立上りまたは立下りが第1閾値、第2閾値とそれぞれ交わるタイミング間の時間に基づいて補正を行うスルーレート補正である。これにより、補正のための演算処理負荷を抑えることができる。  As described above, the first correction method is a pulse width correction in which the correction is performed based on the time between the timing at which the rising crosses the first threshold value and the timing at which the falling crosses the first threshold value. Is a slew rate correction that performs correction based on the time between the timings at which the rise or fall crosses the first threshold and the second threshold, respectively. As a result, the processing load for correction can be reduced.
<2.距離補正手法の課題> ここで、図4に示すように、ガラス等の光を透過する透光性物体200の後方に他の物体250が存在する場合に、レーザ光Lを出射すると、透光性物体200で反射した反射光と後方の物体250で反射した反射光を受光することになる。  <2. Problems of Distance Correction Method> Here, as shown in FIG. 4, when another object 250 exists behind a light-transmitting object 200 that transmits light, such as glass, when the laser light L is emitted, The reflected light reflected by the sexual object 200 and the reflected light reflected by the rear object 250 are received.
透光性物体200と後方の物体250との間の距離が長い場合、図6に示すように、受光信号Psにおいて、透光性物体200での反射光による受光信号成分Ps200と、後方の物体250での反射光による受光信号成分Ps250とは時間的に離れる。このため、受光信号成分Ps200の立上りと立下りとで第1閾値Vth1を横切るので、正確なパルス幅W1を算出することができ、パルス幅補正により正確な透光性物体200までの距離を計測可能となる。 When the distance between the translucent object 200 and the rear object 250 is long, as shown in FIG. 6, in the light reception signal Ps, the light reception signal component Ps200 due to the light reflected by the light transmission object 200 and the rear object The light receiving signal component Ps250 due to the reflected light at 250 is separated in time. For this reason, since the rising and falling of the light receiving signal component Ps200 cross the first threshold value Vth1, the accurate pulse width W1 can be calculated, and the accurate distance to the translucent object 200 is measured by the pulse width correction. It becomes possible.
しかしながら、透光性物体200と後方の物体250との間の距離が短い場合、図7の上段に示すように、受光信号成分Ps200と受光信号成分Ps250とが重なり合う。その結果、図7の下段に示すように、受光信号Psは、受光信号成分Ps200と受光信号成分Ps250とが合成されて生成される。このため、受光信号Psの立上りで第1閾値Vth1を横切った後、受光信号Psの立下りで第1閾値Vth1を横切るまでの期間として算出されるパルス幅W2は正確なパルス幅W1よりも長くなる。  However, when the distance between the translucent object 200 and the rear object 250 is short, the light receiving signal component Ps200 and the light receiving signal component Ps250 overlap as shown in the upper part of FIG. As a result, as shown in the lower part of FIG. 7, the light receiving signal Ps is generated by combining the light receiving signal component Ps200 and the light receiving signal component Ps250. Therefore, the pulse width W2 calculated as a period from the time when the light receiving signal Ps rises to cross the first threshold Vth1 to the time when the light receiving signal Ps falls to cross the first threshold Vth1 is longer than the accurate pulse width W1. Become.
ここで、図8は、パルス幅補正に用いられる予め設定されたパルス幅Wと補正量ΔTとの関係の一例を示す図である。図8に示すように、パルス幅W2と上記関係によって決定される補正量ΔTは、正確なパルス幅W1と上記関係によって決定される補正量ΔTよりも、誤差ΔTerrだけ小さくなる。従って、パルス幅補正により距離を計測すると、透光性物体200までの距離を実際よりも長めに測定してしまう。  Here, FIG. 8 is a diagram illustrating an example of a relationship between a preset pulse width W used for pulse width correction and a correction amount ΔT. As shown in FIG. 8, the correction amount ΔT determined by the above relationship with the pulse width W2 is smaller by the error ΔTerr than the correction amount ΔT determined by the accurate pulse width W1 and the above relationship. Therefore, when the distance is measured by the pulse width correction, the distance to the translucent object 200 is measured to be longer than the actual distance.
図9は、図4に示す状況でのレーザ光Lの出射角度θLとパルス幅補正による計測距離Dとの関係の一例を示す図である。なお、出射角度θLは、透光性物体200に対する正面方向からのレーザ光Lの出射方向のずれ角度を示す。 FIG. 9 is a diagram illustrating an example of a relationship between the emission angle θ L of the laser beam L and the measurement distance D by the pulse width correction in the situation illustrated in FIG. Note that the emission angle θ L indicates a deviation angle of the emission direction of the laser light L from the front direction with respect to the translucent object 200.
出射角度θLが小さい場合、透光性物体200からの反射光量が大きく、物体250からの反射光量は小さいので、正確なパルス幅を検出でき、図9に示す白塗部のように、パルス幅補正により正確に透光性物体200までの距離を計測できる。  When the emission angle θ L is small, the amount of reflected light from the translucent object 200 is large, and the amount of reflected light from the object 250 is small, so that an accurate pulse width can be detected. The distance to the translucent object 200 can be accurately measured by the width correction.
出射角度θLがさらに大きくなると、透光性物体200からの反射光量が減少し、物体250からの反射光量が増加するので、図7に示す現象が生じる。これにより、パルス幅が長めに検出され、補正量が減少し、図9に示すハッチング部のように、透光性物体200までの距離が実際よりも長めに計測されてしまう。このハッチング部のように、パルス幅補正を用いると距離が長めに計測される距離位置を中間点MPと称する。  When the emission angle θ L further increases, the amount of light reflected from the translucent object 200 decreases and the amount of light reflected from the object 250 increases, so that the phenomenon shown in FIG. 7 occurs. As a result, the pulse width is detected to be longer, the correction amount decreases, and the distance to the translucent object 200 is measured to be longer than the actual distance, as in the hatched portion shown in FIG. A distance position at which the distance is measured to be longer when pulse width correction is used as in the hatched portion is referred to as an intermediate point MP.
出射角度θLがさらに大きくなると、透光性物体200からの反射光量がさらに減少し、物体250からの反射光量がさらに増加するので、物体250について正確なパルス幅を検出でき、図9に示す黒塗部のように、パルス幅補正により正確な物体250までの距離を計測できる。  When the emission angle θ L is further increased, the amount of reflected light from the translucent object 200 is further reduced, and the amount of reflected light from the object 250 is further increased. Therefore, an accurate pulse width of the object 250 can be detected, as shown in FIG. Like a black portion, the distance to the object 250 can be accurately measured by pulse width correction.
また、同様の現象は、例えば、図5に示す手前の壁等である非透光性物体300と、後方の壁等である非透光性物体350が存在する場合にレーザ光Lを出射した場合にも起こりうる。なお、非透光性物体300は、壁の他にも、例えば椅子の脚などの細い物体である場合もある。  A similar phenomenon is that, for example, the laser beam L is emitted when there is a non-translucent object 300 such as a front wall shown in FIG. 5 and a non-translucent object 350 such as a rear wall. It can happen in some cases. The non-translucent object 300 may be a thin object such as a chair leg, in addition to a wall.
このようにパルス幅補正を用いると中間点が生じる虞があるといった課題があるが、スルーレート補正であれば、図7に示す状況であっても、受光信号の立上りのみを検出することでスルーレートを算出するので、スルーレートを正確に得ることができる。従って、正確な距離を計測することが可能である。しかしながら、スルーレート補正を用いる場合は、受光信号のピークが十分に大きくないと、立上りを検出することができないため、パルス幅補正よりも距離測定可能範囲が小さくなる。  As described above, there is a problem that the use of the pulse width correction may cause an intermediate point. However, in the case of the slew rate correction, even if the situation shown in FIG. Since the rate is calculated, the slew rate can be accurately obtained. Therefore, an accurate distance can be measured. However, when the slew rate correction is used, the rising edge cannot be detected unless the peak of the light receiving signal is sufficiently large, so that the range in which the distance can be measured is smaller than that in the pulse width correction.
そこで、本実施形態の距離測定装置では、パルス幅補正とスルーレート補正のそれぞれの有利な点を利用する構成としている。  Therefore, the distance measuring device of the present embodiment is configured to use the respective advantages of the pulse width correction and the slew rate correction.
<3.無人搬送車の全体構成> 以下、本実施形態の距離測定装置について詳述する。ここでは、距離測定装置をレーザレンジファインダーとして構成した例について述べる。また、距離測定装置を搭載する移動体としては、荷物を運搬する用途である無人搬送車を例に挙げて説明する。無人搬送車は、一般的にAGV(Automatic  Guided  Vehicle)とも呼称される。  <3. Overall configuration of automatic guided vehicle> The distance measuring device of the present embodiment will be described in detail below. Here, an example in which the distance measuring device is configured as a laser range finder will be described. In addition, as an example of a moving body on which a distance measuring device is mounted, an automatic guided vehicle that is used to carry a load will be described as an example. The automatic guided vehicle is also generally called an AGV (Automatic Guided Vehicle).
図10は、本発明の一実施形態に係る無人搬送車15の概略全体斜視図である。図11は、本発明の一実施形態に係る無人搬送車15の概略側面図である。図12は、本発明の一実施形態に係る無人搬送車15の上方から視た平面図である。無人搬送車15は、二輪駆動により自律的に走行し、荷物を運搬する。  FIG. 10 is a schematic overall perspective view of the automatic guided vehicle 15 according to one embodiment of the present invention. FIG. 11 is a schematic side view of the automatic guided vehicle 15 according to one embodiment of the present invention. FIG. 12 is a plan view of the automatic guided vehicle 15 according to one embodiment of the present invention as viewed from above. The automatic guided vehicle 15 travels autonomously by two-wheel drive and transports luggage.
無人搬送車15は、車体1と、荷台2と、支持部3L、3Rと、駆動モータ4L、4Rと、駆動輪5L、5Rと、従動輪6F、6Rと、距離測定装置7と、を備える。  The automatic guided vehicle 15 includes the vehicle body 1, the carrier 2, the support portions 3L and 3R, the drive motors 4L and 4R, the drive wheels 5L and 5R, the driven wheels 6F and 6R, and the distance measuring device 7. .
車体1は、基部1Aと、台部1Bと、から構成される。板状の台部1Bは、基部1Aの後方上面に固定される。台部1Bは、前方に突出する三角形部Trを有する。板状の荷台2は、台部1Bの上面に固定される。荷台2の上面には、荷物を載置することが可能である。荷台2は、台部1Bよりも更に前方まで延びる。これにより、基部1Aの前方と荷台2の前方との間には隙間Sが構成される。  The vehicle body 1 includes a base 1A and a base 1B. The plate-like base 1B is fixed to the rear upper surface of the base 1A. The base 1B has a triangular portion Tr protruding forward. The plate-shaped carrier 2 is fixed to the upper surface of the platform 1B. Luggage can be placed on the upper surface of the bed 2. The carrier 2 extends further forward than the platform 1B. Thereby, a gap S is formed between the front of the base 1A and the front of the carrier 2.
距離測定装置7は、隙間Sにおいて台部1Bの三角形部Tr頂点の前方位置に配置される。距離測定装置7は、レーザレンジファインダーとして構成され、レーザ光を走査しつつ計測対象物までの距離を計測する装置である。距離測定装置7は、後述する障害物検知、地図情報作成、および自己位置同定に用いられる。距離測定装置7自体の詳細な構成については後述する。  The distance measuring device 7 is disposed in the gap S at a position in front of the vertex of the triangular portion Tr of the base 1B. The distance measuring device 7 is configured as a laser range finder, and measures a distance to a measurement target while scanning a laser beam. The distance measurement device 7 is used for obstacle detection, map information creation, and self-position identification described later. The detailed configuration of the distance measuring device 7 itself will be described later.
支持部3Lは、基部1Aの左方側に固定され、駆動モータ4Lを支持する。駆動モータ4Lは、一例としてACサーボモータにより構成される。駆動モータ4Lは、不図示の減速機を内蔵する。駆動輪5Lは、駆動モータ4Lの回転するシャフトに固定される。  The support 3L is fixed to the left side of the base 1A, and supports the drive motor 4L. The drive motor 4L is configured by, for example, an AC servomotor. The drive motor 4L incorporates a speed reducer (not shown). The drive wheel 5L is fixed to a rotating shaft of the drive motor 4L.
支持部3Rは、基部1Aの右方側に固定され、駆動モータ4Rを支持する。駆動モータ4Rは、一例としてACサーボモータにより構成される。駆動モータ4Rは、不図示の減速機を内蔵する。駆動輪5Rは、駆動モータ4Rの回転するシャフトに固定される。  The support 3R is fixed to the right side of the base 1A and supports the drive motor 4R. The drive motor 4R is configured by, for example, an AC servomotor. The drive motor 4R incorporates a speed reducer (not shown). The drive wheel 5R is fixed to a rotating shaft of the drive motor 4R.
従動輪6Fは、基部1Aの前方側に固定される。従動輪6Rは、基部1Aの後方側に固定される。従動輪6F、6Rは、駆動輪5L、5Rの回転に応じて受動的に回転する。  The driven wheel 6F is fixed to the front side of the base 1A. The driven wheel 6R is fixed to the rear side of the base 1A. The driven wheels 6F, 6R rotate passively according to the rotation of the drive wheels 5L, 5R.
駆動モータ4L、4Rにより駆動輪5L、5Rを回転駆動することで、無人搬送車15を前進および後進させることができる。また、駆動輪5L、5Rの回転速度に差を設けるよう制御することで、無人搬送車15を右回りまたは左回りに旋回させ、方向転換させることができる。また、駆動輪5L、5Rを逆方向に回転させることで、無人搬送車15をその場で回転させることもできる。  By driving the drive wheels 5L, 5R by the drive motors 4L, 4R, the automatic guided vehicle 15 can be moved forward and backward. In addition, by controlling the rotational speeds of the drive wheels 5L and 5R to provide a difference, the automatic guided vehicle 15 can be turned clockwise or counterclockwise to change the direction. Further, by rotating the drive wheels 5L and 5R in the opposite direction, the automatic guided vehicle 15 can be rotated on the spot.
基部1Aは、内部に制御ユニットU、バッテリーB、および通信部Tを収容する。制御ユニットUは、距離測定装置7、駆動モータ4L、4R、および通信部T等に接続される。  The base 1A houses therein a control unit U, a battery B, and a communication unit T. The control unit U is connected to the distance measuring device 7, the drive motors 4L and 4R, the communication unit T, and the like.
制御ユニットUは、後述するように距離測定装置7との間で種々の信号の通信を行う。制御ユニットUは、駆動モータ4L、4Rの駆動制御も行う。通信部Tは、外部のタブレット端末(不図示)との間で通信を行い、例えばBluetooth(登録商標)に準拠する。これにより、タブレット端末により無人搬送車15を遠隔操作することができる。バッテリーBは、例えばリチウムイオン電池により構成され、距離測定装置7、制御ユニットU、通信部T等の各部に電力を供給する。  The control unit U communicates various signals with the distance measuring device 7 as described later. The control unit U also controls the drive of the drive motors 4L and 4R. The communication unit T communicates with an external tablet terminal (not shown) and conforms to, for example, Bluetooth (registered trademark). Thereby, the automatic guided vehicle 15 can be remotely controlled by the tablet terminal. The battery B is composed of, for example, a lithium ion battery, and supplies power to each unit such as the distance measuring device 7, the control unit U, and the communication unit T.
<4.距離測定装置の構成> 図13は、距離測定装置7の概略側面断面図である。レーザレンジファインダーとして構成される距離測定装置13は、レーザ光源71と、コリメートレンズ72と、投光ミラー73と、受光レンズ74と、受光ミラー75と、波長フィルタ76と、受光素子77と、回転筐体78と、モータ79と、筐体80と、基板81と、配線82と、を有する。  <4. Configuration of Distance Measuring Device> FIG. 13 is a schematic side sectional view of the distance measuring device 7. The distance measuring device 13 configured as a laser range finder includes a laser light source 71, a collimating lens 72, a light projecting mirror 73, a light receiving lens 74, a light receiving mirror 75, a wavelength filter 76, a light receiving element 77, A housing 78, a motor 79, a housing 80, a substrate 81, and a wiring 82 are provided.
筐体80は、外観視で上下方向に延びる略円柱状であり、内部空間にレーザ光源71を初めとする各種構成を収容する。レーザ光源71は、筐体80の上端部の下面に固定される基板81の下面に実装される。レーザ光源71は、例えば赤外領域のレーザ光を下方に出射する。  The housing 80 has a substantially columnar shape extending in the vertical direction when viewed from the outside, and accommodates various components including the laser light source 71 in the internal space. The laser light source 71 is mounted on the lower surface of a substrate 81 fixed to the lower surface of the upper end of the housing 80. The laser light source 71 emits, for example, laser light in the infrared region downward.
コリメートレンズ72は、レーザ光源71の下方に配置される。コリメートレンズ72は、レーザ光源71から出射されるレーザ光を平行光として下方に出射する。コリメートレンズ72の下方には、投光ミラー73が配置される。  The collimating lens 72 is disposed below the laser light source 71. The collimating lens 72 emits the laser light emitted from the laser light source 71 downward as parallel light. A light projecting mirror 73 is arranged below the collimating lens 72.
投光ミラー73は、回転筐体78に固定される。回転筐体78は、モータ79のシャフト79Aに固定され、モータ79によって回転軸J周りに回転駆動される。回転筐体78の回転ととともに、投光ミラー73も回転軸J周りに回転駆動される。投光ミラー73は、コリメートレンズ72から出射されるレーザ光を反射して、反射されたレーザ光を出射光L1として出射する。投光ミラー73は上記のように回転駆動されるので、出射光L1は回転軸J周りの360度の範囲で出射方向を変えながら出射される。  The light projecting mirror 73 is fixed to the rotating housing 78. The rotating housing 78 is fixed to a shaft 79 </ b> A of the motor 79, and is driven to rotate around the rotation axis J by the motor 79. With the rotation of the rotating housing 78, the light projecting mirror 73 is also driven to rotate about the rotation axis J. The light projecting mirror 73 reflects the laser light emitted from the collimating lens 72, and emits the reflected laser light as emission light L1. Since the light projecting mirror 73 is driven to rotate as described above, the emission light L1 is emitted while changing the emission direction within a range of 360 degrees around the rotation axis J.
筐体80は上下方向の途中において、透過部801を有する。透過部801は、透光性の樹脂等から構成される。  The housing 80 has a transmission part 801 in the middle in the vertical direction. The transmissive portion 801 is made of a translucent resin or the like.
投光ミラー73で反射されて出射される出射光L1は、透過部801を透過して、隙間Sを通り、無人搬送車15より外側へ出射される。本実施形態では、所定の回転走査角度範囲θは、図12に示すように、一例として回転軸J周りの270度に設定される。270度の範囲は、より具体的には、前方180度と後方左右それぞれ45度ずつを含む。出射光L1は、少なくとも回転軸J周り270度の範囲で透過部801を透過する。なお、後方の透過部801が配置されない範囲では、出射光L1は筐体80の内壁または配線82等により遮られる。  The outgoing light L1 reflected and emitted by the light projecting mirror 73 is transmitted through the transmitting portion 801 and passes through the gap S and is emitted outward from the automatic guided vehicle 15. In the present embodiment, the predetermined rotation scanning angle range θ is set to 270 degrees around the rotation axis J as an example, as shown in FIG. More specifically, the range of 270 degrees includes 180 degrees in the front and 45 degrees in the left and right directions. The emitted light L1 is transmitted through the transmission part 801 at least within a range of 270 degrees around the rotation axis J. In a range where the rear transmission part 801 is not disposed, the emitted light L1 is blocked by the inner wall of the housing 80, the wiring 82, or the like.
受光ミラー75は、投光ミラー73より下方の位置で回転筐体78に固定される。受光レンズ74は、回転筐体78の周方向側面に固定される。波長フィルタ76は、受光ミラー75より下方に位置し、回転筐体78に固定される。受光素子77は、波長フィルタ76より下方に位置し、回転筐体78に固定される。  The light receiving mirror 75 is fixed to the rotating housing 78 at a position below the light projecting mirror 73. The light receiving lens 74 is fixed to a circumferential side surface of the rotating housing 78. The wavelength filter 76 is located below the light receiving mirror 75 and is fixed to the rotating housing 78. The light receiving element 77 is located below the wavelength filter 76 and is fixed to the rotating housing 78.
距離測定装置7から出射された出射光L1は、計測対象物で反射して拡散光となる。拡散光の一部は、入射光L2として隙間Sおよび透過部801を透過して受光レンズ74に入射される。受光レンズ74を透過した入射光L2は、受光ミラー75へ入射され、受光ミラー75により下方へ反射される。反射された入射光L2は、波長フィルタ76を透過して受光素子77により受光される。波長フィルタ76は、赤外領域の光を透過させる。受光素子77は、受光した光を光電変換により電気信号に変換する。  The outgoing light L1 emitted from the distance measuring device 7 is reflected by the object to be measured and becomes diffused light. Part of the diffused light is transmitted through the gap S and the transmission portion 801 as incident light L2 and is incident on the light receiving lens 74. The incident light L2 transmitted through the light receiving lens 74 is incident on the light receiving mirror 75, and is reflected downward by the light receiving mirror 75. The reflected incident light L2 passes through the wavelength filter 76 and is received by the light receiving element 77. The wavelength filter 76 transmits light in the infrared region. The light receiving element 77 converts the received light into an electric signal by photoelectric conversion.
モータ79により回転筐体78が回転駆動されると、受光レンズ74、受光ミラー75、波長フィルタ76、および受光素子77は、投光ミラー73とともに回転駆動される。  When the rotating housing 78 is driven to rotate by the motor 79, the light receiving lens 74, the light receiving mirror 75, the wavelength filter 76, and the light receiving element 77 are driven to rotate together with the light projecting mirror 73.
図12に示すように、回転走査角度範囲θ(一例として270度)で回転軸J周りに所定半径にて回転して形成される範囲が測定範囲Rsとして規定される。但し、上記所定半径は、出射光L1の出力レベルに応じて変化する。回転走査角度範囲θで出射光L1が出射され、測定範囲Rs内に位置する計測対象物で出射光L1が反射されると、反射光が入射光L2として透過部801を透過して受光レンズ74に入射される。  As shown in FIG. 12, a range formed by rotating around the rotation axis J with a predetermined radius in the rotation scanning angle range θ (270 degrees as an example) is defined as the measurement range Rs. However, the predetermined radius changes according to the output level of the emitted light L1. When the outgoing light L1 is emitted in the rotational scanning angle range θ and the outgoing light L1 is reflected by the measurement object located within the measurement range Rs, the reflected light is transmitted through the transmission unit 801 as incident light L2 and is received by the light receiving lens 74. Is incident on.
モータ79は、配線82によって基板81に接続され、基板81から通電されることで回転駆動される。モータ79は、回転筐体78を所定回転速度で回転させる。例えば、回転筐体78は、3000rpm程度で回転駆動される。配線82は、筐体80の後方内壁に上下方向に沿って引き回される。  The motor 79 is connected to the substrate 81 by a wiring 82 and is driven to rotate by being energized from the substrate 81. The motor 79 rotates the rotating housing 78 at a predetermined rotation speed. For example, the rotating housing 78 is driven to rotate at about 3000 rpm. The wiring 82 is routed vertically along the rear inner wall of the housing 80.
<5.距離測定装置の電気的構成> 次に、距離測定装置7の電気的構成について説明する。図14は、距離測定装置7の電気的構成を示すブロック図である。  <5. Electrical Configuration of Distance Measuring Apparatus> Next, the electrical configuration of the distance measuring apparatus 7 will be described. FIG. 14 is a block diagram illustrating an electrical configuration of the distance measuring device 7.
図14に示すように、距離測定装置7は、レーザ発光部701と、レーザ受光部702と、距離計測部703と、データ通信インタフェース704と、第2演算処理部705と、駆動部706と、モータ79と、を有する。  As shown in FIG. 14, the distance measuring device 7 includes a laser emitting unit 701, a laser receiving unit 702, a distance measuring unit 703, a data communication interface 704, a second arithmetic processing unit 705, a driving unit 706, And a motor 79.
レーザ発光部701は、レーザ光源71(図13)と、レーザ光源71を駆動する不図示のLDドライバなどを有する。LDドライバは、基板81に実装される。レーザ発光部701と、投光ミラー73と、回転筐体78と、モータ79と、から投光部83(図13)が構成される。すなわち、距離測定装置7は、発光部(レーザ発光部701)を含んで出射光L1の回転走査を行う投光部83を備える。 The laser light emitting unit 701 includes a laser light source 71 (FIG. 13), an LD driver (not shown) for driving the laser light source 71, and the like. The LD driver is mounted on the substrate 81. The laser emitting unit 701, the light projecting mirror 73, the rotating housing 78, and the motor 79 constitute a light projecting unit 83 (FIG. 13). That is, the distance measuring device 7 includes the light projecting unit 83 that includes the light emitting unit (laser light emitting unit 701) and performs rotational scanning of the emitted light L1.
レーザ受光部702は、受光素子77(図13)等を含み、受光に基づいて受光信号を出力する。すなわち、距離測定装置7は、受光に基づいて受光信号を出力する受光部(レーザ受光部702)を備える。なお、レーザ受光部702のより具体的な構成については、後述する。  Laser light receiving section 702 includes light receiving element 77 (FIG. 13) and the like, and outputs a light receiving signal based on the received light. That is, the distance measuring device 7 includes a light receiving unit (laser light receiving unit 702) that outputs a light receiving signal based on light reception. The more specific configuration of the laser light receiving unit 702 will be described later.
距離計測部703は、レーザ受光部702から出力される受光信号を入力される。距離測定部703は、第1演算処理部703Aを有する。レーザ発光部701は、第1演算処理部703Aから出力されるレーザ発光パルスLPをトリガとしてパルス状のレーザ光を発光する。このとき、出射光L1が出射される。出射された出射光L1が計測対象物OJにより反射されると、入射光L2がレーザ受光部702により受光される。レーザ受光部702は、入射光L2の受光に基づいて受光信号を距離計測部703へ出力する。  The distance measuring unit 703 receives a light receiving signal output from the laser light receiving unit 702. The distance measuring unit 703 has a first arithmetic processing unit 703A. The laser emission unit 701 emits a pulsed laser beam using the laser emission pulse LP output from the first arithmetic processing unit 703A as a trigger. At this time, the outgoing light L1 is emitted. When the emitted light L1 is reflected by the measurement object OJ, the incident light L2 is received by the laser light receiving unit 702. Laser light receiving section 702 outputs a light receiving signal to distance measuring section 703 based on the reception of incident light L2.
ここで、第1演算処理部703Aは、レーザ発光パルスLPとともに出力される基準パルス(図14で不図示)を出力する。距離計測部703は、基準パルスの立ち上りタイミングから受光信号の立上り・立下りタイミングまでの経過時間を計測することで、計測対象物OJまでの距離を取得することができる。すなわち、距離計測部703は、所謂TOF(Time Of Flight)方式によって距離を計測する。距離計測部703は、先述したパルス幅補正およびスルーレート補正を用いた距離計測を行う。このように、距離測定装置7は、出射光の出射と受光部702による受光とに基づいて計測対象物OJまでの距離を計測する距離計測部703を備える。なお、距離計測部703のより具体的な構成については後述する。  Here, the first arithmetic processing unit 703A outputs a reference pulse (not shown in FIG. 14) output together with the laser emission pulse LP. The distance measuring unit 703 can acquire the distance to the measurement target OJ by measuring the elapsed time from the rising timing of the reference pulse to the rising and falling timings of the light receiving signal. That is, the distance measuring unit 703 measures the distance by a so-called TOF (Time @ Of @ Flight) method. The distance measurement unit 703 performs distance measurement using the above-described pulse width correction and slew rate correction. As described above, the distance measuring device 7 includes the distance measuring unit 703 that measures the distance to the measurement target OJ based on the emission of the emitted light and the light reception by the light receiving unit 702. The more specific configuration of the distance measurement unit 703 will be described later.
駆動部706は、モータ79を回転駆動制御する。モータ79は、駆動部706によって所定の回転速度で回転駆動される。第1演算処理部703Aは、モータ79が所定単位角度回転するたびにレーザ発光パルスLPを出力する。これにより、回転筐体78および投光ミラー73が所定角度回転するたびにレーザ発光部701が発光し、出射光L1が出射される。図12には、出射光L1の出射を示す。  The drive unit 706 controls the rotation of the motor 79. The motor 79 is driven to rotate at a predetermined rotation speed by the drive unit 706. The first arithmetic processing unit 703A outputs a laser emission pulse LP each time the motor 79 rotates by a predetermined unit angle. As a result, each time the rotating housing 78 and the light projecting mirror 73 rotate by a predetermined angle, the laser light emitting unit 701 emits light, and the emitted light L1 is emitted. FIG. 12 shows the emission of the emission light L1.
第1演算処理部703Aは、レーザ発光パルスLPを出力したタイミングでのモータ79の回転角度位置と、レーザ発光パルスLPに対応して得られる距離計測データに基づいて、距離測定装置7を基準とする直交座標系上の位置情報を生成する。すなわち、投光ミラー73の回転角度位置と計測された距離に基づき、計測対象物OJの位置が取得される。上記取得される位置情報は、測定距離データDTとして第1演算処理部703Aより出力される。このようにして、回転走査角度範囲θでの出射光L1の回転走査により、計測対象物OJの距離画像を取得することができる。  The first arithmetic processing unit 703A uses the distance measurement device 7 as a reference based on the rotation angle position of the motor 79 at the timing when the laser emission pulse LP is output and the distance measurement data obtained corresponding to the laser emission pulse LP. To generate position information on the orthogonal coordinate system. That is, the position of the measurement object OJ is acquired based on the rotation angle position of the light projecting mirror 73 and the measured distance. The acquired position information is output from the first arithmetic processing unit 703A as measured distance data DT. In this manner, a distance image of the measurement object OJ can be obtained by rotational scanning of the emitted light L1 in the rotational scanning angle range θ.
第1演算処理部703Aから出力された測定距離データDTは、データ通信インタフェース704を介して後述する図15に示す無人搬送車15側に伝送される。  The measured distance data DT output from the first arithmetic processing unit 703A is transmitted via the data communication interface 704 to the automatic guided vehicle 15 shown in FIG.
第2演算処理部705は、測定距離データDTに基づき、所定エリア内に計測対象物が位置するか否かを判定する。具体的には、測定距離データDTで示される或る計測対象物の位置が所定エリア内に位置すれば、計測対象物が所定エリア内に位置すると判定される。第2演算処理部705は、所定エリア内に計測対象物が位置すると判定した場合、フラグである検出信号DsをHighレベルとして出力する。一方、所定エリア内に計測対象物が位置しない場合は、Lowレベルとした検出信号Dsを出力する。検出信号Dsは、後述する図15に示す無人搬送車15側に伝送される。  The second arithmetic processing unit 705 determines whether or not the measurement target is located within a predetermined area based on the measurement distance data DT. Specifically, if the position of a certain measurement target indicated by the measurement distance data DT is located within the predetermined area, it is determined that the measurement target is located within the predetermined area. When determining that the measurement target is located within the predetermined area, the second arithmetic processing unit 705 outputs the detection signal Ds, which is a flag, as a High level. On the other hand, when the measurement object is not located within the predetermined area, the detection signal Ds having a low level is output. The detection signal Ds is transmitted to the automatic guided vehicle 15 shown in FIG.
<6.無人搬送車の電気的構成> 先述のように距離測定装置7側の電気的構成を説明したが、ここでは、図15を用いて無人搬送車15側の電気的構成について説明する。図15は、無人搬送車15の電気的構成を示すブロック図である。  <6. Electrical Configuration of Unmanned Attached Vehicle> As described above, the electrical configuration of the distance measuring device 7 has been described. Here, the electrical configuration of the automated guided vehicle 15 will be described with reference to FIG. FIG. 15 is a block diagram illustrating an electrical configuration of the automatic guided vehicle 15.
図15に示すように、無人搬送車15は、距離測定装置7と、制御部8と、駆動部9と、通信部Tと、を有する。  As illustrated in FIG. 15, the automatic guided vehicle 15 includes a distance measuring device 7, a control unit 8, a driving unit 9, and a communication unit T.
制御部8は、制御ユニットU(図10)に設けられる。駆動部9は、不図示のモータドライバと、駆動モータ4L、4Rなどを有する。モータドライバは、制御ユニットUに設けられる。制御部8は、駆動部9に対して指令を行い制御する。駆動部9は、駆動輪5L、5Rの回転速度および回転方向を駆動制御する。  The control unit 8 is provided in the control unit U (FIG. 10). The drive unit 9 includes a motor driver (not shown) and drive motors 4L and 4R. The motor driver is provided in the control unit U. The control unit 8 issues a command to the drive unit 9 and controls the drive unit 9. The driving unit 9 controls the driving speed and the rotating direction of the driving wheels 5L and 5R.
制御部8は、通信部Tを介して不図示のタブレット端末と通信を行う。例えば、タブレット端末において操作された内容に応じた操作信号を通信部Tを介して制御部8が受信することができる。  The control unit 8 communicates with a tablet terminal (not shown) via the communication unit T. For example, the control unit 8 can receive an operation signal according to the content operated on the tablet terminal via the communication unit T.
制御部8は、距離測定装置7から出力される測定距離データDTを入力される。制御部8は、測定距離データDTに基づいて地図情報を作成することが可能である。地図情報とは、無人搬送車15の自己の位置を特定する自己位置同定を行うために生成される情報であり、無人搬送車15が走行する場所における静止物の位置情報として生成される。例えば、無人搬送車15が走行する場所が倉庫である場合は、静止物は倉庫の壁、倉庫内に配列された棚などである。  The control unit 8 receives the measured distance data DT output from the distance measuring device 7. The control unit 8 can create map information based on the measured distance data DT. The map information is information generated for performing self-position identification for specifying the position of the automatic guided vehicle 15 and is generated as position information of a stationary object at a place where the automatic guided vehicle 15 runs. For example, when the location where the automatic guided vehicle 15 travels is a warehouse, the stationary object is a wall of the warehouse, shelves arranged in the warehouse, or the like.
地図情報は、例えばタブレット端末により無人搬送車15の手動操作が行われる際に生成される。この場合、タブレット端末の例えばジョイスティックの操作に応じた操作信号が通信部Tを介して制御部8に送信されることで、制御部8は操作信号に応じて駆動部9に指令を行い、無人搬送車15を走行制御する。このとき、制御部8は、距離測定装置7から入力される測定距離データDTと、無人搬送車15の位置に基づき、無人搬送車15が走行する場所における計測対象物の位置を地図情報として特定する。無人搬送車15の位置は、駆動部9の駆動情報に基づき特定される。  The map information is generated, for example, when a manual operation of the automatic guided vehicle 15 is performed by the tablet terminal. In this case, an operation signal corresponding to the operation of, for example, the joystick of the tablet terminal is transmitted to the control unit 8 via the communication unit T, and the control unit 8 instructs the driving unit 9 in accordance with the operation signal, The traveling control of the transport vehicle 15 is performed. At this time, based on the measured distance data DT input from the distance measuring device 7 and the position of the automatic guided vehicle 15, the control unit 8 specifies the position of the measurement target at the place where the automatic guided vehicle 15 travels as map information. I do. The position of the automatic guided vehicle 15 is specified based on the drive information of the drive unit 9.
上記のように生成された地図情報は、制御部8の記憶部85により記憶される。制御部8は、距離測定装置7から入力される測定距離データDTと、記憶部85に予め記憶された地図情報とを比較することにより、無人搬送車15の自己の位置を特定する自己位置同定を行う。すなわち、制御部8は、位置同定部として機能する。自己位置同定を行うことで、制御部8は、予め定められた経路に沿った無人搬送車15の自律的な走行制御を行うことができる。  The map information generated as described above is stored in the storage unit 85 of the control unit 8. The control unit 8 compares the measured distance data DT input from the distance measuring device 7 with the map information stored in advance in the storage unit 85, thereby identifying the position of the automatic guided vehicle 15 itself. I do. That is, the control unit 8 functions as a position identification unit. By performing the self-position identification, the control unit 8 can perform autonomous traveling control of the automatic guided vehicle 15 along a predetermined route.
また、制御部8は、距離測定装置7から出力される検出信号Dsに基づいて駆動部9の制御を行うこともできる。  The control unit 8 can also control the driving unit 9 based on the detection signal Ds output from the distance measuring device 7.
<7.距離計測部の第1構成例> 図16は、距離計測部703の第1構成例を示すブロック図である。なお、図16は、レーザ受光部702の具体的な構成例を併せて示す。また、図17は、受光信号Psと各閾値(基準電圧)との関係を示す。  <7. First Configuration Example of Distance Measurement Unit> FIG. 16 is a block diagram showing a first configuration example of the distance measurement unit 703. FIG. 16 also shows a specific configuration example of the laser light receiving unit 702. FIG. 17 shows the relationship between the light receiving signal Ps and each threshold (reference voltage).
レーザ受光部702は、APD(アバランシェフォトダイオード)702Aと、増幅回路(トランスインピーダンスアンプ)702Bと、を有する。APD702Aは、受光素子77に相当し、受光したレーザ光を電流信号に変換する。増幅回路702Bは、APD702Aから出力される電流信号を受光信号Psに電流・電圧変換して出力する。  The laser light receiving section 702 has an APD (avalanche photodiode) 702A and an amplifier circuit (transimpedance amplifier) 702B. The APD 702A corresponds to the light receiving element 77, and converts the received laser light into a current signal. The amplifier circuit 702B converts the current signal output from the APD 702A into a light receiving signal Ps by current / voltage conversion and outputs the light receiving signal Ps.
距離計測部703は、先述した第1演算処理部703Aに加えて、第1コンパレータ703Bと、第2コンパレータ703Cと、第1TDC(time to digital converter)703Dと、第2TDC703Eと、セレクタ703Fと、を有する。  The distance measuring unit 703 includes a first comparator 703B, a second comparator 703C, a first TDC (time to digital converter) 703D, a second TDC 703E, and a selector 703F, in addition to the first arithmetic processing unit 703A described above. Have.
第1コンパレータ703Bは、非反転入力端(+)に入力される受光信号Psと、反転入力端(-)に入力される第1閾値Vth1とを比較する。第1コンパレータ703Bの出力信号は、第1TDC703Dに入力されるとともに、セレクタ703Fへ入力される。第2コンパレータ703Cは、非反転入力端(+)に入力される受光信号Psと、反転入力端(-)に入力される第2閾値Vth2とを比較する。第2コンパレータ703Cの出力信号は、セレクタ703Fへ入力される。第2閾値Vth2は、第1閾値Vth1よりも大きい。  The first comparator 703B compares the light receiving signal Ps input to the non-inverting input terminal (+) with the first threshold value Vth1 input to the inverting input terminal (-). The output signal of the first comparator 703B is input to the first TDC 703D and to the selector 703F. The second comparator 703C compares the light receiving signal Ps input to the non-inverting input terminal (+) with the second threshold value Vth2 input to the inverting input terminal (-). The output signal of the second comparator 703C is input to the selector 703F. The second threshold value Vth2 is larger than the first threshold value Vth1.
第1TDC703Dは、第1演算処理部703Aから出力される基準パルスSPの立上りタイミングから第1コンパレータ703Bから入力される出力信号のHighへの立上りタイミングまでの第1経過時間T10(図17)を計測する。セレクタ703Fは、第1コンパレータ703Bの出力信号と第2コンパレータ703Cの出力信号のうちいずれかを第1演算処理部703Aから出力される選択信号SSに応じて選択し、選択された出力信号を第2TDC703Eへ入力させる。  The first TDC 703D measures a first elapsed time T10 (FIG. 17) from the rising timing of the reference pulse SP output from the first arithmetic processing unit 703A to the rising timing of the output signal input from the first comparator 703B to High. I do. The selector 703F selects one of the output signal of the first comparator 703B and the output signal of the second comparator 703C in accordance with the selection signal SS output from the first arithmetic processing unit 703A, and outputs the selected output signal to the Input to 2TDC703E.
セレクタ703Fから第1コンパレータ703Bの出力信号が選択されて入力される場合、第2TDC703Eは、第1演算処理部703Aから出力される基準パルスSPの立ち上りタイミングからセレクタ703Fから入力される出力信号のLowへの立下りタイミングまでの第2経過時間T20(図17)を計測する。  When the output signal of the first comparator 703B is selected and input from the selector 703F, the second TDC 703E outputs the Low of the output signal input from the selector 703F from the rising timing of the reference pulse SP output from the first arithmetic processing unit 703A. The second elapsed time T20 (FIG. 17) until the falling timing of the time is measured.
セレクタ703Fから第2コンパレータ703Cの出力信号が選択されて入力される場合、第2TDC703Eは、第1演算処理部703Aから出力される基準パルスSPの立ち上りタイミングからセレクタ703Fから入力される出力信号のHighへの立上りタイミングまでの第3経過時間T30(図17)を計測する。  When the output signal of the second comparator 703C is selected and input from the selector 703F, the second TDC 703E outputs the High of the output signal input from the selector 703F from the rising timing of the reference pulse SP output from the first arithmetic processing unit 703A. A third elapsed time T30 (FIG. 17) up to the rising timing of the measurement is measured.
第1演算処理部703Aは、選択信号SSによって第1コンパレータ703Bの出力信号を選択した場合は、第1経過時間T10と第2経過時間T20との差分からパルス幅を算出することでパルス幅補正による距離計測を行う。一方、第1演算処理部703Aは、選択信号SSによって第2コンパレータ703Cの出力信号を選択した場合は、第1経過時間T10と第3経過時間T30との差分からスルーレートを算出することでスルーレート補正による距離計測を行う。従って、距離計測部703は、第1補正手法を用いた距離の計測と、第2補正手法を用いた距離の計測と、を行うことが可能である。  When the output signal of the first comparator 703B is selected by the selection signal SS, the first arithmetic processing unit 703A calculates the pulse width from the difference between the first elapsed time T10 and the second elapsed time T20 to correct the pulse width. To measure the distance. On the other hand, when the output signal of the second comparator 703C is selected by the selection signal SS, the first arithmetic processing unit 703A calculates the through rate by calculating the slew rate from the difference between the first elapsed time T10 and the third elapsed time T30. Perform distance measurement by rate correction. Therefore, the distance measurement unit 703 can perform the distance measurement using the first correction method and the distance measurement using the second correction method.
すなわち、距離計測部703は、受光信号Psを第1基準電圧Vth1と比較する第1コンパレータ703Bと、受光信号Psを第2基準電圧Vth2と比較する第2コンパレータ703Cと、基準パルスSPと第1コンパレータ703Bの出力とが入力される第1TDC703Dと、基準パルスPsが入力される第2TDC703Eと、第1コンパレータ703Bの出力と第2コンパレータ703Cの出力の一方を選択して第2TDC703Eへ出力するセレクタ703Fと、を有する。これにより、距離計測部703は、第1補正手法としてのパルス幅補正と、第2補正手法としてのスルーレート補正と、を切替えて用いることができる。  That is, the distance measurement unit 703 includes a first comparator 703B that compares the received light signal Ps with the first reference voltage Vth1, a second comparator 703C that compares the received light signal Ps with the second reference voltage Vth2, a reference pulse SP, and a first comparator 703C. A first TDC 703D to which the output of the comparator 703B is input, a second TDC 703E to which the reference pulse Ps is input, and a selector 703F which selects one of the output of the first comparator 703B and the output of the second comparator 703C and outputs the selected signal to the second TDC 703E. And Thus, the distance measurement unit 703 can switch between pulse width correction as the first correction method and slew rate correction as the second correction method.
<8.距離測定制御処理の第1例> 次に、先述した第1構成例に係る距離計測部703(図16)による距離測定制御処理について、図19および図20に示すフローチャートに沿って説明する。  <8. First Example of Distance Measurement Control Process> Next, the distance measurement control process by the distance measurement unit 703 (FIG. 16) according to the above-described first configuration example will be described with reference to the flowcharts shown in FIGS.
ここで、図18は、距離測定装置7による出射光L1の回転走査の一例を示す図である。距離測定装置7は、一例として270°である回転走査角度範囲θにおいて、所定単位角度ごとにずれた各走査位置で出射光L1を出射させる。図18では、反時計周りに走査位置をずらしながら出射光L1が出射される。各走査位置は、角度位置n(n=1~N)として表される。  Here, FIG. 18 is a diagram illustrating an example of rotational scanning of the emitted light L1 by the distance measuring device 7. The distance measuring device 7 emits the emission light L1 at each scanning position shifted by a predetermined unit angle in the rotation scanning angle range θ of 270 ° as an example. In FIG. 18, the emitted light L1 is emitted while shifting the scanning position counterclockwise. Each scanning position is represented as an angular position n (n = 1 to N).
図19および図20に示すフローチャートは、図18に示す各角度位置nごとの処理を示す。電源がオンとなると図19に示す処理が開始され、以降、電源がオフとなるまで処理は継続される。また、図19および図20に示すmは、回転走査の周回を示す。図19に示す処理が開始された時点でm=0である。  The flowcharts shown in FIGS. 19 and 20 show processing for each angular position n shown in FIG. When the power is turned on, the processing shown in FIG. 19 is started, and thereafter, the processing is continued until the power is turned off. In addition, m shown in FIGS. 19 and 20 indicates the rotation of the rotation scanning. When the process shown in FIG. 19 is started, m = 0.
ステップS1で周回が次の周回に移行すると、ステップS2で、第1演算処理部703Aは、選択信号SSによって第1コンパレータ703Bの出力信号を選択することで、パルス幅補正による距離測定を行う。そして、ステップS3で、第1演算処理部703Aは、ステップS2で測定された距離を出力する。 When the circuit shifts to the next circuit in step S1, the first arithmetic processing unit 703A performs distance measurement by pulse width correction by selecting the output signal of the first comparator 703B by the selection signal SS in step S2. Then, in step S3, the first arithmetic processing unit 703A outputs the distance measured in step S2.
次に、ステップS4に進み、第1演算処理部703Aは、ステップS2で取得された距離がエラーであった場合は(ステップS4のYES)、次の周回において(ステップS1)、ステップS2でパルス幅補正による距離測定を行う。なお、上記エラーとは、計測対象物までの距離が遠く、受光信号Psのピークが過小となり、受光信号Psが第1閾値Vth1を上回らないために、距離測定を行えない場合である。  Next, proceeding to step S4, if the distance acquired in step S2 is an error (YES in step S4), the first arithmetic processing unit 703A performs a pulse in step S2 in the next round (step S1). Distance measurement by width correction is performed. Note that the error refers to a case where distance measurement cannot be performed because the distance to the measurement target is long, the peak of the light receiving signal Ps is too small, and the light receiving signal Ps does not exceed the first threshold Vth1.
一方、ステップS4で、取得距離がエラーでない場合は(ステップS4のNO)、ステップS5に進む。ステップS5で、第1演算処理部703Aは、ステップS2で取得された距離と、直前の角度位置(n-1)での取得された距離との差分を算出する。ここで、先述した図9に示すような中間点MPで距離計測を行うと、直前の角度位置での距離との差分が大きくなる。  On the other hand, if the acquisition distance is not an error in step S4 (NO in step S4), the process proceeds to step S5. In step S5, the first arithmetic processing unit 703A calculates a difference between the distance obtained in step S2 and the distance obtained at the immediately preceding angular position (n-1). Here, when distance measurement is performed at the intermediate point MP as shown in FIG. 9 described above, the difference from the distance at the immediately preceding angular position becomes large.
ここで、先述した図4に示すように、計測対象物は、透光性物体200と、当該透光性物体より奥側に位置する物体250と、を含む。これにより、透光性物体での反射光による受光信号成分と、透光性物体を透過して奥側に位置する物体で反射した光による受光信号成分とが重なることにより生じる中間点を検出できる。  Here, as shown in FIG. 4 described above, the measurement object includes a light-transmitting object 200 and an object 250 located on the back side of the light-transmitting object. This makes it possible to detect an intermediate point caused by the overlap of the light reception signal component due to the light reflected by the light transmissive object and the light reception signal component due to the light transmitted through the light transmissive object and reflected by the object located on the back side. .
また、先述した図5に示すように、計測対象物は、非透光性物体300と、当該非透光性物体より奥側に位置する他の非透光性物体350と、を含む。これにより、非透光性物体での反射光による受光信号成分と、他の非透光性物体での反射光による受光信号成分とが重なることにより生じる中間点を検出できる。  Further, as shown in FIG. 5 described above, the measurement target includes a non-light-transmitting object 300 and another non-light-transmitting object 350 located on the back side of the non-light-transmitting object. This makes it possible to detect an intermediate point caused by the overlap of the light receiving signal component due to the reflected light from the non-light-transmitting object and the light receiving signal component due to the light reflected from the other non-light-transmitting object.
そこで、ステップS5で算出された差分値が設定された値以下でない場合は(ステップS6のNO)、中間点が検出されたとして、次の周回において(ステップS7)、ステップS8に進む。ステップS8で、第1演算処理部703Aは、選択信号SSによって第2コンパレータ703Cの出力信号を選択することで、スルーレート補正による距離測定を行う。そして、ステップS9で、第1演算処理部703Aは、ステップS8で測定された距離を出力する。  Therefore, if the difference value calculated in step S5 is not smaller than the set value (NO in step S6), it is determined that an intermediate point has been detected, and the process proceeds to step S8 in the next round (step S7). In step S8, the first arithmetic processing unit 703A performs distance measurement by slew rate correction by selecting the output signal of the second comparator 703C using the selection signal SS. Then, in step S9, the first arithmetic processing unit 703A outputs the distance measured in step S8.
一方、ステップS5で算出された差分値が設定された値以下であった場合は(ステップS6のYES)、中間点は検出されていないとして、次の周回において(ステップS1)、ステップS2でパルス幅補正による距離測定を行う。  On the other hand, if the difference value calculated in step S5 is equal to or smaller than the set value (YES in step S6), it is determined that the intermediate point has not been detected, and in the next round (step S1), the pulse in step S2 is determined. Distance measurement by width correction is performed.
このように、中間点が検出された場合は、中間点での距離測定精度の高いスルーレート補正による距離測定に切替え、そうでない場合は、距離測定可能範囲の大きいパルス幅補正による距離測定を行う。  As described above, when the intermediate point is detected, the distance measurement is switched to the distance measurement by the slew rate correction with high distance measurement accuracy at the intermediate point, and otherwise, the distance measurement is performed by the pulse width correction having a large distance measurable range. .
なお、ステップS5で、直前の角度位置での取得された距離がエラーであるために差分を計算できない場合は、ステップS1、S2に進む。また、角度位置n=1の場合は、直前の角度位置が存在しないので、ステップS1、S2に進む。  In step S5, if the difference cannot be calculated because the acquired distance at the immediately preceding angular position is an error, the process proceeds to steps S1 and S2. If the angular position n = 1, there is no immediately preceding angular position, so the process proceeds to steps S1 and S2.
すなわち、距離計測部703は、第1補正手法(パルス幅補正)を用いて計測された距離と、第2補正手法(スルーレート補正)を用いて計測された距離とのうち、少なくとも第1補正手法を用いて計測された距離を用いた距離比較処理に基づき、第2補正手法を用いて計測された距離を計測距離として出力する。  That is, the distance measurement unit 703 performs at least the first correction of the distance measured using the first correction method (pulse width correction) and the distance measured using the second correction method (slew rate correction). Based on the distance comparison processing using the distance measured using the technique, the distance measured using the second correction technique is output as the measured distance.
これにより、第1物体での反射光に基づく受光信号成分と第2物体での反射光に基づく受光信号成分とが重なることにより、第1補正手法を用いると距離が長めに計測される距離位置(中間点)が検出された場合に、より正確に距離を計測できる第2補正手法を用いた計測距離を出力することができる。中間点の検出は、距離比較処理に基づくので、演算処理負荷を抑えることができる。  As a result, the received light signal component based on the reflected light from the first object and the received light signal component based on the reflected light from the second object overlap, so that the distance position where the distance is measured to be longer when the first correction method is used is increased. When the (intermediate point) is detected, it is possible to output a measured distance using the second correction method that can more accurately measure the distance. Since the detection of the intermediate point is based on the distance comparison processing, the processing load can be reduced.
より具体的には、距離計測部703は、回転走査における第1角度位置(n-1)で第1補正手法を用いて計測された距離と、回転走査において第1角度位置よりも走査が後である第2角度位置(n)で第1補正手法を用いて計測された距離と、を比較し、当該比較結果に基づき、第2補正手法を用いて計測された距離を第2角度位置での計測距離として出力する。  More specifically, the distance measurement unit 703 determines that the distance measured by using the first correction method at the first angular position (n−1) in the rotational scan and that the scan should be performed later than the first angular position in the rotational scan. Is compared with the distance measured using the first correction method at the second angle position (n), and based on the comparison result, the distance measured using the second correction method is calculated at the second angle position. Is output as the measured distance.
なお、第1角度位置(n-1)と第2角度位置(n)とは、隣接する角度位置である。なお、隣接する角度位置とは、回転走査において出射光を出射させる各タイミングのうち時間的に隣接するタイミングのそれぞれの角度位置である。これにより、中間点を精度良く検出することができる。  The first angular position (n-1) and the second angular position (n) are adjacent angular positions. Note that the adjacent angular positions are the respective angular positions of the temporally adjacent timings among the timings at which the emission light is emitted in the rotational scanning. Thereby, the intermediate point can be detected with high accuracy.
また、距離計測部703は、上記比較結果に基づき、第2角度位置で第1補正手法を用いて距離を計測した第m周回(mは自然数)の次の第(m+1)周回の第2角度位置での距離計測に用いる手法を、第1補正手法から前記第2補正手法へ切替える。  Further, based on the above comparison result, the distance measuring unit 703 calculates the second angle of the (m + 1) th rotation following the mth rotation (m is a natural number) whose distance has been measured at the second angular position using the first correction method. The method used for distance measurement at the position is switched from the first correction method to the second correction method.
これにより、同一周回の角度位置では第1補正手法と第2補正手法の一方を用いて距離計測を行う構成で実現可能となり、構成を簡易化できる。  This makes it possible to realize a distance measurement using one of the first correction method and the second correction method at an angular position of the same revolution, thereby simplifying the configuration.
また、距離計測部703は、第1角度位置で計測された距離と、第2角度位置で第1補正手法を用いて計測された距離との差分を算出して得られた算出結果が第1所定値を上回る場合に、第(m+1)周回の第2角度位置での距離計測に用いる手法を、第1補正手法から第2補正手法へ切替える。  Further, the distance measurement unit 703 calculates a difference between the distance measured at the first angular position and the distance measured at the second angular position using the first correction method, and obtains a calculation result obtained by calculating the difference between the first angular position and the first angular position. If the predetermined value is exceeded, the method used for measuring the distance at the second angular position of the (m + 1) rotation is switched from the first correction method to the second correction method.
これにより、第1角度位置で計測された距離と第2角度位置で計測された距離との差分値が第1所定値を上回ったことにより、中間点を検出できる。  Thus, the intermediate point can be detected when the difference between the distance measured at the first angular position and the distance measured at the second angular position exceeds the first predetermined value.
また、距離計測部703は、上記算出結果が第1所定値以下の場合は、第(m+1)周回の第2角度位置での距離計測に用いる手法を、第1補正手法とする。  Further, when the above calculation result is equal to or smaller than the first predetermined value, the distance measurement unit 703 sets a method used for distance measurement at the second angular position of the (m + 1) th rotation as a first correction method.
これにより、中間点以外については第1補正手法を用いることにより、距離測定可能範囲を確保できる。  As a result, the measurable range of the distance can be ensured by using the first correction method except for the intermediate point.
ステップS9の後、ステップS10で、ステップS8で取得された距離がエラーであった場合は(ステップS10のYES)、次の周回において(ステップS1)、ステップS2でパルス幅補正による距離測定を行う。なお、上記エラーとは、計測対象物までの距離が遠く、受光信号Psのピークが過小となり、受光信号Psが第2閾値Vth2を上回らないために、距離測定を行えない場合である。  After step S9, in step S10, if the distance acquired in step S8 is an error (YES in step S10), in the next round (step S1), distance measurement by pulse width correction is performed in step S2. . Note that the error refers to a case where the distance to the measurement target is long, the peak of the light receiving signal Ps is too small, and the distance cannot be measured because the light receiving signal Ps does not exceed the second threshold value Vth2.
一方、ステップS10で、取得距離がエラーでない場合は(ステップS10のNO)、図20に示すステップS11に進む。ステップS11で、第1演算処理部703Aは、直前の周回での距離測定がパルス幅補正によるかを判定する。もし、直前の周回での距離測定がパルス幅補正であった場合は(ステップS11のYES)、ステップS12に進み、第1演算処理部703Aは、ステップS8で取得された距離と、直前の周回で取得された距離との差分を算出する。  On the other hand, if the acquisition distance is not an error in step S10 (NO in step S10), the process proceeds to step S11 shown in FIG. In step S11, the first arithmetic processing unit 703A determines whether or not the distance measurement in the immediately preceding round is based on pulse width correction. If the distance measurement in the immediately preceding lap is pulse width correction (YES in step S11), the process proceeds to step S12, where the first arithmetic processing unit 703A determines the distance acquired in step S8 and the immediately preceding lap. Calculate the difference from the distance obtained in.
ここで、例えば図21に示すような手前に突出した壁等の傾きを持った物体の距離を計測した場合、ステップS5で算出される差分値が大きくなり(ステップS6のNO)、中間点であると誤検出される場合がある。この場合、ステップS12で算出される差分値は小さくなるので、中間点の誤検出を検出することができる。  Here, for example, when the distance of an object having an inclination such as a wall protruding forward as shown in FIG. 21 is measured, the difference value calculated in step S5 increases (NO in step S6), and the difference value is calculated at the intermediate point. May be erroneously detected. In this case, the difference value calculated in step S12 becomes small, so that erroneous detection of the intermediate point can be detected.
そこで、ステップS12で算出された差分値が設定した値以下であった場合は(ステップS13のYES)、次の周回において(ステップS1)、ステップS2でパルス幅補正による距離測定を行う。  Therefore, if the difference value calculated in step S12 is equal to or smaller than the set value (YES in step S13), in the next round (step S1), distance measurement by pulse width correction is performed in step S2.
すなわち、距離計測部703は、第(m+1)周回の第2角度位置で第2補正手法を用いて計測された距離と、第m周回の第2角度位置で計測された距離との差分を算出して得られた算出結果が第2所定値以下の場合は、第(m+1)周回の次の第(m+2)周回の第2角度位置で用いる距離計測に用いる手法を、第2補正手法から第1補正手法へ切替える。  That is, the distance measurement unit 703 calculates the difference between the distance measured using the second correction method at the (m + 1) -turn second angular position and the distance measured at the m-th round second angular position. If the calculated result obtained is equal to or less than the second predetermined value, the method used for the distance measurement used at the (m + 2) -th second angular position following the (m + 1) -th rotation is changed from the second correction method to the second correction method. Switch to one correction method.
これにより、検出した中間点が実際には中間点ではないと確認した場合に、第1補正手法に戻すことにより、距離測定可能範囲を確保できる。  Thereby, when it is confirmed that the detected intermediate point is not actually the intermediate point, the range can be measured by returning to the first correction method.
一方、直前の周回の距離測定はパルス幅補正によらない場合(ステップS11のNO)、または、上記差分値が設定した値以下でない場合は(ステップS13のNO)、ステップS14に進む。  On the other hand, when the distance measurement of the immediately preceding circuit is not based on the pulse width correction (NO in step S11), or when the difference value is not smaller than the set value (NO in step S13), the process proceeds to step S14.
ステップS14で、第1演算処理部703Aは、ステップS8で取得した距離から直前の角度位置で取得された距離を差し引いて差分値を算出する。  In step S14, the first arithmetic processing unit 703A calculates a difference value by subtracting the distance obtained at the immediately preceding angular position from the distance obtained in step S8.
ここで、図22に示すように、距離測定装置7を備えた無人搬送車15の姿勢の変化により、角度位置nで出射された出射光L1は、透光性物体400の後方に位置する物体450に向かい、直前の角度位置(n-1)で出射された出射光L1は、透光性物体400に向かう状況となる場合がある。この場合、角度位置nで取得される距離は、角度位置(n-1)で取得される距離よりも長くなり、上記ステップS14で算出される差分値は、正の値となる。  Here, as shown in FIG. 22, the emitted light L1 emitted at the angular position n due to a change in the attitude of the automatic guided vehicle 15 including the distance measuring device 7 causes an object positioned behind the translucent object 400 to be positioned. The outgoing light L1 that has been directed toward 450 and emitted at the immediately preceding angular position (n−1) may be directed toward the translucent object 400. In this case, the distance obtained at the angular position n is longer than the distance obtained at the angular position (n-1), and the difference value calculated in step S14 is a positive value.
従って、算出された差分値が設定された値以下でなく(ステップS15のNO)、且つ、上記差分値が正の値である場合は(ステップS16のYES)、次の周回において(ステップS1)、ステップS2でパルス幅補正による距離測定を行う。  Therefore, if the calculated difference value is not less than the set value (NO in step S15) and the difference value is a positive value (YES in step S16), in the next round (step S1). In step S2, distance measurement is performed by pulse width correction.
すなわち、距離計測部703は、第2角度位置で第2補正手法を用いて計測された距離から第1角度位置で計測された距離を差し引いた差分値が第3所定値を上回って且つ正の値である場合、次の周回の第2角度位置で用いる距離計測に用いる手法を、第2補正手法から第1補正手法へ切替える。  That is, the distance measurement unit 703 determines that the difference value obtained by subtracting the distance measured at the first angular position from the distance measured using the second correction method at the second angular position exceeds the third predetermined value and is positive. If the value is the value, the method used for the distance measurement used at the second angular position in the next circuit is switched from the second correction method to the first correction method.
これにより、距離測定装置7の姿勢が変化することにより、第2角度位置での距離計測対象が中間点の生じる物体から、より遠い物体に変化した場合に、第1補正手法に戻すことにより、距離測定可能範囲を確保できる。  Thereby, when the posture of the distance measuring device 7 changes, and the distance measurement target at the second angular position changes from an object having an intermediate point to a more distant object, by returning to the first correction method, The range where distance can be measured can be secured.
上記算出された差分値が設定した値以下であった場合(ステップS15のYES)、または、上記算出された差分値が設定した値以下ではないが、正の値でない場合は(ステップS16のNO)、ステップS17に進む。  When the calculated difference value is equal to or smaller than the set value (YES in step S15), or when the calculated difference value is not equal to or smaller than the set value but is not a positive value (NO in step S16). ), And proceed to step S17.
ステップS17で、第1演算処理部703Aは、直後の角度位置で取得された距離からステップS8で取得した距離を差し引いて差分値を算出する。  In step S17, the first arithmetic processing unit 703A calculates a difference value by subtracting the distance acquired in step S8 from the distance acquired in the immediately following angular position.
ここで、図23に示すように、距離測定装置7を備えた無人搬送車15の姿勢の変化により、角度位置nで出射された出射光L1は、透光性物体400の後方に位置する物体450に向かい、直後の角度位置(n+1)で出射された出射光L1は、透光性物体400に向かう状況となる場合がある。この場合、角度位置nで取得される距離は、角度位置(n+1)で取得される距離よりも長くなり、上記ステップS17で算出される差分値は、負の値となる。  Here, as shown in FIG. 23, due to a change in the attitude of the automatic guided vehicle 15 including the distance measuring device 7, the emitted light L1 emitted at the angular position n is an object positioned behind the translucent object 400. The outgoing light L <b> 1 that is directed to 450 and emitted at the immediately subsequent angular position (n + 1) may be in a state of being directed to the translucent object 400. In this case, the distance obtained at the angular position n is longer than the distance obtained at the angular position (n + 1), and the difference value calculated at step S17 is a negative value.
従って、算出された差分値が設定された値以下でなく(ステップS18のNO)、且つ、上記差分値が負の値である場合は(ステップS19のYES)、次の周回において(ステップS1)、ステップS2でパルス幅補正による距離測定を行う。  Therefore, if the calculated difference value is not smaller than the set value (NO in step S18) and the difference value is a negative value (YES in step S19), the next round (step S1). In step S2, distance measurement is performed by pulse width correction.
すなわち、距離計測部703は、第2角度位置よりも走査順が後である第3角度位置で計測された距離から第2角度位置で第2補正手法を用いて計測された距離を差し引いた差分値を算出し、当該差分値が第4所定値を上回って且つ負の値である場合、次の周回の第2角度位置で用いる距離計測に用いる手法を、第2補正手法から第1補正手法へ切替える。  That is, the distance measuring unit 703 subtracts the distance measured using the second correction method at the second angular position from the distance measured at the third angular position that is later in the scanning order than the second angular position. If the difference value is greater than the fourth predetermined value and is a negative value, the method used for distance measurement used at the second angular position in the next round is changed from the second correction method to the first correction method. Switch to
これにより、距離測定装置7の姿勢が変化することにより、第2角度位置での距離計測対象が中間点の生じる物体から、より遠い物体に変化した場合に、第1補正手法に戻すことにより、距離測定可能範囲を確保できる。  Thereby, when the posture of the distance measuring device 7 changes, and the distance measurement target at the second angular position changes from an object having an intermediate point to a more distant object, by returning to the first correction method, The range where distance can be measured can be secured.
上記算出された差分値が設定した値以下であった場合(ステップS18のYES)、または、上記算出された差分値が設定した値以下ではないが、負の値でない場合は(ステップS19のNO)、次の周回において(ステップS7)、ステップS8でスルーレート補正による距離測定を行う。  When the calculated difference value is equal to or smaller than the set value (YES in step S18), or when the calculated difference value is not equal to or smaller than the set value but is not a negative value (NO in step S19). ), In the next round (step S7), distance measurement by slew rate correction is performed in step S8.
<9.距離計測部の第2構成例> 図24は、距離計測部703の第2構成例を示すブロック図である。図24に示す第2構成例に係る距離計測部703は、先述した図16に示す第1構成例との構成上の相違として、セレクタ703Fの代わりに第3TDC703Gを有する。  <9. Second Configuration Example of Distance Measurement Unit> FIG. 24 is a block diagram showing a second configuration example of the distance measurement unit 703. The distance measuring unit 703 according to the second configuration example shown in FIG. 24 has a third TDC 703G instead of the selector 703F as a configuration difference from the first configuration example shown in FIG.
第1コンパレータ703Bの出力信号は、第2TDC703Eに入力される。第3TDC703Gには、基準パルスSPとともに、第2コンパレータ703Cの出力信号が入力される。 The output signal of the first comparator 703B is input to the second TDC 703E. The output signal of the second comparator 703C is input to the third TDC 703G together with the reference pulse SP.
第1TDC703Dは、第1演算処理部703Aから出力される基準パルスSPの立上りタイミングから第1コンパレータ703Bから入力される出力信号のHighへの立上りタイミングまでの第1経過時間T10(図17)を計測する。第2TDC703Eは、第1演算処理部703Aから出力される基準パルスSPの立上りタイミングから第1コンパレータ703Bから入力される出力信号のLowへの立下りタイミングまでの第2経過時間T20(図17)を計測する。第3TDC703Gは、第1演算処理部703Aから出力される基準パルスSPの立上りタイミングから第2コンパレータ703Cから入力される出力信号のHighへの立上りタイミングまでの第3経過時間T30(図17)を計測する。  The first TDC 703D measures a first elapsed time T10 (FIG. 17) from the rising timing of the reference pulse SP output from the first arithmetic processing unit 703A to the rising timing of the output signal input from the first comparator 703B to High. I do. The second TDC 703E calculates a second elapsed time T20 (FIG. 17) from the rising timing of the reference pulse SP output from the first arithmetic processing unit 703A to the falling timing of the output signal input from the first comparator 703B to Low. measure. The third TDC 703G measures a third elapsed time T30 (FIG. 17) from the rising timing of the reference pulse SP output from the first arithmetic processing unit 703A to the rising timing of the output signal input from the second comparator 703C to High. I do.
第1演算処理部703Aは、第1経過時間T10と第2経過時間T20との差分からパルス幅を算出することでパルス幅補正による距離計測を行うとともに、第1経過時間T10と第3経過時間T30との差分からスルーレートを算出することでスルーレート補正による距離計測を行う。従って、本構成例によれば、同一周回での同一角度位置において両方の補正手法による距離を取得することができる。  The first arithmetic processing unit 703A calculates the pulse width from the difference between the first elapsed time T10 and the second elapsed time T20, performs distance measurement by pulse width correction, and performs the first elapsed time T10 and the third elapsed time. By calculating the slew rate from the difference from T30, distance measurement by slew rate correction is performed. Therefore, according to this configuration example, it is possible to acquire the distances by both correction methods at the same angular position in the same revolution.
すなわち、距離計測部703は、同一周回の回転走査における同一角度位置において、第1補正手法を用いた距離の計測と、第2補正手法を用いた距離の計測と、を行うことが可能である。  That is, the distance measurement unit 703 can perform the distance measurement using the first correction method and the distance measurement using the second correction method at the same angular position in the rotation scan of the same rotation. .
また、距離計測部703は、受光信号を第1基準電圧Vth1と比較する第1コンパレータ703Bと、受光信号を第2基準電圧Vth2と比較する第2コンパレータ703Cと、基準パルスSPと第1コンパレータ703Bの出力とが入力される第1TDC703Dと、基準パルスSPと第1コンパレータ703Bの出力とが入力される第2TDC703Eと、基準パルスSPと第2コンパレータ703Cの出力とが入力される第3TDGと、を有する。  The distance measuring unit 703 includes a first comparator 703B for comparing the received light signal with the first reference voltage Vth1, a second comparator 703C for comparing the received light signal with the second reference voltage Vth2, a reference pulse SP and the first comparator 703B. The first TDC 703D to which the output of the first comparator 703B is inputted, the second TDC 703E to which the reference pulse SP and the output of the first comparator 703B are inputted, and the third TDG to which the reference pulse SP and the output of the second comparator 703C are inputted. Have.
これにより、同一周回での同一角度位置における第1補正手法と第2補正手法の両方を用いた距離計測を簡易な構成で実現できる。  Thus, distance measurement using both the first correction method and the second correction method at the same angular position in the same circuit can be realized with a simple configuration.
<10.距離測定制御処理の第2例> 次に、先述した第2構成例に係る距離計測部703(図24)による距離測定制御処理について、図25に示すフローチャートに沿って説明する。  <10. Second Example of Distance Measurement Control Process> Next, the distance measurement control process by the distance measurement unit 703 (FIG. 24) according to the above-described second configuration example will be described with reference to the flowchart shown in FIG.
図25に示すフローチャートは、先述した図18に示す各角度位置nごとの処理を示す。電源がオンとなると図25に示す処理が開始され、以降、電源がオフとなるまで処理は継続される。また、図25に示すmは、回転走査の周回を示す。図25に示す処理が開始された時点でm=0である。  The flowchart shown in FIG. 25 shows the processing for each angular position n shown in FIG. 18 described above. When the power is turned on, the processing shown in FIG. 25 is started, and thereafter, the processing is continued until the power is turned off. Further, m shown in FIG. 25 indicates the rotation of the rotation scanning. When the process shown in FIG. 25 is started, m = 0.
ステップS21で周回が次の周回に移行すると、ステップS22で、第1演算処理部703Aは、パルス幅補正による距離測定を行う。そして、ステップS23で、第1演算処理部703Aは、スルーレート補正による距離測定を行う。  When the lap moves to the next lap in step S21, in step S22, the first arithmetic processing unit 703A performs distance measurement by pulse width correction. Then, in step S23, the first arithmetic processing unit 703A performs distance measurement by slew rate correction.
ステップS24で、第1演算処理部703Aは、スルーレート補正による取得された距離がエラーであるかを判定し、エラーの場合は(ステップS24のYES)、ステップS27に進む。ステップS27で、第1演算処理部703Aは、パルス幅補正により測定した距離を出力する。その後、次の周回へ進む(ステップS21)。  In step S24, the first arithmetic processing unit 703A determines whether the distance obtained by the slew rate correction is an error. If the distance is an error (YES in step S24), the process proceeds to step S27. In step S27, the first arithmetic processing unit 703A outputs the distance measured by the pulse width correction. Thereafter, the process proceeds to the next round (step S21).
一方、スルーレート補正による取得された距離がエラーでなかった場合は(ステップS24のNO)、ステップS25に進み、第1演算処理部703Aは、ステップS22でパルス幅補正により取得された距離と、ステップS23でスルーレート補正により取得された距離との差分を算出する。  On the other hand, if the distance obtained by the slew rate correction is not an error (NO in step S24), the process proceeds to step S25, where the first arithmetic processing unit 703A calculates the distance obtained by the pulse width correction in step S22, In step S23, a difference from the distance acquired by the slew rate correction is calculated.
ステップS25で算出された差分値が設定した値以下でない場合は(ステップS26のNO)、中間点を検出したとして、ステップS28に進み、第1演算処理部703Aは、スルーレート補正により測定された距離を出力する。その後、次の周回へ進む(ステップS21)。  If the difference value calculated in step S25 is not smaller than or equal to the set value (NO in step S26), it is determined that an intermediate point has been detected, the process proceeds to step S28, and the first arithmetic processing unit 703A measures the difference by slew rate correction. Output distance. Thereafter, the process proceeds to the next round (step S21).
一方、上記差分値が設定した値以下であった場合は(ステップS26のYES)、中間点を検出していないとして、ステップS27に進み、第1演算処理部703Aは、パルス幅補正により測定された距離を出力する。  On the other hand, if the difference value is equal to or smaller than the set value (YES in step S26), it is determined that the intermediate point has not been detected, and the process proceeds to step S27, where the first arithmetic processing unit 703A measures the difference by the pulse width correction. Output distance.
すなわち、距離計測部703は、同一角度位置で、第1補正手法を用いて計測された距離と、第2補正手法を用いて計測された距離と、を比較し、当該比較結果に基づき、第2補正手法を用いて計測された距離を計測距離として出力する。  That is, the distance measurement unit 703 compares the distance measured using the first correction method and the distance measured using the second correction method at the same angular position, and based on the comparison result, The distance measured using the two correction method is output as the measured distance.
これにより、第1物体での反射光に基づく受光信号成分と第2物体での反射光に基づく受光信号成分とが重なることにより、第1補正手法を用いると距離が長めに計測される距離位置(中間点)が検出された場合に、より正確に距離を計測できる第2補正手法を用いた計測距離を出力することができる。中間点の検出は、演算処理負荷を抑えた方法で行うことができる。また、計測距離データのリアルタイム性を向上させることができる。  As a result, the received light signal component based on the reflected light from the first object and the received light signal component based on the reflected light from the second object overlap, so that the distance position where the distance is measured to be longer when the first correction method is used is increased. When the (intermediate point) is detected, it is possible to output a measured distance using the second correction method that can more accurately measure the distance. The detection of the intermediate point can be performed by a method that suppresses the processing load. In addition, the real-time property of the measured distance data can be improved.
<11.距離測定制御処理の第3例> 次に、先述した第1構成例に係る距離計測部703(図16)による距離測定制御処理の変形例について、図26および図27に示すフローチャートに沿って説明する。なお、当該処理を行うには、第1演算処理部703Aは、不図示のバッファ(記憶部)を有する必要がある。  <11. Third Example of Distance Measurement Control Process> Next, a modified example of the distance measurement control process by the distance measurement unit 703 (FIG. 16) according to the above-described first configuration example will be described with reference to the flowcharts shown in FIGS. I do. In order to perform the process, the first arithmetic processing unit 703A needs to have a buffer (storage unit) (not shown).
図26および図27に示すフローチャートは、先述した図18に示す各角度位置nごとの処理を示す。電源がオンとなると図26に示す処理が開始され、以降、電源がオフとなるまで処理は継続される。また、図26に示すmは、回転走査の周回を示す。図26に示す処理が開始された時点でm=0であり、第1演算処理部703Aは、mを変数として保有する。  The flowcharts shown in FIGS. 26 and 27 show the above-described processing for each angular position n shown in FIG. When the power is turned on, the processing shown in FIG. 26 is started, and thereafter, the processing is continued until the power is turned off. In addition, m shown in FIG. 26 indicates the rotation of the rotation scanning. When the process shown in FIG. 26 is started, m = 0, and the first arithmetic processing unit 703A holds m as a variable.
図26に示す処理が開始されると、まず、ステップS31で、第1演算処理部703Aは、mが3を上回るかを判定し、もし上回る場合は(ステップS31のYES)、ステップS32に進み、第1演算処理部703Aは、バッファに記憶された最新の測定距離を出力する。このとき、第1演算処理部703Aは、バッファに記憶された測定距離を消去するとともに、変数mを0に初期化する。  When the process shown in FIG. 26 is started, first, in step S31, the first arithmetic processing unit 703A determines whether m is greater than 3, and if m is greater (YES in step S31), the process proceeds to step S32. , The first arithmetic processing unit 703A outputs the latest measured distance stored in the buffer. At this time, the first arithmetic processing unit 703A deletes the measured distance stored in the buffer and initializes the variable m to 0.
ステップS32の後、または、ステップS31でmが3以下である場合は(ステップS31のNO)、ステップS33に進み、第1演算処理部703Aは、変数mを1だけ増加させる。  After step S32, or when m is 3 or less in step S31 (NO in step S31), the process proceeds to step S33, and the first arithmetic processing unit 703A increases the variable m by one.
その後、ステップS34に進み、第1演算処理部703Aは、mが3を上回るかを判定し、もし上回る場合は(ステップS34のYES)、ステップS35に進む。ステップS35で、第1演算処理部703Aは、(m-1)周回での測定方法と(m-2)周回での測定方法が異なるかを判定し、もし同じである場合は(ステップS35のNO)、ステップS38に進む。  Thereafter, the process proceeds to step S34, where the first arithmetic processing unit 703A determines whether m is greater than 3, and if m is greater (YES in step S34), the process proceeds to step S35. In step S35, the first arithmetic processing unit 703A determines whether the measurement method in the (m-1) circuit is different from the measurement method in the (m-2) circuit. NO), and proceed to step S38.
一方、測定方法が異なる場合は(ステップS35のYES)、ステップS36に進み、第1演算処理部703Aは、(m-1)周回で取得された距離と(m-2)周回で取得された距離との差分を算出する。第1演算処理部703Aは、算出された差分値が設定した値以下であるかを判定し、設定した値以下であった場合は(ステップS37のYES)、ステップS38に進む。上記差分値が設定した値以下でない場合は(ステップS37のNO)、ステップS42に進む。  On the other hand, if the measurement method is different (YES in step S35), the process proceeds to step S36, where the first arithmetic processing unit 703A obtains the distance acquired in (m-1) revolutions and the distance acquired in (m-2) revolutions. Calculate the difference from the distance. The first arithmetic processing unit 703A determines whether the calculated difference value is equal to or less than the set value, and if it is equal to or less than the set value (YES in step S37), the process proceeds to step S38. If the difference value is not smaller than the set value (NO in step S37), the process proceeds to step S42.
ステップS38で、第1演算処理部703Aは、パルス幅補正による距離測定を行う。ここで、第1演算処理部703Aは、取得した距離をバッファに記憶させる。そして、ステップS38で取得された距離がエラーであった場合は(ステップS39のYES)、ステップS31に戻る。  In step S38, the first arithmetic processing unit 703A performs distance measurement by pulse width correction. Here, the first arithmetic processing unit 703A stores the acquired distance in the buffer. If the distance acquired in step S38 is an error (YES in step S39), the process returns to step S31.
一方、ステップS38で取得された距離がエラーでなかった場合は(ステップS39のNO)、ステップS40に進む。ステップS40で、第1演算処理部703Aは、ステップS38で取得された距離と、直前の角度位置(n-1)での取得された距離との差分を算出する。  On the other hand, if the distance acquired in step S38 is not an error (NO in step S39), the process proceeds to step S40. In step S40, the first arithmetic processing unit 703A calculates a difference between the distance obtained in step S38 and the distance obtained at the immediately preceding angular position (n-1).
ステップS41で、第1演算処理部703Aは、算出された差分値が設定した値以下であるかを判定し、もし設定した値以下である場合は(ステップS41のYES)、ステップS31に戻る。一方、算出された差分値が設定した値以下でなかった場合は(ステップS41のNO)、ステップS42に進む。  In step S41, the first arithmetic processing unit 703A determines whether the calculated difference value is equal to or smaller than the set value. If the calculated difference value is equal to or smaller than the set value (YES in step S41), the process returns to step S31. On the other hand, if the calculated difference value is not smaller than the set value (NO in step S41), the process proceeds to step S42.
ステップS42で、第1演算処理部703Aは、mが3を上回るかを判定し、もし上回る場合は(ステップS42のYES)、ステップS43に進み、第1演算処理部703Aは、バッファに記憶された最新の測定距離を出力する。このとき、第1演算処理部703Aは、バッファに記憶された測定距離を消去するとともに、変数mを0に初期化する。  In step S42, the first arithmetic processing unit 703A determines whether m is greater than 3; if m is greater than 3 (YES in step S42), the process proceeds to step S43, where the first arithmetic processing unit 703A is stored in the buffer. The latest measured distance is output. At this time, the first arithmetic processing unit 703A deletes the measured distance stored in the buffer and initializes the variable m to 0.
ステップS43の後、または、ステップS42でmが3以下である場合は(ステップS42のNO)、ステップS44に進み、第1演算処理部703Aは、変数mを1だけ増加させる。  After step S43, or when m is equal to or smaller than 3 in step S42 (NO in step S42), the process proceeds to step S44, and the first arithmetic processing unit 703A increases the variable m by one.
そして、ステップS45で、第1演算処理部703Aは、スルーレート補正による距離測定を行う。ここで、第1演算処理部703Aは、取得した距離をバッファに記憶させる。そして、ステップS45で取得された距離がエラーであった場合は(ステップS46のYES)、ステップS31に戻る。  Then, in step S45, the first arithmetic processing unit 703A performs distance measurement by slew rate correction. Here, the first arithmetic processing unit 703A stores the acquired distance in the buffer. If the distance acquired in step S45 is an error (YES in step S46), the process returns to step S31.
一方、ステップS45で取得された距離がエラーでなかった場合は(ステップS46のNO)、図27のステップS47に進む。ステップS47~S55の処理は、先述した図20のステップS11~S19の処理と同様である。ステップS49のYES、またはステップS55のYESの場合は、ステップS31に戻る。また、ステップS54のYES、またはステップS55のNOの場合は、ステップS42に戻る。  On the other hand, if the distance acquired in step S45 is not an error (NO in step S46), the process proceeds to step S47 in FIG. The processing in steps S47 to S55 is the same as the processing in steps S11 to S19 in FIG. 20 described above. In the case of YES in step S49 or YES in step S55, the process returns to step S31. If YES in step S54 or NO in step S55, the process returns to step S42.
すなわち、距離測定装置7は、第2角度位置で第1補正手法を用いて計測された距離を記憶する記憶部(バッファ)をさらに備え、距離計測部703は、上記算出結果が第1所定値以下の場合は(ステップS41のYES)、上記記憶部に記憶された上記距離を出力する(ステップS32)。  That is, the distance measurement device 7 further includes a storage unit (buffer) that stores the distance measured at the second angle position using the first correction method, and the distance measurement unit 703 determines that the calculation result is the first predetermined value. In the following cases (YES in step S41), the distance stored in the storage unit is output (step S32).
これにより、中間点でないことを検出してから、第2角度位置で第1補正手法を用いて計測された距離を出力するので、第1補正手法が適切でない場合に第1補正手法を用いて計測された距離が出力されることを回避できる。  As a result, the distance measured by using the first correction method at the second angle position is output after detecting that the point is not the intermediate point. Therefore, when the first correction method is not appropriate, the first correction method is used. Output of the measured distance can be avoided.
<12.その他> 以上、本発明の実施形態について説明したが、本発明の趣旨の範囲内であれば、実施形態は種々の変更が可能である。  <12. Others> The embodiments of the present invention have been described above. However, various modifications can be made to the embodiments within the scope of the gist of the present invention.
例えば、第2補正手法としては、スルーレート補正に限らず、例えば、受光信号の微分処理に基づいて補正を行う手法を採用してもよい。この場合、受光信号の立上りまたは立下りにおいて1次微分を行えばよいので、従来の1次微分および2次微分を行う必要がある方法よりも演算負荷を抑制できる。 For example, the second correction method is not limited to the slew rate correction, and a method of performing correction based on, for example, differential processing of a received light signal may be employed. In this case, the first derivative may be performed at the rising or falling of the light receiving signal, so that the calculation load can be suppressed as compared with the conventional method that needs to perform the first differentiation and the second differentiation.
また、上記実施形態では、距離測定装置を搭載する移動体として無人搬送車を例に挙げて説明したが、これに限らず、移動体は掃除ロボット、監視ロボットなど、運搬用途以外の装置に適用してもよい。  Further, in the above-described embodiment, an unmanned carrier is described as an example of a moving body equipped with a distance measuring device. However, the present invention is not limited to this. May be.
本発明は、例えば、荷物を運搬する無人搬送車に利用することができる。 INDUSTRIAL APPLICATION This invention can be utilized for the automatic guided vehicle which conveys a load, for example.
1・・・車体、1A・・・基部、1B・・・台部、2・・・荷台、3L、3R・・・支持部、4L、4R・・・駆動モータ、5L、5R・・・駆動輪、6F、6R・・・従動輪、7・・・距離測定装置、71・・・レーザ光源、72・・・コリメートレンズ、73・・・投光ミラー、74・・・受光レンズ、75・・・受光ミラー、76・・・波長フィルタ、77・・・受光素子、78・・・回転筐体、79・・・モータ、701・・・レーザ発光部、702・・・レーザ受光部、702A・・・APD、702B・・・増幅回路、703・・・距離計測部、703A・・・第1演算処理部、703B・・・第1コンパレータ、703C・・・第2コンパレータ、703D・・・第1TDC、703E・・・第2TDC、703F・・・セレクタ、703G・・・第3TDC、704・・・データ通信インタフェース、705・・・第2演算処理部、706・・・駆動部、80・・・筐体、801・・・透
過部、81・・・基板、82・・・配線、8・・・制御部、85・・・記憶部、9・・・駆動部、15・・・無人搬送車、U・・・制御ユニット、B・・・バッテリー、T・・・通信部、Rs・・・測定範囲、θ・・・回転走査角度範囲、J・・・回転軸、L1・・・出射光、L2・・・入射光、OJ・・・計測対象物、200、400・・・透光性物体、250、450・・・物体、300、350・・・非透光性物体
DESCRIPTION OF SYMBOLS 1 ... Body, 1A ... Base, 1B ... Base part, 2 ... Cargo bed, 3L, 3R ... Support part, 4L, 4R ... Drive motor, 5L, 5R ... Drive Wheel, 6F, 6R: driven wheel, 7: distance measuring device, 71: laser light source, 72: collimating lens, 73: light emitting mirror, 74: light receiving lens, 75 ..Light receiving mirror, 76 ... wavelength filter, 77 ... light receiving element, 78 ... rotary housing, 79 ... motor, 701 ... laser emitting part, 702 ... laser receiving part, 702A ... APD, 702B ... amplifier circuit, 703 ... distance measuring unit, 703A ... first arithmetic processing unit, 703B ... first comparator, 703C ... second comparator, 703D ... 1st TDC, 703E ... 2nd TDC, 703F ... cell 703G: third TDC, 704: data communication interface, 705: second arithmetic processing unit, 706: drive unit, 80: housing, 801: transmission unit, 81 · ..Substrate, 82 wiring, 8 control unit, 85 storage unit, 9 drive unit, 15 automatic guided vehicle, U control unit, B Battery, T: communication unit, Rs: measurement range, θ: rotation scanning angle range, J: rotation axis, L1: outgoing light, L2: incident light, OJ ... Measurement object, 200, 400: translucent object, 250, 450: object, 300, 350: non-translucent object

Claims (16)

  1. 発光部を含んで出射光の回転走査を行う投光部と、 受光に基づいて受光信号を出力する受光部と、 前記出射光の出射と前記受光部による受光とに基づいて計測対象物までの距離を計測する距離計測部と、 を備え、 前記距離計測部は、前記受光信号における立上りと立下りの両方の検出に応じて補正を行う第1補正手法を用いた距離の計測と、前記受光信号における前記立上りと前記立下りのうち一方の検出に応じた補正を行う第2補正手法を用いた距離の計測と、を行うことが可能であり、 前記距離計測部は、前記第1補正手法を用いて計測された距離と、前記第2補正手法を用いて計測された距離とのうち、少なくとも前記第1補正手法を用いて計測された距離を用いた距離比較処理に基づき、前記第2補正手法を用いて計測された距離を計測距離として出力する、 距離測定装置。 A light-emitting unit that includes a light-emitting unit and performs rotary scanning of the emitted light; a light-receiving unit that outputs a light-receiving signal based on the received light; and A distance measuring unit for measuring a distance, and the distance measuring unit measures the distance using a first correction method for performing correction in accordance with detection of both rising and falling in the light receiving signal, and A distance measurement using a second correction method for performing correction in accordance with detection of one of the rising edge and the falling edge in a signal. Based on a distance comparison process using at least the distance measured using the first correction method, of the distance measured using the second correction method and the distance measured using the second correction method. Measured using correction method And it outputs the distance as measurement distance, the distance measuring device.
  2. 前記距離計測部は、前記回転走査における第1角度位置で前記第1補正手法を用いて計測された距離と、前記回転走査において前記第1角度位置よりも走査が後である第2角度位置で前記第1補正手法を用いて計測された距離と、を比較し、当該比較結果に基づき、前記第2補正手法を用いて計測された距離を前記第2角度位置での計測距離として出力する、請求項1に記載の距離測定装置。 The distance measurement unit is configured to detect a distance measured by using the first correction method at a first angular position in the rotational scan, and a second angular position at which scanning is performed later than the first angular position in the rotational scan. Comparing the distance measured using the first correction method, and outputting the distance measured using the second correction method as the measurement distance at the second angular position based on the comparison result; The distance measuring device according to claim 1.
  3. 前記距離計測部は、前記比較結果に基づき、前記第2角度位置で前記第1補正手法を用いて距離を計測した第m周回(mは自然数)の次の第(m+1)周回の前記第2角度位置での距離計測に用いる手法を、前記第1補正手法から前記第2補正手法へ切替える、請求項2に記載の距離測定装置。 The distance measurement unit is configured to measure the distance at the second angular position using the first correction method based on the comparison result, and to perform the second (m + 1) -th rotation of the second (m is a natural number) rotation. The distance measuring apparatus according to claim 2, wherein a method used for measuring a distance at an angular position is switched from the first correction method to the second correction method.
  4. 前記距離計測部は、前記第1角度位置で計測された距離と、前記第2角度位置で前記第1補正手法を用いて計測された距離との差分を算出して得られた算出結果が第1所定値を上回る場合に、前記第(m+1)周回の前記第2角度位置での距離計測に用いる手法を、前記第1補正手法から前記第2補正手法へ切替える、請求項3に記載の距離測定装置。 The distance measuring unit calculates a difference between a distance measured at the first angular position and a distance measured at the second angular position using the first correction method, and calculates a difference obtained by calculating a difference between the distance measured at the second angular position and the distance measured at the second angular position. 4. The distance according to claim 3, wherein when the value exceeds a predetermined value, a method used for measuring a distance at the second angular position in the (m + 1) rotation is switched from the first correction method to the second correction method. 5. measuring device.
  5. 前記距離計測部は、前記算出結果が前記第1所定値以下の場合は、前記第(m+1)周回の前記第2角度位置での距離計測に用いる手法を、前記第1補正手法とする、請求項4に記載の距離測定装置。 If the calculation result is equal to or less than the first predetermined value, the distance measurement unit may use, as the first correction method, a method used for measuring the distance at the second angular position of the (m + 1) th rotation. Item 5. The distance measuring device according to Item 4.
  6. 前記第2角度位置で前記第1補正手法を用いて計測された距離を記憶する記憶部をさらに備え、 前記距離計測部は、前記算出結果が前記第1所定値以下の場合は、前記記憶部に記憶された前記距離を出力する、請求項5に記載の距離測定装置。 A storage unit that stores a distance measured by using the first correction method at the second angular position, wherein the distance measurement unit is configured to store the distance when the calculation result is equal to or less than the first predetermined value. The distance measurement device according to claim 5, wherein the distance stored in the distance measurement device is output.
  7. 前記距離計測部は、前記第(m+1)周回の前記第2角度位置で第2補正手法を用いて計測された距離と、前記第m周回の前記第2角度位置で計測された距離との差分を算出して得られた算出結果が第2所定値以下の場合は、前記第(m+1)周回の次の第(m+2)周回の前記第2角度位置で用いる距離計測に用いる手法を、前記第2補正手法から前記第1補正手法へ切替える、請求項3から請求項6のいずれか1項に記載の距離測定装置。 The distance measurement unit is configured to calculate a difference between a distance measured using the second correction method at the second angular position of the (m + 1) rotation and a distance measured at the second angular position of the mth rotation. When the calculation result obtained by calculating the second angle position is equal to or less than a second predetermined value, the method used for measuring the distance used at the second angular position in the (m + 2) th turn following the (m + 1) th turn is the The distance measurement device according to claim 3, wherein the distance measurement device is switched from the two correction methods to the first correction method.
  8. 前記距離計測部は、前記第2角度位置で前記第2補正手法を用いて計測された距離から前記第1角度位置で計測された距離を差し引いた差分値が第3所定値を上回って且つ正の値である場合、次の周回の前記第2角度位置で用いる距離計測に用いる手法を、前記第2補正手法から前記第1補正手法へ切替える、請求項3から請求項7のいずれか1項に記載の距離測定装置。 The distance measuring unit is configured such that a difference value obtained by subtracting a distance measured at the first angular position from a distance measured at the second angular position using the second correction method exceeds a third predetermined value and is positive. The method according to any one of claims 3 to 7, wherein the method used for distance measurement used at the second angular position in the next round is switched from the second correction method to the first correction method when the value is The distance measuring device according to claim 1.
  9. 前記距離計測部は、前記第2角度位置よりも走査順が後である第3角度位置で計測された距離から前記第2角度位置で前記第2補正手法を用いて計測された距離を差し引いた差分値を算出し、当該差分値が第4所定値を上回って且つ負の値である場合、次の周回の前記第2角度位置で用いる距離計測に用いる手法を、前記第2補正手法から前記第1補正手法へ切替える、請求項3から請求項8のいずれか1項に記載の距離測定装置。 The distance measuring unit subtracts a distance measured using the second correction method at the second angular position from a distance measured at a third angular position that is later in the scanning order than the second angular position. Calculating a difference value, and when the difference value is greater than a fourth predetermined value and is a negative value, a method used for measuring a distance used at the second angular position in the next round from the second correction method. The distance measuring apparatus according to any one of claims 3 to 8, which switches to a first correction method.
  10. 前記距離計測部は、 前記受光信号を第1基準電圧と比較する第1コンパレータと、 前記受光信号を第2基準電圧と比較する第2コンパレータと、 基準パルスと前記第1コンパレータの出力とが入力される第1TDC(time to digital converter)と、 前記基準パルスが入力される第2TDCと、 前記第1コンパレータの出力と前記第2コンパレータの出力の一方を選択して前記第2TDCへ出力するセレクタと、 を有する、請求項3から請求項9のいずれか1項に記載の距離測定装置。 The distance measuring unit includes: a first comparator that compares the received light signal with a first reference voltage; a second comparator that compares the received light signal with a second reference voltage; and a reference pulse and an output of the first comparator. A first TDC (time to digital converter), a second TDC to which the reference pulse is input, and a selector for selecting one of the output of the first comparator and the output of the second comparator and outputting the selected output to the second TDC. The distance measuring device according to any one of claims 3 to 9, comprising:
  11. 前記第1角度位置と前記第2角度位置とは、隣接する角度位置である、請求項2から請求項10のいずれか1項に記載の距離測定装置。 The distance measuring device according to any one of claims 2 to 10, wherein the first angular position and the second angular position are adjacent angular positions.
  12. 前記距離計測部は、同一周回の前記回転走査における同一角度位置において、前記第1補正手法を用いた距離の計測と、前記第2補正手法を用いた距離の計測と、を行うことが可能であり、 前記距離計測部は、同一角度位置で、前記第1補正手法を用いて計測された距離と、前記第2補正手法を用いて計測された距離と、を比較し、当該比較結果に基づき、前記第2補正手法を用いて計測された距離を計測距離として出力する、請求項1に記載の距離測定装置。 The distance measurement unit can perform distance measurement using the first correction method and distance measurement using the second correction method at the same angular position in the same rotation of the rotational scan. Yes, the distance measurement unit compares the distance measured using the first correction method and the distance measured using the second correction method at the same angular position, and based on the comparison result. The distance measuring device according to claim 1, wherein a distance measured using the second correction method is output as a measured distance.
  13. 前記距離計測部は、 前記受光信号を第1基準電圧と比較する第1コンパレータと、 前記受光信号を第2基準電圧と比較する第2コンパレータと、 基準パルスと前記第1コンパレータの出力とが入力される第1TDC(time to digital converter)と、 前記基準パルスと前記第1コンパレータの出力とが入力される第2TDCと、 前記基準パルスと前記第2コンパレータの出力とが入力される第3TDCと、 を有する、請求項12に記載の距離測定装置。 The distance measuring unit includes: a first comparator that compares the received light signal with a first reference voltage; a second comparator that compares the received light signal with a second reference voltage; and a reference pulse and an output of the first comparator. A first TDC (time to digital converter), {a second TDC to which the reference pulse and the output of the first comparator are input, and} a third TDC to which the reference pulse and the output of the second comparator are input. The distance measuring device according to claim 12, comprising:
  14. 前記計測対象物は、透光性物体と、当該透光性物体より奥側に位置する物体と、を含む、請求項1から請求項13のいずれか1項に記載の距離測定装置。 The distance measuring device according to any one of claims 1 to 13, wherein the measurement target includes a light-transmitting object and an object located on the back side of the light-transmitting object.
  15. 前記計測対象物は、非透光性物体と、当該非透光性物体より奥側に位置する他の非透光性物体と、を含む、請求項1から請求項13のいずれか1項に記載の距離測定装置。 The measurement object according to any one of claims 1 to 13, wherein the measurement target includes a non-light-transmitting object and another non-light-transmitting object located on the back side of the non-light-transmitting object. The distance measuring device as described.
  16. 前記第1補正手法は、前記立上りが第1閾値と交わるタイミングと、前記立下りが前記第1閾値と交わるタイミングとの間の時間に基づいて補正を行うパルス幅補正であり、 前記第2補正手法は、前記立上りまたは前記立下りが前記第1閾値、第2閾値とそれぞれ交わるタイミング間の時間に基づいて補正を行うスルーレート補正である、請求項1から請求項15のいずれか1項に記載の距離測定装置。 The first correction method is a pulse width correction for performing correction based on a time between a timing at which the rising crosses a first threshold value and a timing at which the falling crosses the first threshold value. The method according to any one of claims 1 to 15, wherein the method is a slew rate correction that performs correction based on a time between timings at which the rise or the fall crosses the first threshold and the second threshold, respectively. The distance measuring device as described.
PCT/JP2019/039044 2018-10-05 2019-10-03 Distance measurement device WO2020071465A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020550526A JPWO2020071465A1 (en) 2018-10-05 2019-10-03 Distance measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-190068 2018-10-05
JP2018190068 2018-10-05

Publications (1)

Publication Number Publication Date
WO2020071465A1 true WO2020071465A1 (en) 2020-04-09

Family

ID=70055802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039044 WO2020071465A1 (en) 2018-10-05 2019-10-03 Distance measurement device

Country Status (2)

Country Link
JP (1) JPWO2020071465A1 (en)
WO (1) WO2020071465A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022047025A (en) * 2020-09-11 2022-03-24 株式会社東芝 Distance measuring device
WO2023281802A1 (en) * 2021-07-06 2023-01-12 ソニーグループ株式会社 Signal processing device and signal processing method
WO2023190278A1 (en) * 2022-04-01 2023-10-05 ソニーセミコンダクタソリューションズ株式会社 Light detection device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121531A1 (en) * 2015-01-29 2016-08-04 シャープ株式会社 Distance measuring device
CN106054205A (en) * 2016-08-05 2016-10-26 上海思岚科技有限公司 Laser range finding device and laser range finding method thereof
WO2017042993A1 (en) * 2015-09-10 2017-03-16 ソニー株式会社 Correction device, correction method, and distance measuring device
CN107688185A (en) * 2017-06-05 2018-02-13 罗印龙 A kind of laser ranging system and its distance-finding method
US20180149753A1 (en) * 2016-11-30 2018-05-31 Yujin Robot Co., Ltd. Ridar apparatus based on time of flight and moving object
JP2019095421A (en) * 2017-11-17 2019-06-20 株式会社リコー Distance measuring apparatus, mobile device and distance measuring method
WO2019181691A1 (en) * 2018-03-19 2019-09-26 日本電産株式会社 Distance measuring device, and moving body
WO2019181692A1 (en) * 2018-03-19 2019-09-26 日本電産株式会社 Distance measurement device and moving body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121531A1 (en) * 2015-01-29 2016-08-04 シャープ株式会社 Distance measuring device
WO2017042993A1 (en) * 2015-09-10 2017-03-16 ソニー株式会社 Correction device, correction method, and distance measuring device
CN106054205A (en) * 2016-08-05 2016-10-26 上海思岚科技有限公司 Laser range finding device and laser range finding method thereof
US20180149753A1 (en) * 2016-11-30 2018-05-31 Yujin Robot Co., Ltd. Ridar apparatus based on time of flight and moving object
CN107688185A (en) * 2017-06-05 2018-02-13 罗印龙 A kind of laser ranging system and its distance-finding method
JP2019095421A (en) * 2017-11-17 2019-06-20 株式会社リコー Distance measuring apparatus, mobile device and distance measuring method
WO2019181691A1 (en) * 2018-03-19 2019-09-26 日本電産株式会社 Distance measuring device, and moving body
WO2019181692A1 (en) * 2018-03-19 2019-09-26 日本電産株式会社 Distance measurement device and moving body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KURTTI, S. ET AL.: "A Wide Dynamic Range CMOS Laser Radar Receiver With a Time-Domain Walk Error Compensation Scheme", IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, vol. 64, no. 3, March 2017 (2017-03-01), pages 550 - 561, XP011641888, DOI: 10.1109/TCSI.2016.2619762 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022047025A (en) * 2020-09-11 2022-03-24 株式会社東芝 Distance measuring device
JP7434119B2 (en) 2020-09-11 2024-02-20 株式会社東芝 distance measuring device
WO2023281802A1 (en) * 2021-07-06 2023-01-12 ソニーグループ株式会社 Signal processing device and signal processing method
WO2023190278A1 (en) * 2022-04-01 2023-10-05 ソニーセミコンダクタソリューションズ株式会社 Light detection device

Also Published As

Publication number Publication date
JPWO2020071465A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
CN110121660B (en) Laser radar sensor assembly calibration based on reference surface
WO2020071465A1 (en) Distance measurement device
KR102352206B1 (en) Multiple hypothesized LIDAR device range aliasing resilience
US20140062759A1 (en) Object detection apparatus and method
CN108957470B (en) Time-of-flight ranging sensor and ranging method thereof
EP3786668A1 (en) High definition lidar system
CN105572681A (en) Absolute distance measurement for time-of-flight sensors
KR20200103832A (en) LIDAR-based distance measurement using hierarchical power control
US10408938B2 (en) Fast scan detection method
WO2019064750A1 (en) Distance measurement device and moving body
CN112219135A (en) Distance measuring device, distance measuring method and mobile platform
EP3884301A1 (en) Context aware real-time power adjustment for steerable lidar
JP2017026535A (en) Obstacle determination device and obstacle determination method
KR102595870B1 (en) Compact Lidar Sensor
WO2018173595A1 (en) Movement device
JP4890928B2 (en) Radar equipment
CN112731424A (en) Range finding photosensor and method for detecting target objects
WO2020045445A1 (en) Distance measuring device, distance measuring device group, and distance measuring device system
WO2018173594A1 (en) Distance measurement device and transport vehicle
WO2019181692A1 (en) Distance measurement device and moving body
WO2019181691A1 (en) Distance measuring device, and moving body
WO2019146440A1 (en) Distance measurement device, and mobile body
US11921216B2 (en) Electronic apparatus and method for controlling thereof
WO2019058678A1 (en) Distance measuring device and mobile body provided with same
CN114556151A (en) Distance measuring device, distance measuring method and movable platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869542

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550526

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869542

Country of ref document: EP

Kind code of ref document: A1