WO2020045474A1 - Sensor unit and mobile body - Google Patents

Sensor unit and mobile body Download PDF

Info

Publication number
WO2020045474A1
WO2020045474A1 PCT/JP2019/033644 JP2019033644W WO2020045474A1 WO 2020045474 A1 WO2020045474 A1 WO 2020045474A1 JP 2019033644 W JP2019033644 W JP 2019033644W WO 2020045474 A1 WO2020045474 A1 WO 2020045474A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
light receiving
sensor
laser
Prior art date
Application number
PCT/JP2019/033644
Other languages
French (fr)
Japanese (ja)
Inventor
裕多 堀
佐伯 哲夫
和穂 江川
智浩 江川
岡本 修治
石丸 裕
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2020045474A1 publication Critical patent/WO2020045474A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present disclosure relates to a sensor unit and a moving body.
  • Japanese Unexamined Patent Application Publication No. 2014-186694 discloses an automatic guided vehicle having a laser range finder and an ultrasonic sensor.
  • the laser range finder scans the laser light around the laser range finder, and acquires the position of the object by detecting an object within the scanning range of the laser light.
  • the ultrasonic sensor transmits an ultrasonic wave having directivity, and detects a surrounding object based on a detection result of a reflected wave of the ultrasonic wave.
  • the responsiveness and reliability of the ultrasonic sensor are lower than those of a sensor using light as a detection medium, such as a laser range finder.
  • the frequency of the detection medium used by some of the sensors may be the same as or close to the frequency of the detection medium used by some of the other sensors. For this reason, there is a possibility that the other part of the sensors may erroneously detect the reflected wave of the detection medium used by some of the sensors, thereby erroneously detecting the reflected wave.
  • An object of the present disclosure is to prevent a first sensor from erroneously detecting reflected light of light emitted from a second sensor.
  • An exemplary sensor unit includes a first sensor having a first light irradiation unit and a first light receiving unit, and a second sensor having a second light irradiation unit.
  • the first light receiving unit is disposed between the first light irradiating unit and the second light irradiating unit, and detects light incident from the first light irradiating unit side of the first light receiving unit.
  • An exemplary moving object of the present disclosure includes the above-described sensor unit.
  • the exemplary sensor unit and the moving body of the present disclosure it is possible to prevent the first sensor from erroneously detecting the reflected light of the light emitted from the second sensor.
  • FIG. 1 is a perspective view illustrating a configuration example of the automatic guided vehicle according to the embodiment.
  • FIG. 2 is a top view illustrating the automatic guided vehicle according to the embodiment together with external objects.
  • FIG. 3 is a side view showing the automatic guided vehicle according to the embodiment together with an external object.
  • FIG. 4A is a cross-sectional view illustrating a configuration example of the first light receiving unit of the obstacle sensor.
  • FIG. 4B is a cross-sectional view illustrating another configuration example of the first light receiving unit of the obstacle sensor.
  • FIG. 5 is a cross-sectional view illustrating a configuration example of the distance measurement unit.
  • FIG. 6 is a block diagram illustrating an example of an electrical configuration of the distance measurement unit.
  • FIG. 7 is a timing chart of the laser emission pulse and the measurement data.
  • FIG. 1 is a perspective view illustrating a configuration example of the automatic guided vehicle according to the embodiment.
  • FIG. 2 is a top view illustrating the automatic guided vehicle according to the embodiment together with external objects
  • FIG. 8 is a block diagram illustrating an electrical configuration example of the automatic guided vehicle.
  • FIG. 9 is a timing chart of the irradiation light pulse and the corrected detection signal.
  • FIG. 10 is a side view showing an automatic guided vehicle according to a modification together with an external object.
  • the first direction from the first light receiving unit 22 of the obstacle sensor 2 described later toward the first light irradiation unit 21 in the vertical direction D1 is referred to as “downward D1d”.
  • the direction toward the first light receiving unit 22 is referred to as “upper D1t”.
  • the upper direction D1t is in a direction opposite to the lower direction D1d.
  • an end in the lower portion D1d is referred to as a “lower end”, and a position of the lower end in the vertical direction D1 is referred to as a “lower end”.
  • the end in the upper part D1t is called “upper end”, and the position of the upper end in the vertical direction D1 is called “upper end”.
  • a surface facing downward D1d is referred to as “lower surface”
  • a surface facing upward D1t is referred to as “upper surface”.
  • a second direction perpendicular to the lower side D1d and in which the automatic guided vehicle 100 described later moves forward is referred to as “front direction D2f”, and a direction opposite to the front direction D2f is referred to as “rear direction D2b”.
  • front direction D2f A second direction perpendicular to the lower side D1d and in which the automatic guided vehicle 100 described later moves forward
  • rear direction D2b a direction opposite to the front direction D2f
  • the end in the front direction D2f is referred to as “front end”.
  • the end in the rear direction D2b is referred to as a “rear end”, and the position of the rear end in the rear direction D2b is referred to as a “rear end”.
  • a surface facing the front direction D2f is referred to as a “front surface”
  • rear direction D2b a surface facing the rear direction D2b is referred to as a “back surface”.
  • a third direction perpendicular to both the lower direction D1d and the front direction D2f is referred to as a “lateral direction D3”.
  • a direction from a driving wheel 105R described later to a driving wheel 105L described later is referred to as “left D3L”
  • a direction from the driving wheel 105L to the driving wheel 105R is referred to as “right D3R”.
  • an end in the left side D3L is called a "left end”
  • a position of the left end in the left-right direction D3 is called a "left end”.
  • an end in the right D3R is called a “right end”, and a position of the right end in the left / right direction D3 is called a “right end”.
  • a surface facing the left D3L is called a "left surface”
  • a surface facing the right D3R is called a "right surface”.
  • a direction parallel to the rotation axis J is referred to as an “axial direction”.
  • the direction from the second light receiving element 324 described later to the LD 311 described later is referred to as “axially upper”, and the direction from the LD 311 to the second light receiving element 324 is referred to as “axially lower”.
  • the axial direction is parallel to the vertical direction D1 in the present embodiment.
  • the present invention is not limited to the example of the present embodiment, and the axial direction may be a direction that intersects the vertical direction D1.
  • the direction perpendicular to the rotation axis J is referred to as “radial direction”.
  • the direction toward the rotation axis J is referred to as “radially inward”, and the direction away from the rotation axis J is referred to as “radially outward”.
  • a circumferential direction around the rotation axis J is referred to as a “rotation direction”.
  • the lower end is referred to as “axial lower end”, and the position of the lower end is referred to as “axial lower end”.
  • the upper end is referred to as “axial upper end”, and the position of the upper end is referred to as “axial upper end”.
  • a face facing downward is referred to as a "lower face”
  • a face facing upward is referred to as an "upper face”.
  • FIG. 1 is a perspective view showing a configuration example of an automatic guided vehicle 100 according to the embodiment.
  • FIG. 2 is a top view illustrating the automatic guided vehicle 100 according to the embodiment together with an external object OJ.
  • FIG. 2 is a diagram of the automatic guided vehicle 100 as viewed from above D1t.
  • the automatic guided vehicle 100 is an example of a moving object including the sensor unit 1 and is generally called an AGV (Automatic Guided Vehicle).
  • AGV Automatic Guided Vehicle
  • the automatic guided vehicle 100 autonomously travels on the road surface G by two-wheel drive and transports a load.
  • the moving object exemplified by the automatic guided vehicle 100 is not limited to this example, and may be used for purposes other than the conveyance of luggage.
  • the sensor unit 1 mounted on the automatic guided vehicle 100 has two types of optical sensors (that is, the obstacle sensor 2 and the distance measurement unit 3). That is, not only the distance measurement unit 3 but also the obstacle sensor 2 uses an optical sensor with good responsiveness and high reliability.
  • the automatic guided vehicle 100 detects the object OJ1 located near the automatic guided vehicle 100 as an obstacle by the obstacle sensor 2. Accordingly, for example, when there is an obstacle in the front direction D2f of the automatic guided vehicle 100, the automatic guided vehicle 100 stops moving. Further, the automatic guided vehicle 100 detects the object OJ2 located outside the automatic guided vehicle 100 by the distance measuring unit 3, and the position of the object OJ2 is determined with respect to the distance to the object OJ2 and the position of the automatic guided vehicle 100. Direction to be detected.
  • the distance measurement unit 3 can detect an object OJ2 located farther than the object OJ1 that can be detected by the obstacle sensor 2.
  • the automatic guided vehicle 100 can perform map information creation and self-position identification, which will be described later.
  • the obstacle sensor 2 erroneously detects the reflected light Lb in which the light emitted from the distance measuring unit 3 is reflected by an external object. Can be suppressed or prevented. Therefore, the automatic guided vehicle 100 can prevent the automatic guided vehicle 100 from stopping even though there is no obstacle OJ1 around the automatic guided vehicle 100 due to the erroneous detection described above. A more detailed configuration of the sensor unit 1 will be described later.
  • the automatic guided vehicle 100 includes a vehicle body 101, a carrier 102, support portions 103L and 103R, drive motors 104L and 104R, drive wheels 105L and 105R, and driven wheels 106F. , 106R, a battery 107, a communication unit 108, and a control unit 109.
  • the vehicle body 101 houses a battery 107, a communication unit 108, a control unit 109, and the like. 1, five obstacle sensors 2 of the sensor unit 1 are provided at the front end and the rear end of the vehicle body 101.
  • part in which the obstacle sensor 2 is provided, and the number thereof are not limited to the illustration of FIG. The configuration of the obstacle sensor 2 will be described later.
  • a plate-shaped carrier 102 is fixed to the upper surface of the vehicle body 101. Luggage can be placed on the upper surface of the loading platform 102. Further, on the upper surface of the vehicle body 101, the distance measuring unit 3 of the sensor unit 1 is disposed in the forward direction D2f. The configuration of the distance measuring unit 3 will be described later.
  • the support portion 103L is fixed to the left end of the vehicle body 101, and supports the drive motor 104L.
  • an AC servomotor is used as drive motor 104L.
  • the drive motor 104L incorporates a speed reducer (not shown).
  • the drive wheel 105L is attached to a shaft (not shown) of the drive motor 104L, and contacts the road surface G.
  • the drive wheel 105L is rotatable with the shaft by the rotational drive of the drive motor 104L.
  • the support portion 103R is fixed to the right end of the vehicle body 101, and supports the drive motor 104R.
  • the drive motor 104R for example, an AC servomotor is used.
  • the drive motor 104R incorporates a speed reducer (not shown).
  • the drive wheel 105R is attached to a shaft (not shown) of the drive motor 104R and contacts the road surface G.
  • the drive wheel 105R is rotatable with the shaft by the rotational drive of the drive motor 104R.
  • the driven wheel 106F is rotatably attached to the front end of the vehicle body 101.
  • the driven wheel 106R is rotatably mounted at the rear end of the vehicle body 101.
  • the driven wheels 106F and 106R come into contact with the road surface G and rotate passively according to the rotation of the drive wheels 105L and 105R.
  • the automatic guided vehicle 100 By driving the drive wheels 105L and 105R to rotate by the drive motors 104L and 104R, the automatic guided vehicle 100 can be moved forward and backward on the road surface G. In addition, by controlling the rotational speeds of the drive wheels 105L and 105R to provide a difference, the automatic guided vehicle 100 can be rotated clockwise or counterclockwise to change the direction.
  • the battery 107 is a power source of the automatic guided vehicle 100, and supplies power to, for example, the distance measurement unit 3, the communication unit 108, the control unit 109, and the like.
  • a lithium ion battery is used as the battery 107.
  • the communication unit 108 performs communication with a tablet terminal (not shown) outside the automatic guided vehicle 100, for example, in compliance with Bluetooth (registered trademark).
  • a tablet terminal not shown
  • Bluetooth registered trademark
  • the control unit 109 is connected to the drive motors 104L and 104R, the communication unit 108, and the like.
  • the control unit 109 controls the drive of the drive motors 104L and 104R.
  • the control unit 109 is further connected to the obstacle sensor 2 and the distance measurement unit 3 and receives various signals from the obstacle sensor 2 and the distance measurement unit 3 to perform various controls.
  • FIG. 3 is a side view showing the automatic guided vehicle 100 according to the embodiment together with an external object OJ.
  • the front end of the automatic guided vehicle 100 is viewed from the left D3L.
  • the sensor unit 1 includes the obstacle sensor 2 and the distance measurement unit 3 as described above.
  • the obstacle sensor 2 is a first sensor included in the sensor unit 1 and is an optical sensor that detects an object OJ1 located around the first sensor.
  • an optical sensor having higher responsiveness and reliability than a sensor using an ultrasonic wave as a detection medium can be used as the obstacle sensor 2.
  • the obstacle sensor 2 is provided below the distance measurement unit 3 at D1d.
  • the obstacle sensor 2 includes a first light irradiation unit 21 and a first light receiving unit 22.
  • the first light irradiation unit 21 irradiates the outside of the automatic guided vehicle 100 with irradiation light Lra.
  • the first light receiving unit 22 receives the incident light, and particularly receives the reflected light Lrb.
  • the reflected light Lrb is light in which the irradiation light Lra is reflected by the object OJ1 located outside the automatic guided vehicle 100.
  • the obstacle sensor 2 detects, for example, an object OJ1 located outside the automatic guided vehicle 100 as an obstacle based on the light reception result of the first light receiving unit 22.
  • the first light receiving unit 22 is disposed between the first light irradiation unit 21 and the second light irradiation unit of the distance measurement unit 3. Further, the first light receiving unit 22 detects light incident from the first light irradiation unit 21 side of the first light receiving unit 22. On the other hand, the first light receiving unit 22 does not detect light incident from the distance measuring unit 3 side more than the first light receiving unit 22. In other words, when viewed from the left-right direction D3, the first light receiving unit 22 detects only light incident from the lower side D1d than the front direction D2f, and does not detect light incident from the upper side D1t than the front direction D2f.
  • the first light receiving unit 22 does not detect light incident from the distance measuring unit 3 side than the first light receiving unit 22 does, and detects the light from the first light irradiation unit 21 side rather than the first light receiving unit 22. Only the light that emits light.
  • the reflected light Lrb of the irradiation light Lra emitted from the obstacle sensor 2 is detected, and the detection of the reflected light Lb of the laser light La emitted from the distance measurement unit 3 is prevented. . Therefore, it is possible to prevent the obstacle sensor 2 from erroneously detecting the reflected light Lb of the laser light La emitted from the distance measuring unit 3. This effect is particularly effective when the wavelength bands of the laser light La and the irradiation light Lra are the same.
  • the first light irradiating unit 21 is disposed below the first light receiving unit 22 in the axial direction.
  • the first light irradiation unit 21 of the obstacle sensor 2 is disposed below the first light receiving unit 22 at D1d.
  • the distance measurement unit 3 can be arranged above the obstacle sensor 2 that detects the surrounding object. Therefore, the obstacle sensor 2 that detects a surrounding object does not detect the light that enters the first light receiving unit 22 from the distance measurement unit 3 side (that is, the D1t side above the horizontal direction), so that the distance measurement unit 3 Detection of the reflected light Lb of the emitted laser light La can be prevented.
  • the reflected light Lb may enter the first light receiving unit 22 from the lower side D1d.
  • the obstacle sensor 2 erroneously detects the reflected light Lb of the laser light La emitted from the distance measuring unit 3 reflected on the road surface G.
  • the intensity of the reflected light Lb incident on the first light receiving unit 22 from the first light irradiation unit 21 side is lower than the intensity of the reflected light Lb incident on the first light receiving unit 22 from the distance measurement unit 3 side.
  • the intensity of the reflected light Lb reflected by the road surface G is lower than the intensity of the reflected light Lb reflected by a portion on the D1t side above the first light receiving unit 22 of the external object OJ2. Therefore, in the present embodiment, as to the erroneous detection by the obstacle sensor 2 as described above, when the light receiving intensity of the incident light received by the first light receiving unit 22 is less than the first threshold, the incident light is detected as described later. The light detection result is invalidated. In other words, when the intensity of the incident light received by the first light receiving unit 22 is equal to or greater than the first threshold, the detection result of the incident light is valid. Thereby, for example, the detection of the reflected light Lb reflected on the road surface G as described above is invalidated. Therefore, the obstacle sensor 2 can more reliably prevent the reflected light Lb of the laser light La emitted from the distance measuring unit 3 from being erroneously detected.
  • the first light irradiation unit 21 has an LED (Light Emitting Diode) not shown in the present embodiment.
  • the LED is an example of a light source that emits the irradiation light Lra.
  • the first light irradiating unit 21 irradiates the irradiation light Lra having lower directivity than the laser light La emitted from the distance measuring unit 3.
  • a relatively inexpensive light emitting element such as an LED can be used as the light source of the first light irradiation unit 21.
  • the irradiation light Lra is an infrared ray in the present embodiment.
  • an inexpensive infrared light emitting element can be used as the light source of the first light irradiation unit 21.
  • the irradiation light Lra is not limited to this example, and may be light in a wavelength band other than the infrared band.
  • the first light irradiation unit 21 causes the LED to emit the irradiation light Lra intermittently in response to the irradiation light pulse Pi input periodically. That is, the first light irradiation unit 21 irradiates the irradiation light Lra intermittently.
  • the present invention is not limited to this example, and the first light irradiation unit 21 may continuously emit the irradiation light Lra during the operation of the automatic guided vehicle 100.
  • FIG. 4A is a cross-sectional view illustrating a configuration example of the first light receiving unit 22 of the obstacle sensor 2.
  • FIG. 4A corresponds to the cross-sectional structure of a portion A surrounded by an elliptical broken line in FIG.
  • the first light receiving unit 22 includes a first light receiving element 221 and a condenser lens 222.
  • the first light receiving element 221 detects incident light from outside the first light receiving unit 22 at each incident angle ⁇ based on the light receiving position on the light receiving surface 221a.
  • the condenser lens 222 condenses the incident light on the light receiving surface 221a of the first light receiving unit 22.
  • the incident angle ⁇ is the forward direction D2f of the incident light as viewed from both the lower direction D1d from the first light receiving unit 22 toward the first light irradiating unit 21 and the front direction D2f perpendicular to the lower direction D1d and the right and left direction D3 perpendicular to the lower direction D1d. Is the angle with respect to As described above, the first light receiving unit 22 can use the first light receiving element 221 of a PSD (position sensitive) device that detects the distance to the first object OJ1 by triangulation.
  • PSD position sensitive
  • the first light receiving element 221 is provided inside the vehicle body 101.
  • the light receiving surface 221a of the first light receiving element 221 intersects the front direction D2f, and in the present embodiment, is orthogonal to the front direction D2f.
  • the condenser lens 222 is fitted into openings provided on the front and back surfaces of the vehicle body 101.
  • the light receiving surface 221a of the first light receiving element 221 is located D1t above the center position of the condenser lens 222 in the vertical direction D1.
  • the condenser lens 222 When viewed from the left side D3L, the condenser lens 222 includes light that enters the condenser lens 222 from the front direction D2f and light that enters the condenser lens 222 from the side D1t above the front direction D2f (for example, a distance measurement unit).
  • the reflected light Lb) of the laser light La emitted from 3 is condensed below the first light receiving element 221 toward the side D1d. Therefore, the collected light does not enter the light receiving surface 221a of the first light receiving element 221 and is not received by the first light receiving element 221.
  • the condenser lens 222 when viewed from the left side D3L, is a light incident on the condenser lens 222 from a side D1d below the front direction D2f (for example, a reflected light Lrb of the irradiation light Lra emitted from the obstacle sensor 2). Is focused toward the upper D1t side than the front direction D2f. Therefore, the condensed light enters the light receiving surface 221a of the first light receiving element 221 and is received by the first light receiving element 221.
  • the light condensed on the light receiving surface 221a is received at a position away from the lower end of the light receiving surface 221a toward the upper part D1t as the incident angle ⁇ is larger.
  • the first light receiving element 221 detects the light receiving intensity of the light collected on the light receiving surface 221a for each light receiving position on the light receiving surface 221a in the vertical direction D1.
  • the first light receiving element 221 detects the incident light condensed on the light receiving surface 221a for each incident angle ⁇ based on the light receiving position on the light receiving surface 221a.
  • the first light receiving element 221 receives the reflected light Lrb reflected by the external obstacle as described above and the reflected light incident from the object OJ located at a known distance from the first light receiving unit 22.
  • the distance from the obstacle sensor 2 to the obstacle can be obtained by calculation based on the light receiving result of Lrb.
  • the first light receiving unit 22 may include a light blocking member 223.
  • FIG. 4B is a cross-sectional view illustrating another configuration example of the first light receiving unit 22 of the obstacle sensor 2.
  • FIG. 4B corresponds to the cross-sectional structure of the portion A surrounded by the elliptical broken line in FIG.
  • the lower end of the light receiving surface 221a is on the D1d side below the front direction D2f.
  • the light blocking member 223 is provided between the first light receiving element 221 and the condenser lens 222 inside the vehicle body 101, and shields light condensed from the condenser lens 222 toward the lower side D1d than the front direction D2f.
  • the first light receiving element 221 can detect only light incident from the side of D1d below the front direction D2f when viewed from the left and right direction D3, similarly to the configuration of FIG. 4A. Further, the first light receiving element 221 can detect incident light from outside the first light receiving unit 22 at each incident angle ⁇ based on the light receiving position on the light receiving surface 221a.
  • Distance measuring unit 3 is a second sensor provided in sensor unit 1, and measures a distance between the distance measuring unit 3 and an object located outside.
  • the distance measurement unit 3 is disposed axially above the obstacle sensor 2. Further, in the present embodiment, as shown in FIG. 3, the distance measurement unit 3 is disposed above the obstacle sensor 2 at D1t.
  • the distance measuring unit 3 in the present embodiment is a so-called LRF (Laser ⁇ Range ⁇ Finder).
  • FIG. 5 is a cross-sectional view illustrating a configuration example of the distance measuring unit 3.
  • FIG. 5 shows a cross-sectional structure when the distance measurement unit 3 is virtually cut along a plane including the rotation axis J.
  • the distance measurement unit 3 includes a housing 30, a second light irradiating unit 31, a second light receiving unit 32, a rotating housing 33, and a motor 34.
  • the housing 30 has a hollow cylindrical shape extending in the up-down direction, and accommodates the second light irradiation unit 31, the second light receiving unit 32, the rotating housing 33, and the motor 34 in the internal space. Further, the housing 30 has a light transmitting portion 301.
  • the light-transmitting portion 301 is provided on the radial side surface of the housing 30 using a material such as a light-transmitting resin or glass in the middle in the vertical direction.
  • the light transmitting portion 301 is provided in an annular shape around the rotation axis J.
  • the ring here has a shape that is continuously connected over the entire circumference in the rotation direction around the rotation axis J as shown in FIG. 5, and a shape that is intermittently connected over the entire circumference in the rotation direction as shown in FIG. Including.
  • the second light irradiating unit 31 irradiates the laser light La to the outside of the automatic guided vehicle 100.
  • the laser light La is irradiated in the horizontal direction. That is, the optical axis of the laser beam La is parallel to the horizontal direction.
  • the laser light La is light in the same infrared band as the irradiation light Lra.
  • the obstacle sensor 2 since only the light incident from the lower side D1d than the front direction D2f is detected by the first light receiving unit 22, the obstacle sensor 2 erroneously detects the reflected light Lb in the same wavelength band as the irradiation light Lra. Can be prevented.
  • the present invention is not limited to this example, and the laser light La may be light in a wavelength band different from the irradiation light Lra.
  • the laser light La may be light in a wavelength band other than the infrared band.
  • the intensity of the laser light La emitted from the second light emitting unit 31 is stronger than the intensity of the emitted light Lra emitted from the first light emitting unit 21 of the obstacle sensor 2.
  • the distance measurement unit 3 reflects the irradiation light Lra of the obstacle sensor 2 It is possible to prevent the light Lrb from being erroneously detected.
  • the second light irradiation unit 31 includes an LD (Laser @ Diode) 311, a substrate 312, a collimating lens 313, and a light projecting mirror 314.
  • the LD 311 is an example of a light source that emits laser light La.
  • the substrate 312 is mounted with an LD driver 311a (see FIG. 6 described later) that controls light emission of the LD 311.
  • the LD 311 and the substrate 312 are fixed to the lower end surface of the upper end of the housing 30.
  • the collimating lens 313 is arranged below the LD 311.
  • the light projecting mirror 314 is arranged below the collimating lens 313 and is fixed to the upper end surface of the upper end of the rotating housing 33.
  • the LD 311 emits the laser light La downward.
  • the laser light La emitted from the LD 311 is collimated by the collimator lens 313.
  • the laser light La emitted downward from the collimating lens 313 is reflected by the light projecting mirror 314, passes through the light transmitting unit 301, and is emitted to the outside of the housing 30.
  • the laser light La is intermittently emitted by the LD 311 according to the laser emission pulse Pe.
  • the period during which the laser light La is irradiated from the second light irradiation unit 31 preferably does not overlap with the period during which the irradiation light Lra is irradiated.
  • the irradiation light Lra emitted from the first light irradiation unit 21 and the laser light La emitted from the second light irradiation unit 31 are preferably emitted to the outside of the sensor unit 1 at mutually different timings. .
  • the reflected light Lrb of the irradiation light Lra emitted from the obstacle sensor 2 enters the second light receiving unit 32 of the distance measurement unit 3, the reflected light Lrb is emitted from the distance measurement unit 3.
  • the laser light La enters the second light receiving unit 32 at a timing different from that of the reflected light Lb.
  • the detection result of the light incident on the second light receiving unit 32 a predetermined time after the time when the laser light La is irradiated to the outside is valid. Note that the predetermined time is determined in consideration of the TOF (Time @ of @ Flight) of the laser light La and the reflected light Lb.
  • the detection result of the light incident on the second light receiving unit 32 a predetermined time after the irradiation light Lra is irradiated to the outside is invalidated.
  • the predetermined time is determined in consideration of the TOF (Time @ of @ Flight) of the irradiation light Lra and the reflected light Lrb.
  • the reflected light Lb of the laser beam La emitted from the distance measuring unit 3 is incident on the first light receiving unit 22 of the obstacle sensor 2
  • the reflected light Lb is irradiated light emitted from the obstacle sensor 2
  • the light enters the first light receiving unit 22 at a different timing from the reflected light Lrb of Lra.
  • the detection result of the light incident on the first light receiving unit 22 a predetermined time after the irradiation light Lra is irradiated to the outside is valid.
  • the predetermined time is determined in consideration of the TOF (Time @ of @ Flight) of the irradiation light Lra and the reflected light Lrb.
  • the detection result of the light incident on the first light receiving unit 22 a predetermined time after the time when the laser light La is irradiated to the outside is invalidated.
  • the predetermined time is determined in consideration of the TOF (Time @ of @ Flight) of the laser light La and the reflected light Lb. Accordingly, it is possible to more reliably prevent the first light receiving unit 22 of the obstacle sensor 2 from erroneously detecting the reflected light Lb of the laser light La emitted from the distance measuring unit 3.
  • the present invention is not limited to the above example, and at least a part of the period in which the laser light La is irradiated from the second light irradiation unit 31 may overlap with the period in which the irradiation light Lra is irradiated.
  • the laser light La may be irradiated to the outside of the sensor unit 1 at the same timing as the irradiation light Lra intermittently irradiated from the first light irradiation unit 21.
  • the second light receiving unit 32 receives the incident light, and in particular, receives the reflected light Lb of the laser light La reflected by the object OJ2 located outside the automatic guided vehicle 100, for example. If the intensity of the incident light received by the second light receiving unit 32 is less than the second threshold, the detection result of the incident light is invalidated.
  • the second light receiving section 32 includes a light receiving lens 321, a light receiving mirror 322, a wavelength filter 323, and a second light receiving element 324.
  • the light receiving lens 321 is fitted and fixed in an opening 33 a provided on a radial side surface of the rotating housing 33.
  • the light receiving mirror 322 is fixed to the lower end surface of the upper end of the rotating housing 33.
  • the wavelength filter 323 is arranged below the light receiving mirror 322.
  • the second light receiving element 324 is disposed below the wavelength filter 323 and is fixed to the upper end surface of the lower end of the rotating housing 33.
  • the laser light La emitted from the distance measurement unit 3 is reflected by an object OJ2 outside the distance measurement unit 3 and becomes diffused light. Part of the diffused light passes through the light transmitting portion 301 and enters the second light receiving portion 32 as reflected light Lb.
  • the reflected light Lb first enters the light receiving lens 321.
  • the reflected light Lb transmitted through the light receiving lens 321 is reflected downward by the light receiving mirror 322 and transmitted through the wavelength filter 323.
  • the wavelength filter 323 transmits, for example, only light in the same wavelength band as the laser light La.
  • the reflected light Lb is received by the second light receiving element 324.
  • the second light receiving element 324 photoelectrically converts the received reflected light Lb into an electric signal such as a measurement pulse Pm to be described later, and outputs the electric signal.
  • the rotating housing 33 has a hollow cylindrical shape extending in the vertical direction, and accommodates the light receiving mirror 322, the wavelength filter 323, and the second light receiving element 324 in the internal space.
  • the rotating housing 33 is fixed to a shaft 34 a of a motor 34 and can be driven to rotate by the motor 34. Due to the rotation of the rotating housing 33, the light projecting mirror 314 is also driven to rotate about the rotation axis J. Therefore, the irradiation direction of the laser beam La reflected by the light projecting mirror 314 rotates around the rotation axis J. In other words, the laser beam La is irradiated to the outside of the housing 30 while changing the irradiation direction within a range of 360 ° around the rotation axis J. Therefore, the laser light La emitted from the second light emitting unit 31 is scanned in the rotation direction about the rotation axis J in accordance with the rotation of the motor 34.
  • the scanning range Rs in the rotation direction of the laser beam La is a measurement range in which the distance measurement unit 3 can measure the distance to the external object OJ (see FIG. 2), and the laser beam La rotates around the rotation axis. It is formed by doing. Note that the scanning range Rs changes according to the output level of the laser light La.
  • the laser beam La applied to the measurement range is reflected by the object OJ located within the scanning range Rs, the reflected light Lb passes through the light transmitting unit 301 and enters the light receiving lens 321.
  • the motor 34 rotates the rotating housing 33 at a predetermined rotation speed by rotating the shaft 34a.
  • the rotation of the motor 34 causes the laser beam La to scan in the rotation direction. That is, the motor 34 is a scanning mechanism of the laser beam La.
  • FIG. 6 is a block diagram showing an electrical configuration of the distance measurement unit 3. As shown in FIG.
  • the distance measuring unit 3 includes a measuring unit 35, an arithmetic processing unit 36, and a motor driving unit 37, in addition to the above-described second light irradiation unit 31, second light receiving unit 32, and motor 34. , A communication I / F 38.
  • the second light receiving unit 32 further includes a comparator 325.
  • the measuring unit 35 and the arithmetic processing unit 36 are functional components of one or a plurality of microcomputers (not shown) provided in the distance measuring unit 3.
  • the present invention is not limited to this example, and at least one of the measuring unit 35 and the arithmetic processing unit 36 may be a physical component realized by an electric circuit, an element, an electric device, or the like.
  • the comparator 325 is mounted on, for example, a substrate (not shown) in the housing 30 and compares the level of an electric signal output from the second light receiving element 324 with a second threshold.
  • the electric signal indicates a result of light reception by the second light receiving element 324.
  • the second threshold value is greater than the intensity of the reflected light Lrb of the irradiation light Lra emitted from the obstacle sensor 2 incident on the second light receiving unit 32.
  • the comparator 325 outputs a high-level or low-level measurement pulse Pm according to the above-described comparison result. For example, when the level of the electric signal is lower than the second threshold, the comparator 325 invalidates the detection result of the incident light by the second light receiving element 324 and outputs the measurement pulse Pm of the Low level. When the level of the electric signal is equal to or higher than the second threshold, the comparator 325 validates the result of detection of the incident light by the second light receiving element 324 and outputs a high-level measurement pulse Pm.
  • the arithmetic processing unit 36 outputs a laser light emission pulse Pe to the second light irradiation unit 31.
  • the second light irradiation unit 31 causes the LD 311 to emit pulsed laser light La using the laser emission pulse Pe as a trigger.
  • the arithmetic processing unit 36 outputs the reference pulse Ps and the laser emission pulse Pe to the measurement unit 35.
  • the measurement pulse Pm output from the comparator 325 and the reference pulse Ps output from the arithmetic processing unit 36 are input to the measurement unit 35.
  • the measurement unit 35 acquires the distance to the object OJ by measuring the elapsed time from the rising timing of the reference pulse Ps to the rising timing of the measurement pulse Pm. That is, the measuring unit 35 measures the distance by a so-called TOF (Time @ of @ Flight) method.
  • the measurement unit 35 outputs the measurement result of the distance to the arithmetic processing unit 36 as measurement data Dm.
  • the motor driving unit 37 controls driving of the motor 34.
  • the motor 34 is driven to rotate at a predetermined rotation speed by a motor drive unit 37.
  • the arithmetic processing unit 36 outputs a laser emission pulse Pe every time the motor 34 rotates by a predetermined unit angle.
  • the second light irradiator 31 irradiates the laser beam La each time the rotating housing 33 and the light projecting mirror 314 rotate by a predetermined unit angle.
  • the arithmetic processing unit 36 uses the distance measurement unit 3 as a reference based on the rotation angle position of the motor 34 at the timing when the laser emission pulse Pe is output and the measurement data Dm obtained corresponding to the laser emission pulse Pe. Generate position information on a rectangular coordinate system. That is, the position of the object OJ is acquired based on the rotation angle position of the light projecting mirror 314 and the measured distance. The position information acquired in this way is output from the arithmetic processing unit 36 as measured distance data Dd. Thus, the position information of the object OJ is obtained by the scanning of the laser beam La within the rotation scanning angle range.
  • the communication I / F 38 transmits the measured distance data Dd output from the arithmetic processing unit 36 to the automatic guided vehicle 100 (see FIG. 8 described later).
  • the communication I / F 38 preferably transmits the laser emission pulse Pe to the automatic guided vehicle 100 and receives the irradiation light pulse Pi from the automatic guided vehicle 100.
  • the measuring unit 35 determines validity / invalidity of the measurement pulse Pm for a predetermined time according to the laser emission pulse Pe and the irradiation light pulse Pi, and outputs measurement data Dm based on the determined measurement pulse Pm.
  • FIG. 7 is a timing chart of the laser emission pulse Pe and the measurement data Dm.
  • the laser beam La is irradiated at a time point t1 when the laser emission pulse Pe rises.
  • time t2 when the same time as TOF (Time @ of @ Flight) of the laser light La and its reflected light Lb has elapsed from time t1, the reflected light Lb is received by the second light receiving unit 32.
  • time t3 when the irradiation light pulse Pi rises, the irradiation light Lra is irradiated.
  • time t5 when the same time as TOF (Time @ of @ Flight) of the irradiation light Lra and its reflected light Lrb has elapsed from time t3, the reflected light Lrb is received by the second light receiving unit 32.
  • the period of the laser emission pulse Pe (the period from t1 to t6 in FIG. 7) is, for example, 8.6 [ ⁇ sec], whereas the TOF of the irradiation light Lra and the reflected light Lrb is, for example, 0.2 [ ⁇ sec]. ⁇ sec].
  • the measurement unit 35 validates the measurement pulse Pm during the predetermined time Te from the time t2 to the time t4, and invalidates the measurement pulse Pm during the period Tu from the time t4 to the time t6 when the next laser emission pulse Pe rises.
  • the time point t4 is a time point after the predetermined time Te from the time point t2 and before the time point t5. That is, t2 ⁇ t4 ⁇ t5.
  • the measurement unit 35 generates the measurement data Dm based on the valid measurement pulse Pm. By doing so, the measuring unit 35 prevents the second light receiving unit 32 from erroneously detecting the reflected light Lrb of the irradiation light Lra.
  • FIG. 8 is a block diagram illustrating an electrical configuration example of the automatic guided vehicle 100.
  • the control unit 109 of the automatic guided vehicle 100 includes a control unit 4 and a storage unit 5, as shown in FIG.
  • the control unit 4 communicates with an information device (not shown) such as a tablet terminal via the communication unit 108.
  • control unit 4 receives, via communication unit 108, an operation signal indicating the content of the operation input on the information device.
  • an operation signal indicating the content of the operation input on the information device.
  • one or more CPUs are used for the control unit 4.
  • the present invention is not limited to this example, and at least a part of the control unit 4 may be an electric circuit, an element, an electronic device, or the like other than the CPU.
  • control unit 4 includes a drive control unit 41, a determination unit 42, a map creation unit 43, a position identification unit 44, and a light emission control unit 45.
  • the drive control unit 41, the determination unit 42, the map creation unit 43, the position identification unit 45, and the light emission control unit 45 are functional components of the above-described CPU.
  • the present invention is not limited to this example, and at least one of the drive control unit 41, the determination unit 42, the map creation unit 43, the position identification unit 45, and the light emission control unit 45 is an electric circuit, an element, an electric device, or the like. It may be a realized physical component.
  • the drive control unit 41 controls the rotational drive of the drive motors 104L and 104R, and controls the rotational speed and the rotational direction of the drive wheels 105L and 105R, for example.
  • the determination unit 42 performs various determinations. For example, the determination unit 42 determines whether there is an obstacle near the vehicle body 101 based on the detection signal Sd output from the obstacle sensor 2. When the level of the detection signal Sd is lower than the first threshold level, the determination unit 42 determines that there is no obstacle near the vehicle body 101. When the level of the detection signal Sd is equal to or higher than the first threshold level, the determination unit 42 determines that there is an obstacle near the vehicle body 101. When the determining unit 42 determines that there is an obstacle such as the object OJ1 (for example, see FIGS. 2 and 8), the drive control unit 41 stops or reversely rotates the drive motors 104L and 104R. Thereby, contact between the vehicle body 101 and an obstacle such as the object OJ1 is avoided.
  • the detection signal Sd output from the obstacle sensor 2.
  • the level of the detection signal Sd is lower than the first threshold level
  • the determination unit 42 determines that there is no obstacle near the vehicle body 101.
  • the level of the detection signal Sd is equal to or
  • the map creating unit 43 creates map information based on the measured distance data Dd output from the distance measuring unit 3 and stores the map information in the storage unit 5.
  • the map information is position information of an object placed at a place where the automatic guided vehicle 100 travels, and indicates a relative position of each object located outside the distance measuring unit 3 with respect to a predetermined reference position. For example, when the automatic guided vehicle 100 travels in a warehouse, it is a wall of the warehouse, shelves arranged in the warehouse, luggage loaded on a road surface G in the warehouse, and the like.
  • the position identification unit 44 compares the measured distance data Dd output from the distance measurement unit 3 with the map information stored in the storage unit 5, and specifies the position of the automatic guided vehicle 100 itself based on the comparison result. Self-position identification. By performing the self-position identification, the control unit 4 can control the autonomous traveling of the automatic guided vehicle 100 along a predetermined route.
  • the storage unit 5 is a non-transitory storage medium that can retain storage even when power supply is stopped.
  • the storage unit 5 stores programs and information used by the control unit 109 or the control unit 4.
  • the light emission control unit 45 outputs an irradiation light pulse to the obstacle sensor 2 and controls light emission of the obstacle sensor 2.
  • the light emission control unit 45 preferably transmits the irradiation light pulse Pi to the distance measurement unit 3 and receives the laser light emission pulse Pe from the distance measurement unit 3.
  • the light emission control unit 45 determines the validity / invalidity of the detection signal Sd output from the obstacle sensor 2 for a predetermined time according to the laser light emission pulse Pe and the irradiation light pulse Pi, and based on the determination result, Modify Sd.
  • FIG. 9 is a timing chart of the irradiation light pulse Pi and the corrected detection signal. Note that reference symbol Sda in FIG. 9 indicates the corrected detection signal.
  • the irradiation light Lra is applied at a time point tr1 when the irradiation light pulse Pi rises.
  • the reflected light Lrb is detected by the first light receiving unit 22.
  • the laser light La is irradiated.
  • the reflected light Lb detected at the time point tr5 is light in which the laser light La is reflected by an object D1d below the first light receiving unit 22 (for example, below the external object OJ2, the road surface G, and the like). That is, the light is incident on the first light receiving unit 22 from the side D1d below the front direction D2f.
  • the light emission control unit 45 validates the detection signal Sd during the predetermined time Tre from the time point tr2 to the time point tr4.
  • the light emission control unit 45 does not modify the detection signal Sd at the predetermined time Tre. Further, the light emission control unit 45 invalidates the detection signal Sd in the period Tru from the time point tr4 to the time point tr6 at which the next irradiation light pulse Pi rises, and corrects the detection signal Sd. For example, the light emission control unit 45 removes a light receiving pulse from the detection signal Sd in the period Tru.
  • the time point tr4 is a time point after the predetermined time Tre from the time point tr2 and before the time point tr5. That is, tr2 ⁇ tr4 ⁇ tr5. By doing so, the light emission control unit 45 more reliably prevents the first light receiving unit 22 from erroneously detecting the reflected light Lb of the laser light La.
  • FIG. 10 is a side view showing an automatic guided vehicle 100 according to a modification together with an external object OJ.
  • the front end of the automatic guided vehicle 100 is viewed from the left D3L.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof may be omitted.
  • the second light irradiating unit 31 of the distance measuring unit 3 irradiates the laser light La to a side opposite to the first light receiving unit 22 with respect to the second light irradiating unit 31.
  • the second light irradiating unit 31 irradiates the laser beam La on the D1t side above the forward direction D2f. That is, the optical axis of the laser light La is directed upward D1t as it moves forward D2f.
  • the reflection of the laser beam La on an object D1d below the second light irradiation unit 31 of the distance measurement unit 3 (for example, below the external object OJ2, on the road surface G, etc.). Can be suppressed or prevented. Therefore, it is possible to more reliably prevent the obstacle sensor 2 that detects the surrounding object OJ from erroneously detecting the reflected light Lb of the laser light La emitted from the distance measuring unit 3.
  • the elevation angle between the optical axis of the laser beam La and the horizontal plane is preferably larger than half the spread angle of the laser beam La in the direction in which the optical axis extends.
  • the laser beam La can be prevented from irradiating the object on the D1d side below the second light irradiating unit 31, so that, for example, the reflection at the lower part of the external object OJ2, the road surface G, etc. can be further effectively reduced. Can be suppressed or prevented.
  • the present disclosure is useful for a sensor unit having a plurality of optical sensors and a moving body on which the sensor unit is mounted.
  • 100 automatic guided vehicle, 101: body, 102: carrier, 103L, 103R: support, 104L, 104R: drive motor, 105L, 105R: drive wheel, 106F, 106R ... follower wheel, 107 ... battery, 108 ... communication unit, 109 ... control unit, 1 ... sensor unit, 2 ... obstacle sensor, 21 ... first light irradiation unit , 211 ... LED, 22 ... first light receiving unit, 221 ... first light receiving element, 221a ... light receiving surface, 222 ... condenser lens, 223 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

This sensor unit (1), which is mounted in a mobile body (100), comprises a first sensor (2) having a first light-emitting part (21) and a first light-receiving part (22), and a second sensor (3) having a second light-emitting part (31). The first light-receiving part (22) is disposed between the first light-emitting part (21) and the second light-emitting part (31), and light incident from the first light-emitting-part (21) is detected by the first light-receiving part (22).

Description

センサユニット、移動体Sensor unit, moving body
本開示は、センサユニット、移動体に関する。 The present disclosure relates to a sensor unit and a moving body.
近年、物品の運搬作業を行う無人搬送車などの移動体が工場、倉庫などに導入されてきている。移動体には、自己の位置を同定したり周囲の物体との衝突を避けたりするため、周囲の物体を検知する複数のセンサが搭載される。たとえば、日本国公開公報特開2014-186694号公報には、レーザレンジファインダーと超音波センサとを有する無人搬送車が開示される。レーザレンジファインダーは、該レーザレンジファインダーを中心としてレーザ光を走査し、該レーザ光の走査範囲内にある物体を検知することにより物体の位置を取得する。超音波センサは、指向性を有する超音波を発信し、超音波の反射波の検出結果に基づいて周囲の物体を検知する。  2. Description of the Related Art In recent years, mobile objects such as unmanned transport vehicles that transport goods have been introduced into factories and warehouses. A plurality of sensors that detect surrounding objects are mounted on the moving object in order to identify its own position and avoid collision with surrounding objects. For example, Japanese Unexamined Patent Application Publication No. 2014-186694 discloses an automatic guided vehicle having a laser range finder and an ultrasonic sensor. The laser range finder scans the laser light around the laser range finder, and acquires the position of the object by detecting an object within the scanning range of the laser light. The ultrasonic sensor transmits an ultrasonic wave having directivity, and detects a surrounding object based on a detection result of a reflected wave of the ultrasonic wave.
但し、超音波センサの応答性及び信頼性は、レーザレンジファインダーのように光を検出媒体とするセンサよりも低い。 However, the responsiveness and reliability of the ultrasonic sensor are lower than those of a sensor using light as a detection medium, such as a laser range finder.
日本国公開公報:特開2014-186694号公報Japanese Unexamined Patent Publication: JP-A-2014-186694
ところで、同じ装置に複数のセンサが搭載される場合、一部のセンサで用いられる検出媒体の周波数が、他の一部のセンサで用いられる検出媒体の周波数と同じ又は近いことがある。そのため、他の一部のセンサが、一部のセンサで用いられる検出媒体の反射波を誤って検出することによって、誤検知をする虞がある。  When a plurality of sensors are mounted on the same device, the frequency of the detection medium used by some of the sensors may be the same as or close to the frequency of the detection medium used by some of the other sensors. For this reason, there is a possibility that the other part of the sensors may erroneously detect the reflected wave of the detection medium used by some of the sensors, thereby erroneously detecting the reflected wave.
本開示は、第1センサが第2センサから照射された光の反射光を誤って検出することを防止することを目的とする。 An object of the present disclosure is to prevent a first sensor from erroneously detecting reflected light of light emitted from a second sensor.
本開示の例示的なセンサユニットは、第1光照射部及び第1受光部を有する第1センサと、第2光照射部を有する第2センサと、を備える。前記第1受光部は、前記第1光照射部と前記第2光照射部との間に配置され、前記第1受光部よりも前記第1光照射部側から入射する光を検出する。  An exemplary sensor unit according to the present disclosure includes a first sensor having a first light irradiation unit and a first light receiving unit, and a second sensor having a second light irradiation unit. The first light receiving unit is disposed between the first light irradiating unit and the second light irradiating unit, and detects light incident from the first light irradiating unit side of the first light receiving unit.
本開示の例示的な移動体は、上記のセンサユニットを備える。 An exemplary moving object of the present disclosure includes the above-described sensor unit.
本開示の例示的なセンサユニット、移動体によれば、第1センサが第2センサから照射された光の反射光を誤って検出することを防止することができる。 According to the exemplary sensor unit and the moving body of the present disclosure, it is possible to prevent the first sensor from erroneously detecting the reflected light of the light emitted from the second sensor.
図1は、実施形態に係る無人搬送車の構成例を示す斜視図である。FIG. 1 is a perspective view illustrating a configuration example of the automatic guided vehicle according to the embodiment. 図2は、実施形態に係る無人搬送車を外部の物体とともに示す上面図である。FIG. 2 is a top view illustrating the automatic guided vehicle according to the embodiment together with external objects. 図3は、実施形態に係る無人搬送車を外部の物体とともに示す側面図である。FIG. 3 is a side view showing the automatic guided vehicle according to the embodiment together with an external object. 図4Aは、障害物センサの第1受光部の構成例を示す断面図である。FIG. 4A is a cross-sectional view illustrating a configuration example of the first light receiving unit of the obstacle sensor. 図4Bは、障害物センサの第1受光部の他の構成例を示す断面図である。FIG. 4B is a cross-sectional view illustrating another configuration example of the first light receiving unit of the obstacle sensor. 図5は、距離測定ユニットの構成例を示す断面図である。FIG. 5 is a cross-sectional view illustrating a configuration example of the distance measurement unit. 図6は、距離測定ユニットの電気的な構成例を示すブロック図である。FIG. 6 is a block diagram illustrating an example of an electrical configuration of the distance measurement unit. 図7は、レーザ発光パルス及び計測データのタイミングチャートである。FIG. 7 is a timing chart of the laser emission pulse and the measurement data. 図8は、無人搬送車の電気的な構成例を示すブロック図である。FIG. 8 is a block diagram illustrating an electrical configuration example of the automatic guided vehicle. 図9は、照射光パルス及び修正後の検出信号のタイミングチャートである。FIG. 9 is a timing chart of the irradiation light pulse and the corrected detection signal. 図10は、変形例に係る無人搬送車を外部の物体とともに示す側面図である。FIG. 10 is a side view showing an automatic guided vehicle according to a modification together with an external object.
以下に図面を参照して本開示の例示的な実施形態を説明する。  Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings.
本明細書では、鉛直方向D1のうち、後述する障害物センサ2の第1受光部22から第1光照射部21に向かう第1方向を「下方D1d」と呼び、第1光照射部21から第1受光部22に向かう方向を「上方D1t」と呼ぶ。なお、上方D1tは、下方D1dとは逆の方向である。各々の構成要素において、下方D1dにおける端部を「下端部」と呼び、鉛直方向D1における下端部の位置を「下端」と呼ぶ。さらに、上方D1tにおける端部を「上端部」と呼び、鉛直方向D1における上端部の位置を「上端」と呼ぶ。また、各々の構成要素の端面において、下方D1dを向く面を「下面」と呼び、上方D1tを向く面を「上面」と呼ぶ。  In the present specification, the first direction from the first light receiving unit 22 of the obstacle sensor 2 described later toward the first light irradiation unit 21 in the vertical direction D1 is referred to as “downward D1d”. The direction toward the first light receiving unit 22 is referred to as “upper D1t”. Note that the upper direction D1t is in a direction opposite to the lower direction D1d. In each of the constituent elements, an end in the lower portion D1d is referred to as a “lower end”, and a position of the lower end in the vertical direction D1 is referred to as a “lower end”. Furthermore, the end in the upper part D1t is called “upper end”, and the position of the upper end in the vertical direction D1 is called “upper end”. Further, of the end surfaces of the respective components, a surface facing downward D1d is referred to as “lower surface”, and a surface facing upward D1t is referred to as “upper surface”.
下方D1dと垂直であり且つ後述する無人搬送車100が前進する第2方向を「前方向D2f」と呼び、前方向D2fとは逆の方向を「後方向D2b」と呼ぶ。各々の構成要素において、前方向D2fにおける端部を「前端部」と呼び、前方向D2fにおける前端部の位置を「前端」と呼ぶ。さらに、後方向D2bにおける端部を「後端部」と呼び、後方向D2bにおける後端部の位置を「後端」と呼ぶ。また、各々の構成要素の側面において、前方向D2fを向く面を「前面」と呼び、後方向D2bを向く面を「背面」と呼ぶ。 A second direction perpendicular to the lower side D1d and in which the automatic guided vehicle 100 described later moves forward is referred to as “front direction D2f”, and a direction opposite to the front direction D2f is referred to as “rear direction D2b”. In each component, the end in the front direction D2f is referred to as “front end”, and the position of the front end in the front direction D2f is referred to as “front end”. Further, the end in the rear direction D2b is referred to as a “rear end”, and the position of the rear end in the rear direction D2b is referred to as a “rear end”. In addition, a surface facing the front direction D2f is referred to as a “front surface”, and a surface facing the rear direction D2b is referred to as a “back surface”.
下方D1d及び前方向D2fの両方と垂直な第3方向を「左右方向D3」と呼ぶ。左右方向D3のうち、後述する駆動輪105Rから後述する駆動輪105Lに向く方向を「左方D3L」と呼び、駆動輪105Lから駆動輪105Rに向く方向を「右方D3R」と呼ぶ。各々の構成要素において、左方D3Lにおける端部を「左端部」と呼び、左右方向D3における左端部の位置を「左端」と呼ぶ。さらに、右方D3Rにおける端部を「右端部」と呼び、左右方向D3における右端部の位置を「右端」と呼ぶ。また、各々の構成要素の側面において、左方D3Lを向く面を「左側面」と呼び、右方D3Rを向く面を「右側面」と呼ぶ。  A third direction perpendicular to both the lower direction D1d and the front direction D2f is referred to as a “lateral direction D3”. In the left-right direction D3, a direction from a driving wheel 105R described later to a driving wheel 105L described later is referred to as “left D3L”, and a direction from the driving wheel 105L to the driving wheel 105R is referred to as “right D3R”. In each component, an end in the left side D3L is called a "left end", and a position of the left end in the left-right direction D3 is called a "left end". Further, an end in the right D3R is called a “right end”, and a position of the right end in the left / right direction D3 is called a “right end”. Further, in the side surfaces of the respective components, a surface facing the left D3L is called a "left surface", and a surface facing the right D3R is called a "right surface".
また、後述する距離測定ユニット3において、回転軸Jと平行な方向を「軸方向」と呼ぶ。軸方向のうち、後述する第2受光素子324から後述するLD311に向く方向を「軸方向上方」と呼び、LD311から第2受光素子324に向く方向を「軸方向下方」と呼ぶ。なお、軸方向は、本実施形態では鉛直方向D1と平行である。但し、本実施形態の例示に限定されず、軸方向は、鉛直方向D1と交わる方向であってもよい。また、回転軸Jと垂直な方向を「径方向」と呼ぶ。径方向のうち、回転軸Jに向かう方向を「径方向内方」と呼び、回転軸Jから離れる方向を「径方向外方」と呼ぶ。また、回転軸Jを中心とする周方向を「回転方向」と呼ぶ。距離測定ユニット3における各々の構成要素において、下方における端部を「軸方向下端部」と呼び、下端部の位置を「軸方向下端」と呼ぶ。さらに、上方における端部を「軸方向上端部」と呼び、上端部の位置を「軸方向上端」と呼ぶ。また、距離測定ユニット3における各々の構成要素の端面において、下方を向く面を「下端面」と呼び、上方を向く面を「上端面」と呼ぶ。  In a distance measuring unit 3 described later, a direction parallel to the rotation axis J is referred to as an “axial direction”. In the axial direction, the direction from the second light receiving element 324 described later to the LD 311 described later is referred to as “axially upper”, and the direction from the LD 311 to the second light receiving element 324 is referred to as “axially lower”. Note that the axial direction is parallel to the vertical direction D1 in the present embodiment. However, the present invention is not limited to the example of the present embodiment, and the axial direction may be a direction that intersects the vertical direction D1. The direction perpendicular to the rotation axis J is referred to as “radial direction”. Of the radial directions, the direction toward the rotation axis J is referred to as “radially inward”, and the direction away from the rotation axis J is referred to as “radially outward”. In addition, a circumferential direction around the rotation axis J is referred to as a “rotation direction”. In each component of the distance measuring unit 3, the lower end is referred to as “axial lower end”, and the position of the lower end is referred to as “axial lower end”. Further, the upper end is referred to as “axial upper end”, and the position of the upper end is referred to as “axial upper end”. Further, of the end faces of the respective components in the distance measurement unit 3, a face facing downward is referred to as a "lower face", and a face facing upward is referred to as an "upper face".
なお、以上に説明した方向、端部、位置、及び面などの呼称は、実際の機器に組み込まれた場合での位置関係及び方向などを示すものではない。  It should be noted that the names of the directions, ends, positions, surfaces, and the like described above do not indicate the positional relationship, the directions, and the like when incorporated in actual equipment.
<1.実施形態> <1-1.無人搬送車> 図1は、実施形態に係る無人搬送車100の構成例を示す斜視図である。図2は、実施形態に係る無人搬送車100を外部の物体OJとともに示す上面図である。なお、図2は、無人搬送車100を上方D1tから見た図である。  <1. Embodiment> <1-1. Automatic guided vehicle> FIG. 1 is a perspective view showing a configuration example of an automatic guided vehicle 100 according to the embodiment. FIG. 2 is a top view illustrating the automatic guided vehicle 100 according to the embodiment together with an external object OJ. FIG. 2 is a diagram of the automatic guided vehicle 100 as viewed from above D1t.
無人搬送車100は、センサユニット1を備える移動体の一例であり、一般にAGV(Automatic Guided Vehicle)とも呼ばれる。無人搬送車100は、本実施形態では、二輪駆動により自律的に路面Gを走行し、荷物を搬送する。但し、無人搬送車100により例示される移動体は、この例示に限定されず、荷物の搬送以外の用途に用いられてもよい。  The automatic guided vehicle 100 is an example of a moving object including the sensor unit 1 and is generally called an AGV (Automatic Guided Vehicle). In the present embodiment, the automatic guided vehicle 100 autonomously travels on the road surface G by two-wheel drive and transports a load. However, the moving object exemplified by the automatic guided vehicle 100 is not limited to this example, and may be used for purposes other than the conveyance of luggage.
また、無人搬送車100に搭載されるセンサユニット1は、2種類の光センサ(つまり障害物センサ2と距離測定ユニット3と)を有する。つまり、距離測定ユニット3のみならず障害物センサ2にも、応答性が良好且つ信頼性が高い光センサを用いている。無人搬送車100は、無人搬送車100の近傍に位置する物体OJ1を障害物センサ2によって障害物として検知する。これにより、たとえば、無人搬送車100の前方向D2fに障害物が有る場合には、無人搬送車100は移動を停止する。また、無人搬送車100は、距離測定ユニット3によって、無人搬送車100の外部に位置する物体OJ2を検知し、該物体OJ2までの距離と無人搬送車100の位置に対して該物体OJ2が位置する方位とを検出する。なお、距離測定ユニット3は、障害物センサ2が検知可能な物体OJ1よりも遠くに位置する物体OJ2を検知できる。これにより、無人搬送車100は、後述する地図情報作成及び自己位置同定などを行うことができる。また、本実施形態のセンサユニット1及び無人搬送車100は、後述するように、距離測定ユニット3から照射された光が外部の物体で反射された反射光Lbを障害物センサ2が誤って検出することを抑制又は防止できる。従って、無人搬送車100は、上記のような誤検出によって無人搬送車100の周囲に障害物となる物体OJ1が無いにもかかわらず、無人搬送車100が停止することを防止できる。なお、センサユニット1のより詳細な構成は後に説明する。  The sensor unit 1 mounted on the automatic guided vehicle 100 has two types of optical sensors (that is, the obstacle sensor 2 and the distance measurement unit 3). That is, not only the distance measurement unit 3 but also the obstacle sensor 2 uses an optical sensor with good responsiveness and high reliability. The automatic guided vehicle 100 detects the object OJ1 located near the automatic guided vehicle 100 as an obstacle by the obstacle sensor 2. Accordingly, for example, when there is an obstacle in the front direction D2f of the automatic guided vehicle 100, the automatic guided vehicle 100 stops moving. Further, the automatic guided vehicle 100 detects the object OJ2 located outside the automatic guided vehicle 100 by the distance measuring unit 3, and the position of the object OJ2 is determined with respect to the distance to the object OJ2 and the position of the automatic guided vehicle 100. Direction to be detected. Note that the distance measurement unit 3 can detect an object OJ2 located farther than the object OJ1 that can be detected by the obstacle sensor 2. Thereby, the automatic guided vehicle 100 can perform map information creation and self-position identification, which will be described later. In the sensor unit 1 and the automatic guided vehicle 100 of the present embodiment, as described later, the obstacle sensor 2 erroneously detects the reflected light Lb in which the light emitted from the distance measuring unit 3 is reflected by an external object. Can be suppressed or prevented. Therefore, the automatic guided vehicle 100 can prevent the automatic guided vehicle 100 from stopping even though there is no obstacle OJ1 around the automatic guided vehicle 100 due to the erroneous detection described above. A more detailed configuration of the sensor unit 1 will be described later.
また、無人搬送車100は、図1及び図2に示すように、車体101と、荷台102と、支持部103L、103Rと、駆動モータ104L、104Rと、駆動輪105L、105Rと、従動輪106F、106Rと、バッテリー107と、通信部108と、制御ユニット109と、をさらに備える。  As shown in FIGS. 1 and 2, the automatic guided vehicle 100 includes a vehicle body 101, a carrier 102, support portions 103L and 103R, drive motors 104L and 104R, drive wheels 105L and 105R, and driven wheels 106F. , 106R, a battery 107, a communication unit 108, and a control unit 109.
車体101は、バッテリー107、通信部108、及び制御ユニット109などを内部に収容する。また、図1では、車体101の前端部及び後端部において、センサユニット1の障害物センサ2が5個ずつ設けられる。なお、障害物センサ2が設けられる部位及びその数は、図1の例示に限定されない。また、障害物センサ2の構成は、後に説明する。  The vehicle body 101 houses a battery 107, a communication unit 108, a control unit 109, and the like. 1, five obstacle sensors 2 of the sensor unit 1 are provided at the front end and the rear end of the vehicle body 101. In addition, the site | part in which the obstacle sensor 2 is provided, and the number thereof are not limited to the illustration of FIG. The configuration of the obstacle sensor 2 will be described later.
車体101の上面には、板状の荷台102が固定される。荷台102の上面には、荷物を載置することが可能である。また、車体101の上面において、前方向D2fにはセンサユニット1の距離測定ユニット3が配置される。なお、距離測定ユニット3の構成は、後に説明する。  A plate-shaped carrier 102 is fixed to the upper surface of the vehicle body 101. Luggage can be placed on the upper surface of the loading platform 102. Further, on the upper surface of the vehicle body 101, the distance measuring unit 3 of the sensor unit 1 is disposed in the forward direction D2f. The configuration of the distance measuring unit 3 will be described later.
支持部103Lは、車体101の左端部に固定され、駆動モータ104Lを支持する。駆動モータ104Lには、たとえばACサーボモータが用いられる。駆動モータ104Lは、減速機(図示省略)を内蔵する。駆動輪105Lは、駆動モータ104Lのシャフト(図示省略)に取り付けられ、路面Gに接する。駆動輪105Lは、駆動モータ104Lの回転駆動により該シャフトとともに回転可能である。  The support portion 103L is fixed to the left end of the vehicle body 101, and supports the drive motor 104L. For example, an AC servomotor is used as drive motor 104L. The drive motor 104L incorporates a speed reducer (not shown). The drive wheel 105L is attached to a shaft (not shown) of the drive motor 104L, and contacts the road surface G. The drive wheel 105L is rotatable with the shaft by the rotational drive of the drive motor 104L.
支持部103Rは、車体101の右端部に固定され、駆動モータ104Rを支持する。駆動モータ104Rには、たとえばACサーボモータが用いられる。駆動モータ104Rは、減速機(図示省略)を内蔵する。駆動輪105Rは、駆動モータ104Rのシャフト(図示省略)に取り付けられ、路面Gに接する。駆動輪105Rは、駆動モータ104Rの回転駆動により該シャフトとともに回転可能である。  The support portion 103R is fixed to the right end of the vehicle body 101, and supports the drive motor 104R. As the drive motor 104R, for example, an AC servomotor is used. The drive motor 104R incorporates a speed reducer (not shown). The drive wheel 105R is attached to a shaft (not shown) of the drive motor 104R and contacts the road surface G. The drive wheel 105R is rotatable with the shaft by the rotational drive of the drive motor 104R.
従動輪106Fは、車体101の前端部において回転可能に取り付けられる。従動輪106Rは、車体101の後端部において回転可能に取り付けられる。従動輪106F、106Rは、路面Gに接し、駆動輪105L、105Rの回転に応じて受動的に回転する。  The driven wheel 106F is rotatably attached to the front end of the vehicle body 101. The driven wheel 106R is rotatably mounted at the rear end of the vehicle body 101. The driven wheels 106F and 106R come into contact with the road surface G and rotate passively according to the rotation of the drive wheels 105L and 105R.
駆動モータ104L、104Rにより駆動輪105L、105Rを回転駆動することで、路面G上において無人搬送車100を前進及び後進させることができる。また、駆動輪105L、105Rの回転速度に差を設けるよう制御することで、無人搬送車100を右回りまたは左回りに回転させ、方向転換させることができる。  By driving the drive wheels 105L and 105R to rotate by the drive motors 104L and 104R, the automatic guided vehicle 100 can be moved forward and backward on the road surface G. In addition, by controlling the rotational speeds of the drive wheels 105L and 105R to provide a difference, the automatic guided vehicle 100 can be rotated clockwise or counterclockwise to change the direction.
バッテリー107は、無人搬送車100の電力源であり、たとえば距離測定ユニット3、通信部108、制御ユニット109などに電力を供給する。バッテリー107には、たとえばリチウムイオン電池が用いられる。  The battery 107 is a power source of the automatic guided vehicle 100, and supplies power to, for example, the distance measurement unit 3, the communication unit 108, the control unit 109, and the like. As the battery 107, for example, a lithium ion battery is used.
通信部108は、無人搬送車100の外部のタブレット端末(図示省略)との間で、たとえばBluetooth(登録商標)に準拠する通信を行う。これにより、たとえばタブレット端末などの外部の情報装置によって、無人搬送車100を遠隔操作することができる。 The communication unit 108 performs communication with a tablet terminal (not shown) outside the automatic guided vehicle 100, for example, in compliance with Bluetooth (registered trademark). Thus, the automatic guided vehicle 100 can be remotely controlled by an external information device such as a tablet terminal.
制御ユニット109は、駆動モータ104L、104R、及び通信部108などに接続される。制御ユニット109は、駆動モータ104L、104Rの駆動制御を行う。また、制御ユニット109は、さらに障害物センサ2及び距離測定ユニット3に接続され、障害物センサ2及び距離測定ユニット3から各種信号を受信して各種の制御を行う。  The control unit 109 is connected to the drive motors 104L and 104R, the communication unit 108, and the like. The control unit 109 controls the drive of the drive motors 104L and 104R. The control unit 109 is further connected to the obstacle sensor 2 and the distance measurement unit 3 and receives various signals from the obstacle sensor 2 and the distance measurement unit 3 to perform various controls.
<1-2.センサユニット> 次に、図1及び図2のほかに図3をさらに参照して、無人搬送車100に搭載されるセンサユニット1を説明する。図3は、実施形態に係る無人搬送車100を外部の物体OJとともに示す側面図である。なお、図3は、無人搬送車100の前端部を左方D3Lから見ている。  <1-2. Sensor Unit> Next, the sensor unit 1 mounted on the automatic guided vehicle 100 will be described with reference to FIG. 3 in addition to FIGS. 1 and 2. FIG. 3 is a side view showing the automatic guided vehicle 100 according to the embodiment together with an external object OJ. In FIG. 3, the front end of the automatic guided vehicle 100 is viewed from the left D3L.
センサユニット1は、前述の如く、障害物センサ2と、距離測定ユニット3と、を備える。  The sensor unit 1 includes the obstacle sensor 2 and the distance measurement unit 3 as described above.
<1-2-1.障害物センサ> 障害物センサ2は、センサユニット1が備える第1センサであり、該第1センサの周囲に位置する物体OJ1を検知する光センサである。こうすれば、たとえば超音波を検出媒体とするセンサよりも応答性及び信頼性が高い光センサを障害物センサ2に用いることができる。障害物センサ2は、図3に示すように、距離測定ユニット3よりも下方D1dに設けられる。  <1-2-1. Obstacle Sensor> The obstacle sensor 2 is a first sensor included in the sensor unit 1 and is an optical sensor that detects an object OJ1 located around the first sensor. In this case, for example, an optical sensor having higher responsiveness and reliability than a sensor using an ultrasonic wave as a detection medium can be used as the obstacle sensor 2. As shown in FIG. 3, the obstacle sensor 2 is provided below the distance measurement unit 3 at D1d.
障害物センサ2は、第1光照射部21と、第1受光部22と、を有する。第1光照射部21は、無人搬送車100の外部に照射光Lraを照射する。第1受光部22は、入射光を受光し、特に反射光Lrbを受光する。反射光Lrbは、無人搬送車100の外部に位置する物体OJ1で照射光Lraが反射された光である。障害物センサ2は、第1受光部22の受光結果に基づいて、たとえば無人搬送車100の外部に位置する物体OJ1を障害物として検知する。  The obstacle sensor 2 includes a first light irradiation unit 21 and a first light receiving unit 22. The first light irradiation unit 21 irradiates the outside of the automatic guided vehicle 100 with irradiation light Lra. The first light receiving unit 22 receives the incident light, and particularly receives the reflected light Lrb. The reflected light Lrb is light in which the irradiation light Lra is reflected by the object OJ1 located outside the automatic guided vehicle 100. The obstacle sensor 2 detects, for example, an object OJ1 located outside the automatic guided vehicle 100 as an obstacle based on the light reception result of the first light receiving unit 22.
鉛直方向D1において、第1受光部22は、第1光照射部21と距離測定ユニット3の第2光照射部との間に配置される。さらに、第1受光部22は、第1受光部22よりも第1光照射部21側から入射する光を検出する。一方、第1受光部22は、第1受光部22よりも距離測定ユニット3側から入射する光を検出しない。言い換えると、第1受光部22は、左右方向D3から見て、前方向D2fよりも下方D1d側から入射する光のみを検出し、前方向D2fよりも上方D1t側から入射する光を検出しない。  In the vertical direction D1, the first light receiving unit 22 is disposed between the first light irradiation unit 21 and the second light irradiation unit of the distance measurement unit 3. Further, the first light receiving unit 22 detects light incident from the first light irradiation unit 21 side of the first light receiving unit 22. On the other hand, the first light receiving unit 22 does not detect light incident from the distance measuring unit 3 side more than the first light receiving unit 22. In other words, when viewed from the left-right direction D3, the first light receiving unit 22 detects only light incident from the lower side D1d than the front direction D2f, and does not detect light incident from the upper side D1t than the front direction D2f.
上述のように、第1受光部22は、第1受光部22よりも距離測定ユニット3側から入射する光を検出せずに、第1受光部22よりも第1光照射部21側から入射する光のみを検出する。これにより、第1受光部22では、障害物センサ2から照射される照射光Lraの反射光Lrbは検出され、距離測定ユニット3から照射されるレーザ光Laの反射光Lbの検出は防止される。よって、障害物センサ2が距離測定ユニット3から照射されたレーザ光Laの反射光Lbを誤って検出することを防止できる。この効果は、レーザ光La及び照射光Lraの波長帯域が同じである場合に、特に有効である。  As described above, the first light receiving unit 22 does not detect light incident from the distance measuring unit 3 side than the first light receiving unit 22 does, and detects the light from the first light irradiation unit 21 side rather than the first light receiving unit 22. Only the light that emits light. As a result, in the first light receiving unit 22, the reflected light Lrb of the irradiation light Lra emitted from the obstacle sensor 2 is detected, and the detection of the reflected light Lb of the laser light La emitted from the distance measurement unit 3 is prevented. . Therefore, it is possible to prevent the obstacle sensor 2 from erroneously detecting the reflected light Lb of the laser light La emitted from the distance measuring unit 3. This effect is particularly effective when the wavelength bands of the laser light La and the irradiation light Lra are the same.
また、第1光照射部21は、第1受光部22よりも軸方向下方に配置される。本実施形態では、障害物センサ2の第1光照射部21は、第1受光部22よりも下方D1dに配置される。こうすれば、周囲の物体を検出する障害物センサ2の上方D1tに距離測定ユニット3を配置できる。従って、周囲の物体を検出する障害物センサ2は、距離測定ユニット3側(つまり水平方向よりも上方D1t側)から第1受光部22に入射する光を検出しないことにより、距離測定ユニット3から照射されるレーザ光Laの反射光Lbの検出を防止できる。  Further, the first light irradiating unit 21 is disposed below the first light receiving unit 22 in the axial direction. In the present embodiment, the first light irradiation unit 21 of the obstacle sensor 2 is disposed below the first light receiving unit 22 at D1d. In this case, the distance measurement unit 3 can be arranged above the obstacle sensor 2 that detects the surrounding object. Therefore, the obstacle sensor 2 that detects a surrounding object does not detect the light that enters the first light receiving unit 22 from the distance measurement unit 3 side (that is, the D1t side above the horizontal direction), so that the distance measurement unit 3 Detection of the reflected light Lb of the emitted laser light La can be prevented.
なお、たとえば距離測定ユニット3から照射されたレーザ光Laが路面Gなどで反射されると、その反射光Lbが下方D1d側から第1受光部22に入射する場合がある。この場合、障害物センサ2は、距離測定ユニット3から照射されたレーザ光Laが路面Gで反射された反射光Lbを誤って検出する。但し、第1光照射部21側から第1受光部22に入射する反射光Lbの強度は、距離測定ユニット3側から第1受光部22に入射する反射光Lbの強度よりも弱い。たとえば、路面Gで反射された反射光Lbの強度は、外部の物体OJ2の第1受光部22よりも上方D1t側の部分で反射された反射光Lbの強度よりも弱い。よって、上述のような障害物センサ2での誤検出について、本実施形態では、第1受光部22が受光する入射光の受光強度が第1閾値未満である場合、後述するように、該入射光の検出結果は無効とされる。言い換えると、第1受光部22が受光する入射光の受光強度が第1閾値以上である場合、該入射光の検出結果は有効とされる。これにより、たとえば、上述のような路面Gで反射された反射光Lbの検出が無効とされる。従って、障害物センサ2は、距離測定ユニット3から照射されたレーザ光Laの反射光Lbを誤って検出することをより確実に防止できる。  When the laser light La emitted from the distance measuring unit 3 is reflected on the road surface G or the like, the reflected light Lb may enter the first light receiving unit 22 from the lower side D1d. In this case, the obstacle sensor 2 erroneously detects the reflected light Lb of the laser light La emitted from the distance measuring unit 3 reflected on the road surface G. However, the intensity of the reflected light Lb incident on the first light receiving unit 22 from the first light irradiation unit 21 side is lower than the intensity of the reflected light Lb incident on the first light receiving unit 22 from the distance measurement unit 3 side. For example, the intensity of the reflected light Lb reflected by the road surface G is lower than the intensity of the reflected light Lb reflected by a portion on the D1t side above the first light receiving unit 22 of the external object OJ2. Therefore, in the present embodiment, as to the erroneous detection by the obstacle sensor 2 as described above, when the light receiving intensity of the incident light received by the first light receiving unit 22 is less than the first threshold, the incident light is detected as described later. The light detection result is invalidated. In other words, when the intensity of the incident light received by the first light receiving unit 22 is equal to or greater than the first threshold, the detection result of the incident light is valid. Thereby, for example, the detection of the reflected light Lb reflected on the road surface G as described above is invalidated. Therefore, the obstacle sensor 2 can more reliably prevent the reflected light Lb of the laser light La emitted from the distance measuring unit 3 from being erroneously detected.
第1光照射部21は、本実施形態では図示しないLED(Light Emitting Diode)を有する。該LEDは、照射光Lraを発光する光源の一例である。第1光照射部21は、距離測定ユニット3から照射されるレーザ光Laよりも指向性が低い照射光Lraを照射する。こうすれば、第1光照射部21の光源に、比較的安価なLEDなどの発光素子を用いることができる。なお、照射光Lraは、本実施形態では赤外線である。こうすれば、第1光照射部21の光源に、さらに安価な赤外線発光素子を用いることができる。但し、照射光Lraは、この例示に限定されず、赤外線帯域以外の波長帯域の光であってもよい。  The first light irradiation unit 21 has an LED (Light Emitting Diode) not shown in the present embodiment. The LED is an example of a light source that emits the irradiation light Lra. The first light irradiating unit 21 irradiates the irradiation light Lra having lower directivity than the laser light La emitted from the distance measuring unit 3. In this case, a relatively inexpensive light emitting element such as an LED can be used as the light source of the first light irradiation unit 21. The irradiation light Lra is an infrared ray in the present embodiment. In this case, an inexpensive infrared light emitting element can be used as the light source of the first light irradiation unit 21. However, the irradiation light Lra is not limited to this example, and may be light in a wavelength band other than the infrared band.
また、第1光照射部21は、本実施形態では周期的に入力される照射光パルスPiに応じて、LEDにて照射光Lraを間欠的に発光させる。つまり、第1光照射部21は、照射光Lraを間欠的に照射する。但し、この例示に限定されず、第1光照射部21は、無人搬送車100の動作中に照射光Lraを連続的に照射し続けてもよい。  In the present embodiment, the first light irradiation unit 21 causes the LED to emit the irradiation light Lra intermittently in response to the irradiation light pulse Pi input periodically. That is, the first light irradiation unit 21 irradiates the irradiation light Lra intermittently. However, the present invention is not limited to this example, and the first light irradiation unit 21 may continuously emit the irradiation light Lra during the operation of the automatic guided vehicle 100.
次に、第1受光部22の構成を説明する。図4Aは、障害物センサ2の第1受光部22の構成例を示す断面図である。なお、図4Aは、図3にて楕円形の破線で囲まれた部分Aの断面構造に対応する。  Next, the configuration of the first light receiving unit 22 will be described. FIG. 4A is a cross-sectional view illustrating a configuration example of the first light receiving unit 22 of the obstacle sensor 2. FIG. 4A corresponds to the cross-sectional structure of a portion A surrounded by an elliptical broken line in FIG.
第1受光部22は、図4Aに示すように、第1受光素子221と、集光レンズ222と、を有する。第1受光素子221は、受光面221a上での受光位置に基づいて、第1受光部22の外部からの入射光を入射角度θ毎に検出する。集光レンズ222は、入射光を第1受光部22の受光面221aに集光する。なお、入射角度θは、第1受光部22から第1光照射部21に向かう下方D1d及び該下方D1dと垂直な前方向D2fの両方と垂直な左右方向D3から見た入射光の前方向D2fに対する角度である。このように、第1受光部22には、第1の物体OJ1との間の距離を三角測量法により検知するPSD(position sensitive device)方式の第1受光素子221を用いることができる。  As shown in FIG. 4A, the first light receiving unit 22 includes a first light receiving element 221 and a condenser lens 222. The first light receiving element 221 detects incident light from outside the first light receiving unit 22 at each incident angle θ based on the light receiving position on the light receiving surface 221a. The condenser lens 222 condenses the incident light on the light receiving surface 221a of the first light receiving unit 22. The incident angle θ is the forward direction D2f of the incident light as viewed from both the lower direction D1d from the first light receiving unit 22 toward the first light irradiating unit 21 and the front direction D2f perpendicular to the lower direction D1d and the right and left direction D3 perpendicular to the lower direction D1d. Is the angle with respect to As described above, the first light receiving unit 22 can use the first light receiving element 221 of a PSD (position sensitive) device that detects the distance to the first object OJ1 by triangulation.
より具体的には、図4Aに示すように、第1受光素子221は、車体101内部に設けられる。第1受光素子221の受光面221aは、前方向D2fと交わり、本実施形態では前方向D2fと直交する。集光レンズ222は、本実施形態では、車体101の前面及び背面に設けられた開口に嵌め込まれる。鉛直方向D1において、第1受光素子221の受光面221aは、集光レンズ222の鉛直方向D1における中央位置よりも上方D1tに位置する。  More specifically, as shown in FIG. 4A, the first light receiving element 221 is provided inside the vehicle body 101. The light receiving surface 221a of the first light receiving element 221 intersects the front direction D2f, and in the present embodiment, is orthogonal to the front direction D2f. In the present embodiment, the condenser lens 222 is fitted into openings provided on the front and back surfaces of the vehicle body 101. In the vertical direction D1, the light receiving surface 221a of the first light receiving element 221 is located D1t above the center position of the condenser lens 222 in the vertical direction D1.
左方D3Lから見て、集光レンズ222は、前方向D2fから集光レンズ222に入射する光、及び、前方向D2fよりも上方D1t側から集光レンズ222に入射する光(たとえば距離測定ユニット3から照射されるレーザ光Laの反射光Lb)を第1受光素子221よりも下方D1d側に向けて集光する。従って、これらの集光された光は、第1受光素子221の受光面221aに入射しないので、第1受光素子221で受光されない。  When viewed from the left side D3L, the condenser lens 222 includes light that enters the condenser lens 222 from the front direction D2f and light that enters the condenser lens 222 from the side D1t above the front direction D2f (for example, a distance measurement unit). The reflected light Lb) of the laser light La emitted from 3 is condensed below the first light receiving element 221 toward the side D1d. Therefore, the collected light does not enter the light receiving surface 221a of the first light receiving element 221 and is not received by the first light receiving element 221.
一方、左方D3Lから見て、集光レンズ222は、前方向D2fよりも下方D1d側から集光レンズ222に入射する光(たとえば障害物センサ2から照射される照射光Lraの反射光Lrb)を前方向D2fよりも上方D1t側に向けて集光する。従って、集光された光は、第1受光素子221の受光面221aに入射するので、第1受光素子221で受光される。  On the other hand, when viewed from the left side D3L, the condenser lens 222 is a light incident on the condenser lens 222 from a side D1d below the front direction D2f (for example, a reflected light Lrb of the irradiation light Lra emitted from the obstacle sensor 2). Is focused toward the upper D1t side than the front direction D2f. Therefore, the condensed light enters the light receiving surface 221a of the first light receiving element 221 and is received by the first light receiving element 221.
また、受光面221a上に集光される光は、入射角度θが大きいほど、受光面221aの下端から上方D1tに向かって離れた位置で受光される。この際、第1受光素子221は、受光面221a上に集光された光の受光強度を鉛直方向D1における受光面221a上の受光位置毎に検出する。言い換えると、第1受光素子221は、受光面221a上での受光位置に基づいて、受光面221a上に集光された入射光を入射角度θ毎に検出する。従って、第1受光素子221は、外部の障害物で反射された反射光Lrbの上述のような受光結果と、第1受光部22から既知の距離離れた位置にある物体OJから入射する反射光Lrbの受光結果とに基づいて、障害物センサ2から障害物までの距離を演算により求めることができる。  The light condensed on the light receiving surface 221a is received at a position away from the lower end of the light receiving surface 221a toward the upper part D1t as the incident angle θ is larger. At this time, the first light receiving element 221 detects the light receiving intensity of the light collected on the light receiving surface 221a for each light receiving position on the light receiving surface 221a in the vertical direction D1. In other words, the first light receiving element 221 detects the incident light condensed on the light receiving surface 221a for each incident angle θ based on the light receiving position on the light receiving surface 221a. Therefore, the first light receiving element 221 receives the reflected light Lrb reflected by the external obstacle as described above and the reflected light incident from the object OJ located at a known distance from the first light receiving unit 22. The distance from the obstacle sensor 2 to the obstacle can be obtained by calculation based on the light receiving result of Lrb.
なお、図4Aの例示に限定されず、第1受光部22は、遮光部材223を有してもよい。図4Bは、障害物センサ2の第1受光部22の他の構成例を示す断面図である。なお、図4Bは、図3にて楕円形の破線で囲まれた部分Aの断面構造に対応する。図4Bでは、鉛直方向D1において、受光面221aの下端は、前方向D2fよりも下方D1d側にある。遮光部材223は、車体101内部において第1受光素子221と集光レンズ222との間に設けられ、集光レンズ222から前方向D2fよりも下方D1d側に向けて集光される光を遮蔽して、該光の受光面221aへの入射を防止する。図4Bのような構成であっても、第1受光素子221は、図4Aの構成と同様に、左右方向D3から見て、前方向D2fよりも下方D1d側から入射する光のみを検出できる。さらに、第1受光素子221は、受光面221a上での受光位置に基づいて第1受光部22の外部からの入射光を入射角度θ毎に検出できる。  4A, the first light receiving unit 22 may include a light blocking member 223. FIG. 4B is a cross-sectional view illustrating another configuration example of the first light receiving unit 22 of the obstacle sensor 2. FIG. 4B corresponds to the cross-sectional structure of the portion A surrounded by the elliptical broken line in FIG. In FIG. 4B, in the vertical direction D1, the lower end of the light receiving surface 221a is on the D1d side below the front direction D2f. The light blocking member 223 is provided between the first light receiving element 221 and the condenser lens 222 inside the vehicle body 101, and shields light condensed from the condenser lens 222 toward the lower side D1d than the front direction D2f. This prevents the light from entering the light receiving surface 221a. 4B, the first light receiving element 221 can detect only light incident from the side of D1d below the front direction D2f when viewed from the left and right direction D3, similarly to the configuration of FIG. 4A. Further, the first light receiving element 221 can detect incident light from outside the first light receiving unit 22 at each incident angle θ based on the light receiving position on the light receiving surface 221a.
<1-2-2.距離測定ユニット> 距離測定ユニット3は、センサユニット1が備える第2センサであり、該距離測定ユニット3の外部に位置する物体との間の距離を測定する。距離測定ユニット3は、障害物センサ2よりも軸方向上方に配置される。また、本実施形態では、距離測定ユニット3は、図3に示すように、障害物センサ2よりも上方D1tに配置される。本実施形態における距離測定ユニット3は、所謂LRF(Laser Range Finder)である。図5は、距離測定ユニット3の構成例を示す断面図である。なお、図5は、回転軸Jを含む平面で距離測定ユニット3を仮想的に切断した場合の断面構造を示す。  <1-2-2. Distance measuring unit> Distance measuring unit 3 is a second sensor provided in sensor unit 1, and measures a distance between the distance measuring unit 3 and an object located outside. The distance measurement unit 3 is disposed axially above the obstacle sensor 2. Further, in the present embodiment, as shown in FIG. 3, the distance measurement unit 3 is disposed above the obstacle sensor 2 at D1t. The distance measuring unit 3 in the present embodiment is a so-called LRF (Laser \ Range \ Finder). FIG. 5 is a cross-sectional view illustrating a configuration example of the distance measuring unit 3. FIG. 5 shows a cross-sectional structure when the distance measurement unit 3 is virtually cut along a plane including the rotation axis J.
距離測定ユニット3は、図5に示すように、筐体30と、第2光照射部31と、第2受光部32と、回転筐体33と、モータ34と、を有する。  As shown in FIG. 5, the distance measurement unit 3 includes a housing 30, a second light irradiating unit 31, a second light receiving unit 32, a rotating housing 33, and a motor 34.
筐体30は、上下方向に延びる中空の円柱形状であり、第2光照射部31、第2受光部32、回転筐体33、及びモータ34を内部空間に収容する。また、筐体30は、透光部301を有する。透光部301は、上下方向の途中において、たとえば透光性の樹脂、硝子などの材料を用いて筐体30の径方向側面に設けられる。透光部301は、回転軸Jを中心とする環状に設けられる。なお、ここでの環状は、図5のように回転軸Jを中心とする回転方向の全周に渡って連続的に繋がる形状のほか、回転方向の全周に渡って断続的に繋がる形状をも含む。  The housing 30 has a hollow cylindrical shape extending in the up-down direction, and accommodates the second light irradiation unit 31, the second light receiving unit 32, the rotating housing 33, and the motor 34 in the internal space. Further, the housing 30 has a light transmitting portion 301. The light-transmitting portion 301 is provided on the radial side surface of the housing 30 using a material such as a light-transmitting resin or glass in the middle in the vertical direction. The light transmitting portion 301 is provided in an annular shape around the rotation axis J. In addition, the ring here has a shape that is continuously connected over the entire circumference in the rotation direction around the rotation axis J as shown in FIG. 5, and a shape that is intermittently connected over the entire circumference in the rotation direction as shown in FIG. Including.
第2光照射部31は、レーザ光Laを無人搬送車100の外部に照射する。該レーザ光Laは、本実施形態では水平方向に向けて照射される。つまり、レーザ光Laの光軸は、水平方向と平行である。なお、レーザ光Laは、本実施形態では、照射光Lraと同じ赤外線帯域の光である。本実施形態では前方向D2fよりも下方D1d側から入射する光のみが第1受光部22で検出されるので、障害物センサ2が照射光Lraと同じ波長帯域の反射光Lbを誤って検出することを防止できる。但し、この例示に限定されず、レーザ光Laは、照射光Lraとは異なる波長帯域の光であってもよい。たとえば、レーザ光Laは、赤外線帯域以外の波長帯域の光であってもよい。 The second light irradiating unit 31 irradiates the laser light La to the outside of the automatic guided vehicle 100. In the present embodiment, the laser light La is irradiated in the horizontal direction. That is, the optical axis of the laser beam La is parallel to the horizontal direction. In the present embodiment, the laser light La is light in the same infrared band as the irradiation light Lra. In the present embodiment, since only the light incident from the lower side D1d than the front direction D2f is detected by the first light receiving unit 22, the obstacle sensor 2 erroneously detects the reflected light Lb in the same wavelength band as the irradiation light Lra. Can be prevented. However, the present invention is not limited to this example, and the laser light La may be light in a wavelength band different from the irradiation light Lra. For example, the laser light La may be light in a wavelength band other than the infrared band.
また、第2光照射部31から照射されるレーザ光Laの強度は、障害物センサ2の第1光照射部21から照射される照射光Lraの強度よりも強い。こうすれば、たとえば、距離測定ユニット3の第2受光部32における第2閾値未満の強度の光の検出結果を無効とすることにより、距離測定ユニット3が障害物センサ2の照射光Lraの反射光Lrbを誤って検出することを防止できる。  The intensity of the laser light La emitted from the second light emitting unit 31 is stronger than the intensity of the emitted light Lra emitted from the first light emitting unit 21 of the obstacle sensor 2. In this way, for example, by invalidating the detection result of light having an intensity less than the second threshold value in the second light receiving unit 32 of the distance measurement unit 3, the distance measurement unit 3 reflects the irradiation light Lra of the obstacle sensor 2 It is possible to prevent the light Lrb from being erroneously detected.
第2光照射部31は、図5に示すように、LD(Laser Diode)311と、基板312と、コリメートレンズ313と、投光ミラー314と、を有する。LD311は、レーザ光Laを出射する光源の一例である。基板312は、LD311の発光制御を行うLDドライバ311a(後述する図6参照)を搭載する。LD311及び基板312は、本実施形態では筐体30の上端部の下端面に固定される。コリメートレンズ313は、LD311の下方に配置される。投光ミラー314は、コリメートレンズ313の下方に配置されるとともに、回転筐体33の上端部の上端面に固定される。  As shown in FIG. 5, the second light irradiation unit 31 includes an LD (Laser @ Diode) 311, a substrate 312, a collimating lens 313, and a light projecting mirror 314. The LD 311 is an example of a light source that emits laser light La. The substrate 312 is mounted with an LD driver 311a (see FIG. 6 described later) that controls light emission of the LD 311. In this embodiment, the LD 311 and the substrate 312 are fixed to the lower end surface of the upper end of the housing 30. The collimating lens 313 is arranged below the LD 311. The light projecting mirror 314 is arranged below the collimating lens 313 and is fixed to the upper end surface of the upper end of the rotating housing 33.
LD311は、レーザ光Laを下方に出射する。LD311から出射されたレーザ光Laは、コリメートレンズ313で平行光とされる。コリメートレンズ313から下方に出射されたレーザ光Laは、投光ミラー314で反射され、透光部301を透過して筐体30の外部に照射される。  The LD 311 emits the laser light La downward. The laser light La emitted from the LD 311 is collimated by the collimator lens 313. The laser light La emitted downward from the collimating lens 313 is reflected by the light projecting mirror 314, passes through the light transmitting unit 301, and is emitted to the outside of the housing 30.
ここで、レーザ光Laは、本実施形態ではレーザ発光パルスPeに応じて、LD311にて間欠的に出射される。この際、レーザ光Laが第2光照射部31から照射される期間は、好ましくは、照射光Lraが照射される期間と重複しない。言い換えると、第1光照射部21から照射される照射光Lraと第2光照射部31から照射されるレーザ光Laとはそれぞれ、好ましくは、互いに異なるタイミングでセンサユニット1の外部に照射される。  Here, in the present embodiment, the laser light La is intermittently emitted by the LD 311 according to the laser emission pulse Pe. At this time, the period during which the laser light La is irradiated from the second light irradiation unit 31 preferably does not overlap with the period during which the irradiation light Lra is irradiated. In other words, the irradiation light Lra emitted from the first light irradiation unit 21 and the laser light La emitted from the second light irradiation unit 31 are preferably emitted to the outside of the sensor unit 1 at mutually different timings. .
こうすれば、障害物センサ2から照射される照射光Lraの反射光Lrbが距離測定ユニット3の第2受光部32に入射したとしても、該反射光Lrbは、距離測定ユニット3から照射されるレーザ光Laの反射光Lbとは異なるタイミングで第2受光部32に入射する。この際、たとえば、レーザ光Laが外部に照射された時点から所定時間後において第2受光部32に入射する光の検出結果は有効とされる。なお、該所定時間は、レーザ光La及びその反射光LbのTOF(Time of Flight)を考慮して決定される。さらに、照射光Lraが外部に照射された時点から所定時間後において第2受光部32に入射する光の検出結果は無効とされる。なお、該所定時間は、照射光Lra及びその反射光LrbのTOF(Time of Flight)を考慮して決定される。これらにより、距離測定ユニット3の第2受光部32が、障害物センサ2から照射された照射光Lraの反射光Lrbを誤って検出することを防止できる。  In this way, even if the reflected light Lrb of the irradiation light Lra emitted from the obstacle sensor 2 enters the second light receiving unit 32 of the distance measurement unit 3, the reflected light Lrb is emitted from the distance measurement unit 3. The laser light La enters the second light receiving unit 32 at a timing different from that of the reflected light Lb. At this time, for example, the detection result of the light incident on the second light receiving unit 32 a predetermined time after the time when the laser light La is irradiated to the outside is valid. Note that the predetermined time is determined in consideration of the TOF (Time @ of @ Flight) of the laser light La and the reflected light Lb. Further, the detection result of the light incident on the second light receiving unit 32 a predetermined time after the irradiation light Lra is irradiated to the outside is invalidated. The predetermined time is determined in consideration of the TOF (Time @ of @ Flight) of the irradiation light Lra and the reflected light Lrb. Thus, it is possible to prevent the second light receiving unit 32 of the distance measuring unit 3 from erroneously detecting the reflected light Lrb of the irradiation light Lra emitted from the obstacle sensor 2.
さらに、距離測定ユニット3から照射されるレーザ光Laの反射光Lbが障害物センサ2の第1受光部22に入射したとしても、該反射光Lbは、障害物センサ2から照射される照射光Lraの反射光Lrbとは異なるタイミングで第1受光部22に入射する。たとえば、照射光Lraが外部に照射された時点から所定時間後において第1受光部22に入射する光の検出結果は有効とされる。なお、該所定時間は、照射光Lra及びその反射光LrbのTOF(Time of Flight)を考慮して決定される。さらに、レーザ光Laが外部に照射された時点から所定時間後において第1受光部22に入射する光の検出結果は無効とされる。なお、該所定時間は、レーザ光La及びその反射光LbのTOF(Time of Flight)を考慮して決定される。これにより、障害物センサ2の第1受光部22が、距離測定ユニット3から照射されたレーザ光Laの反射光Lbを誤って検出することをより確実に防止できる。  Furthermore, even if the reflected light Lb of the laser beam La emitted from the distance measuring unit 3 is incident on the first light receiving unit 22 of the obstacle sensor 2, the reflected light Lb is irradiated light emitted from the obstacle sensor 2 The light enters the first light receiving unit 22 at a different timing from the reflected light Lrb of Lra. For example, the detection result of the light incident on the first light receiving unit 22 a predetermined time after the irradiation light Lra is irradiated to the outside is valid. The predetermined time is determined in consideration of the TOF (Time @ of @ Flight) of the irradiation light Lra and the reflected light Lrb. Further, the detection result of the light incident on the first light receiving unit 22 a predetermined time after the time when the laser light La is irradiated to the outside is invalidated. Note that the predetermined time is determined in consideration of the TOF (Time @ of @ Flight) of the laser light La and the reflected light Lb. Accordingly, it is possible to more reliably prevent the first light receiving unit 22 of the obstacle sensor 2 from erroneously detecting the reflected light Lb of the laser light La emitted from the distance measuring unit 3.
なお、上述の例示に限定されず、レーザ光Laが第2光照射部31から照射される期間の少なくとも一部は、照射光Lraが照射される期間と重複してもよい。たとえばレーザ光Laは、第1光照射部21から間欠的に照射される照射光Lraと同じタイミングでセンサユニット1の外部に照射されてもよい。  The present invention is not limited to the above example, and at least a part of the period in which the laser light La is irradiated from the second light irradiation unit 31 may overlap with the period in which the irradiation light Lra is irradiated. For example, the laser light La may be irradiated to the outside of the sensor unit 1 at the same timing as the irradiation light Lra intermittently irradiated from the first light irradiation unit 21.
次に、第2受光部32は、入射した光を受光し、特に、たとえば無人搬送車100の外部に位置する物体OJ2で反射されたレーザ光Laの反射光Lbを受光する。なお、第2受光部32で受光された入射光の受光強度が第2閾値未満である場合、該入射光の検出結果は無効とされる。  Next, the second light receiving unit 32 receives the incident light, and in particular, receives the reflected light Lb of the laser light La reflected by the object OJ2 located outside the automatic guided vehicle 100, for example. If the intensity of the incident light received by the second light receiving unit 32 is less than the second threshold, the detection result of the incident light is invalidated.
第2受光部32は、図5に示すように、受光レンズ321と、受光ミラー322と、波長フィルタ323と、第2受光素子324と、を有する。受光レンズ321は、回転筐体33の径方向側面に設けられた開口33aに嵌め込まれて固定される。受光ミラー322は、回転筐体33の上端部の下端面に固定される。波長フィルタ323は、受光ミラー322の下方に配置される。第2受光素子324は、波長フィルタ323の下方に配置され、回転筐体33の下端部の上端面に固定される。  As shown in FIG. 5, the second light receiving section 32 includes a light receiving lens 321, a light receiving mirror 322, a wavelength filter 323, and a second light receiving element 324. The light receiving lens 321 is fitted and fixed in an opening 33 a provided on a radial side surface of the rotating housing 33. The light receiving mirror 322 is fixed to the lower end surface of the upper end of the rotating housing 33. The wavelength filter 323 is arranged below the light receiving mirror 322. The second light receiving element 324 is disposed below the wavelength filter 323 and is fixed to the upper end surface of the lower end of the rotating housing 33.
距離測定ユニット3から照射されるレーザ光Laは、距離測定ユニット3の外部の物体OJ2で反射されて拡散光となる。該拡散光の一部は、透光部301を透過し、反射光Lbとして第2受光部32に入射する。反射光Lbは、まず受光レンズ321に入射する。受光レンズ321を透過した反射光Lbは、受光ミラー322で下方に反射され、波長フィルタ323を透過する。この際、波長フィルタ323は、たとえばレーザ光Laと同じ波長帯域の光のみを透過させる。その後、該反射光Lbは、第2受光素子324により受光される。第2受光素子324は、受光した反射光Lbをたとえば後述の計測パルスPmのような電気信号に光電変換して出力する。  The laser light La emitted from the distance measurement unit 3 is reflected by an object OJ2 outside the distance measurement unit 3 and becomes diffused light. Part of the diffused light passes through the light transmitting portion 301 and enters the second light receiving portion 32 as reflected light Lb. The reflected light Lb first enters the light receiving lens 321. The reflected light Lb transmitted through the light receiving lens 321 is reflected downward by the light receiving mirror 322 and transmitted through the wavelength filter 323. At this time, the wavelength filter 323 transmits, for example, only light in the same wavelength band as the laser light La. Thereafter, the reflected light Lb is received by the second light receiving element 324. The second light receiving element 324 photoelectrically converts the received reflected light Lb into an electric signal such as a measurement pulse Pm to be described later, and outputs the electric signal.
回転筐体33は、上下方向に延びる中空の円柱形状であり、受光ミラー322、波長フィルタ323、及び第2受光素子324を内部空間に収容する。回転筐体33は、モータ34のシャフト34aに固定され、モータ34により回転駆動可能である。回転筐体33の回転により、投光ミラー314も回転軸J周りに回転駆動される。そのため、投光ミラー314で反射されるレーザ光Laの照射方向は、回転軸Jを中心に回転する。言い換えると、該レーザ光Laは、回転軸J周りの360°の範囲で照射方向を変えながら、筐体30の外部に照射される。従って、第2光照射部31から照射されるレーザ光Laは、モータ34の回転駆動に応じて、回転軸Jを中心にして回転方向に走査される。  The rotating housing 33 has a hollow cylindrical shape extending in the vertical direction, and accommodates the light receiving mirror 322, the wavelength filter 323, and the second light receiving element 324 in the internal space. The rotating housing 33 is fixed to a shaft 34 a of a motor 34 and can be driven to rotate by the motor 34. Due to the rotation of the rotating housing 33, the light projecting mirror 314 is also driven to rotate about the rotation axis J. Therefore, the irradiation direction of the laser beam La reflected by the light projecting mirror 314 rotates around the rotation axis J. In other words, the laser beam La is irradiated to the outside of the housing 30 while changing the irradiation direction within a range of 360 ° around the rotation axis J. Therefore, the laser light La emitted from the second light emitting unit 31 is scanned in the rotation direction about the rotation axis J in accordance with the rotation of the motor 34.
ここで、レーザ光Laの回転方向における走査範囲Rsは、距離測定ユニット3が外部の物体OJまでの距離を測定可能な測定範囲であり(図2参照)、レーザ光Laが回転軸周りに回転することにより形成される。なお、走査範囲Rsは、レーザ光Laの出力レベルに応じて変化する。測定範囲内に照射されたレーザ光Laが走査範囲Rs内に位置する物体OJで反射されると、反射光Lbが透光部301を透過して受光レンズ321に入射する。  Here, the scanning range Rs in the rotation direction of the laser beam La is a measurement range in which the distance measurement unit 3 can measure the distance to the external object OJ (see FIG. 2), and the laser beam La rotates around the rotation axis. It is formed by doing. Note that the scanning range Rs changes according to the output level of the laser light La. When the laser beam La applied to the measurement range is reflected by the object OJ located within the scanning range Rs, the reflected light Lb passes through the light transmitting unit 301 and enters the light receiving lens 321.
モータ34は、シャフト34aを回転させることにより、回転筐体33を所定の回転速度で回転駆動する。モータ34の回転駆動によって、レーザ光Laは回転方向に走査される。つまり、モータ34は、レーザ光Laの走査機構である。  The motor 34 rotates the rotating housing 33 at a predetermined rotation speed by rotating the shaft 34a. The rotation of the motor 34 causes the laser beam La to scan in the rotation direction. That is, the motor 34 is a scanning mechanism of the laser beam La.
<1-3.距離測定ユニットの電気的構成> 次に、距離測定ユニット3の電気的構成を説明する。図6は、距離測定ユニット3の電気的構成を示すブロック図である。  <1-3. Electrical Configuration of Distance Measuring Unit> Next, the electrical configuration of the distance measuring unit 3 will be described. FIG. 6 is a block diagram showing an electrical configuration of the distance measurement unit 3. As shown in FIG.
図6に示すように、距離測定ユニット3は、前述の第2光照射部31、第2受光部32、及びモータ34のほかに、計測部35と、演算処理部36と、モータ駆動部37、通信I/F38と、をさらに有する。また、第2受光部32は、コンパレータ325をさらに有する。なお、計測部35及び演算処理部36は、本実施形態では、距離測定ユニット3に設けられる1又は複数のマイクロコンピュータ(図示省略)の機能的構成要素である。但し、この例示に限定されず、計測部35及び演算処理部36のうちの少なくとも一方は、電気回路、素子、電気装置などで実現される物理的構成要素であってもよい。  As shown in FIG. 6, the distance measuring unit 3 includes a measuring unit 35, an arithmetic processing unit 36, and a motor driving unit 37, in addition to the above-described second light irradiation unit 31, second light receiving unit 32, and motor 34. , A communication I / F 38. In addition, the second light receiving unit 32 further includes a comparator 325. In the present embodiment, the measuring unit 35 and the arithmetic processing unit 36 are functional components of one or a plurality of microcomputers (not shown) provided in the distance measuring unit 3. However, the present invention is not limited to this example, and at least one of the measuring unit 35 and the arithmetic processing unit 36 may be a physical component realized by an electric circuit, an element, an electric device, or the like.
コンパレータ325は、たとえば筐体30内の基板(図示省略)に搭載され、第2受光素子324から出力される電気信号のレベルと、第2閾値とを比較する。該電気信号は、第2受光素子324での受光結果を示す。第2閾値は、第2受光部32に入射する障害物センサ2から照射される照射光Lraの反射光Lrbの受光強度よりも大きい。これにより、距離測定ユニット3は、障害物センサ2から照射される照射光Lraの反射光Lrbが第2受光部32に入射しても、該反射光Lrbを距離測定ユニット3から照射されるレーザ光Laの反射光Lbとして誤って検出することをより確実に防止できる。  The comparator 325 is mounted on, for example, a substrate (not shown) in the housing 30 and compares the level of an electric signal output from the second light receiving element 324 with a second threshold. The electric signal indicates a result of light reception by the second light receiving element 324. The second threshold value is greater than the intensity of the reflected light Lrb of the irradiation light Lra emitted from the obstacle sensor 2 incident on the second light receiving unit 32. Thereby, even if the reflected light Lrb of the irradiation light Lra emitted from the obstacle sensor 2 is incident on the second light receiving unit 32, the distance measurement unit 3 emits the reflected light Lrb from the laser emitted from the distance measurement unit 3. Erroneous detection as the reflected light Lb of the light La can be more reliably prevented.
コンパレータ325は、上述の比較結果に応じて、Highレベル又はLowレベルの計測パルスPmを出力する。たとえば、コンパレータ325は、上記の電気信号のレベルが第2閾値未満である場合、第2受光素子324での入射光の検出結果を無効とし、Lowレベルの計測パルスPmを出力する。また、コンパレータ325は、上記の電気信号のレベルが第2閾値以上である場合、第2受光素子324での入射光の検出結果を有効とし、Highレベルの計測パルスPmを出力する。  The comparator 325 outputs a high-level or low-level measurement pulse Pm according to the above-described comparison result. For example, when the level of the electric signal is lower than the second threshold, the comparator 325 invalidates the detection result of the incident light by the second light receiving element 324 and outputs the measurement pulse Pm of the Low level. When the level of the electric signal is equal to or higher than the second threshold, the comparator 325 validates the result of detection of the incident light by the second light receiving element 324 and outputs a high-level measurement pulse Pm.
演算処理部36は、第2光照射部31にレーザ発光パルスPeを出力する。この際、第2光照射部31は、レーザ発光パルスPeをトリガーとしてパルス状のレーザ光LaをLD311から出射させる。また、演算処理部36は、レーザ発光パルスPeを出力する際、基準パルスPs及びレーザ発光パルスPeを計測部35に出力する。  The arithmetic processing unit 36 outputs a laser light emission pulse Pe to the second light irradiation unit 31. At this time, the second light irradiation unit 31 causes the LD 311 to emit pulsed laser light La using the laser emission pulse Pe as a trigger. When outputting the laser emission pulse Pe, the arithmetic processing unit 36 outputs the reference pulse Ps and the laser emission pulse Pe to the measurement unit 35.
計測部35には、コンパレータ325から出力される計測パルスPmと、演算処理部36から出力される基準パルスPsとが入力される。計測部35は、基準パルスPsの立ち上がりタイミングから計測パルスPmの立ち上がりタイミングまでの経過時間を計測することにより、物体OJまでの距離を取得する。すなわち、計測部35は、所謂TOF(Time of Flight)方式により距離を計測する。計測部35は、距離の計測結果を計測データDmとして演算処理部36に出力する。  The measurement pulse Pm output from the comparator 325 and the reference pulse Ps output from the arithmetic processing unit 36 are input to the measurement unit 35. The measurement unit 35 acquires the distance to the object OJ by measuring the elapsed time from the rising timing of the reference pulse Ps to the rising timing of the measurement pulse Pm. That is, the measuring unit 35 measures the distance by a so-called TOF (Time @ of @ Flight) method. The measurement unit 35 outputs the measurement result of the distance to the arithmetic processing unit 36 as measurement data Dm.
モータ駆動部37は、モータ34の駆動を制御する。モータ34は、モータ駆動部37によって所定の回転速度で回転駆動される。この際、演算処理部36は、モータ34が所定単位角度回転するたびにレーザ発光パルスPeを出力する。これにより、回転筐体33及び投光ミラー314が所定単位角度回転するたびに、第2光照射部31は、レーザ光Laを照射する。  The motor driving unit 37 controls driving of the motor 34. The motor 34 is driven to rotate at a predetermined rotation speed by a motor drive unit 37. At this time, the arithmetic processing unit 36 outputs a laser emission pulse Pe every time the motor 34 rotates by a predetermined unit angle. Thus, the second light irradiator 31 irradiates the laser beam La each time the rotating housing 33 and the light projecting mirror 314 rotate by a predetermined unit angle.
演算処理部36は、レーザ発光パルスPeを出力したタイミングでのモータ34の回転角度位置と、レーザ発光パルスPeに対応して得られる計測データDmとに基づいて、距離測定ユニット3を基準とする直交座標系上の位置情報を生成する。すなわち、投光ミラー314の回転角度位置と計測された距離とに基づき、物体OJの位置が取得される。このように取得される位置情報は、測定距離データDdとして演算処理部36から出力される。こうして、回転走査角度範囲内でのレーザ光Laの走査により、物体OJの位置情報が取得される。  The arithmetic processing unit 36 uses the distance measurement unit 3 as a reference based on the rotation angle position of the motor 34 at the timing when the laser emission pulse Pe is output and the measurement data Dm obtained corresponding to the laser emission pulse Pe. Generate position information on a rectangular coordinate system. That is, the position of the object OJ is acquired based on the rotation angle position of the light projecting mirror 314 and the measured distance. The position information acquired in this way is output from the arithmetic processing unit 36 as measured distance data Dd. Thus, the position information of the object OJ is obtained by the scanning of the laser beam La within the rotation scanning angle range.
通信I/F38は、演算処理部36から出力される測定距離データDdを無人搬送車100側(後述する図8参照)に伝送する。  The communication I / F 38 transmits the measured distance data Dd output from the arithmetic processing unit 36 to the automatic guided vehicle 100 (see FIG. 8 described later).
また、通信I/F38は、好ましくは、レーザ発光パルスPeを無人搬送車100側に伝送し、照射光パルスPiを無人搬送車100側から受信する。この際、計測部35は、レーザ発光パルスPe及び照射光パルスPiに応じて所定時間における計測パルスPmの有効/無効を決定し、決定後の計測パルスPmに基づく計測データDmを出力する。図7は、レーザ発光パルスPe及び計測データDmのタイミングチャートである。  The communication I / F 38 preferably transmits the laser emission pulse Pe to the automatic guided vehicle 100 and receives the irradiation light pulse Pi from the automatic guided vehicle 100. At this time, the measuring unit 35 determines validity / invalidity of the measurement pulse Pm for a predetermined time according to the laser emission pulse Pe and the irradiation light pulse Pi, and outputs measurement data Dm based on the determined measurement pulse Pm. FIG. 7 is a timing chart of the laser emission pulse Pe and the measurement data Dm.
図7では、レーザ発光パルスPeが立ち上がる時点t1において、レーザ光Laが照射される。時点t1からレーザ光La及びその反射光LbのTOF(Time of Flight)と同じ時間が経過した時点t2において、第2受光部32に反射光Lbが受光される。また、照射光パルスPiが立ち上がる時点t3において、照射光Lraが照射される。時点t3から照射光Lra及びその反射光LrbのTOF(Time of Flight)と同じ時間が経過した時点t5において、第2受光部32に反射光Lrbが受光される。なお、レーザ発光パルスPeの周期(図7ではt1からt6までの期間)はたとえば8.6[μsec]であるのに対して、照射光Lra及びその反射光LrbのTOFはたとえば0.2[μsec]程度である。ここで、計測部35は、時点t2から時点t4まで所定時間Teにおける計測パルスPmを有効とし、時点t4から次にレーザ発光パルスPeが立ち上がる時点t6までの期間Tuにおける計測パルスPmを無効とする。なお、時点t4は、時点t2から所定時間Te後であり、且つ、時点t5よりも前の時点である。つまり、t2<t4<t5である。そして、計測部35は、有効とした計測パルスPmに基づいて計測データDmを生成する。こうすることにより、計測部35は、第2受光部32が照射光Lraの反射光Lrbを誤って検出することを防止する。 In FIG. 7, the laser beam La is irradiated at a time point t1 when the laser emission pulse Pe rises. At time t2 when the same time as TOF (Time @ of @ Flight) of the laser light La and its reflected light Lb has elapsed from time t1, the reflected light Lb is received by the second light receiving unit 32. At time t3 when the irradiation light pulse Pi rises, the irradiation light Lra is irradiated. At time t5 when the same time as TOF (Time @ of @ Flight) of the irradiation light Lra and its reflected light Lrb has elapsed from time t3, the reflected light Lrb is received by the second light receiving unit 32. The period of the laser emission pulse Pe (the period from t1 to t6 in FIG. 7) is, for example, 8.6 [μsec], whereas the TOF of the irradiation light Lra and the reflected light Lrb is, for example, 0.2 [μsec]. μsec]. Here, the measurement unit 35 validates the measurement pulse Pm during the predetermined time Te from the time t2 to the time t4, and invalidates the measurement pulse Pm during the period Tu from the time t4 to the time t6 when the next laser emission pulse Pe rises. . The time point t4 is a time point after the predetermined time Te from the time point t2 and before the time point t5. That is, t2 <t4 <t5. Then, the measurement unit 35 generates the measurement data Dm based on the valid measurement pulse Pm. By doing so, the measuring unit 35 prevents the second light receiving unit 32 from erroneously detecting the reflected light Lrb of the irradiation light Lra.
<1-4.無人搬送車の電気的構成> 次に、距離測定ユニット3以外の無人搬送車100の電気的構成を説明する。図8は、無人搬送車100の電気的な構成例を示すブロック図である。  <1-4. Next, the electrical configuration of the automatic guided vehicle 100 other than the distance measurement unit 3 will be described. FIG. 8 is a block diagram illustrating an electrical configuration example of the automatic guided vehicle 100.
無人搬送車100の制御ユニット109は、図8に示すように、制御部4と、記憶部5と、を有する。  The control unit 109 of the automatic guided vehicle 100 includes a control unit 4 and a storage unit 5, as shown in FIG.
制御部4は、通信部108を介して、タブレット端末などの情報装置(図示省略)と通信を行う。たとえば、制御部4は、通信部108を介して、情報装置での操作入力の内容を示す操作信号を受信する。制御部4には、本実施形態では1又は複数のCPU(図子省略)が用いられている。但し、この例示に限定されず、制御部4の少なくとも一部は、CPU以外の電気回路、素子、電子装置などであってもよい。  The control unit 4 communicates with an information device (not shown) such as a tablet terminal via the communication unit 108. For example, control unit 4 receives, via communication unit 108, an operation signal indicating the content of the operation input on the information device. In the present embodiment, one or more CPUs (illustration omitted) are used for the control unit 4. However, the present invention is not limited to this example, and at least a part of the control unit 4 may be an electric circuit, an element, an electronic device, or the like other than the CPU.
また、制御部4は、駆動制御部41と、判定部42と、地図作成部43と、位置同定部44と、発光制御部45と、を有する。なお、駆動制御部41、判定部42、地図作成部43、位置同定部45、及び発光制御部45は、本実施形態では上述のCPUの機能的構成要素である。但し、この例示に限定されず、駆動制御部41、判定部42、地図作成部43、位置同定部45、及び発光制御部45のうちの少なくとも1つは、電気回路、素子、電気装置などで実現される物理的構成要素であってもよい。  In addition, the control unit 4 includes a drive control unit 41, a determination unit 42, a map creation unit 43, a position identification unit 44, and a light emission control unit 45. In this embodiment, the drive control unit 41, the determination unit 42, the map creation unit 43, the position identification unit 45, and the light emission control unit 45 are functional components of the above-described CPU. However, the present invention is not limited to this example, and at least one of the drive control unit 41, the determination unit 42, the map creation unit 43, the position identification unit 45, and the light emission control unit 45 is an electric circuit, an element, an electric device, or the like. It may be a realized physical component.
駆動制御部41は、駆動モータ104L、104Rの回転駆動を制御し、たとえば駆動輪105L、105Rの回転速度及び回転方向を駆動制御する。 The drive control unit 41 controls the rotational drive of the drive motors 104L and 104R, and controls the rotational speed and the rotational direction of the drive wheels 105L and 105R, for example.
判定部42は、各種の判定を行う。たとえば、判定部42は、障害物センサ2から出力される検出信号Sdに基づいて、車体101の近傍に障害物があるか否かを判定する。検出信号Sdのレベルが第1閾値レベル未満である場合、判定部42は、車体101の近傍に障害物がないと判定する。また、検出信号Sdのレベルが第1閾値レベル以上である場合、判定部42は、車体101の近傍に障害物があると判定する。なお、判定部42により物体OJ1(たとえば図2、図8参照)のような障害物があると判定される場合、駆動制御部41は、駆動モータ104L、104Rを回転停止、又は逆回転させることにより、車体101と物体OJ1のような障害物との接触を回避する。  The determination unit 42 performs various determinations. For example, the determination unit 42 determines whether there is an obstacle near the vehicle body 101 based on the detection signal Sd output from the obstacle sensor 2. When the level of the detection signal Sd is lower than the first threshold level, the determination unit 42 determines that there is no obstacle near the vehicle body 101. When the level of the detection signal Sd is equal to or higher than the first threshold level, the determination unit 42 determines that there is an obstacle near the vehicle body 101. When the determining unit 42 determines that there is an obstacle such as the object OJ1 (for example, see FIGS. 2 and 8), the drive control unit 41 stops or reversely rotates the drive motors 104L and 104R. Thereby, contact between the vehicle body 101 and an obstacle such as the object OJ1 is avoided.
地図作成部43は、距離測定ユニット3から出力される測定距離データDdに基づいて地図情報を作成し、該地図情報を記憶部5に記憶させる。なお、地図情報は、無人搬送車100が走行する場所に配置される物体の位置情報であり、所定の基準位置に対して距離測定ユニット3の外部に位置する各々の物体の相対位置を示す。たとえば、無人搬送車100を倉庫内で走行させる場合、倉庫の壁、倉庫内に配列された棚、倉庫内の路面G上に積まれた荷物などである。  The map creating unit 43 creates map information based on the measured distance data Dd output from the distance measuring unit 3 and stores the map information in the storage unit 5. The map information is position information of an object placed at a place where the automatic guided vehicle 100 travels, and indicates a relative position of each object located outside the distance measuring unit 3 with respect to a predetermined reference position. For example, when the automatic guided vehicle 100 travels in a warehouse, it is a wall of the warehouse, shelves arranged in the warehouse, luggage loaded on a road surface G in the warehouse, and the like.
位置同定部44は、距離測定ユニット3から出力される測定距離データDdと、記憶部5が記憶する地図情報との比較を行い、該比較の結果に基づいて無人搬送車100自身の位置を特定する自己位置同定を行う。該自己位置同定を行うことで、制御部4は、予め定められた経路に沿った無人搬送車100の自律的な走行を制御できる。  The position identification unit 44 compares the measured distance data Dd output from the distance measurement unit 3 with the map information stored in the storage unit 5, and specifies the position of the automatic guided vehicle 100 itself based on the comparison result. Self-position identification. By performing the self-position identification, the control unit 4 can control the autonomous traveling of the automatic guided vehicle 100 along a predetermined route.
記憶部5は、電力供給が停止されても記憶を保持できる非一過性の記憶媒体である。記憶部5は、制御ユニット109又は制御部4で使用されるプログラム及び情報などを記憶する。  The storage unit 5 is a non-transitory storage medium that can retain storage even when power supply is stopped. The storage unit 5 stores programs and information used by the control unit 109 or the control unit 4.
発光制御部45は、照射光パルスを障害物センサ2に出力し、障害物センサ2の発光を制御する。ここで、発光制御部45は、好ましくは、照射光パルスPiを距離測定ユニット3に伝送し、レーザ発光パルスPeを距離測定ユニット3から受信する。この際、発光制御部45は、レーザ発光パルスPe及び照射光パルスPiに応じて所定時間に障害物センサ2から出力される検出信号Sdの有効/無効を決定し、決定結果に基づいて検出信号Sdを修正する。図9は、照射光パルスPi及び修正後の検出信号のタイミングチャートである。なお、図9における符号Sdaは、修正後の検出信号を示す。  The light emission control unit 45 outputs an irradiation light pulse to the obstacle sensor 2 and controls light emission of the obstacle sensor 2. Here, the light emission control unit 45 preferably transmits the irradiation light pulse Pi to the distance measurement unit 3 and receives the laser light emission pulse Pe from the distance measurement unit 3. At this time, the light emission control unit 45 determines the validity / invalidity of the detection signal Sd output from the obstacle sensor 2 for a predetermined time according to the laser light emission pulse Pe and the irradiation light pulse Pi, and based on the determination result, Modify Sd. FIG. 9 is a timing chart of the irradiation light pulse Pi and the corrected detection signal. Note that reference symbol Sda in FIG. 9 indicates the corrected detection signal.
図9では、照射光パルスPiが立ち上がる時点tr1において、照射光Lraが照射される。時点tr1から照射光Lra及びその反射光LrbのTOF(Time of Flight)と同じ時間が経過した時点tr2において、第1受光部22に反射光Lrbが検出される。また、レーザ発光パルスPeが立ち上がる時点tr3において、レーザ光Laが照射される。時点t3からレーザ光La及びその反射光LbのTOF(Time of Flight)と同じ時間が経過した時点tr5において、第1受光部22に反射光Lbが検出される。なお、時点tr5で検出される反射光Lbは、第1受光部22よりも下方D1dの物体(たとえば、外部の物体OJ2の下部、路面Gなど)でレーザ光Laが反射された光であり、つまり、前方向D2fよりも下方D1d側から第1受光部22に入射する光である。ここで、発光制御部45は、時点tr2から時点tr4まで所定時間Treにおける検出信号Sdを有効とする。従って、発光制御部45は、所定時間Treにおける検出信号Sdを修正しない。また、発光制御部45は、時点tr4から次に照射光パルスPiが立ち上がる時点tr6までの期間Truにおける検出信号Sdを無効とし、検出信号Sdを修正する。たとえば、発光制御部45は、期間Truにおける検出信号Sdから受光パルスを除去する。なお、時点tr4は、時点tr2から所定時間Tre後であり、且つ、時点tr5よりも前の時点である。つまり、tr2<tr4<tr5である。こうすることにより、発光制御部45は、第1受光部22がレーザ光Laの反射光Lbを誤って検出することをより確実に防止する。  In FIG. 9, the irradiation light Lra is applied at a time point tr1 when the irradiation light pulse Pi rises. At time tr2 when the same time as the TOF (Time @ of @ Flight) of the irradiation light Lra and the reflected light Lrb has elapsed from the time tr1, the reflected light Lrb is detected by the first light receiving unit 22. Further, at time tr3 at which the laser emission pulse Pe rises, the laser light La is irradiated. At time tr5 when the same time as TOF (Time @ of @ Flight) of the laser light La and the reflected light Lb has elapsed from the time t3, the reflected light Lb is detected by the first light receiving unit 22. Note that the reflected light Lb detected at the time point tr5 is light in which the laser light La is reflected by an object D1d below the first light receiving unit 22 (for example, below the external object OJ2, the road surface G, and the like). That is, the light is incident on the first light receiving unit 22 from the side D1d below the front direction D2f. Here, the light emission control unit 45 validates the detection signal Sd during the predetermined time Tre from the time point tr2 to the time point tr4. Therefore, the light emission control unit 45 does not modify the detection signal Sd at the predetermined time Tre. Further, the light emission control unit 45 invalidates the detection signal Sd in the period Tru from the time point tr4 to the time point tr6 at which the next irradiation light pulse Pi rises, and corrects the detection signal Sd. For example, the light emission control unit 45 removes a light receiving pulse from the detection signal Sd in the period Tru. Note that the time point tr4 is a time point after the predetermined time Tre from the time point tr2 and before the time point tr5. That is, tr2 <tr4 <tr5. By doing so, the light emission control unit 45 more reliably prevents the first light receiving unit 22 from erroneously detecting the reflected light Lb of the laser light La.
<2.変形例> 次に、実施形態の変形例について、上述の実施形態と異なる構成を説明する。図10は、変形例に係る無人搬送車100を外部の物体OJとともに示す側面図である。なお、図10は、無人搬送車100の前端部を左方D3Lから見ている。なお、以下では、上述の実施形態と同様の構成要素には同じ符号を付し、その説明を省略することがある。  <2. Modified Example> Next, a modified example of the embodiment will be described, which is different from the above-described embodiment. FIG. 10 is a side view showing an automatic guided vehicle 100 according to a modification together with an external object OJ. In FIG. 10, the front end of the automatic guided vehicle 100 is viewed from the left D3L. In the following, the same components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof may be omitted.
変形例では、距離測定ユニット3の第2光照射部31は、該第2光照射部31よりも第1受光部22とは反対側にレーザ光Laを照射する。言い換えると、第2光照射部31は、前方向D2fよりも上方D1t側にレーザ光Laを照射する。つまり、レーザ光Laの光軸は、前方向D2fに向かうにつれて上方D1tに向かう。こうすれば、たとえば、鉛直方向D1において、距離測定ユニット3の第2光照射部31よりも下方D1dの物体(たとえば、外部の物体OJ2の下部、路面Gなど)での該レーザ光Laの反射を抑制又は防止できる。従って、周囲の物体OJを検出する障害物センサ2が距離測定ユニット3から照射されたレーザ光Laの反射光Lbを誤って検出することをより確実に防止できる。  In a modified example, the second light irradiating unit 31 of the distance measuring unit 3 irradiates the laser light La to a side opposite to the first light receiving unit 22 with respect to the second light irradiating unit 31. In other words, the second light irradiating unit 31 irradiates the laser beam La on the D1t side above the forward direction D2f. That is, the optical axis of the laser light La is directed upward D1t as it moves forward D2f. In this way, for example, in the vertical direction D1, the reflection of the laser beam La on an object D1d below the second light irradiation unit 31 of the distance measurement unit 3 (for example, below the external object OJ2, on the road surface G, etc.). Can be suppressed or prevented. Therefore, it is possible to more reliably prevent the obstacle sensor 2 that detects the surrounding object OJ from erroneously detecting the reflected light Lb of the laser light La emitted from the distance measuring unit 3.
また、レーザ光Laの光軸が水平面との間に成す仰角は、好ましくは、該光軸が延びる方向におけるレーザ光Laの広がり角度の半分よりも大きい。こうすれば、レーザ光Laが、第2光照射部31よりも下方D1d側の物体に照射されないようにできるので、たとえば、外部の物体OJ2の下部、路面Gなどでの反射をさらに効果的に抑制又は防止できる。  The elevation angle between the optical axis of the laser beam La and the horizontal plane is preferably larger than half the spread angle of the laser beam La in the direction in which the optical axis extends. In this way, the laser beam La can be prevented from irradiating the object on the D1d side below the second light irradiating unit 31, so that, for example, the reflection at the lower part of the external object OJ2, the road surface G, etc. can be further effectively reduced. Can be suppressed or prevented.
<3.その他> 以上、本開示の例示的な実施形態を説明した。なお、本発明の範囲は上述の開示に限定されない。本開示は、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。また、本開示で説明した事項は、矛盾を生じない範囲で適宜任意に組み合わせることができる。  <3. Others> The exemplary embodiments of the present disclosure have been described above. Note that the scope of the present invention is not limited to the above disclosure. The present disclosure can be implemented with various modifications without departing from the spirit of the invention. In addition, matters described in the present disclosure can be arbitrarily combined as appropriate without causing contradiction.
本開示は、複数の光センサを有するセンサユニット、及び該センサユニットを搭載する移動体に有用である。 INDUSTRIAL APPLICABILITY The present disclosure is useful for a sensor unit having a plurality of optical sensors and a moving body on which the sensor unit is mounted.
100・・・無人搬送車、101・・・車体、102・・・荷台、103L,103R・・・支持部、104L,104R・・・駆動モータ、105L,105R・・・駆動輪、106F,106R・・・従動輪、107・・・バッテリー、108・・・通信部、109・・・制御ユニット、1・・・センサユニット、2・・・障害物センサ、21・・・第1光照射部、211・・・LED、22・・・第1受光部、221・・・第1受光素子、221a・・・受光面、222・・・集光レンズ、223・・・遮光部材、3・・・距離測定ユニット、30・・・筐体、301・・・透光部、31・・・第2光照射部、311・・・LD、311a・・・LDドライバ、312・・・基板、313・・・コリメートレンズ、314・・・投光ミラー、32・・・第2受光部、321・・・受光レンズ、322・・・受光ミラー、323・・・波長フィルタ、324・・・第2受光素子、325・・・コンパレータ、33・・・回転筐体、33a・・・開口、34・・・モータ、34a・・・シャフト、35・・・計測部、36・・・演算処理部、37・・・モータ駆動部、38・・・通信I/F、4・・・制御部、41・・・駆動制御部、42・・・判定部、43・・・地図作成部、44・・・位置同定部、45・・・発光制御部、5・・・記憶部、J・・・回転軸、La・・・レーザ光、Lra・・・照射光、Lb,Lrb・・・反射光、G・・・路面、OJ,OJ1,OJ2・・・物体、θ・・・入射角度、Rs・・・走査範囲、D1・・・鉛直方向、D1d・・・下方、D1t・・・上方、D2f・・・前方向、D2r・・・後方向、D3・・・左右方向、D3L・・・左方、D3R・・・右方 100: automatic guided vehicle, 101: body, 102: carrier, 103L, 103R: support, 104L, 104R: drive motor, 105L, 105R: drive wheel, 106F, 106R ... follower wheel, 107 ... battery, 108 ... communication unit, 109 ... control unit, 1 ... sensor unit, 2 ... obstacle sensor, 21 ... first light irradiation unit , 211 ... LED, 22 ... first light receiving unit, 221 ... first light receiving element, 221a ... light receiving surface, 222 ... condenser lens, 223 ... light shielding member, 3 ...・ Distance measurement unit, 30 ・ ・ ・ Case, 301 ・ ・ ・ Transparent part, 31 ・ ・ ・ Second light irradiation part, 311 ・ ・ ・ LD, 311a ・ ・ ・ LD driver, 312 ・ ・ ・ Substrate, 313・ ・ ・ Collimate lens, 314 ・ ・ ・ Emission ,..., 321, a light receiving lens, 322, a light receiving mirror, 323, a wavelength filter, 324, a second light receiving element, 325, a comparator, 33,.・ Rotating housing, 33a ・ ・ ・ Opening, 34 ・ ・ ・ Motor, 34a ・ ・ ・ Shaft, 35 ・ ・ ・ Measurement unit, 36 ・ ・ ・ Calculation processing unit, 37 ・ ・ ・ Motor drive unit, 38 ・ ・ ・Communication I / F, 4 control unit, 41 drive control unit, 42 determination unit, 43 map creating unit, 44 position identification unit, 45 light emission control unit 5, storage unit, J: rotation axis, La: laser light, Lra: irradiation light, Lb, Lrb: reflected light, G: road surface, OJ, OJ1, OJ2 · ..Object, θ: Incident angle, Rs: Scanning range, D1: Vertical direction, D1d: Downward, D1t ..Upward, D2f: forward direction, D2r: rearward direction, D3: left / right direction, D3L: left, D3R: right

Claims (9)

  1. 第1光照射部及び第1受光部を有する第1センサと、 第2光照射部を有する第2センサと、を備え、 前記第1受光部は、  前記第1光照射部と前記第2光照射部との間に配置され、  前記第1受光部よりも前記第1光照射部側から入射する光を検出する、センサユニット。 A first sensor having a first light irradiating unit and a first light receiving unit; and a second sensor having a second light irradiating unit. {The first light receiving unit is} the first light irradiating unit and the second light A sensor unit that is disposed between the first light receiving unit and the first light receiving unit and that is disposed between the first light receiving unit and the first light receiving unit;
  2. 前記第2光照射部から照射される光の強度は、前記第1光照射部から照射される光よりも強い、請求項1に記載のセンサユニット。 2. The sensor unit according to claim 1, wherein the intensity of light emitted from the second light emitting unit is higher than the intensity of light emitted from the first light emitting unit. 3.
  3. 前記第2光照射部は、レーザ光を照射し、 前記第1光照射部は、前記レーザ光よりも指向性が低い光を照射する、請求項1又は請求項2に記載のセンサユニット。 The sensor unit according to claim 1, wherein the second light irradiating unit irradiates a laser beam, and the first light irradiating unit irradiates a light having lower directivity than the laser light.
  4. 前記第2光照射部は、該第2光照射部よりも前記第1受光部とは反対側に前記レーザ光を照射する、請求項3に記載のセンサユニット。 The sensor unit according to claim 3, wherein the second light irradiating unit irradiates the laser light to a side opposite to the first light receiving unit with respect to the second light irradiating unit.
  5. 前記第1センサは、該第1センサの周囲に位置する物体を検知する光センサであり、 前記第2センサは、該第2センサの外部に位置する物体との間の距離を測定する距離測定ユニットである、請求項1から請求項4のいずれか1項に記載のセンサユニット。 The first sensor is an optical sensor that detects an object located around the first sensor, and the second sensor is a distance measurement that measures a distance between the first sensor and an object located outside the second sensor. The sensor unit according to any one of claims 1 to 4, which is a unit.
  6. 前記距離測定ユニットは、前記光センサよりも上方に配置され、 前記光センサの前記第1光照射部は、前記第1受光部よりも下方に配置される、請求項5に記載のセンサユニット。 The sensor unit according to claim 5, wherein the distance measuring unit is disposed above the optical sensor, and the first light irradiation unit of the optical sensor is disposed below the first light receiving unit.
  7. 前記第1受光部は、  受光面上での受光位置に基づいて、第1受光部の外部からの入射光を入射角度毎に検出する受光素子と、  前記入射光を前記第1受光部の前記受光面に集光する集光レンズと、を有し、  前記入射角度は、前記第1受光部から前記第1光照射部に向かう第1方向及び該第1方向と垂直な第2方向の両方と垂直な第3方向から見た前記入射光の前記第2方向に対する角度である、請求項1から請求項6のいずれか1項に記載のセンサユニット。 The first light receiving unit includes: (1) a light receiving element that detects incident light from the outside of the first light receiving unit at each incident angle based on a light receiving position on a light receiving surface; A condenser lens for condensing light on a light receiving surface, wherein the incident angle is both in a first direction from the first light receiving portion toward the first light irradiating portion and in a second direction perpendicular to the first direction. The sensor unit according to claim 1, wherein the angle is an angle of the incident light with respect to the second direction when viewed from a third direction perpendicular to the second direction.
  8. 前記第1光照射部から照射される光と前記第2光照射部から照射される光とはそれぞれ、互いに異なるタイミングで前記センサユニットの外部に照射される、請求項1から請求項7のいずれか1項に記載のセンサユニット。 The light emitted from the first light emitting unit and the light emitted from the second light emitting unit are respectively emitted to the outside of the sensor unit at different timings. 2. The sensor unit according to claim 1.
  9. 請求項1から請求項8のいずれか1項に記載のセンサユニットを搭載する移動体。 A moving body on which the sensor unit according to any one of claims 1 to 8 is mounted.
PCT/JP2019/033644 2018-08-30 2019-08-28 Sensor unit and mobile body WO2020045474A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018161850 2018-08-30
JP2018-161850 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020045474A1 true WO2020045474A1 (en) 2020-03-05

Family

ID=69644258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033644 WO2020045474A1 (en) 2018-08-30 2019-08-28 Sensor unit and mobile body

Country Status (1)

Country Link
WO (1) WO2020045474A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114190821A (en) * 2020-09-16 2022-03-18 尚科宁家(中国)科技有限公司 Cleaning robot capable of walking smoothly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337869A (en) * 1999-05-26 2000-12-08 Inax Corp Distance measurement-type photoelectric sensor
JP2010170315A (en) * 2009-01-22 2010-08-05 Panasonic Electric Works Co Ltd Autonomous mobile device
US20150009485A1 (en) * 2013-07-02 2015-01-08 Electronics And Telecommunications Research Institute Laser radar system
JP2016014665A (en) * 2014-07-03 2016-01-28 アドヴァンスド サイエンティフィック コンセプツ,イン Ladar sensor for dense environment
WO2016063911A1 (en) * 2014-10-24 2016-04-28 株式会社村田製作所 Object detection device and information processing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337869A (en) * 1999-05-26 2000-12-08 Inax Corp Distance measurement-type photoelectric sensor
JP2010170315A (en) * 2009-01-22 2010-08-05 Panasonic Electric Works Co Ltd Autonomous mobile device
US20150009485A1 (en) * 2013-07-02 2015-01-08 Electronics And Telecommunications Research Institute Laser radar system
JP2016014665A (en) * 2014-07-03 2016-01-28 アドヴァンスド サイエンティフィック コンセプツ,イン Ladar sensor for dense environment
WO2016063911A1 (en) * 2014-10-24 2016-04-28 株式会社村田製作所 Object detection device and information processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114190821A (en) * 2020-09-16 2022-03-18 尚科宁家(中国)科技有限公司 Cleaning robot capable of walking smoothly

Similar Documents

Publication Publication Date Title
TWI684084B (en) Mobile device
US20180180715A1 (en) Lidar sensor device
US10816663B2 (en) Distance measuring device and distance measuring method
WO2019064750A1 (en) Distance measurement device and moving body
US20160209510A1 (en) Laser radar apparatus
WO2020045474A1 (en) Sensor unit and mobile body
JPWO2020071465A1 (en) Distance measuring device
WO2018173595A1 (en) Movement device
JP2018151286A (en) Object detector
JP2017204062A (en) Autonomous conveyance system
JP6584370B2 (en) Optical radar device for vehicles
CN110794836B (en) Empty cage vehicle warehouse returning control method, system and storage medium
WO2020045445A1 (en) Distance measuring device, distance measuring device group, and distance measuring device system
JP6825093B2 (en) Detection devices, driving assistance systems, powered vehicles, and methods for powered vehicles
WO2018173594A1 (en) Distance measurement device and transport vehicle
WO2019146440A1 (en) Distance measurement device, and mobile body
JPWO2019058678A1 (en) Distance measuring device and a moving body equipped with it
JP7145422B2 (en) Mobile device and mobile system
CN110069061B (en) Mobile device, control system thereof, object detection method, mobile system, and control method of mobile device
WO2019181692A1 (en) Distance measurement device and moving body
WO2018173589A1 (en) Distance measurement device and movement device
WO2019064742A1 (en) Distance measurement device and moving body
JP2022538570A (en) reader and lidar measuring device
JP2017125765A (en) Object detection device
WO2019064741A1 (en) Distance measurement device and moving body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP