WO2020039799A1 - Laminate including horizontally aligned liquid crystal cured film - Google Patents

Laminate including horizontally aligned liquid crystal cured film Download PDF

Info

Publication number
WO2020039799A1
WO2020039799A1 PCT/JP2019/028046 JP2019028046W WO2020039799A1 WO 2020039799 A1 WO2020039799 A1 WO 2020039799A1 JP 2019028046 W JP2019028046 W JP 2019028046W WO 2020039799 A1 WO2020039799 A1 WO 2020039799A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
cured
group
horizontal alignment
Prior art date
Application number
PCT/JP2019/028046
Other languages
French (fr)
Japanese (ja)
Inventor
辰昌 葛西
伸行 幡中
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020217008044A priority Critical patent/KR20210048514A/en
Priority to CN201980054997.XA priority patent/CN112585513B/en
Publication of WO2020039799A1 publication Critical patent/WO2020039799A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements

Definitions

  • the present invention relates to a laminate including a cured liquid crystal layer having a horizontal alignment and a method for producing the same.
  • An elliptically polarizing plate is an optical member in which a polarizing plate and a retardation plate are laminated.
  • a polarizing plate and a retardation plate are laminated.
  • light reflection by an electrode constituting the device is used.
  • a so-called ⁇ / 4 plate is used as a retardation plate constituting the elliptically polarizing plate.
  • a retardation plate constituting the elliptically polarizing plate is preferably one exhibiting reverse wavelength dispersion.
  • a polymerizable liquid crystal compound exhibiting reverse wavelength dispersion is polymerized in a state of being oriented in the horizontal direction with respect to the plane of the liquid crystal cured film, and is formed of a cured horizontally aligned liquid crystal cured film.
  • a phase difference plate is known (Patent Document 1).
  • a polymerizable liquid crystal compound exhibiting reverse wavelength dispersion generally has light absorption between 300 and 400 nm.
  • the coating film of the polymerizable liquid crystal composition is irradiated by irradiating light such as ultraviolet light from the application surface side.
  • the polymerizable liquid crystal compound When cured to produce a cured liquid crystal film, the polymerizable liquid crystal compound absorbs light, so it is difficult for a sufficient amount of light to reach the deep part of the coating film of the polymerizable liquid crystal composition, including the obtained liquid crystal cured film There has been a problem that the reliability is deteriorated such as a change in optical characteristics of the retardation plate or the elliptically polarizing plate.
  • Patent Document 1 the use of two or more photopolymerization initiators having different main photosensitive wavelengths to form a cured liquid crystal film allows the polymerization reaction to be performed while suppressing the influence of light absorption by the polymerizable liquid crystal compound. Proposed.
  • reliability under severer conditions has been required, and production of a liquid crystal cured film having higher reliability has been a major issue.
  • the present invention provides a laminate including a horizontally-oriented liquid crystal cured film of reverse wavelength dispersion having high reliability, having high optical characteristics, and hardly causing a change in optical characteristics even in a severe environment, and having high reliability.
  • the purpose is to do.
  • the horizontal alignment liquid crystal cured film is a cured product of a polymerizable liquid crystal composition cured in a state where the polymerizable liquid crystal compound is oriented in a horizontal direction with respect to the liquid crystal cured film plane, and formula (1): Re (450) / Re (550) ⁇ 1 (1) [In the formula (1), Re ( ⁇ ) represents an in-plane retardation value of the cured liquid crystal alignment film at a wavelength of ⁇ nm]
  • the horizontal alignment film is composed of a cured product of a composition for forming a photo alignment film including a polymer and / or a monomer having a photoreactive group, and the polymer and / or the monomer includes a cinnamoyl group as a photoreactive group.
  • the cured resin layer comprises at least one selected from the group consisting of an acrylic resin, an epoxy resin, an oxetane resin, a urethane resin, and a melamine resin.
  • Laminate Any of the above-mentioned [1] to [9], further comprising an adhesive layer, wherein a horizontal alignment liquid crystal cured film, a horizontal alignment film, a cured resin layer, and an adhesive layer are present adjacent to each other in this order.
  • An elliptically polarizing plate comprising the laminate according to any one of [1] to [10] and a polarizing film.
  • the laminated body which has a high optical characteristic, the optical characteristic does not change easily even in a severe environment, and has a highly reliable reverse wavelength dispersive horizontally-aligned liquid crystal cured film is provided. can do.
  • the laminate of the present invention is a cured product of a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound having a maximum absorption wavelength between 300 and 400 nm, a cured product of a horizontally oriented liquid crystal, a horizontally oriented film, and a cured product. Including a resin layer.
  • the horizontally aligned liquid crystal cured film constituting the laminate of the present invention has a state in which at least one polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition is horizontally oriented with respect to the plane of the obtained liquid crystal cured film.
  • a cured product of the polymerizable liquid crystal composition which satisfies the following formula (1).
  • Re ( ⁇ ) represents an in-plane retardation value of the cured liquid crystal alignment film at a wavelength of ⁇ nm].
  • the cured film of the horizontally aligned liquid crystal is formed of a polymerizable liquid crystal compound having a so-called reverse wavelength dispersion, in which the in-plane retardation value at a short wavelength is smaller than the in-plane retardation value at a long wavelength.
  • a polymerizable liquid crystal compound having such reverse wavelength dispersion generally has a maximum absorption wavelength between 300 and 400 nm, and a polymerizable liquid crystal composition containing such a polymerizable liquid crystal compound is coated on a substrate.
  • the polymerizable liquid crystal compound When a liquid crystal cured film is prepared by irradiating light such as ultraviolet rays from the application surface side, the polymerizable liquid crystal compound absorbs light, thereby forming a deep portion of the coating film of the polymerizable liquid crystal composition (that is, It is difficult for a sufficient amount of light to reach the substrate side of the film). For this reason, uncured polymerizable monomers and oligomers are likely to remain in the coating film of the polymerizable liquid crystal composition, particularly in the deep portion thereof, and such uncured components are subjected to severe environments such as high temperature or high temperature and humidity.
  • phase difference plate or an elliptically polarizing plate When forming a phase difference plate or an elliptically polarizing plate, it is easily diffused into an adhesive layer or the like provided close to or adjacent to the liquid crystal cured film, and causes a change in optical characteristics of the phase difference plate or the elliptically polarizing plate. It is thought that it becomes.
  • the laminate of the present invention includes the cured resin layer, so that even if an uncured polymerizable monomer or oligomer is present in the cured horizontal alignment liquid crystal film, it includes the obtained cured horizontal alignment liquid crystal film. Since it is possible to suppress the diffusion of the uncured component to the adhesive layer or the like provided in the vicinity of the liquid crystal cured film in a retardation plate or an elliptically polarizing plate, it has high optical properties, and Even under a severe environment such as high temperature and high humidity, a change in optical characteristics is unlikely to occur, and a laminate having high reliability can be obtained.
  • the cured liquid crystal of the horizontally aligned liquid crystal satisfies the above-mentioned formula (1) showing the reverse wavelength dispersion.
  • Re (450) / Re (550) is preferably set because the reverse wavelength dispersibility is improved and the front hue is improved when the elliptically polarizing plate including the cured liquid crystal alignment film and the polarizing plate is applied to a display device. It is 0.70 or more, more preferably 0.78 or more, and preferably less than 1, more preferably 0.95 or less, and even more preferably 0.92 or less.
  • the effect relating to “improvement of front reflection hue” in the present specification means an improvement effect in front reflection hue when an elliptically polarizing plate including a cured liquid crystal layer is applied to a display device.
  • the in-plane retardation value can be adjusted by adjusting the thickness d of the cured liquid crystal layer.
  • ny ( ⁇ ) represents the refractive index at a wavelength ⁇ in a direction orthogonal to the direction of nx in the same plane as nx
  • d represents the thickness of the cured liquid crystal alignment film.
  • the horizontal alignment liquid crystal cured film satisfies the following expression (2). 120 nm ⁇ Re (550) ⁇ 170 nm (2)
  • the in-plane retardation Re (550) of the cured liquid crystal layer is within the range of the expression (2), the effect of improving the front reflection hue when a laminate including the same is applied to a display device is excellent.
  • a more preferable range of the in-plane retardation value is 130 nm ⁇ Re (550) ⁇ 150 nm.
  • the thickness of the cured liquid crystal layer is preferably 0.5 to 5.0 ⁇ m, more preferably 0.8 to 4 ⁇ m, and still more preferably 1.0 to 3.5 ⁇ m, from the viewpoint of reducing the thickness of the laminate. .
  • At least one polymerizable liquid crystal compound forming the cured liquid crystal layer is a polymerizable liquid crystal compound having a maximum absorption wavelength between 300 and 400 nm.
  • the photopolymerization initiator is contained in the polymerizable liquid crystal composition, the polymerization reaction and gelation of the polymerizable liquid crystal compound may proceed during long-term storage, but the maximum absorption wavelength of the polymerizable liquid crystal compound is 300 to 400 nm. Even if ultraviolet light is exposed during storage, the generation of reactive species from the photopolymerization initiator and the progress of polymerization reaction and gelation of the polymerizable liquid crystal compound by the reactive species can be effectively suppressed.
  • the polymerizable liquid crystal composition is also advantageous in terms of long-term stability, and the orientation of the cured liquid crystal film and the uniformity of the film thickness can be improved.
  • the maximum absorption wavelength of the polymerizable liquid crystal compound can be measured in a solvent using an ultraviolet-visible spectrophotometer.
  • the solvent is a solvent capable of dissolving the polymerizable liquid crystal compound, and examples thereof include chloroform.
  • the horizontal alignment liquid crystal cured film is a cured product of a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound.
  • the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition of the present invention means a liquid crystal compound having a polymerizable group, particularly a photopolymerizable group.
  • the polymerizable liquid crystal compound is not particularly limited as long as it can form a liquid crystal cured film satisfying the above formulas (1) and (2).
  • a polymerizable liquid crystal compound conventionally known in the field of a retardation film is used. be able to.
  • the polymerizable group refers to a group that can participate in a polymerization reaction.
  • the photopolymerizable group is a polymerizable group and refers to a group capable of participating in a polymerization reaction by a reactive species generated from a photopolymerization initiator, for example, an active radical or an acid.
  • a reactive species generated from a photopolymerization initiator for example, an active radical or an acid.
  • examples of the photopolymerizable group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxiranyl group, and an oxetanyl group.
  • the liquid crystallinity of the polymerizable liquid crystal compound may be a thermotropic liquid crystal or a lyotropic liquid crystal, but a thermotropic liquid crystal is preferable in that the film thickness can be precisely controlled.
  • the phase order structure of the thermotropic liquid crystal may be a nematic liquid crystal or a smectic liquid crystal.
  • the polymerizable liquid crystal compounds can be used alone or in combination of two or more.
  • the polymerizable liquid crystal compound is preferably a compound having the following characteristics (1) to (4).
  • (2) The polymerizable liquid crystal compound has ⁇ electrons on the major axis direction (a).
  • ⁇ electron density in the major axis direction (a): D ( ⁇ a) N ( ⁇ a) / N (Aa) (i) And a polymerizable liquid crystal compound defined by the following formula (ii), where N ( ⁇ b) is the total of ⁇ electrons present in the cross direction (b), and N (Ab) is the total of molecular weights present in the cross direction (b).
  • Electron density in the cross direction (b) of D ( ⁇ b) N ( ⁇ b) / N (Ab) (ii) Is the formula (iii) 0 ⁇ [D ( ⁇ a) / D ( ⁇ b)] ⁇ 1 (iii) [That is, the ⁇ electron density in the cross direction (b) is larger than the ⁇ electron density in the long axis direction (a)].
  • the polymerizable liquid crystal compound having ⁇ electrons in the major axis and in a direction crossing the major axis has, for example, a T-shaped structure.
  • the polymerizable liquid crystal compound is preferably a compound capable of forming a nematic phase.
  • the major axis direction (a) and the number N of ⁇ electrons are defined as follows.
  • the long axis direction (a) is, for example, a compound having a rod-like structure, that is, the long axis direction of the rod.
  • the number of ⁇ electrons N ( ⁇ a) existing in the major axis direction (a) does not include ⁇ electrons that disappear by the polymerization reaction.
  • the number N ( ⁇ a) of ⁇ electrons existing in the long axis direction (a) is the total number of ⁇ electrons on the long axis and ⁇ electrons conjugated with the N electrons, and exists, for example, in the long axis direction (a). And the number of ⁇ electrons present in a ring that satisfies the Hückel rule.
  • the number of ⁇ electrons N ( ⁇ b) existing in the cross direction (b) does not include ⁇ electrons that disappear by the polymerization reaction.
  • the polymerizable liquid crystal compound satisfying the above has a mesogenic structure in the major axis direction. With this mesogenic structure, a liquid crystal phase (nematic phase, smectic phase) is developed.
  • the polymerizable liquid crystal compound satisfying the above (1) to (4) can form a nematic phase or a smectic phase by being coated on an alignment film and heated to a phase transition temperature or higher.
  • a nematic phase or a smectic phase formed by orienting the polymerizable liquid crystal compound the polymerizable liquid crystal compound is usually oriented so that the major axes thereof are parallel to each other, and the major axis is oriented in the direction of the nematic phase.
  • a polymer film made of a polymer polymerized in a state of being oriented in the major axis direction (a) can be formed.
  • This polymer film absorbs ultraviolet rays by ⁇ electrons in the major axis direction (a) and ⁇ electrons in the cross direction (b).
  • the maximum absorption wavelength of ultraviolet light absorbed by ⁇ electrons in the cross direction (b) is defined as ⁇ bmax.
  • ⁇ bmax is usually 300 nm to 400 nm.
  • the vibration surface in the cross direction (b) Is a polymer film whose absorption of linearly polarized ultraviolet light (wavelength is ⁇ bmax) having larger than that of linearly polarized ultraviolet light (wavelength is ⁇ bmax) having a vibrating surface in the major axis direction (a).
  • the ratio (the ratio of the absorbance in the cross direction (b) of the linearly polarized ultraviolet rays / the absorbance in the major axis direction (a)) is, for example, more than 1.0, preferably 1.2 or more, and usually 30 or less, for example, 10 or less. It is.
  • the polymerizable liquid crystal compound having the above characteristics generally shows reverse wavelength dispersion.
  • Ar represents a divalent group having an aromatic group which may have a substituent.
  • the aromatic group refers to a group in which the number of ⁇ electrons in the ring structure is [4n + 2] according to the Huckel rule, and is exemplified by, for example, (Ar-1) to (Ar-23) described later. You may have two or more such Ar groups via a divalent linking group.
  • n represents an integer.
  • the aromatic group preferably contains at least one of a nitrogen atom, an oxygen atom and a sulfur atom.
  • the aromatic group contained in the divalent group Ar may be one, or may be two or more.
  • the divalent group Ar may be a divalent aromatic group which may have a substituent.
  • the divalent group Ar has two or more aromatic groups, the two or more aromatic groups are bonded to each other by a single bond or a divalent bonding group such as —CO—O— or —O—. May be.
  • G 1 and G 2 each independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group.
  • the hydrogen atom contained in the divalent aromatic group or the divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms,
  • the carbon atom constituting the divalent aromatic group or the divalent alicyclic hydrocarbon group may be an oxygen atom, a sulfur atom, Alternatively, it may be substituted by a nitrogen atom.
  • L 1 , L 2 , B 1 and B 2 are each independently a single bond or a divalent linking group.
  • k and l each independently represent an integer of 0 to 3, and satisfy the relationship of 1 ⁇ k + 1.
  • E 1 and E 2 each independently represent an alkanediyl group having 1 to 17 carbon atoms, wherein an alkanediyl group having 4 to 12 carbon atoms is more preferable.
  • the hydrogen atom contained in the alkanediyl group may be substituted with a halogen atom
  • P 1 and P 2 independently represent a polymerizable group or a hydrogen atom, and at least one is a polymerizable group.
  • G 1 and G 2 are each independently preferably a 1,4-phenylenediyl group optionally substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • a 1,4-cyclohexanediyl group which may be substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms, more preferably a 1,4-cyclohexanediyl group substituted with a methyl group.
  • at least one of a plurality of G 1 and G 2 is preferably a divalent alicyclic hydrocarbon group, and at least one of G 1 and G 2 bonded to L 1 or L 2.
  • One is more preferably a divalent alicyclic hydrocarbon group.
  • L 1 and L 2 are each independently preferably a single bond, an alkylene group having 1 to 4 carbon atoms, —O—, —S—, —R a1 OR a2 —, —R a3 COOR a4 —, and —R a5.
  • R a1 to R a8 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms
  • R c and R d each represent an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • L 1 and L 2 are each independently preferably a single bond, —OR a2-1 —, —CH 2 —, —CH 2 CH 2 —, —COOR a4-1 —, or OCOR a6-1 — .
  • R a2-1 , R a4-1 , and R a6-1 each independently represent any one of a single bond, —CH 2 —, and —CH 2 CH 2 —.
  • L 1 and L 2 are each independently more preferably a single bond, —O—, —CH 2 CH 2 —, —COO—, —COOCH 2 CH 2 —, or OCO—.
  • R a9 to R a16 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms.
  • B 1 and B 2 are each independently more preferably a single bond, —OR a10-1 —, —CH 2 —, —CH 2 CH 2 —, —COOR a12-1 —, or OCOR a14-1 — .
  • R a10-1 , R a12-1 , and R a14-1 each independently represent a single bond, —CH 2 —, or —CH 2 CH 2 —.
  • B 1 and B 2 are each independently more preferably a single bond, —O—, —CH 2 CH 2 —, —COO—, —COOCH 2 CH 2 —, —OCO—, or OCOCH 2 CH 2 — .
  • Examples of the polymerizable group represented by P 1 or P 2 include an epoxy group, a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, and an oxiranyl group. And an oxetanyl group. Among them, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferred, and an acryloyloxy group is more preferred.
  • Ar preferably has at least one selected from an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocyclic ring which may have a substituent, and an electron-withdrawing group.
  • aromatic hydrocarbon ring examples include a benzene ring, a naphthalene ring, and an anthracene ring, and a benzene ring and a naphthalene ring are preferable.
  • aromatic heterocycle examples include a furan ring, a benzofuran ring, a pyrrole ring, an indole ring, a thiophene ring, a benzothiophene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazole ring, a triazine ring, a pyrroline ring, an imidazole ring, and a pyrazole ring.
  • a thiazole ring, a benzothiazole ring, a thienothiazole ring, an oxazole ring, a benzoxazole ring, and a phenanthroline ring is preferable, and a benzothiazole group is more preferable.
  • Ar contains a nitrogen atom, the nitrogen atom preferably has ⁇ electrons.
  • (X) 2-valent of [pi Total N [pi electrons contained in the aromatic group is preferably 8 or more represented by Ar, more preferably 10 or more, more preferably 14 or more, particularly Preferably it is 16 or more. Further, it is preferably 30 or less, more preferably 26 or less, and further preferably 24 or less.
  • Examples of the aromatic group represented by Ar include the following groups.
  • an asterisk (*) represents a connecting portion
  • Z 0 , Z 1 and Z 2 each independently represent a hydrogen atom, a halogen atom, an alkyl having 1 to 12 carbons.
  • Z 0 , Z 1 and Z 2 may contain a polymerizable group.
  • Q 1 and Q 2 each independently represent —CR 2 ′ R 3 ′ —, —S—, —NH—, —NR 2 ′ —, —CO— or O—, and R 2 ′ and R 3 ′ Each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • J 1 and J 2 each independently represent a carbon atom or a nitrogen atom.
  • Y 1 , Y 2 and Y 3 each independently represent an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group.
  • W 1 and W 2 each independently represent a hydrogen atom, a cyano group, a methyl group or a halogen atom, and m represents an integer of 0 to 6.
  • Examples of the aromatic hydrocarbon group for Y 1 , Y 2 and Y 3 include an aromatic hydrocarbon group having 6 to 20 carbon atoms such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group and a biphenyl group. , A naphthyl group is preferred, and a phenyl group is more preferred.
  • Examples of the aromatic heterocyclic group include those having 4 to 20 carbon atoms including at least one nitrogen atom such as furyl, pyrrolyl, thienyl, pyridinyl, thiazolyl, and benzothiazolyl, and at least one heteroatom such as oxygen and sulfur.
  • An aromatic heterocyclic group is mentioned, and a furyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group are preferable.
  • Y 1 , Y 2 and Y 3 may each independently be a polycyclic aromatic hydrocarbon group or a polycyclic aromatic heterocyclic group which may be substituted.
  • the polycyclic aromatic hydrocarbon group refers to a condensed polycyclic aromatic hydrocarbon group or a group derived from an aromatic ring assembly.
  • the polycyclic aromatic heterocyclic group refers to a condensed polycyclic aromatic heterocyclic group or a group derived from an aromatic ring assembly.
  • Z 0 , Z 1 and Z 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, a cyano group, a nitro group, or an alkoxy group having 1 to 12 carbon atoms.
  • 0 is more preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, and a cyano group
  • Z 1 and Z 2 are more preferably a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, and a cyano group.
  • Z 0 , Z 1 and Z 2 may contain a polymerizable group.
  • Q 1 and Q 2 are preferably -NH-, -S-, -NR 2 ' -, -O-, and R 2' is preferably a hydrogen atom. Among them, —S—, —O—, and —NH— are particularly preferable.
  • Y 1 may form an aromatic heterocyclic group together with the nitrogen atom to which it is bound and Z 0 .
  • the aromatic heterocyclic group include those described above as the aromatic heterocyclic ring which Ar may have, for example, a pyrrole ring, an imidazole ring, a pyrroline ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, an indole Ring, quinoline ring, isoquinoline ring, purine ring, pyrrolidine ring and the like.
  • This aromatic heterocyclic group may have a substituent.
  • Y 1 may be the above-mentioned optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 .
  • a benzofuran ring, a benzothiazole ring, a benzoxazole ring and the like can be mentioned.
  • the content of the polymerizable liquid crystal compound in the polymerizable liquid crystal composition used to form the cured horizontal alignment liquid crystal film is, for example, 70 to 99.5 parts by mass based on 100 parts by mass of the solid content of the polymerizable liquid crystal composition.
  • the amount is preferably 80 to 99 parts by mass, more preferably 85 to 98 parts by mass, and still more preferably 90 to 95 parts by mass.
  • the content of the polymerizable liquid crystal compound is within the above range, it is advantageous from the viewpoint of the orientation of the obtained cured liquid crystal film.
  • the solid content of the polymerizable liquid crystal composition means all components of the polymerizable liquid crystal composition except volatile components such as an organic solvent.
  • the polymerizable liquid crystal composition used for forming the horizontal alignment liquid crystal cured film further contains additives such as a solvent, a photopolymerization initiator, a leveling agent, an antioxidant, and a photosensitizer, in addition to the polymerizable liquid crystal compound. May be. Each of these components may be used alone or in combination of two or more.
  • the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film is usually applied to a substrate or the like in a state of being dissolved in a solvent, it preferably contains a solvent.
  • a solvent that can dissolve the polymerizable liquid crystal compound is preferable, and a solvent that is inert to the polymerization reaction of the polymerizable liquid crystal compound is preferable.
  • the solvent include water, alcohols such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, 2-butoxyethanol and propylene glycol monomethyl ether.
  • Solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, propylene glycol methyl ether acetate and ethyl lactate; acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone Ketone solvent; aliphatic hydrocarbon solvents such as pentane, hexane and heptane; ethylcyclohexa Alicyclic hydrocarbon solvents such as toluene; xylene and other aromatic hydrocarbon solvents; acetonitrile and other nitrile solvents; tetrahydrofuran and dimethoxyethane and other ether solvents; chloroform and chlorobenzene and other chlorine-containing solvents; dimethylacetamide and dimethylforme Examples include amide solvents such as
  • the content of the solvent in the polymerizable liquid crystal composition is preferably 50 to 98 parts by weight, more preferably 70 to 95 parts by weight based on 100 parts by weight of the polymerizable liquid crystal composition. Therefore, the solid content in 100 parts by mass of the polymerizable liquid crystal composition is preferably 2 to 50 parts by mass. When the solid content is 50 parts by mass or less, the viscosity of the polymerizable liquid crystal composition becomes low, so that the thickness of the film becomes substantially uniform, and unevenness tends to hardly occur. The solid content can be appropriately determined in consideration of the thickness of the liquid crystal cured film to be manufactured.
  • the polymerization initiator is a compound that generates a reactive species by the contribution of heat or light and can initiate a polymerization reaction such as a polymerizable liquid crystal compound.
  • the reactive species include radicals, cations and anions.
  • a photopolymerization initiator that generates a radical by light irradiation is preferable from the viewpoint of easy reaction control.
  • photopolymerization initiator examples include benzoin compounds, benzophenone compounds, benzyl ketal compounds, oxime compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, triazine compounds, iodonium salts, and sulfonium salts.
  • Irgacure (registered trademark) 907, Irgacure 184, Irgacure 651, Irgacure 819, Irgacure 250, Irgacure 369, Irgacure 379, Irgacure 127, Irgacure 2959, Irgacure 754, Irgacure 379EG (BASF Japan Ltd.) Seikaru BZ, Seikeol Z, Seikeol BEE (both manufactured by Seiko Chemical Co., Ltd.), Kayacure BP100 (manufactured by Nippon Kayaku Co., Ltd.), Kayacure UVI-6992 (manufactured by Dow), Adeka Optomer SP- 152, Adeka Optomer SP-170, Adeka Optomer N-1717, Adeka Optomer N-1919, Adeka Arculs NCI-831, Adeka Arculs NC -930 (manufactured
  • the maximum absorption wavelength is preferably from 300 nm to 400 nm, more preferably from 300 nm to 380 nm, and especially, ⁇ -acetophenone-based A polymerization initiator and an oxime-based photopolymerization initiator are preferred.
  • ⁇ -acetophenone compounds include 2-methyl-2-morpholino-1- (4-methylsulfanylphenyl) propan-1-one, 2-dimethylamino-1- (4-morpholinophenyl) -2-benzylbutane-1 And 2-dimethylamino-1- (4-morpholinophenyl) -2- (4-methylphenylmethyl) butan-1-one, and more preferably, 2-methyl-2-morpholino-1- ( 4-methylsulfanylphenyl) propan-1-one and 2-dimethylamino-1- (4-morpholinophenyl) -2-benzylbutan-1-one.
  • Commercially available ⁇ -acetophenone compounds include Irgacure 369, 379EG, 907 (all manufactured by BASF Japan Ltd.) and Sequol BEE (manufactured by Seiko Chemical Co., Ltd.).
  • the oxime ester-based photopolymerization initiator generates radicals such as phenyl radicals and methyl radicals when irradiated with light.
  • the polymerization of the polymerizable liquid crystal compound proceeds favorably by these radicals, and among them, an oxime ester-based photopolymerization initiator that generates a methyl radical is preferable because the polymerization reaction initiation efficiency is high. Further, from the viewpoint of making the polymerization reaction proceed more efficiently, it is preferable to use a photopolymerization initiator capable of efficiently utilizing ultraviolet light having a wavelength of 350 nm or more.
  • Carbazole compounds having an oxime ester structure include 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2- Methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) and the like.
  • oxime ester-based photopolymerization initiators include Irgacure OXE-01, Irgacure OXE-02, Irgacure OXE-03 (all manufactured by BASF Japan Ltd.), Adeka Optomer N-1919, and Adeka Arculs NCI-831. (Above, manufactured by ADEKA Corporation) and the like.
  • the content of the photopolymerization initiator is usually 0.1 to 30 parts by mass, preferably 1 to 20 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. It is. Within the above range, the reaction of the polymerizable group proceeds sufficiently, and the orientation of the polymerizable liquid crystal compound is not easily disturbed.
  • the leveling agent is an additive having a function of adjusting the fluidity of the polymerizable liquid crystal composition and making the coating film obtained by applying the composition more flat, and includes, for example, silicone-based, polyacrylate-based and Fluoroalkyl leveling agents. Commercial products may be used as the leveling agent.
  • DC3PA, SH7PA, DC11PA, SH28PA, SH29PA, SH30PA, ST80PA, ST86PA, SH8400, SH8700, and FZ2123 (all manufactured by Toray Dow Corning Co., Ltd.)
  • KP321, KP323, KP324, KP326, KP340, KP341, X22-161A, KF6001, (all manufactured by Shin-Etsu Chemical Co., Ltd.), TSF400, TSF401, TSF410, TSF4300, TSF4440, TSF4445, TSF-4446, TSF4452.
  • TSF4460 (all are Momentive Performance Materials Japan GK), Fluorinert (registered trademark) FC-72, and FC 40, FC-43, FC-3283 (all manufactured by Sumitomo 3M Limited), Megafax (registered trademark) R-08, R-30, R-90, F-410, F -411, F-443, F-445, F-470, F-477, F-479, F-482, F-483 (all are manufactured by DIC Corporation), F Top (trade name) EF301, EF303, EF351, EF352 (all manufactured by Mitsubishi Materials Electronic Chemicals, Ltd.), Surflon (registered trademark) S-381, S-382, S-383, S -393, SC-101, SC-105, KH-40, SA-100 (all manufactured by AGC Seimi Chemical Co., Ltd.), trade names E1830 and E5844 (manufactured by Daikin Fine Chemical Laboratory Co., Ltd.), BM- 000, BM-1100, BYK-352, B
  • the content of the leveling agent is preferably from 0.01 to 5 parts by mass, more preferably from 0.05 to 3 parts by mass, per 100 parts by mass of the polymerizable liquid crystal compound.
  • the content of the leveling agent is within the above range, the obtained cured liquid crystal film tends to be smoother, which is preferable.
  • the antioxidant may be a primary antioxidant selected from a phenolic antioxidant, an amine antioxidant, a quinone antioxidant, and a nitroso antioxidant, or may be a phosphorus antioxidant and a sulfur antioxidant.
  • a secondary antioxidant selected from a series of antioxidants may be used.
  • the content of the antioxidant is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. And preferably 0.1 to 5 parts by mass, more preferably 0.1 to 3 parts by mass.
  • Antioxidants can be used alone or in combination of two or more.
  • the photopolymerization initiator can be made more sensitive.
  • the photosensitizer include xanthones such as xanthone and thioxanthone; anthracenes having a substituent such as anthracene and an alkyl ether; phenothiazine; and rubrene.
  • the photosensitizers can be used alone or in combination of two or more.
  • the content of the photosensitizer is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, more preferably 0.1 to 5 parts by mass, based on 100 parts by mass of the polymerizable liquid crystal compound. 3 parts by mass.
  • the polymerizable liquid crystal composition can be obtained by stirring the polymerizable liquid crystal compound and components other than the polymerizable liquid crystal compound such as a solvent and a photopolymerization initiator at a predetermined temperature.
  • the horizontal alignment liquid crystal cured film forms, for example, a coating film of a polymerizable liquid crystal composition containing the at least one polymerizable liquid crystal compound, and horizontally aligns the polymerizable liquid crystal compound with respect to the coating film plane.
  • the polymerizable liquid crystal composition can be prepared by curing the polymerizable liquid crystal composition while maintaining the horizontal alignment state of the polymerizable liquid crystal compound.
  • the laminate of the present invention includes a horizontal alignment film.
  • the horizontal alignment film has an alignment regulating force for aligning in a horizontal direction with respect to a film plane of a cured liquid crystal film from which a polymerizable liquid crystal compound can be obtained.
  • the alignment regulating force can be arbitrarily adjusted depending on the type of the alignment film, the surface state, the rubbing conditions, and the like.
  • the alignment adjustment force is arbitrarily adjusted according to the polarization irradiation conditions and the like. It is possible to
  • the horizontal alignment film preferably has a solvent resistance that does not dissolve by application of the polymerizable liquid crystal composition or the like, and also has heat resistance in a heat treatment for removing the solvent or aligning the polymerizable liquid crystal compound described below.
  • Examples of the horizontal alignment film include a rubbing alignment film, a photo alignment film, and a grub alignment film having an uneven pattern or a plurality of grooves on the surface. From the viewpoint of the accuracy and quality of the orientation angle, a photo-alignment film is preferable.
  • the rubbing alignment film is usually applied by applying a composition containing an alignment polymer and a solvent (hereinafter, also referred to as an “orientation polymer composition”) to a surface on which a horizontal alignment film is to be formed, and then removing the solvent.
  • a composition containing an alignment polymer and a solvent hereinafter, also referred to as an “orientation polymer composition”
  • an alignment regulating force can be imparted.
  • the solvent include the same solvents as those described above as examples of the solvent that can be used for the polymerizable liquid crystal composition.
  • the oriented polymer for example, polyamides and gelatins having an amide bond in the molecule, polyimide having an imide bond in the molecule and polyamic acid which is a hydrolyzate thereof, polyvinyl alcohol, alkyl-modified polyvinyl alcohol, polyacrylamide, poly Oxazole, polyethyleneimine, polystyrene, polyvinylpyrrolidone, polyacrylic acid and polyacrylates. Among them, polyvinyl alcohol is preferable.
  • the oriented polymers can be used alone or in combination of two or more.
  • the concentration of the orienting polymer in the orienting polymer composition may be within a range in which the orienting polymer material can be completely dissolved in the solvent, but is preferably 0.1 to 20% in terms of solid content relative to the solution. About 1 to 10% is more preferable.
  • a commercially available alignment film material may be used as it is.
  • Examples of commercially available alignment film materials include Sanever (registered trademark, manufactured by Nissan Chemical Industries, Ltd.) and Optmer (registered trademark, manufactured by JSR Corporation).
  • the photo-alignment film is usually prepared by coating a composition containing a polymer and / or a monomer having a photoreactive group and a solvent (hereinafter also referred to as a “photo-alignment film forming composition”) on the surface on which a horizontal alignment film is to be formed. After removing the solvent, and then irradiating with polarized light (preferably polarized UV).
  • polarized light preferably polarized UV.
  • the photo-alignment film is also advantageous in that the direction of the alignment control force can be arbitrarily controlled by selecting the polarization direction of the polarized light to be irradiated.
  • the photoreactive group refers to a group that generates liquid crystal alignment ability when irradiated with light.
  • Specific examples include groups that are involved in a photoreaction that is the origin of the liquid crystal alignment ability, such as alignment induction or isomerization reaction, dimerization reaction, photocrosslinking reaction, or photodecomposition reaction of molecules generated by light irradiation.
  • a group that participates in a dimerization reaction or a photocrosslinking reaction is preferable in terms of excellent orientation.
  • a photoreactive group involved in the photodimerization reaction is preferable, the amount of polarized light required for photoalignment is relatively small, and a photoalignment film excellent in thermal stability and stability over time is easily obtained.
  • the photoreactive group is preferably a cinnamoyl group and a chalcone group.
  • the cured liquid crystal alignment film is formed from a polymerizable liquid crystal compound having a (meth) acryloyloxy group as a polymerizable group, the adhesion to the cured liquid crystal alignment film can be further improved.
  • a polymer having a photoreactive group for forming an alignment film a polymer having a cinnamoyl group such that the terminal of the polymer side chain has a cinnamic acid structure is particularly preferable.
  • the solvent contained in the composition for forming a photo-alignment film the same solvents as those exemplified above as the solvent that can be used for the polymerizable liquid crystal composition can be used, and the solubility of the polymer or monomer having a photoreactive group can be improved. It can be appropriately selected depending on the situation.
  • the content of the polymer or monomer having a photoreactive group in the composition for forming a photo-alignment film can be appropriately adjusted depending on the type of the polymer or monomer and the thickness of the desired photo-alignment film. Is preferably at least 0.2% by mass, more preferably 0.3 to 10% by mass, based on the mass of Further, the polymer forming the photo-alignment film is easy to manufacture, and when the cured film of the horizontally-aligned liquid crystal is formed from a polymerizable liquid crystal compound having a (meth) acryloyloxy group as a polymerizable group, the horizontal alignment liquid crystal is used. (Meth) acrylic polymer is preferable from the viewpoint that the adhesion to the cured film can be improved. As long as the properties of the photo-alignment film are not significantly impaired, the composition for forming a photo-alignment film may contain a polymer material such as polyvinyl alcohol or polyimide, or a photosensitizer.
  • the glove (groove) alignment film is a film having an uneven pattern or a plurality of grubs (grooves) on the film surface.
  • a polymerizable liquid crystal compound is applied to a film having a plurality of linear grubs arranged at equal intervals, liquid crystal molecules are aligned in a direction along the groove.
  • the thickness of the alignment film is usually in the range of 10 to 10000 nm, preferably in the range of 10 to 1000 nm, more preferably 10 to 500 nm, and still more preferably. Is in the range of 10 to 300 nm, particularly preferably 50 to 250 nm.
  • the laminate of the present invention includes a cured resin layer.
  • the thickness of the cured resin layer is from 0.1 to 10 ⁇ m, preferably from 0.5 to 5 ⁇ m, from the viewpoint of reducing the thickness of the laminate.
  • the cured resin layer is, for example, a film such as a cycloolefin polymer (COP), polyethylene terephthalate (PET), or triacetyl cellulose (TAC) that can also be used as a base material described later, or a cured resin containing a polymerizable monomer.
  • a cured resin layer obtained by curing the composition for forming a resin layer may be used, but a cured resin layer which is a cured product of the composition for forming a cured resin layer is preferable from the viewpoint of thinning.
  • the cured resin layer may be composed of multiple layers, but is preferably two layers or less, more preferably a single layer, from the viewpoint of productivity.
  • the cured resin layer is preferably optically isotropic in that it does not affect the optical characteristics of the multilayer.
  • the resin may be generically referred to as a representative of the most functional group. . That is, for example, among the polymerizable groups contained in the cured resin layer forming composition, an acrylic resin is used when the number of acryloyloxy groups is the largest, and an epoxy resin is used when the number of epoxy groups is the largest. In some cases.
  • the cured resin layer preferably contains at least one selected from the group consisting of an acrylic resin, an epoxy resin, an oxetane resin, a urethane resin, and a melamine resin.
  • the curability is high, and the reliability when combined with a horizontally aligned liquid crystal cured film is easily improved.
  • the composition for forming a cured resin layer constituting the cured resin layer is a composition containing a curable polymerizable monomer such as a radical polymerizable monomer, a cationic polymerizable monomer, or a thermopolymerizable monomer as a curable material. It is more preferable to include a radical polymerizable monomer or a cationic polymerizable monomer because the reaction rate is high and the productivity is improved, and the reliability when combined with the horizontal alignment liquid crystal cured film is easily improved.
  • a (meth) acrylate compound such as a polyfunctional (meth) acrylate compound
  • a urethane (meth) compound such as a polyfunctional urethane (meth) acrylate compound Acrylate compounds
  • epoxy (meth) acrylate compounds such as polyfunctional epoxy (meth) acrylate compounds
  • carboxyl group-modified epoxy (meth) acrylate compounds polyester (meth) acrylate compounds, and the like.
  • (meth) acryloyloxy is used from the viewpoint of improving reliability when combined with the horizontal alignment liquid crystal cured film, improving the adhesion with an adjacent layer, and improving the productivity. It preferably contains a polymerizable monomer having a group, more preferably contains a polyfunctional (meth) acrylate compound, and particularly preferably contains a polyfunctional acrylate compound.
  • the polyfunctional (meth) acrylate compound means a compound having two or more (meth) acryloyloxy groups in the molecule, for example, a bifunctional compound having two (meth) acryloyloxy groups in the molecule.
  • the term “(meth) acrylate” means “acrylate” or “methacrylate”
  • the term “(meth) acryloyl” also means “acryloyl” or “methacryloyl”.
  • the polyfunctional (meth) acrylate compound may contain one or more polyfunctional (meth) acrylate compounds. When two or more polyfunctional (meth) acrylate compounds are contained, the number of (meth) acryloyloxy groups may be the same or different between each polyfunctional (meth) acrylate compound.
  • bifunctional (meth) acrylate monomer examples include ethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol diacrylate.
  • Alkylene glycol di (meth) acrylates such as (meth) acrylate, 1,9-nonanediol di (meth) acrylate and neopentyl glycol di (meth) acrylate; diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate , Dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate and polyteto Polyoxyalkylene glycol di (meth) acrylates such as methylene glycol di (meth) acrylate; halogen-substituted alkylene glycol di (meth) acrylates such as tetrafluoroethylene glycol di (meth) acrylate; trimethylolpropane di (meth) acrylate; Di (meth) acrylate of aliphatic poly
  • the trifunctional (meth) acrylate monomer is a monomer having three (meth) acryloyloxy groups in the molecule, and examples thereof include glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, and ditrimethylol.
  • the tetrafunctional (meth) acrylate monomer is a monomer having four (meth) acryloyloxy groups in the molecule, and examples thereof include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, Pentaerythritol tetra (meth) acrylate, tripentaerythritol tetra (meth) acrylate, caprolactone modified pentaerythritol tetra (meth) acrylate, caprolactone modified tripentaerythritol tetra (meth) acrylate, ethylene oxide modified pentaerythritol tetra (meth) acrylate, ethylene Oxide-modified tripentaerythritol tetra (meth) acrylate, propylene oxide-modified pentaerythritol tetra (meth)
  • pentafunctional (meth) acrylate monomer examples include dipentaerythritol penta (meth) acrylate, tripentaerythritol penta (meth) acrylate, a reaction product of dipentaerythritol penta (meth) acrylate with an acid anhydride, and caprolactone-modified dipentane.
  • Examples of the hexafunctional (meth) acrylate monomer include dipentaerythritol hexa (meth) acrylate, tripentaerythritol hexa (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, and caprolactone-modified tripentaerythritol hexa (meth) acrylate , Ethylene oxide-modified dipentaerythritol hexa (meth) acrylate, ethylene oxide-modified tripentaerythritol hexa (meth) acrylate, propylene oxide-modified dipentaerythritol hexa (meth) acrylate, propylene oxide-modified tripentaerythritol hexa (meth) acrylate, etc. No.
  • Examples of the heptafunctional (meth) acrylate monomer include tripentaerythritol hepta (meth) acrylate, a reaction product of tripentaerythritol hepta (meth) acrylate and an acid anhydride, caprolactone-modified tripentaerythritol hepta (meth) acrylate, and caprolactone-modified Reaction product of tripentaerythritol hepta (meth) acrylate and acid anhydride, ethylene oxide-modified tripentaerythritol hepta (meth) acrylate, reaction product of ethylene oxide-modified tripentaerythritol hepta (meth) acrylate and acid anhydride, propylene Oxide-modified tripentaerythritol hepta (meth) acrylate, propylene oxide-modified tripentaerythritol hepta (meth) acryl
  • the octafunctional (meth) acrylate monomer is a monomer having eight (meth) acryloyloxy groups in the molecule, and examples thereof include tripentaerythritol octa (meth) acrylate and caprolactone-modified tripentaerythritol octa (meth). Examples include acrylate, ethylene oxide-modified tripentaerythritol octa (meth) acrylate, and propylene oxide-modified tripentaerythritol octa (meth) acrylate.
  • examples of the cationically polymerizable monomer suitable for forming the cured resin layer include an epoxy compound having an epoxy group and an oxetane compound having an oxetanyl group.
  • the epoxy compound is a polymerizable monomer having at least one epoxy group in a molecule, and examples thereof include an alicyclic epoxy compound, an aromatic epoxy compound, and an aliphatic epoxy compound.
  • An alicyclic epoxy compound is a compound having at least one epoxy group in a molecule directly bonded to an alicyclic ring.
  • These alicyclic epoxy compounds can be used alone or in combination of two or more.
  • Aromatic epoxy compounds are compounds having an aromatic ring and an epoxy group in the molecule. Specific examples thereof include bisphenol-type epoxy compounds such as diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, and diglycidyl ether of bisphenol S; and oligomers thereof; phenol novolak epoxy resin, cresol novolak epoxy resin, and hydroxybenzaldehyde phenol novolak.
  • Novolak-type epoxy resins such as epoxy resins; polyfunctional epoxy such as glycidyl ether of 2,2 ', 4,4'-tetrahydroxydiphenylmethane and glycidyl ether of 2,2', 4,4'-tetrahydroxybenzophenone Compounds: polyfunctional epoxy resins such as epoxidized polyvinyl phenol and the like. These aromatic epoxy compounds can be used alone or in combination of two or more.
  • the hydrogenated nucleus of the above aromatic epoxy compound becomes a hydrogenated epoxy compound.
  • These are polyvalent compounds obtained by selectively performing a hydrogenation reaction on an aromatic polyhydroxy compound, typically a bisphenol, which is a raw material of the corresponding aromatic epoxy compound, in the presence of a catalyst and under pressure. It can be produced by a method in which an alcohol, typically a hydrogenated bisphenol, is used as a raw material, and epichlorohydrin is reacted with the raw material to form a chlorohydrin ether, which is then intramolecularly closed with an alkali.
  • These hydrogenated epoxy compounds can be used alone or in combination of two or more.
  • the aliphatic epoxy compound includes a polyglycidyl ether of an aliphatic polyhydric alcohol or an alkylene oxide adduct thereof. Specific examples thereof include diglycidyl ether of neopentyl glycol, diglycidyl ether of 1,4-butanediol, diglycidyl ether of 1,6-hexanediol, triglycidyl ether of glycerin, triglycidyl ether of trimethylolpropane, and polyethylene.
  • alkylene oxides ethylene oxide or propylene oxide
  • aliphatic dihydric alcohols such as diglycidyl ether of glycol, diglycidyl ether of propylene glycol, ethylene glycol, propylene glycol, and glycerin And polyglycidyl ether of the resulting polyether polyol.
  • alkylene oxides ethylene oxide or propylene oxide
  • aliphatic dihydric alcohols such as diglycidyl ether of glycol, diglycidyl ether of propylene glycol, ethylene glycol, propylene glycol, and glycerin
  • polyglycidyl ether of the resulting polyether polyol such as diglycidyl ether of glycol, diglycidyl ether of propylene glycol, ethylene glycol, propylene glycol, and glycerin
  • polyglycidyl ether of the resulting polyether polyol such as diglycidyl ether of glycol, digly
  • An oxetane compound is a compound containing at least one oxetanyl group in a molecule, and specific examples thereof include 3-ethyl-3-hydroxymethyloxetane (also called oxetane alcohol), 2-ethylhexyloxetane, 1,4- Bis [ ⁇ (3-ethyloxetane-3-yl) methoxy ⁇ methyl] benzene (also called xylylenebisoxetane), 3-ethyl-3 [ ⁇ (3-ethyloxetane-3-yl) methoxy ⁇ methyl] oxetane, Examples thereof include 3-ethyl-3- (phenoxymethyl) oxetane and 3- (cyclohexyloxy) methyl-3-ethyloxetane.
  • 3-ethyl-3-hydroxymethyloxetane also called oxetane alcohol
  • 2-ethylhexyloxetane
  • thermopolymerizable monomer suitable for forming the cured resin layer examples include a melamine compound.
  • the melamine compound examples include hexamethoxymethylmelamine, hexaethoxymethylmelamine, hexapropoxymethylmelamine, hexabutoxymethylmelamine and the like.
  • the melamine compounds can be used alone or in combination of two or more.
  • urethane resin As another polymerizable monomer, a combination of an isocyanate compound and an alcohol compound having a hydroxyl group in a molecule can be mentioned, and a urethane resin is produced.
  • Isocyanate compounds used for producing urethane resins and urea resins usually have two or more isocyanato groups (—NCO) in the molecule, and various aromatic, aliphatic or alicyclic diisocyanates may be used. it can.
  • Specific examples include tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalenediisocyanate, 3,3'-dimethyl-4,4 ' -Diphenyl diisocyanate, xylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and nuclear hydrogenated diisocyanate having an aromatic ring among these.
  • the alcohol compound used in the urethane resin usually has two or more hydroxyl groups in the molecule.
  • the polymerizable monomer is intended to suppress curl generated by heating during or after curing, to improve processing characteristics, to adjust the adhesion to a substrate or a cured liquid crystal film, and to improve productivity. It can be appropriately selected from the viewpoint of improving the solvent resistance and from the viewpoint of improving the reliability when combined with the horizontal alignment liquid crystal cured film.
  • the cured resin layer preferably contains at least one selected from the group consisting of an acrylic resin, an epoxy resin, an oxetane resin, a urethane resin, and a melamine resin.
  • two or more kinds of radical polymerizable monomers may be used, or a radical polymerizable monomer and a cation polymerizable monomer may be combined. In particular, it is preferable to contain a radical polymerizable monomer from the viewpoint of improving productivity.
  • the composition for forming a cured resin layer includes, in addition to the polymerizable monomer, a photopolymerization initiator, a thermal polymerization initiator, a solvent, an antioxidant, a photosensitizer, a leveling agent, an antioxidant, a chain transfer agent, and a light stabilizer.
  • Additives such as agents, tackifiers, fillers, flow regulators, plasticizers, defoamers, pigments, antistatic agents, and ultraviolet absorbers can be further included. These additives are usually used in an amount of about 0.1 to 15% by mass based on the mass of the solid content of the composition for forming a cured resin layer.
  • the solid content means the total amount of components except the solvent from the composition.
  • the content of the polymerizable monomer is preferably at least 50 parts by mass, more preferably at least 60 parts by mass, based on 100 parts by mass of the solid content of the composition. Within the above range, it is easy to improve the reliability when combined with a horizontally aligned liquid crystal cured film.
  • the composition for forming a cured resin layer contains a polymerization initiator.
  • the polymerizable initiator include a photopolymerization initiator and a thermal polymerization initiator. From the viewpoint of improving productivity, it is preferable to use a photopolymerization initiator.
  • the photopolymerization initiator is not particularly limited as long as it can initiate curing of the polymerizable monomer by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams.
  • a photoradical polymerization initiator or a photocationic polymerization initiator can be used as appropriate.
  • photo-radical polymerization initiator and the photo-cation polymerization polymerization initiator specifically, those similar to the polymerization initiators previously exemplified as those which can be blended into the polymerizable liquid crystal composition forming the horizontal alignment liquid crystal cured film are used. No.
  • the content of the polymerization initiator is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the total amount of the curable compound. It is 5 to 7 parts by mass.
  • the content of the polymerization initiator is not less than the above lower limit, the polymerization initiation ability is sufficiently exhibited, and when the content of the polymerization initiator is not more than the above upper limit, the polymerization initiator hardly remains.
  • the composition for forming a cured resin layer contains a solvent
  • the viewpoint of sufficiently dissolving the polymerizable monomer or polymerization initiator added to the composition for forming a cured resin layer appropriately depending on the viewpoint of not dissolving the base material
  • a solvent that can be used in a polymerizable liquid crystal composition for forming a cured film of a horizontally aligned liquid crystal can be used.
  • the content of the solvent is about 1 to 10,000 parts by weight, preferably about 10 to 1,000 parts by weight, more preferably about 20 to 500 parts by weight, based on 100 parts by weight of the total amount of the components contained in the composition for forming a cured resin layer. May be.
  • the cured resin layer is preferably optically isotropic.
  • the cured resin layer is optically isotropic, when combined with a horizontally aligned liquid crystal cured film, it is possible to obtain a laminate having high optical characteristics without affecting the optical characteristics of the horizontally aligned liquid crystal cured film. Can be.
  • the laminate of the present invention includes the cured liquid crystal layer for horizontal alignment, the horizontal alignment film and the cured resin layer.
  • the order of lamination of each layer can be appropriately selected, but preferably, a cured liquid crystal layer for horizontal alignment, a horizontal alignment film, and a cured resin layer are present adjacent to this order.
  • the uncured polymerizable component and the like contained in the cured horizontally aligned liquid crystal film may be in a layer close to or adjacent to the cured liquid crystal film (particularly, the viscosity of the cured liquid crystal film). Diffusion to the adhesive layer) can be effectively suppressed. Therefore, in a preferred embodiment, the laminate of the present invention further includes an adhesive layer, and a horizontally aligned liquid crystal cured film, a horizontal alignment film, a cured resin layer, and an adhesive layer are present adjacent to each other in this order. I do.
  • a step of forming a cured resin layer (hereinafter, also referred to as a “cured resin layer forming step”), A step of forming a horizontal alignment film on the cured resin layer (hereinafter, also referred to as a “horizontal alignment film forming step”), and A step of forming a horizontal alignment liquid crystal cured film on the horizontal alignment film (hereinafter, also referred to as a “horizontal alignment liquid crystal cured film forming step”) can be produced in this order.
  • the cured resin layer forming step the cured resin layer is obtained by applying the composition for forming a cured resin layer as described above on a base material, and then removing the solvent by drying if a solvent is contained, and removing the polymerizable monomer. Obtained by curing.
  • the substrate examples include a glass substrate and a film substrate, and a resin film substrate is preferable from the viewpoint of processability.
  • the resin constituting the film base include polyolefins such as polyethylene, polypropylene, and norbornene-based polymers; cyclic olefin-based resins; polyvinyl alcohol; polyethylene terephthalate; polymethacrylate; Plastics such as diacetylcellulose, and cellulose esters such as cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyetherketone; polyphenylene sulfide and polyphenylene oxide.
  • Such a resin can be used as a substrate by forming a film by a known method such as a solvent casting method or a melt extrusion method.
  • the surface of the base material (for example, the surface bonded to the adhesive layer) may be subjected to a surface treatment such as a release treatment such as a silicone treatment, a corona treatment, or a plasma treatment.
  • ⁇ ⁇ A commercially available product may be used as the base material.
  • Commercially available cellulose ester substrates include, for example, Fuji Photo Film's cellulose ester substrate such as Fujitac Film; Konica Minolta Opto Co., Ltd. such as "KC8UX2M”, “KC8UY”, and “KC4UY”. And the like.
  • Commercially available cyclic olefin-based resins include, for example, cyclic olefin-based resins such as "Topas (registered trademark)" manufactured by Ticona (Germany); and cyclic olefins manufactured by JSR Corporation such as "Arton (registered trademark)".
  • cyclic olefin-based resin manufactured by Nippon Zeon Co., Ltd. such as "ZEONOR (registered trademark)” and “ZEONEX (registered trademark)”; Mitsui such as "Apel” (registered trademark)
  • a cyclic olefin-based resin manufactured by Chemical Co., Ltd. is exemplified.
  • a commercially available cyclic olefin-based resin substrate can also be used.
  • Commercially available cyclic olefin-based resin substrates include cyclic olefin-based resin substrates manufactured by Sekisui Chemical Co., Ltd.
  • the thickness of the substrate is usually from 5 to 300 ⁇ m, and preferably from 10 to 150 ⁇ m, from the viewpoints of thinning, easy removal of the substrate, and the like.
  • a spin coating method As a method of applying the composition for forming a cured resin layer to a substrate or the like, a spin coating method, an extrusion method, a gravure coating method, a die coating method, a bar coating method, a coating method such as an applicator method, a flexo method, or the like.
  • a known method such as a printing method may be used.
  • composition for forming a cured resin layer contains a solvent
  • examples of a method for drying and removing the solvent include a natural drying method, a ventilation drying method, a heating drying method, and a reduced-pressure drying method.
  • the obtained cured resin layer may have an alignment polymer composition as described above.
  • An object is applied, the solvent is removed to form a coating film, and the coating film is rubbed to obtain a horizontal alignment film.
  • Examples of the method for applying the oriented polymer composition on the cured resin layer and removing the solvent include the same method as the method for forming the cured resin layer.
  • a method of the rubbing treatment for example, a method of bringing the above-mentioned coating film into contact with a rotating rubbing roll around which a rubbing cloth is wound.
  • a plurality of regions (patterns) having different orientation directions can be formed in the orientation film.
  • the horizontal alignment film included in the laminate of the present invention is a photo-alignment film
  • the composition for forming a photo-alignment film as described above is applied onto the obtained cured resin layer, and the solvent is removed. Later, by irradiation with polarized light (preferably, polarized light UV), an optical horizontal alignment film is obtained.
  • polarized light preferably, polarized light UV
  • an optical horizontal alignment film is obtained.
  • a method of applying the composition for forming a photo-alignment film on the cured resin layer and a method of removing the solvent from the composition for forming a photo-alignment film the same method as the method described for the orientable polymer composition is used. No.
  • a method of directly irradiating polarized UV to a material obtained by removing a solvent from a composition for forming a photo-alignment film applied on a surface on which a horizontal alignment film is to be formed may be used. It is particularly preferable that the polarized light is substantially parallel light.
  • the wavelength of the polarized light to be irradiated is preferably in a wavelength region where the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy. Specifically, UV (ultraviolet light) having a wavelength in the range of 250 to 400 nm is particularly preferable.
  • Examples of a light source used for the polarized light irradiation include a xenon lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a metal halide lamp, an ultraviolet laser such as KrF, ArF, and the like. Lamps are more preferred. Among these, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, and a metal halide lamp are preferable because of their high emission intensity of ultraviolet light having a wavelength of 313 nm. By irradiating the light from the light source through an appropriate polarizer, polarized UV can be emitted. As such a polarizer, a polarizing filter, a polarizing prism such as Glan-Thompson or Gran-Terra, or a wire grid type polarizer can be used.
  • a method of forming an uneven pattern by performing exposure and development and rinsing treatment after exposure through an exposure mask having a pattern-shaped slit on the photosensitive polyimide film surface, a plate having grooves on the surface A method of forming a layer of a UV-curable resin before curing on a shaped master, transferring the formed resin layer to the cured resin layer and then curing, and a method of curing the UV-cured resin before curing formed on the cured resin layer.
  • the polymerizable liquid crystal composition as described above is applied on the obtained horizontal alignment film, and the coating film obtained from the polymerizable liquid crystal composition is polymerized.
  • the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition is heated to a temperature equal to or higher than the liquid crystal phase transition temperature to dry and remove the solvent from the coating film, and at the same time, align the polymerizable liquid crystal compound in the horizontal direction.
  • the heating temperature of the coating film can be appropriately determined in consideration of the polymerizable liquid crystal compound to be used, the material of the base material forming the coating film, and the like.
  • the heating temperature is preferably at least 3 ° C. higher than the liquid crystal phase (nematic phase) transition temperature of the polymerizable liquid crystal compound in order to bring the polymerizable liquid crystal compound into a horizontal alignment state while removing the solvent contained in the polymerizable liquid crystal composition.
  • the temperature is high, more preferably 5 ° C. or higher.
  • the upper limit of the heating temperature is not particularly limited, but is preferably 180 ° C. or lower, more preferably 150 ° C. or lower, in order to avoid damage to the coating film and the substrate due to the heating.
  • the nematic phase transition temperature can be measured using, for example, a polarizing microscope equipped with a temperature control stage, a differential scanning calorimeter (DSC), a thermogravimetric differential thermal analyzer (TG-DTA), or the like.
  • the heating time can be appropriately determined according to the heating temperature, the type of the polymerizable liquid crystal compound to be used, the type of the solvent, the boiling point and the amount thereof, etc., and is usually 0.5 to 10 minutes, preferably 0.5 to 10 minutes. ⁇ 5 minutes.
  • the removal of the solvent from the coating film may be performed simultaneously with heating the polymerizable liquid crystal compound to a temperature higher than the nematic phase transition temperature or separately, but is preferably performed simultaneously from the viewpoint of improving productivity.
  • the removal of the solvent from the coating film is usually performed simultaneously with heating the polymerizable liquid crystal compound to a temperature higher than the nematic phase transition temperature.
  • a pre-drying step may be provided for appropriately removing the solvent in the coating film under the condition that the polymerizable liquid crystal compound contained in the coating film obtained from the liquid crystal composition is not polymerized. Examples of the drying method in the preliminary drying step include a natural drying method, a ventilation drying method, a heating drying method, and a reduced-pressure drying method.
  • the drying temperature (heating temperature) in the drying step depends on the type of the polymerizable liquid crystal compound to be used and the solvent. Can be determined as appropriate according to the type, the boiling point and the amount thereof.
  • the polymerizable liquid crystal compound is polymerized while keeping the horizontal alignment state of the polymerizable liquid crystal compound, whereby a cured liquid crystal film with horizontal alignment is formed.
  • a photopolymerization method is preferable, and a horizontal alignment liquid crystal cured film can be formed by irradiating light from the application surface side of the polymerizable liquid crystal composition.
  • the light to be applied to the dried coating film includes the type of the photopolymerization initiator and the type of the polymerizable liquid crystal compound contained in the dried coating film (particularly, the type of the polymerizable group of the polymerizable liquid crystal compound). And the amount is appropriately selected according to the amount thereof.
  • ultraviolet light is preferred in that it is easy to control the progress of the polymerization reaction and that a photopolymerization device that is widely used in the field can be used, and ultraviolet light is preferable, so that photopolymerization is possible. It is preferable to select the types of the polymerizable liquid crystal compound and the photopolymerization initiator contained in the polymerizable liquid crystal composition.
  • the polymerization temperature can be controlled by irradiating light while cooling the dried coating film by an appropriate cooling means.
  • an appropriate cooling means By adopting such a cooling means, if the polymerization of the polymerizable liquid crystal compound is carried out at a lower temperature, a horizontally oriented liquid crystal cured film can be appropriately formed even if a substrate having relatively low heat resistance is used.
  • Examples of the light source of the active energy ray include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a halogen lamp, a carbon arc lamp, a tungsten lamp, a gallium lamp, an excimer laser, and a wavelength range.
  • Examples include an LED light source that emits light at 380 to 440 nm, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, and a metal halide lamp.
  • the ultraviolet irradiation intensity is usually from 10 to 3,000 mW / cm 2 .
  • the ultraviolet irradiation intensity is preferably an intensity in a wavelength region effective for activating the photopolymerization initiator.
  • the time for irradiating light is generally 0.1 second to 10 minutes, preferably 0.1 second to 5 minutes, more preferably 0.1 second to 3 minutes, and further preferably 0.1 second to 1 minute. is there.
  • the integrated light amount is 10 to 3,000 mJ / cm 2 , preferably 50 to 2,000 mJ / cm 2 , more preferably 100 to 1,000 mJ / cm 2. 2 .
  • the laminate of the present invention includes a pressure-sensitive adhesive layer
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer include a pressure-sensitive pressure-sensitive adhesive, a dry-setting adhesive, and a chemical reaction-type adhesive.
  • the chemically reactive adhesive include an active energy ray-curable adhesive.
  • the pressure-sensitive adhesive usually contains a polymer and may contain a solvent.
  • the polymer include an acrylic polymer, a silicone polymer, a polyester, a polyurethane, and a polyether.
  • acrylic pressure-sensitive adhesives containing acrylic polymers have excellent optical transparency, moderate wettability and cohesive strength, excellent adhesion, and high weather resistance and heat resistance. Floating or peeling hardly occurs under the condition of humidification or humidification.
  • acrylic polymer examples include (meth) acrylates in which the alkyl group in the ester portion is an alkyl group having 1 to 20 carbon atoms such as a methyl group, an ethyl group, or a butyl group, and (meth) acrylic acid or hydroxyethyl (meth) acrylate.
  • a copolymer with a (meth) acrylic monomer having a functional group such as
  • the pressure-sensitive pressure-sensitive adhesive containing such a copolymer is excellent in tackiness, and even when removed after pasting to a transfer-receiving body, without causing adhesive residue or the like on the transfer-receiving body, it is relatively easy. It is preferable because it can be removed.
  • the glass transition temperature of the acrylic polymer is preferably 25 ° C. or lower, more preferably 0 ° C. or lower.
  • the weight average molecular weight of such an acrylic polymer is preferably 100,000 or more.
  • the pressure-sensitive adhesive may contain a light diffusing agent.
  • the light diffusing agent is an additive that imparts light diffusing property to the pressure-sensitive adhesive, and may be fine particles having a refractive index different from that of the polymer contained in the pressure-sensitive adhesive.
  • Examples of the light diffusing agent include fine particles made of an inorganic compound and fine particles made of an organic compound (polymer).
  • the difference in refractive index between the polymer contained in the pressure-sensitive adhesive as an active ingredient and the light diffusing agent is usually 0.01 or more, and is preferably 0.01 to 0.2 from the viewpoint of the brightness and display properties of the display device.
  • the fine particles used as the light diffusing agent are preferably spherical fine particles, which are also nearly monodisperse, and more preferably fine particles having an average particle diameter of 2 to 6 ⁇ m.
  • the refractive index is measured by a general minimum declination method or Abbe refractometer.
  • Examples of the fine particles made of an inorganic compound include aluminum oxide (refractive index: 1.76) and silicon oxide (refractive index: 1.45).
  • Examples of the fine particles composed of an organic compound (polymer) include melamine beads (refractive index: 1.57), polymethyl methacrylate beads (refractive index: 1.49), and methyl methacrylate / styrene copolymer resin beads (refractive index: 1.50).
  • the content of the light diffusing agent is usually 3 to 30 parts by mass based on 100 parts by mass of the polymer.
  • the thickness of the pressure-sensitive adhesive is not particularly limited because it is determined according to the adhesive strength and the like, but is usually 1 ⁇ m to 40 ⁇ m. From the viewpoints of workability, durability and the like, the thickness is preferably 3 ⁇ m to 25 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m. By setting the thickness of the pressure-sensitive adhesive layer formed from the pressure-sensitive adhesive to 5 ⁇ m to 20 ⁇ m, the brightness of the display device when viewed from the front or obliquely is maintained, and blurring or blurring of the display image is prevented. It can be less likely to occur.
  • the dry-setting adhesive may contain a solvent.
  • the dry-solidifying adhesive contains, as a main component, a polymer of a monomer having a protic functional group such as a hydroxyl group, a carboxyl group or an amino group and an ethylenically unsaturated group, or a urethane resin.
  • the composition include a composition containing a crosslinking agent or a curable compound such as an aldehyde, an epoxy compound, an epoxy resin, a melamine compound, a zirconia compound, and a zinc compound.
  • Examples of the polymer of a monomer having a protic functional group such as a hydroxyl group, a carboxyl group or an amino group and an ethylenically unsaturated group include ethylene-maleic acid copolymer, itaconic acid copolymer, acrylic acid copolymer and acrylamide. Copolymers, saponified polyvinyl acetate, polyvinyl alcohol-based resins and the like can be mentioned.
  • polyvinyl alcohol-based resin examples include polyvinyl alcohol, partially saponified polyvinyl alcohol, completely saponified polyvinyl alcohol, carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino group-modified polyvinyl alcohol.
  • the content of the polyvinyl alcohol-based resin in the water-based adhesive is usually 1 to 10 parts by mass, preferably 1 to 5 parts by mass with respect to 100 parts by mass of water.
  • the urethane resin examples include a polyester ionomer type urethane resin.
  • the polyester-based ionomer type urethane resin referred to herein is a urethane resin having a polyester skeleton and a resin into which a small amount of an ionic component (hydrophilic component) is introduced.
  • Such an ionomer type urethane resin is emulsified in water to form an emulsion without using an emulsifier, and thus can be used as an aqueous adhesive.
  • a polyester ionomer type urethane resin it is effective to mix a water-soluble epoxy compound as a crosslinking agent.
  • the epoxy resin examples include a polyamide epoxy resin obtained by reacting a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine with a dicarboxylic acid such as adipic acid and epichlorohydrin, and the like.
  • polyamide epoxy resins include “SUMIREZ Resin (registered trademark) 650” and “SUMIREZ Resin 675” (all manufactured by Sumika Chemtex Co., Ltd.), and “WS-525” (manufactured by Nippon PMC). And the like.
  • the amount of the epoxy resin is usually 1 to 100 parts by mass, preferably 1 to 50 parts by mass with respect to 100 parts by mass of the polyvinyl alcohol-based resin.
  • the thickness of the adhesive layer formed from the dried and solidified adhesive is generally 0.001 to 5 ⁇ m, preferably 0.01 to 2 ⁇ m, more preferably 0.01 to 0.5 ⁇ m. is there. If the pressure-sensitive adhesive layer formed from the dried and solidified adhesive is too thick, the appearance tends to be poor.
  • the active energy ray-curable adhesive may contain a solvent.
  • the active energy ray-curable adhesive is an adhesive that cures when irradiated with an active energy ray.
  • Examples of the active energy ray-curable adhesive include a cationically polymerizable adhesive containing an epoxy compound and a cationic polymerization initiator, a radically polymerizable adhesive containing an acrylic curing component and a radical polymerization initiator, and an epoxy compound.
  • An adhesive containing both a cationically polymerizable curing component such as an acrylic compound and a radically polymerizable curing component, and an adhesive containing a cationic polymerization initiator and a radical polymerization initiator, and these polymerization initiators are included.
  • an adhesive that is cured by irradiating an electron beam is included.
  • a radical polymerizable active energy ray-curable adhesive containing an acrylic curing component and a photoradical polymerization initiator and a cationic polymerizable active energy ray-curable adhesive containing an epoxy compound and a photocationic polymerization initiator Agents are preferred.
  • the acrylic curing component include (meth) acrylates such as methyl (meth) acrylate and hydroxyethyl (meth) acrylate, and (meth) acrylic acid.
  • the active energy ray-curable adhesive containing an epoxy compound may further contain a compound other than the epoxy compound. Examples of compounds other than epoxy compounds include oxetane compounds and acrylic compounds.
  • Examples of the photoradical polymerization initiator and the photocationic polymerization initiator include the photoradical polymerization initiator and the photocationic polymerization initiator described above.
  • the content of the radical polymerization initiator and the cationic polymerization initiator is usually 0.5 to 20 parts by mass, preferably 1 to 15 parts by mass, based on 100 parts by mass of the active energy ray-curable adhesive.
  • the active energy ray-curable adhesive further contains an ion trapping agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow regulator, a plasticizer, an antifoaming agent, and the like. You may.
  • an active energy ray is defined as an energy ray that can decompose a compound that generates an active species to generate an active species.
  • active energy rays include visible light, ultraviolet rays, infrared rays, X-rays, ⁇ -rays, ⁇ -rays, ⁇ -rays, and electron beams, and ultraviolet rays and electron beams are preferred.
  • Preferred irradiation conditions of the ultraviolet ray are the same as those for the polymerization of the polymerizable liquid crystal compound described above.
  • the laminate of the present invention has a horizontal alignment liquid crystal cured film, a horizontal alignment film and a cured resin layer, and optionally, in addition to an adhesive layer, optionally another liquid crystal cured film such as a vertical alignment liquid crystal cured film or another oriented liquid crystal cured film. Layers may be included.
  • the present invention includes an elliptically polarizing plate including the laminate of the present invention and a polarizing film.
  • the polarizing film is a film having a polarizing function, and examples thereof include a stretched film on which a dye having absorption anisotropy is adsorbed and a film including a film coated with a dye having absorption anisotropy as a polarizer. Examples of the dye having absorption anisotropy include dichroic dyes.
  • a film containing a stretched film adsorbing a dye having absorption anisotropy as a polarizer is usually a step of uniaxially stretching a polyvinyl alcohol-based resin film, by dyeing the polyvinyl alcohol-based resin film with a dichroic dye.
  • the polyvinyl alcohol resin is obtained by saponifying a polyvinyl acetate resin.
  • a polyvinyl acetate resin in addition to polyvinyl acetate which is a homopolymer of vinyl acetate, a copolymer of vinyl acetate with another monomer copolymerizable therewith is used.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the degree of saponification of the polyvinyl alcohol-based resin is usually about 85 to 100 mol%, preferably 98 mol% or more.
  • the polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes may be used.
  • the degree of polymerization of the polyvinyl alcohol-based resin is usually about 1,000 to 10,000, preferably in the range of 1,500 to 5,000.
  • a film formed of such a polyvinyl alcohol-based resin is used as a raw film of a polarizing film.
  • the method of forming the polyvinyl alcohol-based resin is not particularly limited, and the film can be formed by a known method.
  • the thickness of the polyvinyl alcohol-based raw film can be, for example, about 10 to 150 ⁇ m.
  • Uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before, simultaneously with, or after dyeing with the dichroic dye.
  • the uniaxial stretching may be performed before the boric acid treatment or may be performed during the boric acid treatment.
  • the film may be uniaxially stretched between rolls having different peripheral speeds, or may be uniaxially stretched using a hot roll.
  • the uniaxial stretching may be dry stretching in which stretching is performed in the air, or wet stretching in which a polyvinyl alcohol-based resin film is stretched using a solvent in a swollen state.
  • the stretching ratio is usually about 3 to 8 times.
  • ⁇ Dyeing the polyvinyl alcohol-based resin film with the dichroic dye is performed, for example, by dipping the polyvinyl alcohol-based resin film in an aqueous solution containing the dichroic dye.
  • dichroic dye examples include iodine and a dichroic organic dye.
  • dichroic organic dyes examples include C.I. I. Dichroic direct dyes composed of a disazo compound such as DIRECT ⁇ RED ⁇ 39 and dichroic direct dyes composed of a compound such as trisazo, tetrakisazo and the like.
  • the polyvinyl alcohol-based resin film is preferably subjected to a dipping treatment in water before the dyeing treatment.
  • iodine When iodine is used as the dichroic dye, a method of immersing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide and dyeing is usually employed.
  • the content of iodine in this aqueous solution is usually about 0.01 to 1 part by mass per 100 parts by mass of water.
  • the content of potassium iodide is usually about 0.5 to 20 parts by mass per 100 parts by mass of water.
  • the temperature of the aqueous solution used for dyeing is usually about 20 to 40 ° C.
  • the immersion time (dyeing time) in the aqueous solution is usually about 20 to 1,800 seconds.
  • a method of immersing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic dye and dyeing is usually employed.
  • the content of the dichroic organic dye in this aqueous solution is usually about 1 ⁇ 10 ⁇ 4 to 10 parts by weight, preferably 1 ⁇ 10 ⁇ 3 to 1 part by weight, and more preferably 100 parts by weight of water. Is 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 parts by mass.
  • This aqueous solution may contain an inorganic salt such as sodium sulfate as a dyeing aid.
  • the temperature of the aqueous dichroic dye solution used for dyeing is usually about 20 to 80 ° C.
  • the immersion time (dyeing time) in the aqueous solution is usually about 10 to 1,800 seconds.
  • the boric acid treatment after dyeing with the dichroic dye can be usually performed by a method of immersing the dyed polyvinyl alcohol-based resin film in an aqueous boric acid solution.
  • the content of boric acid in the boric acid aqueous solution is usually about 2 to 15 parts by mass, and preferably 5 to 12 parts by mass, per 100 parts by mass of water.
  • the aqueous boric acid solution preferably contains potassium iodide, and the content of potassium iodide is usually 0.1 to 100 parts by mass of water. The amount is about 15 parts by mass, preferably 5 to 12 parts by mass.
  • the immersion time in the boric acid aqueous solution is usually about 60 to 1,200 seconds, preferably 150 to 600 seconds, and more preferably 200 to 400 seconds.
  • the temperature of the boric acid treatment is usually 50 ° C. or higher, preferably 50 to 85 ° C., and more preferably 60 to 80 ° C.
  • the polyvinyl alcohol-based resin film after the boric acid treatment is usually washed with water.
  • the water washing treatment can be performed, for example, by a method of dipping a boric acid-treated polyvinyl alcohol-based resin film in water.
  • the temperature of the water in the water washing treatment is usually about 5 to 40 ° C.
  • the immersion time is usually about 1 to 120 seconds.
  • a drying treatment is performed to obtain a polarizer.
  • the drying treatment can be performed using, for example, a hot-air dryer or a far-infrared heater.
  • the temperature of the drying treatment is usually about 30 to 100 ° C., preferably 50 to 80 ° C.
  • the time of the drying treatment is usually about 60 to 600 seconds, preferably 120 to 600 seconds.
  • the water content of the polarizer is reduced to a practical level.
  • the water content is usually about 5 to 20% by weight, preferably 8 to 15% by weight. When the water content is less than 5% by weight, the flexibility of the polarizer is lost, and the polarizer may be damaged or broken after drying. When the water content exceeds 20% by weight, the thermal stability of the polarizer may be deteriorated.
  • the thickness of the polarizer obtained by subjecting the polyvinyl alcohol-based resin film to uniaxial stretching, dyeing with a dichroic dye, boric acid treatment, washing with water and drying is preferably 5 to 40 ⁇ m.
  • Examples of the film coated with a dye having absorption anisotropy include a composition containing a dichroic dye having liquid crystallinity, or a film obtained by applying a composition containing a dichroic dye and a polymerizable liquid crystal. Is mentioned.
  • the film preferably has a protective film on one or both sides. As the protective film, the same one as the substrate exemplified above can be used.
  • Thin films coated with a dye having absorption anisotropy are preferred to be thin, but if too thin, strength tends to decrease and processability tends to be poor.
  • the thickness of the film is usually 20 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 0.5 to 3 ⁇ m.
  • the film coated with the dye having absorption anisotropy include the films described in JP-A-2012-33249.
  • a polarizing film is obtained by laminating a transparent protective film on at least one surface of the polarizer thus obtained via an adhesive.
  • the transparent protective film the same transparent film as the substrate exemplified above can be preferably used.
  • the elliptically polarizing plate of the present invention is configured to include the laminate of the present invention and a polarizing film, for example, by laminating the laminate of the present invention and a polarizing film via an adhesive layer or the like.
  • the elliptically polarizing plate of the present invention can be obtained.
  • the slow axis (optical axis) of the cured horizontally aligned liquid crystal film constituting the laminate and the absorption axis of the polarizing film are determined. It is preferable that the layers are stacked so that the formed angle is 45 ⁇ 5 °.
  • the elliptically polarizing plate of the present invention may have a configuration of a conventional general elliptically polarizing plate, or a polarizing film and a retardation film.
  • a configuration include, for example, a pressure-sensitive adhesive layer (sheet) for bonding an elliptically polarizing plate to a display element such as an organic EL, and the purpose of protecting the surface of a polarizing film or a retardation film from scratches and dirt.
  • a pressure-sensitive adhesive layer sheet for bonding an elliptically polarizing plate to a display element such as an organic EL
  • Protective film and the like are examples of such a configuration.
  • a display device is a device having a display element, and includes a light-emitting element or a light-emitting device as a light-emitting source.
  • Examples of the display device include a liquid crystal display device, an organic electroluminescence (EL) display device, an inorganic electroluminescence (EL) display device, a touch panel display device, an electron emission display device (for example, a field emission display device (FED), a surface field emission display device).
  • EL organic electroluminescence
  • EL inorganic electroluminescence
  • FED field emission display device
  • the liquid crystal display device examples include a transmission type liquid crystal display device, a transflective type liquid crystal display device, a reflection type liquid crystal display device, a direct-view type liquid crystal display device, and a projection type liquid crystal display device.
  • These display devices include a table for displaying a two-dimensional image.
  • the elliptically polarizing plate of the present invention is suitable for an organic electroluminescence (EL) display device and an inorganic electroluminescence (EL) display device.
  • the laminate of the present invention can be suitably used for a liquid crystal display device and a touch panel display device. These display devices include an elliptically polarizing plate including the highly reliable laminate of the present invention. Thereby, good image display characteristics can be exhibited.
  • Example 1 Preparation of composition for forming horizontal alignment film 5 parts (weight average molecular weight: 30,000) of a photo-alignment material having the following structure and 95 parts of cyclopentanone (solvent) were mixed as components, and the resulting mixture was mixed with 80 parts.
  • the composition for forming a horizontal alignment film was obtained by stirring at 1 ° C. for 1 hour.
  • polymerizable liquid crystal compound (X1) and a polymerizable liquid crystal compound (X2) each having the following molecular structure were prepared for use in forming a horizontal alignment liquid crystal cured film.
  • the polymerizable liquid crystal compound (X1) was produced according to the method described in JP-A-2010-31223.
  • the polymerizable liquid crystal compound (X2) was produced according to the method described in JP-A-2009-173893.
  • a 1 mg / 50 mL tetrahydrofuran solution of the polymerizable liquid crystal compound (X1) is prepared, a measurement sample is placed in a measurement cell having an optical path length of 1 cm, and the measurement sample is subjected to an ultraviolet-visible spectrophotometer (“UV-2450 manufactured by Shimadzu Corporation”). )), The absorption spectrum was measured, and the maximum absorption wavelength was read from the obtained absorption spectrum.
  • the maximum absorption wavelength ⁇ max in the wavelength range of 300 to 400 nm was 350 nm.
  • composition for forming cured resin layer 50 parts of dipentaerythritol hexaacrylate (Aronix M-403, polyfunctional acrylate manufactured by Toagosei Co., Ltd.), 50 parts of acrylate resin (Ebecryl 4858 manufactured by Daicel UCB Co., Ltd.), 2 A solution was prepared by dissolving 3 parts of -methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one (Irgacure 907; manufactured by Ciba Specialty Chemicals) in 250 parts of isopropanol. The resulting composition for forming a cured resin layer was obtained.
  • cured liquid crystal film with horizontal alignment A composition for forming a cured resin layer is applied on a base COP film (ZF-14-50) manufactured by Zeon Corporation using a bar coater and dried at 50 ° C. for 1 minute. Thereafter, the cured resin is irradiated with ultraviolet rays (integrated light at a wavelength of 365 nm: 400 mJ / cm 2 under a nitrogen atmosphere under a nitrogen atmosphere) using a high-pressure mercury lamp (“Unicure VB-15201BY-A”, manufactured by Ushio Inc.). A layer was formed. When the thickness of the obtained cured resin layer was measured with a contact-type film thickness meter, it was 0.5 ⁇ m.
  • the composition for forming a horizontal alignment film is applied on the obtained cured resin layer with a bar coater, dried at 80 ° C. for 1 minute, and polarized UV irradiation apparatus (SPOT CURE SP-9; manufactured by Ushio Inc.) was used to perform a polarized UV exposure at an integrated light amount at a wavelength of 313 nm: 100 mJ / cm 2 to obtain a horizontal alignment film.
  • SPOT CURE SP-9 polarized UV irradiation apparatus
  • the thickness of the obtained horizontal alignment film was measured by an ellipsometer and found to be 0.2 ⁇ m.
  • the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film was applied on the horizontal alignment film using a bar coater, heated at 120 ° C. for 90 seconds, and then heated with a high-pressure mercury lamp (Unicur VB-15201BY-A, UV light (integrated light quantity at a wavelength of 365 nm: 500 mJ / cm 2 in a nitrogen atmosphere) from the side coated with the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film using USHIO INC. Then, a horizontally aligned liquid crystal cured film was formed.
  • Examples 2 to 5 A laminate was prepared and a reliability test was performed in the same manner as in Example 1, except that the thickness of the cured resin layer was changed to the thickness shown in Table 1. Table 1 shows the results.
  • Example 6 A laminate was prepared and a reliability test was performed in the same manner as in Example 1, except that the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film was prepared according to the following method. Table 1 shows the results.
  • NMP N-methyl-2-pyrrolidone
  • a 1 mg / 50 mL tetrahydrofuran solution of the polymerizable liquid crystal compound (X3) is prepared, a measurement sample is placed in a measurement cell having an optical path length of 1 cm, and the measurement sample is measured with an ultraviolet-visible spectrophotometer (“UV-2450 manufactured by Shimadzu Corporation”). )), The absorption spectrum was measured, and the maximum absorption wavelength was read from the obtained absorption spectrum.
  • the maximum absorption wavelength ⁇ max in the wavelength range of 300 to 400 nm was 352 nm.
  • Example 7 A laminate was prepared and a reliability test was performed in the same manner as in Example 1, except that the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film was prepared according to the following method. Table 1 shows the results.
  • NMP N-methyl-2-pyrrolidone
  • a 1 mg / 50 mL tetrahydrofuran solution of the polymerizable liquid crystal compound (X4) is prepared, a measurement sample is placed in a measurement cell having an optical path length of 1 cm, and the measurement sample is measured with an ultraviolet-visible spectrophotometer (“UV-2450 manufactured by Shimadzu Corporation”). )), The absorption spectrum was measured, and the maximum absorption wavelength was read from the obtained absorption spectrum.
  • the maximum absorption wavelength ⁇ max in the wavelength range of 300 to 400 nm was 352 nm.
  • Example 8 A laminate was prepared and a reliability test was performed in the same manner as in Example 1, except that a cured liquid crystal layer was prepared according to the following method. Table 1 shows the results.
  • Example 8 Method for Producing Cured Horizontal Alignment Liquid Crystal of Example 8
  • a composition for forming a horizontal alignment film was applied on a base COP film (ZF-14-50) manufactured by Zeon Corporation using a bar coater, After drying for 5 minutes, polarized UV exposure was performed using a polarized UV irradiation apparatus (SPOT CURE SP-9; manufactured by Ushio Inc.) at an integrated light amount of 100 mJ / cm 2 at a wavelength of 313 nm to obtain a horizontal alignment film. The thickness of the obtained horizontal alignment film was measured by an ellipsometer and found to be 0.2 ⁇ m.
  • SPOT CURE SP-9 polarized UV irradiation apparatus
  • the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film was applied on the horizontal alignment film using a bar coater, heated at 120 ° C. for 90 seconds, and then heated with a high-pressure mercury lamp (Unicur VB-15201BY-A, UV light (integrated light quantity at a wavelength of 365 nm under a nitrogen atmosphere: 500 mJ / cm 2 ) from the side coated with the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film using USHIO INC. Then, a horizontally aligned liquid crystal cured film was formed.
  • a high-pressure mercury lamp Unicur VB-15201BY-A, UV light (integrated light quantity at a wavelength of 365 nm under a nitrogen atmosphere: 500 mJ / cm 2 .
  • a composition for forming a cured resin layer was applied using a bar coater, dried at 50 ° C. for 1 minute, and then subjected to a high-pressure mercury lamp (“Unicur VB- The cured resin layer was formed by irradiating ultraviolet rays (15201BY-A, manufactured by Ushio Inc.) (in a nitrogen atmosphere, the integrated light quantity at a wavelength of 365 nm: 400 mJ / cm 2 ). When the thickness of the obtained cured resin layer was measured by a contact-type film thickness meter, it was 2.0 ⁇ m.
  • the substrate thickness is subtracted to obtain the horizontal alignment film / horizontal alignment.
  • the total thickness of the laminated body composed of the liquid crystal cured film and the cured resin layer was confirmed, it was 4.4 ⁇ m.
  • Example 9 As described below, a composition for forming a cured resin layer was prepared, and a laminate was prepared using the same composition for forming a horizontal alignment film and the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film as in Example 1. did. The obtained laminate was subjected to a reliability test according to the following method. Table 1 shows the results.
  • Example 9 Method for Preparing Cured Horizontal Alignment Liquid Crystal Film of Example 9
  • a composition for forming a horizontal alignment film was applied on a base COP film (ZF-14-50) manufactured by Zeon Corporation using a bar coater. After drying for 5 minutes, polarized UV exposure was performed using a polarized UV irradiation apparatus (SPOT CURE SP-9; manufactured by Ushio Inc.) at an integrated light amount of 100 mJ / cm 2 at a wavelength of 313 nm to obtain a horizontal alignment film. The thickness of the obtained horizontal alignment film was measured by an ellipsometer and found to be 0.2 ⁇ m.
  • SPOT CURE SP-9 polarized UV irradiation apparatus
  • the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film was applied on the horizontal alignment film using a bar coater, heated at 120 ° C. for 90 seconds, and then heated with a high-pressure mercury lamp (Unicur VB-15201BY-A, UV light (integrated light quantity at a wavelength of 365 nm under a nitrogen atmosphere: 500 mJ / cm 2 ) from the side coated with the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film using USHIO INC. Then, a horizontally aligned liquid crystal cured film was formed.
  • a high-pressure mercury lamp Unicur VB-15201BY-A, UV light (integrated light quantity at a wavelength of 365 nm under a nitrogen atmosphere: 500 mJ / cm 2 .
  • Example 9 The horizontal alignment liquid crystal cured film surface of the laminate of the base material, the horizontal alignment film, and the horizontal alignment liquid crystal cured film obtained by the above-described method was applied with an adhesive (25 ⁇ m pressure-sensitive adhesive manufactured by Lintec). Was bonded to a COP film (ZF-14-23) through the above, and the base COP film (ZF-14-50) in the laminate of the base material, the horizontal alignment film, and the horizontal alignment liquid crystal cured film was removed. Then, after applying a corona treatment to the surface of the horizontal alignment film in the laminate prepared by the above-described method, a composition for forming a cured resin layer was applied thereto, and a separately prepared COP film (ZF- 14-50).
  • an adhesive 25 ⁇ m pressure-sensitive adhesive manufactured by Lintec
  • the phase difference between the laminated body and the cured liquid crystal film of the horizontally aligned liquid crystal prepared by the above method was measured by Oji Scientific Instruments “KOBRA-WPR”, and the retardation value of the cured resin layer was determined from the difference. was 3 nm or less, and it was confirmed that it was optically isotropic.
  • the sample was set so that the glass surface was in contact with the hot plate among the obtained samples, and heated at 100 ° C. for 10 minutes. Re550 before and after heating was measured using Oji Scientific Instruments KOBRA-WPR, and the amount of change in Re550 was calculated. Table 1 shows the results.
  • Example 10 A laminate was prepared and a reliability test was performed in the same manner as in Example 9, except that the composition for forming a cured resin layer was prepared according to the following method. Table 1 shows the results. From the difference between the retardation value of the laminate measured by Oji Scientific Instruments “KOBRA-WPR” and the retardation value of the cured horizontally oriented liquid crystal film, the retardation value of the cured resin layer is 3 nm or less. It was confirmed that it was optically isotropic.
  • Comparative Example 1 A laminate was prepared and a reliability test was performed in the same manner as in Example 1, except that a cured liquid crystal layer was prepared according to the following method. Table 1 shows the results.
  • a composition for forming a horizontal alignment film was applied on a base COP film (ZF-14-50) manufactured by Zeon Corporation using a bar coater, After drying for 5 minutes, polarized UV exposure was performed using a polarized UV irradiation apparatus (SPOT CURE SP-9; manufactured by Ushio Inc.) at an integrated light amount of 100 mJ / cm 2 at a wavelength of 313 nm to obtain a horizontal alignment film.
  • the thickness of the obtained horizontal alignment film was measured by an ellipsometer and found to be 0.2 ⁇ m.
  • the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film was applied on the horizontal alignment film using a bar coater, heated at 120 ° C. for 90 seconds, and then heated with a high-pressure mercury lamp (Unicur VB-15201BY-A, UV light (integrated light quantity at a wavelength of 365 nm under a nitrogen atmosphere: 500 mJ / cm 2 ) from the side coated with the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film using USHIO INC. Then, a horizontally aligned liquid crystal cured film was formed.
  • a high-pressure mercury lamp Unicur VB-15201BY-A, UV light (integrated light quantity at a wavelength of 365 nm under a nitrogen atmosphere: 500 mJ / cm 2 .
  • the substrate thickness is subtracted, and the horizontal alignment film and the horizontal alignment liquid crystal cured film are calculated.
  • the total film thickness of the resulting laminate was confirmed to be 2.4 ⁇ m.

Abstract

This laminate comprises: a horizontally aligned liquid crystal cured film which is a cured product of a polymerizable liquid crystal composition including at least one polymerizable liquid crystal compound having a maximum absorption wavelength of 300-400 nm; a horizontally aligned film; and a cured resin layer, wherein the horizontally aligned liquid crystal cured film is a cured product of a polymerizable liquid crystal composition which is cured in a state in which the polymerizable liquid crystal composition is aligned in a horizontal direction with respect to the surface of the liquid crystal cured film, and satisfies formula (1): Re(450)/Re(550)≦1 (1) [in formula (1), Re(λ) represents an in-plane phase difference value of the horizontally aligned liquid crystal cured film at a wavelength of λ nm], and the cured resin layer has a thickness of 0.1-10 μm.

Description

水平配向液晶硬化膜を含む積層体Laminate including horizontal alignment liquid crystal cured film
 本発明は、水平配向液晶硬化膜を含む積層体およびその製造方法に関する。 (4) The present invention relates to a laminate including a cured liquid crystal layer having a horizontal alignment and a method for producing the same.
 楕円偏光板は、偏光板と位相差板とが積層された光学部材であり、例えば、有機EL画像表示装置等の平面状態で画像を表示する装置において、該装置を構成する電極での光反射を防止するために用いられている。この楕円偏光板を構成する位相差板としては、一般に、いわゆるλ/4板が用いられる。 An elliptically polarizing plate is an optical member in which a polarizing plate and a retardation plate are laminated. For example, in a device that displays an image in a planar state such as an organic EL image display device, light reflection by an electrode constituting the device is used. Is used to prevent Generally, a so-called λ / 4 plate is used as a retardation plate constituting the elliptically polarizing plate.
 可視光の広い波長範囲で一様の位相差性能を発揮しやすい点で、楕円偏光板を構成する位相差板としては逆波長分散性を示すものが好適である。そのような位相差板として、逆波長分散性を示す重合性液晶化合物を、液晶硬化膜の平面に対して水平方向に配向させた状態で重合し、硬化させた水平配向液晶硬化膜からなる位相差板が知られている(特許文献1)。 位相 Since it is easy to exhibit uniform retardation performance over a wide wavelength range of visible light, a retardation plate constituting the elliptically polarizing plate is preferably one exhibiting reverse wavelength dispersion. As such a retardation plate, a polymerizable liquid crystal compound exhibiting reverse wavelength dispersion is polymerized in a state of being oriented in the horizontal direction with respect to the plane of the liquid crystal cured film, and is formed of a cured horizontally aligned liquid crystal cured film. A phase difference plate is known (Patent Document 1).
特開2017-27058号公報JP 2017-27058 A
 逆波長分散性を示す重合性液晶化合物は、一般に波長300~400nmの間に光吸収を有している。そのような重合性液晶化合物を含む重合性液晶組成物の塗膜を基材上等に形成した後、塗布面側から紫外線等の光を照射することによって前記重合性液晶組成物の塗膜を硬化して液晶硬化膜を作製する場合、重合性液晶化合物が光を吸収してしまうことにより、重合性液晶組成物の塗膜深部まで十分な光量が到達し難く、得られる液晶硬化膜を含む位相差板や楕円偏光板において光学特性に変化が生じるなど信頼性が悪化するという問題があった。上記特許文献1では、液晶硬化膜を形成するために主感光波長の異なる2種類以上の光重合開始剤を用いることにより、重合性液晶化合物による光吸収の影響を抑えて重合反応を行うことが提案されている。しかしながら、特に、近年ではディスプレイの適用用途の拡大に伴い、さらに過酷な条件下での信頼性を要求されており、より高い信頼性を有する液晶硬化膜の作製が大きな課題となっていた。 重合 A polymerizable liquid crystal compound exhibiting reverse wavelength dispersion generally has light absorption between 300 and 400 nm. After forming a coating film of the polymerizable liquid crystal composition containing such a polymerizable liquid crystal compound on a substrate or the like, the coating film of the polymerizable liquid crystal composition is irradiated by irradiating light such as ultraviolet light from the application surface side. When cured to produce a cured liquid crystal film, the polymerizable liquid crystal compound absorbs light, so it is difficult for a sufficient amount of light to reach the deep part of the coating film of the polymerizable liquid crystal composition, including the obtained liquid crystal cured film There has been a problem that the reliability is deteriorated such as a change in optical characteristics of the retardation plate or the elliptically polarizing plate. In Patent Document 1, the use of two or more photopolymerization initiators having different main photosensitive wavelengths to form a cured liquid crystal film allows the polymerization reaction to be performed while suppressing the influence of light absorption by the polymerizable liquid crystal compound. Proposed. However, in particular, in recent years, with the expansion of applications of displays, reliability under severer conditions has been required, and production of a liquid crystal cured film having higher reliability has been a major issue.
 そこで、本発明は、高い光学特性を有し、かつ、過酷な環境下においても光学特性の変化が生じ難い、高い信頼性を有する逆波長分散性の水平配向液晶硬化膜を含む積層体を提供することを目的とする。 Therefore, the present invention provides a laminate including a horizontally-oriented liquid crystal cured film of reverse wavelength dispersion having high reliability, having high optical characteristics, and hardly causing a change in optical characteristics even in a severe environment, and having high reliability. The purpose is to do.
 本発明者等は、上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。すなわち、本発明は、以下の態様を包含する。
[1]少なくとも1種の波長300~400nmの間に極大吸収波長を有する重合性液晶化合物を含む重合性液晶組成物の硬化物である水平配向液晶硬化膜、水平配向膜および硬化樹脂層を含み、
 前記水平配向液晶硬化膜が、前記重合性液晶化合物が該液晶硬化膜平面に対して水平方向に配向した状態で硬化した重合性液晶組成物の硬化物であり、かつ、式(1):
 Re(450)/Re(550)≦1   (1)
[式(1)中、Re(λ)は波長λnmにおける水平配向液晶硬化膜の面内位相差値を表す]
を満たし、
 前記硬化樹脂層の厚みが0.1~10μmである、積層体。
[2]水平配向液晶硬化膜と、水平配向膜と、硬化樹脂層とがこの順に隣接して存在する、前記[1]に記載の積層体。
[3]水平配向液晶硬化膜の膜厚が0.5~5.0μmである、前記[1]または[2]に記載の積層体。
[4]水平配向液晶硬化膜が式(2): 
 120≦Re(550)≦170   (2)
を満たす、前記[1]~[3]のいずれかに記載の積層体。
[5]少なくとも1種の波長300~400nmの間に極大吸収波長を有する重合性液晶化合物が重合性基として(メタ)アクリロイルオキシ基を有する、前記[1]~[4]のいずれかに記載の積層体。
[6]水平配向膜が光配向膜である、前記[1]~[5]のいずれかに記載の積層体。
[7]水平配向膜が光反応性基を有するポリマーおよび/またはモノマーを含む光配向膜形成用組成物の硬化物からなり、前記ポリマーおよび/またはモノマーが光反応性基としてシンナモイル基を含む、前記[1]~[6]のいずれかに記載の積層体。
[8]硬化樹脂層が光学的に等方的である、前記[1]~[7]のいずれかに記載の積層体。
[9]硬化樹脂層がアクリル樹脂、エポキシ樹脂、オキセタン樹脂、ウレタン樹脂、およびメラミン樹脂からなる群から選択される少なくとも1種を含んでなる、前記[1]~[8]のいずれかに記載の積層体。
[10]粘接着剤層をさらに含み、水平配向液晶硬化膜、水平配向膜、硬化樹脂層、粘接着剤層がこの順に隣接して存在する、前記[1]~[9]のいずれかに記載の積層体。
[11]前記[1]~[10]のいずれかに記載の積層体と偏光フィルムとを含む、楕円偏光板。
[12]前記積層体中の水平配向液晶硬化膜の遅相軸と、偏光フィルムの吸収軸との成す角が45±5°である、前記[11]に記載の楕円偏光板。
[13]前記[11]または[12]に記載の楕円偏光板を含む、有機EL表示装置。
[14]硬化樹脂層を形成する工程、
 前記硬化樹脂層上に水平配向膜を形成する工程、および
 前記水平配向膜上に水平配向液晶硬化膜を形成する工程
をこの順に含む、前記[1]~[10]のいずれかに記載の積層体の製造方法。
The present inventors have conducted intensive studies to solve the above problems, and as a result, completed the present invention. That is, the present invention includes the following embodiments.
[1] A cured product of a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound having a maximum absorption wavelength between at least one wavelength of 300 to 400 nm, including a cured liquid crystal alignment film, a horizontal alignment film, and a cured resin layer. ,
The horizontal alignment liquid crystal cured film is a cured product of a polymerizable liquid crystal composition cured in a state where the polymerizable liquid crystal compound is oriented in a horizontal direction with respect to the liquid crystal cured film plane, and formula (1):
Re (450) / Re (550) ≦ 1 (1)
[In the formula (1), Re (λ) represents an in-plane retardation value of the cured liquid crystal alignment film at a wavelength of λ nm]
The filling,
A laminate wherein the thickness of the cured resin layer is 0.1 to 10 μm.
[2] The laminate according to [1], wherein the cured liquid crystal layer, the horizontal alignment film, and the cured resin layer are adjacent to each other in this order.
[3] The laminate according to the above [1] or [2], wherein the thickness of the cured horizontal alignment liquid crystal film is 0.5 to 5.0 μm.
[4] The cured film of the horizontal alignment liquid crystal is represented by formula (2):
120 ≦ Re (550) ≦ 170 (2)
The laminate according to any one of the above [1] to [3], which satisfies the following.
[5] The method according to any one of [1] to [4], wherein at least one polymerizable liquid crystal compound having a maximum absorption wavelength between 300 and 400 nm has a (meth) acryloyloxy group as a polymerizable group. Laminate.
[6] The laminate according to any one of [1] to [5], wherein the horizontal alignment film is a photo alignment film.
[7] The horizontal alignment film is composed of a cured product of a composition for forming a photo alignment film including a polymer and / or a monomer having a photoreactive group, and the polymer and / or the monomer includes a cinnamoyl group as a photoreactive group. The laminate according to any one of the above [1] to [6].
[8] The laminate according to any one of [1] to [7], wherein the cured resin layer is optically isotropic.
[9] The method according to any one of [1] to [8], wherein the cured resin layer comprises at least one selected from the group consisting of an acrylic resin, an epoxy resin, an oxetane resin, a urethane resin, and a melamine resin. Laminate.
[10] Any of the above-mentioned [1] to [9], further comprising an adhesive layer, wherein a horizontal alignment liquid crystal cured film, a horizontal alignment film, a cured resin layer, and an adhesive layer are present adjacent to each other in this order. A laminate according to the above.
[11] An elliptically polarizing plate comprising the laminate according to any one of [1] to [10] and a polarizing film.
[12] The elliptically polarizing plate according to [11], wherein an angle formed between a slow axis of the cured liquid crystal layer of the horizontally aligned liquid crystal in the laminate and an absorption axis of the polarizing film is 45 ± 5 °.
[13] An organic EL display device including the elliptically polarizing plate according to [11] or [12].
[14] a step of forming a cured resin layer,
The laminate according to any one of [1] to [10], including a step of forming a horizontal alignment film on the cured resin layer, and a step of forming a horizontal alignment liquid crystal cured film on the horizontal alignment film in this order. How to make the body.
 本発明によれば、高い光学特性を有し、かつ、過酷な環境下においても光学特性の変化が生じ難い、高い信頼性を有する逆波長分散性の水平配向液晶硬化膜を含む積層体を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the laminated body which has a high optical characteristic, the optical characteristic does not change easily even in a severe environment, and has a highly reliable reverse wavelength dispersive horizontally-aligned liquid crystal cured film is provided. can do.
 本発明の積層体は、波長300~400nmの間に極大吸収波長を有する少なくとも1種の重合性液晶化合物を含む重合性液晶組成物の硬化物である水平配向液晶硬化膜、水平配向膜および硬化樹脂層を含む。本発明の積層体を構成する水平配向液晶硬化膜は、前記重合性液晶組成物に含まれる少なくとも1種の重合性液晶化合物が、得られる液晶硬化膜の平面に対して水平方向に配向した状態で硬化した重合性液晶組成物の硬化物であり、下記式(1)を満たす。
 Re(450)/Re(550)≦1   (1)
[式(1)中、Re(λ)は波長λnmにおける水平配向液晶硬化膜の面内位相差値を表す]。
The laminate of the present invention is a cured product of a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound having a maximum absorption wavelength between 300 and 400 nm, a cured product of a horizontally oriented liquid crystal, a horizontally oriented film, and a cured product. Including a resin layer. The horizontally aligned liquid crystal cured film constituting the laminate of the present invention has a state in which at least one polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition is horizontally oriented with respect to the plane of the obtained liquid crystal cured film. And a cured product of the polymerizable liquid crystal composition, which satisfies the following formula (1).
Re (450) / Re (550) ≦ 1 (1)
[In the formula (1), Re (λ) represents an in-plane retardation value of the cured liquid crystal alignment film at a wavelength of λ nm].
 本発明において水平配向液晶硬化膜は、短波長での面内位相差値が長波長での面内位相差値よりも小さくなる、いわゆる逆波長分散性を示す重合性液晶化合物から形成される。
このような逆波長分散性を示す重合性液晶化合物は、一般に波長300~400nmの間に極大吸収波長を有しており、そのような重合性液晶化合物を含む重合性液晶組成物を基材上に塗布し、塗布面側から紫外線等の光を照射して液晶硬化膜を作製する場合、重合性液晶化合物が光を吸収することにより、重合性液晶組成物の塗膜の深部(すなわち、塗膜の基材側)まで十分な光量が到達し難くなる。このため、重合性液晶組成物の塗膜、特にその深部には未硬化の重合性モノマーやオリゴマーが残留しやすくなり、そのような未硬化成分は高温または高温多湿などの過酷な環境下において、位相差板や楕円偏光板を構成する際に液晶硬化膜に近接または隣接して設けられる粘接着剤層等に拡散しやすく、該位相差板や楕円偏光板の光学特性に変化を生じる要因となると考えられる。
In the present invention, the cured film of the horizontally aligned liquid crystal is formed of a polymerizable liquid crystal compound having a so-called reverse wavelength dispersion, in which the in-plane retardation value at a short wavelength is smaller than the in-plane retardation value at a long wavelength.
A polymerizable liquid crystal compound having such reverse wavelength dispersion generally has a maximum absorption wavelength between 300 and 400 nm, and a polymerizable liquid crystal composition containing such a polymerizable liquid crystal compound is coated on a substrate. When a liquid crystal cured film is prepared by irradiating light such as ultraviolet rays from the application surface side, the polymerizable liquid crystal compound absorbs light, thereby forming a deep portion of the coating film of the polymerizable liquid crystal composition (that is, It is difficult for a sufficient amount of light to reach the substrate side of the film). For this reason, uncured polymerizable monomers and oligomers are likely to remain in the coating film of the polymerizable liquid crystal composition, particularly in the deep portion thereof, and such uncured components are subjected to severe environments such as high temperature or high temperature and humidity. When forming a phase difference plate or an elliptically polarizing plate, it is easily diffused into an adhesive layer or the like provided close to or adjacent to the liquid crystal cured film, and causes a change in optical characteristics of the phase difference plate or the elliptically polarizing plate. It is thought that it becomes.
 これに対して、本発明の積層体は硬化樹脂層を含むことにより、水平配向液晶硬化膜中に未硬化の重合性モノマーやオリゴマーが存在していても、得られる水平配向液晶硬化膜を含む位相差板や楕円偏光板において該液晶硬化膜に近接して設けられる粘接着剤層等への未硬化成分の拡散を抑制することができるため、高い光学特性を有し、かつ、高温または高温多湿などの過酷な環境下においても光学特性の変化を生じ難い、高い信頼性を示す積層体となり得る。 On the other hand, the laminate of the present invention includes the cured resin layer, so that even if an uncured polymerizable monomer or oligomer is present in the cured horizontal alignment liquid crystal film, it includes the obtained cured horizontal alignment liquid crystal film. Since it is possible to suppress the diffusion of the uncured component to the adhesive layer or the like provided in the vicinity of the liquid crystal cured film in a retardation plate or an elliptically polarizing plate, it has high optical properties, and Even under a severe environment such as high temperature and high humidity, a change in optical characteristics is unlikely to occur, and a laminate having high reliability can be obtained.
 本発明において、水平配向液晶硬化膜は逆波長分散性を示す上記式(1)を満たす。逆波長分散性が向上し、該水平配向液晶硬化膜と偏光板を含む楕円偏光板を表示装置に適用した場合の正面色相が向上するため、Re(450)/Re(550)は、好ましくは0.70以上、より好ましくは0.78以上であり、また、好ましくは1未満、より好ましくは0.95以下、さらに好ましくは0.92以下である。なお、以下、本明細書における「正面反射色相の向上」に関する効果は、水平配向液晶硬化膜を含む楕円偏光板を表示装置に適用した際の正面反射色相における向上効果を意味する。 に お い て In the present invention, the cured liquid crystal of the horizontally aligned liquid crystal satisfies the above-mentioned formula (1) showing the reverse wavelength dispersion. Re (450) / Re (550) is preferably set because the reverse wavelength dispersibility is improved and the front hue is improved when the elliptically polarizing plate including the cured liquid crystal alignment film and the polarizing plate is applied to a display device. It is 0.70 or more, more preferably 0.78 or more, and preferably less than 1, more preferably 0.95 or less, and even more preferably 0.92 or less. Hereinafter, the effect relating to “improvement of front reflection hue” in the present specification means an improvement effect in front reflection hue when an elliptically polarizing plate including a cured liquid crystal layer is applied to a display device.
 上記面内位相差値は、水平配向液晶硬化膜の厚みdによって、調整することができる。
面内位相差値は、上記式Re(λ)=(nx(λ)-ny(λ))×d〔式中、nx(λ)は水平配向液晶硬化膜の膜面内における波長λでの主屈折率を表し、ny(λ)はnxと同一面内でnxの方向に対して直交する方向の波長λでの屈折率を表し、dは水平配向液晶硬化膜の膜厚を表す〕によって決定されることから、所望の面内位相差値(Re(λ):波長λ(nm)における水平配向液晶硬化膜の面内位相差値)を得るには、3次元屈折率と膜厚dとを調整すればよい。なお、3次元屈折率は、後述する重合性液晶化合物の分子構造並びに配向状態に依存する。
The in-plane retardation value can be adjusted by adjusting the thickness d of the cured liquid crystal layer.
The in-plane retardation value is expressed by the above formula Re (λ) = (nx (λ) −ny (λ)) × d [where nx (λ) is the wavelength λ in the film plane of the horizontally aligned liquid crystal cured film. Represents the main refractive index, ny (λ) represents the refractive index at a wavelength λ in a direction orthogonal to the direction of nx in the same plane as nx, and d represents the thickness of the cured liquid crystal alignment film.] Therefore, in order to obtain a desired in-plane retardation value (Re (λ): the in-plane retardation value of the cured liquid crystal alignment film at the wavelength λ (nm)), the three-dimensional refractive index and the film thickness d are determined. And can be adjusted. The three-dimensional refractive index depends on the molecular structure and alignment state of a polymerizable liquid crystal compound described later.
 本発明の積層体において、水平配向液晶硬化膜は下記式(2)を満たすことが好ましい。
 120nm≦Re(550)≦170nm   (2)
 水平配向液晶硬化膜の面内位相差Re(550)が式(2)の範囲内であると、これを含む積層体を表示装置に適用した際の正面反射色相の向上効果に優れる。面内位相差値のさらに好ましい範囲は、130nm≦Re(550)≦150nmである。
In the laminate of the present invention, it is preferable that the horizontal alignment liquid crystal cured film satisfies the following expression (2).
120 nm ≦ Re (550) ≦ 170 nm (2)
When the in-plane retardation Re (550) of the cured liquid crystal layer is within the range of the expression (2), the effect of improving the front reflection hue when a laminate including the same is applied to a display device is excellent. A more preferable range of the in-plane retardation value is 130 nm ≦ Re (550) ≦ 150 nm.
 水平配向液晶硬化膜の膜厚は、積層体の薄型化の観点から、好ましくは0.5~5.0μm、より好ましくは0.8~4μm、さらに好ましくは1.0~3.5μmである。 The thickness of the cured liquid crystal layer is preferably 0.5 to 5.0 μm, more preferably 0.8 to 4 μm, and still more preferably 1.0 to 3.5 μm, from the viewpoint of reducing the thickness of the laminate. .
 本発明において、水平配向液晶硬化膜を形成する少なくとも1種の重合性液晶化合物は、波長300~400nmの間に極大吸収波長を有する重合性液晶化合物である。重合性液晶組成物に光重合開始剤が含まれる場合、長期保管時に重合性液晶化合物の重合反応およびゲル化が進行するおそれがあるが、重合性液晶化合物の極大吸収波長が300~400nmであると保管中に紫外光が曝露されても、光重合開始剤からの反応活性種の発生および該反応活性種による重合性液晶化合物の重合反応およびゲル化の進行を有効に抑制できる。従って、重合性液晶組成物の長期安定性の点でも有利となり、得られる液晶硬化膜の配向性および膜厚の均一性を向上できる。なお、重合性液晶化合物の極大吸収波長は、溶媒中で紫外可視分光光度計を用いて測定できる。該溶媒は重合性液晶化合物を溶解し得る溶媒であり、例えばクロロホルム等が挙げられる。 に お い て In the present invention, at least one polymerizable liquid crystal compound forming the cured liquid crystal layer is a polymerizable liquid crystal compound having a maximum absorption wavelength between 300 and 400 nm. When the photopolymerization initiator is contained in the polymerizable liquid crystal composition, the polymerization reaction and gelation of the polymerizable liquid crystal compound may proceed during long-term storage, but the maximum absorption wavelength of the polymerizable liquid crystal compound is 300 to 400 nm. Even if ultraviolet light is exposed during storage, the generation of reactive species from the photopolymerization initiator and the progress of polymerization reaction and gelation of the polymerizable liquid crystal compound by the reactive species can be effectively suppressed. Accordingly, the polymerizable liquid crystal composition is also advantageous in terms of long-term stability, and the orientation of the cured liquid crystal film and the uniformity of the film thickness can be improved. The maximum absorption wavelength of the polymerizable liquid crystal compound can be measured in a solvent using an ultraviolet-visible spectrophotometer. The solvent is a solvent capable of dissolving the polymerizable liquid crystal compound, and examples thereof include chloroform.
 上記水平配向液晶硬化膜は、少なくとも1種の重合性液晶化合物を含む重合性液晶組成物の硬化物である。本発明の重合性液晶組成物に含まれる重合性液晶化合物は、重合性基、特に光重合性基を有する液晶化合物を意味する。重合性液晶化合物としては、上記式(1)および(2)を満たす液晶硬化膜を形成し得るものであれば特に限定されず、例えば位相差フィルムの分野において従来公知の重合性液晶化合物を用いることができる。
 重合性基とは、重合反応に関与しうる基をいう。光重合性基とは、重合性基であって、光重合開始剤から発生した反応活性種、例えば活性ラジカルや酸などによって重合反応に関与し得る基のことをいう。光重合性基としては、例えばビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基およびオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。重合性液晶化合物が示す液晶性はサーモトロピック性液晶であってもよいし、リオトロピック性液晶であってもよいが、緻密な膜厚制御が可能な点でサーモトロピック性液晶が好ましい。また、サーモトロピック性液晶における相秩序構造としてはネマチック液晶でもスメクチック液晶でもよい。重合性液晶化合物は単独または二種以上組み合わせて使用できる。
The horizontal alignment liquid crystal cured film is a cured product of a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound. The polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition of the present invention means a liquid crystal compound having a polymerizable group, particularly a photopolymerizable group. The polymerizable liquid crystal compound is not particularly limited as long as it can form a liquid crystal cured film satisfying the above formulas (1) and (2). For example, a polymerizable liquid crystal compound conventionally known in the field of a retardation film is used. be able to.
The polymerizable group refers to a group that can participate in a polymerization reaction. The photopolymerizable group is a polymerizable group and refers to a group capable of participating in a polymerization reaction by a reactive species generated from a photopolymerization initiator, for example, an active radical or an acid. Examples of the photopolymerizable group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxiranyl group, and an oxetanyl group. Among them, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferred, and an acryloyloxy group is more preferred. The liquid crystallinity of the polymerizable liquid crystal compound may be a thermotropic liquid crystal or a lyotropic liquid crystal, but a thermotropic liquid crystal is preferable in that the film thickness can be precisely controlled. The phase order structure of the thermotropic liquid crystal may be a nematic liquid crystal or a smectic liquid crystal. The polymerizable liquid crystal compounds can be used alone or in combination of two or more.
 重合性液晶化合物としては、下記(1)~(4)の特徴を有する化合物であることが好ましい。
(1)ネマチック相またはスメクチック相を形成し得る化合物である。
(2)該重合性液晶化合物の長軸方向(a)上にπ電子を有する。
(3)長軸方向(a)に対して交差する方向〔交差方向(b)〕上にπ電子を有する。
(4)長軸方向(a)に存在するπ電子の合計をN(πa)、長軸方向に存在する分子量の合計をN(Aa)として下記式(i)で定義される重合性液晶化合物の長軸方向(a)のπ電子密度:
 D(πa)=N(πa)/N(Aa)  (i)
と、交差方向(b)に存在するπ電子の合計をN(πb)、交差方向(b)に存在する分子量の合計をN(Ab)として下記式(ii)で定義される重合性液晶化合物の交差方向(b)のπ電子密度:
 D(πb)=N(πb)/N(Ab)  (ii)
とが、式(iii)
 0≦〔D(πa)/D(πb)〕<1   (iii)
の関係にある〔すなわち、交差方向(b)のπ電子密度が、長軸方向(a)のπ電子密度よりも大きい〕。また、上記記載のように長軸、及びそれに対して交差方向上にπ電子を有する重合性液晶化合物は、例えばT字構造となる。
The polymerizable liquid crystal compound is preferably a compound having the following characteristics (1) to (4).
(1) A compound capable of forming a nematic phase or a smectic phase.
(2) The polymerizable liquid crystal compound has π electrons on the major axis direction (a).
(3) π electrons are present in a direction (cross direction (b)) intersecting with the long axis direction (a).
(4) A polymerizable liquid crystal compound defined by the following formula (i), where N (πa) is the total of π electrons present in the major axis direction (a), and N (Aa) is the total of molecular weights present in the major axis direction. Π electron density in the major axis direction (a):
D (πa) = N (πa) / N (Aa) (i)
And a polymerizable liquid crystal compound defined by the following formula (ii), where N (πb) is the total of π electrons present in the cross direction (b), and N (Ab) is the total of molecular weights present in the cross direction (b). Electron density in the cross direction (b) of
D (πb) = N (πb) / N (Ab) (ii)
Is the formula (iii)
0 ≦ [D (πa) / D (πb)] <1 (iii)
[That is, the π electron density in the cross direction (b) is larger than the π electron density in the long axis direction (a)]. Further, as described above, the polymerizable liquid crystal compound having π electrons in the major axis and in a direction crossing the major axis has, for example, a T-shaped structure.
 重合性液晶化合物は、好ましくはネマチック相を形成しうる化合物である。
 また、上記(1)~(4)の特徴において、長軸方向(a)およびπ電子数Nは以下のように定義される。
・長軸方向(a)は、例えば棒状構造を有する化合物であれば、その棒状の長軸方向である。
・長軸方向(a)上に存在するπ電子数N(πa)には、重合反応により消失するπ電子は含まない。
・長軸方向(a)上に存在するπ電子数N(πa)には、長軸上のπ電子およびこれと共役するπ電子の合計数であり、例えば長軸方向(a)上に存在する環であって、ヒュッケル則を満たす環に存在するπ電子の数が含まれる。
・交差方向(b)に存在するπ電子数N(πb)には、重合反応により消失するπ電子は含まない。
 上記を満たす重合性液晶化合物は、長軸方向にメソゲン構造を有している。このメソゲン構造によって、液晶相(ネマチック相、スメクチック相)を発現する。
The polymerizable liquid crystal compound is preferably a compound capable of forming a nematic phase.
In the features (1) to (4), the major axis direction (a) and the number N of π electrons are defined as follows.
The long axis direction (a) is, for example, a compound having a rod-like structure, that is, the long axis direction of the rod.
The number of π electrons N (πa) existing in the major axis direction (a) does not include π electrons that disappear by the polymerization reaction.
The number N (πa) of π electrons existing in the long axis direction (a) is the total number of π electrons on the long axis and π electrons conjugated with the N electrons, and exists, for example, in the long axis direction (a). And the number of π electrons present in a ring that satisfies the Hückel rule.
The number of π electrons N (πb) existing in the cross direction (b) does not include π electrons that disappear by the polymerization reaction.
The polymerizable liquid crystal compound satisfying the above has a mesogenic structure in the major axis direction. With this mesogenic structure, a liquid crystal phase (nematic phase, smectic phase) is developed.
 上記(1)~(4)を満たす重合性液晶化合物は、配向膜上に塗布し、相転移温度以上に加熱することにより、ネマチック相やスメクチック相を形成することが可能である。この重合性液晶化合物が配向して形成されたネマチック相またはスメクチック相では通常、重合性液晶化合物の長軸方向が互いに平行になるように配向しており、この長軸方向がネマチック相の配向方向となる。このような重合性液晶化合物を膜状とし、ネマチック相またはスメクチック相の状態で重合させると、長軸方向(a)に配向した状態で重合した重合体からなる重合体膜を形成することができる。この重合体膜は、長軸方向(a)上のπ電子と交差方向(b)上のπ電子により紫外線を吸収する。ここで、交差方向(b)上のπ電子により吸収される紫外線の吸収極大波長をλbmaxとする。λbmaxは通常300nm~400nmである。π電子の密度は、上記式(iii)を満足していて、交差方向(b)のπ電子密度が長軸方向(a)のπ電子密度よりも大きいので、交差方向(b)に振動面を有する直線偏光紫外線(波長はλbmax)の吸収が、長軸方向(a)に振動面を有する直線偏光紫外線(波長はλbmax)の吸収よりも大きな重合体膜となる。その比(直線偏光紫外線の交差方向(b)の吸光度/長軸方向(a)の吸光度の比)は、例えば1.0超、好ましくは1.2以上、通常30以下であり、例えば10以下である。 (4) The polymerizable liquid crystal compound satisfying the above (1) to (4) can form a nematic phase or a smectic phase by being coated on an alignment film and heated to a phase transition temperature or higher. In a nematic phase or a smectic phase formed by orienting the polymerizable liquid crystal compound, the polymerizable liquid crystal compound is usually oriented so that the major axes thereof are parallel to each other, and the major axis is oriented in the direction of the nematic phase. Becomes When such a polymerizable liquid crystal compound is formed into a film and polymerized in a nematic phase or a smectic phase, a polymer film made of a polymer polymerized in a state of being oriented in the major axis direction (a) can be formed. . This polymer film absorbs ultraviolet rays by π electrons in the major axis direction (a) and π electrons in the cross direction (b). Here, the maximum absorption wavelength of ultraviolet light absorbed by π electrons in the cross direction (b) is defined as λbmax. λbmax is usually 300 nm to 400 nm. The density of π electrons satisfies the above equation (iii), and since the π electron density in the cross direction (b) is larger than the π electron density in the long axis direction (a), the vibration surface in the cross direction (b) Is a polymer film whose absorption of linearly polarized ultraviolet light (wavelength is λbmax) having larger than that of linearly polarized ultraviolet light (wavelength is λbmax) having a vibrating surface in the major axis direction (a). The ratio (the ratio of the absorbance in the cross direction (b) of the linearly polarized ultraviolet rays / the absorbance in the major axis direction (a)) is, for example, more than 1.0, preferably 1.2 or more, and usually 30 or less, for example, 10 or less. It is.
 上記特性を有する重合性液晶化合物は、一般に逆波長分散性を示すものであることが多い。具体的には、例えば、下記式(X):
Figure JPOXMLDOC01-appb-I000001
で表される化合物が挙げられる。
In general, the polymerizable liquid crystal compound having the above characteristics generally shows reverse wavelength dispersion. Specifically, for example, the following formula (X):
Figure JPOXMLDOC01-appb-I000001
The compound represented by these is mentioned.
 式(X)中、Arは置換基を有していてもよい芳香族基を有する二価の基表す。ここで言う芳香族基とは、該環構造が有するπ電子数がヒュッケル則に従い[4n+2]個であるものをさし、例えば後述する(Ar-1)~(Ar-23)で例示されるようなAr基を、二価の連結基を介して2個以上有していてもよい。ここでnは整数を表す。-N=や-S-等のヘテロ原子を含んで環構造を形成している場合、これらヘテロ原子上の非共有結合電子対を含めてヒュッケル則を満たし、芳香族性を有する場合も含む。該芳香族基中には窒素原子、酸素原子、硫黄原子のうち少なくとも1つ以上が含まれることが好ましい。二価の基Arに含まれる芳香族基は1つであってもよいし、2つ以上であってもよい。
芳香族基が1つである場合、二価の基Arは置換基を有していてもよい二価の芳香族基であってもよい。二価の基Arに含まれる芳香族基が2つ以上である場合、2つ以上の芳香族基は互いに単結合、-CO-O-、-O-などの二価の結合基で結合していてもよい。
 GおよびGはそれぞれ独立に、二価の芳香族基または二価の脂環式炭化水素基を表す。ここで、該二価の芳香族基または二価の脂環式炭化水素基に含まれる水素原子は、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシ基、シアノ基またはニトロ基に置換されていてもよく、該二価の芳香族基または二価の脂環式炭化水素基を構成する炭素原子が、酸素原子、硫黄原子または窒素原子に置換されていてもよい。
 L、L、BおよびBはそれぞれ独立に、単結合または二価の連結基である。
 k、lは、それぞれ独立に0~3の整数を表し、1≦k+lの関係を満たす。ここで、2≦k+lである場合、BおよびB、GおよびGは、それぞれ互いに同一であってもよく、異なっていてもよい。
 EおよびEはそれぞれ独立に、炭素数1~17のアルカンジイル基を表し、ここで、炭素数4~12のアルカンジイル基がより好ましい。また、アルカンジイル基に含まれる水素原子は、ハロゲン原子で置換されていてもよく、該アルカンジイル基に含まれる-CH-は、-O-、-S-、-SiH-、-C(=O)-で置換されていてもよい。
 PおよびPは互いに独立に、重合性基または水素原子を表し、少なくとも1つは重合性基である。
In the formula (X), Ar represents a divalent group having an aromatic group which may have a substituent. As used herein, the aromatic group refers to a group in which the number of π electrons in the ring structure is [4n + 2] according to the Huckel rule, and is exemplified by, for example, (Ar-1) to (Ar-23) described later. You may have two or more such Ar groups via a divalent linking group. Here, n represents an integer. When a ring structure is formed including a hetero atom such as -N = or -S-, the case where the compound has the aromatic property, which satisfies the Huckel rule including non-covalent bond electron pairs on the hetero atom, is included. The aromatic group preferably contains at least one of a nitrogen atom, an oxygen atom and a sulfur atom. The aromatic group contained in the divalent group Ar may be one, or may be two or more.
When there is one aromatic group, the divalent group Ar may be a divalent aromatic group which may have a substituent. When the divalent group Ar has two or more aromatic groups, the two or more aromatic groups are bonded to each other by a single bond or a divalent bonding group such as —CO—O— or —O—. May be.
G 1 and G 2 each independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group. Here, the hydrogen atom contained in the divalent aromatic group or the divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, The carbon atom constituting the divalent aromatic group or the divalent alicyclic hydrocarbon group may be an oxygen atom, a sulfur atom, Alternatively, it may be substituted by a nitrogen atom.
L 1 , L 2 , B 1 and B 2 are each independently a single bond or a divalent linking group.
k and l each independently represent an integer of 0 to 3, and satisfy the relationship of 1 ≦ k + 1. Here, when 2 ≦ k + 1, B 1 and B 2 , G 1 and G 2 may be the same as or different from each other.
E 1 and E 2 each independently represent an alkanediyl group having 1 to 17 carbon atoms, wherein an alkanediyl group having 4 to 12 carbon atoms is more preferable. Further, the hydrogen atom contained in the alkanediyl group may be substituted with a halogen atom, and -CH 2- contained in the alkanediyl group is represented by -O-, -S-, -SiH 2- , -C (= O)-may be substituted.
P 1 and P 2 independently represent a polymerizable group or a hydrogen atom, and at least one is a polymerizable group.
 GおよびGは、それぞれ独立に、好ましくは、ハロゲン原子および炭素数1~4のアルキル基からなる群から選ばれる少なくとも1つの置換基で置換されていてもよい1,4-フェニレンジイル基、ハロゲン原子および炭素数1~4のアルキル基からなる群から選ばれる少なくとも1つの置換基で置換されていてもよい1,4-シクロヘキサンジイル基であり、より好ましくはメチル基で置換された1,4-フェニレンジイル基、無置換の1,4-フェニレンジイル基、または無置換の1,4-trans-シクロヘキサンジイル基であり、特に好ましくは無置換の1,4-フェニレンジイル基、または無置換の1,4-trans-シクロへキサンジイル基である。
 また、複数存在するGおよびGのうち少なくとも1つは二価の脂環式炭化水素基であることが好ましく、また、LまたはLに結合するGおよびGのうち少なくとも1つは二価の脂環式炭化水素基であることがより好ましい。
G 1 and G 2 are each independently preferably a 1,4-phenylenediyl group optionally substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms. A 1,4-cyclohexanediyl group which may be substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms, more preferably a 1,4-cyclohexanediyl group substituted with a methyl group. , 4-phenylenediyl, unsubstituted 1,4-phenylenediyl or unsubstituted 1,4-trans-cyclohexanediyl, particularly preferably unsubstituted 1,4-phenylenediyl or unsubstituted 1,4-phenylenediyl. It is a substituted 1,4-trans-cyclohexanediyl group.
Further, at least one of a plurality of G 1 and G 2 is preferably a divalent alicyclic hydrocarbon group, and at least one of G 1 and G 2 bonded to L 1 or L 2. One is more preferably a divalent alicyclic hydrocarbon group.
 LおよびLはそれぞれ独立に、好ましくは、単結合、炭素数1~4のアルキレン基、-O-、-S-、-Ra1ORa2-、-Ra3COORa4-、-Ra5OCORa6-、Ra7OC=OORa8-、-N=N-、-CR=CR-、またはC≡C-である。ここで、Ra1~Ra8はそれぞれ独立に単結合、または炭素数1~4のアルキレン基を表し、RおよびRは炭素数1~4のアルキル基または水素原子を表す。LおよびLはそれぞれ独立に、より好ましくは単結合、-ORa2-1-、-CH-、-CHCH-、-COORa4-1-、またはOCORa6-1-である。ここで、Ra2-1、Ra4-1、Ra6-1はそれぞれ独立に単結合、-CH-、-CHCH-のいずれかを表す。LおよびLはそれぞれ独立に、さらに好ましくは単結合、-O-、-CHCH-、-COO-、-COOCHCH-、またはOCO-である。 L 1 and L 2 are each independently preferably a single bond, an alkylene group having 1 to 4 carbon atoms, —O—, —S—, —R a1 OR a2 —, —R a3 COOR a4 —, and —R a5. OCOR a6 -, R a7 OC = OOR a8 -, - N = N -, - CR c = CR d -, or C≡C-. Here, R a1 to R a8 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms, and R c and R d each represent an alkyl group having 1 to 4 carbon atoms or a hydrogen atom. L 1 and L 2 are each independently preferably a single bond, —OR a2-1 —, —CH 2 —, —CH 2 CH 2 —, —COOR a4-1 —, or OCOR a6-1 — . Here, R a2-1 , R a4-1 , and R a6-1 each independently represent any one of a single bond, —CH 2 —, and —CH 2 CH 2 —. L 1 and L 2 are each independently more preferably a single bond, —O—, —CH 2 CH 2 —, —COO—, —COOCH 2 CH 2 —, or OCO—.
 BおよびBはそれぞれ独立に、好ましくは、単結合、炭素数1~4のアルキレン基、-O-、-S-、-Ra9ORa10-、-Ra11COORa12-、-Ra13OCORa14-、またはRa15OC=OORa16-である。ここで、Ra9~Ra16はそれぞれ独立に単結合、または炭素数1~4のアルキレン基を表す。BおよびBはそれぞれ独立に、より好ましくは単結合、-ORa10-1-、-CH-、-CHCH-、-COORa12-1-、またはOCORa14-1-である。ここで、Ra10-1、Ra12-1、Ra14-1はそれぞれ独立に単結合、-CH-、-CHCH-のいずれかを表す。BおよびBはそれぞれ独立に、さらに好ましくは単結合、-O-、-CHCH-、-COO-、-COOCHCH-、-OCO-、またはOCOCHCH-である。 B 1 and B 2 are preferably each independently a single bond, an alkylene group having 1 to 4 carbon atoms, —O—, —S—, —R a9 OR a10 —, —R a11 COOR a12 —, and —R a13 OCOR a14 — or R a15 OC = OOR a16 —. Here, R a9 to R a16 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms. B 1 and B 2 are each independently more preferably a single bond, —OR a10-1 —, —CH 2 —, —CH 2 CH 2 —, —COOR a12-1 —, or OCOR a14-1 — . Here, R a10-1 , R a12-1 , and R a14-1 each independently represent a single bond, —CH 2 —, or —CH 2 CH 2 —. B 1 and B 2 are each independently more preferably a single bond, —O—, —CH 2 CH 2 —, —COO—, —COOCH 2 CH 2 —, —OCO—, or OCOCH 2 CH 2 — .
 kおよびlは、逆波長分散性発現の観点から2≦k+l≦6の範囲が好ましく、k+l=4であることが好ましく、k=2かつl=2であることがより好ましい。k=2かつl=2であると対称構造となるため好ましい。 Δk and l are preferably in the range of 2 ≦ k + 1 ≦ 6, preferably k + 1 = 4, more preferably k = 2 and l = 2, from the viewpoint of developing reverse wavelength dispersion. It is preferable that k = 2 and l = 2 because a symmetric structure is obtained.
 PまたはPで表される重合性基としては、エポキシ基、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、およびオキセタニル基等が挙げられる。
中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基およびオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。
Examples of the polymerizable group represented by P 1 or P 2 include an epoxy group, a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, and an oxiranyl group. And an oxetanyl group.
Among them, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferred, and an acryloyloxy group is more preferred.
 Arは置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい芳香族複素環、および電子吸引性基から選ばれる少なくとも一つを有することが好ましい。当該芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環等が挙げられ、ベンゼン環、ナフタレン環が好ましい。当該芳香族複素環としては、フラン環、ベンゾフラン環、ピロール環、インドール環、チオフェン環、ベンゾチオフェン環、ピリジン環、ピラジン環、ピリミジン環、トリアゾール環、トリアジン環、ピロリン環、イミダゾール環、ピラゾール環、チアゾール環、ベンゾチアゾール環、チエノチアゾール環、オキサゾール環、ベンゾオキサゾール環、およびフェナンスロリン環等が挙げられる。なかでも、チアゾール環、ベンゾチアゾール環、またはベンゾフラン環を有することが好ましく、ベンゾチアゾール基を有することがさらに好ましい。また、Arに窒素原子が含まれる場合、当該窒素原子はπ電子を有することが好ましい。 Ar preferably has at least one selected from an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocyclic ring which may have a substituent, and an electron-withdrawing group. Examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, and an anthracene ring, and a benzene ring and a naphthalene ring are preferable. Examples of the aromatic heterocycle include a furan ring, a benzofuran ring, a pyrrole ring, an indole ring, a thiophene ring, a benzothiophene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazole ring, a triazine ring, a pyrroline ring, an imidazole ring, and a pyrazole ring. , A thiazole ring, a benzothiazole ring, a thienothiazole ring, an oxazole ring, a benzoxazole ring, and a phenanthroline ring. Among them, a thiazole ring, a benzothiazole ring, or a benzofuran ring is preferable, and a benzothiazole group is more preferable. When Ar contains a nitrogen atom, the nitrogen atom preferably has π electrons.
 式(X)中、Arで表される2価の芳香族基に含まれるπ電子の合計数Nπは8以上が好ましく、より好ましくは10以上であり、さらに好ましくは14以上であり、特に好ましくは16以上である。また、好ましくは30以下であり、より好ましくは26以下であり、さらに好ましくは24以下である。 Wherein (X), 2-valent of [pi Total N [pi electrons contained in the aromatic group is preferably 8 or more represented by Ar, more preferably 10 or more, more preferably 14 or more, particularly Preferably it is 16 or more. Further, it is preferably 30 or less, more preferably 26 or less, and further preferably 24 or less.
 Arで表される芳香族基としては、例えば以下の基が挙げられる。 Examples of the aromatic group represented by Ar include the following groups.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 式(Ar-1)~式(Ar-23)中、*印は連結部を表し、Z、ZおよびZは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、シアノ基、ニトロ基、炭素数1~12のアルキルスルフィニル基、炭素数1~12のアルキルスルホニル基、カルボキシル基、炭素数1~12のフルオロアルキル基、炭素数1~12のアルコキシ基、炭素数1~12のアルキルチオ基、炭素数1~12のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~12のN-アルキルスルファモイル基または炭素数2~12のN,N-ジアルキルスルファモイル基を表す。また、Z、ZおよびZは、重合性基を含んでいてもよい。 In the formulas (Ar-1) to (Ar-23), an asterisk (*) represents a connecting portion, and Z 0 , Z 1 and Z 2 each independently represent a hydrogen atom, a halogen atom, an alkyl having 1 to 12 carbons. Group, cyano group, nitro group, alkylsulfinyl group having 1 to 12 carbon atoms, alkylsulfonyl group having 1 to 12 carbon atoms, carboxyl group, fluoroalkyl group having 1 to 12 carbon atoms, alkoxy group having 1 to 12 carbon atoms, An alkylthio group having 1 to 12 carbon atoms, an N-alkylamino group having 1 to 12 carbon atoms, an N, N-dialkylamino group having 2 to 12 carbon atoms, an N-alkylsulfamoyl group having 1 to 12 carbon atoms or carbon Represents an N, N-dialkylsulfamoyl group represented by Formulas 2 to 12. Further, Z 0 , Z 1 and Z 2 may contain a polymerizable group.
 QおよびQは、それぞれ独立に、-CR2’3’-、-S-、-NH-、-NR2’-、-CO-またはO-を表し、R2’およびR3’は、それぞれ独立に、水素原子または炭素数1~4のアルキル基を表す。 Q 1 and Q 2 each independently represent —CR 2 ′ R 3 ′ —, —S—, —NH—, —NR 2 ′ —, —CO— or O—, and R 2 ′ and R 3 ′ Each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 J、およびJは、それぞれ独立に、炭素原子、または窒素原子を表す。 J 1 and J 2 each independently represent a carbon atom or a nitrogen atom.
 Y、YおよびYは、それぞれ独立に、置換されていてもよい芳香族炭化水素基または芳香族複素環基を表す。 Y 1 , Y 2 and Y 3 each independently represent an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group.
 WおよびWは、それぞれ独立に、水素原子、シアノ基、メチル基またはハロゲン原子を表し、mは0~6の整数を表す。 W 1 and W 2 each independently represent a hydrogen atom, a cyano group, a methyl group or a halogen atom, and m represents an integer of 0 to 6.
 Y、YおよびYにおける芳香族炭化水素基としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ビフェニル基等の炭素数6~20の芳香族炭化水素基が挙げられ、フェニル基、ナフチル基が好ましく、フェニル基がより好ましい。芳香族複素環基としては、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基等の窒素原子、酸素原子、硫黄原子等のヘテロ原子を少なくとも1つ含む炭素数4~20の芳香族複素環基が挙げられ、フリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基が好ましい。 Examples of the aromatic hydrocarbon group for Y 1 , Y 2 and Y 3 include an aromatic hydrocarbon group having 6 to 20 carbon atoms such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group and a biphenyl group. , A naphthyl group is preferred, and a phenyl group is more preferred. Examples of the aromatic heterocyclic group include those having 4 to 20 carbon atoms including at least one nitrogen atom such as furyl, pyrrolyl, thienyl, pyridinyl, thiazolyl, and benzothiazolyl, and at least one heteroatom such as oxygen and sulfur. An aromatic heterocyclic group is mentioned, and a furyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group are preferable.
 Y、YおよびYは、それぞれ独立に、置換されていてもよい多環系芳香族炭化水素基または多環系芳香族複素環基であってもよい。多環系芳香族炭化水素基は、縮合多環系芳香族炭化水素基、または芳香環集合に由来する基をいう。多環系芳香族複素環基は、縮合多環系芳香族複素環基、または芳香環集合に由来する基をいう。 Y 1 , Y 2 and Y 3 may each independently be a polycyclic aromatic hydrocarbon group or a polycyclic aromatic heterocyclic group which may be substituted. The polycyclic aromatic hydrocarbon group refers to a condensed polycyclic aromatic hydrocarbon group or a group derived from an aromatic ring assembly. The polycyclic aromatic heterocyclic group refers to a condensed polycyclic aromatic heterocyclic group or a group derived from an aromatic ring assembly.
 Z、ZおよびZは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、シアノ基、ニトロ基、炭素数1~12のアルコキシ基であることが好ましく、Zは、水素原子、炭素数1~12のアルキル基、シアノ基がさらに好ましく、ZおよびZは、水素原子、フッ素原子、塩素原子、メチル基、シアノ基がさらに好ましい。また、Z、ZおよびZは重合性基を含んでいてもよい。 Preferably, Z 0 , Z 1 and Z 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, a cyano group, a nitro group, or an alkoxy group having 1 to 12 carbon atoms. 0 is more preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, and a cyano group, and Z 1 and Z 2 are more preferably a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, and a cyano group. Further, Z 0 , Z 1 and Z 2 may contain a polymerizable group.
 QおよびQは、-NH-、-S-、-NR2’-、-O-が好ましく、R2’は水素原子が好ましい。中でも-S-、-O-、-NH-が特に好ましい。 Q 1 and Q 2 are preferably -NH-, -S-, -NR 2 ' -, -O-, and R 2' is preferably a hydrogen atom. Among them, —S—, —O—, and —NH— are particularly preferable.
 式(Ar-1)~(Ar-23)の中でも、式(Ar-6)および式(Ar-7)が分子の安定性の観点から好ましい。 中 で も Among the formulas (Ar-1) to (Ar-23), the formulas (Ar-6) and (Ar-7) are preferable from the viewpoint of molecular stability.
 式(Ar-16)~(Ar-23)において、Yは、これが結合する窒素原子およびZと共に、芳香族複素環基を形成していてもよい。芳香族複素環基としては、Arが有していてもよい芳香族複素環として前記したものが挙げられるが、例えば、ピロール環、イミダゾール環、ピロリン環、ピリジン環、ピラジン環、ピリミジン環、インドール環、キノリン環、イソキノリン環、プリン環、ピロリジン環等が挙げられる。この芳香族複素環基は、置換基を有していてもよい。また、Yは、これが結合する窒素原子およびZと共に、前述した置換されていてもよい多環系芳香族炭化水素基または多環系芳香族複素環基であってもよい。例えば、ベンゾフラン環、ベンゾチアゾール環、ベンゾオキサゾール環等が挙げられる。 In the formulas (Ar-16) to (Ar-23), Y 1 may form an aromatic heterocyclic group together with the nitrogen atom to which it is bound and Z 0 . Examples of the aromatic heterocyclic group include those described above as the aromatic heterocyclic ring which Ar may have, for example, a pyrrole ring, an imidazole ring, a pyrroline ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, an indole Ring, quinoline ring, isoquinoline ring, purine ring, pyrrolidine ring and the like. This aromatic heterocyclic group may have a substituent. Y 1 may be the above-mentioned optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 . For example, a benzofuran ring, a benzothiazole ring, a benzoxazole ring and the like can be mentioned.
 水平配向液晶硬化膜の形成に用いる重合性液晶組成物中の重合性液晶化合物の含有量は、重合性液晶組成物の固形分100質量部に対して、例えば70~99.5質量部であり、好ましくは80~99質量部であり、より好ましくは85~98質量部であり、さらに好ましくは90~95質量部である。重合性液晶化合物の含有量が上記範囲内であれば、得られる液晶硬化膜の配向性の観点から有利である。なお、本明細書において、重合性液晶組成物の固形分とは、重合性液晶組成物から有機溶媒等の揮発性成分を除いた全ての成分を意味する。 The content of the polymerizable liquid crystal compound in the polymerizable liquid crystal composition used to form the cured horizontal alignment liquid crystal film is, for example, 70 to 99.5 parts by mass based on 100 parts by mass of the solid content of the polymerizable liquid crystal composition. The amount is preferably 80 to 99 parts by mass, more preferably 85 to 98 parts by mass, and still more preferably 90 to 95 parts by mass. When the content of the polymerizable liquid crystal compound is within the above range, it is advantageous from the viewpoint of the orientation of the obtained cured liquid crystal film. In the present specification, the solid content of the polymerizable liquid crystal composition means all components of the polymerizable liquid crystal composition except volatile components such as an organic solvent.
 水平配向液晶硬化膜の形成に用いる重合性液晶組成物は、重合性液晶化合物に加えて、溶媒、光重合開始剤、レベリング剤、酸化防止剤、光増感剤などの添加剤をさらに含んでいてもよい。これらの成分は、それぞれ、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 The polymerizable liquid crystal composition used for forming the horizontal alignment liquid crystal cured film further contains additives such as a solvent, a photopolymerization initiator, a leveling agent, an antioxidant, and a photosensitizer, in addition to the polymerizable liquid crystal compound. May be. Each of these components may be used alone or in combination of two or more.
 水平配向液晶硬化膜形成用の重合性液晶組成物は、通常、溶媒に溶解した状態で基材等に塗布されるため、溶媒を含むことが好ましい。溶媒としては、重合性液晶化合物を溶解し得る溶媒が好ましく、また、重合性液晶化合物の重合反応に不活性な溶媒であることが好ましい。溶媒としては、例えば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1-メトキシ-2-プロパノール、2-ブトキシエタノールおよびプロピレングリコールモノメチルエーテル等のアルコール溶媒;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテートおよび乳酸エチル等のエステル溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノンおよびメチルイソブチルケトン等のケトン溶媒;ペンタン、ヘキサンおよびヘプタン等の脂肪族炭化水素溶媒;エチルシクロヘキサン等の脂環式炭化水素溶媒;トルエンおよびキシレン等の芳香族炭化水素溶媒;アセトニトリル等のニトリル溶媒;テトラヒドロフランおよびジメトキシエタン等のエーテル溶媒;クロロホルムおよびクロロベンゼン等の塩素含有溶媒;ジメチルアセトアミド、ジメチルホルミアミド、N-メチル-2-ピロリドン(NMP)、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶媒等が挙げられる。
これらの溶媒は、単独または二種以上組み合わせて使用できる。これらの中でも、アルコール溶媒、エステル溶媒、ケトン溶媒、塩素含有溶媒、アミド系溶媒および芳香族炭化水素溶媒が好ましい。
Since the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film is usually applied to a substrate or the like in a state of being dissolved in a solvent, it preferably contains a solvent. As the solvent, a solvent that can dissolve the polymerizable liquid crystal compound is preferable, and a solvent that is inert to the polymerization reaction of the polymerizable liquid crystal compound is preferable. Examples of the solvent include water, alcohols such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, 2-butoxyethanol and propylene glycol monomethyl ether. Solvents; Ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone, propylene glycol methyl ether acetate and ethyl lactate; acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone Ketone solvent; aliphatic hydrocarbon solvents such as pentane, hexane and heptane; ethylcyclohexa Alicyclic hydrocarbon solvents such as toluene; xylene and other aromatic hydrocarbon solvents; acetonitrile and other nitrile solvents; tetrahydrofuran and dimethoxyethane and other ether solvents; chloroform and chlorobenzene and other chlorine-containing solvents; dimethylacetamide and dimethylforme Examples include amide solvents such as amides, N-methyl-2-pyrrolidone (NMP), and 1,3-dimethyl-2-imidazolidinone.
These solvents can be used alone or in combination of two or more. Among these, alcohol solvents, ester solvents, ketone solvents, chlorine-containing solvents, amide solvents and aromatic hydrocarbon solvents are preferred.
 重合性液晶組成物中の溶媒の含有量は、重合性液晶組成物100質量部に対して、好ましくは50~98質量部、より好ましくは70~95重量部である。従って、重合性液晶組成物100質量部に占める固形分は、2~50質量部が好ましい。固形分が50質量部以下であると、重合性液晶組成物の粘度が低くなることから、膜の厚みが略均一になり、ムラが生じ難くなる傾向がある。上記固形分は、製造しようとする液晶硬化膜の厚みを考慮して適宜定めることができる。 溶媒 The content of the solvent in the polymerizable liquid crystal composition is preferably 50 to 98 parts by weight, more preferably 70 to 95 parts by weight based on 100 parts by weight of the polymerizable liquid crystal composition. Therefore, the solid content in 100 parts by mass of the polymerizable liquid crystal composition is preferably 2 to 50 parts by mass. When the solid content is 50 parts by mass or less, the viscosity of the polymerizable liquid crystal composition becomes low, so that the thickness of the film becomes substantially uniform, and unevenness tends to hardly occur. The solid content can be appropriately determined in consideration of the thickness of the liquid crystal cured film to be manufactured.
 重合開始剤は、熱または光の寄与によって反応活性種を生成し、重合性液晶化合物等の重合反応を開始し得る化合物である。反応活性種としては、ラジカルまたはカチオンまたはアニオン等の活性種が挙げられる。中でも反応制御が容易であるという観点から、光照射によってラジカルを発生する光重合開始剤が好ましい。 The polymerization initiator is a compound that generates a reactive species by the contribution of heat or light and can initiate a polymerization reaction such as a polymerizable liquid crystal compound. Examples of the reactive species include radicals, cations and anions. Above all, a photopolymerization initiator that generates a radical by light irradiation is preferable from the viewpoint of easy reaction control.
 光重合開始剤としては、例えば、ベンゾイン化合物、ベンゾフェノン化合物、ベンジルケタール化合物、オキシム化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、トリアジン化合物、ヨードニウム塩およびスルホニウム塩が挙げられる。具体的には、イルガキュア(Irgacure、登録商標)907、イルガキュア184、イルガキュア651、イルガキュア819、イルガキュア250、イルガキュア369、イルガキュア379、イルガキュア127、イルガキュア2959、イルガキュア754、イルガキュア379EG(以上、BASFジャパン株式会社製)、セイクオールBZ、セイクオールZ、セイクオールBEE(以上、精工化学株式会社製)、カヤキュアー(kayacure)BP100(日本化薬株式会社製)、カヤキュアーUVI-6992(ダウ社製)、アデカオプトマーSP-152、アデカオプトマーSP-170、アデカオプトマーN-1717、アデカオプトマーN-1919、アデカアークルズNCI-831、アデカアークルズNCI-930(以上、株式会社ADEKA製)、TAZ-A、TAZ-PP(以上、日本シイベルヘグナー社製)およびTAZ-104(三和ケミカル社製)が挙げられる。
 水平配向液晶硬化膜形成用の重合性液晶組成物において、含まれる光重合開始剤は、少なくとも1種類であり、1種類若しくは2種類であることが好ましい。
Examples of the photopolymerization initiator include benzoin compounds, benzophenone compounds, benzyl ketal compounds, oxime compounds, α-hydroxyketone compounds, α-aminoketone compounds, triazine compounds, iodonium salts, and sulfonium salts. Specifically, Irgacure (registered trademark) 907, Irgacure 184, Irgacure 651, Irgacure 819, Irgacure 250, Irgacure 369, Irgacure 379, Irgacure 127, Irgacure 2959, Irgacure 754, Irgacure 379EG (BASF Japan Ltd.) Seikaru BZ, Seikeol Z, Seikeol BEE (both manufactured by Seiko Chemical Co., Ltd.), Kayacure BP100 (manufactured by Nippon Kayaku Co., Ltd.), Kayacure UVI-6992 (manufactured by Dow), Adeka Optomer SP- 152, Adeka Optomer SP-170, Adeka Optomer N-1717, Adeka Optomer N-1919, Adeka Arculs NCI-831, Adeka Arculs NC -930 (manufactured by KK ADEKA), TAZ-A, TAZ-PP (or, Nippon SiberHegner KK) (manufactured by Sanwa Chemical Co.) and TAZ-104 and the like.
In the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film, the photopolymerization initiator contained is at least one, and preferably one or two types.
 光重合開始剤は、光源から発せられるエネルギーを十分に活用でき、生産性に優れるため、極大吸収波長が300nm~400nmであると好ましく、300nm~380nmであるとより好ましく、中でも、α-アセトフェノン系重合開始剤、オキシム系光重合開始剤が好ましい。 Since the photopolymerization initiator can sufficiently utilize the energy emitted from the light source and is excellent in productivity, the maximum absorption wavelength is preferably from 300 nm to 400 nm, more preferably from 300 nm to 380 nm, and especially, α-acetophenone-based A polymerization initiator and an oxime-based photopolymerization initiator are preferred.
 α-アセトフェノン化合物としては、2-メチル-2-モルホリノ-1-(4-メチルスルファニルフェニル)プロパン-1-オン、2-ジメチルアミノ-1-(4-モルホリノフェニル)-2-ベンジルブタン-1-オンおよび2-ジメチルアミノ-1-(4-モルホリノフェニル)-2-(4-メチルフェニルメチル)ブタン-1-オン等が挙げられ、より好ましくは2-メチル-2-モルホリノ-1-(4-メチルスルファニルフェニル)プロパン-1-オンおよび2-ジメチルアミノ-1-(4-モルホリノフェニル)-2-ベンジルブタン-1-オンが挙げられる。α-アセトフェノン化合物の市販品としては、イルガキュア369、379EG、907(以上、BASFジャパン(株)製)およびセイクオールBEE(精工化学社製)等が挙げられる。 α-acetophenone compounds include 2-methyl-2-morpholino-1- (4-methylsulfanylphenyl) propan-1-one, 2-dimethylamino-1- (4-morpholinophenyl) -2-benzylbutane-1 And 2-dimethylamino-1- (4-morpholinophenyl) -2- (4-methylphenylmethyl) butan-1-one, and more preferably, 2-methyl-2-morpholino-1- ( 4-methylsulfanylphenyl) propan-1-one and 2-dimethylamino-1- (4-morpholinophenyl) -2-benzylbutan-1-one. Commercially available α-acetophenone compounds include Irgacure 369, 379EG, 907 (all manufactured by BASF Japan Ltd.) and Sequol BEE (manufactured by Seiko Chemical Co., Ltd.).
 オキシムエステル系光重合開始剤は、光が照射されることによってフェニルラジカルやメチルラジカル等のラジカルを生成させる。このラジカルにより重合性液晶化合物の重合が好適に進行するが、中でもメチルラジカルを発生させるオキシムエステル系光重合開始剤は重合反応の開始効率が高い点で好ましい。また、重合反応をより効率的に進行させるという観点から、波長350nm以上の紫外線を効率的に利用可能な光重合開始剤を使用することが好ましい。波長350nm以上の紫外線を効率的に利用可能な光重合開始剤としては、オキシムエステル構造を含むトリアジン化合物やカルバゾール化合物が好ましく、感度の観点からはオキシムエステル構造を含むカルバゾール化合物がより好ましい。オキシムエステル構造を含むカルバゾール化合物としては、1,2-オクタンジオン、1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等が挙げられる。オキシムエステル系光重合開始剤の市販品としては、イルガキュアOXE-01、イルガキュアOXE-02、イルガキュアOXE-03(以上、BASFジャパン株式会社製)、アデカオプトマーN-1919、アデカアークルズNCI-831(以上、株式会社ADEKA製)等が挙げられる。 The oxime ester-based photopolymerization initiator generates radicals such as phenyl radicals and methyl radicals when irradiated with light. The polymerization of the polymerizable liquid crystal compound proceeds favorably by these radicals, and among them, an oxime ester-based photopolymerization initiator that generates a methyl radical is preferable because the polymerization reaction initiation efficiency is high. Further, from the viewpoint of making the polymerization reaction proceed more efficiently, it is preferable to use a photopolymerization initiator capable of efficiently utilizing ultraviolet light having a wavelength of 350 nm or more. As a photopolymerization initiator capable of efficiently utilizing ultraviolet light having a wavelength of 350 nm or more, a triazine compound or a carbazole compound having an oxime ester structure is preferable, and a carbazole compound having an oxime ester structure is more preferable from the viewpoint of sensitivity. Carbazole compounds having an oxime ester structure include 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2- Methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) and the like. Commercially available oxime ester-based photopolymerization initiators include Irgacure OXE-01, Irgacure OXE-02, Irgacure OXE-03 (all manufactured by BASF Japan Ltd.), Adeka Optomer N-1919, and Adeka Arculs NCI-831. (Above, manufactured by ADEKA Corporation) and the like.
 光重合開始剤の含有量は、重合性液晶化合物100質量部に対して、通常、0.1~30質量部であり、好ましくは1~20質量部であり、より好ましくは1~15質量部である。上記範囲内であれば、重合性基の反応が十分に進行し、かつ、重合性液晶化合物の配向を乱し難い。 The content of the photopolymerization initiator is usually 0.1 to 30 parts by mass, preferably 1 to 20 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. It is. Within the above range, the reaction of the polymerizable group proceeds sufficiently, and the orientation of the polymerizable liquid crystal compound is not easily disturbed.
 レベリング剤とは、重合性液晶組成物の流動性を調整し、組成物を塗布して得られる塗膜をより平坦にする機能を有する添加剤であり、例えば、シリコーン系、ポリアクリレート系およびパーフルオロアルキル系のレベリング剤が挙げられる。レベリング剤として市販品を用いてもよく、具体的には、DC3PA、SH7PA、DC11PA、SH28PA、SH29PA、SH30PA、ST80PA、ST86PA、SH8400、SH8700、FZ2123(以上、全て東レ・ダウコーニング(株)製)、KP321、KP323、KP324、KP326、KP340、KP341、X22-161A、KF6001、(以上、全て信越化学工業(株)製)、TSF400、TSF401、TSF410、TSF4300、TSF4440、TSF4445、TSF-4446、TSF4452、TSF4460(以上、全てモメンティブ パフォーマンス マテリアルズ ジャパン合同会社製)、フロリナート(fluorinert)(登録商標)FC-72、同FC-40、同FC-43、同FC-3283(以上、全て住友スリーエム(株)製)、メガファック(登録商標)R-08、同R-30、同R-90、同F-410、同F-411、同F-443、同F-445、同F-470、同F-477、同F-479、同F-482、同F-483(以上、いずれもDIC(株)製)、エフトップ(商品名)EF301、同EF303、同EF351、同EF352(以上、全て三菱マテリアル電子化成(株)製)、サーフロン(登録商標)S-381、同S-382、同S-383、同S-393、同SC-101、同SC-105、KH-40、SA-100(以上、全てAGCセイミケミカル(株)製)、商品名E1830、同E5844((株)ダイキンファインケミカル研究所製)、BM-1000、BM-1100、BYK-352、BYK-353およびBYK-361N(いずれも商品名:BM Chemie社製)等が挙げられる。レベリング剤は単独または2種以上を組み合わせて使用できる。 The leveling agent is an additive having a function of adjusting the fluidity of the polymerizable liquid crystal composition and making the coating film obtained by applying the composition more flat, and includes, for example, silicone-based, polyacrylate-based and Fluoroalkyl leveling agents. Commercial products may be used as the leveling agent. Specifically, DC3PA, SH7PA, DC11PA, SH28PA, SH29PA, SH30PA, ST80PA, ST86PA, SH8400, SH8700, and FZ2123 (all manufactured by Toray Dow Corning Co., Ltd.) , KP321, KP323, KP324, KP326, KP340, KP341, X22-161A, KF6001, (all manufactured by Shin-Etsu Chemical Co., Ltd.), TSF400, TSF401, TSF410, TSF4300, TSF4440, TSF4445, TSF-4446, TSF4452. TSF4460 (all are Momentive Performance Materials Japan GK), Fluorinert (registered trademark) FC-72, and FC 40, FC-43, FC-3283 (all manufactured by Sumitomo 3M Limited), Megafax (registered trademark) R-08, R-30, R-90, F-410, F -411, F-443, F-445, F-470, F-477, F-479, F-482, F-483 (all are manufactured by DIC Corporation), F Top (trade name) EF301, EF303, EF351, EF352 (all manufactured by Mitsubishi Materials Electronic Chemicals, Ltd.), Surflon (registered trademark) S-381, S-382, S-383, S -393, SC-101, SC-105, KH-40, SA-100 (all manufactured by AGC Seimi Chemical Co., Ltd.), trade names E1830 and E5844 (manufactured by Daikin Fine Chemical Laboratory Co., Ltd.), BM- 000, BM-1100, BYK-352, BYK-353 and BYK-361N (both trade name: BM Chemie Co., Ltd.), and the like. The leveling agents can be used alone or in combination of two or more.
 レベリング剤の含有量は、重合性液晶化合物100質量部に対して、0.01~5質量部が好ましく、0.05~3質量部がさらに好ましい。レベリング剤の含有量が、上記範囲内であると、得られる液晶硬化膜がより平滑となる傾向にあるため好ましい。 The content of the leveling agent is preferably from 0.01 to 5 parts by mass, more preferably from 0.05 to 3 parts by mass, per 100 parts by mass of the polymerizable liquid crystal compound. When the content of the leveling agent is within the above range, the obtained cured liquid crystal film tends to be smoother, which is preferable.
 酸化防止剤を配合することにより、重合性液晶化合物の重合反応をコントロールすることができる。酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、キノン系酸化防止剤、ニトロソ系酸化防止剤から選ばれる一次酸化防止剤であってもよいし、リン系酸化防止剤および硫黄系酸化防止剤から選ばれる二次酸化防止剤であってもよい。
重合性液晶化合物の配向を乱すことなく、重合性液晶化合物を重合するためには、酸化防止剤の含有量は、重合性液晶化合物100質量部に対して、通常0.01~10質量部であり、好ましくは0.1~5質量部であり、さらに好ましくは0.1~3質量部である。
酸化防止剤は単独または2種以上を組み合わせて使用できる。
By adding an antioxidant, the polymerization reaction of the polymerizable liquid crystal compound can be controlled. The antioxidant may be a primary antioxidant selected from a phenolic antioxidant, an amine antioxidant, a quinone antioxidant, and a nitroso antioxidant, or may be a phosphorus antioxidant and a sulfur antioxidant. A secondary antioxidant selected from a series of antioxidants may be used.
In order to polymerize the polymerizable liquid crystal compound without disturbing the orientation of the polymerizable liquid crystal compound, the content of the antioxidant is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. And preferably 0.1 to 5 parts by mass, more preferably 0.1 to 3 parts by mass.
Antioxidants can be used alone or in combination of two or more.
 また、光増感剤を用いることにより、光重合開始剤を高感度化することができる。光増感剤としては、例えば、キサントン、チオキサントン等のキサントン類;アントラセンおよびアルキルエーテル等の置換基を有するアントラセン類;フェノチアジン;ルブレンが挙げられる。光増感剤は単独または2種以上を組み合わせて使用できる。光増感剤の含有量は、重合性液晶化合物100質量部に対して、通常0.01~10質量部であり、好ましくは0.05~5質量部であり、さらに好ましくは0.1~3質量部である。 Further, by using a photosensitizer, the photopolymerization initiator can be made more sensitive. Examples of the photosensitizer include xanthones such as xanthone and thioxanthone; anthracenes having a substituent such as anthracene and an alkyl ether; phenothiazine; and rubrene. The photosensitizers can be used alone or in combination of two or more. The content of the photosensitizer is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, more preferably 0.1 to 5 parts by mass, based on 100 parts by mass of the polymerizable liquid crystal compound. 3 parts by mass.
 重合性液晶組成物は、重合性液晶化合物と、溶媒や光重合開始剤などの重合性液晶化合物以外の成分とを所定温度で撹拌等することにより得ることができる。 The polymerizable liquid crystal composition can be obtained by stirring the polymerizable liquid crystal compound and components other than the polymerizable liquid crystal compound such as a solvent and a photopolymerization initiator at a predetermined temperature.
 本発明において、水平配向液晶硬化膜は、例えば、上記少なくとも1種の重合性液晶化合物を含む重合性液晶組成物の塗膜を形成し、該塗膜平面に対して前記重合性液晶化合物を水平方向に配向させた後、重合性液晶化合物の水平配向状態を保持したまま重合性液晶組成物を硬化させることにより作製することができる。 In the present invention, the horizontal alignment liquid crystal cured film forms, for example, a coating film of a polymerizable liquid crystal composition containing the at least one polymerizable liquid crystal compound, and horizontally aligns the polymerizable liquid crystal compound with respect to the coating film plane. After alignment in the direction, the polymerizable liquid crystal composition can be prepared by curing the polymerizable liquid crystal composition while maintaining the horizontal alignment state of the polymerizable liquid crystal compound.
 本発明の積層体は、水平配向膜を含む。水平配向膜は、重合性液晶化合物を得られる液晶硬化膜の膜平面に対して水平方向に配向させる、配向規制力を有する。配向規制力は、配向膜の種類、表面状態やラビング条件等によって任意に調整することが可能であり、配向膜が光配向性ポリマーから形成されている場合は、偏光照射条件等によって任意に調整することが可能である。 積 層 The laminate of the present invention includes a horizontal alignment film. The horizontal alignment film has an alignment regulating force for aligning in a horizontal direction with respect to a film plane of a cured liquid crystal film from which a polymerizable liquid crystal compound can be obtained. The alignment regulating force can be arbitrarily adjusted depending on the type of the alignment film, the surface state, the rubbing conditions, and the like. When the alignment film is formed of a photo-alignable polymer, the alignment adjustment force is arbitrarily adjusted according to the polarization irradiation conditions and the like. It is possible to
 水平配向膜としては、重合性液晶組成物の塗布等により溶解しない溶剤耐性を有し、また、溶媒の除去や後述する重合性液晶化合物の配向のための加熱処理における耐熱性を有するものが好ましい。水平配向膜としては、ラビング配向膜、光配向膜、および、表面に凹凸パターンや複数の溝を有するグルブ配向膜等が挙げられる。配向角の精度および品質の観点から、光配向膜が好ましい。 The horizontal alignment film preferably has a solvent resistance that does not dissolve by application of the polymerizable liquid crystal composition or the like, and also has heat resistance in a heat treatment for removing the solvent or aligning the polymerizable liquid crystal compound described below. . Examples of the horizontal alignment film include a rubbing alignment film, a photo alignment film, and a grub alignment film having an uneven pattern or a plurality of grooves on the surface. From the viewpoint of the accuracy and quality of the orientation angle, a photo-alignment film is preferable.
 ラビング配向膜は、通常、配向性ポリマーと溶媒とを含む組成物(以下、「配向性ポリマー組成物」ともいう)を、水平配向膜を形成すべき表面に塗布し、溶媒を除去して塗膜を形成し、該塗膜をラビングすることで配向規制力を付与することができる。溶媒としては、重合性液晶組成物に用い得る溶媒として先に例示した溶媒と同様のものが挙げられる。 The rubbing alignment film is usually applied by applying a composition containing an alignment polymer and a solvent (hereinafter, also referred to as an “orientation polymer composition”) to a surface on which a horizontal alignment film is to be formed, and then removing the solvent. By forming a film and rubbing the coating film, an alignment regulating force can be imparted. Examples of the solvent include the same solvents as those described above as examples of the solvent that can be used for the polymerizable liquid crystal composition.
 配向性ポリマーとしては、例えば、分子内にアミド結合を有するポリアミドやゼラチン類、分子内にイミド結合を有するポリイミドおよびその加水分解物であるポリアミック酸、ポリビニルアルコール、アルキル変性ポリビニルアルコール、ポリアクリルアミド、ポリオキサゾール、ポリエチレンイミン、ポリスチレン、ポリビニルピロリドン、ポリアクリル酸およびポリアクリル酸エステル類が挙げられる。中でも、ポリビニルアルコールが好ましい。配向性ポリマーは単独または2種以上を組み合わせて使用できる。 As the oriented polymer, for example, polyamides and gelatins having an amide bond in the molecule, polyimide having an imide bond in the molecule and polyamic acid which is a hydrolyzate thereof, polyvinyl alcohol, alkyl-modified polyvinyl alcohol, polyacrylamide, poly Oxazole, polyethyleneimine, polystyrene, polyvinylpyrrolidone, polyacrylic acid and polyacrylates. Among them, polyvinyl alcohol is preferable. The oriented polymers can be used alone or in combination of two or more.
 配向性ポリマー組成物中の配向性ポリマーの濃度は、配向性ポリマー材料が、溶媒に完溶できる範囲であればよいが、溶液に対して固形分換算で0.1~20%が好ましく、0.1~10%程度がさらに好ましい。 The concentration of the orienting polymer in the orienting polymer composition may be within a range in which the orienting polymer material can be completely dissolved in the solvent, but is preferably 0.1 to 20% in terms of solid content relative to the solution. About 1 to 10% is more preferable.
 配向性ポリマー組成物として、市販の配向膜材料をそのまま使用してもよい。市販の配向膜材料としては、サンエバー(登録商標、日産化学工業(株)製)、オプトマー(登録商標、JSR(株)製)などが挙げられる。 市 販 As the alignment polymer composition, a commercially available alignment film material may be used as it is. Examples of commercially available alignment film materials include Sanever (registered trademark, manufactured by Nissan Chemical Industries, Ltd.) and Optmer (registered trademark, manufactured by JSR Corporation).
 光配向膜は、通常、光反応性基を有するポリマーおよび/またはモノマーと溶媒とを含む組成物(以下、「光配向膜形成用組成物」ともいう)を、水平配向膜を形成すべき表面に塗布し、溶媒を除去後に偏光(好ましくは、偏光UV)を照射することで得られる。光配向膜は、照射する偏光の偏光方向を選択することにより、配向規制力の方向を任意に制御することができる点でも有利である。 The photo-alignment film is usually prepared by coating a composition containing a polymer and / or a monomer having a photoreactive group and a solvent (hereinafter also referred to as a “photo-alignment film forming composition”) on the surface on which a horizontal alignment film is to be formed. After removing the solvent, and then irradiating with polarized light (preferably polarized UV). The photo-alignment film is also advantageous in that the direction of the alignment control force can be arbitrarily controlled by selecting the polarization direction of the polarized light to be irradiated.
 光反応性基とは、光照射することにより液晶配向能を生じる基をいう。具体的には、光照射により生じる分子の配向誘起または異性化反応、二量化反応、光架橋反応もしくは光分解反応等の液晶配向能の起源となる光反応に関与する基が挙げられる。中でも、二量化反応または光架橋反応に関与する基が、配向性に優れる点で好ましい。光反応性基として、不飽和結合、特に二重結合を有する基が好ましく、炭素-炭素二重結合(C=C結合)、炭素-窒素二重結合(C=N結合)、窒素-窒素二重結合(N=N結合)および炭素-酸素二重結合(C=O結合)からなる群より選ばれる少なくとも1つを有する基が特に好ましい。 (4) The photoreactive group refers to a group that generates liquid crystal alignment ability when irradiated with light. Specific examples include groups that are involved in a photoreaction that is the origin of the liquid crystal alignment ability, such as alignment induction or isomerization reaction, dimerization reaction, photocrosslinking reaction, or photodecomposition reaction of molecules generated by light irradiation. Among them, a group that participates in a dimerization reaction or a photocrosslinking reaction is preferable in terms of excellent orientation. As the photoreactive group, a group having an unsaturated bond, particularly a double bond is preferable, and a carbon-carbon double bond (C = C bond), a carbon-nitrogen double bond (C = N bond), and a nitrogen-nitrogen double bond are preferable. A group having at least one selected from the group consisting of a heavy bond (N = N bond) and a carbon-oxygen double bond (C = O bond) is particularly preferable.
 C=C結合を有する光反応性基としては、ビニル基、ポリエン基、スチルベン基、スチルバゾ-ル基、スチルバゾリウム基、カルコン基およびシンナモイル基等が挙げられる。
C=N結合を有する光反応性基としては、芳香族シッフ塩基、芳香族ヒドラゾンなどの構造を有する基が挙げられる。N=N結合を有する光反応性基としては、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基、ホルマザン基、および、アゾキシベンゼン構造を有する基等が挙げられる。C=O結合を有する光反応性基としては、ベンゾフェノン基、クマリン基、アントラキノン基およびマレイミド基等が挙げられる。これらの基は、アルキル基、アルコキシ基、アリ-ル基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基などの置換基を有していてもよい。
Examples of the photoreactive group having a C = C bond include a vinyl group, a polyene group, a stilbene group, a stilbazol group, a stilbazolium group, a chalcone group and a cinnamoyl group.
Examples of the photoreactive group having a C = N bond include groups having a structure such as an aromatic Schiff base and an aromatic hydrazone. Examples of the photoreactive group having an N = N bond include an azobenzene group, an azonaphthalene group, an aromatic heterocyclic azo group, a bisazo group, a formazan group, and a group having an azoxybenzene structure. Examples of the photoreactive group having a C = O bond include a benzophenone group, a coumarin group, an anthraquinone group, and a maleimide group. These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group, and a halogenated alkyl group.
 中でも、光二量化反応に関与する光反応性基が好ましく、光配向に必要な偏光照射量が比較的少なく、かつ、熱安定性や経時安定性に優れる光配向膜が得られやすいという点で、光反応性基はシンナモイル基およびカルコン基が好ましい。特に、水平配向液晶硬化膜が重合性基として(メタ)アクリロイルオキシ基を有する重合性液晶化合物から形成される場合、該水平配向液晶硬化膜との密着性をより向上させることができるため、水平配向膜を形成する光反応性基を有するポリマーとしては、当該ポリマー側鎖の末端部が桂皮酸構造となるようなシンナモイル基を有するものが特に好ましい。 Above all, a photoreactive group involved in the photodimerization reaction is preferable, the amount of polarized light required for photoalignment is relatively small, and a photoalignment film excellent in thermal stability and stability over time is easily obtained. The photoreactive group is preferably a cinnamoyl group and a chalcone group. In particular, when the cured liquid crystal alignment film is formed from a polymerizable liquid crystal compound having a (meth) acryloyloxy group as a polymerizable group, the adhesion to the cured liquid crystal alignment film can be further improved. As the polymer having a photoreactive group for forming an alignment film, a polymer having a cinnamoyl group such that the terminal of the polymer side chain has a cinnamic acid structure is particularly preferable.
 光配向膜形成用組成物に含まれる溶媒としては、重合性液晶組成物に用い得る溶媒として先に例示した溶媒と同様のものが挙げられ、光反応性基を有するポリマーあるいはモノマーの溶解性に応じて適宜選択することができる。 As the solvent contained in the composition for forming a photo-alignment film, the same solvents as those exemplified above as the solvent that can be used for the polymerizable liquid crystal composition can be used, and the solubility of the polymer or monomer having a photoreactive group can be improved. It can be appropriately selected depending on the situation.
 光配向膜形成用組成物中の光反応性基を有するポリマーまたはモノマーの含有量は、ポリマーまたはモノマーの種類や目的とする光配向膜の厚みによって適宜調節できるが、光配向膜形成用組成物の質量に対して、少なくとも0.2質量%とすることが好ましく、0.3~10質量%の範囲がより好ましい。また、光配向膜を形成するポリマーは、製造が容易である点、水平配向液晶硬化膜が重合性基として(メタ)アクリロイルオキシ基を有する重合性液晶化合物から形成される場合に該水平配向液晶硬化膜との密着性を向上可能な点から、(メタ)アクリルポリマーであることが好ましい。光配向膜の特性が著しく損なわれない範囲で、光配向膜形成用組成物は、ポリビニルアルコ-ルやポリイミドなどの高分子材料や光増感剤を含んでいてもよい。 The content of the polymer or monomer having a photoreactive group in the composition for forming a photo-alignment film can be appropriately adjusted depending on the type of the polymer or monomer and the thickness of the desired photo-alignment film. Is preferably at least 0.2% by mass, more preferably 0.3 to 10% by mass, based on the mass of Further, the polymer forming the photo-alignment film is easy to manufacture, and when the cured film of the horizontally-aligned liquid crystal is formed from a polymerizable liquid crystal compound having a (meth) acryloyloxy group as a polymerizable group, the horizontal alignment liquid crystal is used. (Meth) acrylic polymer is preferable from the viewpoint that the adhesion to the cured film can be improved. As long as the properties of the photo-alignment film are not significantly impaired, the composition for forming a photo-alignment film may contain a polymer material such as polyvinyl alcohol or polyimide, or a photosensitizer.
 グルブ(groove)配向膜は、膜表面に凹凸パターンまたは複数のグルブ(溝)を有する膜である。等間隔に並んだ複数の直線状のグルブを有する膜に重合性液晶化合物を塗布した場合、その溝に沿った方向に液晶分子が配向する。 The glove (groove) alignment film is a film having an uneven pattern or a plurality of grubs (grooves) on the film surface. When a polymerizable liquid crystal compound is applied to a film having a plurality of linear grubs arranged at equal intervals, liquid crystal molecules are aligned in a direction along the groove.
 配向膜(配向性ポリマーを含む配向膜または光配向膜)の厚みは、通常10~10000nmの範囲であり、好ましくは10~1000nmの範囲であり、より好ましくは10~500nm以下であり、さらに好ましくは10~300nm、特に好ましい50~250nmの範囲である。 The thickness of the alignment film (the alignment film containing the alignment polymer or the photo alignment film) is usually in the range of 10 to 10000 nm, preferably in the range of 10 to 1000 nm, more preferably 10 to 500 nm, and still more preferably. Is in the range of 10 to 300 nm, particularly preferably 50 to 250 nm.
 本発明の積層体は硬化樹脂層を含む。本発明において硬化樹脂層の厚みは、積層体の薄型化の観点から0.1~10μmであり、好ましくは0.5~5μmである。 積 層 The laminate of the present invention includes a cured resin layer. In the present invention, the thickness of the cured resin layer is from 0.1 to 10 μm, preferably from 0.5 to 5 μm, from the viewpoint of reducing the thickness of the laminate.
 本発明において、硬化樹脂層は、例えば、後述する基材としても使用され得るシクロオレフィンポリマー(COP)やポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)等のフィルムや、重合性モノマーを含む硬化樹脂層形成用組成物を硬化させた硬化樹脂層であってもよいが、薄膜化の観点からは、硬化樹脂層形成用組成物の硬化物である硬化樹脂層が好ましい。また、硬化樹脂層は多層から成っていてもよいが、生産性の観点から2層以下であることが好ましく、より好ましくは単層である。また、多層の光学特性に影響を与えない点で、硬化樹脂層は光学的に等方的であることが好ましい。
 なお、本発明においては、硬化樹脂層を形成するために使用する硬化樹脂層形成用組成物に含まれる重合性基のうち、最も数が多い官能基を代表して樹脂を総称することがある。すなわち、例えば、硬化樹脂層形成用組成物中に含まれる重合性基のうち、アクリロイルオキシ基の数が最も多い場合にはアクリル樹脂、エポキシ基の数が最も多い場合にはエポキシ樹脂などというように呼称する場合がある。
In the present invention, the cured resin layer is, for example, a film such as a cycloolefin polymer (COP), polyethylene terephthalate (PET), or triacetyl cellulose (TAC) that can also be used as a base material described later, or a cured resin containing a polymerizable monomer. A cured resin layer obtained by curing the composition for forming a resin layer may be used, but a cured resin layer which is a cured product of the composition for forming a cured resin layer is preferable from the viewpoint of thinning. The cured resin layer may be composed of multiple layers, but is preferably two layers or less, more preferably a single layer, from the viewpoint of productivity. Further, the cured resin layer is preferably optically isotropic in that it does not affect the optical characteristics of the multilayer.
In the present invention, among the polymerizable groups contained in the cured resin layer forming composition used to form the cured resin layer, the resin may be generically referred to as a representative of the most functional group. . That is, for example, among the polymerizable groups contained in the cured resin layer forming composition, an acrylic resin is used when the number of acryloyloxy groups is the largest, and an epoxy resin is used when the number of epoxy groups is the largest. In some cases.
 本発明において、硬化樹脂層は、アクリル樹脂、エポキシ樹脂、オキセタン樹脂、ウレタン樹脂およびメラミン樹脂からなる群から選択される少なくとも1種を含むことが好ましい。上記のような少なくとも1種の樹脂を含むことにより、硬化性が高く、水平配向液晶硬化膜と組み合わせた際の信頼性を向上させやすくなる。 In the present invention, the cured resin layer preferably contains at least one selected from the group consisting of an acrylic resin, an epoxy resin, an oxetane resin, a urethane resin, and a melamine resin. By including at least one kind of resin as described above, the curability is high, and the reliability when combined with a horizontally aligned liquid crystal cured film is easily improved.
 硬化樹脂層を構成する硬化樹脂層形成用組成物は、硬化性材料として、ラジカル重合性モノマー、カチオン重合性モノマー、熱重合性モノマー等の硬化可能な重合性モノマーを含有する組成物であって、反応速度が高く生産性が向上すること、および水平配向液晶硬化膜と組み合わせた際の信頼性を向上させやすいことから、ラジカル重合性モノマーまたはカチオン重合性モノマーを含むことがより好ましい。 The composition for forming a cured resin layer constituting the cured resin layer is a composition containing a curable polymerizable monomer such as a radical polymerizable monomer, a cationic polymerizable monomer, or a thermopolymerizable monomer as a curable material. It is more preferable to include a radical polymerizable monomer or a cationic polymerizable monomer because the reaction rate is high and the productivity is improved, and the reliability when combined with the horizontal alignment liquid crystal cured film is easily improved.
 本発明において、前記硬化樹脂層の形成に適するラジカル重合性モノマーとしては、例えば、多官能(メタ)アクリレート化合物などの(メタ)アクリレート化合物;多官能ウレタン(メタ)アクリレート化合物などのウレタン(メタ)アクリレート化合物;多官能エポキシ(メタ)アクリレート化合物などのエポキシ(メタ)アクリレート化合物;カルボキシル基変性エポキシ(メタ)アクリレート化合物、ポリエステル(メタ)アクリレート化合物などが挙げられる。これらは、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。中でも、重合性モノマーとしては、前記水平配向液晶硬化膜と組み合わせた際の信頼性を向上させる観点、隣接する層との密着性を向上させる観点、生産性を向上させる観点から(メタ)アクリロイルオキシ基を有する重合性モノマーを含むことが好ましく、多官能(メタ)アクリレート化合物を含むことがより好ましく、多官能アクリレート化合物を含むことが特に好ましい。 In the present invention, as the radical polymerizable monomer suitable for forming the cured resin layer, for example, a (meth) acrylate compound such as a polyfunctional (meth) acrylate compound; a urethane (meth) compound such as a polyfunctional urethane (meth) acrylate compound Acrylate compounds; epoxy (meth) acrylate compounds such as polyfunctional epoxy (meth) acrylate compounds; carboxyl group-modified epoxy (meth) acrylate compounds, polyester (meth) acrylate compounds, and the like. These may be used alone or in combination of two or more. Among them, as the polymerizable monomer, (meth) acryloyloxy is used from the viewpoint of improving reliability when combined with the horizontal alignment liquid crystal cured film, improving the adhesion with an adjacent layer, and improving the productivity. It preferably contains a polymerizable monomer having a group, more preferably contains a polyfunctional (meth) acrylate compound, and particularly preferably contains a polyfunctional acrylate compound.
 多官能(メタ)アクリレート化合物は、分子内に2個以上の(メタ)アクリロイルオキシ基を有する化合物を意味し、その例としては、分子内に(メタ)アクリロイルオキシ基を2個有する2官能(メタ)アクリレートモノマー、分子内に(メタ)アクリロイルオキシ基を3個以上有する3官能以上の(メタ)アクリレートモノマー等が挙げられる。なお、本明細書において、用語「(メタ)アクリレート」とは、「アクリレート」または「メタクリレート」を意味し、用語「(メタ)アクリロイル」も同様に、「アクリロイル」または「メタクリロイル」を意味する。 The polyfunctional (meth) acrylate compound means a compound having two or more (meth) acryloyloxy groups in the molecule, for example, a bifunctional compound having two (meth) acryloyloxy groups in the molecule. (Meth) acrylate monomers, trifunctional or higher (meth) acrylate monomers having three or more (meth) acryloyloxy groups in the molecule, and the like. In this specification, the term “(meth) acrylate” means “acrylate” or “methacrylate”, and the term “(meth) acryloyl” also means “acryloyl” or “methacryloyl”.
 多官能(メタ)アクリレート化合物は、1種類または2種類以上の多官能(メタ)アクリレート化合物を含んでいてもよい。また、2種類以上の多官能(メタ)アクリレート化合物を含む場合、それぞれの多官能(メタ)アクリレート化合物間で、(メタ)アクリロイルオキシ基の数は同一であっても、異なっていてもよい。 The polyfunctional (meth) acrylate compound may contain one or more polyfunctional (meth) acrylate compounds. When two or more polyfunctional (meth) acrylate compounds are contained, the number of (meth) acryloyloxy groups may be the same or different between each polyfunctional (meth) acrylate compound.
 2官能(メタ)アクリレートモノマーとしては、例えばエチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレートおよびネオペンチルグリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレートおよびポリテトラメチレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールジ(メタ)アクリレート;テトラフルオロエチレングリコールジ(メタ)アクリレート等のハロゲン置換アルキレングリコールのジ(メタ)アクリレート;トリメチロールプロパンジ(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート等の脂肪族ポリオールのジ(メタ)アクリレート;水添ジシクロペンタジエニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の水添ジシクロペンタジエンまたはトリシクロデカンジアルカノールのジ(メタ)アクリレート;1,3-ジオキサン-2,5-ジイルジ(メタ)アクリレート〔別名:ジオキサングリコールジ(メタ)アクリレート〕等のジオキサングリコールまたはジオキサンジアルカノールのジ(メタ)アクリレート;ビスフェノールAエチレンオキサイド付加物ジアクリレート物、ビスフェノールFエチレンオキサイド付加物ジアクリレート物等のビスフェノールAまたはビスフェノールFのアルキレンオキサイド付加物のジ(メタ)アクリレート;ビスフェノールAジグリシジルエーテルのアクリル酸付加物、ビスフェノールFジグリシジルエーテルのアクリル酸付加物等のビスフェノールAまたはビスフェノールFのエポキシジ(メタ)アクリレート;シリコーンジ(メタ)アクリレート;ヒドロキシピバリン酸ネオペンチルグリコールエステルのジ(メタ)アクリレート;2,2-ビス[4-(メタ)アクリロイルオキシエトキシエトキシフェニル]プロパン;2,2-ビス[4-(メタ)アクリロイルオキシエトキシエトキシシクロヘキシル]プロパン;2-(2-ヒドロキシ-1,1-ジメチルエチル)-5-エチル-5-ヒドロキシメチル-1,3-ジオキサン〕のジ(メタ)アクリレート;トリス(ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional (meth) acrylate monomer include ethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol diacrylate. Alkylene glycol di (meth) acrylates such as (meth) acrylate, 1,9-nonanediol di (meth) acrylate and neopentyl glycol di (meth) acrylate; diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate , Dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate and polyteto Polyoxyalkylene glycol di (meth) acrylates such as methylene glycol di (meth) acrylate; halogen-substituted alkylene glycol di (meth) acrylates such as tetrafluoroethylene glycol di (meth) acrylate; trimethylolpropane di (meth) acrylate; Di (meth) acrylate of aliphatic polyol such as ditrimethylolpropane di (meth) acrylate, pentaerythritol di (meth) acrylate; hydrogenated dicyclopentadienyl di (meth) acrylate, tricyclodecane dimethanol di (meth) Di (meth) acrylate of hydrogenated dicyclopentadiene or tricyclodecane dialkanol such as acrylate; 1,3-dioxane-2,5-diyldi (meth) acrylate [alias: dioxangli Di (meth) acrylate] or di (meth) acrylate of dioxane dialkanol; bisphenol A or bisphenol F alkylene oxide such as bisphenol A ethylene oxide adduct diacrylate or bisphenol F ethylene oxide adduct diacrylate Epoxy di (meth) acrylate of bisphenol A or bisphenol F such as di (meth) acrylate of adduct; acrylic acid adduct of bisphenol A diglycidyl ether, acrylic acid adduct of bisphenol F diglycidyl ether; silicone di (meth) acrylate Di (meth) acrylate of neopentyl glycol hydroxypivalate; 2,2-bis [4- (meth) acryloyloxyethoxy Ethoxyphenyl] propane; 2,2-bis [4- (meth) acryloyloxyethoxyethoxycyclohexyl] propane; 2- (2-hydroxy-1,1-dimethylethyl) -5-ethyl-5-hydroxymethyl-1, 3-dioxane]; tris (hydroxyethyl) isocyanurate di (meth) acrylate.
 3官能(メタ)アクリレートモノマーは、分子内に3個の(メタ)アクリロイルオキシ基を有するモノマーであり、その例としては、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートと酸無水物の反応物、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、イソシアヌレートトリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレートと酸無水物との反応物、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレートと酸無水物との反応物、プロピレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレートと酸無水物との反応物などが挙げられる。 The trifunctional (meth) acrylate monomer is a monomer having three (meth) acryloyloxy groups in the molecule, and examples thereof include glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, and ditrimethylol. Propane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, reaction product of pentaerythritol tri (meth) acrylate and acid anhydride, caprolactone-modified trimethylolpropane tri (meth) acrylate, caprolactone-modified pentaerythritol tri (meth) acrylate , Ethylene oxide modified trimethylolpropane tri (meth) acrylate, ethylene oxide modified pentaerythritol tri (meth) acrylate, propylene oxide modified trimethyl Propane tri (meth) acrylate, propylene oxide modified pentaerythritol tri (meth) acrylate, isocyanurate tri (meth) acrylate, caprolactone modified pentaerythritol tri (meth) acrylate and a reaction product of an acid anhydride, ethylene oxide modified pentaerythritol tri ( A reaction product of meth) acrylate and an acid anhydride, a reaction product of propylene oxide-modified pentaerythritol tri (meth) acrylate and an acid anhydride, and the like can be given.
 4官能(メタ)アクリレートモノマーは、分子内に4個の(メタ)アクリロイルオキシ基を有するモノマーであり、その例としては、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、トリペンタエリスリトールテトラ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート、カプロラクトン変性トリペンタエリスリトールテトラ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラ(メタ)アクリレート、エチレンオキサイド変性トリペンタエリスリトールテトラ(メタ)アクリレート、プロピレンオキサイド変性ペンタエリスリトールテトラ(メタ)アクリレート、プロピレンオキサイド変性トリペンタエリスリトールテトラ(メタ)アクリレートなどが挙げられる。 The tetrafunctional (meth) acrylate monomer is a monomer having four (meth) acryloyloxy groups in the molecule, and examples thereof include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, Pentaerythritol tetra (meth) acrylate, tripentaerythritol tetra (meth) acrylate, caprolactone modified pentaerythritol tetra (meth) acrylate, caprolactone modified tripentaerythritol tetra (meth) acrylate, ethylene oxide modified pentaerythritol tetra (meth) acrylate, ethylene Oxide-modified tripentaerythritol tetra (meth) acrylate, propylene oxide-modified pentaerythritol tetra (meth) acrylate Rate, propylene oxide-modified tripentaerythritol tetra (meth) acrylate.
 5官能(メタ)アクリレートモノマーとしては、例えばジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートと酸無水物との反応物、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性トリペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性トリペンタエリスリトールペンタ(メタ)アクリレート、プロピレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート、プロピレンオキサイド変性トリペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレートと酸無水物との反応物、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレートと酸無水物との反応物、プロピレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレートと酸無水物との反応物などが挙げられる。 Examples of the pentafunctional (meth) acrylate monomer include dipentaerythritol penta (meth) acrylate, tripentaerythritol penta (meth) acrylate, a reaction product of dipentaerythritol penta (meth) acrylate with an acid anhydride, and caprolactone-modified dipentane. Erythritol penta (meth) acrylate, caprolactone-modified tripentaerythritol penta (meth) acrylate, ethylene oxide-modified dipentaerythritol penta (meth) acrylate, ethylene oxide-modified tripentaerythritol penta (meth) acrylate, propylene oxide-modified dipentaerythritol penta ( (Meth) acrylate, propylene oxide-modified tripentaerythritol penta (meth) acrylate, caprola Reaction product of ton-modified dipentaerythritol penta (meth) acrylate and acid anhydride, reaction product of ethylene oxide-modified dipentaerythritol penta (meth) acrylate and acid anhydride, propylene oxide-modified dipentaerythritol penta (meth) acrylate And a reaction product of an acid anhydride.
 6官能(メタ)アクリレートモノマーとしては、例えばジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性トリペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキサイド変性トリペンタエリスリトールヘキサ(メタ)アクリレート、プロピレンオキサイド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、プロピレンオキサイド変性トリペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。 Examples of the hexafunctional (meth) acrylate monomer include dipentaerythritol hexa (meth) acrylate, tripentaerythritol hexa (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, and caprolactone-modified tripentaerythritol hexa (meth) acrylate , Ethylene oxide-modified dipentaerythritol hexa (meth) acrylate, ethylene oxide-modified tripentaerythritol hexa (meth) acrylate, propylene oxide-modified dipentaerythritol hexa (meth) acrylate, propylene oxide-modified tripentaerythritol hexa (meth) acrylate, etc. No.
 7官能(メタ)アクリレートモノマーとしては、例えばトリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレートと酸無水物との反応物、カプロラクトン変性トリペンタエリスリトールヘプタ(メタ)アクリレート、カプロラクトン変性トリペンタエリスリトールヘプタ(メタ)アクリレートと酸無水物との反応物、エチレンオキサイド変性トリペンタエリスリトールヘプタ(メタ)アクリレート、エチレンオキサイド変性トリペンタエリスリトールヘプタ(メタ)アクリレートと酸無水物との反応物、プロピレンオキサイド変性トリペンタエリスリトールヘプタ(メタ)アクリレート、プロピレンオキサイド変性トリペンタエリスリトールヘプタ(メタ)アクリレートと酸無水物との反応物などが挙げられる。 Examples of the heptafunctional (meth) acrylate monomer include tripentaerythritol hepta (meth) acrylate, a reaction product of tripentaerythritol hepta (meth) acrylate and an acid anhydride, caprolactone-modified tripentaerythritol hepta (meth) acrylate, and caprolactone-modified Reaction product of tripentaerythritol hepta (meth) acrylate and acid anhydride, ethylene oxide-modified tripentaerythritol hepta (meth) acrylate, reaction product of ethylene oxide-modified tripentaerythritol hepta (meth) acrylate and acid anhydride, propylene Oxide-modified tripentaerythritol hepta (meth) acrylate, propylene oxide-modified tripentaerythritol hepta (meth) acrylate and acid anhydride And reaction products thereof.
 8官能(メタ)アクリレートモノマーは、分子内に8個の(メタ)アクリロイルオキシ基を有するモノマーであり、その例としては、トリペンタエリスリトールオクタ(メタ)アクリレート、カプロラクトン変性トリペンタエリスリトールオクタ(メタ)アクリレート、エチレンオキサイド変性トリペンタエリスリトールオクタ(メタ)アクリレート、プロピレンオキサイド変性トリペンタエリスリトールオクタ(メタ)アクリレートなどが挙げられる。 The octafunctional (meth) acrylate monomer is a monomer having eight (meth) acryloyloxy groups in the molecule, and examples thereof include tripentaerythritol octa (meth) acrylate and caprolactone-modified tripentaerythritol octa (meth). Examples include acrylate, ethylene oxide-modified tripentaerythritol octa (meth) acrylate, and propylene oxide-modified tripentaerythritol octa (meth) acrylate.
 本発明において、硬化樹脂層の形成に適するカチオン重合性モノマーとしては、例えばエポキシ基を有するエポキシ化合物、オキセタニル基を有するオキセタン化合物等が挙げられる。 In the present invention, examples of the cationically polymerizable monomer suitable for forming the cured resin layer include an epoxy compound having an epoxy group and an oxetane compound having an oxetanyl group.
 エポキシ化合物は分子内に少なくとも1つ以上のエポキシ基を有する重合性モノマーであり、例えば脂環式エポキシ化合物、芳香族エポキシ化合物、脂肪族エポキシ化合物等が挙げられる。
 脂環式エポキシ化合物は、脂環式環に直接結合したエポキシ基を分子内に少なくとも1個有する化合物である。例えば、3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル 3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、ジエチレングリコールビス(3,4-エポキシシクロヘキシルメチルエーテル)、エチレングリコールビス(3,4-エポキシシクロヘキシルメチル)エーテルなどが挙げられる。これらの脂環式エポキシ化合物は、単独または2種以上を組み合わせて使用できる。
The epoxy compound is a polymerizable monomer having at least one epoxy group in a molecule, and examples thereof include an alicyclic epoxy compound, an aromatic epoxy compound, and an aliphatic epoxy compound.
An alicyclic epoxy compound is a compound having at least one epoxy group in a molecule directly bonded to an alicyclic ring. For example, 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl 3,4-epoxy-6-methylcyclohexanecarboxylate, ethylenebis (3,4-epoxy Cyclohexanecarboxylate), bis (3,4-epoxycyclohexylmethyl) adipate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, diethylene glycol bis (3,4-epoxycyclohexylmethyl ether), ethylene glycol bis ( 3,4-epoxycyclohexylmethyl) ether and the like. These alicyclic epoxy compounds can be used alone or in combination of two or more.
 芳香族エポキシ化合物は、分子内に芳香族環とエポキシ基を有する化合物である。その具体例として、ビスフェノールAのジグリシジルエーテル、ビスフェールFのジグリシジルエーテル、ビスフェノールSのジグリシジルエーテル等のビスフェノール型エポキシ化合物またはそのオリゴマー;フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、ヒドロキシベンズアルデヒドフェノールノボラックエポキシ樹脂等のノボラック型のエポキシ樹脂;2,2’,4,4’-テトラヒドロキシジフェニルメタンのグリシジルエーテル、2,2’,4,4’-テトラヒドロキシベンゾフェノンのグリシジルエーテル等の多官能型のエポキシ化合物;エポキシ化ポリビニルフェノール等の多官能型のエポキシ樹脂などが挙げられる。これらの芳香族エポキシ化合物は、単独または2種以上を組み合わせて使用できる。 Aromatic epoxy compounds are compounds having an aromatic ring and an epoxy group in the molecule. Specific examples thereof include bisphenol-type epoxy compounds such as diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, and diglycidyl ether of bisphenol S; and oligomers thereof; phenol novolak epoxy resin, cresol novolak epoxy resin, and hydroxybenzaldehyde phenol novolak. Novolak-type epoxy resins such as epoxy resins; polyfunctional epoxy such as glycidyl ether of 2,2 ', 4,4'-tetrahydroxydiphenylmethane and glycidyl ether of 2,2', 4,4'-tetrahydroxybenzophenone Compounds: polyfunctional epoxy resins such as epoxidized polyvinyl phenol and the like. These aromatic epoxy compounds can be used alone or in combination of two or more.
 水素化エポキシ化合物は、上記の芳香族エポキシ化合物の核水添物が水素化エポキシ化合物となる。これらは、対応する芳香族エポキシ化合物の原料である芳香族ポリヒドロキシ化合物、典型的にはビスフェノール類に対し、触媒の存在下および加圧下で選択的に水素化反応を行うことにより得られる多価アルコール、典型的には水添ビスフェノール類を原料とし、これにエピクロロヒドリンを反応させてクロロヒドリンエーテルとし、さらにそれをアルカリで分子内閉環させる方法によって製造できる。これらの水素化エポキシ化合物は、単独または2種以上を組み合わせて使用できる。 は In the hydrogenated epoxy compound, the hydrogenated nucleus of the above aromatic epoxy compound becomes a hydrogenated epoxy compound. These are polyvalent compounds obtained by selectively performing a hydrogenation reaction on an aromatic polyhydroxy compound, typically a bisphenol, which is a raw material of the corresponding aromatic epoxy compound, in the presence of a catalyst and under pressure. It can be produced by a method in which an alcohol, typically a hydrogenated bisphenol, is used as a raw material, and epichlorohydrin is reacted with the raw material to form a chlorohydrin ether, which is then intramolecularly closed with an alkali. These hydrogenated epoxy compounds can be used alone or in combination of two or more.
 脂肪族エポキシ化合物には、脂肪族多価アルコールまたはそのアルキレンオキサイド付加物のポリグリシジルエーテルがある。その具体例として、ネオペンチルグリコールのジグリシジルエーテル、1,4-ブタンジオールのジグリシジルエーテル、1,6-ヘキサンジオールのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、プロピレングリコールのジグリシジルエーテル、エチレングリコールやプロピレングリコール、グリセリンのような脂肪族多価アルコールに1種または2種以上のアルキレンオキサイド(エチレンオキサイドやプロピレンオキサイド)を付加することにより得られるポリエーテルポリオールのポリグリシジルエーテルなどが挙げられる。これらの脂肪族エポキシ化合物は、単独または2種以上を組み合わせて使用できる。 The aliphatic epoxy compound includes a polyglycidyl ether of an aliphatic polyhydric alcohol or an alkylene oxide adduct thereof. Specific examples thereof include diglycidyl ether of neopentyl glycol, diglycidyl ether of 1,4-butanediol, diglycidyl ether of 1,6-hexanediol, triglycidyl ether of glycerin, triglycidyl ether of trimethylolpropane, and polyethylene. By adding one or more alkylene oxides (ethylene oxide or propylene oxide) to aliphatic dihydric alcohols such as diglycidyl ether of glycol, diglycidyl ether of propylene glycol, ethylene glycol, propylene glycol, and glycerin And polyglycidyl ether of the resulting polyether polyol. These aliphatic epoxy compounds can be used alone or in combination of two or more.
 オキセタン化合物は分子内に少なくとも1個以上のオキセタニル基を含有する化合物であり、その具体例として、3-エチル-3-ヒドロキシメチルオキセタン(オキセタンアルコールとも呼ばれる)、2-エチルヘキシルオキセタン、1,4-ビス〔{(3-エチルオキセタン-3-イル)メトキシ}メチル〕ベンゼン(キシリレンビスオキセタンとも呼ばれる)、3-エチル-3〔{(3-エチルオキセタン-3-イル)メトキシ}メチル〕オキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3-(シクロヘキシルオキシ)メチル-3-エチルオキセタンなどを挙げることができる。 An oxetane compound is a compound containing at least one oxetanyl group in a molecule, and specific examples thereof include 3-ethyl-3-hydroxymethyloxetane (also called oxetane alcohol), 2-ethylhexyloxetane, 1,4- Bis [{(3-ethyloxetane-3-yl) methoxy} methyl] benzene (also called xylylenebisoxetane), 3-ethyl-3 [{(3-ethyloxetane-3-yl) methoxy} methyl] oxetane, Examples thereof include 3-ethyl-3- (phenoxymethyl) oxetane and 3- (cyclohexyloxy) methyl-3-ethyloxetane.
 本発明において、硬化樹脂層の形成に適する熱重合性モノマーとしては、例えばメラミン化合物が挙げられる。メラミン化合物としては、例えばヘキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサプロポキシメチルメラミン、ヘキサブトキシメチルメラミン等が挙げられる。メラミン化合物は、単独または2種以上を組み合わせて使用できる。 に お い て In the present invention, examples of the thermopolymerizable monomer suitable for forming the cured resin layer include a melamine compound. Examples of the melamine compound include hexamethoxymethylmelamine, hexaethoxymethylmelamine, hexapropoxymethylmelamine, hexabutoxymethylmelamine and the like. The melamine compounds can be used alone or in combination of two or more.
 また、他の重合性モノマーとして、イソシアネート化合物と分子内にヒドロキシル基を有するアルコール化合物の組み合わせが挙げられ、ウレタン樹脂が製造される。ウレタン樹脂、ウレア樹脂の製造に使用されるイソシアネート化合物は通常分子内に2つ以上のイソシアナト基(-NCO)を有しており、芳香族、脂肪族または脂環式の各種ジイソシアネートを用いることができる。具体例としては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、4,4’-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、3,3’-ジメチル-4,4’-ジフェニルジイソシアネート、キシレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、およびこれらのうち芳香環を有するジイソシアネートの核水添物などを挙げることができる。また、ウレタン樹脂に使用されるアルコール化合物は通常分子内にヒドロキシル基を2つ以上有し、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、3-メチル-1,5-ペンタンジオール、ヒドロキシピバリン酸のネオペンチルグリコールエステル、1,4-シクロヘキサンジオール、スピログリコール、トリシクロデカンジメチロール、ビスフェノールA、水添ビスフェノールA、トリメチロールエタン、トリメチロールプロパン、グリセリン、3-メチルペンタン-1,3,5-トリオール、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グルコース類などを挙げることができる。 As another polymerizable monomer, a combination of an isocyanate compound and an alcohol compound having a hydroxyl group in a molecule can be mentioned, and a urethane resin is produced. Isocyanate compounds used for producing urethane resins and urea resins usually have two or more isocyanato groups (—NCO) in the molecule, and various aromatic, aliphatic or alicyclic diisocyanates may be used. it can. Specific examples include tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalenediisocyanate, 3,3'-dimethyl-4,4 ' -Diphenyl diisocyanate, xylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and nuclear hydrogenated diisocyanate having an aromatic ring among these. The alcohol compound used in the urethane resin usually has two or more hydroxyl groups in the molecule. For example, ethylene glycol, propylene glycol, 1,3-propanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, 1,9-nonanediol, 1,10-decanediol, 2,2,4-trimethyl-1,3-pentanediol, -Methyl-1,5-pentanediol, neopentyl glycol ester of hydroxypivalic acid, 1,4-cyclohexanediol, spiroglycol, tricyclodecane dimethylol, bisphenol A, hydrogenated bisphenol A, trimethylolethane, trimethylolpropane Glycerin, 3-methylpentane-1,3,5-triol, pentaerythritol, can be exemplified dipentaerythritol, tripentaerythritol, and the like glucose compound.
 上記重合性モノマーは、硬化時や硬化後の加熱により発生するカールを抑制する観点、加工特性を向上させる観点、基材や液晶硬化膜との密着性を調整する観点、生産性を向上させる観点、耐溶媒性を向上させる観点、前記水平配向液晶硬化膜と組み合わせた際の信頼性を向上させる観点から、適宜選択することができる。本発明において、硬化樹脂層は、アクリル樹脂、エポキシ樹脂、オキセタン樹脂、ウレタン樹脂およびメラミン樹脂からなる群から選択される少なくとも1種を含むことが好ましい。また、例えば、2種以上のラジカル重合性モノマーを用いてもよいし、ラジカル重合性モノマーとカチオン重合性モノマーを組み合わせてもよい。特に、生産性を向上させる観点からラジカル重合性モノマーを含有することが好ましい。 The polymerizable monomer is intended to suppress curl generated by heating during or after curing, to improve processing characteristics, to adjust the adhesion to a substrate or a cured liquid crystal film, and to improve productivity. It can be appropriately selected from the viewpoint of improving the solvent resistance and from the viewpoint of improving the reliability when combined with the horizontal alignment liquid crystal cured film. In the present invention, the cured resin layer preferably contains at least one selected from the group consisting of an acrylic resin, an epoxy resin, an oxetane resin, a urethane resin, and a melamine resin. Further, for example, two or more kinds of radical polymerizable monomers may be used, or a radical polymerizable monomer and a cation polymerizable monomer may be combined. In particular, it is preferable to contain a radical polymerizable monomer from the viewpoint of improving productivity.
 硬化樹脂層形成用組成物は、前記重合性モノマーに加え、光重合開始剤、熱重合開始剤、溶媒、酸化防止剤、光増感剤、レベリング剤、酸化防止剤、連鎖移動剤、光安定剤、粘着付与剤、充填剤、流動調整剤、可塑剤、消泡剤、色素、帯電防止剤、および紫外線吸収剤等の添加剤をさらに含むことができる。これらの添加剤は硬化樹脂層形成用組成物の固形分の質量に対して、通常0.1~15質量%程度である。なお、本明細書において固形分とは、硬化樹脂層形成用組成物に溶媒が含まれる場合、該組成物から溶媒を除いた成分の合計量を意味する。 The composition for forming a cured resin layer includes, in addition to the polymerizable monomer, a photopolymerization initiator, a thermal polymerization initiator, a solvent, an antioxidant, a photosensitizer, a leveling agent, an antioxidant, a chain transfer agent, and a light stabilizer. Additives such as agents, tackifiers, fillers, flow regulators, plasticizers, defoamers, pigments, antistatic agents, and ultraviolet absorbers can be further included. These additives are usually used in an amount of about 0.1 to 15% by mass based on the mass of the solid content of the composition for forming a cured resin layer. In addition, in this specification, when a solvent is contained in the composition for hardened resin layer formation, the solid content means the total amount of components except the solvent from the composition.
 硬化樹脂層形成用組成物において、重合性モノマーの含有量は組成物の固形分100質量部に対して、好ましくは50質量部以上であり、より好ましくは60質量部以上である。前記の範囲であると、水平配向液晶硬化膜と組み合わせた際の信頼性を向上させやすい。 In the composition for forming a cured resin layer, the content of the polymerizable monomer is preferably at least 50 parts by mass, more preferably at least 60 parts by mass, based on 100 parts by mass of the solid content of the composition. Within the above range, it is easy to improve the reliability when combined with a horizontally aligned liquid crystal cured film.
 前記硬化樹脂層形成用組成物は、重合開始剤を含んでいることが好ましい。重合性開始剤としては光重合開始剤や熱重合開始剤等が挙げられるが、生産性が向上する観点から光重合開始剤を用いることが好ましい。光重合開始剤は、可視光線、紫外線、X線、電子線等の活性エネルギー線の照射により、重合性モノマーの硬化を開始できるものであれば特に限定されず、重合性モノマーの種類に合わせて光ラジカル重合開始剤や光カチオン重合開始剤を適宜使用することができる。光ラジカル重合開始剤や光カチオン重合開始剤としては、具体的には、水平配向液晶硬化膜を形成する重合性液晶組成物に配合し得るものとして先に例示した重合開始剤と同様のものが挙げられる。 硬化 It is preferable that the composition for forming a cured resin layer contains a polymerization initiator. Examples of the polymerizable initiator include a photopolymerization initiator and a thermal polymerization initiator. From the viewpoint of improving productivity, it is preferable to use a photopolymerization initiator. The photopolymerization initiator is not particularly limited as long as it can initiate curing of the polymerizable monomer by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams. A photoradical polymerization initiator or a photocationic polymerization initiator can be used as appropriate. As the photo-radical polymerization initiator and the photo-cation polymerization polymerization initiator, specifically, those similar to the polymerization initiators previously exemplified as those which can be blended into the polymerizable liquid crystal composition forming the horizontal alignment liquid crystal cured film are used. No.
 硬化樹脂層形成用組成物が重合開始剤を含む場合、重合開始剤の含有量は、硬化性化合物の総量100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.5~7質量部である。重合開始剤の含有量が、上記の下限値以上であると重合開始能が十分に発現され、重合開始剤の含有量が上記の上限値以下であると重合開始剤が残存しにくくなる。 When the composition for forming a cured resin layer contains a polymerization initiator, the content of the polymerization initiator is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the total amount of the curable compound. It is 5 to 7 parts by mass. When the content of the polymerization initiator is not less than the above lower limit, the polymerization initiation ability is sufficiently exhibited, and when the content of the polymerization initiator is not more than the above upper limit, the polymerization initiator hardly remains.
 硬化樹脂層形成用組成物が溶媒を含む場合、硬化樹脂層形成用組成物に添加している重合性モノマーや重合開始剤などを十分に溶解させる観点、基材を溶解させない観点に応じて適宜選択することができ、例えば水平配向液晶硬化膜形成用の重合性液晶組成物で用い得る溶媒を使用することができる。溶媒の含有量は、硬化樹脂層形成用組成物に含まれる成分の総量100質量部に対して、1~10000質量部、好ましくは10~1000質量部、より好ましくは20~500質量部程度であってよい。 When the composition for forming a cured resin layer contains a solvent, the viewpoint of sufficiently dissolving the polymerizable monomer or polymerization initiator added to the composition for forming a cured resin layer, appropriately depending on the viewpoint of not dissolving the base material For example, a solvent that can be used in a polymerizable liquid crystal composition for forming a cured film of a horizontally aligned liquid crystal can be used. The content of the solvent is about 1 to 10,000 parts by weight, preferably about 10 to 1,000 parts by weight, more preferably about 20 to 500 parts by weight, based on 100 parts by weight of the total amount of the components contained in the composition for forming a cured resin layer. May be.
 本発明の積層体において、硬化樹脂層は光学的に等方的であることが好ましい。硬化樹脂層が光学的に等方的であると、水平配向液晶硬化膜と組み合わせた際に、水平配向液晶硬化膜の光学特性に影響を及ぼすことなく、高い光学特性を有する積層体を得ることができる。 に お い て In the laminate of the present invention, the cured resin layer is preferably optically isotropic. When the cured resin layer is optically isotropic, when combined with a horizontally aligned liquid crystal cured film, it is possible to obtain a laminate having high optical characteristics without affecting the optical characteristics of the horizontally aligned liquid crystal cured film. Can be.
 本発明の積層体は、上記水平配向液晶硬化膜、水平配向膜および硬化樹脂層を含む。各層の積層順序は適宜選択できるが、好ましくは、水平配向液晶硬化膜、水平配向膜、硬化樹脂層がこの順に隣接して存在する。このような順で各層が積層されていると、水平配向液晶硬化膜中、特に、水平配向液晶硬化膜の硬化時に十分な光量が到達し難い水平配向液晶硬化膜の深部(水平配向膜側)に未硬化の重合性成分が存在していても、硬化樹脂層により未硬化重合性成分の拡散を防止することができる。このため、本発明の積層体を含む位相差板や楕円偏光板においては、水平配向液晶硬化膜中に含まれる未硬化重合性成分等が、該液晶硬化膜に近接または隣接する層(特に粘接着剤層)に拡散するのを効果的に抑制することができる。したがって、本発明の積層体は、好適な一態様において、粘接着剤層をさらに含み、水平配向液晶硬化膜、水平配向膜、硬化樹脂層、粘接着剤層がこの順に隣接して存在する。 積 層 The laminate of the present invention includes the cured liquid crystal layer for horizontal alignment, the horizontal alignment film and the cured resin layer. The order of lamination of each layer can be appropriately selected, but preferably, a cured liquid crystal layer for horizontal alignment, a horizontal alignment film, and a cured resin layer are present adjacent to this order. When the layers are laminated in this order, the deep portion (horizontal alignment film side) of the horizontal alignment liquid crystal cured film, in particular, the horizontal alignment liquid crystal cured film where a sufficient amount of light hardly reaches when the horizontal alignment liquid crystal cured film is cured. Even if an uncured polymerizable component is present, the diffusion of the uncured polymerizable component can be prevented by the cured resin layer. For this reason, in the retardation plate or the elliptically polarizing plate including the laminate of the present invention, the uncured polymerizable component and the like contained in the cured horizontally aligned liquid crystal film may be in a layer close to or adjacent to the cured liquid crystal film (particularly, the viscosity of the cured liquid crystal film). Diffusion to the adhesive layer) can be effectively suppressed. Therefore, in a preferred embodiment, the laminate of the present invention further includes an adhesive layer, and a horizontally aligned liquid crystal cured film, a horizontal alignment film, a cured resin layer, and an adhesive layer are present adjacent to each other in this order. I do.
 本発明の積層体は、例えば、
 硬化樹脂層を形成する工程(以下、「硬化樹脂層形成工程」ともいう)、
 前記硬化樹脂層上に水平配向膜を形成する工程(以下、「水平配向膜形成工程」ともいう)、および、
 前記水平配向膜上に水平配向液晶硬化膜を形成する工程(以下、「水平配向液晶硬化膜形成工程」ともいう)
をこの順に含む方法により製造できる。
The laminate of the present invention, for example,
A step of forming a cured resin layer (hereinafter, also referred to as a “cured resin layer forming step”),
A step of forming a horizontal alignment film on the cured resin layer (hereinafter, also referred to as a “horizontal alignment film forming step”), and
A step of forming a horizontal alignment liquid crystal cured film on the horizontal alignment film (hereinafter, also referred to as a “horizontal alignment liquid crystal cured film forming step”)
Can be produced in this order.
 硬化樹脂層形成工程において、硬化樹脂層は、先に説明したような硬化樹脂層形成用組成物を基材上に塗布した後、溶媒を含む場合には溶媒を乾燥除去し、重合性モノマーを硬化させることにより得られる。 In the cured resin layer forming step, the cured resin layer is obtained by applying the composition for forming a cured resin layer as described above on a base material, and then removing the solvent by drying if a solvent is contained, and removing the polymerizable monomer. Obtained by curing.
 基材としては、例えば、ガラス基材やフィルム基材等が挙げられるが、加工性の観点から樹脂フィルム基材が好ましい。フィルム基材を構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン、およびノルボルネン系ポリマーのようなポリオレフィン;環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロース、およびセルロースアセテートプロピオネートのようなセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィドおよびポリフェニレンオキシドのようなプラスチックが挙げられる。このような樹脂を、溶媒キャスト法、溶融押出法等の公知の手段により製膜して基材とすることができる。基材表面(例えば粘着層と接合される表面)には、シリコーン処理のような離型処理、コロナ処理、プラズマ処理等の表面処理が施されていてもよい。 Examples of the substrate include a glass substrate and a film substrate, and a resin film substrate is preferable from the viewpoint of processability. Examples of the resin constituting the film base include polyolefins such as polyethylene, polypropylene, and norbornene-based polymers; cyclic olefin-based resins; polyvinyl alcohol; polyethylene terephthalate; polymethacrylate; Plastics such as diacetylcellulose, and cellulose esters such as cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyetherketone; polyphenylene sulfide and polyphenylene oxide. Such a resin can be used as a substrate by forming a film by a known method such as a solvent casting method or a melt extrusion method. The surface of the base material (for example, the surface bonded to the adhesive layer) may be subjected to a surface treatment such as a release treatment such as a silicone treatment, a corona treatment, or a plasma treatment.
 基材として市販の製品を用いてもよい。市販のセルロースエステル基材としては、例えば、フジタックフィルムのような富士写真フィルム株式会社製のセルロースエステル基材;「KC8UX2M」、「KC8UY」、および「KC4UY」のようなコニカミノルタオプト株式会社製のセルロースエステル基材などが挙げられる。市販の環状オレフィン系樹脂としては、たとえば、「Topas(登録商標)」のようなTicona社(独)製の環状オレフィン系樹脂;「アートン(登録商標)」のようなJSR株式会社製の環状オレフィン系樹脂;「ゼオノア(ZEONOR)(登録商標)」、および「ゼオネックス(ZEONEX)(登録商標)」のような日本ゼオン株式会社製の環状オレフィン系樹脂;「アペル」(登録商標)のような三井化学株式会社製の環状オレフィン系樹脂が挙げられる。市販されている環状オレフィン系樹脂基材を用いることもできる。市販の環状オレフィン系樹脂基材としては、「エスシーナ(登録商標)」および「SCA40(登録商標)」のような積水化学工業株式会社製の環状オレフィン系樹脂基材;「ゼオノアフィルム(登録商標)」のようなオプテス株式会社製の環状オレフィン系樹脂基材;「アートンフィルム(登録商標)」のようなJSR株式会社製の環状オレフィン系樹脂基材が挙げられる。 市 販 A commercially available product may be used as the base material. Commercially available cellulose ester substrates include, for example, Fuji Photo Film's cellulose ester substrate such as Fujitac Film; Konica Minolta Opto Co., Ltd. such as "KC8UX2M", "KC8UY", and "KC4UY". And the like. Commercially available cyclic olefin-based resins include, for example, cyclic olefin-based resins such as "Topas (registered trademark)" manufactured by Ticona (Germany); and cyclic olefins manufactured by JSR Corporation such as "Arton (registered trademark)". -Based resin; cyclic olefin-based resin manufactured by Nippon Zeon Co., Ltd. such as "ZEONOR (registered trademark)" and "ZEONEX (registered trademark)"; Mitsui such as "Apel" (registered trademark) A cyclic olefin-based resin manufactured by Chemical Co., Ltd. is exemplified. A commercially available cyclic olefin-based resin substrate can also be used. Commercially available cyclic olefin-based resin substrates include cyclic olefin-based resin substrates manufactured by Sekisui Chemical Co., Ltd. such as "ESCINA (registered trademark)" and "SCA40 (registered trademark)"; "Zeonor Film (registered trademark)". And a cyclic olefin resin substrate manufactured by JSR Corporation such as "ARTON FILM (registered trademark)".
 薄型化、基材の剥離容易性等の観点から、基材の厚みは、通常、5~300μmであり、好ましくは10~150μmである。 (4) The thickness of the substrate is usually from 5 to 300 μm, and preferably from 10 to 150 μm, from the viewpoints of thinning, easy removal of the substrate, and the like.
 硬化樹脂層形成用組成物を基材等に塗布する方法としては、スピンコーティング法、エクストルージョン法、グラビアコーティング法、ダイコーティング法、バーコーティング法、アプリケータ法などの塗布法、フレキソ法などの印刷法等の公知の方法が挙げられる。 As a method of applying the composition for forming a cured resin layer to a substrate or the like, a spin coating method, an extrusion method, a gravure coating method, a die coating method, a bar coating method, a coating method such as an applicator method, a flexo method, or the like. A known method such as a printing method may be used.
 また、硬化樹脂層形成用組成物が溶媒を含む場合に溶媒を乾燥除去する方法としては、例えば、自然乾燥法、通風乾燥法、加熱乾燥および減圧乾燥法等が挙げられる。 In addition, when the composition for forming a cured resin layer contains a solvent, examples of a method for drying and removing the solvent include a natural drying method, a ventilation drying method, a heating drying method, and a reduced-pressure drying method.
 水平配向膜形成工程においては、例えば、本発明の積層体に含まれる水平配向膜がラビング配向膜である場合には、得られた硬化樹脂層上に、先に説明したような配向性ポリマー組成物を塗布し、溶媒を除去して塗膜を形成し、該塗膜をラビングすることで水平配向膜を得ることができる。硬化樹脂層上に配向性ポリマー組成物を塗布するおよび溶媒を除去する方法としては、上記硬化樹脂層を形成する方法と同様の方法が挙げられる。 In the horizontal alignment film forming step, for example, when the horizontal alignment film included in the laminate of the present invention is a rubbing alignment film, the obtained cured resin layer may have an alignment polymer composition as described above. An object is applied, the solvent is removed to form a coating film, and the coating film is rubbed to obtain a horizontal alignment film. Examples of the method for applying the oriented polymer composition on the cured resin layer and removing the solvent include the same method as the method for forming the cured resin layer.
 ラビング処理の方法としては、例えば、ラビング布が巻きつけられ、回転しているラビングロールに、上記塗膜を接触させる方法が挙げられる。ラビング処理を行う時に、マスキングを行えば、配向の方向が異なる複数の領域(パターン)を配向膜に形成することもできる。 As a method of the rubbing treatment, for example, a method of bringing the above-mentioned coating film into contact with a rotating rubbing roll around which a rubbing cloth is wound. By performing masking when performing the rubbing treatment, a plurality of regions (patterns) having different orientation directions can be formed in the orientation film.
 本発明の積層体に含まれる水平配向膜が光配向膜である場合には、得られた硬化樹脂層上に、先に説明したような光配向膜形成用組成物を塗布し、溶媒を除去後に偏光(好ましくは、偏光UV)を照射することで光水平配向膜が得られる。硬化樹脂層上に光配向膜形成用組成物を塗布する方法および塗布された光配向膜形成用組成物から溶媒を除去する方法としては、配向性ポリマー組成物において挙げた方法と同様の方法が挙げられる。 When the horizontal alignment film included in the laminate of the present invention is a photo-alignment film, the composition for forming a photo-alignment film as described above is applied onto the obtained cured resin layer, and the solvent is removed. Later, by irradiation with polarized light (preferably, polarized light UV), an optical horizontal alignment film is obtained. As a method of applying the composition for forming a photo-alignment film on the cured resin layer and a method of removing the solvent from the composition for forming a photo-alignment film, the same method as the method described for the orientable polymer composition is used. No.
 偏光を照射するには、水平配向膜を形成すべき表面上に塗布された光配向膜形成用組成物から溶媒を除去したものに直接、偏光UVを照射する形式であってよい。また、当該偏光は、実質的に平行光であると特に好ましい。照射する偏光の波長は、光反応性基を有するポリマーまたはモノマーの光反応性基が、光エネルギーを吸収し得る波長領域のものがよい。具体的には、波長250~400nmの範囲のUV(紫外線)が特に好ましい。当該偏光照射に用いる光源としては、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、KrF、ArFなどの紫外光レ-ザ-などが挙げられ、高圧水銀ランプ、超高圧水銀ランプおよびメタルハライドランプがより好ましい。これらの中でも、高圧水銀ランプ、超高圧水銀ランプおよびメタルハライドランプが、波長313nmの紫外線の発光強度が大きいため好ましい。前記光源からの光を、適当な偏光子を通過して照射することにより、偏光UVを照射することができる。かかる偏光子としては、偏光フィルターやグラントムソン、グランテ-ラ-などの偏光プリズムやワイヤーグリッドタイプの偏光子を用いることができる。 In order to irradiate polarized light, a method of directly irradiating polarized UV to a material obtained by removing a solvent from a composition for forming a photo-alignment film applied on a surface on which a horizontal alignment film is to be formed may be used. It is particularly preferable that the polarized light is substantially parallel light. The wavelength of the polarized light to be irradiated is preferably in a wavelength region where the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy. Specifically, UV (ultraviolet light) having a wavelength in the range of 250 to 400 nm is particularly preferable. Examples of a light source used for the polarized light irradiation include a xenon lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a metal halide lamp, an ultraviolet laser such as KrF, ArF, and the like. Lamps are more preferred. Among these, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, and a metal halide lamp are preferable because of their high emission intensity of ultraviolet light having a wavelength of 313 nm. By irradiating the light from the light source through an appropriate polarizer, polarized UV can be emitted. As such a polarizer, a polarizing filter, a polarizing prism such as Glan-Thompson or Gran-Terra, or a wire grid type polarizer can be used.
 なお、ラビングまたは偏光照射を行う時に、マスキングを行えば、液晶配向の方向が異なる複数の領域(パターン)を形成することもできる。 By performing masking when performing rubbing or polarized light irradiation, a plurality of regions (patterns) having different liquid crystal alignment directions can be formed.
 グルブ配向膜を得る方法としては、感光性ポリイミド膜表面にパターン形状のスリットを有する露光用マスクを介して露光後、現像およびリンス処理を行って凹凸パターンを形成する方法、表面に溝を有する板状の原盤に、硬化前のUV硬化樹脂の層を形成し、形成された樹脂層を硬化樹脂層へ移してから硬化する方法、および、硬化樹脂層上に形成した硬化前のUV硬化樹脂の膜に、複数の溝を有するロール状の原盤を押し当てて凹凸を形成し、その後硬化する方法等が挙げられる。 As a method of obtaining the grub alignment film, a method of forming an uneven pattern by performing exposure and development and rinsing treatment after exposure through an exposure mask having a pattern-shaped slit on the photosensitive polyimide film surface, a plate having grooves on the surface A method of forming a layer of a UV-curable resin before curing on a shaped master, transferring the formed resin layer to the cured resin layer and then curing, and a method of curing the UV-cured resin before curing formed on the cured resin layer. A method in which a roll-shaped master having a plurality of grooves is pressed against the film to form irregularities and then cured.
 水平配向液晶硬化膜形成工程においては、得られた上記水平配向膜上に、先に説明したような重合性液晶組成物を塗布し、重合性液晶組成物から得られた塗膜を、前記重合性液晶組成物に含まれる重合性液晶化合物の液晶相転移温度以上まで加熱し、通常塗膜から溶媒を乾燥除去させると同時に重合性液晶化合物を水平方向に配向させる。 In the horizontal alignment liquid crystal cured film forming step, the polymerizable liquid crystal composition as described above is applied on the obtained horizontal alignment film, and the coating film obtained from the polymerizable liquid crystal composition is polymerized. The polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition is heated to a temperature equal to or higher than the liquid crystal phase transition temperature to dry and remove the solvent from the coating film, and at the same time, align the polymerizable liquid crystal compound in the horizontal direction.
 塗膜の加熱温度は、用いる重合性液晶化合物および塗膜を形成する基材等の材質などを考慮して、適宜決定し得る。重合性液晶組成物に含まれる溶媒を除去しながら、重合性液晶化合物を水平配向状態とするため、加熱温度は、好ましくは重合性液晶化合物の液晶相(ネマチック相)転移温度よりも3℃以上高い、より好ましくは5℃以上高い温度である。加熱温度の上限値は特に限定されないが、加熱による塗膜や基材等への損傷を避けるため、好ましくは180℃以下、より好ましくは150℃以下である。なお、ネマチック相転移温度は、例えば、温度調節ステージを備えた偏光顕微鏡や、示差走査熱量計(DSC)、熱重量示差熱分析装置(TG-DTA)等を用いて測定することができる。 (4) The heating temperature of the coating film can be appropriately determined in consideration of the polymerizable liquid crystal compound to be used, the material of the base material forming the coating film, and the like. The heating temperature is preferably at least 3 ° C. higher than the liquid crystal phase (nematic phase) transition temperature of the polymerizable liquid crystal compound in order to bring the polymerizable liquid crystal compound into a horizontal alignment state while removing the solvent contained in the polymerizable liquid crystal composition. The temperature is high, more preferably 5 ° C. or higher. The upper limit of the heating temperature is not particularly limited, but is preferably 180 ° C. or lower, more preferably 150 ° C. or lower, in order to avoid damage to the coating film and the substrate due to the heating. The nematic phase transition temperature can be measured using, for example, a polarizing microscope equipped with a temperature control stage, a differential scanning calorimeter (DSC), a thermogravimetric differential thermal analyzer (TG-DTA), or the like.
 加熱時間は、加熱温度、用いる重合性液晶化合物の種類、溶媒の種類やその沸点およびその量等に応じて適宜決定し得るが、通常、0.5~10分であり、好ましくは0.5~5分である。 The heating time can be appropriately determined according to the heating temperature, the type of the polymerizable liquid crystal compound to be used, the type of the solvent, the boiling point and the amount thereof, etc., and is usually 0.5 to 10 minutes, preferably 0.5 to 10 minutes. ~ 5 minutes.
 塗膜からの溶媒の除去は、重合性液晶化合物のネマチック相転移温度以上への加熱と同時に行ってもよいし、別途で行ってもよいが、生産性向上の観点から同時に行うことが好ましい。塗膜からの溶媒の除去は、通常、重合性液晶化合物のネマチック相転移温度以上への加熱と同時に行われるが、重合性液晶化合物の液晶相転移温度以上への加熱を行う前に、重合性液晶組成物から得られた塗膜中に含まれる重合性液晶化合物が重合しない条件で塗膜中の溶媒を適度に除去させるための予備乾燥工程を設けてもよい。かかる予備乾燥工程における乾燥方法としては、自然乾燥法、通風乾燥法、加熱乾燥および減圧乾燥法等が挙げられ、該乾燥工程における乾燥温度(加熱温度)は、用いる重合性液晶化合物の種類、溶媒の種類やその沸点およびその量等に応じて適宜決定し得る。 溶媒 The removal of the solvent from the coating film may be performed simultaneously with heating the polymerizable liquid crystal compound to a temperature higher than the nematic phase transition temperature or separately, but is preferably performed simultaneously from the viewpoint of improving productivity. The removal of the solvent from the coating film is usually performed simultaneously with heating the polymerizable liquid crystal compound to a temperature higher than the nematic phase transition temperature. A pre-drying step may be provided for appropriately removing the solvent in the coating film under the condition that the polymerizable liquid crystal compound contained in the coating film obtained from the liquid crystal composition is not polymerized. Examples of the drying method in the preliminary drying step include a natural drying method, a ventilation drying method, a heating drying method, and a reduced-pressure drying method. The drying temperature (heating temperature) in the drying step depends on the type of the polymerizable liquid crystal compound to be used and the solvent. Can be determined as appropriate according to the type, the boiling point and the amount thereof.
 次いで、得られた乾燥塗膜において、重合性液晶化合物の水平配向状態を保持したまま、重合性液晶化合物を重合させることにより、水平配向液晶硬化膜が形成される。重合方法としては光重合法が好ましく、重合性液晶組成物の塗布面側から光照射を行うことにより水平配向液晶硬化膜を形成し得る。光重合において、乾燥塗膜に照射する光としては、当該乾燥塗膜に含まれる光重合開始剤の種類、重合性液晶化合物の種類(特に、該重合性液晶化合物が有する重合性基の種類)およびその量に応じて適宜選択される。その具体例としては、可視光、紫外光、赤外光、X線、α線、β線およびγ線からなる群より選択される1種以上の光や活性電子線が挙げられる。中でも、重合反応の進行を制御し易い点や、光重合装置として当分野で広範に用いられているものが使用できるという点で、紫外光が好ましく、紫外光によって、光重合可能なように、重合性液晶組成物に含有される重合性液晶化合物や光重合開始剤の種類を選択しておくことが好ましい。また、重合時に、適切な冷却手段により乾燥塗膜を冷却しながら、光照射することで、重合温度を制御することもできる。このような冷却手段の採用により、より低温で重合性液晶化合物の重合を実施すれば、基材が比較的耐熱性が低いものを用いたとしても、適切に水平配向液晶硬化膜を形成できる。 Next, in the obtained dried coating film, the polymerizable liquid crystal compound is polymerized while keeping the horizontal alignment state of the polymerizable liquid crystal compound, whereby a cured liquid crystal film with horizontal alignment is formed. As the polymerization method, a photopolymerization method is preferable, and a horizontal alignment liquid crystal cured film can be formed by irradiating light from the application surface side of the polymerizable liquid crystal composition. In the photopolymerization, the light to be applied to the dried coating film includes the type of the photopolymerization initiator and the type of the polymerizable liquid crystal compound contained in the dried coating film (particularly, the type of the polymerizable group of the polymerizable liquid crystal compound). And the amount is appropriately selected according to the amount thereof. Specific examples thereof include one or more types of light and active electron beams selected from the group consisting of visible light, ultraviolet light, infrared light, X-rays, α-rays, β-rays, and γ-rays. Above all, ultraviolet light is preferred in that it is easy to control the progress of the polymerization reaction and that a photopolymerization device that is widely used in the field can be used, and ultraviolet light is preferable, so that photopolymerization is possible. It is preferable to select the types of the polymerizable liquid crystal compound and the photopolymerization initiator contained in the polymerizable liquid crystal composition. Further, at the time of polymerization, the polymerization temperature can be controlled by irradiating light while cooling the dried coating film by an appropriate cooling means. By adopting such a cooling means, if the polymerization of the polymerizable liquid crystal compound is carried out at a lower temperature, a horizontally oriented liquid crystal cured film can be appropriately formed even if a substrate having relatively low heat resistance is used.
 前記活性エネルギー線の光源としては、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380~440nmを発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が挙げられる。 Examples of the light source of the active energy ray include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a halogen lamp, a carbon arc lamp, a tungsten lamp, a gallium lamp, an excimer laser, and a wavelength range. Examples include an LED light source that emits light at 380 to 440 nm, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, and a metal halide lamp.
 紫外線照射強度は、通常、10~3,000mW/cmである。紫外線照射強度は、好ましくは光重合開始剤の活性化に有効な波長領域における強度である。光を照射する時間は、通常0.1秒~10分であり、好ましくは0.1秒~5分、より好ましくは0.1秒~3分、さらに好ましくは0.1秒~1分である。このような紫外線照射強度で1回または複数回照射すると、その積算光量は、10~3,000mJ/cm、好ましくは50~2,000mJ/cm、より好ましくは100~1,000mJ/cmである。 The ultraviolet irradiation intensity is usually from 10 to 3,000 mW / cm 2 . The ultraviolet irradiation intensity is preferably an intensity in a wavelength region effective for activating the photopolymerization initiator. The time for irradiating light is generally 0.1 second to 10 minutes, preferably 0.1 second to 5 minutes, more preferably 0.1 second to 3 minutes, and further preferably 0.1 second to 1 minute. is there. When irradiation is performed once or more times with such an ultraviolet irradiation intensity, the integrated light amount is 10 to 3,000 mJ / cm 2 , preferably 50 to 2,000 mJ / cm 2 , more preferably 100 to 1,000 mJ / cm 2. 2 .
 本発明の積層体が粘接着剤層を含む場合、これを構成する粘接着剤としては、例えば、感圧式粘着剤、乾燥固化型接着剤および化学反応型接着剤が挙げられる。化学反応型接着剤としては、例えば、活性エネルギー線硬化型接着剤が挙げられる。 When the laminate of the present invention includes a pressure-sensitive adhesive layer, examples of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer include a pressure-sensitive pressure-sensitive adhesive, a dry-setting adhesive, and a chemical reaction-type adhesive. Examples of the chemically reactive adhesive include an active energy ray-curable adhesive.
 感圧式粘着剤は、通常、ポリマーを含み、溶媒を含んでいてもよい。ポリマーとしては、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、またはポリエーテル等が挙げられる。中でも、アクリル系ポリマーを含むアクリル系の粘着剤は、光学的な透明性に優れ、適度の濡れ性や凝集力を有し、接着性に優れ、さらには耐候性や耐熱性等が高く、加熱や加湿の条件下で浮きや剥がれ等が生じ難いため好ましい。 (4) The pressure-sensitive adhesive usually contains a polymer and may contain a solvent. Examples of the polymer include an acrylic polymer, a silicone polymer, a polyester, a polyurethane, and a polyether. Among them, acrylic pressure-sensitive adhesives containing acrylic polymers have excellent optical transparency, moderate wettability and cohesive strength, excellent adhesion, and high weather resistance and heat resistance. Floating or peeling hardly occurs under the condition of humidification or humidification.
 アクリル系ポリマーとしては、エステル部分のアルキル基がメチル基、エチル基またはブチル基等の炭素数1~20のアルキル基である(メタ)アクリレートと、(メタ)アクリル酸やヒドロキシエチル(メタ)アクリレート等の官能基を有する(メタ)アクリル系モノマーとの共重合体が好ましい。 Examples of the acrylic polymer include (meth) acrylates in which the alkyl group in the ester portion is an alkyl group having 1 to 20 carbon atoms such as a methyl group, an ethyl group, or a butyl group, and (meth) acrylic acid or hydroxyethyl (meth) acrylate. A copolymer with a (meth) acrylic monomer having a functional group such as
 このような共重合体を含む感圧式粘着剤は、粘着性に優れており、被転写体に貼合した後に取り除くときも、被転写体に糊残り等を生じさせることなく、比較的容易に取り除くことが可能であるので好ましい。アクリル系ポリマーのガラス転移温度は、25℃以下が好ましく、0℃以下がより好ましい。このようなアクリル系ポリマーの質量平均分子量は、10万以上であることが好ましい。 The pressure-sensitive pressure-sensitive adhesive containing such a copolymer is excellent in tackiness, and even when removed after pasting to a transfer-receiving body, without causing adhesive residue or the like on the transfer-receiving body, it is relatively easy. It is preferable because it can be removed. The glass transition temperature of the acrylic polymer is preferably 25 ° C. or lower, more preferably 0 ° C. or lower. The weight average molecular weight of such an acrylic polymer is preferably 100,000 or more.
 溶媒としては、重合性液晶組成物等に用い得る溶媒として挙げられた溶媒等が挙げられる。感圧式粘着剤は、光拡散剤を含有していてもよい。光拡散剤は、粘着剤に光拡散性を付与する添加剤であり、粘着剤が含むポリマーの屈折率と異なる屈折率を有する微粒子であればよい。光拡散剤としては、無機化合物からなる微粒子、および有機化合物(ポリマー)からなる微粒子が挙げられる。アクリル系ポリマーを含めて、粘着剤が有効成分として含むポリマーの多くは1.4~1.6程度の屈折率を有するため、その屈折率が1.2~1.8である光拡散剤から適宜選択することが好ましい。粘着剤が有効成分として含むポリマーと光拡散剤との屈折率差は、通常、0.01以上であり、表示装置の明るさと表示性の観点からは、0.01~0.2が好ましい。光拡散剤として用いる微粒子は、球形の微粒子、それも単分散に近い微粒子が好ましく、平均粒径が2~6μmである微粒子がより好ましい。屈折率は、一般的な最小偏角法またはアッベ屈折計によって測定される。 Examples of the solvent include those listed as solvents that can be used for the polymerizable liquid crystal composition and the like. The pressure-sensitive adhesive may contain a light diffusing agent. The light diffusing agent is an additive that imparts light diffusing property to the pressure-sensitive adhesive, and may be fine particles having a refractive index different from that of the polymer contained in the pressure-sensitive adhesive. Examples of the light diffusing agent include fine particles made of an inorganic compound and fine particles made of an organic compound (polymer). Many of the polymers contained in the pressure-sensitive adhesive as an active ingredient, including acrylic polymers, have a refractive index of about 1.4 to 1.6, so that the light diffusing agent having a refractive index of 1.2 to 1.8 It is preferable to select an appropriate one. The difference in refractive index between the polymer contained in the pressure-sensitive adhesive as an active ingredient and the light diffusing agent is usually 0.01 or more, and is preferably 0.01 to 0.2 from the viewpoint of the brightness and display properties of the display device. The fine particles used as the light diffusing agent are preferably spherical fine particles, which are also nearly monodisperse, and more preferably fine particles having an average particle diameter of 2 to 6 μm. The refractive index is measured by a general minimum declination method or Abbe refractometer.
 無機化合物からなる微粒子としては、酸化アルミニウム(屈折率1.76)および酸化ケイ素(屈折率1.45)等が挙げられる。有機化合物(ポリマー)からなる微粒子としては、メラミンビーズ(屈折率1.57)、ポリメタクリル酸メチルビーズ(屈折率1.49)、メタクリル酸メチル/スチレン共重合体樹脂ビーズ(屈折率1.50~1.59)、ポリカーボネートビーズ(屈折率1.55)、ポリエチレンビーズ(屈折率1.53)、ポリスチレンビーズ(屈折率1.6)、ポリ塩化ビニルビーズ(屈折率1.46)、およびシリコーン樹脂ビーズ(屈折率1.46)等が挙げられる。光拡散剤の含有量は、通常、ポリマー100質量部に対して、3~30質量部である。 微粒子 Examples of the fine particles made of an inorganic compound include aluminum oxide (refractive index: 1.76) and silicon oxide (refractive index: 1.45). Examples of the fine particles composed of an organic compound (polymer) include melamine beads (refractive index: 1.57), polymethyl methacrylate beads (refractive index: 1.49), and methyl methacrylate / styrene copolymer resin beads (refractive index: 1.50). 91.59), polycarbonate beads (refractive index 1.55), polyethylene beads (refractive index 1.53), polystyrene beads (refractive index 1.6), polyvinyl chloride beads (refractive index 1.46), and silicone Resin beads (refractive index: 1.46); The content of the light diffusing agent is usually 3 to 30 parts by mass based on 100 parts by mass of the polymer.
 感圧式粘着剤の厚みは、その密着力等に応じて決定されるため、特に制限されないが、通常、1μm~40μmである。加工性や耐久性等の点から、当該厚さは3μm~25μmが好ましく、5μm~20μmがより好ましい。粘着剤から形成される粘接着剤層の厚さを5μm~20μmとすることにより、表示装置を正面から見た場合や斜めから見た場合の明るさを保ち、表示像のにじみやボケを生じ難くすることができる。 厚 み The thickness of the pressure-sensitive adhesive is not particularly limited because it is determined according to the adhesive strength and the like, but is usually 1 μm to 40 μm. From the viewpoints of workability, durability and the like, the thickness is preferably 3 μm to 25 μm, more preferably 5 μm to 20 μm. By setting the thickness of the pressure-sensitive adhesive layer formed from the pressure-sensitive adhesive to 5 μm to 20 μm, the brightness of the display device when viewed from the front or obliquely is maintained, and blurring or blurring of the display image is prevented. It can be less likely to occur.
 乾燥固化型接着剤は、溶媒を含んでいてもよい。乾燥固化型接着剤としては、水酸基、カルボキシル基またはアミノ基等のプロトン性官能基とエチレン性不飽和基とを有するモノマーの重合体、または、ウレタン樹脂を主成分として含有し、さらに、多価アルデヒド、エポキシ化合物、エポキシ樹脂、メラミン化合物、ジルコニア化合物、および亜鉛化合物等の架橋剤または硬化性化合物を含有する組成物等が挙げられる。水酸基、カルボキシル基またはアミノ基等のプロトン性官能基とエチレン性不飽和基とを有するモノマーの重合体としては、エチレン-マレイン酸共重合体、イタコン酸共重合体、アクリル酸共重合体、アクリルアミド共重合体、ポリ酢酸ビニルのケン化物、および、ポリビニルアルコール系樹脂等が挙げられる。 The dry-setting adhesive may contain a solvent. The dry-solidifying adhesive contains, as a main component, a polymer of a monomer having a protic functional group such as a hydroxyl group, a carboxyl group or an amino group and an ethylenically unsaturated group, or a urethane resin. Examples of the composition include a composition containing a crosslinking agent or a curable compound such as an aldehyde, an epoxy compound, an epoxy resin, a melamine compound, a zirconia compound, and a zinc compound. Examples of the polymer of a monomer having a protic functional group such as a hydroxyl group, a carboxyl group or an amino group and an ethylenically unsaturated group include ethylene-maleic acid copolymer, itaconic acid copolymer, acrylic acid copolymer and acrylamide. Copolymers, saponified polyvinyl acetate, polyvinyl alcohol-based resins and the like can be mentioned.
 ポリビニルアルコール系樹脂としては、ポリビニルアルコール、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコール、カルボキシル基変性ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、メチロール基変性ポリビニルアルコール、および、アミノ基変性ポリビニルアルコール等が挙げられる。水系の粘接着剤におけるポリビニルアルコール系樹脂の含有量は、水100質量部に対して、通常、1~10質量部であり、好ましくは1~5質量部である。 Examples of the polyvinyl alcohol-based resin include polyvinyl alcohol, partially saponified polyvinyl alcohol, completely saponified polyvinyl alcohol, carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino group-modified polyvinyl alcohol. No. The content of the polyvinyl alcohol-based resin in the water-based adhesive is usually 1 to 10 parts by mass, preferably 1 to 5 parts by mass with respect to 100 parts by mass of water.
 ウレタン樹脂としては、ポリエステル系アイオノマー型ウレタン樹脂等が挙げられる。
ここでいうポリエステル系アイオノマー型ウレタン樹脂とは、ポリエステル骨格を有するウレタン樹脂であって、その中に少量のイオン性成分(親水成分)が導入された樹脂である。係るアイオノマー型ウレタン樹脂は、乳化剤を使用せずに、水中で乳化してエマルジョンとなるため、水系の粘接着剤とすることができる。ポリエステル系アイオノマー型ウレタン樹脂を用いる場合は、架橋剤として水溶性のエポキシ化合物を配合することが有効である。
Examples of the urethane resin include a polyester ionomer type urethane resin.
The polyester-based ionomer type urethane resin referred to herein is a urethane resin having a polyester skeleton and a resin into which a small amount of an ionic component (hydrophilic component) is introduced. Such an ionomer type urethane resin is emulsified in water to form an emulsion without using an emulsifier, and thus can be used as an aqueous adhesive. When a polyester ionomer type urethane resin is used, it is effective to mix a water-soluble epoxy compound as a crosslinking agent.
 エポキシ樹脂としては、ジエチレントリアミンまたはトリエチレンテトラミン等のポリアルキレンポリアミンとアジピン酸等のジカルボン酸との反応で得られるポリアミドポリアミンに、エピクロロヒドリンを反応させて得られるポリアミドエポキシ樹脂等が挙げられる。係るポリアミドエポキシ樹脂の市販品としては、“スミレーズレジン(登録商標)650”および“スミレーズレジン675”(以上、住化ケムテックス株式会社製)、“WS-525”(日本PMC株式会社製)等が挙げられる。エポキシ樹脂を配合する場合、その添加量は、ポリビニルアルコール系樹脂100質量部に対して、通常、1~100質量部であり、好ましくは1~50質量部である。 Examples of the epoxy resin include a polyamide epoxy resin obtained by reacting a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine with a dicarboxylic acid such as adipic acid and epichlorohydrin, and the like. Commercially available polyamide epoxy resins include “SUMIREZ Resin (registered trademark) 650” and “SUMIREZ Resin 675” (all manufactured by Sumika Chemtex Co., Ltd.), and “WS-525” (manufactured by Nippon PMC). And the like. When the epoxy resin is blended, the amount of the epoxy resin is usually 1 to 100 parts by mass, preferably 1 to 50 parts by mass with respect to 100 parts by mass of the polyvinyl alcohol-based resin.
 乾燥固化型接着剤から形成される粘接着剤層の厚さは、通常、0.001~5μmであり、好ましくは0.01~2μmであり、さらに好ましくは0.01~0.5μmである。乾燥固化型接着剤から形成される粘接着剤層が厚すぎると、外観不良となり易い。 The thickness of the adhesive layer formed from the dried and solidified adhesive is generally 0.001 to 5 μm, preferably 0.01 to 2 μm, more preferably 0.01 to 0.5 μm. is there. If the pressure-sensitive adhesive layer formed from the dried and solidified adhesive is too thick, the appearance tends to be poor.
 活性エネルギー線硬化型接着剤は、溶媒を含んでいてもよい。活性エネルギー線硬化型接着剤とは、活性エネルギー線の照射を受けて硬化する接着剤である。活性エネルギー線硬化型接着剤としては、エポキシ化合物とカチオン重合開始剤とを含有するカチオン重合性の接着剤、アクリル系硬化成分とラジカル重合開始剤とを含有するラジカル重合性の接着剤、エポキシ化合物等のカチオン重合性の硬化成分およびアクリル系化合物等のラジカル重合性の硬化成分の両者を含有し、さらにカチオン重合開始剤およびラジカル重合開始剤を含有する接着剤、および、これら重合開始剤を含まずに電子ビームを照射することで硬化される接着剤等が挙げられる。 The active energy ray-curable adhesive may contain a solvent. The active energy ray-curable adhesive is an adhesive that cures when irradiated with an active energy ray. Examples of the active energy ray-curable adhesive include a cationically polymerizable adhesive containing an epoxy compound and a cationic polymerization initiator, a radically polymerizable adhesive containing an acrylic curing component and a radical polymerization initiator, and an epoxy compound. An adhesive containing both a cationically polymerizable curing component such as an acrylic compound and a radically polymerizable curing component, and an adhesive containing a cationic polymerization initiator and a radical polymerization initiator, and these polymerization initiators are included. And an adhesive that is cured by irradiating an electron beam.
 中でも、アクリル系硬化成分と光ラジカル重合開始剤とを含有するラジカル重合性の活性エネルギー線硬化型接着剤、エポキシ化合物と光カチオン重合開始剤とを含有するカチオン重合性の活性エネルギー線硬化型接着剤が好ましい。アクリル系硬化成分としては、メチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリレートおよび(メタ)アクリル酸等が挙げられる。エポキシ化合物を含有する活性エネルギー線硬化型接着剤は、エポキシ化合物以外の化合物をさらに含有していてもよい。エポキシ化合物以外の化合物としては、オキセタン化合物やアクリル化合物等が挙げられる。 Among them, a radical polymerizable active energy ray-curable adhesive containing an acrylic curing component and a photoradical polymerization initiator, and a cationic polymerizable active energy ray-curable adhesive containing an epoxy compound and a photocationic polymerization initiator Agents are preferred. Examples of the acrylic curing component include (meth) acrylates such as methyl (meth) acrylate and hydroxyethyl (meth) acrylate, and (meth) acrylic acid. The active energy ray-curable adhesive containing an epoxy compound may further contain a compound other than the epoxy compound. Examples of compounds other than epoxy compounds include oxetane compounds and acrylic compounds.
 光ラジカル重合開始剤および光カチオン重合開始剤としては、上述の光ラジカル重合開始剤および光カチオン重合開始剤が挙げられる。ラジカル重合開始剤並びにカチオン重合開始剤の含有量は、活性エネルギー線硬化型接着剤100質量部に対して、通常、0.5~20質量部であり、好ましくは1~15質量部である。 (4) Examples of the photoradical polymerization initiator and the photocationic polymerization initiator include the photoradical polymerization initiator and the photocationic polymerization initiator described above. The content of the radical polymerization initiator and the cationic polymerization initiator is usually 0.5 to 20 parts by mass, preferably 1 to 15 parts by mass, based on 100 parts by mass of the active energy ray-curable adhesive.
 活性エネルギー線硬化型接着剤には、さらに、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤および消泡剤等が含有されていてもよい。 The active energy ray-curable adhesive further contains an ion trapping agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow regulator, a plasticizer, an antifoaming agent, and the like. You may.
 本明細書において活性エネルギー線とは、活性種を発生する化合物を分解して活性種を発生させることのできるエネルギー線と定義される。このような活性エネルギー線としては、可視光、紫外線、赤外線、X線、α線、β線、γ線および電子線等が挙げられ、紫外線および電子線が好ましい。好ましい紫外線の照射条件は前述した重合性液晶化合物の重合と同様である。 活性 In the present specification, an active energy ray is defined as an energy ray that can decompose a compound that generates an active species to generate an active species. Examples of such active energy rays include visible light, ultraviolet rays, infrared rays, X-rays, α-rays, β-rays, γ-rays, and electron beams, and ultraviolet rays and electron beams are preferred. Preferred irradiation conditions of the ultraviolet ray are the same as those for the polymerization of the polymerizable liquid crystal compound described above.
 本発明の積層体は、水平配向液晶硬化膜、水平配向膜および硬化樹脂層、並びに、場合により粘接着剤層に加えて、垂直配向液晶硬化膜や他の配向液晶硬化膜等の他の層を含んでいてよい。 The laminate of the present invention has a horizontal alignment liquid crystal cured film, a horizontal alignment film and a cured resin layer, and optionally, in addition to an adhesive layer, optionally another liquid crystal cured film such as a vertical alignment liquid crystal cured film or another oriented liquid crystal cured film. Layers may be included.
 本発明は、本発明の積層体と偏光フィルムとを含む楕円偏光板を包含する。
 偏光フィルムは、偏光機能を有するフィルムであり、吸収異方性を有する色素を吸着させた延伸フィルムや吸収異方性を有する色素を塗布したフィルムを偏光子として含むフィルム等が挙げられる。吸収異方性を有する色素としては、例えば、二色性色素が挙げられる。
The present invention includes an elliptically polarizing plate including the laminate of the present invention and a polarizing film.
The polarizing film is a film having a polarizing function, and examples thereof include a stretched film on which a dye having absorption anisotropy is adsorbed and a film including a film coated with a dye having absorption anisotropy as a polarizer. Examples of the dye having absorption anisotropy include dichroic dyes.
 吸収異方性を有する色素を吸着させた延伸フィルムを偏光子として含むフィルムは通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、およびホウ酸水溶液による処理後に水洗する工程を経て製造された偏光子の少なくとも一方の面に接着剤を介して透明保護フィルムで挟み込むことで作製される。 A film containing a stretched film adsorbing a dye having absorption anisotropy as a polarizer is usually a step of uniaxially stretching a polyvinyl alcohol-based resin film, by dyeing the polyvinyl alcohol-based resin film with a dichroic dye. A step of adsorbing the dichroic dye, a step of treating the polyvinyl alcohol-based resin film on which the dichroic dye is adsorbed with a boric acid aqueous solution, and at least a polarizer manufactured through a step of washing with water after the treatment with the boric acid aqueous solution It is produced by sandwiching one surface with a transparent protective film via an adhesive.
 ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することによって得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルとそれに共重合可能な他の単量体との共重合体が用いられる。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などが挙げられる。 The polyvinyl alcohol resin is obtained by saponifying a polyvinyl acetate resin. As the polyvinyl acetate resin, in addition to polyvinyl acetate which is a homopolymer of vinyl acetate, a copolymer of vinyl acetate with another monomer copolymerizable therewith is used. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
 ポリビニルアルコール系樹脂のケン化度は、通常85~100モル%程度であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールも使用することができる。ポリビニルアルコール系樹脂の重合度は、通常1,000~10,000程度であり、好ましくは1,500~5,000の範囲である。 The degree of saponification of the polyvinyl alcohol-based resin is usually about 85 to 100 mol%, preferably 98 mol% or more. The polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes may be used. The degree of polymerization of the polyvinyl alcohol-based resin is usually about 1,000 to 10,000, preferably in the range of 1,500 to 5,000.
 このようなポリビニルアルコール系樹脂を製膜したものが、偏光フィルムの原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものでなく、公知の方法で製膜することができる。ポリビニルアルコール系原反フィルムの膜厚は、例えば、10~150μm程度とすることができる。 も の A film formed of such a polyvinyl alcohol-based resin is used as a raw film of a polarizing film. The method of forming the polyvinyl alcohol-based resin is not particularly limited, and the film can be formed by a known method. The thickness of the polyvinyl alcohol-based raw film can be, for example, about 10 to 150 μm.
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素による染色の前、染色と同時、または染色の後で行うことができる。一軸延伸を染色の後で行う場合、この一軸延伸は、ホウ酸処理の前に行ってもよいし、ホウ酸処理中に行ってもよい。また、これらの複数の段階で一軸延伸を行うことも可能である。一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また一軸延伸は、大気中で延伸を行う乾式延伸であってもよいし、溶媒を用い、ポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行う湿式延伸であってもよい。延伸倍率は、通常3~8倍程度である。 の 一 Uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before, simultaneously with, or after dyeing with the dichroic dye. When the uniaxial stretching is performed after the dyeing, the uniaxial stretching may be performed before the boric acid treatment or may be performed during the boric acid treatment. Moreover, it is also possible to perform uniaxial stretching in these multiple steps. In the uniaxial stretching, the film may be uniaxially stretched between rolls having different peripheral speeds, or may be uniaxially stretched using a hot roll. The uniaxial stretching may be dry stretching in which stretching is performed in the air, or wet stretching in which a polyvinyl alcohol-based resin film is stretched using a solvent in a swollen state. The stretching ratio is usually about 3 to 8 times.
 ポリビニルアルコール系樹脂フィルムの二色性色素による染色は、例えば、二色性色素を含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬する方法によって行われる。 染色 Dyeing the polyvinyl alcohol-based resin film with the dichroic dye is performed, for example, by dipping the polyvinyl alcohol-based resin film in an aqueous solution containing the dichroic dye.
 二色性色素として、具体的には、ヨウ素や二色性の有機染料が用いられる。二色性の有機染料としては、C.I.DIRECT RED 39などのジスアゾ化合物からなる二色性直接染料および、トリスアゾ、テトラキスアゾなどの化合物からなる二色性直接染料等が挙げられる。ポリビニルアルコール系樹脂フィルムは、染色処理前に、水への浸漬処理を施しておくことが好ましい。 Specific examples of the dichroic dye include iodine and a dichroic organic dye. Examples of dichroic organic dyes include C.I. I. Dichroic direct dyes composed of a disazo compound such as DIRECT {RED} 39 and dichroic direct dyes composed of a compound such as trisazo, tetrakisazo and the like. The polyvinyl alcohol-based resin film is preferably subjected to a dipping treatment in water before the dyeing treatment.
 二色性色素としてヨウ素を用いる場合は通常、ヨウ素およびヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。
この水溶液におけるヨウ素の含有量は、水100質量部あたり、通常、0.01~1質量部程度である。またヨウ化カリウムの含有量は、水100質量部あたり、通常、0.5~20質量部程度である。染色に用いる水溶液の温度は、通常20~40℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常20~1,800秒程度である。
When iodine is used as the dichroic dye, a method of immersing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide and dyeing is usually employed.
The content of iodine in this aqueous solution is usually about 0.01 to 1 part by mass per 100 parts by mass of water. The content of potassium iodide is usually about 0.5 to 20 parts by mass per 100 parts by mass of water. The temperature of the aqueous solution used for dyeing is usually about 20 to 40 ° C. The immersion time (dyeing time) in the aqueous solution is usually about 20 to 1,800 seconds.
 一方、二色性色素として二色性の有機染料を用いる場合は通常、水溶性二色性染料を含む水溶液にポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。
この水溶液における二色性有機染料の含有量は、水100質量部あたり、通常、1×10-4~10質量部程度であり、好ましくは1×10-3~1質量部であり、さらに好ましくは1×10-3~1×10-2質量部である。この水溶液は、硫酸ナトリウム等の無機塩を染色助剤として含んでいてもよい。染色に用いる二色性染料水溶液の温度は、通常、20~80℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常、10~1,800秒程度である。
On the other hand, when a dichroic organic dye is used as the dichroic dye, a method of immersing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic dye and dyeing is usually employed.
The content of the dichroic organic dye in this aqueous solution is usually about 1 × 10 −4 to 10 parts by weight, preferably 1 × 10 −3 to 1 part by weight, and more preferably 100 parts by weight of water. Is 1 × 10 −3 to 1 × 10 −2 parts by mass. This aqueous solution may contain an inorganic salt such as sodium sulfate as a dyeing aid. The temperature of the aqueous dichroic dye solution used for dyeing is usually about 20 to 80 ° C. The immersion time (dyeing time) in the aqueous solution is usually about 10 to 1,800 seconds.
 二色性色素による染色後のホウ酸処理は通常、染色されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液に浸漬する方法により行うことができる。このホウ酸水溶液におけるホウ酸の含有量は、水100質量部あたり、通常2~15質量部程度であり、好ましくは5~12質量部である。二色性色素としてヨウ素を用いた場合には、このホウ酸水溶液はヨウ化カリウムを含有することが好ましく、その場合のヨウ化カリウムの含有量は、水100質量部あたり、通常0.1~15質量部程度であり、好ましくは5~12質量部である。ホウ酸水溶液への浸漬時間は、通常60~1,200秒程度であり、好ましくは150~600秒、さらに好ましくは200~400秒である。ホウ酸処理の温度は、通常50℃以上であり、好ましくは50~85℃、さらに好ましくは60~80℃である。 (4) The boric acid treatment after dyeing with the dichroic dye can be usually performed by a method of immersing the dyed polyvinyl alcohol-based resin film in an aqueous boric acid solution. The content of boric acid in the boric acid aqueous solution is usually about 2 to 15 parts by mass, and preferably 5 to 12 parts by mass, per 100 parts by mass of water. When iodine is used as the dichroic dye, the aqueous boric acid solution preferably contains potassium iodide, and the content of potassium iodide is usually 0.1 to 100 parts by mass of water. The amount is about 15 parts by mass, preferably 5 to 12 parts by mass. The immersion time in the boric acid aqueous solution is usually about 60 to 1,200 seconds, preferably 150 to 600 seconds, and more preferably 200 to 400 seconds. The temperature of the boric acid treatment is usually 50 ° C. or higher, preferably 50 to 85 ° C., and more preferably 60 to 80 ° C.
 ホウ酸処理後のポリビニルアルコール系樹脂フィルムは通常、水洗処理される。水洗処理は、例えば、ホウ酸処理されたポリビニルアルコール系樹脂フィルムを水に浸漬する方法により行うことができる。水洗処理における水の温度は、通常5~40℃程度である。
また浸漬時間は、通常1~120秒程度である。
The polyvinyl alcohol-based resin film after the boric acid treatment is usually washed with water. The water washing treatment can be performed, for example, by a method of dipping a boric acid-treated polyvinyl alcohol-based resin film in water. The temperature of the water in the water washing treatment is usually about 5 to 40 ° C.
The immersion time is usually about 1 to 120 seconds.
 水洗後に乾燥処理が施されて、偏光子が得られる。乾燥処理は例えば、熱風乾燥機や遠赤外線ヒーターを用いて行うことができる。乾燥処理の温度は、通常30~100℃程度であり、好ましくは50~80℃である。乾燥処理の時間は、通常60~600秒程度であり、好ましくは120~600秒である。乾燥処理により、偏光子の水分率は実用程度にまで低減される。その水分率は、通常5~20重量%程度であり、好ましくは8~15重量%である。水分率が5重量%を下回ると、偏光子の可撓性が失われ、偏光子がその乾燥後に損傷したり、破断したりすることがある。また、水分率が20重量%を上回ると、偏光子の熱安定性が悪くなる可能性がある。 乾燥 After the washing, a drying treatment is performed to obtain a polarizer. The drying treatment can be performed using, for example, a hot-air dryer or a far-infrared heater. The temperature of the drying treatment is usually about 30 to 100 ° C., preferably 50 to 80 ° C. The time of the drying treatment is usually about 60 to 600 seconds, preferably 120 to 600 seconds. By the drying treatment, the water content of the polarizer is reduced to a practical level. The water content is usually about 5 to 20% by weight, preferably 8 to 15% by weight. When the water content is less than 5% by weight, the flexibility of the polarizer is lost, and the polarizer may be damaged or broken after drying. When the water content exceeds 20% by weight, the thermal stability of the polarizer may be deteriorated.
 こうしてポリビニルアルコール系樹脂フィルムに、一軸延伸、二色性色素による染色、ホウ酸処理、水洗および乾燥をして得られる偏光子の厚さは好ましくは5~40μmである。 偏光 Thus, the thickness of the polarizer obtained by subjecting the polyvinyl alcohol-based resin film to uniaxial stretching, dyeing with a dichroic dye, boric acid treatment, washing with water and drying is preferably 5 to 40 μm.
 吸収異方性を有する色素を塗布したフィルムとしては、液晶性を有する二色性色素を含む組成物、または、二色性色素と重合性液晶とを含む組成物を塗布して得られるフィルム等が挙げられる。当該フィルムは、好ましくは、その片面または両面に保護フィルムを有する。当該保護フィルムとしては、先に例示した基材と同一のものが挙げられる。 Examples of the film coated with a dye having absorption anisotropy include a composition containing a dichroic dye having liquid crystallinity, or a film obtained by applying a composition containing a dichroic dye and a polymerizable liquid crystal. Is mentioned. The film preferably has a protective film on one or both sides. As the protective film, the same one as the substrate exemplified above can be used.
 吸収異方性を有する色素を塗布したフィルムは薄い方が好ましいが、薄すぎると強度が低下し、加工性に劣る傾向がある。当該フィルムの厚さは、通常20μm以下であり、好ましくは5μm以下であり、より好ましくは0.5~3μmである。 フ ィ ル ム Thin films coated with a dye having absorption anisotropy are preferred to be thin, but if too thin, strength tends to decrease and processability tends to be poor. The thickness of the film is usually 20 μm or less, preferably 5 μm or less, more preferably 0.5 to 3 μm.
 前記吸収異方性を有する色素を塗布したフィルムとしては、具体的には、特開2012-33249号公報等に記載のフィルムが挙げられる。 フ ィ ル ム Specific examples of the film coated with the dye having absorption anisotropy include the films described in JP-A-2012-33249.
 このようにして得られた偏光子の少なくとも一方の面に、接着剤を介して透明保護フィルムを積層することにより偏光フィルムが得られる。透明保護フィルムとしては、先に例示した基材と同様の透明フィルムを好ましく用いることができる。 偏光 A polarizing film is obtained by laminating a transparent protective film on at least one surface of the polarizer thus obtained via an adhesive. As the transparent protective film, the same transparent film as the substrate exemplified above can be preferably used.
 本発明の楕円偏光板は、本発明の積層体と偏光フィルムとを含んで構成されるものであり、例えば、本発明の積層体と偏光フィルムとを接着剤層等を介して積層させることにより本発明の楕円偏光板を得ることができる。 The elliptically polarizing plate of the present invention is configured to include the laminate of the present invention and a polarizing film, for example, by laminating the laminate of the present invention and a polarizing film via an adhesive layer or the like. The elliptically polarizing plate of the present invention can be obtained.
 本発明の一実施態様においては、本発明の積層体と偏光フィルムとが積層される場合、積層体を構成する水平配向液晶硬化膜の遅相軸(光軸)と偏光フィルムの吸収軸との成す角が45±5°となるように積層することが好ましい。 In one embodiment of the present invention, when the laminate of the present invention and a polarizing film are laminated, the slow axis (optical axis) of the cured horizontally aligned liquid crystal film constituting the laminate and the absorption axis of the polarizing film are determined. It is preferable that the layers are stacked so that the formed angle is 45 ± 5 °.
 本発明の楕円偏光板は、従来の一般的な楕円偏光板、または偏光フィルムおよび位相差フィルムが備えるような構成を有していてよい。そのような構成としては、例えば、楕円偏光板を有機EL等の表示素子に貼合するための粘着剤層(シート)、偏光フィルムや位相差フィルムの表面を傷や汚れから保護する目的で用いられるプロテクトフィルム等が挙げられる。 楕 円 The elliptically polarizing plate of the present invention may have a configuration of a conventional general elliptically polarizing plate, or a polarizing film and a retardation film. Examples of such a configuration include, for example, a pressure-sensitive adhesive layer (sheet) for bonding an elliptically polarizing plate to a display element such as an organic EL, and the purpose of protecting the surface of a polarizing film or a retardation film from scratches and dirt. Protective film and the like.
 本発明の楕円偏光板は、さまざまな表示装置に用いることができる。
 表示装置とは、表示素子を有する装置であり、発光源として発光素子または発光装置を含む。表示装置としては、液晶表示装置、有機エレクトロルミネッセンス(EL)表示装置、無機エレクトロルミネッセンス(EL)表示装置、タッチパネル表示装置、電子放出表示装置(例えば電場放出表示装置(FED)、表面電界放出表示装置(SED))、電子ペーパー(電子インクや電気泳動素子を用いた表示装置、プラズマ表示装置、投射型表示装置(例えばグレーティングライトバルブ(GLV)表示装置、デジタルマイクロミラーデバイス(DMD)を有する表示装置)および圧電セラミックディスプレイなどが挙げられる。液晶表示装置は、透過型液晶表示装置、半透過型液晶表示装置、反射型液晶表示装置、直視型液晶表示装置および投写型液晶表示装置などのいずれをも含む。これらの表示装置は、2次元画像を表示する表示装置であってもよいし、3次元画像を表示する立体表示装置であってもよい。特に本発明の楕円偏光板は有機エレクトロルミネッセンス(EL)表示装置および無機エレクトロルミネッセンス(EL)表示装置に好適に用いることができ、本発明の積層体は液晶表示装置およびタッチパネル表示装置に好適に用いることができる。これらの表示装置は、高い信頼性を有する本発明の積層体を含む楕円偏光板を備えることにより、良好な画像表示特性を発現することができる。
The elliptically polarizing plate of the present invention can be used for various display devices.
A display device is a device having a display element, and includes a light-emitting element or a light-emitting device as a light-emitting source. Examples of the display device include a liquid crystal display device, an organic electroluminescence (EL) display device, an inorganic electroluminescence (EL) display device, a touch panel display device, an electron emission display device (for example, a field emission display device (FED), a surface field emission display device). (SED)), electronic paper (display device using electronic ink or electrophoretic element, plasma display device, projection display device (eg, grating light valve (GLV) display device, display device having digital micromirror device (DMD)) ) And piezoelectric ceramic displays, etc. Examples of the liquid crystal display device include a transmission type liquid crystal display device, a transflective type liquid crystal display device, a reflection type liquid crystal display device, a direct-view type liquid crystal display device, and a projection type liquid crystal display device. These display devices include a table for displaying a two-dimensional image. In particular, the elliptically polarizing plate of the present invention is suitable for an organic electroluminescence (EL) display device and an inorganic electroluminescence (EL) display device. The laminate of the present invention can be suitably used for a liquid crystal display device and a touch panel display device.These display devices include an elliptically polarizing plate including the highly reliable laminate of the present invention. Thereby, good image display characteristics can be exhibited.
 以下、実施例により本発明をより具体的に説明する。なお、例中の「%」および「部」は、特記ない限り、それぞれ質量%および質量部を意味する。 Hereinafter, the present invention will be described more specifically with reference to examples. In the examples, “%” and “parts” mean mass% and parts by mass, respectively, unless otherwise specified.
1.実施例1
(1)水平配向膜形成用組成物の調製
 下記構造の光配向性材料5部(重量平均分子量:30000)とシクロペンタノン(溶媒)95部とを成分として混合し、得られた混合物を80℃で1時間攪拌することにより、水平配向膜形成用組成物を得た。
Figure JPOXMLDOC01-appb-I000003
1. Example 1
(1) Preparation of composition for forming horizontal alignment film 5 parts (weight average molecular weight: 30,000) of a photo-alignment material having the following structure and 95 parts of cyclopentanone (solvent) were mixed as components, and the resulting mixture was mixed with 80 parts. The composition for forming a horizontal alignment film was obtained by stirring at 1 ° C. for 1 hour.
Figure JPOXMLDOC01-appb-I000003
(2)重合性液晶化合物の調製
 水平配向液晶硬化膜の形成に用いるため、下記分子構造を有する重合性液晶化合物(X1)および重合性液晶化合物(X2)を、それぞれ調製した。重合性液晶化合物(X1)は、特開2010-31223号公報に記載の方法に準じて製造した。また、重合性液晶化合物(X2)は、特開2009-173893号公報に記載の方法に準じて製造した。
(2) Preparation of polymerizable liquid crystal compound A polymerizable liquid crystal compound (X1) and a polymerizable liquid crystal compound (X2) each having the following molecular structure were prepared for use in forming a horizontal alignment liquid crystal cured film. The polymerizable liquid crystal compound (X1) was produced according to the method described in JP-A-2010-31223. The polymerizable liquid crystal compound (X2) was produced according to the method described in JP-A-2009-173893.
 重合性液晶化合物(X1)
Figure JPOXMLDOC01-appb-I000004
Polymerizable liquid crystal compound (X1)
Figure JPOXMLDOC01-appb-I000004
 重合性液晶化合物(X2)
Figure JPOXMLDOC01-appb-I000005
Polymerizable liquid crystal compound (X2)
Figure JPOXMLDOC01-appb-I000005
(3)水平配向液晶硬化膜形成用重合性液晶組成物の調製
 重合性液晶化合物(X1)および重合性液晶化合物(X2)を質量比90:10で混合し、混合物を得た。得られた混合物100質量部に対して、レベリング剤「BYK-361N」(BM Chemie社製)0.1質量部と、光重合開始剤として2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(BASFジャパン株式会社製「イルガキュア(登録商標)369(Irg369)」)3質量部とBASFジャパン株式会社製「イルガキュアOXE-03」7.5質量部を添加した。さらに、固形分濃度が13%となるようにN-メチル-2-ピロリドン(NMP)を添加した。
この混合物を80℃で1時間攪拌することにより、水平配向液晶硬化膜形成用重合性液晶組成物を得た。
(3) Preparation of polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film The polymerizable liquid crystal compound (X1) and the polymerizable liquid crystal compound (X2) were mixed at a mass ratio of 90:10 to obtain a mixture. Based on 100 parts by mass of the obtained mixture, 0.1 part by mass of a leveling agent “BYK-361N” (manufactured by BM Chemie) and 2-dimethylamino-2-benzyl-1- (4- 3 parts by mass of morpholinophenyl) butan-1-one (“Irgacure (registered trademark) 369 (Irg369)” manufactured by BASF Japan Ltd.) and 7.5 parts by mass of “Irgacure OXE-03” manufactured by BASF Japan Ltd. were added. Further, N-methyl-2-pyrrolidone (NMP) was added so that the solid content concentration became 13%.
This mixture was stirred at 80 ° C. for 1 hour to obtain a polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film.
 重合性液晶化合物(X1)の1mg/50mLテトラヒドロフラン溶液を調製し、光路長1cmの測定用セルに測定用試料を入れ、測定用試料を紫外可視分光光度計(株式会社島津製作所製「UV-2450」)にセットして吸収スペクトルを測定し、得られた吸収スペクトルから極大吸収度となる波長を読み取ったところ、波長300~400nmの範囲における極大吸収波長λmaxは350nmであった。 A 1 mg / 50 mL tetrahydrofuran solution of the polymerizable liquid crystal compound (X1) is prepared, a measurement sample is placed in a measurement cell having an optical path length of 1 cm, and the measurement sample is subjected to an ultraviolet-visible spectrophotometer (“UV-2450 manufactured by Shimadzu Corporation”). )), The absorption spectrum was measured, and the maximum absorption wavelength was read from the obtained absorption spectrum. The maximum absorption wavelength λ max in the wavelength range of 300 to 400 nm was 350 nm.
(4)硬化樹脂層形成用組成物の調製
 ジペンタエリスリトールヘキサアクリレート(アロニックスM-403 東亞合成株式会社製多官能アクリレート)50部、アクリレート樹脂(エベクリル4858 ダイセルユーシービー株式会社製)50部、2-メチル-1[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(イルガキュア907;チバ スペシャルティケミカルズ社製)3部をイソプロパノール250部に溶解した溶液を調製し、アクリレート化合物を含んでなる硬化樹脂層形成用組成物を得た。
(4) Preparation of composition for forming cured resin layer 50 parts of dipentaerythritol hexaacrylate (Aronix M-403, polyfunctional acrylate manufactured by Toagosei Co., Ltd.), 50 parts of acrylate resin (Ebecryl 4858 manufactured by Daicel UCB Co., Ltd.), 2 A solution was prepared by dissolving 3 parts of -methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one (Irgacure 907; manufactured by Ciba Specialty Chemicals) in 250 parts of isopropanol. The resulting composition for forming a cured resin layer was obtained.
(5)水平配向液晶硬化膜の作製
 日本ゼオン株式会社製の基材COPフィルム(ZF-14-50)上に、硬化樹脂層形成用組成物をバーコーターで塗布し、50℃で1分間乾燥後、高圧水銀ランプ(「ユニキュアVB-15201BY-A」、ウシオ電機株式会社製)を用いて、紫外線を照射(窒素雰囲気下、波長365nmにおける積算光量:400mJ/cm)することにより、硬化樹脂層を形成した。得られた硬化樹脂層の膜厚を接触式膜厚計で測定したところ、0.5μmであった。この時、COPフィルムと硬化樹脂層の積層体を王子計測機器株式会社「KOBRA-WPR」にて位相差を測定したところ、位相差値は3nm以下であり光学的に等方であることを確認した。
 続いて、得られた硬化樹脂層上に水平配向膜形成用組成物をバーコーターで塗布し、80℃で1分間乾燥し、偏光UV照射装置(SPOT CURE SP-9;ウシオ電機株式会社製)を用いて、波長313nmにおける積算光量:100mJ/cmで偏光UV露光を実施し、水平配向膜を得た。得られた水平配向膜の膜厚をエリプソメータで測定したところ、0.2μmであった。
 続いて、水平配向膜上にバーコーターを用いて水平配向液晶硬化膜形成用重合性液晶組成物を塗布し、120℃にて90秒間過熱した後、高圧水銀ランプ(ユニキュアVB-15201BY-A、ウシオ電機株式会社製)を用いて、水平配向液晶硬化膜形成用重合性液晶組成物を塗布した面側から紫外線を照射(窒素雰囲気下、波長365nmにおける積算光量:500mJ/cm)することにより、水平配向液晶硬化膜を形成した。得られた基材・硬化樹脂層・水平配向膜・水平配向液晶硬化膜の積層体の総厚みを接触式膜厚計で測定した後、基材厚み分を差し引いて、硬化樹脂層・水平配向膜・水平配向液晶硬化膜からなる積層体の総膜厚を確認したところ、2.9μmであった。
(5) Preparation of cured liquid crystal film with horizontal alignment A composition for forming a cured resin layer is applied on a base COP film (ZF-14-50) manufactured by Zeon Corporation using a bar coater and dried at 50 ° C. for 1 minute. Thereafter, the cured resin is irradiated with ultraviolet rays (integrated light at a wavelength of 365 nm: 400 mJ / cm 2 under a nitrogen atmosphere under a nitrogen atmosphere) using a high-pressure mercury lamp (“Unicure VB-15201BY-A”, manufactured by Ushio Inc.). A layer was formed. When the thickness of the obtained cured resin layer was measured with a contact-type film thickness meter, it was 0.5 μm. At this time, when the phase difference of the laminate of the COP film and the cured resin layer was measured by Oji Scientific Instruments “KOBRA-WPR”, it was confirmed that the phase difference value was 3 nm or less and optically isotropic. did.
Subsequently, the composition for forming a horizontal alignment film is applied on the obtained cured resin layer with a bar coater, dried at 80 ° C. for 1 minute, and polarized UV irradiation apparatus (SPOT CURE SP-9; manufactured by Ushio Inc.) Was used to perform a polarized UV exposure at an integrated light amount at a wavelength of 313 nm: 100 mJ / cm 2 to obtain a horizontal alignment film. The thickness of the obtained horizontal alignment film was measured by an ellipsometer and found to be 0.2 μm.
Subsequently, the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film was applied on the horizontal alignment film using a bar coater, heated at 120 ° C. for 90 seconds, and then heated with a high-pressure mercury lamp (Unicur VB-15201BY-A, UV light (integrated light quantity at a wavelength of 365 nm: 500 mJ / cm 2 in a nitrogen atmosphere) from the side coated with the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film using USHIO INC. Then, a horizontally aligned liquid crystal cured film was formed. After measuring the total thickness of the obtained laminate of the base material, the cured resin layer, the horizontal alignment film, and the horizontal alignment liquid crystal cured film with a contact-type film thickness meter, subtract the base material thickness to obtain the cured resin layer and the horizontal alignment. When the total film thickness of the laminate composed of the film and the cured film of horizontal alignment liquid crystal was confirmed, it was 2.9 μm.
(6)水平配向液晶硬化膜の正面位相差値の測定および信頼性試験
 前述の方法で得られた基材・硬化樹脂層・水平配向膜・水平配向液晶硬化膜の積層体の水平配向液晶硬化膜面を、粘着剤(リンテック社製感圧式粘着剤25μm)を介して厚み0.7μm×縦4cm×横4cmのガラス板に貼合した。その後、基材のみを剥離して取り除き、さらに粘着剤(リンテック社製感圧式粘着剤25μm)を介して日本ゼオン株式会社製のCOPフィルム(ZF-14-23)を貼合した。得られたサンプルのうちガラス面がホットプレートと接するようにサンプルを設置し、100℃10分間加熱した。加熱前、および加熱後のRe550を王子計測機器株式会社KOBRA-WPRを用いて測定し、Re550変化量を算出した。結果を表1に示す。
(6) Measurement of front phase difference value of horizontal alignment liquid crystal cured film and reliability test Horizontal alignment liquid crystal curing of laminate of base material, cured resin layer, horizontal alignment film, and horizontal alignment liquid crystal cured film obtained by the method described above The film surface was bonded to a glass plate having a thickness of 0.7 μm × 4 cm × 4 cm via an adhesive (pressure-sensitive adhesive 25 μm, manufactured by Lintec). Thereafter, only the base material was peeled off and removed, and a COP film (ZF-14-23, manufactured by Zeon Corporation) was bonded via an adhesive (pressure-sensitive adhesive, 25 μm, manufactured by Lintec). The sample was set so that the glass surface was in contact with the hot plate among the obtained samples, and heated at 100 ° C. for 10 minutes. Re550 before and after heating was measured using Oji Scientific Instruments KOBRA-WPR, and the change in Re550 was calculated. Table 1 shows the results.
2.実施例2~5
 硬化樹脂層の厚みを表1に記載の厚みにそれぞれ変更した以外は、実施例1と同様にして積層体を作製し、信頼性試験を実施した。結果を表1に示す。
2. Examples 2 to 5
A laminate was prepared and a reliability test was performed in the same manner as in Example 1, except that the thickness of the cured resin layer was changed to the thickness shown in Table 1. Table 1 shows the results.
3.実施例6
 水平配向液晶硬化膜形成用重合性液晶組成物を以下の方法に従い調製した以外は、実施例1と同様にして積層体を作製し、信頼性試験を実施した。結果を表1に示す。
3. Example 6
A laminate was prepared and a reliability test was performed in the same manner as in Example 1, except that the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film was prepared according to the following method. Table 1 shows the results.
 実施例6の水平配向液晶硬化膜形成用重合性液晶組成物の調製
 特開2016-81035号公報を参考にして調製した重合性液晶化合物(X3)100質量部に対して、レベリング剤「BYK-361N」0.1質量部と、光重合開始剤として2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(BASFジャパン株式会社製「イルガキュア(登録商標)369(Irg369)」)3質量部とBASFジャパン株式会社製「イルガキュアOXE-03」7.5質量部を添加した。さらに、固形分濃度が13%となるようにN-メチル-2-ピロリドン(NMP)を添加した。この混合物を80℃で1時間攪拌することにより、水平配向液晶硬化膜形成用重合性液晶組成物を得た。
Preparation of Polymerizable Liquid Crystal Composition for Forming Cured Horizontal Alignment Liquid Crystal of Example 6 100 parts by weight of the polymerizable liquid crystal compound (X3) prepared with reference to JP-A-2016-81035 were used, and a leveling agent “BYK- 361N "and 0.1 part by mass of 2-dimethylamino-2-benzyl-1- (4-morpholinophenyl) butan-1-one (" Irgacure (registered trademark) 369 "manufactured by BASF Japan Ltd.) as a photopolymerization initiator. Irg369))) and 3 parts by mass of "IRGACURE OXE-03" manufactured by BASF Japan Ltd. were added. Further, N-methyl-2-pyrrolidone (NMP) was added so that the solid content concentration became 13%. This mixture was stirred at 80 ° C. for 1 hour to obtain a polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film.
 重合性液晶化合物(X3)の1mg/50mLテトラヒドロフラン溶液を調製し、光路長1cmの測定用セルに測定用試料を入れ、測定用試料を紫外可視分光光度計(株式会社島津製作所製「UV-2450」)にセットして吸収スペクトルを測定し、得られた吸収スペクトルから極大吸収度となる波長を読み取ったところ、波長300~400nmの範囲における極大吸収波長λmaxは352nmであった。 A 1 mg / 50 mL tetrahydrofuran solution of the polymerizable liquid crystal compound (X3) is prepared, a measurement sample is placed in a measurement cell having an optical path length of 1 cm, and the measurement sample is measured with an ultraviolet-visible spectrophotometer (“UV-2450 manufactured by Shimadzu Corporation”). )), The absorption spectrum was measured, and the maximum absorption wavelength was read from the obtained absorption spectrum. The maximum absorption wavelength λ max in the wavelength range of 300 to 400 nm was 352 nm.
 重合性液晶化合物(X3)
Figure JPOXMLDOC01-appb-I000006
Polymerizable liquid crystal compound (X3)
Figure JPOXMLDOC01-appb-I000006
4.実施例7
 水平配向液晶硬化膜形成用重合性液晶組成物を以下の方法に従い調製した以外は、実施例1と同様にして積層体を作製し、信頼性試験を実施した。結果を表1に示す。
4. Example 7
A laminate was prepared and a reliability test was performed in the same manner as in Example 1, except that the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film was prepared according to the following method. Table 1 shows the results.
 実施例7の水平配向液晶硬化膜形成用重合性液晶組成物の調製
 国際特許公開2015/025793号公報を参考にして調製した重合性液晶化合物(X4)100質量部に対して、レベリング剤「BYK-361N」0.1質量部と、光重合開始剤として2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(BASFジャパン株式会社製「イルガキュア(登録商標)369(Irg369)」)3質量部とBASFジャパン株式会社製「イルガキュアOXE-03」7.5質量部を添加した。さらに、固形分濃度が13%となるようにN-メチル-2-ピロリドン(NMP)を添加した。この混合物を80℃で1時間攪拌することにより、水平配向液晶硬化膜形成用組成物を得た。
Preparation of Polymerizable Liquid Crystal Composition for Forming Horizontally Aligned Liquid Crystal Cured Film of Example 7 100 parts by mass of a polymerizable liquid crystal compound (X4) prepared with reference to International Patent Publication No. 2015/025793 was used, and a leveling agent “BYK” was used. -361N "and 0.1 parts by mass of 2-dimethylamino-2-benzyl-1- (4-morpholinophenyl) butan-1-one (IRGACURE (registered trademark) 369 manufactured by BASF Japan Ltd.) as a photopolymerization initiator. (Irg369) ”) and 7.5 parts by mass of“ IRGACURE OXE-03 ”manufactured by BASF Japan Ltd. were added. Further, N-methyl-2-pyrrolidone (NMP) was added so that the solid content concentration became 13%. This mixture was stirred at 80 ° C. for 1 hour to obtain a composition for forming a cured liquid crystal film with horizontal alignment.
 重合性液晶化合物(X4)の1mg/50mLテトラヒドロフラン溶液を調製し、光路長1cmの測定用セルに測定用試料を入れ、測定用試料を紫外可視分光光度計(株式会社島津製作所製「UV-2450」)にセットして吸収スペクトルを測定し、得られた吸収スペクトルから極大吸収度となる波長を読み取ったところ、波長300~400nmの範囲における極大吸収波長λmaxは352nmであった。 A 1 mg / 50 mL tetrahydrofuran solution of the polymerizable liquid crystal compound (X4) is prepared, a measurement sample is placed in a measurement cell having an optical path length of 1 cm, and the measurement sample is measured with an ultraviolet-visible spectrophotometer (“UV-2450 manufactured by Shimadzu Corporation”). )), The absorption spectrum was measured, and the maximum absorption wavelength was read from the obtained absorption spectrum. The maximum absorption wavelength λ max in the wavelength range of 300 to 400 nm was 352 nm.
 重合性液晶化合物(X4)
Figure JPOXMLDOC01-appb-I000007
Polymerizable liquid crystal compound (X4)
Figure JPOXMLDOC01-appb-I000007
5.実施例8
 水平配向液晶硬化膜を以下の方法に従い作製した以外は、実施例1と同様にして積層体を作製し、信頼性試験を実施した。結果を表1に示す。
5. Example 8
A laminate was prepared and a reliability test was performed in the same manner as in Example 1, except that a cured liquid crystal layer was prepared according to the following method. Table 1 shows the results.
 実施例8の水平配向液晶硬化膜の作製方法
 日本ゼオン株式会社製の基材COPフィルム(ZF-14-50)上に、水平配向膜形成用組成物をバーコーターで塗布し、80℃で1分間乾燥し、偏光UV照射装置(SPOT CURE SP-9;ウシオ電機株式会社製)を用いて、波長313nmにおける積算光量:100mJ/cmで偏光UV露光を実施し、水平配向膜を得た。得られた水平配向膜の膜厚をエリプソメータで測定したところ、0.2μmであった。
 続いて、水平配向膜上にバーコーターを用いて水平配向液晶硬化膜形成用重合性液晶組成物を塗布し、120℃にて90秒間過熱した後、高圧水銀ランプ(ユニキュアVB-15201BY-A、ウシオ電機株式会社製)を用いて、水平配向液晶硬化膜形成用重合性液晶組成物を塗布した面側から紫外線を照射(窒素雰囲気下、波長365nmにおける積算光量:500mJ/cm)することにより、水平配向液晶硬化膜を形成した。
 続いて、得られた水平配向液晶硬化膜上に、コロナ処理を実施後、硬化樹脂層形成用組成物をバーコーターで塗布し、50℃で1分間乾燥後、高圧水銀ランプ(「ユニキュアVB-15201BY-A」、ウシオ電機株式会社製)を用いて、紫外線を照射(窒素雰囲気下、波長365nmにおける積算光量:400mJ/cm)することにより、硬化樹脂層を形成した。得られた硬化樹脂層の膜厚を接触式膜厚計で測定したところ、2.0μmであった。
 得られた基材・水平配向膜・水平配向液晶硬化膜・硬化樹脂層の積層体の総厚みを接触式膜厚計で測定した後、基材厚み分を差し引いて、水平配向膜・水平配向液晶硬化膜・硬化樹脂層からなる積層体の総膜厚を確認したところ、4.4μmであった。
Method for Producing Cured Horizontal Alignment Liquid Crystal of Example 8 A composition for forming a horizontal alignment film was applied on a base COP film (ZF-14-50) manufactured by Zeon Corporation using a bar coater, After drying for 5 minutes, polarized UV exposure was performed using a polarized UV irradiation apparatus (SPOT CURE SP-9; manufactured by Ushio Inc.) at an integrated light amount of 100 mJ / cm 2 at a wavelength of 313 nm to obtain a horizontal alignment film. The thickness of the obtained horizontal alignment film was measured by an ellipsometer and found to be 0.2 μm.
Subsequently, the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film was applied on the horizontal alignment film using a bar coater, heated at 120 ° C. for 90 seconds, and then heated with a high-pressure mercury lamp (Unicur VB-15201BY-A, UV light (integrated light quantity at a wavelength of 365 nm under a nitrogen atmosphere: 500 mJ / cm 2 ) from the side coated with the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film using USHIO INC. Then, a horizontally aligned liquid crystal cured film was formed.
Subsequently, after performing a corona treatment on the obtained cured liquid crystal layer, a composition for forming a cured resin layer was applied using a bar coater, dried at 50 ° C. for 1 minute, and then subjected to a high-pressure mercury lamp (“Unicur VB- The cured resin layer was formed by irradiating ultraviolet rays (15201BY-A, manufactured by Ushio Inc.) (in a nitrogen atmosphere, the integrated light quantity at a wavelength of 365 nm: 400 mJ / cm 2 ). When the thickness of the obtained cured resin layer was measured by a contact-type film thickness meter, it was 2.0 μm.
After measuring the total thickness of the obtained laminate of the base material, the horizontal alignment film, the horizontal alignment liquid crystal cured film, and the cured resin layer with a contact-type film thickness meter, the substrate thickness is subtracted to obtain the horizontal alignment film / horizontal alignment. When the total thickness of the laminated body composed of the liquid crystal cured film and the cured resin layer was confirmed, it was 4.4 μm.
6.実施例9
 以下に記載の通り、硬化樹脂層形成用組成物を調製し、実施例1と同様の水平配向膜形成用組成物および水平配向液晶硬化膜形成用重合性液晶組成物を用いて積層体を作製した。得られた積層体について、以下の方法に従い信頼性試験を実施した。結果を表1に示す。
6. Example 9
As described below, a composition for forming a cured resin layer was prepared, and a laminate was prepared using the same composition for forming a horizontal alignment film and the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film as in Example 1. did. The obtained laminate was subjected to a reliability test according to the following method. Table 1 shows the results.
 実施例9の硬化樹脂層形成用組成物の調製
 3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート80部、2-エチルヘキシルグリシジルエーテル20部、サンアプロ社製 CPI-100P2.25部、プロピレンカーボネート2.25部を混合してエポキシ化合物を含んでなる硬化樹脂層形成用組成物を調製した。
Preparation of Composition for Forming Cured Resin Layer of Example 9 3,4-Epoxycyclohexylmethyl 80 parts of 3,4-epoxycyclohexanecarboxylate, 20 parts of 2-ethylhexylglycidyl ether, 2.25 parts of CPI-100P manufactured by San Apro, propylene 2.25 parts of carbonate were mixed to prepare a cured resin layer forming composition containing an epoxy compound.
 実施例9の水平配向液晶硬化膜の作製方法
 日本ゼオン株式会社製の基材COPフィルム(ZF-14-50)上に、水平配向膜形成用組成物をバーコーターで塗布し、80℃で1分間乾燥し、偏光UV照射装置(SPOT CURE SP-9;ウシオ電機株式会社製)を用いて、波長313nmにおける積算光量:100mJ/cmで偏光UV露光を実施し、水平配向膜を得た。得られた水平配向膜の膜厚をエリプソメータで測定したところ、0.2μmであった。
 続いて、水平配向膜上にバーコーターを用いて水平配向液晶硬化膜形成用重合性液晶組成物を塗布し、120℃にて90秒間過熱した後、高圧水銀ランプ(ユニキュアVB-15201BY-A、ウシオ電機株式会社製)を用いて、水平配向液晶硬化膜形成用重合性液晶組成物を塗布した面側から紫外線を照射(窒素雰囲気下、波長365nmにおける積算光量:500mJ/cm)することにより、水平配向液晶硬化膜を形成した。
Method for Preparing Cured Horizontal Alignment Liquid Crystal Film of Example 9 A composition for forming a horizontal alignment film was applied on a base COP film (ZF-14-50) manufactured by Zeon Corporation using a bar coater. After drying for 5 minutes, polarized UV exposure was performed using a polarized UV irradiation apparatus (SPOT CURE SP-9; manufactured by Ushio Inc.) at an integrated light amount of 100 mJ / cm 2 at a wavelength of 313 nm to obtain a horizontal alignment film. The thickness of the obtained horizontal alignment film was measured by an ellipsometer and found to be 0.2 μm.
Subsequently, the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film was applied on the horizontal alignment film using a bar coater, heated at 120 ° C. for 90 seconds, and then heated with a high-pressure mercury lamp (Unicur VB-15201BY-A, UV light (integrated light quantity at a wavelength of 365 nm under a nitrogen atmosphere: 500 mJ / cm 2 ) from the side coated with the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film using USHIO INC. Then, a horizontally aligned liquid crystal cured film was formed.
 実施例9の信頼性試験
 前述の方法で得られた基材・水平配向膜・水平配向液晶硬化膜の積層体の水平配向液晶硬化膜面を、粘着剤(リンテック社製感圧式粘着剤25μm)を介してCOPフィルム(ZF-14-23)に貼合し、基材・水平配向膜・水平配向液晶硬化膜の積層体中の基材COPフィルム(ZF-14-50)を取り除いた。その後、前述の方法で作成した積層体中の水平配向膜面にコロナ処理を実施したうえで、硬化樹脂層形成用組成物を塗布し、別途準備した日本ゼオン株式会社製のCOPフィルム(ZF-14-50)と貼合した。
その後、高圧水銀ランプ(「ユニキュアVB-15201BY-A」、ウシオ電機株式会社製)を用いて、COPフィルム(ZF-14-50)側から紫外線を照射(大気中、波長365nmにおける積算光量:400mJ/cm)することにより、硬化樹脂層を形成し、その後COPフィルム(ZF-14-50)を剥離した。最後に、得られた積層体中の硬化樹脂層と厚み0.7μm×縦4cm×横4cmのガラス板とを粘着剤(リンテック社製感圧式粘着剤25μm)を介して貼合した。各層の厚みを接触式膜厚計で測定した。結果を表1に示す。なお、該積層体と、前記方法にて作製した水平配向液晶硬化膜の位相差を王子計測機器株式会社「KOBRA-WPR」にて位相差を測定し、その差から硬化樹脂層の位相差値が3nm以下であり光学的に等方であることを確認した。
 得られたサンプルのうちガラス面がホットプレートと接するようにサンプルを設置し、100℃10分間加熱した。加熱前および加熱後のRe550を王子計測機器株式会社KOBRA-WPRを用いて測定し、Re550変化量を算出した。結果を表1に示す。
Reliability Test of Example 9 The horizontal alignment liquid crystal cured film surface of the laminate of the base material, the horizontal alignment film, and the horizontal alignment liquid crystal cured film obtained by the above-described method was applied with an adhesive (25 μm pressure-sensitive adhesive manufactured by Lintec). Was bonded to a COP film (ZF-14-23) through the above, and the base COP film (ZF-14-50) in the laminate of the base material, the horizontal alignment film, and the horizontal alignment liquid crystal cured film was removed. Then, after applying a corona treatment to the surface of the horizontal alignment film in the laminate prepared by the above-described method, a composition for forming a cured resin layer was applied thereto, and a separately prepared COP film (ZF- 14-50).
Thereafter, ultraviolet rays were irradiated from the COP film (ZF-14-50) side using a high-pressure mercury lamp (“Unicure VB-15201BY-A”, manufactured by Ushio Inc.) (in the atmosphere, the integrated light amount at a wavelength of 365 nm: 400 mJ). / Cm 2 ) to form a cured resin layer, and then the COP film (ZF-14-50) was peeled off. Finally, the cured resin layer in the obtained laminate was bonded to a glass plate having a thickness of 0.7 μm × 4 cm × 4 cm via an adhesive (25 μm, pressure-sensitive adhesive manufactured by Lintec). The thickness of each layer was measured with a contact-type film thickness meter. Table 1 shows the results. The phase difference between the laminated body and the cured liquid crystal film of the horizontally aligned liquid crystal prepared by the above method was measured by Oji Scientific Instruments “KOBRA-WPR”, and the retardation value of the cured resin layer was determined from the difference. Was 3 nm or less, and it was confirmed that it was optically isotropic.
The sample was set so that the glass surface was in contact with the hot plate among the obtained samples, and heated at 100 ° C. for 10 minutes. Re550 before and after heating was measured using Oji Scientific Instruments KOBRA-WPR, and the amount of change in Re550 was calculated. Table 1 shows the results.
7.実施例10
 硬化樹脂層形成用組成物を以下の方法に従い作製した以外は、実施例9と同様にして積層体を作製し、信頼性試験を実施した。結果を表1に示す。なお、王子計測機器株式会社「KOBRA-WPR」にて測定した該積層体の位相差値と水平配向液晶硬化膜の位相差値との差から、硬化樹脂層の位相差値が3nm以下であり光学的に等方であることを確認した。
7. Example 10
A laminate was prepared and a reliability test was performed in the same manner as in Example 9, except that the composition for forming a cured resin layer was prepared according to the following method. Table 1 shows the results. From the difference between the retardation value of the laminate measured by Oji Scientific Instruments “KOBRA-WPR” and the retardation value of the cured horizontally oriented liquid crystal film, the retardation value of the cured resin layer is 3 nm or less. It was confirmed that it was optically isotropic.
 実施例10の硬化樹脂層形成用組成物の調製
 3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサン カルボキシレート(「セロキサイド 2021P」(商品名)、ダイセル化学(株)製)32.5部、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(「EHPE3150」(商品名)、ダイセル化学(株)製)17.5部、2-エチルヘキシルオキセタン(「OXT-212」(商品名)、東亞合成(株)製)50部、光カチオン重合開始剤:トリアリールスルホニウムヘキサフルオロホスフェートのプロピレンカーボネート50溶液(「CPI-100P」(商品名)、サンアプロ(株)製)2.5部、シリコーン系レベリング剤(「SH710」(商品名)、東レ・ダウコーニング(株)製)0.25部を混合してオキセタン化合物を含んでなる硬化樹脂層形成用組成物を調製した。
Preparation of Composition for Forming Cured Resin Layer of Example 10 3,4-Epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate (“CELLOXIDE 2021P” (trade name), manufactured by Daicel Chemical Industries, Ltd.) 32.5 parts, 17.5 parts of 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol (“EHPE3150” (trade name), manufactured by Daicel Chemical Industries, Ltd.) , 50 parts of 2-ethylhexyloxetane (“OXT-212” (trade name), manufactured by Toagosei Co., Ltd.), a cationic photopolymerization initiator: a solution of triarylsulfonium hexafluorophosphate in propylene carbonate 50 (“CPI-100P” ( Trade name), 2.5 parts by Sun Apro Co., Ltd., silicone-based leveling agent (“SH7 No. 10 (trade name), manufactured by Dow Corning Toray Co., Ltd.) was mixed to prepare a composition for forming a cured resin layer containing an oxetane compound.
8.比較例1
 水平配向液晶硬化膜を以下の方法に従い作製した以外は、実施例1と同様にして積層体を作製し、信頼性試験を実施した。結果を表1に示す。
8. Comparative Example 1
A laminate was prepared and a reliability test was performed in the same manner as in Example 1, except that a cured liquid crystal layer was prepared according to the following method. Table 1 shows the results.
 比較例1の水平配向液晶硬化膜の作製方法
 日本ゼオン株式会社製の基材COPフィルム(ZF-14-50)上に、水平配向膜形成用組成物をバーコーターで塗布し、80℃で1分間乾燥し、偏光UV照射装置(SPOT CURE SP-9;ウシオ電機株式会社製)を用いて、波長313nmにおける積算光量:100mJ/cmで偏光UV露光を実施し、水平配向膜を得た。得られた水平配向膜の膜厚をエリプソメータで測定したところ、0.2μmであった。
 続いて、水平配向膜上にバーコーターを用いて水平配向液晶硬化膜形成用重合性液晶組成物を塗布し、120℃にて90秒間過熱した後、高圧水銀ランプ(ユニキュアVB-15201BY-A、ウシオ電機株式会社製)を用いて、水平配向液晶硬化膜形成用重合性液晶組成物を塗布した面側から紫外線を照射(窒素雰囲気下、波長365nmにおける積算光量:500mJ/cm)することにより、水平配向液晶硬化膜を形成した。
 得られた基材・水平配向膜・水平配向液晶硬化膜の積層体の総厚みを接触式膜厚計で測定した後、基材厚み分を差し引いて、水平配向膜・水平配向液晶硬化膜からなる積層体の総膜厚を確認したところ、2.4μmであった。
Method for Producing Cured Horizontal Alignment Liquid Crystal of Comparative Example 1 A composition for forming a horizontal alignment film was applied on a base COP film (ZF-14-50) manufactured by Zeon Corporation using a bar coater, After drying for 5 minutes, polarized UV exposure was performed using a polarized UV irradiation apparatus (SPOT CURE SP-9; manufactured by Ushio Inc.) at an integrated light amount of 100 mJ / cm 2 at a wavelength of 313 nm to obtain a horizontal alignment film. The thickness of the obtained horizontal alignment film was measured by an ellipsometer and found to be 0.2 μm.
Subsequently, the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film was applied on the horizontal alignment film using a bar coater, heated at 120 ° C. for 90 seconds, and then heated with a high-pressure mercury lamp (Unicur VB-15201BY-A, UV light (integrated light quantity at a wavelength of 365 nm under a nitrogen atmosphere: 500 mJ / cm 2 ) from the side coated with the polymerizable liquid crystal composition for forming a horizontal alignment liquid crystal cured film using USHIO INC. Then, a horizontally aligned liquid crystal cured film was formed.
After measuring the total thickness of the obtained laminate of the base material, the horizontal alignment film, and the horizontal alignment liquid crystal cured film with a contact type film thickness meter, the substrate thickness is subtracted, and the horizontal alignment film and the horizontal alignment liquid crystal cured film are calculated. The total film thickness of the resulting laminate was confirmed to be 2.4 μm.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本発明に従う積層体(実施例1~10)において、高温下における信頼性が向上していることが確認された。 It was confirmed that the laminates according to the present invention (Examples 1 to 10) had improved reliability at high temperatures.

Claims (14)

  1.  少なくとも1種の波長300~400nmの間に極大吸収波長を有する重合性液晶化合物を含む重合性液晶組成物の硬化物である水平配向液晶硬化膜、水平配向膜および硬化樹脂層を含み、
     前記水平配向液晶硬化膜が、前記重合性液晶化合物が該液晶硬化膜平面に対して水平方向に配向した状態で硬化した重合性液晶組成物の硬化物であり、かつ、式(1):
     Re(450)/Re(550)≦1   (1)
    [式(1)中、Re(λ)は波長λnmにおける水平配向液晶硬化膜の面内位相差値を表す]
    を満たし、
     前記硬化樹脂層の厚みが0.1~10μmである、積層体。
    A horizontal alignment liquid crystal cured film, a horizontal alignment film and a cured resin layer, which are cured products of a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound having a maximum absorption wavelength between at least one wavelength of 300 to 400 nm;
    The horizontal alignment liquid crystal cured film is a cured product of a polymerizable liquid crystal composition cured in a state where the polymerizable liquid crystal compound is oriented in a horizontal direction with respect to the liquid crystal cured film plane, and formula (1):
    Re (450) / Re (550) ≦ 1 (1)
    [In the formula (1), Re (λ) represents an in-plane retardation value of the cured liquid crystal alignment film at a wavelength of λ nm]
    The filling,
    A laminate wherein the thickness of the cured resin layer is 0.1 to 10 μm.
  2.  水平配向液晶硬化膜と、水平配向膜と、硬化樹脂層とがこの順に隣接して存在する、請求項1に記載の積層体。 2. The laminate according to claim 1, wherein the horizontal alignment liquid crystal cured film, the horizontal alignment film, and the cured resin layer are adjacent to each other in this order.
  3.  水平配向液晶硬化膜の膜厚が0.5~5.0μmである、請求項1または2に記載の積層体。 (3) The laminate according to (1) or (2), wherein the thickness of the cured horizontal alignment liquid crystal film is 0.5 to 5.0 μm.
  4.  水平配向液晶硬化膜が式(2): 
     120≦Re(550)≦170   (2)
    を満たす、請求項1~3のいずれかに記載の積層体。
    The cured liquid crystal of the horizontal alignment liquid crystal is represented by the formula (2):
    120 ≦ Re (550) ≦ 170 (2)
    The laminate according to any one of claims 1 to 3, which satisfies the following.
  5.  少なくとも1種の波長300~400nmの間に極大吸収波長を有する重合性液晶化合物が重合性基として(メタ)アクリロイルオキシ基を有する、請求項1~4のいずれかに記載の積層体。 (5) The laminate according to any one of (1) to (4), wherein at least one polymerizable liquid crystal compound having a maximum absorption wavelength between 300 and 400 nm has a (meth) acryloyloxy group as a polymerizable group.
  6.  水平配向膜が光配向膜である、請求項1~5のいずれかに記載の積層体。 (6) The laminate according to any one of (1) to (5), wherein the horizontal alignment film is a photo alignment film.
  7.  水平配向膜が光反応性基を有するポリマーおよび/またはモノマーを含む光配向膜形成用組成物の硬化物からなり、前記ポリマーおよび/またはモノマーが光反応性基としてシンナモイル基を含む、請求項1~6のいずれかに記載の積層体。 The horizontal alignment film is made of a cured product of a photo-alignment film-forming composition containing a polymer and / or a monomer having a photoreactive group, and the polymer and / or monomer contains a cinnamoyl group as a photoreactive group. 7. The laminate according to any one of items 6 to 6.
  8.  硬化樹脂層が光学的に等方的である、請求項1~7のいずれかに記載の積層体。 積 層 The laminate according to any one of claims 1 to 7, wherein the cured resin layer is optically isotropic.
  9.  硬化樹脂層がアクリル樹脂、エポキシ樹脂、オキセタン樹脂、ウレタン樹脂、およびメラミン樹脂からなる群から選択される少なくとも1種を含んでなる、請求項1~8のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 8, wherein the cured resin layer comprises at least one selected from the group consisting of an acrylic resin, an epoxy resin, an oxetane resin, a urethane resin, and a melamine resin.
  10.  粘接着剤層をさらに含み、水平配向液晶硬化膜、水平配向膜、硬化樹脂層、粘接着剤層がこの順に隣接して存在する、請求項1~9のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 9, further comprising an adhesive layer, wherein the horizontal alignment liquid crystal cured film, the horizontal alignment film, the cured resin layer, and the adhesive layer are adjacent to each other in this order. .
  11.  請求項1~10のいずれかに記載の積層体と偏光フィルムとを含む、楕円偏光板。 An elliptically polarizing plate comprising the laminate according to any one of claims 1 to 10 and a polarizing film.
  12.  前記積層体中の水平配向液晶硬化膜の遅相軸と、偏光フィルムの吸収軸との成す角が45±5°である、請求項11に記載の楕円偏光板。 The elliptically polarizing plate according to claim 11, wherein the angle formed between the slow axis of the cured liquid crystal layer of the horizontally aligned liquid crystal in the laminate and the absorption axis of the polarizing film is 45 ± 5 °.
  13.  請求項11または12に記載の楕円偏光板を含む、有機EL表示装置。 An organic EL display device comprising the elliptically polarizing plate according to claim 11 or 12.
  14.  硬化樹脂層を形成する工程、
     前記硬化樹脂層上に水平配向膜を形成する工程、および
     前記水平配向膜上に水平配向液晶硬化膜を形成する工程
    をこの順に含む、請求項1~10のいずれかに記載の積層体の製造方法。
    A step of forming a cured resin layer,
    The production of the laminate according to any one of claims 1 to 10, comprising a step of forming a horizontal alignment film on the cured resin layer, and a step of forming a cured horizontal alignment liquid crystal film on the horizontal alignment film in this order. Method.
PCT/JP2019/028046 2018-08-23 2019-07-17 Laminate including horizontally aligned liquid crystal cured film WO2020039799A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217008044A KR20210048514A (en) 2018-08-23 2019-07-17 Laminate comprising a horizontally aligned liquid crystal cured film
CN201980054997.XA CN112585513B (en) 2018-08-23 2019-07-17 Laminate comprising horizontally aligned liquid crystal cured film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-156191 2018-08-23
JP2018156191A JP7302954B2 (en) 2018-08-23 2018-08-23 Laminate containing horizontal alignment liquid crystal cured film

Publications (1)

Publication Number Publication Date
WO2020039799A1 true WO2020039799A1 (en) 2020-02-27

Family

ID=69593117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028046 WO2020039799A1 (en) 2018-08-23 2019-07-17 Laminate including horizontally aligned liquid crystal cured film

Country Status (5)

Country Link
JP (1) JP7302954B2 (en)
KR (1) KR20210048514A (en)
CN (1) CN112585513B (en)
TW (1) TW202012165A (en)
WO (1) WO2020039799A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063610A1 (en) * 2022-09-23 2024-03-28 주식회사 엘지화학 Optical film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006136A (en) * 2000-06-21 2002-01-09 Konica Corp Optical anisotropic body, manufacturing method for the same, and liquid crystal display device
JP2003014935A (en) * 2001-02-23 2003-01-15 Nippon Kayaku Co Ltd Ultraviolet curing resin composition for alignment layer and optical retardation film composed of polymer film containing liquid crystalline compound
JP2017027057A (en) * 2015-07-24 2017-02-02 住友化学株式会社 Laminate, circular polarization plate including laminate, and display including laminate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067026A1 (en) * 2001-02-23 2002-08-29 Nippon Kayaku Kabushiki Kaisha A phase difference film comprising polymer film having ultraviolet curable resin composition for alignment film and liquid crystalline compound
JP5401032B2 (en) * 2006-12-15 2014-01-29 富士フイルム株式会社 Optically anisotropic film, brightness enhancement film, retardation plate, and liquid crystal display device
KR101253048B1 (en) 2008-12-31 2013-04-12 엘지디스플레이 주식회사 Liquid crystal display device having wide viewing angel
JP2015143789A (en) 2014-01-31 2015-08-06 住友化学株式会社 Optical anisotropic sheet for transfer
CN106371163B (en) 2015-07-24 2020-08-25 住友化学株式会社 Liquid crystal cured film, optical film comprising liquid crystal cured film and display device
CN115390178A (en) 2016-07-21 2022-11-25 住友化学株式会社 Elliptical polarizing plate
CN106569633B (en) 2016-10-31 2019-07-16 上海天马微电子有限公司 Touch-control structure and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006136A (en) * 2000-06-21 2002-01-09 Konica Corp Optical anisotropic body, manufacturing method for the same, and liquid crystal display device
JP2003014935A (en) * 2001-02-23 2003-01-15 Nippon Kayaku Co Ltd Ultraviolet curing resin composition for alignment layer and optical retardation film composed of polymer film containing liquid crystalline compound
JP2017027057A (en) * 2015-07-24 2017-02-02 住友化学株式会社 Laminate, circular polarization plate including laminate, and display including laminate

Also Published As

Publication number Publication date
CN112585513B (en) 2023-01-24
KR20210048514A (en) 2021-05-03
TW202012165A (en) 2020-04-01
CN112585513A (en) 2021-03-30
JP2020030336A (en) 2020-02-27
JP7302954B2 (en) 2023-07-04

Similar Documents

Publication Publication Date Title
JP7166049B2 (en) Elliptical polarizer
KR102560199B1 (en) Optical film and method of manufacturing the same
JP7299746B2 (en) Elliptical polarizer
TWI732772B (en) Laminated body, circularly polarizing plate including laminated body, display device including laminated body
CN114375418B (en) Laminate and elliptical polarizing plate comprising same
WO2021006068A1 (en) Long film
WO2022239767A1 (en) Laminate and display device
JP7302954B2 (en) Laminate containing horizontal alignment liquid crystal cured film
WO2022050003A1 (en) Optical laminate, and ellipsoidally polarizing plate including same
WO2024038667A1 (en) Optical laminated body and method for manufacturing same
JP7405576B2 (en) optically anisotropic film
KR20220156654A (en) optical stack
WO2020026805A1 (en) Horizontally aligned liquid crystal cured film and laminate including same
JP2021175785A (en) Polymerizable liquid crystal composition, liquid crystal cured film, elliptical polarization plate and organic el display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217008044

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19853103

Country of ref document: EP

Kind code of ref document: A1