WO2020039751A1 - Display control device, display control program, and computer-readable non-transitory storage medium - Google Patents

Display control device, display control program, and computer-readable non-transitory storage medium Download PDF

Info

Publication number
WO2020039751A1
WO2020039751A1 PCT/JP2019/026015 JP2019026015W WO2020039751A1 WO 2020039751 A1 WO2020039751 A1 WO 2020039751A1 JP 2019026015 W JP2019026015 W JP 2019026015W WO 2020039751 A1 WO2020039751 A1 WO 2020039751A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
pitch angle
display control
torque
control device
Prior art date
Application number
PCT/JP2019/026015
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 竹森
猛 羽藤
大翔 坂野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020039751A1 publication Critical patent/WO2020039751A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles

Definitions

  • the present disclosure relates to a display control device that displays a virtual image, a control program, and a non-transitory computer-readable storage medium.
  • Patent Document 1 proposes a technique for determining a superimposed position of a virtual image superimposed and displayed on a scene in front of a vehicle.
  • a superimposed position of a virtual image is determined using posture information of a vehicle detected by a gyro sensor, a G sensor, a yaw rate sensor, or the like.
  • the superposition position is determined based on the detection result of the generated attitude change of the vehicle.
  • the determination of the superposition position may not be able to follow the transient posture change of the vehicle accompanying the application of the acceleration. That is, it is conceivable that the posture of the vehicle further changes during the period from the detection of the posture change of the vehicle to the determination of the superposition position and the display of the virtual image. As a result, there is a possibility that a shift of the superimposed position of the virtual image occurs.
  • the present disclosure has an object to provide a display control device, a display control program, and a computer-readable non-temporary storage medium that can suppress a shift of a superimposed position of a virtual image due to a transient posture change of a vehicle.
  • a display control device is a display control device used in a vehicle, which controls display of a virtual image superimposed on a superimposition target in a foreground of an occupant, and includes a torque control unit that applies acceleration to the vehicle.
  • a torque information acquisition unit that acquires torque information that is a value or a value related to torque, a pitch angle prediction unit that predicts a pitch angle of the vehicle based on the acquired torque information, And a position correction unit that corrects the superimposed position of the virtual image.
  • a display control program is a control program used in a vehicle and controlling display of a virtual image superimposed on a superimposition target in a foreground of an occupant.
  • the display control program includes: a torque information acquisition unit that acquires torque information that is a value of torque or a value related to the torque that gives acceleration to the vehicle; and a pitch angle of the vehicle based on the acquired torque information. And a position correction unit that corrects the superimposed position of the virtual image based on the prediction of the pitch angle prediction unit.
  • a non-transitory computer-readable storage medium is used in a vehicle, and a display control program that controls display of a virtual image superimposed on a superimposition target in an occupant's foreground. Is stored.
  • the display control program includes: a torque information acquisition unit that acquires torque information that is a value of torque or a value related to the torque that gives acceleration to the vehicle; and a pitch angle of the vehicle based on the acquired torque information.
  • a computer-readable non-transitory storage medium functioning as a pitch angle prediction unit that calculates a predicted value of a virtual image, and a position correction unit that corrects a superimposed position of a virtual image based on the predicted value.
  • the predicted value of the pitch angle is calculated from the value of the torque that gives acceleration to the vehicle, and the superimposed position of the virtual image is corrected based on the predicted value.
  • the predicted value By calculating the predicted value, a change in the pitch angle of the vehicle due to the application of the acceleration is predicted. Therefore, it is possible to correct the superimposed position of the virtual image earlier than detecting the change in the pitch angle of the vehicle.
  • FIG. 1 is a block diagram of a display control device according to the first embodiment
  • FIG. 2 is a flowchart illustrating an example of a process performed by the display control device according to the first embodiment
  • FIG. 3 is a flowchart illustrating a process of calculating an acceleration pitch angle in the first embodiment
  • FIG. 4 is a block diagram of a display control device according to the second embodiment
  • FIG. 5 is a flowchart illustrating a calculation process of an acceleration pitch angle in the second embodiment.
  • FIG. 6 is a block diagram of a display control device according to the third embodiment
  • FIG. 7 is a flowchart illustrating a process of calculating an acceleration pitch angle in the third embodiment.
  • the display control device 100 configures a virtual image display system used in a vehicle together with a head up display (hereinafter, HUD) device 10 and the like.
  • the virtual image display system displays a virtual image Vi superimposed on an object to be superimposed in a foreground of an occupant (eg, a driver) of a vehicle, for example, another vehicle, a pedestrian, a cyclist, and a traveling route.
  • the virtual image display system presents various information related to the vehicle to the driver by augmented reality (Augmented Reality, hereinafter, AR) display using the virtual image Vi.
  • AR Augmented Reality
  • the HUD device 10 is electrically connected to the display control device 100, and acquires the video data generated by the display control device 100.
  • the HUD device 10 includes a projector, a screen, an enlargement optical system, and the like.
  • the HUD device 10 is housed in a housing space in the instrument panel below the windshield WS.
  • the HUD device 10 projects the light of the display image formed as the virtual image Vi toward the projection area PA of the windshield WS.
  • the light projected toward the windshield WS is reflected toward the driver's seat side in the projection area PA and is perceived by the driver.
  • the driver visually recognizes the display in which the virtual image Vi is superimposed on the superimposition target in the foreground viewed through the projection area PA.
  • the projection area PA in which light can be projected by the HUD device 10 is a limited part of the entire surface of the windshield WS.
  • the projection area PA is an area where the virtual image Vi can be displayed on the driver's eyes.
  • the range that can be seen through the projection area PA is substantially the range where the virtual image Vi can be displayed.
  • the virtual image Vi is formed in a space of about 10 to 20 m from the eye point EP to the front of the vehicle, for example.
  • the virtual image Vi realizes an AR display that is superimposed on a superimposition target (for example, a road surface or a preceding vehicle) in the foreground as seen by the driver.
  • a route image indicating a traveling route set in the navigation device is presented to the driver by AR display.
  • the display control device 100 is an electronic control unit that controls display on a display such as the HUD device 10 mounted on a vehicle.
  • the display control device 100 has a function of detecting the attitude of the vehicle as one of the functions for controlling the virtual image display by the HUD device 10.
  • the display control device 100 corrects the projection position and the projection shape of the display light image according to the change in the attitude of the vehicle, and controls the virtual image Vi having an appropriate shape to be formed at an appropriate position in the foreground.
  • the display control device 100 can communicate with other on-vehicle components via a communication bus of the on-vehicle network.
  • a communication bus of the on-vehicle network For example, an axle torque sensor 21, a brake oil pressure sensor 22, a vehicle height sensor 23, a three-dimensional map database 24, a steering angle sensor 25, a vehicle speed sensor 26, a yaw rate sensor 27, and the like are directly or indirectly electrically connected to the communication bus. Have been.
  • the axle torque sensor 21 is a sensor that measures the value of drive torque (drive torque information) output from the drive source of the vehicle.
  • the axle torque sensor 21 is provided on a drive shaft of the vehicle.
  • the axle torque sensor 21 indirectly measures the value of the drive torque by detecting the amount of twist of the drive shaft due to the output drive torque.
  • the axle torque sensor 21 sequentially outputs a signal indicating the detected value to the display control device 100.
  • the brake oil pressure sensor 22 is a sensor that measures the value of the braking torque output from the braking device (braking torque information).
  • the braking device applies a braking torque to the wheels according to the operation amount of the brake pedal.
  • the brake oil pressure sensor 22 indirectly measures the value of the braking torque by detecting the oil pressure value of the master cylinder in the braking device.
  • the brake oil pressure sensor 22 sequentially outputs a signal indicating the detected value to the display control device 100.
  • the vehicle height sensor 23 is a sensor that detects a vertical displacement generated in the vehicle in order to measure the height from the road surface on which the vehicle is placed to the body.
  • the vehicle height sensor 23 measures the sinking amount of the specific wheel, which is displaced in the vertical direction by the operation of the suspension arm suspended from the body, with respect to the body.
  • the vehicle height sensor 23 is provided only once behind the center in the front-rear direction of the vehicle, and measures the vertical displacement at the rear of the vehicle.
  • the vehicle height sensor 23 acquires a relative distance between the body and the suspension arm as a detection value, and sequentially outputs the detection value to the display control device 100.
  • the three-dimensional map database (hereinafter, three-dimensional map DB) 24 is mainly configured with a large-capacity storage medium storing a large number of three-dimensional map data and two-dimensional map data.
  • the three-dimensional map data is high-precision map data that enables automatic driving of a vehicle.
  • the terrain and the structure are represented by a point cloud having three-dimensional coordinate information.
  • the three-dimensional map DB 24 can update the three-dimensional map data to the latest information through a network.
  • the three-dimensional map DB 24 can provide the display control device 100 with three-dimensional map data around the vehicle and in the traveling direction in response to a request from the display control device 100. If the three-dimensional map data of the area requested to be provided is not yet prepared, the three-dimensional map DB 24 provides the display control device 100 with normal two-dimensional map data used for navigation and the like.
  • the steering angle sensor 25 and the vehicle speed sensor 26 are state detection sensors that detect the state of the vehicle.
  • the steering angle sensor 25 detects, for example, a rotation direction and a rotation angle of the steering shaft. The rotation angle is based on the angle phase (0 °) when traveling straight.
  • the steering angle sensor 25 sequentially outputs signals indicating the rotation direction and the rotation angle (steering angle) from the reference position to the display control device 100.
  • the vehicle speed sensor 26 detects, for example, the rotation speed of the wheels of the vehicle.
  • the vehicle speed sensor 26 sequentially outputs a signal indicating the rotation speed of the wheel to the display control device 100.
  • Yaw rate sensor 27 detects a yaw rate acting on the vehicle.
  • the yaw rate sensor 27 sequentially outputs a signal indicating the detected yaw rate value to the display control device 100.
  • the display control device 100 is an electronic control unit mainly composed of a computer having a processing unit 61, a RAM 62, a memory device 63, and an input / output interface, as shown in FIG.
  • the processing unit 61 is configured to include at least one of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and an FPGA (Field-Programmable Gate Array).
  • the processing unit 61 may include a dedicated processor specialized in learning and inference of AI (Artificial @ Intelligence).
  • the memory device 63 stores various programs executed by the processing unit 61.
  • the plurality of programs stored in the memory device 63 include a display control program for controlling the display of the virtual image Vi.
  • the display control program is a program that realizes augmented reality (Augmented Reality, hereinafter, AR) display in which a virtual image Vi is superimposed on a superimposition target in the foreground.
  • AR Augmented Reality
  • the shape of the road surface visually recognized by the driver through the projection area PA is different from the case where the vehicle is traveling on a flat road and the case where the vehicle is traveling on a flat road. This differs from when traveling on a sloped road surface. That is, the attitude of the vehicle changes depending on the presence or absence of the gradient and the magnitude of the gradient, and the shape of the road surface that is visually recognized changes.
  • the virtual image Vi shifted from the superimposition target may be displayed.
  • the display control program appropriately controls a projection position and a projection shape of the display light image in accordance with a road gradient, a change in the attitude of the vehicle, and the like, such as a road gradient, a pitch angle, a roll angle, and a yaw angle generated in the vehicle. Is calculated.
  • the display control device 100 executes the above-described display control program to execute the torque information acquisition unit 71, the vehicle height information acquisition unit 73, the gradient information acquisition unit 74, the steering angle information acquisition unit 75, the vehicle speed information acquisition unit 76, the yaw rate acquisition unit 77 as a functional block for acquiring various information.
  • the display control device 100 includes a roll angle calculator 85, a roll angle corrector 95, a yaw angle corrector 97, a pitch angle predictor 81, and a measured pitch angle calculator as functional blocks for calculating the vehicle attitude based on the acquired information. 83 and a pitch angle correction unit 93.
  • the display control device 100 includes a display control unit 99 as a functional block for determining a superimposed position of the virtual image Vi.
  • the torque information acquisition unit 71 acquires, as torque information, a value related to the value of the torque that gives acceleration to the vehicle.
  • the torque information acquisition unit 71 acquires the axle torque value detected by the axle torque sensor 21 as drive torque information output by the drive source of the vehicle.
  • the driving torque information is torque information that gives a positive acceleration to the vehicle among the torque information.
  • the torque information acquisition unit 71 acquires the brake oil pressure value detected by the brake oil pressure sensor 22 as braking torque information output by the braking device.
  • the braking torque information is torque information that gives a negative acceleration to the vehicle among the torque information.
  • the vehicle height information acquisition unit 73 acquires the detection value detected by the vehicle height sensor 23.
  • the vehicle height information acquisition unit 73 calculates the output value of the vehicle height sensor 23 in a no-load state in which no load causing a vertical displacement is applied to the vehicle, and a vehicle height indicating that the pitch angle and the roll angle are zero. This is set as the initial value of the sensor 23.
  • the vehicle height information acquisition unit 73 calculates and acquires the displacement from the initial value of the detected value as vehicle height information.
  • the gradient information acquiring unit 74 calculates the gradient of the road on which the vehicle travels, using the current position of the vehicle and the three-dimensional map data acquired from the three-dimensional map database 24.
  • the current position of the vehicle is based on, for example, vehicle position information calculated based on a positioning signal obtained from a satellite positioning system, and vehicle speed information for correcting a moving distance of the vehicle in a delay time at the time of obtaining the vehicle position information. It may be specified.
  • the gradient information acquisition unit 74 acquires information indicating the latitude, longitude, and altitude, and information indicating the crossing gradient of the road surface.
  • the gradient information acquisition unit 74 calculates and acquires the vertical gradient of the road surface on which the vehicle travels based on the latitude, longitude, and altitude.
  • the gradient information acquiring unit 74 sequentially provides the acquired vertical gradient and crossing gradient to the display control unit 99 as gradient information.
  • the steering angle information acquisition unit 75 acquires the detection value of the steering angle sensor 25 as steering angle information.
  • the vehicle speed information acquisition unit 76 acquires a detection value of the vehicle speed sensor 26 as vehicle speed information.
  • the yaw rate acquisition unit 77 acquires a yaw rate from the yaw rate sensor 27.
  • the roll angle calculator 85 calculates the roll angle of the vehicle based on the steering angle information and the vehicle speed information.
  • the roll angle calculation unit 85 acquires curve radius information of a traveling road from, for example, the three-dimensional map database 24 or the like, and calculates a roll angle using the curve radius information, steering angle information, and vehicle speed information.
  • the roll angle calculation unit 85 sequentially provides the calculated roll angle to the roll angle correction unit 95.
  • the roll angle correction unit 95 adds the transverse gradient acquired by the gradient information acquisition unit 74 to the calculated roll angle.
  • the roll angle correction unit 95 outputs the added value as a corrected roll angle that is the roll angle of the vehicle with respect to the horizontal plane.
  • the yaw angle correction unit 97 calculates the yaw angle of the vehicle based on the obtained yaw rate.
  • the pitch angle prediction unit 81 predicts an acceleration pitch angle based on the acquired torque information.
  • the acceleration pitch angle is a pitch angle of the vehicle with respect to the road surface when the vehicle is accelerated by applying a positive acceleration or decelerated by applying a negative acceleration.
  • the pitch angle prediction unit 81 calculates the acceleration pitch angle based on, for example, an estimation formula of the acceleration pitch angle associated with the torque information. Assuming that the acceleration pitch angle is P, an estimation equation for calculating P is given by, for example, the following equation.
  • Td is an axle torque value
  • Tb is a brake oil pressure value
  • a and b are gains. Therefore, a ⁇ Td is a term for predicting a change in pitch angle due to drive torque (drive correction term), and bb is a term for predicting a change in pitch angle due to brake torque (brake correction term).
  • drive correction term drive correction term
  • bb is a term for predicting a change in pitch angle due to brake torque (brake correction term).
  • “a” and “b” are determined by the driving system of the vehicle, the position of the driving source, and the like.
  • a and b have different values for each vehicle model due to differences in the FF (front engine / front drive) system, FR (front engine / rear drive) system, AWD (all-wheel drive) system, and the like.
  • c is an offset term determined by the vehicle type.
  • the estimation formula is stored in the memory device 63 in advance, for example.
  • the pitch angle prediction unit 81 calculates the acceleration pitch angle by substituting the acquired axle torque value and brake oil pressure value into the above-described estimation formula. Accordingly, the pitch angle prediction unit 81 calculates a change in the vehicle pitch angle that may occur due to the acceleration and deceleration of the vehicle due to the action of these torques. Since the pitch angle prediction unit 81 can calculate the acceleration pitch angle at the stage when the torque is measured, the pitch angle prediction unit 81 predicts the acceleration pitch angle earlier or almost at the same time as when the change in the pitch angle of the vehicle is actually caused by the torque.
  • the measurement pitch angle calculation unit 83 calculates the inclination pitch angle.
  • the measurement pitch angle calculation unit 83 calculates an inclination pitch angle, which is a pitch angle with respect to a road surface due to the road gradient, based on the acquired vehicle height information.
  • the measurement pitch angle calculation unit 83 calculates the inclination pitch angle based on the vehicle height information and the roll angle calculated by the roll angle calculation unit 85.
  • the measurement pitch angle calculation unit 83 subtracts the amount of displacement due to the roll angle from the amount of displacement in the vertical direction indicated by the vehicle height information, and thereby removes the amount of displacement in the vertical direction of the vehicle due to the roll motion. Calculate the angle.
  • the measurement pitch angle calculation unit 83 sequentially provides the calculated inclination pitch angle to the pitch angle correction unit 93.
  • the pitch angle correction unit 93 calculates a corrected pitch angle based on the predicted acceleration pitch angle.
  • the pitch angle correction unit 93 calculates a correction pitch angle based on the vertical gradient information from the pitch angle prediction unit 81, the measured pitch angle calculation unit 83, and the gradient information acquisition unit 74. That is, the pitch angle correction unit 93 adds the acceleration pitch angle and the vertical gradient of the road surface to the inclination pitch angle, and calculates the corrected pitch angle as the vehicle pitch angle with respect to the horizontal plane.
  • the display control unit 99 generates video data of the projected display light image and sequentially outputs the video data to the HUD device 10.
  • the HUD device 10 the light of the display light image based on the video data is projected onto the projection area PA, and is formed as a virtual image Vi.
  • the display control unit 99 repeatedly performs a process of correcting the drawing position and the drawing shape of the original image to be the virtual image Vi in accordance with the vehicle posture in each frame constituting the video data.
  • the display control unit 99 is an example of a position correction unit.
  • the display control device 100 feed-forward controls the superimposed position of the virtual image Vi based on the value of the torque that gives acceleration to the vehicle.
  • a series of processes is repeatedly executed at predetermined time intervals or at predetermined timings.
  • the measured pitch angle calculation unit 83 calculates an inclined pitch angle.
  • the gradient information acquisition unit 74 calculates the vertical gradient of the road surface on which the vehicle is traveling.
  • an acceleration pitch angle is predicted.
  • the pitch angle correction unit 93 adds the inclination pitch angle, vertical gradient, and acceleration pitch angle obtained and calculated in S1 to S3, and calculates a corrected pitch angle.
  • a process of correcting the superimposed position of the virtual image Vi in the pitch direction is performed based on the calculated correction pitch angle. That is, the vertical displacement of the projection area PA from the projection position (reference position) of the virtual image Vi when the road gradient is substantially zero and neither the roll nor the pitch occurs is determined based on the corrected pitch angle. To correct. When the process in S5 is completed, the process returns to S1, and a series of correction processes is repeated.
  • the display control device 100 includes a torque information obtaining unit 71 that obtains torque information that is a value of a torque that gives acceleration to the vehicle or a value related to the torque, and a pitch that predicts a pitch angle of the vehicle based on the obtained torque information.
  • An angle prediction unit 81 is provided.
  • the display control device 100 includes a display control unit 99 that corrects the superimposed position of the virtual image Vi based on the prediction of the pitch angle prediction unit 81.
  • the predicted value of the pitch angle is calculated from the value of the torque input to the axle, and the superimposed position of the virtual image Vi is corrected based on the predicted value. Since the torque input to the axle is a value related to the acceleration applied to the vehicle, a change in the pitch angle of the vehicle due to the application of the acceleration is predicted by calculating the predicted value. Therefore, it is possible to correct the superimposed position of the virtual image Vi earlier than detecting the change in the pitch angle of the vehicle. As described above, it is possible to provide the display control device 100 and the display control program capable of suppressing the shift of the superimposed position of the virtual image Vi due to the transient posture change of the vehicle.
  • the torque information acquisition unit 71 acquires at least the drive torque information output by the drive source of the vehicle and the brake torque information output by the braking device. According to this, it is possible to predict the acceleration pitch angle based on both the positive acceleration and the negative acceleration given to the vehicle.
  • the torque information acquisition unit 71 acquires a detected value of the axle torque detected by the axle torque sensor 21. According to this, the display control device 100 can use the detected value of the axle torque as the drive torque information. Since the detected value of the axle torque is higher in accuracy than information related to other driving torque such as the accelerator opening, the calculation accuracy of the acceleration pitch angle can be further improved.
  • the pitch angle prediction section 81 acquires the steering angle information from the steering angle information acquisition section 75 as shown in FIG.
  • the pitch angle prediction unit 81 takes into account the influence of the roll motion of the vehicle during the turn on the pitch direction component based on the steering angle information in the prediction of the acceleration pitch angle.
  • the pitch angle prediction unit 81 uses the following estimation formula for calculating the acceleration pitch angle.
  • d is a correction term (turn correction term) of the acceleration pitch angle according to the steering angle information.
  • d is a variable term that changes according to the magnitude of the steering angle.
  • d may be a constant term.
  • the pitch angle prediction unit 81 ignores the turning correction term when calculating the acceleration pitch angle.
  • the accuracy of the estimation formula is lower than when the steering angle is relatively small.
  • the pitch angle prediction unit 81 avoids a decrease in the accuracy of the estimation formula by ignoring the turning correction term when the steering angle exceeds the steering threshold.
  • the value of the steering angle is obtained.
  • the obtained pitch is substituted into the estimation formula set based on the determination result in S22 to calculate the acceleration pitch angle.
  • the pitch angle prediction unit 81 calculates the acceleration pitch angle based on the steering angle information in addition to the torque information. For this reason, the pitch angle prediction unit 81 can add the change in the pitch angle accompanying the roll motion of the vehicle at the time of turning to the prediction of the acceleration pitch angle. Therefore, the accuracy of calculating the acceleration pitch angle during turning can be further improved.
  • the display control device 100 acquires information from the accelerator opening sensor 28 and the engine speed sensor 29.
  • the accelerator opening sensor 28 sequentially outputs an electric signal to the display control device 100 according to the accelerator operation amount by the driver of the vehicle.
  • the engine speed sensor 29 sequentially outputs a signal indicating the engine speed to the display control device 100.
  • the display control device 100 includes, as functional blocks, an accelerator opening acquisition unit 78, a rotation speed information acquisition unit 79, and a shift determination unit 81a.
  • the accelerator opening obtaining unit 78 obtains a detection value of the accelerator opening sensor 28 as accelerator opening information.
  • the rotation speed information obtaining unit 79 obtains a detection value of the engine rotation speed sensor 29 as engine rotation speed information.
  • the shift determining unit 81a determines whether or not a shift has been performed.
  • the shift determination unit 81a determines whether or not a shift has been performed based on, for example, accelerator opening information and engine speed information. Specifically, the shift determination unit 81a determines that a shift has been made (shifted down) when the engine speed falls below a predetermined value when the accelerator opening is substantially constant. In addition, if the accelerator opening is substantially constant and the engine speed exceeds another predetermined value, it may be determined that the shift has been made (upshifted).
  • the shift determination unit 81a sequentially provides the determination result to the pitch angle prediction unit 81.
  • the pitch angle prediction unit 81 acquires vehicle speed information from the vehicle speed information acquisition unit 76.
  • the pitch angle prediction unit 81 predicts the acceleration pitch angle based on the vehicle speed information without using the value of the braking torque when the vehicle is stopped.
  • the pitch angle prediction unit 81 predicts the acceleration pitch angle based on the determination result of the shift determination unit 81a, taking into account the influence of vibration (shift shock) due to the shift when there is a shift. Specifically, the pitch angle prediction unit 81 uses the following estimation formula for calculating the acceleration pitch angle.
  • e is a correction term (shift correction term) of the acceleration pitch angle corresponding to the shift shock.
  • e is a variable term that changes according to the magnitude of the shift shock.
  • e may be a constant term.
  • the vehicle speed is acquired.
  • S25 it is determined whether the vehicle speed is 0 km / h. When the vehicle speed exceeds 0 km / h, that is, when the vehicle is running, an estimation expression including a braking correction term is used, and the value of the braking torque is used to calculate the acceleration pitch angle. If it is determined in S25 that the vehicle speed is 0 km / h, it is determined that the vehicle is at a stop, and the process proceeds to S26. In S26, a process is performed so that the braking torque value is not used for calculating the acceleration pitch angle when the vehicle is stopped, except for the braking correction term from the estimation formula, and the process proceeds to S27. On the other hand, if it is determined in S25 that the vehicle speed is not 0 km / h, that is, that the vehicle is running, the process proceeds to S27 with the braking correction term included in the estimation formula.
  • S27 the accelerator opening and the engine speed are acquired, and the process proceeds to S28.
  • S28 it is determined whether or not there is a shift. If it is determined that there is no shift, the process proceeds to S29.
  • S29 a process for removing the shift correction term from the estimation formula is performed, and the process proceeds to S30. On the other hand, if it is determined that there is a shift, the process proceeds to S30 with the shift correction term included in the estimation formula.
  • the acceleration pitch angle is calculated by substituting the obtained values into the estimation formula set based on the determination results in S22, S25, and S28.
  • the pitch angle prediction unit 81 does not use the braking torque information for calculating the acceleration pitch angle when the vehicle speed is 0 km / h.
  • the vehicle speed is 0 km / h
  • a more accurate acceleration pitch angle can be calculated by not using the value of the braking torque to predict the acceleration pitch angle.
  • the pitch angle prediction unit 81 uses the value of the braking torque to predict the acceleration pitch angle only when the vehicle is running.
  • the pitch angle prediction unit 81 may have any configuration that does not use the braking torque information to calculate the acceleration pitch angle when the vehicle can be considered to be in a stopped state. That is, even when the vehicle speed is higher than 0 km / h, the pitch angle prediction unit 81 does not use the value of the braking torque for predicting the acceleration pitch angle if the vehicle speed is lower than the vehicle speed threshold value at which the vehicle can be regarded as stopped.
  • the configuration may be such that:
  • the pitch angle prediction unit 81 may be configured to use the value of the braking torque to predict the acceleration pitch angle only when the vehicle speed exceeds the vehicle speed threshold, and the vehicle speed threshold may be 0 km / h or 0 km / h. It is possible to adopt a vehicle speed of a size that can be considered as.
  • the display control device 100 includes a shift determination unit 81a that determines whether the vehicle has shifted.
  • the pitch angle prediction unit 81 corrects a predicted value based on the shift. According to this, the pitch angle prediction unit 81 can include the shift shock in the prediction of the acceleration pitch angle. Therefore, the acceleration pitch angle can be more accurately predicted.
  • the present disclosure is not limited to the illustrated embodiments.
  • the present disclosure encompasses the illustrated embodiments and variations based thereon based on those skilled in the art.
  • the present disclosure is not limited to the combination of parts and / or elements shown in the embodiments.
  • the present disclosure can be implemented in various combinations.
  • the present disclosure can have additional parts that can be added to the embodiments.
  • the present disclosure encompasses embodiments where components and / or elements are omitted.
  • the present disclosure encompasses the replacement or combination of parts and / or elements between one embodiment and another.
  • the disclosed technical scope is not limited to the description of the embodiments. Some of the disclosed technical ranges are indicated by the description of the claims, and should be construed to include all modifications within the meaning and range equivalent to the description of the claims.
  • the processing for display control described above may be performed by a configuration different from that of the display control apparatus 100 described above.
  • the display control device may be configured to be included in a combination meter, a navigation device, or the like. That is, the combination meter and the navigation device may acquire the function of the display control device by executing the above-described display control program in the control circuit.
  • the calculation for the posture detection performed by the posture detection unit of the above-described embodiment may be distributed and processed by control circuits of a plurality of control devices mounted on the vehicle.
  • non-transitory tangible storage mediums such as a flash memory and a hard disk can be employed in the memory device 63 as a configuration for storing the display control program.
  • the storage medium for storing the display control program is not limited to the storage medium provided in the electronic control unit mounted on the vehicle, but may be an optical disk as a copy source to the storage medium, a hard disk drive of a general-purpose computer, or the like. You may.
  • the torque information acquisition unit 71 acquires the axle torque value as the drive torque information.
  • the torque information acquisition unit 71 may be configured to acquire, for example, the accelerator opening as drive torque information.
  • the drive torque information acquired by the torque information acquisition unit 71 may be any information related to the drive torque output by the drive source of the vehicle.
  • the display control device 100 may be used for a so-called hybrid vehicle including a motor as a drive source in addition to the engine, or an electric vehicle including only the motor as a drive source. May be applied.
  • the pitch angle prediction unit 81 uses the regenerative torque information in addition to the drive torque information and the braking torque information to predict the acceleration pitch angle. The angle can be detected.
  • the inclination pitch angle is calculated based on the vehicle height value detected by the vehicle height sensor 23, but may be calculated based on the detection value of another attitude detection sensor such as a gyro sensor.
  • the display control unit 99 corrects the drawing position of the original image serving as the virtual image Vi in accordance with the vehicle attitude when generating the video data. Instead, the display control unit 99 may output correction information for correcting the superimposed position of the virtual image Vi to the HUD device 10.
  • the HUD device 10 corrects the superimposed position of the virtual image Vi based on the correction information from the display control unit 99. That is, in this configuration, the display control unit 99 corrects the superimposed position of the virtual image Vi via the HUD device 10.
  • a flowchart described in the present application or a process of the flowchart includes a plurality of steps (or referred to as sections), and each step is expressed as, for example, S10. Further, each step can be divided into a plurality of sub-steps, while a plurality of steps can be combined into one step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Instrument Panels (AREA)

Abstract

This display control device is used in a vehicle and controls display of a virtual image (Vi) to be superimposed onto a superimposition object present in the foreground of an occupant. The display control device is provided with: a torque information acquisition unit (71) for acquiring torque information that represents a value of torque for applying acceleration to the vehicle or a value relating to torque; a pitch angle prediction unit (81) for predicting a pitch angle of the vehicle on the basis of the acquired torque information; and a position correction unit (99) for correcting a position at which the virtual image is superimposed, on the basis of prediction by the pitch angle prediction unit. The display control device quickly corrects the position at which the virtual image is superimposed.

Description

表示制御装置、表示制御プログラム、及びコンピュータ読み取り可能な非一時的な記憶媒体Display control device, display control program, and non-transitory computer-readable storage medium 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年8月21日に出願された日本国特許出願2018-154863号に基づくものであり、ここにその記載内容を参照により援用する。 This application is based on Japanese Patent Application No. 2018-1548663 filed on Aug. 21, 2018, the contents of which are incorporated herein by reference.
 本開示は、虚像を表示する表示制御装置、制御プログラム、及びコンピュータ読み取り可能な非一時的な記憶媒体に関する。 The present disclosure relates to a display control device that displays a virtual image, a control program, and a non-transitory computer-readable storage medium.
 特許文献1には、車両の前方風景に重畳表示される虚像の重畳位置を決定する技術が提案されている。この技術では、ジャイロセンサ、Gセンサ、ヨーレートセンサ等によって検出された車両の姿勢情報を利用して虚像の重畳位置を決定する。 Patent Document 1 proposes a technique for determining a superimposed position of a virtual image superimposed and displayed on a scene in front of a vehicle. In this technique, a superimposed position of a virtual image is determined using posture information of a vehicle detected by a gyro sensor, a G sensor, a yaw rate sensor, or the like.
JP 2010‐256878 AJP 2010-2556878A
 特許文献1の技術では、発生した車両の姿勢変化の検出結果に基づいて重畳位置を決定する。しかしこの場合、加速度の付与に伴う車両の過渡的な姿勢変化に対して重畳位置の決定が追従できないおそれがある。すなわち、車両の姿勢変化を検出してから重畳位置を決定し、虚像を表示するまでの間に、さらに車両が姿勢変化してしまうことが考えられる。この結果、虚像の重畳位置のずれが発生しする恐れがある。 技術 In the technique of Patent Literature 1, the superposition position is determined based on the detection result of the generated attitude change of the vehicle. However, in this case, the determination of the superposition position may not be able to follow the transient posture change of the vehicle accompanying the application of the acceleration. That is, it is conceivable that the posture of the vehicle further changes during the period from the detection of the posture change of the vehicle to the determination of the superposition position and the display of the virtual image. As a result, there is a possibility that a shift of the superimposed position of the virtual image occurs.
 本開示は、車両の過渡的な姿勢変化に対する虚像の重畳位置のずれを抑制可能な表示制御装置、表示制御プログラム、及びコンピュータ読み取り可能な非一時的な記憶媒体を提供することを目的とする。 The present disclosure has an object to provide a display control device, a display control program, and a computer-readable non-temporary storage medium that can suppress a shift of a superimposed position of a virtual image due to a transient posture change of a vehicle.
 本開示の一態様によると、表示制御装置は、車両において用いられ、乗員の前景中にある重畳対象に重畳される虚像の表示を制御する表示制御装置であって、車両に加速度を与えるトルクの値またはトルクに関連する値であるトルク情報を取得するトルク情報取得部と、取得したトルク情報に基づいて、車両のピッチ角を予測するピッチ角予測部と、ピッチ角予測部の予測に基づいて、虚像の重畳位置を補正する位置補正部と、を備える。 According to an embodiment of the present disclosure, a display control device is a display control device used in a vehicle, which controls display of a virtual image superimposed on a superimposition target in a foreground of an occupant, and includes a torque control unit that applies acceleration to the vehicle. A torque information acquisition unit that acquires torque information that is a value or a value related to torque, a pitch angle prediction unit that predicts a pitch angle of the vehicle based on the acquired torque information, And a position correction unit that corrects the superimposed position of the virtual image.
 本開示の他の一態様によると、表示制御プログラムは、車両において用いられ、乗員の前景中にある重畳対象に重畳される虚像の表示を制御する制御プログラムである。表示制御プログラムは、少なくとも1つの処理部を、車両に加速度を与えるトルクの値またはトルクに関連する値であるトルク情報を取得するトルク情報取得部、取得したトルク情報に基づいて、車両のピッチ角を予測するピッチ角予測部、ピッチ角予測部の予測に基づいて、虚像の重畳位置を補正する位置補正部、として機能させる。 According to another embodiment of the present disclosure, a display control program is a control program used in a vehicle and controlling display of a virtual image superimposed on a superimposition target in a foreground of an occupant. The display control program includes: a torque information acquisition unit that acquires torque information that is a value of torque or a value related to the torque that gives acceleration to the vehicle; and a pitch angle of the vehicle based on the acquired torque information. And a position correction unit that corrects the superimposed position of the virtual image based on the prediction of the pitch angle prediction unit.
 更に、本開示の他の一態様によると、コンピュータ読み取り可能な非一時的な記憶媒体は、車両において用いられ、乗員の前景中にある重畳対象に重畳される虚像の表示を制御する表示制御プログラムを記憶する。表示制御プログラムは、少なくとも1つの処理部を、車両に加速度を与えるトルクの値またはトルクに関連する値であるトルク情報を取得するトルク情報取得部、取得したトルク情報に基づいて、車両のピッチ角の予測値を算出するピッチ角予測部、予測値に基づいて、虚像の重畳位置を補正する位置補正部、として機能させるコンピュータ読み取り可能な非一時的な記憶媒体。 Further, according to another aspect of the present disclosure, a non-transitory computer-readable storage medium is used in a vehicle, and a display control program that controls display of a virtual image superimposed on a superimposition target in an occupant's foreground. Is stored. The display control program includes: a torque information acquisition unit that acquires torque information that is a value of torque or a value related to the torque that gives acceleration to the vehicle; and a pitch angle of the vehicle based on the acquired torque information. A computer-readable non-transitory storage medium functioning as a pitch angle prediction unit that calculates a predicted value of a virtual image, and a position correction unit that corrects a superimposed position of a virtual image based on the predicted value.
 本開示によれば、車両に加速度を与えるトルクの値からピッチ角の予測値が算出され、予測値に基づいて虚像の重畳位置が補正される。この予測値の算出により、加速度の付与に伴う車両のピッチ角変化が予測されることになる。したがって、車両のピッチ角変化を検出するよりも早く虚像の重畳位置を補正することができる。以上により、車両の過渡的な姿勢変化に対する虚像の重畳位置のずれを抑制可能な表示制御装置および表示制御プログラムを提供することができる。 According to the present disclosure, the predicted value of the pitch angle is calculated from the value of the torque that gives acceleration to the vehicle, and the superimposed position of the virtual image is corrected based on the predicted value. By calculating the predicted value, a change in the pitch angle of the vehicle due to the application of the acceleration is predicted. Therefore, it is possible to correct the superimposed position of the virtual image earlier than detecting the change in the pitch angle of the vehicle. As described above, it is possible to provide a display control device and a display control program capable of suppressing a shift of a superimposed position of a virtual image due to a transient posture change of a vehicle.
 本開示についての上記および他の目的、特徴や利点は、添付図面を参照した下記詳細な説明から、より明確になる。添付図面において、
図1は、第1実施形態に係る表示制御装置のブロック図であり、 図2は、第1実施形態の表示制御装置が実行する処理の一例を示すフローチャートであり、 図3は、第1実施形態における加速度ピッチ角の算出処理を示すフローチャートであり、 図4は、第2実施形態に係る表示制御装置のブロック図であり、 図5は、第2実施形態における加速度ピッチ角の算出処理を示すフローチャートであり、 図6は、第3実施形態に係る表示制御装置のブロック図であり、 図7は、第3実施形態における加速度ピッチ角の算出処理を示すフローチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the attached drawings,
FIG. 1 is a block diagram of a display control device according to the first embodiment, FIG. 2 is a flowchart illustrating an example of a process performed by the display control device according to the first embodiment; FIG. 3 is a flowchart illustrating a process of calculating an acceleration pitch angle in the first embodiment, FIG. 4 is a block diagram of a display control device according to the second embodiment, FIG. 5 is a flowchart illustrating a calculation process of an acceleration pitch angle in the second embodiment. FIG. 6 is a block diagram of a display control device according to the third embodiment, FIG. 7 is a flowchart illustrating a process of calculating an acceleration pitch angle in the third embodiment.
 (第1実施形態)
 第1実施形態の表示制御装置100について、図1~図3を参照しながら説明する。表示制御装置100は、車両において用いられる虚像表示システムを、ヘッドアップディスプレイ(Head Up Display,以下、HUD)装置10等と共に構成している。虚像表示システムは、車両の乗員(例えばドライバ)の前景中の重畳対象、例えば他車両、歩行者およびサイクリスト、並びに走行経路等に重畳される虚像Viを表示する。虚像表示システムは、虚像Viを用いた拡張現実(Augmented Reality,以下、AR)表示により、車両に関連する種々の情報をドライバに提示する。
(1st Embodiment)
The display control device 100 according to the first embodiment will be described with reference to FIGS. The display control device 100 configures a virtual image display system used in a vehicle together with a head up display (hereinafter, HUD) device 10 and the like. The virtual image display system displays a virtual image Vi superimposed on an object to be superimposed in a foreground of an occupant (eg, a driver) of a vehicle, for example, another vehicle, a pedestrian, a cyclist, and a traveling route. The virtual image display system presents various information related to the vehicle to the driver by augmented reality (Augmented Reality, hereinafter, AR) display using the virtual image Vi.
 HUD装置10は、表示制御装置100と電気的に接続されており、表示制御装置100にて生成された映像データを取得する。HUD装置10は、プロジェクタ、スクリーンおよび拡大光学系等によって構成されている。HUD装置10は、ウィンドシールドWSの下方にて、インスツルメントパネル内の収容空間に収容されている。 The HUD device 10 is electrically connected to the display control device 100, and acquires the video data generated by the display control device 100. The HUD device 10 includes a projector, a screen, an enlargement optical system, and the like. The HUD device 10 is housed in a housing space in the instrument panel below the windshield WS.
 HUD装置10は、虚像Viとして結像される表示像の光を、ウィンドシールドWSの投影領域PAへ向けて投影する。ウィンドシールドWSへ向けて投影された光は、投影領域PAにおいて運転席側へ反射され、ドライバによって知覚される。ドライバは、投影領域PAを通して見える前景中の重畳対象に、虚像Viが重畳された表示を視認する。 The HUD device 10 projects the light of the display image formed as the virtual image Vi toward the projection area PA of the windshield WS. The light projected toward the windshield WS is reflected toward the driver's seat side in the projection area PA and is perceived by the driver. The driver visually recognizes the display in which the virtual image Vi is superimposed on the superimposition target in the foreground viewed through the projection area PA.
 HUD装置10によって光を投影可能な投影領域PAは、ウィンドシールドWS全面のうちの限られた一部の領域である。投影領域PAは、ドライバの見た目上で虚像Viが表示可能となる領域である。ドライバのアイポイントEPから前景を見たとき、投影領域PAを通して見える範囲が、実質的に虚像Viを表示可能な範囲となる。 The projection area PA in which light can be projected by the HUD device 10 is a limited part of the entire surface of the windshield WS. The projection area PA is an area where the virtual image Vi can be displayed on the driver's eyes. When the foreground is viewed from the driver's eye point EP, the range that can be seen through the projection area PA is substantially the range where the virtual image Vi can be displayed.
 虚像Viは、例えばアイポイントEPから車両の前方向に10~20m程度の空間中に結像される。虚像Viは、ドライバの見かけ上にて前景中の重畳対象(例えば路面や前走車等)に重畳されるAR表示を実現する。一例として、ナビゲーション装置に設定された走行経路を示す経路画像をAR表示によってドライバに提示する。 The virtual image Vi is formed in a space of about 10 to 20 m from the eye point EP to the front of the vehicle, for example. The virtual image Vi realizes an AR display that is superimposed on a superimposition target (for example, a road surface or a preceding vehicle) in the foreground as seen by the driver. As an example, a route image indicating a traveling route set in the navigation device is presented to the driver by AR display.
 表示制御装置100は、車両に搭載されたHUD装置10等の表示器による表示を制御する電子制御ユニットである。表示制御装置100は、HUD装置10による虚像表示を制御するための機能の1つとして、車両の姿勢を検出する機能を有している。表示制御装置100は、車両の姿勢変化に合わせて表示光像の投影位置および投影形状を補正し、前景中の適切な位置に適切な形状の虚像Viが結像されるよう制御する。 The display control device 100 is an electronic control unit that controls display on a display such as the HUD device 10 mounted on a vehicle. The display control device 100 has a function of detecting the attitude of the vehicle as one of the functions for controlling the virtual image display by the HUD device 10. The display control device 100 corrects the projection position and the projection shape of the display light image according to the change in the attitude of the vehicle, and controls the virtual image Vi having an appropriate shape to be formed at an appropriate position in the foreground.
 表示制御装置100は、車載ネットワークの通信バスを介して他の車載構成と相互に通信可能である。通信バスには、例えば、車軸トルクセンサ21、ブレーキ油圧センサ22、車高センサ23、3次元地図データベース24、操舵角センサ25、車速センサ26、ヨーレートセンサ27等が直接的または間接的に電気接続されている。 The display control device 100 can communicate with other on-vehicle components via a communication bus of the on-vehicle network. For example, an axle torque sensor 21, a brake oil pressure sensor 22, a vehicle height sensor 23, a three-dimensional map database 24, a steering angle sensor 25, a vehicle speed sensor 26, a yaw rate sensor 27, and the like are directly or indirectly electrically connected to the communication bus. Have been.
 車軸トルクセンサ21は、車両の駆動源が出力する駆動トルクの値(駆動トルク情報)を測定するセンサである。車軸トルクセンサ21は、車両のドライブシャフトに設けられている。車軸トルクセンサ21は、出力された駆動トルクによるドライブシャフトのねじれ量を検出することにより駆動トルクの値を間接的に測定する。車軸トルクセンサ21は、検出値を示す信号を表示制御装置100へと逐次出力する。 The axle torque sensor 21 is a sensor that measures the value of drive torque (drive torque information) output from the drive source of the vehicle. The axle torque sensor 21 is provided on a drive shaft of the vehicle. The axle torque sensor 21 indirectly measures the value of the drive torque by detecting the amount of twist of the drive shaft due to the output drive torque. The axle torque sensor 21 sequentially outputs a signal indicating the detected value to the display control device 100.
 ブレーキ油圧センサ22は、制動装置が出力する制動トルクの値(制動トルク情報)を測定するセンサである。制動装置は、ブレーキペダルの操作量に応じた制動トルクを車輪に与える。ブレーキ油圧センサ22は、制動装置におけるマスタシリンダの油圧値を検出することにより、制動トルクの値を間接的に測定する。ブレーキ油圧センサ22は、検出値を示す信号を表示制御装置100へと逐次出力する。 The brake oil pressure sensor 22 is a sensor that measures the value of the braking torque output from the braking device (braking torque information). The braking device applies a braking torque to the wheels according to the operation amount of the brake pedal. The brake oil pressure sensor 22 indirectly measures the value of the braking torque by detecting the oil pressure value of the master cylinder in the braking device. The brake oil pressure sensor 22 sequentially outputs a signal indicating the detected value to the display control device 100.
 車高センサ23は、車両が置かれた路面からボディまでの高さを計測するため、車両に生じる上下方向の変位を検出するセンサである。車高センサ23は、ボディに懸架されたサスペンションアームの動作によって上下方向に変位する特定の車輪について、ボディに対する沈み込み量を計測する。車高センサ23は、車両の前後方向にて中央よりも後方に1つだけ取り付けられており、車両後部での上下方向の変位を計測する。車高センサ23は、ボディとサスペンションアームとの間の相対距離を検出値として取得し、表示制御装置100へ向けて逐次出力する。 The vehicle height sensor 23 is a sensor that detects a vertical displacement generated in the vehicle in order to measure the height from the road surface on which the vehicle is placed to the body. The vehicle height sensor 23 measures the sinking amount of the specific wheel, which is displaced in the vertical direction by the operation of the suspension arm suspended from the body, with respect to the body. The vehicle height sensor 23 is provided only once behind the center in the front-rear direction of the vehicle, and measures the vertical displacement at the rear of the vehicle. The vehicle height sensor 23 acquires a relative distance between the body and the suspension arm as a detection value, and sequentially outputs the detection value to the display control device 100.
 3次元地図データベース(以下、3次元地図DB)24は、多数の3次元地図データおよび2次元地図データを格納した大容量の記憶媒体を主体とする構成である。3次元地図データは、車両の自動運転を可能にする高精度な地図データである。3次元地図データでは、地形および構造物が3次元の座標情報を持った点群によって表現されている。3次元地図DB24は、ネットワークを通じて、3次元地図データを最新の情報に更新可能である。3次元地図DB24は、表示制御装置100からの要求に応じて、車両の周辺および進行方向の3次元地図データを表示制御装置100に提供可能である。なお、提供を要求されたエリアの3次元地図データが未整備である場合、3次元地図DB24は、ナビゲーション等に用いられる通常の2次元地図データを表示制御装置100に提供する。 The three-dimensional map database (hereinafter, three-dimensional map DB) 24 is mainly configured with a large-capacity storage medium storing a large number of three-dimensional map data and two-dimensional map data. The three-dimensional map data is high-precision map data that enables automatic driving of a vehicle. In the three-dimensional map data, the terrain and the structure are represented by a point cloud having three-dimensional coordinate information. The three-dimensional map DB 24 can update the three-dimensional map data to the latest information through a network. The three-dimensional map DB 24 can provide the display control device 100 with three-dimensional map data around the vehicle and in the traveling direction in response to a request from the display control device 100. If the three-dimensional map data of the area requested to be provided is not yet prepared, the three-dimensional map DB 24 provides the display control device 100 with normal two-dimensional map data used for navigation and the like.
 操舵角センサ25および車速センサ26は、車両の状態を検出する状態検出センサである。操舵角センサ25は、例えばステアリングシャフトの回転方向および回転角度を検出する。回転角度は、直進時の角度位相(0°)が基準とされている。操舵角センサ25は、基準位置からの回転方向および回転角度(ステアリング角)を示す信号を表示制御装置100へ向けて逐次出力する。車速センサ26は、例えば車両の車輪の回転速度を検出する。車速センサ26は、車輪の回転速度を示す信号を表示制御装置100へ向けて逐次出力する。 The steering angle sensor 25 and the vehicle speed sensor 26 are state detection sensors that detect the state of the vehicle. The steering angle sensor 25 detects, for example, a rotation direction and a rotation angle of the steering shaft. The rotation angle is based on the angle phase (0 °) when traveling straight. The steering angle sensor 25 sequentially outputs signals indicating the rotation direction and the rotation angle (steering angle) from the reference position to the display control device 100. The vehicle speed sensor 26 detects, for example, the rotation speed of the wheels of the vehicle. The vehicle speed sensor 26 sequentially outputs a signal indicating the rotation speed of the wheel to the display control device 100.
 ヨーレートセンサ27は、車両に作用するヨーレートを検出する。ヨーレートセンサ27は、検出したヨーレート値を示す信号を表示制御装置100に逐次出力する。 Yaw rate sensor 27 detects a yaw rate acting on the vehicle. The yaw rate sensor 27 sequentially outputs a signal indicating the detected yaw rate value to the display control device 100.
 表示制御装置100は、図1に示すように、処理部61、RAM62、メモリ装置63および入出力インターフェースを有するコンピュータを主体に構成された電子制御ユニットである。処理部61は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)およびFPGA(Field-Programmable Gate Array)等の少なくとも1つを含む構成である。処理部61には、AI(Artificial Intelligence)の学習および推論に特化した専用のプロセッサが含まれていてもよい。 The display control device 100 is an electronic control unit mainly composed of a computer having a processing unit 61, a RAM 62, a memory device 63, and an input / output interface, as shown in FIG. The processing unit 61 is configured to include at least one of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and an FPGA (Field-Programmable Gate Array). The processing unit 61 may include a dedicated processor specialized in learning and inference of AI (Artificial @ Intelligence).
 メモリ装置63には、処理部61によって実行される種々のプログラムが格納されている。メモリ装置63に記憶された複数のプログラムには、虚像Viの表示を制御する表示制御プログラムが含まれている。表示制御プログラムは、前景中の重畳対象に虚像Viを重ねてなる拡張現実(Augmented Reality、以下、AR)表示を実現するプログラムである。 The memory device 63 stores various programs executed by the processing unit 61. The plurality of programs stored in the memory device 63 include a display control program for controlling the display of the virtual image Vi. The display control program is a program that realizes augmented reality (Augmented Reality, hereinafter, AR) display in which a virtual image Vi is superimposed on a superimposition target in the foreground.
 ここで、前景中の路面を重畳対象として虚像Viを表示する場合を想定すると、投影領域PAを通して運転者に視認される路面の形状は、車両が平坦路を走行している場合と、車両が勾配のある路面を走行している場合とで異なってくる。すなわち、勾配の有無および勾配の大きさによって、車両の姿勢が変化し、視認される路面の形状が変化する。 Here, assuming a case in which a virtual image Vi is displayed with a road surface in the foreground superimposed, the shape of the road surface visually recognized by the driver through the projection area PA is different from the case where the vehicle is traveling on a flat road and the case where the vehicle is traveling on a flat road. This differs from when traveling on a sloped road surface. That is, the attitude of the vehicle changes depending on the presence or absence of the gradient and the magnitude of the gradient, and the shape of the road surface that is visually recognized changes.
 加えて、車両に加速度が与えられる場合には、慣性力により車両の姿勢が変化する。この姿勢変化により、投影領域PAを通して運転者に視認される路面の形状は過渡的に変化する。 In addition, when acceleration is applied to the vehicle, the attitude of the vehicle changes due to inertial force. Due to this posture change, the shape of the road surface visually recognized by the driver through the projection area PA changes transiently.
 以上によれば、路面の勾配および車両の加速度に基づく表示光像の投影位置および投影形状の補正が実施されない場合、重畳対象からずれた虚像Viが表示され得る。表示制御プログラムは、表示光像の投影位置および投影形状を、道路勾配および車両の姿勢変化等に合わせて適切に制御するため、道路勾配、車両に生じているピッチ角、ロール角およびヨー角等を演算する。 According to the above, if the projection position and the projection shape of the display light image based on the gradient of the road surface and the acceleration of the vehicle are not corrected, the virtual image Vi shifted from the superimposition target may be displayed. The display control program appropriately controls a projection position and a projection shape of the display light image in accordance with a road gradient, a change in the attitude of the vehicle, and the like, such as a road gradient, a pitch angle, a roll angle, and a yaw angle generated in the vehicle. Is calculated.
 表示制御装置100は、上述の表示制御プログラムの実行により、トルク情報取得部71、車高情報取得部73、勾配情報取得部74、操舵角情報取得部75、車速情報取得部76、ヨーレート取得部77を、各種情報を取得する機能ブロックとして有する。表示制御装置100は、取得した情報に基づいて車両姿勢を算出する機能ブロックとして、ロール角算出部85、ロール角補正部95、ヨー角補正部97、ピッチ角予測部81、測定ピッチ角算出部83およびピッチ角補正部93を有する。表示制御装置100は、虚像Viの重畳位置を決定する機能ブロックとして、表示制御部99を有する。 The display control device 100 executes the above-described display control program to execute the torque information acquisition unit 71, the vehicle height information acquisition unit 73, the gradient information acquisition unit 74, the steering angle information acquisition unit 75, the vehicle speed information acquisition unit 76, the yaw rate acquisition unit 77 as a functional block for acquiring various information. The display control device 100 includes a roll angle calculator 85, a roll angle corrector 95, a yaw angle corrector 97, a pitch angle predictor 81, and a measured pitch angle calculator as functional blocks for calculating the vehicle attitude based on the acquired information. 83 and a pitch angle correction unit 93. The display control device 100 includes a display control unit 99 as a functional block for determining a superimposed position of the virtual image Vi.
 トルク情報取得部71は、車両に加速度を与えるトルクの値に関連する値をトルク情報として取得する。トルク情報取得部71は、車軸トルクセンサ21にて検出された車軸トルク値を、車両の駆動源が出力する駆動トルク情報として取得する。駆動トルク情報は、トルク情報のうち車両に正の加速度を与えるトルク情報である。トルク情報取得部71は、ブレーキ油圧センサ22にて検出されたブレーキ油圧値を、制動装置が出力する制動トルク情報として取得する。制動トルク情報は、トルク情報のうち車両に負の加速度を与えるトルク情報である。 The torque information acquisition unit 71 acquires, as torque information, a value related to the value of the torque that gives acceleration to the vehicle. The torque information acquisition unit 71 acquires the axle torque value detected by the axle torque sensor 21 as drive torque information output by the drive source of the vehicle. The driving torque information is torque information that gives a positive acceleration to the vehicle among the torque information. The torque information acquisition unit 71 acquires the brake oil pressure value detected by the brake oil pressure sensor 22 as braking torque information output by the braking device. The braking torque information is torque information that gives a negative acceleration to the vehicle among the torque information.
 車高情報取得部73は、車高センサ23が検出した検出値を取得する。車高情報取得部73は、上下方向の変位を車両に生じさせる負荷が作用していない無負荷状態での車高センサ23の出力値を、ピッチ角およびロール角がゼロの状態を示す車高センサ23の初期値として設定する。車高情報取得部73は、検出値の初期値からの変位分を車高情報として算出、取得する。 The vehicle height information acquisition unit 73 acquires the detection value detected by the vehicle height sensor 23. The vehicle height information acquisition unit 73 calculates the output value of the vehicle height sensor 23 in a no-load state in which no load causing a vertical displacement is applied to the vehicle, and a vehicle height indicating that the pitch angle and the roll angle are zero. This is set as the initial value of the sensor 23. The vehicle height information acquisition unit 73 calculates and acquires the displacement from the initial value of the detected value as vehicle height information.
 勾配情報取得部74は、車両の現在位置および3次元地図データベース24から取得した3次元地図データを用いて、車両が走行する道路の勾配を算出する。車両の現在位置は、例えば衛星測位システムから取得した測位信号に基づき算出された車両位置情報と、車両位置情報の取得時における遅延時間での車両の移動距離を補正するための車速情報に基づいて特定されればよい。勾配情報取得部74は、緯度、経度および高度を示す情報と、路面の横断勾配を示す情報とを取得する。勾配情報取得部74は、緯度、経度および高度に基づき、車両が走行する路面の縦断勾配を算出して取得する。勾配情報取得部74は、取得した縦断勾配および横断勾配を、勾配情報として表示制御部99に逐次提供する。 The gradient information acquiring unit 74 calculates the gradient of the road on which the vehicle travels, using the current position of the vehicle and the three-dimensional map data acquired from the three-dimensional map database 24. The current position of the vehicle is based on, for example, vehicle position information calculated based on a positioning signal obtained from a satellite positioning system, and vehicle speed information for correcting a moving distance of the vehicle in a delay time at the time of obtaining the vehicle position information. It may be specified. The gradient information acquisition unit 74 acquires information indicating the latitude, longitude, and altitude, and information indicating the crossing gradient of the road surface. The gradient information acquisition unit 74 calculates and acquires the vertical gradient of the road surface on which the vehicle travels based on the latitude, longitude, and altitude. The gradient information acquiring unit 74 sequentially provides the acquired vertical gradient and crossing gradient to the display control unit 99 as gradient information.
 操舵角情報取得部75は、操舵角センサ25の検出値を操舵角情報として取得する。車速情報取得部76は、車速センサ26の検出値を車速情報として取得する。ヨーレート取得部77は、ヨーレートセンサ27からヨーレートを取得する。 The steering angle information acquisition unit 75 acquires the detection value of the steering angle sensor 25 as steering angle information. The vehicle speed information acquisition unit 76 acquires a detection value of the vehicle speed sensor 26 as vehicle speed information. The yaw rate acquisition unit 77 acquires a yaw rate from the yaw rate sensor 27.
 ロール角算出部85は、操舵角情報および車速情報に基づいて、車両のロール角を算出する。ロール角算出部85は、例えば3次元地図データベース24等から走行中の道路のカーブ半径情報を取得し、カーブ半径情報、操舵角情報および車速情報を用いて、ロール角を算出する。ロール角算出部85は、算出したロール角をロール角補正部95に逐次提供する。 The roll angle calculator 85 calculates the roll angle of the vehicle based on the steering angle information and the vehicle speed information. The roll angle calculation unit 85 acquires curve radius information of a traveling road from, for example, the three-dimensional map database 24 or the like, and calculates a roll angle using the curve radius information, steering angle information, and vehicle speed information. The roll angle calculation unit 85 sequentially provides the calculated roll angle to the roll angle correction unit 95.
 ロール角補正部95は、算出されたロール角に、勾配情報取得部74にて取得された横断勾配を加算する。ロール角補正部95は、この加算値を水平面に対する車両のロール角である補正ロール角として出力する。ヨー角補正部97は、取得されたヨーレートに基づいて、車両のヨー角を算出する。 The roll angle correction unit 95 adds the transverse gradient acquired by the gradient information acquisition unit 74 to the calculated roll angle. The roll angle correction unit 95 outputs the added value as a corrected roll angle that is the roll angle of the vehicle with respect to the horizontal plane. The yaw angle correction unit 97 calculates the yaw angle of the vehicle based on the obtained yaw rate.
 ピッチ角予測部81は、取得されたトルク情報に基づいて、加速度ピッチ角を予測する。加速度ピッチ角は、車両に正の加速度が与えられて加速した際、または負の加速度が与えられて減速した際における、車両の路面に対するピッチ角である。ピッチ角予測部81は、例えばトルク情報に関連付けられた加速度ピッチ角の推定式に基づいて加速度ピッチ角を算出する。加速度ピッチ角をPとおくと、Pを算出する推定式は、例えば以下の式で与えられる。 The pitch angle prediction unit 81 predicts an acceleration pitch angle based on the acquired torque information. The acceleration pitch angle is a pitch angle of the vehicle with respect to the road surface when the vehicle is accelerated by applying a positive acceleration or decelerated by applying a negative acceleration. The pitch angle prediction unit 81 calculates the acceleration pitch angle based on, for example, an estimation formula of the acceleration pitch angle associated with the torque information. Assuming that the acceleration pitch angle is P, an estimation equation for calculating P is given by, for example, the following equation.
 (式1) P=a・Td+b・Tb+c
 ここでTdは車軸トルク値、Tbはブレーキ油圧値、aおよびbはゲインである。したがって、a・Tdは、駆動トルクによるピッチ角変化を予測する項(駆動補正項)であり、b・bは、制動トルクによるピッチ角変化を予測する項(制動補正項)である。aおよびbは、車両の駆動方式、駆動源位置等によって決定される。例えば、aおよびbは、FF(フロントエンジン・フロントドライブ)方式、FR(フロントエンジン・リアドライブ)方式、AWD(全輪駆動)方式等の違いによって、車種ごとに異なる値となる。cは車種によって決定されるオフセット項である。推定式は、例えばメモリ装置63に予め記憶されている。
(Equation 1) P = a · Td + b · Tb + c
Here, Td is an axle torque value, Tb is a brake oil pressure value, and a and b are gains. Therefore, a · Td is a term for predicting a change in pitch angle due to drive torque (drive correction term), and bb is a term for predicting a change in pitch angle due to brake torque (brake correction term). “a” and “b” are determined by the driving system of the vehicle, the position of the driving source, and the like. For example, a and b have different values for each vehicle model due to differences in the FF (front engine / front drive) system, FR (front engine / rear drive) system, AWD (all-wheel drive) system, and the like. c is an offset term determined by the vehicle type. The estimation formula is stored in the memory device 63 in advance, for example.
 ピッチ角予測部81は、上述の推定式に、取得された車軸トルク値およびブレーキ油圧値を代入して加速度ピッチ角を算出する。これによりピッチ角予測部81は、これらのトルクの作用による車両の加減速に起因して発生し得る車両のピッチ角変化を算出する。ピッチ角予測部81は、トルクが測定された段階で加速度ピッチ角を算出可能であるため、実際にトルクによって車両のピッチ角変化が発生するよりも早く、またはほぼ同時に加速度ピッチ角を予測する。 The pitch angle prediction unit 81 calculates the acceleration pitch angle by substituting the acquired axle torque value and brake oil pressure value into the above-described estimation formula. Accordingly, the pitch angle prediction unit 81 calculates a change in the vehicle pitch angle that may occur due to the acceleration and deceleration of the vehicle due to the action of these torques. Since the pitch angle prediction unit 81 can calculate the acceleration pitch angle at the stage when the torque is measured, the pitch angle prediction unit 81 predicts the acceleration pitch angle earlier or almost at the same time as when the change in the pitch angle of the vehicle is actually caused by the torque.
 測定ピッチ角算出部83は、傾斜ピッチ角を算出する。車両が勾配のある路面を走行する場合、重心位置等により、車両の路面に対するピッチ角はゼロにならず、路面に対して傾斜した状態となる。測定ピッチ角算出部83は、取得された車高情報に基づいて、この道路勾配に起因する路面に対するピッチ角である傾斜ピッチ角を算出する。測定ピッチ角算出部83は、車高情報およびロール角算出部85が算出したロール角に基づいて、傾斜ピッチ角を算出する。具体的には、測定ピッチ角算出部83は、車高情報が示す上下方向の変位量からロール角による変位量分を減算することで、ロール運動による車両の上下方向変位分を除いた傾斜ピッチ角を算出する。測定ピッチ角算出部83は、算出した傾斜ピッチ角をピッチ角補正部93に逐次提供する。 The measurement pitch angle calculation unit 83 calculates the inclination pitch angle. When the vehicle travels on a sloped road surface, the pitch angle of the vehicle with respect to the road surface is not zero due to the position of the center of gravity or the like, and the vehicle is inclined with respect to the road surface. The measurement pitch angle calculation unit 83 calculates an inclination pitch angle, which is a pitch angle with respect to a road surface due to the road gradient, based on the acquired vehicle height information. The measurement pitch angle calculation unit 83 calculates the inclination pitch angle based on the vehicle height information and the roll angle calculated by the roll angle calculation unit 85. Specifically, the measurement pitch angle calculation unit 83 subtracts the amount of displacement due to the roll angle from the amount of displacement in the vertical direction indicated by the vehicle height information, and thereby removes the amount of displacement in the vertical direction of the vehicle due to the roll motion. Calculate the angle. The measurement pitch angle calculation unit 83 sequentially provides the calculated inclination pitch angle to the pitch angle correction unit 93.
 ピッチ角補正部93は、予測された加速度ピッチ角に基づいて補正された補正ピッチ角を算出する。第1実施形態においてピッチ角補正部93は、ピッチ角予測部81、測定ピッチ角算出部83および勾配情報取得部74からの縦断勾配情報に基づいて、補正ピッチ角を算出する。すなわちピッチ角補正部93は、傾斜ピッチ角に加速度ピッチ角および路面の縦断勾配を加算し、水平面に対する車両のピッチ角として補正ピッチ角を算出する。 The pitch angle correction unit 93 calculates a corrected pitch angle based on the predicted acceleration pitch angle. In the first embodiment, the pitch angle correction unit 93 calculates a correction pitch angle based on the vertical gradient information from the pitch angle prediction unit 81, the measured pitch angle calculation unit 83, and the gradient information acquisition unit 74. That is, the pitch angle correction unit 93 adds the acceleration pitch angle and the vertical gradient of the road surface to the inclination pitch angle, and calculates the corrected pitch angle as the vehicle pitch angle with respect to the horizontal plane.
 表示制御部99は、投影される表示光像の映像データを生成し、HUD装置10へ向けて逐次出力する。HUD装置10では、映像データに基づく表示光像の光が投影領域PAに投影され、虚像Viとして結像される。表示制御部99は、映像データの生成にあたり、映像データを構成する各フレームにて、虚像Viとなる元画像の描画位置および描画形状を、車両姿勢に合わせて補正する処理を繰り返し実施する。表示制御部99は、位置補正部の一例である。 The display control unit 99 generates video data of the projected display light image and sequentially outputs the video data to the HUD device 10. In the HUD device 10, the light of the display light image based on the video data is projected onto the projection area PA, and is formed as a virtual image Vi. In generating the video data, the display control unit 99 repeatedly performs a process of correcting the drawing position and the drawing shape of the original image to be the virtual image Vi in accordance with the vehicle posture in each frame constituting the video data. The display control unit 99 is an example of a position correction unit.
 次に、上述の機能ブロックにより実行される処理の一例を、図2、図3のフローチャートを参照して説明する。一連の処理において表示制御装置100は、車両に加速度を与えるトルクの値に基づいて、虚像Viの重畳位置をフィードフォワード制御する。一連の処理は、所定時間ごとまたは所定契機ごとに繰り返し実行される。 Next, an example of processing executed by the above-described functional blocks will be described with reference to the flowcharts of FIGS. In a series of processes, the display control device 100 feed-forward controls the superimposed position of the virtual image Vi based on the value of the torque that gives acceleration to the vehicle. A series of processes is repeatedly executed at predetermined time intervals or at predetermined timings.
 まず、ピッチ方向成分の重畳位置を補正する処理について図2のフローチャートを参照して説明する。S1では、測定ピッチ角算出部83によって傾斜ピッチ角を算出する。次に、S2では、勾配情報取得部74によって車両が走行している路面の縦断勾配を算出する。次に、S3では、加速度ピッチ角を予測する。S4では、ピッチ角補正部93によって、S1~3にて取得、算出された傾斜ピッチ角、縦断勾配および加速度ピッチ角が加算され、補正ピッチ角が算出される。 First, the process of correcting the superposition position of the pitch direction component will be described with reference to the flowchart of FIG. In S1, the measured pitch angle calculation unit 83 calculates an inclined pitch angle. Next, in S2, the gradient information acquisition unit 74 calculates the vertical gradient of the road surface on which the vehicle is traveling. Next, in S3, an acceleration pitch angle is predicted. In S4, the pitch angle correction unit 93 adds the inclination pitch angle, vertical gradient, and acceleration pitch angle obtained and calculated in S1 to S3, and calculates a corrected pitch angle.
 S5では、算出された補正ピッチ角に基づき、ピッチ方向の虚像Viの重畳位置の補正処理が実行される。すなわち、道路勾配が実質的にゼロであり且つロールおよびピッチのいずれも生じていない場合の虚像Viの投影位置(基準位置)からの、投影領域PAの上下方向のずれを、補正ピッチ角に基づいて補正する。S5の処理が終了すると、再びS1へと戻り、一連の補正処理を繰り返す。 In S5, a process of correcting the superimposed position of the virtual image Vi in the pitch direction is performed based on the calculated correction pitch angle. That is, the vertical displacement of the projection area PA from the projection position (reference position) of the virtual image Vi when the road gradient is substantially zero and neither the roll nor the pitch occurs is determined based on the corrected pitch angle. To correct. When the process in S5 is completed, the process returns to S1, and a series of correction processes is repeated.
 次に、上述の補正処理におけるS3の加速度ピッチ角の予測処理の詳細について、図3のフローチャートを参照して説明する。まずS10では、車軸トルク値を取得する。次にS20では、ブレーキ油圧値を取得する。次にS30では、取得された車軸トルク値およびブレーキ油圧値を推定式に代入する処理により、加速度ピッチ角の予測値を算出する。 Next, details of the acceleration pitch angle prediction processing in S3 in the above-described correction processing will be described with reference to the flowchart in FIG. First, in S10, an axle torque value is obtained. Next, in S20, a brake oil pressure value is acquired. Next, in S30, a predicted value of the acceleration pitch angle is calculated by substituting the acquired axle torque value and brake hydraulic pressure value into the estimation formula.
 次に第1実施形態の表示制御装置100の構成および作用効果について説明する。 Next, the configuration and operation and effect of the display control device 100 according to the first embodiment will be described.
 表示制御装置100は、車両に加速度を与えるトルクの値またはトルクに関連する値であるトルク情報を取得するトルク情報取得部71と、取得したトルク情報に基づいて、車両のピッチ角を予測するピッチ角予測部81とを備える。表示制御装置100は、ピッチ角予測部81の予測に基づいて、虚像Viの重畳位置を補正する表示制御部99を備える。 The display control device 100 includes a torque information obtaining unit 71 that obtains torque information that is a value of a torque that gives acceleration to the vehicle or a value related to the torque, and a pitch that predicts a pitch angle of the vehicle based on the obtained torque information. An angle prediction unit 81 is provided. The display control device 100 includes a display control unit 99 that corrects the superimposed position of the virtual image Vi based on the prediction of the pitch angle prediction unit 81.
 これによれば、車軸に入力されるトルクの値からピッチ角の予測値が算出され、予測値に基づいて虚像Viの重畳位置が補正される。車軸に入力されるトルクは車両に付与される加速度に関連する値であるため、この予測値の算出により、加速度の付与に伴う車両のピッチ角変化が予測されることになる。したがって、車両のピッチ角変化を検出するよりも早く虚像Viの重畳位置を補正することができる。以上により、車両の過渡的な姿勢変化に対する虚像Viの重畳位置のずれを抑制可能な表示制御装置100および表示制御プログラムを提供することができる。 According to this, the predicted value of the pitch angle is calculated from the value of the torque input to the axle, and the superimposed position of the virtual image Vi is corrected based on the predicted value. Since the torque input to the axle is a value related to the acceleration applied to the vehicle, a change in the pitch angle of the vehicle due to the application of the acceleration is predicted by calculating the predicted value. Therefore, it is possible to correct the superimposed position of the virtual image Vi earlier than detecting the change in the pitch angle of the vehicle. As described above, it is possible to provide the display control device 100 and the display control program capable of suppressing the shift of the superimposed position of the virtual image Vi due to the transient posture change of the vehicle.
 トルク情報取得部71は、車両の駆動源が出力する駆動トルク情報および制動装置が出力する制動トルク情報を少なくとも取得する。これによれば、車両に与えられる正の加速度および負の加速度の両方に基づいた加速度ピッチ角を予測可能となる。 The torque information acquisition unit 71 acquires at least the drive torque information output by the drive source of the vehicle and the brake torque information output by the braking device. According to this, it is possible to predict the acceleration pitch angle based on both the positive acceleration and the negative acceleration given to the vehicle.
 トルク情報取得部71は、車軸トルクセンサ21によって検出された車軸トルクの検出値を取得する。これによれば、表示制御装置100は、車軸トルクの検出値を駆動トルク情報として利用することができる。車軸トルクの検出値は、アクセル開度等の他の駆動トルクに関連する情報と比較して精度が高いため、加速度ピッチ角の算出精度をより高めることが可能となる。 The torque information acquisition unit 71 acquires a detected value of the axle torque detected by the axle torque sensor 21. According to this, the display control device 100 can use the detected value of the axle torque as the drive torque information. Since the detected value of the axle torque is higher in accuracy than information related to other driving torque such as the accelerator opening, the calculation accuracy of the acceleration pitch angle can be further improved.
 (第2実施形態)
 第2実施形態では、第1実施形態における表示制御装置100の変形例について説明する。図4、図5において第1実施形態の図面中と同一符号を付した構成要素は、同様の構成要素であり、同様の作用効果を奏するものである。
(2nd Embodiment)
In the second embodiment, a modified example of the display control device 100 in the first embodiment will be described. 4 and 5, components denoted by the same reference numerals as those in the drawings of the first embodiment are the same components, and have the same functions and effects.
 第2実施形態においてピッチ角予測部81は、図4に示すように操舵角情報を操舵角情報取得部75から取得する。ピッチ角予測部81は、操舵角情報に基づき、旋回時における車両のロール運動のピッチ方向成分への影響を、加速度ピッチ角の予測に加味する。具体的には、ピッチ角予測部81は、加速度ピッチ角の算出に以下の推定式を用いる。 に お い て In the second embodiment, the pitch angle prediction section 81 acquires the steering angle information from the steering angle information acquisition section 75 as shown in FIG. The pitch angle prediction unit 81 takes into account the influence of the roll motion of the vehicle during the turn on the pitch direction component based on the steering angle information in the prediction of the acceleration pitch angle. Specifically, the pitch angle prediction unit 81 uses the following estimation formula for calculating the acceleration pitch angle.
 (式2)P=a・Td+b・Tb+c+d
 ここでdは、操舵角情報に応じた加速度ピッチ角の補正項(旋回補正項)である。dは、操舵角の大きさに応じて変化する変数項である。またはdは定数項であってもよい。また、ピッチ角予測部81は、操舵角が操舵閾値を上回る場合には、加速度ピッチ角の算出時に旋回補正項を無視する。操舵角が大きくなると、操舵角が比較的小さい場合よりも推定式の精度が低下する。ピッチ角予測部81は、操舵角が操舵閾値を上回る場合に旋回補正項を無視することで、推定式の精度低下を回避する。
(Equation 2) P = a · Td + b · Tb + c + d
Here, d is a correction term (turn correction term) of the acceleration pitch angle according to the steering angle information. d is a variable term that changes according to the magnitude of the steering angle. Alternatively, d may be a constant term. When the steering angle exceeds the steering threshold, the pitch angle prediction unit 81 ignores the turning correction term when calculating the acceleration pitch angle. When the steering angle is large, the accuracy of the estimation formula is lower than when the steering angle is relatively small. The pitch angle prediction unit 81 avoids a decrease in the accuracy of the estimation formula by ignoring the turning correction term when the steering angle exceeds the steering threshold.
 次に、第2実施形態の表示制御装置100が実行する加速度ピッチ角の算出処理について、図5のフローチャートを参照して説明する。図5のフローチャートにおけるS10、S20の処理は、図3の同符号の処理と同様の処理であるため説明を省略する。 Next, an acceleration pitch angle calculation process performed by the display control device 100 according to the second embodiment will be described with reference to the flowchart in FIG. The processes of S10 and S20 in the flowchart of FIG. 5 are the same processes as those of the same reference numerals in FIG.
 S21では、操舵角の値を取得する。S22では、取得した操舵角の値が、予め設定された操舵閾値を上回るか否かを判定する。操舵角の値が操舵閾値を上回ると判定された場合には、推定式から旋回補正項を除いた状態でS30へと進む。一方で操舵角の値が操舵閾値を下回ると判定された場合には、推定式に旋回補正項を含んだ状態で、S30へと進む。 In S21, the value of the steering angle is obtained. In S22, it is determined whether or not the acquired value of the steering angle exceeds a preset steering threshold. If it is determined that the value of the steering angle exceeds the steering threshold, the process proceeds to S30 with the turning correction term removed from the estimation formula. On the other hand, when it is determined that the value of the steering angle is smaller than the steering threshold, the process proceeds to S30 with the estimation formula including the turning correction term.
 S30では、S22の判定結果に基づいて設定された推定式に、取得された各値を代入して加速度ピッチ角を算出する。 In S30, the obtained pitch is substituted into the estimation formula set based on the determination result in S22 to calculate the acceleration pitch angle.
 第2実施形態の表示制御装置100によれば、ピッチ角予測部81は、トルク情報に加えて操舵角情報に基づいて加速度ピッチ角を算出する。このため、ピッチ角予測部81は、旋回時の車両のロール運動に伴うピッチ角変化を加速度ピッチ角の予測に加えることができる。したがって、旋回時の加速度ピッチ角の算出精度をより向上させることができる。 According to the display control device 100 of the second embodiment, the pitch angle prediction unit 81 calculates the acceleration pitch angle based on the steering angle information in addition to the torque information. For this reason, the pitch angle prediction unit 81 can add the change in the pitch angle accompanying the roll motion of the vehicle at the time of turning to the prediction of the acceleration pitch angle. Therefore, the accuracy of calculating the acceleration pitch angle during turning can be further improved.
 (第3実施形態)
 第3実施形態では、第1実施形態における表示制御装置100の変形例について説明する。図6、図7において第1実施形態の図面中と同一符号を付した構成要素は、同様の構成要素であり、同様の作用効果を奏するものである。
(Third embodiment)
In the third embodiment, a modified example of the display control device 100 according to the first embodiment will be described. In FIGS. 6 and 7, components denoted by the same reference numerals as those in the drawings of the first embodiment are the same components, and have the same functions and effects.
 第3実施形態の表示制御装置100は、アクセル開度センサ28およびエンジン回転数センサ29から情報を取得する。アクセル開度センサ28は、車両の運転者によるアクセル操作量に応じた電気信号を表示制御装置100へと逐次出力する。エンジン回転数センサ29は、エンジン回転数を示す信号を表示制御装置100へと逐次出力する。 The display control device 100 according to the third embodiment acquires information from the accelerator opening sensor 28 and the engine speed sensor 29. The accelerator opening sensor 28 sequentially outputs an electric signal to the display control device 100 according to the accelerator operation amount by the driver of the vehicle. The engine speed sensor 29 sequentially outputs a signal indicating the engine speed to the display control device 100.
 表示制御装置100は、機能ブロックとしてアクセル開度取得部78、回転数情報取得部79、変速判定部81aを有する。アクセル開度取得部78は、アクセル開度センサ28の検出値をアクセル開度情報として取得する。回転数情報取得部79は、エンジン回転数センサ29の検出値を、エンジン回転数情報として取得する。 The display control device 100 includes, as functional blocks, an accelerator opening acquisition unit 78, a rotation speed information acquisition unit 79, and a shift determination unit 81a. The accelerator opening obtaining unit 78 obtains a detection value of the accelerator opening sensor 28 as accelerator opening information. The rotation speed information obtaining unit 79 obtains a detection value of the engine rotation speed sensor 29 as engine rotation speed information.
 変速判定部81aは、変速したか否かを判定する。変速判定部81aは、例えばアクセル開度情報およびエンジン回転数情報に基づいて変速したか否かを判定する。具体的には、変速判定部81aは、アクセル開度が実質的に一定の場合に、エンジン回転数が所定値を下回ると、変速した(シフトダウンした)と判定する。また、加えてアクセル開度が実質的に一定の場合に、エンジン回転数が別の所定値を上回った場合にも変速した(シフトアップした)と判定してよい。変速判定部81aは、判定結果をピッチ角予測部81に逐次提供する。 The shift determining unit 81a determines whether or not a shift has been performed. The shift determination unit 81a determines whether or not a shift has been performed based on, for example, accelerator opening information and engine speed information. Specifically, the shift determination unit 81a determines that a shift has been made (shifted down) when the engine speed falls below a predetermined value when the accelerator opening is substantially constant. In addition, if the accelerator opening is substantially constant and the engine speed exceeds another predetermined value, it may be determined that the shift has been made (upshifted). The shift determination unit 81a sequentially provides the determination result to the pitch angle prediction unit 81.
 ピッチ角予測部81は、車速情報取得部76から車速情報を取得する。ピッチ角予測部81は、車速情報に基づき、車両の停車状態時には制動トルクの値を用いることなく加速度ピッチ角を予測する。またピッチ角予測部81は、変速判定部81aの判定結果に基づき、変速がある場合には変速による振動(変速ショック)の影響を加味して加速度ピッチ角を予測する。具体的には、ピッチ角予測部81は、加速度ピッチ角の算出に以下の推定式を用いる。 The pitch angle prediction unit 81 acquires vehicle speed information from the vehicle speed information acquisition unit 76. The pitch angle prediction unit 81 predicts the acceleration pitch angle based on the vehicle speed information without using the value of the braking torque when the vehicle is stopped. The pitch angle prediction unit 81 predicts the acceleration pitch angle based on the determination result of the shift determination unit 81a, taking into account the influence of vibration (shift shock) due to the shift when there is a shift. Specifically, the pitch angle prediction unit 81 uses the following estimation formula for calculating the acceleration pitch angle.
 (式3)P=a・Td+b・Tb+c+d+e
 ここでeは、変速ショックに応じた加速度ピッチ角の補正項(変速補正項)である。eは、変速ショックの大きさに応じて変化する変数項である。またはeは定数項でもよい。
(Equation 3) P = a · Td + b · Tb + c + d + e
Here, e is a correction term (shift correction term) of the acceleration pitch angle corresponding to the shift shock. e is a variable term that changes according to the magnitude of the shift shock. Alternatively, e may be a constant term.
 次に、第3実施形態の表示制御装置100が実行する加速度ピッチ角の算出処理について、図7のフローチャートを参照して説明する。図7のフローチャートにおけるS10~S23の処理は、図5の同符号の処理と同様の処理であるため説明を省略する。 Next, an acceleration pitch angle calculation process executed by the display control device 100 according to the third embodiment will be described with reference to the flowchart in FIG. The processes of S10 to S23 in the flowchart of FIG. 7 are the same processes as those of the same reference numerals in FIG.
 S24では、車速を取得する。S25では、車速が0km/hであるか否かを判定する。車速が0km/hを上回っている場合、すなわち車両が走行中である場合には、制動補正項を含んだ推定式を使用し、加速度ピッチ角の算出に制動トルクの値を使用する。S25で車速が0km/hであると判定されると、車両が停車時であると判断し、S26へと進む。S26では、推定式から制動補正項を除き、停車時において制動トルクの値を加速度ピッチ角の算出に使用しないように処理し、S27へと進む。一方でS25にて車速が0km/hでない、すなわち車両が走行中であると判断された場合、制動補正項を推定式に含んだ状態でS27へと進む。 In S24, the vehicle speed is acquired. In S25, it is determined whether the vehicle speed is 0 km / h. When the vehicle speed exceeds 0 km / h, that is, when the vehicle is running, an estimation expression including a braking correction term is used, and the value of the braking torque is used to calculate the acceleration pitch angle. If it is determined in S25 that the vehicle speed is 0 km / h, it is determined that the vehicle is at a stop, and the process proceeds to S26. In S26, a process is performed so that the braking torque value is not used for calculating the acceleration pitch angle when the vehicle is stopped, except for the braking correction term from the estimation formula, and the process proceeds to S27. On the other hand, if it is determined in S25 that the vehicle speed is not 0 km / h, that is, that the vehicle is running, the process proceeds to S27 with the braking correction term included in the estimation formula.
 S27では、アクセル開度およびエンジン回転数を取得して、S28へと進む。S28では、変速があるか否かを判定する。変速がないと判定されるとS29へと進む。S29では、推定式から変速補正項を除く処理をしてS30へと進む。一方で変速があると判定されると、推定式に変速補正項を含んだ状態でS30へと進む。S30では、S22、S25、S28の判定結果に基づいて設定された推定式に、取得された各値を代入して加速度ピッチ角を算出する。 In S27, the accelerator opening and the engine speed are acquired, and the process proceeds to S28. In S28, it is determined whether or not there is a shift. If it is determined that there is no shift, the process proceeds to S29. In S29, a process for removing the shift correction term from the estimation formula is performed, and the process proceeds to S30. On the other hand, if it is determined that there is a shift, the process proceeds to S30 with the shift correction term included in the estimation formula. In S30, the acceleration pitch angle is calculated by substituting the obtained values into the estimation formula set based on the determination results in S22, S25, and S28.
 以上説明した第3実施形態の表示制御装置100によれば、ピッチ角予測部81は、車速が0km/hである場合に、制動トルク情報を加速度ピッチ角の算出に使用しない。車速が0km/hである場合、車両は停車状態であり、制動トルクが作用していないと判断できる。この場合に制動トルクの値を加速度ピッチ角の予測に使用しないことで、より正確な加速度ピッチ角を算出することができる。換言すれば、ピッチ角予測部81は、車両が走行中である場合に限り制動トルクの値を加速度ピッチ角の予測に使用する。 According to the display control device 100 of the third embodiment described above, the pitch angle prediction unit 81 does not use the braking torque information for calculating the acceleration pitch angle when the vehicle speed is 0 km / h. When the vehicle speed is 0 km / h, it can be determined that the vehicle is in a stopped state and no braking torque is applied. In this case, a more accurate acceleration pitch angle can be calculated by not using the value of the braking torque to predict the acceleration pitch angle. In other words, the pitch angle prediction unit 81 uses the value of the braking torque to predict the acceleration pitch angle only when the vehicle is running.
 なお、ピッチ角予測部81は、車両が停車状態であるとみなせる場合に制動トルク情報を加速度ピッチ角の算出に使用しない構成であればよい。すなわち、ピッチ角予測部81は、車速が0km/hを上回っている場合でも、車両が停車状態であるとみなせる車速閾値を下回っていれば、制動トルクの値を加速度ピッチ角の予測に使用しないようにする構成であってもよい。換言すれば、ピッチ角予測部81は、車速が車速閾値を上回る場合に限り制動トルクの値を加速度ピッチ角の予測に使用する構成であればよく、車速閾値には0km/hまたは0km/hとみなせる大きさの車速を採用することができる。 The pitch angle prediction unit 81 may have any configuration that does not use the braking torque information to calculate the acceleration pitch angle when the vehicle can be considered to be in a stopped state. That is, even when the vehicle speed is higher than 0 km / h, the pitch angle prediction unit 81 does not use the value of the braking torque for predicting the acceleration pitch angle if the vehicle speed is lower than the vehicle speed threshold value at which the vehicle can be regarded as stopped. The configuration may be such that: In other words, the pitch angle prediction unit 81 may be configured to use the value of the braking torque to predict the acceleration pitch angle only when the vehicle speed exceeds the vehicle speed threshold, and the vehicle speed threshold may be 0 km / h or 0 km / h. It is possible to adopt a vehicle speed of a size that can be considered as.
 また、第3実施形態の表示制御装置100は、車両が変速したか否かを判定する変速判定部81aを有し、ピッチ角予測部81は、変速したことに基づいて予測値を補正する。これによれば、ピッチ角予測部81は、変速ショックを加速度ピッチ角の予測に含めることができる。したがって、より正確に加速度ピッチ角を予測できる。 The display control device 100 according to the third embodiment includes a shift determination unit 81a that determines whether the vehicle has shifted. The pitch angle prediction unit 81 corrects a predicted value based on the shift. According to this, the pitch angle prediction unit 81 can include the shift shock in the prediction of the acceleration pitch angle. Therefore, the acceleration pitch angle can be more accurately predicted.
 (他の実施形態)
 本開示は、例示された実施形態に制限されない。本開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、本開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。本開示は、多様な組み合わせによって実施可能である。本開示は、実施形態に追加可能な追加的な部分をもつことができる。本開示は、実施形態の部品および/または要素が省略されたものを包含する。本開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味および範囲内での全ての変更を含むものと解されるべきである。
(Other embodiments)
The present disclosure is not limited to the illustrated embodiments. The present disclosure encompasses the illustrated embodiments and variations based thereon based on those skilled in the art. For example, the present disclosure is not limited to the combination of parts and / or elements shown in the embodiments. The present disclosure can be implemented in various combinations. The present disclosure can have additional parts that can be added to the embodiments. The present disclosure encompasses embodiments where components and / or elements are omitted. The present disclosure encompasses the replacement or combination of parts and / or elements between one embodiment and another. The disclosed technical scope is not limited to the description of the embodiments. Some of the disclosed technical ranges are indicated by the description of the claims, and should be construed to include all modifications within the meaning and range equivalent to the description of the claims.
 ここまで説明した表示制御のための処理は、上述の表示制御装置100とは異なる構成によって実施されてもよい。例えば表示制御装置は、コンビネーションメータおよびナビゲーション装置等に含まれる構成であってもよい。即ち、コンビネーションメータおよびナビゲーション装置が、上述の表示制御プログラムを制御回路にて実行することにより、表示制御装置の機能を獲得してもよい。さらに、上述の実施形態の姿勢検出部にて実施されていた姿勢検出のための演算は、車両に搭載された複数の制御装置の制御回路によって分散処理されてもよい。 The processing for display control described above may be performed by a configuration different from that of the display control apparatus 100 described above. For example, the display control device may be configured to be included in a combination meter, a navigation device, or the like. That is, the combination meter and the navigation device may acquire the function of the display control device by executing the above-described display control program in the control circuit. Further, the calculation for the posture detection performed by the posture detection unit of the above-described embodiment may be distributed and processed by control circuits of a plurality of control devices mounted on the vehicle.
 さらに、フラッシュメモリおよびハードディスク等の種々の非遷移的実体的記憶媒体(non-transitory tangible storage medium)が表示制御プログラムを格納する構成として、メモリ装置63に採用可能である。加えて、表示制御プログラムを記憶する記憶媒体は、車載された電子制御ユニットに設けられた記憶媒体に限定されず、当該記憶媒体へのコピー元となる光学ディスクおよび汎用コンピュータのハードディスクドライブ等であってもよい。 Further, various non-transitory tangible storage mediums such as a flash memory and a hard disk can be employed in the memory device 63 as a configuration for storing the display control program. In addition, the storage medium for storing the display control program is not limited to the storage medium provided in the electronic control unit mounted on the vehicle, but may be an optical disk as a copy source to the storage medium, a hard disk drive of a general-purpose computer, or the like. You may.
 上述の実施形態において、トルク情報取得部71は、駆動トルク情報として車軸トルク値を取得するとした。これに代えてトルク情報取得部71は、例えばアクセル開度を駆動トルク情報として取得する構成であってもよい。トルク情報取得部71が取得する駆動トルク情報は、車両の駆動源が出力する駆動トルクに関連する情報であればよい。 In the above embodiment, the torque information acquisition unit 71 acquires the axle torque value as the drive torque information. Instead, the torque information acquisition unit 71 may be configured to acquire, for example, the accelerator opening as drive torque information. The drive torque information acquired by the torque information acquisition unit 71 may be any information related to the drive torque output by the drive source of the vehicle.
 上述の実施形態において、車両の駆動源がエンジンである場合を説明したが、エンジンに加えてモータを駆動源として備える所謂ハイブリッド車両や、モータのみを駆動源として備える電気自動車等に表示制御装置100を適用してもよい。モータを駆動源として備える車両の場合、ピッチ角予測部81において、駆動トルク情報および制動トルク情報に加えて回生トルク情報を加速度ピッチ角の予測に使用する構成とすることで、より正確な加速度ピッチ角を検出可能となる。 In the above-described embodiment, the case where the drive source of the vehicle is the engine has been described. However, the display control device 100 may be used for a so-called hybrid vehicle including a motor as a drive source in addition to the engine, or an electric vehicle including only the motor as a drive source. May be applied. In the case of a vehicle having a motor as a drive source, the pitch angle prediction unit 81 uses the regenerative torque information in addition to the drive torque information and the braking torque information to predict the acceleration pitch angle. The angle can be detected.
 上述の実施形態において、傾斜ピッチ角は車高センサ23の検出する車高値によって算出されるとしたが、例えばジャイロセンサ等、他の姿勢検出センサの検出値に基づいて算出されてもよい。 In the above-described embodiment, the inclination pitch angle is calculated based on the vehicle height value detected by the vehicle height sensor 23, but may be calculated based on the detection value of another attitude detection sensor such as a gyro sensor.
 上述の実施形態において、表示制御部99は、映像データの生成にあたり、虚像Viとなる元画像の描画位置を車両姿勢に合わせて補正するとした。これに代えて、表示制御部99は、虚像Viの重畳位置を補正するための補正情報を、HUD装置10に対して出力する構成であってもよい。この構成の場合、表示制御部99からの補正情報に基づいて、HUD装置10が虚像Viの重畳位置を補正する。すなわちこの構成において、表示制御部99は、HUD装置10を介して虚像Viの重畳位置を補正する。 In the above embodiment, the display control unit 99 corrects the drawing position of the original image serving as the virtual image Vi in accordance with the vehicle attitude when generating the video data. Instead, the display control unit 99 may output correction information for correcting the superimposed position of the virtual image Vi to the HUD device 10. In the case of this configuration, the HUD device 10 corrects the superimposed position of the virtual image Vi based on the correction information from the display control unit 99. That is, in this configuration, the display control unit 99 corrects the superimposed position of the virtual image Vi via the HUD device 10.
 ここで本願に記載されるフローチャート、あるいは、フローチャートの処理は、複数のステップ(あるいはセクションと言及される)から構成され、各ステップは、たとえば、S10と表現される。さらに、各ステップは、複数のサブステップに分割されることができる、一方、複数のステップが合わさって一つのステップにすることも可能である。 フ ロ ー チ ャ ー ト A flowchart described in the present application or a process of the flowchart includes a plurality of steps (or referred to as sections), and each step is expressed as, for example, S10. Further, each step can be divided into a plurality of sub-steps, while a plurality of steps can be combined into one step.

Claims (10)

  1.  車両において用いられ、乗員の前景中にある重畳対象に重畳される虚像(Vi)の表示を制御する表示制御装置であって、
     前記車両に加速度を与えるトルクの値または前記トルクに関連する値であるトルク情報を取得するトルク情報取得部(71)と、
     取得した前記トルク情報に基づいて、前記車両のピッチ角を予測するピッチ角予測部(81)と、
     前記ピッチ角予測部の予測に基づいて、前記虚像の重畳位置を補正する位置補正部(99)と、
     を備える表示制御装置。
    A display control device that is used in a vehicle and controls display of a virtual image (Vi) superimposed on a superimposition target in a foreground of an occupant,
    A torque information acquisition unit (71) for acquiring torque information that is a value of a torque that gives acceleration to the vehicle or a value related to the torque,
    A pitch angle prediction unit (81) for predicting a pitch angle of the vehicle based on the acquired torque information;
    A position correction unit (99) that corrects a superimposed position of the virtual image based on the prediction of the pitch angle prediction unit;
    A display control device comprising:
  2.  前記トルク情報取得部は、
     前記車両の駆動源が出力する駆動トルク情報および制動装置が出力する制動トルク情報を少なくとも取得する請求項1に記載の表示制御装置。
    The torque information acquisition unit,
    The display control device according to claim 1, wherein at least the drive torque information output by the drive source of the vehicle and the brake torque information output by the braking device are acquired.
  3.  車速に関する情報を取得する車速情報取得部を備え、
     前記ピッチ角予測部は、前記車速が車速閾値を下回っている場合に、前記制動トルク情報を前記ピッチ角の予測に使用しない請求項2に記載の表示制御装置。
    A vehicle speed information acquisition unit for acquiring information on the vehicle speed,
    The display control device according to claim 2, wherein the pitch angle prediction unit does not use the braking torque information to predict the pitch angle when the vehicle speed is lower than a vehicle speed threshold.
  4.  前記トルク情報取得部は、車軸トルクセンサ(21)によって検出された車軸トルクの検出値を取得する請求項1から請求項3のいずれか1項に記載の表示制御装置。 The display control device according to any one of claims 1 to 3, wherein the torque information acquisition unit acquires a detected value of the axle torque detected by the axle torque sensor (21).
  5.  前記車両の操舵角に関する情報を取得する操舵角情報取得部(75)を備え、
     前記ピッチ角予測部は、前記トルク情報に加えて前記操舵角に基づいて前記ピッチ角を予測する請求項1から請求項4のいずれか1項に記載の表示制御装置。
    A steering angle information acquisition unit (75) for acquiring information on a steering angle of the vehicle;
    The display control device according to claim 1, wherein the pitch angle prediction unit predicts the pitch angle based on the steering angle in addition to the torque information.
  6.  前記ピッチ角予測部は、前記操舵角が操舵閾値を上回る場合に前記操舵角を前記ピッチ角の予測に使用しない請求項5に記載の表示制御装置。 The display control device according to claim 5, wherein the pitch angle prediction unit does not use the steering angle for predicting the pitch angle when the steering angle exceeds a steering threshold.
  7.  前記車両が変速したか否かを判定する変速判定部(81a)を有し、
     前記ピッチ角予測部は、さらに変速による前記ピッチ角の変化に基づいて前記ピッチ角を予測する請求項1から請求項6のいずれか1項に記載の表示制御装置。
    A shift determining unit (81a) for determining whether the vehicle has shifted;
    The display control device according to claim 1, wherein the pitch angle prediction unit further predicts the pitch angle based on a change in the pitch angle due to a shift.
  8.  車両において用いられ、乗員の前景中にある重畳対象に重畳される虚像(Vi)の表示を制御する表示制御プログラムであって、
     少なくとも1つの処理部(61)を、
     前記車両に加速度を与えるトルクの値または前記トルクに関連する値であるトルク情報を取得するトルク情報取得部(71)、
     取得した前記トルク情報に基づいて、前記車両のピッチ角の予測値を算出するピッチ角予測部(81)、
     前記予測値に基づいて、前記虚像の重畳位置を補正する位置補正部(99)、として機能させる表示制御プログラム。
    A display control program for controlling display of a virtual image (Vi) used in a vehicle and superimposed on a superimposition target in a foreground of an occupant,
    At least one processing unit (61),
    A torque information acquisition unit (71) for acquiring torque information that is a value of a torque that gives acceleration to the vehicle or a value related to the torque,
    A pitch angle prediction unit (81) that calculates a predicted value of a pitch angle of the vehicle based on the acquired torque information;
    A display control program that functions as a position correction unit (99) that corrects a superimposed position of the virtual image based on the predicted value.
  9.  車両において用いられ、乗員の前景中にある重畳対象に重畳される虚像(Vi)の表示を制御する表示制御プログラムを記憶したコンピュータ読み取り可能な非一時的な記憶媒体であって、前記表示制御プログラムは、
     少なくとも1つの処理部(61)を、
     前記車両に加速度を与えるトルクの値または前記トルクに関連する値であるトルク情報を取得するトルク情報取得部(71)、
     取得した前記トルク情報に基づいて、前記車両のピッチ角の予測値を算出するピッチ角予測部(81)、
     前記予測値に基づいて、前記虚像の重畳位置を補正する位置補正部(99)、として機能させるコンピュータ読み取り可能な非一時的な記憶媒体。
    A non-transitory computer-readable storage medium which is used in a vehicle and stores a display control program for controlling display of a virtual image (Vi) superimposed on a superimposition target in a foreground of an occupant, wherein the display control program Is
    At least one processing unit (61),
    A torque information acquisition unit (71) for acquiring torque information that is a value of a torque that gives acceleration to the vehicle or a value related to the torque,
    A pitch angle prediction unit (81) that calculates a predicted value of a pitch angle of the vehicle based on the acquired torque information;
    A non-transitory computer-readable storage medium that functions as a position correction unit (99) that corrects a superimposed position of the virtual image based on the predicted value.
  10.  前記トルク情報は、前記駆動トルク情報又は前記制動トルク情報のうち少なくとも一つを備える請求項2に記載の表示制御装置。

     
    The display control device according to claim 2, wherein the torque information includes at least one of the drive torque information and the braking torque information.

PCT/JP2019/026015 2018-08-21 2019-07-01 Display control device, display control program, and computer-readable non-transitory storage medium WO2020039751A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018154863A JP6891863B2 (en) 2018-08-21 2018-08-21 Display control device and display control program
JP2018-154863 2018-08-21

Publications (1)

Publication Number Publication Date
WO2020039751A1 true WO2020039751A1 (en) 2020-02-27

Family

ID=69593105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026015 WO2020039751A1 (en) 2018-08-21 2019-07-01 Display control device, display control program, and computer-readable non-transitory storage medium

Country Status (2)

Country Link
JP (1) JP6891863B2 (en)
WO (1) WO2020039751A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220250595A1 (en) * 2019-07-18 2022-08-11 Robert Bosch Gmbh Method and device for operating a brake system, computer program and computer program product, brake system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191041A (en) * 2006-01-19 2007-08-02 Advics:Kk Tire longitudinal force estimation apparatus
JP2009226985A (en) * 2008-03-19 2009-10-08 Honda Motor Co Ltd Vehicle body attitude control device
JP2011063098A (en) * 2009-09-16 2011-03-31 Denso Corp Control request arbitration apparatus
JP2015074369A (en) * 2013-10-10 2015-04-20 日産自動車株式会社 Longitudinal acceleration control device
WO2015060193A1 (en) * 2013-10-22 2015-04-30 日本精機株式会社 Vehicle information projection system, and projection device
JP2018069998A (en) * 2016-10-31 2018-05-10 株式会社ジェイテクト Posture control device for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191041A (en) * 2006-01-19 2007-08-02 Advics:Kk Tire longitudinal force estimation apparatus
JP2009226985A (en) * 2008-03-19 2009-10-08 Honda Motor Co Ltd Vehicle body attitude control device
JP2011063098A (en) * 2009-09-16 2011-03-31 Denso Corp Control request arbitration apparatus
JP2015074369A (en) * 2013-10-10 2015-04-20 日産自動車株式会社 Longitudinal acceleration control device
WO2015060193A1 (en) * 2013-10-22 2015-04-30 日本精機株式会社 Vehicle information projection system, and projection device
JP2018069998A (en) * 2016-10-31 2018-05-10 株式会社ジェイテクト Posture control device for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220250595A1 (en) * 2019-07-18 2022-08-11 Robert Bosch Gmbh Method and device for operating a brake system, computer program and computer program product, brake system

Also Published As

Publication number Publication date
JP6891863B2 (en) 2021-06-18
JP2020029130A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP4161923B2 (en) Vehicle stabilization control system
JP4835054B2 (en) Vehicle stabilization control system
JP6626523B2 (en) Vehicle control device and vehicle control method
JP6787297B2 (en) Display control device and display control program
US9662974B2 (en) Torque control for vehicles with independent front and rear propulsion systems
US20210031776A1 (en) Display control unit and non-transitory tangible computer readable storage medium
KR102164606B1 (en) Lateral control parameter correction apparatus and method for autonomous vehicle
JP2019119380A (en) Vehicle, vehicle motion state estimation device and vehicle motion state estimation method
JP6642331B2 (en) Driving support control device
JPWO2018230341A1 (en) Vehicle control device
JP6642333B2 (en) Driving support control device
KR101618501B1 (en) Method for ego-motion estimation of vehicle
WO2020039751A1 (en) Display control device, display control program, and computer-readable non-transitory storage medium
JP7211304B2 (en) Display device
JP7069624B2 (en) Position calculation method, vehicle control method and position calculation device
WO2021020385A1 (en) Display control device
KR20150128046A (en) SYSTEM AND METHOD FOR CONTROLLING VEHICLE WHEEL USING iTire SENSOR
US20220270527A1 (en) Display control device
JP7198005B2 (en) Vehicle position detector
JP7272252B2 (en) Display control device, display control program and virtual image display system
JP2021041789A (en) Display device
KR102648470B1 (en) Autonomous driving apparatus and method
JP6032020B2 (en) In-vehicle control device
JP2023151394A (en) Vehicle control method and vehicle control apparatus
JP5916559B2 (en) Vehicle steering control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853180

Country of ref document: EP

Kind code of ref document: A1