WO2020039740A1 - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
WO2020039740A1
WO2020039740A1 PCT/JP2019/025599 JP2019025599W WO2020039740A1 WO 2020039740 A1 WO2020039740 A1 WO 2020039740A1 JP 2019025599 W JP2019025599 W JP 2019025599W WO 2020039740 A1 WO2020039740 A1 WO 2020039740A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure sensor
transmission rod
rigidity
asymmetric rigid
Prior art date
Application number
PCT/JP2019/025599
Other languages
French (fr)
Japanese (ja)
Inventor
智也 三澤
大介 寺田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2020039740A1 publication Critical patent/WO2020039740A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/08Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically
    • G01L23/18Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically by resistance strain gauges

Definitions

  • the present invention relates to a pressure sensor.
  • the pressure applied to the diaphragm is transmitted to a sensor plate having a sensor unit, and a sensor signal corresponding to the pressure of the measurement medium is output from the sensor unit.
  • the sensor plate is slightly bent in a bow shape in advance, and further bent according to the pressure to apply a strain to the sensor unit (for example, see Patent Document 1).
  • a pressure sensor includes a pressure-receiving diaphragm, an element installation section, and a pressure transmission rod having a pressure transmission section provided between the diaphragm and the element installation section.
  • a pressure detection unit provided at the installation position of the element installation unit, and detects and outputs distortion generated within a range including the installation position of the pressure detection unit according to a compressive force received from the diaphragm.
  • a sensor wherein the pressure transmission rod is transmitted via the diaphragm to a position different from the installation position where the pressure detection unit is installed in an axial direction of the pressure transmission rod, which is a central axis in a pressure transmission direction.
  • An asymmetric rigid portion for increasing the resonance frequency of vibration generated in the pressure transmission rod due to the pressure wave.
  • FIG. 1 is an external perspective view of a first embodiment of the pressure sensor of the present invention.
  • FIG. 2 is an exploded perspective view of the pressure sensor shown in FIG.
  • FIG. 3 is a longitudinal sectional view of the pressure sensor shown in FIG.
  • FIG. 4 is a sectional view of an essential part of the pressure sensor shown in FIG.
  • FIG. 5A is a diagram illustrating one region of each of the element installation portion and the asymmetric rigid portion in FIG. 4, and
  • FIG. 5B is a diagram with respect to the central axis of the pressure transmission rod in a region IIb of FIG.
  • FIG. 5C is a schematic diagram illustrating a high rigidity side and a low rigidity side, and FIG.
  • FIG. 5C is a schematic diagram illustrating a high rigidity side and a low rigidity side with respect to a center axis of the pressure transmission rod in a region IIc of FIG.
  • FIG. 6A is a diagram illustrating a deformed state of the pressure transmitting rod in the pressure receiving state of the comparative product having no asymmetric rigid portion
  • FIG. 6B is a diagram illustrating the deformation of the pressure transmitting rod in the pressure receiving state of the present embodiment.
  • the figure which shows a state. 7A and 7B show the amount of strain detected when a pressure wave (20 kHz) is applied.
  • FIG. 7A is a response characteristic diagram of a comparative product
  • FIG. 7B is a response characteristic of the present embodiment.
  • FIG. 8A and 8B show a pressure sensor according to a second embodiment of the present invention.
  • FIG. 8A is a sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 8C is a schematic diagram showing the high rigidity side and the low rigidity side of the region VIIIb
  • FIG. 8C is a schematic diagram showing the high rigidity side and the low rigidity side of the region VIIIc in FIG. 9A and 9B show a third embodiment of the pressure sensor of the present invention.
  • FIG. 9A is a cross-sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 9B is FIG. FIG.
  • FIG. 10 shows a fourth embodiment of the pressure sensor of the present invention.
  • FIG. 10 (a) is a sectional view of a main part including an element installation portion and an asymmetric rigid portion
  • FIG. 10 (b) is FIG. 10 (a).
  • 10C is a schematic diagram showing the high rigidity side and the low rigidity side of the region Xb
  • FIG. 10C is a schematic diagram showing the high rigidity side and the low rigidity side of the region Xc in FIG.
  • FIG. 11A and 11B show a fifth embodiment of the pressure sensor of the present invention.
  • FIG. 11A is a sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 11B is
  • FIG. 11C is a schematic diagram showing the high rigidity side and the low rigidity side of the region XIb
  • FIG. 11C is a schematic diagram showing the high rigidity side and the low rigidity side of the region XIc in FIG.
  • FIG. 12 shows a sixth embodiment of the pressure sensor of the present invention.
  • FIG. 12 (a) is a sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 12 (b) is FIG.
  • FIG. 12C is a schematic diagram showing a high rigidity side and a low rigidity side of a region XIIb
  • FIG. 12C is a schematic diagram showing a high rigidity side and a low rigidity side of a region XIIc in FIG.
  • FIG. 13 shows a seventh embodiment of the pressure sensor of the present invention.
  • FIG. 13 (a) is a sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 13 (b) is FIG. 13 (a).
  • 13C is a schematic diagram showing a high rigidity side and a low rigidity side of a region XIIIb
  • FIG. 14 shows an eighth embodiment of the pressure sensor of the present invention.
  • FIG. 14 (a) is a sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 14 (b) is FIG. 14 (a).
  • 14C is a schematic diagram showing the high rigidity side and the low rigidity side of the region XIVb
  • FIG. 14C is a schematic diagram showing the high rigidity side and the low rigidity side of the region XIVc in FIG.
  • FIG. 15 shows a ninth embodiment of the pressure sensor of the present invention.
  • FIG. 15 (a) is a sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 15 (b) is FIG. 15C is a schematic diagram showing the high rigidity side and the low rigidity side of the region XVb
  • FIG. 15C is a schematic diagram showing the high rigidity side and the low rigidity side of the region XVc in FIG. 15A
  • FIG. FIG. 16 is a schematic diagram showing a high rigidity side and a low rigidity side of a region XVd in FIG. 16A and 16B show a pressure sensor according to a tenth embodiment of the present invention.
  • FIG. 16A is a sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 16A is a sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 16A is a sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 16A
  • FIG. 16B is FIG. 16C is a schematic diagram showing a high rigidity side and a low rigidity side of a region XVIb
  • FIG. 16C is a schematic diagram showing a high rigidity side and a low rigidity side of a region XVIc in FIG.
  • FIG. 17 is a diagram showing a deformed state of the pressure transmission rod in the pressure receiving state shown in FIG. 16.
  • FIG. 1 is an external perspective view of a first embodiment of the pressure sensor of the present invention
  • FIG. 2 is an exploded perspective view of the pressure sensor shown in FIG. 1
  • FIG. 3 is a perspective view of the pressure sensor shown in FIG. It is a longitudinal cross-sectional view.
  • the pressure sensor 1 is attached to, for example, an engine that is an internal combustion engine such as a vehicle, detects a combustion pressure of the internal combustion engine, and outputs a sensor output corresponding to the combustion pressure to the outside.
  • the pressure sensor 1 includes a housing 6, a diaphragm 2, a cover 4, and a terminal 7.
  • the housing 6 is formed in a substantially cylindrical shape having a hollow portion penetrating in the axial direction.
  • the housing 6 includes a male thread portion 10 for fastening the pressure sensor 1 to a female thread portion provided on the engine body, a small-diameter portion 6a, a large-diameter portion 6b, and a contact portion 9 that comes into contact with a sensor mounting portion of the engine body.
  • the upper part of FIG. 1 is defined as the upper side in the axial direction of the pressure sensor 1
  • the lower part of FIG. 1 is defined as the lower side in the axial direction. Therefore, the male screw portion 10 is provided on the upper side of the housing 6 in the axial direction
  • the contact portion 9 is provided on the lower side of the housing 6 in the axial direction.
  • the contact portion 9 is an inclined surface that tapers downward in the axial direction from the large-diameter portion 6b toward the small-diameter portion 6a.
  • the cover 4 is formed to have substantially the same diameter as the small-diameter portion 6a of the housing 6, and has a cylindrical shape having a hollow portion penetrating in the axial direction inside.
  • the cover 4 is a member that holds the high-rigidity fixing portion 3c of the pressure transmission rod 3 at the distal end of the housing 6 on the lower side in the axial direction.
  • the pressure transmission rod 3 (see FIGS. 2 and 3) is accommodated in substantially the entire area in the longitudinal direction of the cover 4 and in the small diameter portion 6a of the housing 6.
  • the diaphragm 2 is attached to an end of the cover 4 on the opposite side to the housing 6 in the axial direction, that is, to an axially lower end of the cover 4.
  • the diaphragm 2 is formed of, for example, a metal such as Inconel or SUS630.
  • the terminal portion 7 is attached to an end of the housing 6 opposite to the side of the diaphragm 2 in the axial direction, in other words, to an upper end of the housing 6 in the axial direction.
  • the terminal unit 7 is provided with a terminal unit (not shown) for connecting the pressure sensor 1 to an external electronic device.
  • the terminal unit 7 is supplied with a sensor output output from the pressure detection unit 5.
  • the signal line 8 (see FIG. 3) is connected.
  • the distal end of the pressure transmission rod 3 at the lower end in the axial direction is fixed to the inner wall of the axially lower through hole of the diaphragm 2 by welding or the like.
  • the diaphragm 2 receives a combustion pressure of the engine, deforms a portion between the fixed portion with the cover 4 and the fixed portion with the pressure transmission rod 3, and applies a compressive force to the pressure transmission rod 3; A function of preventing internal combustion gas from entering the pressure sensor 1.
  • a pressure detection unit 5 is provided on the pressure transmission rod 3.
  • the pressure transmission rod 3 generates distortion within a range including the installation position of the pressure detection unit 5 according to the compression force received from the diaphragm 2.
  • the distortion of the pressure transmission rod 3 is detected by the pressure detection unit 5. That is, the pressure transmission rod 3 functions as a pressure transmission mechanism that transmits the combustion pressure of the engine to the pressure detection unit 5.
  • the pressure detector 5 is configured using, for example, a strain gauge or the like.
  • the pressure detection unit 5 detects the combustion pressure of the engine by detecting the distortion of the pressure transmission rod 3, and outputs a pressure signal according to the detection result to the terminal unit 7 via the signal line 8. This pressure signal is output from the terminal section 7 to the outside of the pressure sensor 1 as a sensor output.
  • the pressure detection unit 5 may include a circuit unit that performs analog amplification or digital conversion of a weak signal obtained from a strain gauge or the like, or detects temperature and performs temperature correction. Further, a circuit that generates a sensor output by performing signal processing such as output adjustment on the pressure signal obtained from the pressure detection unit 5 and outputs the sensor output to the outside may be provided in the terminal unit 7.
  • FIG. 4 is a sectional view of a main part of the pressure sensor shown in FIG.
  • the pressure transmitting rod 3 includes a pressure transmitting section 3a, an element installation section 3b, a high rigidity fixing section 3c, and an asymmetric rigid section 3d.
  • the pressure transmitting section 3a is provided at a position located inside the engine with respect to the element installation section 3b and the high rigidity fixing section 3c when the pressure sensor 1 is attached to the engine.
  • the pressure transmitting rod 3, that is, the pressure transmitting portion 3a has a central axis O in the pressure transmitting direction, and transmits the compressive force received from the diaphragm 2 to the element installation portion 3b.
  • the high rigidity fixing portion 3c of the pressure transmission rod 3 is restrained by the housing 6, and functions as a load bearing portion that bears a load due to the combustion pressure.
  • the pressure transmitting rod 3 is deformed by the axial force received by the pressure transmitting section 3a, for example, as shown in FIG. 6, and the output of the pressure detecting section 5 of the element installation section 3b fluctuates according to the amount of deformation. Calibration data of the pressure in the combustion chamber and the output of the pressure detector 5 is created in advance, and the pressure can be detected from the output of the pressure detector 5.
  • central axis O the direction orthogonal to the central axis O of the pressure transmitting rod 3 (hereinafter, also simply referred to as “central axis O”) is referred to as x direction, and as shown in FIG.
  • the right side is the + x direction
  • the left side of the center axis O is the ⁇ x direction.
  • the element mounting portion 3b has a lower rigidity than the high-rigidity fixing portion 3c, and is a portion that generates a strain according to the compressive force transmitted from the pressure transmitting portion 3a.
  • the element mounting portion 3b is formed in a semicircular cross-sectional shape in which a part of the pressure transmitting portion 3a having a circular cross section is cut, and the element mounting portion 3b has a flat surface. Is formed.
  • the element installation surface 21 extends in parallel with the central axis O of the pressure transmission rod 3.
  • the pressure detector 5 is fixed on the element installation surface 21. The amount of distortion of the installation part of the pressure detection part 5 in the element installation part 3b is detected by the pressure detection part 5.
  • the amount of distortion is a value corresponding to the combustion pressure of the engine.
  • the element mounting surface 21 is illustrated in FIG. 4 as a configuration arranged on the same plane as the central axis O of the pressure transmitting rod 3, the element mounting surface 21 is The plane may be a plane parallel to the central axis O further deviated in the + x direction side, or may be a plane extending in the ⁇ x direction side similarly.
  • the high-rigidity fixing portion 3c has a cross-sectional area of a plane perpendicular to the axial direction which is the central axis O of the pressure transmission direction set to be larger than the element installation portion 3b, and has higher rigidity than the element installation portion 3b.
  • the high rigidity fixing portion 3c has a function of receiving the compressive force transmitted from the pressure transmitting portion 3a and maximizing the amount of distortion in the element installation portion 3b.
  • a through hole 22 that penetrates in the axial direction of the central axis O of the pressure transmitting rod 3 (hereinafter, may be simply referred to as “axial direction”) is formed at the center side of the high rigidity fixing portion 3c.
  • the signal line 8 connected to the pressure detection unit 5 extends through the through hole 22 of the high rigidity fixing unit 3 c and is connected to the terminal unit 7.
  • the high-rigidity fixing portion 3c includes a large-diameter portion 23 sandwiched between the housing 6 and the cover 4, a small-diameter portion 23a fitted to the housing 6, and a small-diameter portion 23b fitted to the cover 4. .
  • the high-rigidity fixing portion 3 c is configured such that the upper surface of the outer peripheral edge of the large-diameter portion 23 is in contact with the lower end of the housing 6, and the lower surface of the large-diameter portion 23 is in contact with the upper end of the cover 4. Held between.
  • the asymmetric rigid portion 3d is deviated by a predetermined amount toward the + x direction side from the center axis O by cutting a part of an outer peripheral side of the pressure transmitting portion 3a provided at a position located inside the engine with respect to the pressure detecting portion 5. It is recessed so as to form a plane parallel to the central axis O at the specified position.
  • the asymmetric rigid part 3d makes the rigidity of the pressure transmitting part 3a with respect to the central axis O asymmetric.
  • FIG. 5A is a diagram illustrating one region of each of the element installation portion and the asymmetric rigid portion in FIG. 4, and FIG. 5B is a diagram with respect to the central axis of the pressure transmission rod in a region IIb of FIG.
  • FIG. 5C is a schematic diagram illustrating a high rigidity side and a low rigidity side
  • FIG. 5C is a schematic diagram illustrating a high rigidity side and a low rigidity side with respect to a center axis of the pressure transmission rod in a region IIc of FIG. .
  • the element mounting portion 3b is cut on the ⁇ x side with respect to the central axis O. For this reason, as shown in FIG.
  • the rigidity of the element mounting portion 3b is greater on the + x direction side of the central axis O than on the ⁇ x direction side of the central axis O.
  • the element installation section 3b has a high rigidity side on the + x direction side from the central axis O and a low rigidity side on the ⁇ x direction side from the central axis O.
  • the pressure transmitting portion 3a is cut on the + x side with respect to the central axis O. For this reason, as shown in FIG. 5C, the pressure transmitting portion 3a has greater rigidity on the ⁇ x direction side than the central axis O than on the x direction side of the central axis O.
  • the pressure transmitting portion 3a has a high rigidity side on the ⁇ x direction side from the central axis O and a low rigidity side on the + x direction side from the central axis O. Therefore, the relative arrangement of the high rigidity side and the low rigidity side of the asymmetric rigid part 3d in the direction orthogonal to the axial direction of the pressure transmitting rod 3 is based on the pressure transmission on the high rigidity side and the low rigidity side of the element installation part 3b. The relative arrangement in the direction orthogonal to the axial direction of the rod 3 is opposite to the center axis O of the pressure transmission rod 3.
  • FIG. 6A is a diagram illustrating a deformed state of the pressure transmission rod in a pressure receiving state of a comparative product having no asymmetric rigid portion
  • FIG. 6B is a diagram illustrating a pressure receiving rod of the first embodiment of the present invention
  • FIG. 4 is a diagram illustrating a deformed state of the pressure transmission rod in the state.
  • the element installation portion 3b has the high rigidity side on the + x side and the low rigidity side on the -x side with respect to the center axis O. is there. Therefore, the pressure transmitting portion 3a of the pressure transmitting rod 3R is bent such that the element mounting portion 3b is located inside.
  • the pressure transmitting rod 3R When receiving a pulse-like pressure wave of a frequency of about 20 kHz, such as knocking, the pressure transmitting rod 3R deforms as shown in FIG. 6A, and then the state before deformation due to the elasticity of the pressure transmitting portion 3a. Try to return to When the frequency of the pressure wave is close to the natural frequency of the pressure transmission rod 3R, vibration occurs. As shown in FIG. 6A, the vibration induced in the pressure transmitting rod 3R causes the connecting portion 31 between the string formed by the pressure transmitting portion 3a and the element installation portion 3b and the high rigidity fixing portion 3c to be connected. This is a transverse wave vibration mode with the antinode in the vicinity of the center of the pressure transmitting portion 3a. This vibration mode has a low natural frequency, and when receiving a pressure wave including a high frequency component such as knocking, the vibration is induced to cause a measurement error.
  • a pulse-like pressure wave of a frequency of about 20 kHz such as knocking
  • an asymmetric rigid portion 3d is provided on the pressure transmitting portion 3a connected in the axial direction of the central axis O of the element installation portion 3b.
  • the pressure transmission rod 3 can be regarded as a beam inserted between the high rigidity fixed portion 3c and the tip of the pressure transmission portion 3a that receives pressure from the diaphragm 2.
  • the -x side with respect to the central axis O is the high rigidity side
  • the + x side is the low rigidity side.
  • the pressure transmitting portion 3a provided with the asymmetric rigid portion 3d bends so as to bend with the asymmetric rigid portion 3d inside.
  • the pressure transmission rod 3 is deformed such that the element installation surface 21 of the element installation section 3b is curved inside and the asymmetric rigid portion 3d of the pressure transmission section 3a is curved inside. That is, as shown in FIG. 6B, a vibration mode having two antinodes near the element installation part 3b and near the asymmetric rigid part 3d is induced in the pressure transmission rod 3.
  • This vibration mode has a shorter natural wavelength than the vibration mode induced by the structure of FIG. As a result, even when receiving a pulse pressure of a pressure wave including a high-frequency component such as knocking, vibration is hardly induced, and detection accuracy can be improved.
  • FIG. 7 shows the amount of strain detected when a pressure wave (20 kHz) is applied.
  • FIG. 7 (a) shows the response of a comparative product having no asymmetrical rigid portion shown in FIG. 6 (a).
  • FIG. 7B is a characteristic diagram, and FIG. 7B is a response characteristic diagram of the present embodiment.
  • the distortion amount is as shown in FIG. 7A. It appears as a vibration waveform having a relatively large amplitude, and this vibration continues even if it exceeds 500 ⁇ s.
  • the amplitude of the vibration immediately after receiving the pressure wave of 20 kHz is, as shown in FIG. It is smaller than 3R, and attenuates to an almost negligible size in about 300 ⁇ s after receiving the pressure.
  • the pressure transmission rod 3 of the first embodiment of the present invention can reduce the vibration after receiving the pressure wave of 20 kHz as compared with the pressure transmission rod 3R of the comparative product.
  • the pressure sensor according to the first embodiment of the present invention reduces measurement errors due to vibration of a transverse wave generated when receiving a pressure wave, and improves detection accuracy.
  • the resonance frequency of the pressure transmission rod 3R of the comparative product was approximately 20 KHz, but the resonance frequency of the pressure transmission rod 3 according to the first embodiment was about 60 KHz, which is sufficiently higher than 20 KHz.
  • the pressure sensor 1 includes a diaphragm 2, a pressure transmission rod 3 having an element installation part 3b and a pressure transmission part 3a, and a pressure detection part 5 provided at an installation position of the element installation part 3b.
  • the pressure transmission rod 3 is pressed by a pressure wave transmitted through the diaphragm 2 at a position different from the installation position where the pressure detection unit 5 is installed in the axial direction of the pressure transmission rod 3 which is the central axis O of the pressure transmission direction.
  • the transmission rod 3 has an asymmetrical rigid portion 3d for increasing the resonance frequency of the vibration generated. For this reason, even if a pressure wave containing a high-frequency component is transmitted to the pressure transmission rod 3, vibration is less likely to be induced, and detection accuracy can be improved.
  • the cross section of the pressure transmitting rod 3 where the element installation portion 3b and the asymmetric rigid portion 3d are provided respectively has a high rigidity side and a low rigidity side, and the high rigidity side and the low rigidity of the asymmetric rigid portion 3d.
  • the relative arrangement in the direction orthogonal to the axial direction of the pressure transmitting rod 3 is relatively high in the direction orthogonal to the axial direction of the pressure transmitting rod 3 on the high rigidity side and the low rigidity side of the element installation portion 3b.
  • the arrangement is opposite to the central axis O of the pressure transmission rod 3.
  • Such an asymmetric rigid portion 3d can be formed by cutting a part of the pressure transmission rod 3, for example, and can be efficiently produced.
  • the asymmetric rigid portion 3d is exemplified as a structure formed by cutting a part of the pressure transmitting portion 3a.
  • various methods and structures other than those described above for forming the asymmetric rigid portion 3d will be described.
  • FIG. 8 shows a second embodiment of the pressure sensor of the present invention.
  • FIG. 8A is a cross-sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 8A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region VIIIb
  • FIG. 8C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region VIIIc in FIG.
  • the asymmetric rigid portion 3d of the pressure transmitting rod 3 has a structure provided on the ⁇ x side with respect to the central axis O.
  • the pressure transmitting portion 3a according to the second embodiment has the diameter of the pressure transmitting portion 3a of the first embodiment shown in FIG. 5 reduced throughout the longitudinal direction, and a projection called an asymmetric rigid portion 3d having a small outer peripheral surface. In the predetermined axial direction region.
  • asymmetry of rigidity in the axial direction of the pressure transmitting rod 3 is realized.
  • the asymmetric rigid portion 3d is formed integrally with the pressure transmitting portion 3a, and is formed as a projecting portion that further projects in the ⁇ x direction from the ⁇ x side surface of the pressure transmitting portion 3a.
  • the pressure transmitting portion 3a has a cross-sectional area of the region where the asymmetric rigid portion 3d on the ⁇ x side of the central axis O is provided, in other words, the rigidity is + x more than the central axis O.
  • the element mounting portion 3b has a high rigidity side on the + x direction side from the central axis O and a low rigidity side on the ⁇ x direction side from the central axis O, as in the first embodiment. is there.
  • the pressure transmitting portion 3a is provided with an asymmetrical rigid portion 3d on the ⁇ x side with respect to the central axis O to increase the sectional area from the central axis O. Therefore, the pressure transmitting portion 3a has a greater rigidity on the ⁇ x direction side than the central axis O than on the + x direction side of the central axis O.
  • the asymmetric rigid portion 3d makes the rigidity of the pressure transmitting portion 3a with respect to the central axis O asymmetric.
  • the -x direction side of the central axis O is closer to the -x direction. It is on the high rigidity side, and the + x direction side from the center axis O is the low rigidity side.
  • the relative arrangement in the direction orthogonal to the axial direction of the pressure transmission rod 3 on the high rigidity side and the low rigidity side in the cross section where the asymmetric rigid part 3d of the pressure transmitting part 3a is provided Is opposite to the relative arrangement of the high rigidity side and the low rigidity side of the element installation portion 3b in the direction orthogonal to the axial direction of the pressure transmission rod 3 with respect to the center axis O of the pressure transmission rod 3. Therefore, as in the first embodiment, a vibration mode with two antinodes near the element installation part 3b and near the asymmetric rigid part 3d is induced in the pressure transmission rod 3.
  • This vibration mode has a shorter natural wavelength than the vibration mode induced in the pressure transmission rod 3 having no asymmetric rigid portion 3d, and thus has a higher natural frequency.
  • Other configurations in the second embodiment are the same as those in the first embodiment. Therefore, the second embodiment also has the same effect (1) as the first embodiment.
  • the asymmetric rigid portion 3d in the second embodiment can be formed by integral molding together with the pressure transmitting portion 3a, and has the same effect (2) as the first embodiment.
  • the pressure transmitting portion 3a is cut to form the asymmetric rigid portion 3d.
  • the pressure transmitting portion 3a is cut to form the asymmetric rigid portion 3d.
  • the manufacturing cost is higher than in the first embodiment. Can be expected to be further reduced.
  • FIG. 9A is a sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 9B is a sectional view of FIG. 9A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region IXb
  • FIG. 9C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region IXc in FIG.
  • the asymmetric rigid portion 3d is formed as a low rigidity region in which a part of the pressure transmitting portion 3a of the pressure transmitting rod 3 is formed of a low rigidity material. As shown in FIG.
  • the asymmetric rigid portion 3d is formed on the + x direction side of the central axis O.
  • the pressure transmitting portion 3a is formed by quenching the entirety of the pressure transmitting portion 3a except for the asymmetric rigid portion 3d, and performing a process of not quenching only the asymmetric rigid portion 3d. That is, in order to quench the pressure transmitting portion 3a, the entire pressure transmitting portion 3a is heated to an appropriate temperature. At this time, the region where the asymmetric rigid portion 3d is formed is quenched by taking measures such as cooling. Keep below temperature.
  • the + x direction side from the center axis O is on the high rigidity side
  • the ⁇ x direction side from the center axis O is on the low rigidity side.
  • the pressure transmitting portion 3a is provided with a non-hardened asymmetric rigid portion 3d on the + x side from the center axis O. Therefore, in the cross section of the pressure transmitting portion 3a where the asymmetric rigid portion 3d is provided, as shown in FIG. 9C, the rigidity on the ⁇ x direction side from the central axis O is higher than the + x direction side on the central axis O. large.
  • the asymmetric rigid portion 3d makes the rigidity of the pressure transmitting portion 3a with respect to the central axis O asymmetric, and the cross section of the pressure transmitting portion 3a where the asymmetric rigid portion 3d is provided is on the ⁇ x direction side of the central axis O. It is on the high rigidity side, and the + x direction side from the center axis O is the low rigidity side.
  • the arrangement is opposite to the central arrangement O of the pressure transmission rod 3 on the high rigidity side and the low rigidity side of the element installation part 3b in the direction orthogonal to the axial direction of the pressure transmission rod 3. . Therefore, as in the first embodiment, a vibration mode with two antinodes near the element installation part 3b and near the asymmetric rigid part 3d is induced in the pressure transmission rod 3.
  • This vibration mode has a shorter natural wavelength than the vibration mode induced in the pressure transmission rod 3 having no asymmetric rigid portion 3d, and thus has a higher natural frequency.
  • the step of heating the pressure transmitting unit 3a to the quenching temperature except for a part of the pressure transmitting unit 3a may be such that the pressure transmitting unit 3a is selectively heated using a laser.
  • the asymmetric rigid portion 3d may be formed by quenching the entire pressure transmitting portion 3a and then selectively tempering using a laser or the like.
  • the third embodiment also has the same effect (1) as the first embodiment.
  • the asymmetric rigid portion 3d in the third embodiment can be formed by not selectively quenching the pressure transmitting portion 3a, and has the same effect (2) as in the first embodiment. ).
  • the pressure transmitting portion 3a is cut to form the asymmetric rigid portion 3d.
  • the asymmetric rigid portion 3d is formed only by locally providing quenching selectivity. Can be formed. For this reason, it can be expected that the manufacturing cost is further reduced as compared with the first embodiment.
  • FIG. 10 shows a fourth embodiment of the pressure sensor of the present invention.
  • FIG. 10 (a) is a sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 10 (b) is a sectional view of FIG. 10A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region Xb
  • FIG. 10C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region Xc in FIG.
  • the asymmetric rigid portion 3d is formed such that a part of the pressure transmitting portion 3a of the pressure transmitting rod 3 is a high rigid region formed of a high rigid material. As shown in FIG.
  • the asymmetric rigid portion 3d is formed on the ⁇ x direction side of the central axis O.
  • the pressure transmitting portion 3a is locally quenched using, for example, a laser to form an asymmetric rigid portion 3d.
  • the element installation portion 3b has the high rigidity side on the + x direction side from the central axis O and the low rigidity side on the ⁇ x direction side from the central axis O, as in the first embodiment. is there.
  • the pressure transmitting portion 3a is provided with a hardened asymmetric rigid portion 3d on the ⁇ x side from the center axis O. Therefore, in the cross section of the pressure transmitting portion 3a where the asymmetric rigid portion 3d is provided, as shown in FIG. 10 (c), the rigidity on the ⁇ x direction side from the central axis O is higher than the + x direction side on the central axis O. large.
  • the asymmetric rigid portion 3d makes the rigidity of the pressure transmitting portion 3a with respect to the central axis O asymmetric.
  • the -x direction side of the central axis O is closer to the -x direction. It is on the high rigidity side, and the + x direction side from the center axis O is the low rigidity side.
  • the relative arrangement in the direction orthogonal to the axial direction of the pressure transmission rod 3 on the high rigidity side and the low rigidity side in the cross section where the asymmetric rigid part 3d is provided in the pressure transmitting part 3a Is opposite to the relative arrangement in the direction orthogonal to the axial direction of the pressure transmitting rod 3 on the high rigidity side and the low rigidity side of the element installation portion 3b with respect to the central axis O of the pressure transmitting rod 3. Therefore, as in the first embodiment, a vibration mode with two antinodes near the element installation part 3b and near the asymmetric rigid part 3d is induced in the pressure transmission rod 3.
  • This vibration mode has a shorter natural wavelength than the vibration mode induced in the pressure transmission rod 3 having no asymmetric rigid portion 3d, and thus has a higher natural frequency.
  • Other configurations in the fourth embodiment are the same as those in the first embodiment. Therefore, the fourth embodiment also has the same effect (1) as the first embodiment.
  • the asymmetric rigid portion 3d in the fourth embodiment can be formed by quenching the entire pressure transmitting portion 3a and then selectively tempering the same, and has the same effect as that of the first embodiment ( Perform 2).
  • the pressure transmitting portion 3a is cut to form the asymmetric rigid portion 3d.
  • the asymmetric rigid portion is formed only by locally giving temper selectivity. 3d can be formed. For this reason, it can be expected that the manufacturing cost is further reduced as compared with the first embodiment.
  • FIG. 11 shows a fifth embodiment of the pressure sensor of the present invention.
  • FIG. 11A is a cross-sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 11A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XIb
  • FIG. 11C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XIc in FIG.
  • the asymmetric rigid portion 3d of the pressure transmission rod 3 is connected to the center axis O with respect to the center axis O.
  • the asymmetric rigid portion 3d is not a structure integrally formed with the pressure transmitting portion 3a shown in the second embodiment, but a pressure transmitting portion in which the pressure transmitting portion 3a has the same small diameter as in the third embodiment.
  • the portion 3a is provided with a member (hereinafter, referred to as a rigidity improving material) that exerts a rigidity improving function as a separate member.
  • the rigidity improving material may be any material that can be fixed to the pressure transmitting portion 3a and substantially increases the rigidity of the pressure transmitting portion 3a, such as glass, ceramics, and metal.
  • the rigidity improving material is a semi-annular member provided on a half circumference of the outer peripheral surface of the small diameter pressure transmitting portion 3a.
  • the asymmetric rigid portion 3d includes a rigidity improving material fixed to the pressure transmitting portion 3a, and the rigidity improving material has a small diameter in the ⁇ x direction on the outer peripheral surface of the pressure transmitting portion 3a. It is formed as a semi-ring-shaped protrusion that protrudes further in the ⁇ x direction from the outer peripheral surface.
  • the cross-sectional area of the region where the asymmetric rigid portion 3d is provided on the ⁇ x side of the central axis O in the direction orthogonal to the central axis O is paraphrased.
  • the rigidity is greater than the rigidity, in other words, the sectional area of the region on the + x side of the central axis O where the asymmetric rigid portion 3d is not provided. That is, the asymmetric rigidity portion 3d including the rigidity improving material and the rigidity with respect to the central axis O of the pressure transmitting portion 3a are made asymmetrical.
  • the element mounting portion 3b has a high rigidity side on the + x direction side from the central axis O and a low rigidity side on the ⁇ x direction side from the central axis O, as in the first embodiment. is there.
  • the pressure transmitting portion 3a is provided with an asymmetric rigid portion 3d including a rigidity improving material for increasing the cross-sectional area from the central axis O on the ⁇ x side from the central axis O. I have.
  • the rigidity on the ⁇ x direction side from the central axis O is higher than the + x direction side on the central axis O, as shown in FIG. large.
  • the asymmetric rigid portion 3d makes the rigidity of the pressure transmitting portion 3a with respect to the central axis O asymmetric.
  • the -x direction side of the central axis O is closer to the -x direction. It is on the high rigidity side, and the + x direction side from the center axis O is the low rigidity side.
  • the relative positions in the direction orthogonal to the axial direction of the pressure transmission rod 3 on the high rigidity side and the low rigidity side in the cross section where the asymmetric rigid portion 3d is provided in the pressure transmitting portion 3a are opposite to the central arrangement O of the pressure transmission rod 3 on the high rigidity side and the low rigidity side of the element installation part 3b in the direction orthogonal to the axial direction of the pressure transmission rod 3. . Therefore, as in the first embodiment, a vibration mode with two antinodes near the element installation part 3b and near the asymmetric rigid part 3d is induced in the pressure transmission rod 3.
  • This vibration mode has a shorter natural wavelength than the vibration mode induced in the pressure transmission rod 3 having no asymmetric rigid portion 3d, and thus has a higher natural frequency.
  • Other configurations in the fifth embodiment are the same as those in the first embodiment. Therefore, the fifth embodiment also has the same effect (1) as the first embodiment.
  • the asymmetric rigid portion 3d in the fifth embodiment can be manufactured only by fixing the rigidity improving material to the pressure transmitting portion 3a. For this reason, the same effect (2) as in the first embodiment is achieved.
  • the pressure transmitting portion 3a is cut to form an asymmetric rigid portion 3d.
  • the pressure transmitting portion 3a is cut to form an asymmetric rigid portion 3d. The manufacturing cost is higher than in the first embodiment. Can be expected to be further reduced.
  • FIG. 12 shows a sixth embodiment of the pressure sensor of the present invention.
  • FIG. 12 (a) is a sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 12 (b) is a sectional view of FIG. 12A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XIIb
  • FIG. 12C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XIIc in FIG.
  • the central axis O 1 of the contact portion of the pressure transmitting portion 3a with the diaphragm 2 is shifted in the ⁇ x direction from the central axis O of the entire pressure transmitting portion 3a, and this is defined as an asymmetric rigid portion 3d.
  • the central axis O 1 of the contact portion where the pressure transmitting portion 3a contacts the diaphragm 2 is shifted from the central axis O of the entire pressure transmitting portion 3a toward the ⁇ x direction, that is, toward the pressure detecting portion 5.
  • the asymmetric rigid portion 3d is deformed so as to be curved with the side opposite to the pressure detecting portion 5 inside as viewed from the central axis of the entire pressure transmitting portion 3a.
  • the element installation portion 3b has a high rigidity side on the + x direction side from the central axis O and a low rigidity side on the ⁇ x direction side from the central axis O, as in the first embodiment. is there.
  • the central axis O 1 of the contact portion of the pressure transmitting portion 3a with the diaphragm 2 is shifted by a predetermined amount from the central axis O of the entire pressure transmitting portion 3a toward the ⁇ x direction.
  • Compressive force in the combustion pressure transmitting portion 3a through the diaphragm 2 is receiving is transmitted to the pressure transmitting portion 3a as an axial force around the center axis O 1 of the contact portion between the diaphragm 2 of the pressure transmitting portion 3a .
  • the rigidity with respect to the central axis O is -x direction side from the central axis O where the central axis O 1 of the contact portion of the pressure transmitting portion 3a with the diaphragm 2 is set. Is larger than the central axis O on the + x direction side.
  • the pressure transmitting portion 3a has a high rigidity side on the ⁇ x direction side from the central axis O and a low rigidity side on the + x direction side from the central axis O.
  • the portion that functions as the asymmetric rigid portion 3d in the pressure transmission rod 3 is located on the apparent high rigidity side and low rigidity side in the cross section in the axial direction of the pressure transmission rod 3.
  • the relative arrangement in the direction orthogonal to the relative arrangement in the direction orthogonal to the axial direction of the pressure transmission rod 3 on the high rigidity side and the low rigidity side of the element installation portion 3b is the central axis of the pressure transmission rod 3. The opposite is true for O. Therefore, as in the first embodiment, a vibration mode with two antinodes near the element installation part 3b and near the asymmetric rigid part 3d is induced in the pressure transmission rod 3.
  • This vibration mode has a shorter natural wavelength than the vibration mode induced in the pressure transmission rod 3 having no asymmetric rigid portion 3d, and thus has a higher natural frequency.
  • Other configurations in the sixth embodiment are the same as those in the first embodiment. Therefore, the sixth embodiment also has the same effect (1) as the first embodiment. Further, in the sixth embodiment, the center axis O 1 of the contact portion between the diaphragm 2 of the pressure transmitting portion 3a, asymmetric rigid portion 3d only shifted in the pressure detecting portion 5 side from the center axis O of the total pressure transmitting portion 3a Can be formed. Therefore, the sixth embodiment also has the same effect (2) as the first embodiment.
  • the pressure transmitting portion 3a that forms the asymmetric rigid portion 3d by cutting the pressure transmitting portion 3a is formed by cutting the pressure transmitting portion 3a. It can be expected that the manufacturing cost is further reduced as compared with the first embodiment in which 3d is formed.
  • FIG. 13 shows a seventh embodiment of the pressure sensor of the present invention.
  • FIG. 13 (a) is a sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 13 (b) is a sectional view of FIG. 13A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XIIIb
  • FIG. 13C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XIIIc in FIG.
  • the asymmetric rigid portion 3d has a structure provided in the high rigidity fixing portion 3c.
  • the asymmetric rigid portion 3d is provided on the + x direction side of the central axis O of the high rigidity fixing portion 3c.
  • the asymmetric rigid portion 3d is provided by cutting a part on the outer peripheral side of the high rigidity fixing portion 3c on the ⁇ x side with respect to the central axis O. That is, the asymmetric rigid part 3d makes the rigidity of the high rigidity fixing part 3c with respect to the central axis O asymmetric.
  • the element installation part 3b has a high rigidity side on the + x direction side from the central axis O and a low rigidity side on the ⁇ x direction side from the central axis O, as in the first embodiment. is there.
  • the high rigidity fixing portion 3c is cut on the + x side with respect to the central axis O. Therefore, in the section where the asymmetric rigid portion 3d is provided in the high rigidity fixing portion 3c, as shown in FIG. 13C, the ⁇ x direction side from the central axis O is more rigid than the x direction side from the central axis O. Is big.
  • the ⁇ x direction side from the central axis O is the high rigidity side
  • the + x direction side from the central axis O is the low rigidity side.
  • the relative arrangement of the high rigidity side and the low rigidity side of the section provided with the asymmetric rigid portion 3d in the high rigidity fixing portion 3c in the direction orthogonal to the axial direction of the pressure transmission rod 3 is the same as that of the element installation portion 3b.
  • the relative arrangement of the high rigidity side and the low rigidity side in the direction orthogonal to the axial direction of the pressure transmitting rod 3 is opposite to the center axis O of the pressure transmitting rod 3.
  • a vibration mode with two antinodes near the element installation part 3b and near the asymmetric rigid part 3d provided on the high rigidity fixing part 3c is induced. Is done.
  • This vibration mode has a shorter natural wavelength than the vibration mode induced in the pressure transmission rod 3 having no asymmetric rigid portion 3d, and thus has a higher natural frequency.
  • Other configurations in the seventh embodiment are the same as those in the first embodiment. Therefore, the seventh embodiment also has the same effect (1) as the first embodiment.
  • the asymmetric rigid portion 3d in the seventh embodiment can be formed by cutting a part of the high rigidity fixing portion 3c. Therefore, the seventh embodiment also has the same effect (2) as the first embodiment.
  • the pressure detecting unit 5 is provided closer to the outside of the engine body than the asymmetric rigid part 3d provided in the pressure transmitting unit 3a.
  • the pressure detector 5 is provided closer to the engine combustion chamber than the asymmetric rigid portion 3d provided in the high rigidity fixing portion 3c.
  • the seventh embodiment also has an effect that the pressure detection sensitivity can be improved as compared with the first to sixth embodiments. Further, since the length of the transmission path through which the compressive force of the diaphragm 2 is transmitted to the pressure detection unit 5 is reduced, the effect of improving the responsiveness is also achieved.
  • the seventh embodiment since the pressure detection unit 5 is close to the engine combustion chamber, heat inside the engine is easily transmitted to the pressure detection unit 5. For this reason, the temperature rise of the pressure detection unit 5 increases, and the possibility of output fluctuation, damage to the pressure detection element, and the like increases. That is, in the seventh embodiment and the first to sixth embodiments, there is a trade-off relationship between the pressure detection sensitivity and the responsiveness and the temperature rise of the pressure detection unit. It is preferable to select according to the situation.
  • FIG. 14 shows an eighth embodiment of the pressure sensor of the present invention.
  • FIG. 14 (a) is a cross-sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 14 (b) is a sectional view of FIG. 14A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XIVb
  • FIG. 14C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XIVc of FIG.
  • the element installation surface 21 of the element installation part 3b and one surface 24 of the pressure transmitting part 3a are located on the ⁇ x side of the central axis O.
  • a surface of the element installation portion 3b opposite to the element installation surface 21 is partially cut to form a groove 3f. That is, the groove 3f is provided on the + x side of the central axis O.
  • the bottom surface of the groove 3f is provided near the same plane as the central axis O.
  • the position of the bottom surface of the groove 3f may be shifted to the + x side or the -x side from the center axis O.
  • the asymmetric rigid portion 3d is provided on the ⁇ x side of the central axis O by cutting a part of the pressure transmitting portion 3a.
  • the element installation portion 3b is cut on the + x side with respect to the central axis O, and a groove 3f is formed. Therefore, as shown in FIG. 14B, the element installation section 3b has a high rigidity side on the ⁇ x direction side from the central axis O and a low rigidity side on the + x direction side from the central axis O, as shown in FIG.
  • the pressure transmitting portion 3a has an asymmetric rigid portion 3d in which the -x side is cut with respect to the central axis O. Therefore, in the cross section of the pressure transmitting portion 3a where the asymmetric rigid portion 3d is provided, as shown in FIG.
  • the + x direction side from the central axis O is the high rigidity side
  • the ⁇ direction side from the central axis O is the negative side.
  • the relative arrangement of the high rigidity side and the low rigidity side in the cross section of the pressure transmitting portion 3a where the asymmetric rigid portion 3d is provided in the direction orthogonal to the axial direction of the pressure transmitting rod 3 is the height of the element installation portion 3b.
  • the relative arrangement of the rigid side and the low rigidity side in the direction orthogonal to the axial direction of the pressure transmitting rod 3 is opposite to the center axis O of the pressure transmitting rod 3.
  • the eighth embodiment has the same advantages (1) and (2) as the first embodiment.
  • one surface 24 of the pressure transmitting unit 3a is provided at the same height in the direction orthogonal to the central axis O as the element installation surface 21 of the element installation unit 3b on which the pressure detection unit 5 is installed. ing.
  • the joining step of joining the pressure detecting section 5 to the element installation section 3b and the connecting step of connecting the signal line 8 to the pressure detecting section 5 it becomes easy to insert the tip of the jig or the robot. For this reason, the workability can be improved, and the jig and the robot tip structure can be simplified, and the manufacturing cost can be reduced.
  • FIG. 15A is a cross-sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 15A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XVb of FIG. 15A
  • FIG. 15C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XVc of FIG.
  • FIG. 15D is a schematic diagram showing the high rigidity side and the low rigidity side of the region XVd in FIG. 15A.
  • the ninth embodiment has a structure in which two asymmetric rigid portions 3d 1 and 3d 2 are provided in the pressure transmitting portion 3a.
  • the pressure transmitting portion 3a is formed slightly longer in the axial direction than the pressure transmitting portion 3a of the first to eighth embodiments, and the two asymmetric rigid portions 3d 1 and 3d 2 do not overlap in the axial direction.
  • Asymmetric rigid portion 3d 1 is disposed at a position closer to the element mounting portion 3b in the axial direction, the + direction of the central axis O, is provided by cutting a part of the outer peripheral side of the pressure transmitting portion 3a.
  • Asymmetric rigid portion 3d 2 is located closer to the diaphragm 2 in the axial direction, of the center axis O - direction side, is provided by cutting a part of the outer peripheral side of the pressure transmitting portion 3a.
  • the element installation portion 3b has a high rigidity side on the + x direction side from the central axis O and a low rigidity side on the ⁇ x direction side from the central axis O, as in the first embodiment. is there.
  • FIG. 15 (c) in the region XVc of the pressure transmitting portion 3a asymmetric rigid portion 3d 1 is provided, -x direction from the center axis O is high rigid side, from the + x direction is the center axis O On the low rigidity side. Further, as shown in FIG.
  • the high rigidity side and low-rigidity side of the asymmetric rigid portion 3d 1 provided the cross-section in the pressure transmitting portion 3a, the relative arrangement in the direction perpendicular to the axial direction of the pressure transmission rod 3, element
  • the relative arrangement of the high rigidity side and the low rigidity side of the installation portion 3b in the direction orthogonal to the axial direction of the pressure transmission rod 3 is opposite to the center axis O of the pressure transmission rod 3.
  • the high rigidity side and low-rigidity side in a cross section asymmetric rigid portion 3d 2 of the pressure transmitting portion 3a is provided, in the direction perpendicular to the axial direction of the pressure transmission rod 3, relative arrangement, the high-rigidity side and low-rigidity side in a cross section asymmetric rigid portion 3d 1 of the pressure transmitting portion 3a is provided, the relative arrangement in the direction perpendicular to the axial direction of the pressure transmission rod 3, the pressure transmission rod 3 with respect to the central axis O. Accordingly, in the ninth embodiment, the vibration mode of the belly three near and around the asymmetric rigid portion 3d 2 element mounting portion 3b and around the asymmetric rigid portion 3d 1 is induced.
  • This vibration mode has a shorter natural wavelength than the vibration mode having no asymmetric rigid portion 3d, and thus has a higher natural frequency. As a result, even if a pressure wave including a high-frequency component such as knocking is received, vibration is hardly induced, and detection accuracy can be improved.
  • the ninth embodiment also has the same effects (1) and (2) as the first embodiment.
  • the pressure transmitting portion 3a is formed slightly longer in the axial direction than the pressure transmitting portion 3a of the first to eighth embodiments.
  • the pressure detector 5 is installed at a position distant from a combustion chamber such as an engine. Thereby, the heat in the combustion chamber transmitted to the pressure detecting unit 5 during use is suppressed. For this reason, it is possible to suppress the temperature rise of the pressure detection unit 5 and suppress the output fluctuation of the pressure detection unit 5 or use an inexpensive pressure detection element having low heat resistance.
  • the vibration modes that can be induced by the asymmetric rigid portions 3d 1 and 3d 2 provided at two locations are set to the wavelengths with the antinodes at the three locations of the element installation portion 3b and the asymmetric rigid portion 3d. Since the length can be shortened, a decrease in the natural frequency can be suppressed.
  • the structure in which the asymmetric rigid portions 3d 1 and 3d 2 are provided in two places is exemplified, but a structure in which three or more asymmetric rigid portions are provided may be adopted.
  • FIG. 16A is a cross-sectional view of a main part including an element installation part and an asymmetric rigid part
  • FIG. 16A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XVIb
  • FIG. 16C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XVIc of FIG.
  • a cut surface 3g is provided on the element installation portion 3b on the opposite side of the element installation surface 21 on which the pressure detection unit 5 is installed, and a part of the cut surface 3g is different from the first embodiment. Is cut to form a groove 3h.
  • the element installation unit 3b is formed as in the first embodiment.
  • the thickness (the length in the x direction) is smaller than in the case. That is, the region XVId of the element installation portion 3b is a thin portion made thinner than the other region XVIb of the element installation portion 3b.
  • the groove 3h of the element installation portion 3b is provided by further cutting from the cut surface 3g to the center axis O side.
  • the groove 3h of the element installation portion 3b is provided near the boundary with the high rigidity fixing portion 3c.
  • the arrangement of the high rigidity side and the low rigidity side with respect to the center axis O changes.
  • the + x direction side from the central axis O is the high rigidity side
  • the ⁇ x direction side from the central axis O is the low rigidity side, as in the first embodiment.
  • the ⁇ x direction side from the center axis O is the high rigidity side, as in the first embodiment.
  • the + x direction side from the center axis O is the low rigidity side.
  • the + x direction side from the center axis O is the high rigidity side
  • the ⁇ X side from the center axis O is the low rigidity side.
  • the relative arrangement in the direction orthogonal to the axial direction of the pressure transmission rod 3 on the high rigidity side and the low rigidity side where the asymmetric rigid part 3d is provided in the pressure transmission part 3a is determined by the element installation part in the pressure transmission rod 3.
  • the relative arrangement in the direction orthogonal to the axial direction of the pressure transmission rod 3 on the high rigidity side and the low rigidity side in the cross section provided with 3 b is opposite to the central axis O of the pressure transmission rod 3.
  • the tenth embodiment also has the same advantages (1) and (2) as the first embodiment.
  • the groove 3h of the element installation portion 3b is provided near the boundary with the high rigidity fixing portion 3c.
  • the groove 3h of the element installation part 3b is provided at a position farthest from the combustion chamber of the engine in the axial direction of the element installation part 3b. Thereby, the pressure detection sensitivity is further improved. The reason why the pressure detection sensitivity is improved by the groove 3h will be described below with reference to FIG.
  • FIG. 17 is a diagram showing a deformed state of the pressure transmission rod in the pressure receiving state shown in FIG.
  • the pressure transmission rod 3 when pressure is received, the pressure transmission rod 3 is curved with the element installation surface 21 inside in the region XVIb where the groove 3h of the element installation portion 3b is not provided, and the pressure transmission rod 3 The region XVIc is deformed so as to be curved with the asymmetric rigid portion 3d inside.
  • a groove 3h is provided on the high rigidity fixing portion 3c side of the element installation portion 3b.
  • the region XVId of the element installation portion 3b provided with the groove 3h is thinner in the x direction than the region XVIb of the element installation portion 3b not provided with the groove 3h, and has a lower rigidity. For this reason, the region XVId of the element installation portion 3b provided with the groove 3h is curved with the groove 3h inside. Therefore, the axial length of the deformation region of the element installation section 3b that is curved with the element installation section 3b inside is reduced by the groove 3h. For this reason, the curvature of the deformation of the element installation portion 3b that curves inward is reduced.
  • the pressure transmission rod 3 of the tenth embodiment in which the groove 3h is provided on the high rigidity fixing portion 3c side of the element installation portion 3b is different from the pressure transmission rod 3 of the first embodiment in which the groove 3h is not provided.
  • the element mounting portion 3b bends so that the curvature thereof becomes small. For this reason, the amount of distortion generated in the range including the installation position of the pressure detection unit increases, and the pressure detection sensitivity improves. That is, according to the tenth embodiment, the effects (1) and (2) of the first embodiment are exhibited, and in particular, the effect of further improving the pressure detection sensitivity is exhibited.
  • the pressure sensor of the present invention can be applied to a pressure sensor that detects a pressure other than the combustion pressure of an internal combustion engine such as an engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Fluid Pressure (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

[Problem] To enhance detection precision even when a pressure wave including transverse wave oscillation is received. [Solution] A pressure sensor 1 is provided with a diaphragm 2, a pressure transmission rod 3 having an element installation part 3b and a pressure transmission part 3a, and a pressure sensing part 5 provided in an installation position of the element installation part 3b. In a position in the axial direction of the pressure transmission rod 3 that differs from the installation position at which the pressure sensing part 5 is installed, the axial direction being the center axis O in the pressure transmission direction, the pressure transmission rod 3 has an asymmetrical rigid part 3d for increasing the resonance frequency of oscillation caused in the pressure transmission rod 3 by a pressure wave transmitted via the diaphragm 2.

Description

圧力センサPressure sensor
 本発明は圧力センサに関する。 The present invention relates to a pressure sensor.
 車両用内燃機関の燃焼圧等の検出に用いられる圧力センサとして、ダイアフラムに印加された圧力を、センサ部を有するセンサ用プレートに伝達し、センサ部から測定媒体の圧力に応じたセンサ信号を出力するものが知られている。この圧力センサでは、センサ用プレートを予め弓形状に少し撓ませておき、圧力に応じてさらに撓ませ、センサ部にひずみを与える(例えば、特許文献1参照)。 As a pressure sensor used for detecting the combustion pressure of an internal combustion engine for a vehicle, the pressure applied to the diaphragm is transmitted to a sensor plate having a sensor unit, and a sensor signal corresponding to the pressure of the measurement medium is output from the sensor unit. What is known is. In this pressure sensor, the sensor plate is slightly bent in a bow shape in advance, and further bent according to the pressure to apply a strain to the sensor unit (for example, see Patent Document 1).
日本国特開2009-128036号公報Japanese Patent Application Laid-Open No. 2009-128036
 特許文献1では、センサ用プレートを撓ませて検出する方式であるため、パルス状の圧力波を受けたときに横波の振動が発生する。横波の振動は一般に固有振動数が低く、ノッキング等の高周波成分を含む圧力波を受けたときに振動が誘起され、検出精度が低下する。 た め In Patent Document 1, since the detection is performed by bending the sensor plate, a transverse wave vibration is generated when a pulse-like pressure wave is received. Generally, the vibration of the shear wave has a low natural frequency, and when a pressure wave including a high frequency component such as knocking is received, the vibration is induced and the detection accuracy is reduced.
 本発明の一態様による圧力センサは、受圧用のダイアフラムと、素子設置部、および前記ダイアフラムと前記素子設置部との間に設けられた圧力伝達部を有する圧力伝達ロッドと、前記圧力伝達ロッドの前記素子設置部の設置位置に設けられた圧力検知部とを備え、前記ダイアフラムから受けた圧縮力に応じて前記圧力検知部の前記設置位置を含む範囲内で生じる歪みを検知して出力する圧力センサであって、前記圧力伝達ロッドは、圧力伝達方向の中心軸となる前記圧力伝達ロッドの軸方向における前記圧力検知部が設置された前記設置位置と異なる位置に、前記ダイアフラムを介して伝達される圧力波により前記圧力伝達ロッドに生じる振動の共振周波数を高めるための非対称剛性部を有する。 A pressure sensor according to one aspect of the present invention includes a pressure-receiving diaphragm, an element installation section, and a pressure transmission rod having a pressure transmission section provided between the diaphragm and the element installation section. A pressure detection unit provided at the installation position of the element installation unit, and detects and outputs distortion generated within a range including the installation position of the pressure detection unit according to a compressive force received from the diaphragm. A sensor, wherein the pressure transmission rod is transmitted via the diaphragm to a position different from the installation position where the pressure detection unit is installed in an axial direction of the pressure transmission rod, which is a central axis in a pressure transmission direction. An asymmetric rigid portion for increasing the resonance frequency of vibration generated in the pressure transmission rod due to the pressure wave.
 本発明によれば、検出精度を向上する圧力センサを提供することができる。 According to the present invention, it is possible to provide a pressure sensor having improved detection accuracy.
図1は、本発明の圧力センサの第1の実施形態の外観斜視図。FIG. 1 is an external perspective view of a first embodiment of the pressure sensor of the present invention. 図2は、図1に示す圧力センサの分解斜視図。FIG. 2 is an exploded perspective view of the pressure sensor shown in FIG. 図3は、図1に示す圧力センサの縦断面図。FIG. 3 is a longitudinal sectional view of the pressure sensor shown in FIG. 図4は、図3に示す圧力センサの要部断面図。FIG. 4 is a sectional view of an essential part of the pressure sensor shown in FIG. 図5(a)は、図4における素子設置部および非対称剛性部それぞれの一領域を示す図であり、図5(b)は、図5(a)の領域IIbにおける圧力伝達ロッドの中心軸に対する高剛性側と低剛性側を示す模式図であり、図5(c)は、図5(a)の領域IIcにおける圧力伝達ロッドの中心軸に対する高剛性側と低剛性側を示す模式図。FIG. 5A is a diagram illustrating one region of each of the element installation portion and the asymmetric rigid portion in FIG. 4, and FIG. 5B is a diagram with respect to the central axis of the pressure transmission rod in a region IIb of FIG. FIG. 5C is a schematic diagram illustrating a high rigidity side and a low rigidity side, and FIG. 5C is a schematic diagram illustrating a high rigidity side and a low rigidity side with respect to a center axis of the pressure transmission rod in a region IIc of FIG. 図6(a)は、非対称剛性部を有していない比較品の受圧状態における圧力伝達ロッドの変形状態を示す図、図6(b)は、本実施形態の受圧状態における圧力伝達ロッドの変形状態を示す図。FIG. 6A is a diagram illustrating a deformed state of the pressure transmitting rod in the pressure receiving state of the comparative product having no asymmetric rigid portion, and FIG. 6B is a diagram illustrating the deformation of the pressure transmitting rod in the pressure receiving state of the present embodiment. The figure which shows a state. 図7は、圧力波(20kHz)が印加された状態で検出されたひずみ量を示し、図7(a)は、比較品の応答特性図、図7(b)は、本実施形態の応答特性図。7A and 7B show the amount of strain detected when a pressure wave (20 kHz) is applied. FIG. 7A is a response characteristic diagram of a comparative product, and FIG. 7B is a response characteristic of the present embodiment. FIG. 図8は、本発明の圧力センサの第2の実施形態を示し、図8(a)は素子設置部および非対称剛性部を含む要部断面図、図8(b)は、図8(a)の領域VIIIbの高剛性側と低剛性側を示す模式図、図8(c)は、図8(a)の領域VIIIcの高剛性側と低剛性側を示す模式図。8A and 8B show a pressure sensor according to a second embodiment of the present invention. FIG. 8A is a sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 8C is a schematic diagram showing the high rigidity side and the low rigidity side of the region VIIIb, and FIG. 8C is a schematic diagram showing the high rigidity side and the low rigidity side of the region VIIIc in FIG. 図9は、本発明の圧力センサの第3の実施形態を示し、図9(a)は素子設置部および非対称剛性部を含む要部断面図、図9(b)は、図9(a)の領域IXbの高剛性側と低剛性側を示す模式図、図9(c)は、図9(a)の領域IXcの高剛性側と低剛性側を示す模式図。9A and 9B show a third embodiment of the pressure sensor of the present invention. FIG. 9A is a cross-sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 9B is FIG. FIG. 9C is a schematic diagram showing the high rigidity side and the low rigidity side of the region IXb in FIG. 9A. FIG. 9C is a schematic diagram showing the high rigidity side and the low rigidity side of the region IXc in FIG. 図10は、本発明の圧力センサの第4の実施形態を示し、図10(a)は素子設置部および非対称剛性部を含む要部断面図、図10(b)は、図10(a)の領域Xbの高剛性側と低剛性側を示す模式図、図10(c)は、図10(a)の領域Xcの高剛性側と低剛性側を示す模式図。FIG. 10 shows a fourth embodiment of the pressure sensor of the present invention. FIG. 10 (a) is a sectional view of a main part including an element installation portion and an asymmetric rigid portion, and FIG. 10 (b) is FIG. 10 (a). 10C is a schematic diagram showing the high rigidity side and the low rigidity side of the region Xb, and FIG. 10C is a schematic diagram showing the high rigidity side and the low rigidity side of the region Xc in FIG. 図11は、本発明の圧力センサの第5の実施形態を示し、図11(a)は素子設置部および非対称剛性部を含む要部断面図、図11(b)は、図11(a)の領域XIbの高剛性側と低剛性側を示す模式図、図11(c)は、図11(a)の領域XIcの高剛性側と低剛性側を示す模式図。11A and 11B show a fifth embodiment of the pressure sensor of the present invention. FIG. 11A is a sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 11B is FIG. 11C is a schematic diagram showing the high rigidity side and the low rigidity side of the region XIb, and FIG. 11C is a schematic diagram showing the high rigidity side and the low rigidity side of the region XIc in FIG. 図12は、本発明の圧力センサの第6の実施形態を示し、図12(a)は素子設置部および非対称剛性部を含む要部断面図、図12(b)は、図12(a)の領域XIIbの高剛性側と低剛性側を示す模式図、図12(c)は、図12(a)の領域XIIcの高剛性側と低剛性側を示す模式図。FIG. 12 shows a sixth embodiment of the pressure sensor of the present invention. FIG. 12 (a) is a sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 12 (b) is FIG. 12C is a schematic diagram showing a high rigidity side and a low rigidity side of a region XIIb, and FIG. 12C is a schematic diagram showing a high rigidity side and a low rigidity side of a region XIIc in FIG. 図13は、本発明の圧力センサの第7の実施形態を示し、図13(a)は素子設置部および非対称剛性部を含む要部断面図、図13(b)は、図13(a)の領域XIIIbの高剛性側と低剛性側を示す模式図、図13(c)は、図13(a)の領域XIIIcの高剛性側と低剛性側を示す模式図。FIG. 13 shows a seventh embodiment of the pressure sensor of the present invention. FIG. 13 (a) is a sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 13 (b) is FIG. 13 (a). 13C is a schematic diagram showing a high rigidity side and a low rigidity side of a region XIIIb, and FIG. 13C is a schematic diagram showing a high rigidity side and a low rigidity side of a region XIIIc in FIG. 図14は、本発明の圧力センサの第8の実施形態を示し、図14(a)は素子設置部および非対称剛性部を含む要部断面図、図14(b)は、図14(a)の領域XIVbの高剛性側と低剛性側を示す模式図、図14(c)は、図14(a)の領域XIVcの高剛性側と低剛性側を示す模式図。FIG. 14 shows an eighth embodiment of the pressure sensor of the present invention. FIG. 14 (a) is a sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 14 (b) is FIG. 14 (a). 14C is a schematic diagram showing the high rigidity side and the low rigidity side of the region XIVb, and FIG. 14C is a schematic diagram showing the high rigidity side and the low rigidity side of the region XIVc in FIG. 図15は、本発明の圧力センサの第9の実施形態を示し、図15(a)は素子設置部および非対称剛性部を含む要部断面図、図15(b)は、図15(a)の領域XVbの高剛性側と低剛性側を示す模式図、図15(c)は、図15(a)の領域XVcの高剛性側と低剛性側を示す模式図、図15(d)は、図15(a)の領域XVdの高剛性側と低剛性側を示す模式図。FIG. 15 shows a ninth embodiment of the pressure sensor of the present invention. FIG. 15 (a) is a sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 15 (b) is FIG. 15C is a schematic diagram showing the high rigidity side and the low rigidity side of the region XVb, FIG. 15C is a schematic diagram showing the high rigidity side and the low rigidity side of the region XVc in FIG. 15A, and FIG. FIG. 16 is a schematic diagram showing a high rigidity side and a low rigidity side of a region XVd in FIG. 図16は、本発明の圧力センサの第10の実施形態を示し、図16(a)は素子設置部および非対称剛性部を含む要部断面図、図16(b)は、図16(a)の領域XVIbの高剛性側と低剛性側を示す模式図、図16(c)は、図16(a)の領域XVIcの高剛性側と低剛性側を示す模式図。16A and 16B show a pressure sensor according to a tenth embodiment of the present invention. FIG. 16A is a sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 16B is FIG. 16C is a schematic diagram showing a high rigidity side and a low rigidity side of a region XVIb, and FIG. 16C is a schematic diagram showing a high rigidity side and a low rigidity side of a region XVIc in FIG. 図17は、図16に示す受圧状態における圧力伝達ロッドの変形状態を示す図。FIG. 17 is a diagram showing a deformed state of the pressure transmission rod in the pressure receiving state shown in FIG. 16.
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
 同一あるいは同様な機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description and drawings are exemplifications for describing the present invention, and are omitted and simplified as appropriate for clarification of the description. The present invention can be implemented in other various forms. Unless otherwise specified, each component may be singular or plural.
The position, size, shape, range, and the like of each component illustrated in the drawings may not necessarily represent the actual position, size, shape, range, or the like, in order to facilitate understanding of the present invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range, and the like disclosed in the drawings.
When there are a plurality of components having the same or similar functions, the same reference numerals may be given different subscripts for explanation. However, when it is not necessary to distinguish between these components, the description may be omitted with suffixes omitted.
-第1の実施形態-
 図1は、本発明の圧力センサの第1の実施形態の外観斜視図であり、図2は、図1に示す圧力センサの分解斜視図であり、図3は、図1に示す圧力センサの縦断面図である。
 圧力センサ1は、例えば、車両等の内燃機関であるエンジンに取り付けられ、内燃機関の燃焼圧を検知してその燃焼圧に応じたセンサ出力を外部に出力する。
 図1に示されるように、圧力センサ1は、筐体6、ダイアフラム2、カバー4および端子部7を備えている。筐体6は、軸方向に貫通する中空部を有するほぼ円筒形状に形成されている。筐体6は、圧力センサ1をエンジンボディに設けた雌ねじ部に締結するための雄ねじ部10と、小径部6aと、大径部6bと、エンジンボディのセンサ装着部に当接する接触部9とを有する。
 なお、説明の便宜上、図1の上方を圧力センサ1の軸方向上方側、図1の下方を軸方向下方側と定義する。したがって、雄ねじ部10は筐体6の軸方向上方側に設けられ、接触部9は筐体6の軸方向下方側に設けられている。また、接触部9は、図示するとおり、大径部6bから小径部6aに向かって軸方向下方側に先細りの傾斜面である。
-First embodiment-
FIG. 1 is an external perspective view of a first embodiment of the pressure sensor of the present invention, FIG. 2 is an exploded perspective view of the pressure sensor shown in FIG. 1, and FIG. 3 is a perspective view of the pressure sensor shown in FIG. It is a longitudinal cross-sectional view.
The pressure sensor 1 is attached to, for example, an engine that is an internal combustion engine such as a vehicle, detects a combustion pressure of the internal combustion engine, and outputs a sensor output corresponding to the combustion pressure to the outside.
As shown in FIG. 1, the pressure sensor 1 includes a housing 6, a diaphragm 2, a cover 4, and a terminal 7. The housing 6 is formed in a substantially cylindrical shape having a hollow portion penetrating in the axial direction. The housing 6 includes a male thread portion 10 for fastening the pressure sensor 1 to a female thread portion provided on the engine body, a small-diameter portion 6a, a large-diameter portion 6b, and a contact portion 9 that comes into contact with a sensor mounting portion of the engine body. Having.
For convenience of explanation, the upper part of FIG. 1 is defined as the upper side in the axial direction of the pressure sensor 1, and the lower part of FIG. 1 is defined as the lower side in the axial direction. Therefore, the male screw portion 10 is provided on the upper side of the housing 6 in the axial direction, and the contact portion 9 is provided on the lower side of the housing 6 in the axial direction. As shown, the contact portion 9 is an inclined surface that tapers downward in the axial direction from the large-diameter portion 6b toward the small-diameter portion 6a.
 カバー4は、筐体6の小径部6aとほぼ同径に形成され、内部に軸方向に貫通する中空部を有する円筒形状を有する。カバー4は、筐体6の軸方向下方側の先端に圧力伝達ロッド3の高剛性固定部3cを挟持して装着する部材である。カバー4の長手方向ほぼ全域内と、筐体6の小径部6a内には、圧力伝達ロッド3(図2、図3参照)が収容されている。
 ダイアフラム2は、カバー4における、軸方向の筐体6側と反対側の端部、すなわちカバー4の軸方向下方側端部に取り付けられ、ダイアフラム2の軸方向下側には、圧力伝達ロッド3の軸方向下側の先端を通す穴が設けられている。ダイアフラム2は、例えば、インコネルや、SUS630等の金属により形成されている。
 端子部7は、筐体6における、軸方向のダイアフラム2側と反対側の端部、換言すれば、筐体6における軸方向の上端部に取り付けられている。端子部7には、圧力センサ1を外部電子装置に接続する端子部(図示せず)が設けられており、この端子部7には、圧力検知部5から出力されるセンサ出力が供給される信号線8(図3参照)が接続される。
The cover 4 is formed to have substantially the same diameter as the small-diameter portion 6a of the housing 6, and has a cylindrical shape having a hollow portion penetrating in the axial direction inside. The cover 4 is a member that holds the high-rigidity fixing portion 3c of the pressure transmission rod 3 at the distal end of the housing 6 on the lower side in the axial direction. The pressure transmission rod 3 (see FIGS. 2 and 3) is accommodated in substantially the entire area in the longitudinal direction of the cover 4 and in the small diameter portion 6a of the housing 6.
The diaphragm 2 is attached to an end of the cover 4 on the opposite side to the housing 6 in the axial direction, that is, to an axially lower end of the cover 4. A hole through which the tip of the lower side in the axial direction passes is provided. The diaphragm 2 is formed of, for example, a metal such as Inconel or SUS630.
The terminal portion 7 is attached to an end of the housing 6 opposite to the side of the diaphragm 2 in the axial direction, in other words, to an upper end of the housing 6 in the axial direction. The terminal unit 7 is provided with a terminal unit (not shown) for connecting the pressure sensor 1 to an external electronic device. The terminal unit 7 is supplied with a sensor output output from the pressure detection unit 5. The signal line 8 (see FIG. 3) is connected.
 圧力伝達ロッド3の軸方向下端側の先端は、ダイアフラム2の軸方向下側の貫通穴の内壁と溶接等により固定されている。ダイアフラム2は、エンジンの燃焼圧を受けて、カバー4との固定部と圧力伝達ロッド3との固定部との間の部分が変形することにより圧力伝達ロッド3に圧縮力を与える機能と、エンジン内部の燃焼ガスが圧力センサ1内に侵入するのを防ぐ機能とを有する。 先端 The distal end of the pressure transmission rod 3 at the lower end in the axial direction is fixed to the inner wall of the axially lower through hole of the diaphragm 2 by welding or the like. The diaphragm 2 receives a combustion pressure of the engine, deforms a portion between the fixed portion with the cover 4 and the fixed portion with the pressure transmission rod 3, and applies a compressive force to the pressure transmission rod 3; A function of preventing internal combustion gas from entering the pressure sensor 1.
 圧力伝達ロッド3には圧力検知部5が設置されている。圧力伝達ロッド3は、ダイアフラム2から受けた圧縮力に応じて圧力検知部5の設置位置を含む範囲内で歪を生じる。圧力伝達ロッド3の歪は、圧力検知部5によって検出される。つまり、圧力伝達ロッド3は、圧力検知部5にエンジンの燃焼圧を伝達する圧力伝達機構として作用する。圧力検知部5は、例えば歪ゲージ等を用いて構成されている。圧力検知部5は、圧力伝達ロッド3の歪を検出することでエンジンの燃焼圧を検知し、その検知結果に応じた圧力信号を、信号線8を介して端子部7に出力する。この圧力信号は、端子部7から圧力センサ1の外部にセンサ出力として出力される。
 なお、圧力検知部5は、歪ゲージ等から得られた微弱な信号をアナログ増幅したり、デジタル変換したり、温度を検知して温度補正を行うような回路部を備えていてもよい。また、圧力検知部5から得られた圧力信号に対して出力調整などの信号処理を行うことでセンサ出力を生成し、外部へと出力する回路を端子部7に設けてもよい。
A pressure detection unit 5 is provided on the pressure transmission rod 3. The pressure transmission rod 3 generates distortion within a range including the installation position of the pressure detection unit 5 according to the compression force received from the diaphragm 2. The distortion of the pressure transmission rod 3 is detected by the pressure detection unit 5. That is, the pressure transmission rod 3 functions as a pressure transmission mechanism that transmits the combustion pressure of the engine to the pressure detection unit 5. The pressure detector 5 is configured using, for example, a strain gauge or the like. The pressure detection unit 5 detects the combustion pressure of the engine by detecting the distortion of the pressure transmission rod 3, and outputs a pressure signal according to the detection result to the terminal unit 7 via the signal line 8. This pressure signal is output from the terminal section 7 to the outside of the pressure sensor 1 as a sensor output.
Note that the pressure detection unit 5 may include a circuit unit that performs analog amplification or digital conversion of a weak signal obtained from a strain gauge or the like, or detects temperature and performs temperature correction. Further, a circuit that generates a sensor output by performing signal processing such as output adjustment on the pressure signal obtained from the pressure detection unit 5 and outputs the sensor output to the outside may be provided in the terminal unit 7.
 図4は、図3に示す圧力センサの要部断面図である。
 圧力伝達ロッド3は、圧力伝達部3a、素子設置部3b、高剛性固定部3c、非対称剛性部3dを備えている。
 圧力伝達部3aは、圧力センサ1がエンジンに取り付けられた状態で、素子設置部3bや高剛性固定部3cよりもエンジンの内側に位置する場所に設けられている。圧力伝達ロッド3、すなわち、圧力伝達部3aは、圧力伝達方向の中心軸Oを有しており、ダイアフラム2から受けた圧縮力を素子設置部3bに伝達する。すなわち、圧力伝達ロッド3の高剛性固定部3cは筐体6で拘束されており、燃焼圧による負荷を負担する荷重負担部として機能する。圧力伝達部3aで受ける軸力により圧力伝達ロッド3はたとえば図6に示すように変形し、素子設置部3bの圧力検知部5の出力は変形量に応じて変動する。燃焼室内の圧力と圧力検知部5の出力の校正データをあらかじめ作成して、圧力検知部5の出力から圧力を検知することができる。
 なお、以下の説明において、圧力伝達ロッド3の中心軸O(以下、単に「中心軸O」ということもある。)に直交する方向をx方向とし、図4に図示するように、中心軸Oより右方を+x方向、中心軸Oより左方を-x方向とする。
FIG. 4 is a sectional view of a main part of the pressure sensor shown in FIG.
The pressure transmitting rod 3 includes a pressure transmitting section 3a, an element installation section 3b, a high rigidity fixing section 3c, and an asymmetric rigid section 3d.
The pressure transmitting section 3a is provided at a position located inside the engine with respect to the element installation section 3b and the high rigidity fixing section 3c when the pressure sensor 1 is attached to the engine. The pressure transmitting rod 3, that is, the pressure transmitting portion 3a has a central axis O in the pressure transmitting direction, and transmits the compressive force received from the diaphragm 2 to the element installation portion 3b. That is, the high rigidity fixing portion 3c of the pressure transmission rod 3 is restrained by the housing 6, and functions as a load bearing portion that bears a load due to the combustion pressure. The pressure transmitting rod 3 is deformed by the axial force received by the pressure transmitting section 3a, for example, as shown in FIG. 6, and the output of the pressure detecting section 5 of the element installation section 3b fluctuates according to the amount of deformation. Calibration data of the pressure in the combustion chamber and the output of the pressure detector 5 is created in advance, and the pressure can be detected from the output of the pressure detector 5.
In the following description, the direction orthogonal to the central axis O of the pressure transmitting rod 3 (hereinafter, also simply referred to as “central axis O”) is referred to as x direction, and as shown in FIG. The right side is the + x direction, and the left side of the center axis O is the −x direction.
 素子設置部3bは、高剛性固定部3cよりも低い剛性を有しており、圧力伝達部3aから伝達された圧縮力に応じて歪を生じる部分である。素子設置部3bは、図5(b)に示すように、実施の形態では円形断面の圧力伝達部3aの一部をカットした半円形断面形状に形成され、素子設置部3bには、平坦面である素子設置面21が形成されている。素子設置面21は、圧力伝達ロッド3の中心軸Oと平行に延在する。圧力検知部5は、素子設置面21上に固定されている。素子設置部3bにおける圧力検知部5の設置部分の歪量が圧力検知部5により検知される。その歪量はエンジンの燃焼圧に応じた値となる。なお、素子設置面21は、図4では、圧力伝達ロッド3の中心軸Oと同一平面上に配置された構成として例示されているが、素子設置面21は、圧力伝達ロッド3の中心軸Oより+x方向側に偏倚した中心軸Oに平行な平面としたり、あるいは-x方向側に同様に延在する平面としてもよい。 The element mounting portion 3b has a lower rigidity than the high-rigidity fixing portion 3c, and is a portion that generates a strain according to the compressive force transmitted from the pressure transmitting portion 3a. As shown in FIG. 5B, in the embodiment, the element mounting portion 3b is formed in a semicircular cross-sectional shape in which a part of the pressure transmitting portion 3a having a circular cross section is cut, and the element mounting portion 3b has a flat surface. Is formed. The element installation surface 21 extends in parallel with the central axis O of the pressure transmission rod 3. The pressure detector 5 is fixed on the element installation surface 21. The amount of distortion of the installation part of the pressure detection part 5 in the element installation part 3b is detected by the pressure detection part 5. The amount of distortion is a value corresponding to the combustion pressure of the engine. Although the element mounting surface 21 is illustrated in FIG. 4 as a configuration arranged on the same plane as the central axis O of the pressure transmitting rod 3, the element mounting surface 21 is The plane may be a plane parallel to the central axis O further deviated in the + x direction side, or may be a plane extending in the −x direction side similarly.
 高剛性固定部3cは、圧力伝達方向の中心軸Oとなる軸方向に対して垂直な面の断面積が素子設置部3bより大きく設定されており、素子設置部3bよりも高い剛性を有する。高剛性固定部3cは、圧力伝達部3aから伝達された圧縮力を受け止めて、素子設置部3bにおける歪量を最大化する機能を有する。高剛性固定部3cの中央側には、圧力伝達ロッド3の中心軸Oの軸方向(以下、単に「軸方向」ということもある。)に貫通する貫通孔22が形成されている。圧力検知部5に接続された信号線8は、高剛性固定部3cの貫通孔22内を挿通されて延在され、端子部7に接続される。
 高剛性固定部3cは、筐体6とカバー4に挟持される大径部23と、筐体6に嵌合する小径部23aと、カバー4に嵌合する小径部23bとで構成されている。高剛性固定部3cは、大径部23の外周縁の上面が筐体6の下端に当接され、大径部23の下面がカバー4の上端に当接されて、筐体6とカバー4の間に保持される。
The high-rigidity fixing portion 3c has a cross-sectional area of a plane perpendicular to the axial direction which is the central axis O of the pressure transmission direction set to be larger than the element installation portion 3b, and has higher rigidity than the element installation portion 3b. The high rigidity fixing portion 3c has a function of receiving the compressive force transmitted from the pressure transmitting portion 3a and maximizing the amount of distortion in the element installation portion 3b. A through hole 22 that penetrates in the axial direction of the central axis O of the pressure transmitting rod 3 (hereinafter, may be simply referred to as “axial direction”) is formed at the center side of the high rigidity fixing portion 3c. The signal line 8 connected to the pressure detection unit 5 extends through the through hole 22 of the high rigidity fixing unit 3 c and is connected to the terminal unit 7.
The high-rigidity fixing portion 3c includes a large-diameter portion 23 sandwiched between the housing 6 and the cover 4, a small-diameter portion 23a fitted to the housing 6, and a small-diameter portion 23b fitted to the cover 4. . The high-rigidity fixing portion 3 c is configured such that the upper surface of the outer peripheral edge of the large-diameter portion 23 is in contact with the lower end of the housing 6, and the lower surface of the large-diameter portion 23 is in contact with the upper end of the cover 4. Held between.
 非対称剛性部3dは、圧力検知部5よりもエンジンの内側に位置する場所に設けられた圧力伝達部3aの外周側の一部をカットすることにより、中心軸Oより+x方向側に所定量偏倚した位置に中心軸Oと平行な平面を形成するように凹設されている。非対称剛性部3dは、圧力伝達部3aの中心軸Oに対する剛性を非対称にするものである。 The asymmetric rigid portion 3d is deviated by a predetermined amount toward the + x direction side from the center axis O by cutting a part of an outer peripheral side of the pressure transmitting portion 3a provided at a position located inside the engine with respect to the pressure detecting portion 5. It is recessed so as to form a plane parallel to the central axis O at the specified position. The asymmetric rigid part 3d makes the rigidity of the pressure transmitting part 3a with respect to the central axis O asymmetric.
 図5(a)は、図4における素子設置部および非対称剛性部それぞれの一領域を示す図であり、図5(b)は、図5(a)の領域IIbにおける圧力伝達ロッドの中心軸に対する高剛性側と低剛性側を示す模式図であり、図5(c)は、図5(a)の領域IIcにおける圧力伝達ロッドの中心軸に対する高剛性側と低剛性側を示す模式図である。
 素子設置部3bは、中心軸Oに対し-x側がカットされている。このため、素子設置部3bは、図5(b)に示されるように、中心軸Oより+x方向側が中心軸Oより-x方向側よりも剛性が大きい。換言すれば、素子設置部3bは、中心軸Oより+x方向側が高剛性側であり、中心軸Oより-x方向側が低剛性側である。
 圧力伝達部3aは、中心軸Oに対し+x側がカットされている。このため、圧力伝達部3aは、図5(c)に示されるように、中心軸Oより-x方向側が、中心軸Oよりx方向側よりも剛性が大きい。換言すれば、圧力伝達部3aは、中心軸Oより-x方向側が高剛性側であり、中心軸Oより+x方向側が低剛性側である。従って、非対称剛性部3dの高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置は、素子設置部3bの高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置とは、圧力伝達ロッド3の中心軸Oに対して逆である。
FIG. 5A is a diagram illustrating one region of each of the element installation portion and the asymmetric rigid portion in FIG. 4, and FIG. 5B is a diagram with respect to the central axis of the pressure transmission rod in a region IIb of FIG. FIG. 5C is a schematic diagram illustrating a high rigidity side and a low rigidity side, and FIG. 5C is a schematic diagram illustrating a high rigidity side and a low rigidity side with respect to a center axis of the pressure transmission rod in a region IIc of FIG. .
The element mounting portion 3b is cut on the −x side with respect to the central axis O. For this reason, as shown in FIG. 5B, the rigidity of the element mounting portion 3b is greater on the + x direction side of the central axis O than on the −x direction side of the central axis O. In other words, the element installation section 3b has a high rigidity side on the + x direction side from the central axis O and a low rigidity side on the −x direction side from the central axis O.
The pressure transmitting portion 3a is cut on the + x side with respect to the central axis O. For this reason, as shown in FIG. 5C, the pressure transmitting portion 3a has greater rigidity on the −x direction side than the central axis O than on the x direction side of the central axis O. In other words, the pressure transmitting portion 3a has a high rigidity side on the −x direction side from the central axis O and a low rigidity side on the + x direction side from the central axis O. Therefore, the relative arrangement of the high rigidity side and the low rigidity side of the asymmetric rigid part 3d in the direction orthogonal to the axial direction of the pressure transmitting rod 3 is based on the pressure transmission on the high rigidity side and the low rigidity side of the element installation part 3b. The relative arrangement in the direction orthogonal to the axial direction of the rod 3 is opposite to the center axis O of the pressure transmission rod 3.
 図6(a)は、非対称剛性部を有していない比較品の受圧状態における圧力伝達ロッドの変形状態を示す図であり、図6(b)は、本発明の第1の実施形態の受圧状態における圧力伝達ロッドの変形状態を示す図である。
 図6(a)に示した非対称剛性部3dを有していない圧力伝達ロッド3Rでは、素子設置部3bは、中心軸Oに対して+x側が高剛性側であり、-x側が低剛性側である。このため、圧力伝達ロッド3Rは、素子設置部3bを内側にして湾曲するように圧力伝達部3aが撓んでいる。ノッキングのような20kHz程度の周波数のパルス状の圧力波を受けたとき、圧力伝達ロッド3Rは、図6(a)に示すような変形をした後、圧力伝達部3aの弾性により変形前の状態に戻ろうとする。圧力波の振動数が圧力伝達ロッド3Rの固有振動数に近いと振動が発生する。図6(a)に示されるように、圧力伝達ロッド3Rに誘起される振動は、圧力伝達部3aと素子設置部3bとにより構成される弦と高剛性固定部3cとの接続部31を節、圧力伝達部3aの中央付近を腹とした横波の振動モードである。この振動モードは固有振動数が低く、ノッキング等の高周波成分を含む圧力波を受けると、振動が誘起されて計測誤差をもたらす。
FIG. 6A is a diagram illustrating a deformed state of the pressure transmission rod in a pressure receiving state of a comparative product having no asymmetric rigid portion, and FIG. 6B is a diagram illustrating a pressure receiving rod of the first embodiment of the present invention. FIG. 4 is a diagram illustrating a deformed state of the pressure transmission rod in the state.
In the pressure transmitting rod 3R without the asymmetric rigid portion 3d shown in FIG. 6A, the element installation portion 3b has the high rigidity side on the + x side and the low rigidity side on the -x side with respect to the center axis O. is there. Therefore, the pressure transmitting portion 3a of the pressure transmitting rod 3R is bent such that the element mounting portion 3b is located inside. When receiving a pulse-like pressure wave of a frequency of about 20 kHz, such as knocking, the pressure transmitting rod 3R deforms as shown in FIG. 6A, and then the state before deformation due to the elasticity of the pressure transmitting portion 3a. Try to return to When the frequency of the pressure wave is close to the natural frequency of the pressure transmission rod 3R, vibration occurs. As shown in FIG. 6A, the vibration induced in the pressure transmitting rod 3R causes the connecting portion 31 between the string formed by the pressure transmitting portion 3a and the element installation portion 3b and the high rigidity fixing portion 3c to be connected. This is a transverse wave vibration mode with the antinode in the vicinity of the center of the pressure transmitting portion 3a. This vibration mode has a low natural frequency, and when receiving a pressure wave including a high frequency component such as knocking, the vibration is induced to cause a measurement error.
 図6(b)に示した本発明の第1の実施例の圧力伝達ロッド3では、素子設置部3bの中心軸Oの軸方向に接続された圧力伝達部3aに、非対称剛性部3dが設けられている。圧力伝達ロッド3は、高剛性固定部3cとダイアフラム2から受圧する圧力伝達部3aの先端との間に掲載される梁と見ることができる。圧力伝達部3aの非対称剛性部3dが設けられた断面では、中心軸Oに対して-x側が高剛性側であり、+x側が低剛性側である。このため、非対称剛性部3dが設けられた圧力伝達部3aは、非対称剛性部3dを内側にして湾曲するように撓む。このため、圧力伝達ロッド3には、素子設置部3bの素子設置面21を内側にして湾曲し、かつ、圧力伝達部3aにおける非対称剛性部3dを内側にして湾曲する変形が生じる。つまり、圧力伝達ロッド3には、図6(b)に示されるように、素子設置部3b付近と非対称剛性部3d付近の2箇所を腹とする振動モードが誘起される。この振動モードは、図6(a)の構造で誘起される振動モードより波長が短いため、固有振動数が高い。その結果、ノッキング等の高周波成分を含む圧力波のパルス圧を受けても、振動が誘起されにくく、検出精度を向上することができる。 In the pressure transmitting rod 3 according to the first embodiment of the present invention shown in FIG. 6B, an asymmetric rigid portion 3d is provided on the pressure transmitting portion 3a connected in the axial direction of the central axis O of the element installation portion 3b. Have been. The pressure transmission rod 3 can be regarded as a beam inserted between the high rigidity fixed portion 3c and the tip of the pressure transmission portion 3a that receives pressure from the diaphragm 2. In the cross section of the pressure transmitting portion 3a where the asymmetric rigid portion 3d is provided, the -x side with respect to the central axis O is the high rigidity side, and the + x side is the low rigidity side. For this reason, the pressure transmitting portion 3a provided with the asymmetric rigid portion 3d bends so as to bend with the asymmetric rigid portion 3d inside. For this reason, the pressure transmission rod 3 is deformed such that the element installation surface 21 of the element installation section 3b is curved inside and the asymmetric rigid portion 3d of the pressure transmission section 3a is curved inside. That is, as shown in FIG. 6B, a vibration mode having two antinodes near the element installation part 3b and near the asymmetric rigid part 3d is induced in the pressure transmission rod 3. This vibration mode has a shorter natural wavelength than the vibration mode induced by the structure of FIG. As a result, even when receiving a pulse pressure of a pressure wave including a high-frequency component such as knocking, vibration is hardly induced, and detection accuracy can be improved.
 図7は、圧力波(20kHz)が印加された状態で検出されたひずみ量を示し、図7(a)は、図6(a)に示される非対称剛性部を有していない比較品の応答特性図、図7(b)は、本実施形態の応答特性図である。
 図6(a)に示される非対称剛性部を有していない比較品の圧力伝達ロッド3Rでは、ノッキング等により発生する20kHzの圧力波を受けると、歪み量は図7(a)に示されるような比較的大きな振幅を有する振動波形としてあらわれ発生し、この振動は500μsを越えても継続する。
 これに対し、本発明の第1の実施形態による圧力伝達ロッド3では、20kHzの圧力波を受けた直後の振動の振幅は、図7(b)に示されるように、比較品の圧力伝達ロッド3Rよりも小さく、また、受圧後、300μs程度でほぼ無視できる大きさに減衰する。このように、本発明の第1の実施形態の圧力伝達ロッド3は、比較品の圧力伝達ロッド3Rに比し、20kHzの圧力波を受けた後の振動を低減することができることが確認された。これにより、本発明の第1の実施形態の圧力センサは、圧力波を受けたときに発生する横波の振動による計測誤差を低減し、検知精度を向上することが確認された。
 なお、比較品の圧力伝達ロッド3Rの共振周波数は、ほぼ20KHzであったが、第1の実施形態による圧力伝達ロッド3の共振周波数は、20KHzより十分に高い60KHz程度以上であった。
FIG. 7 shows the amount of strain detected when a pressure wave (20 kHz) is applied. FIG. 7 (a) shows the response of a comparative product having no asymmetrical rigid portion shown in FIG. 6 (a). FIG. 7B is a characteristic diagram, and FIG. 7B is a response characteristic diagram of the present embodiment.
In the pressure transmission rod 3R of the comparative example having no asymmetric rigid portion shown in FIG. 6A, when receiving a pressure wave of 20 kHz generated by knocking or the like, the distortion amount is as shown in FIG. 7A. It appears as a vibration waveform having a relatively large amplitude, and this vibration continues even if it exceeds 500 μs.
On the other hand, in the pressure transmitting rod 3 according to the first embodiment of the present invention, the amplitude of the vibration immediately after receiving the pressure wave of 20 kHz is, as shown in FIG. It is smaller than 3R, and attenuates to an almost negligible size in about 300 μs after receiving the pressure. Thus, it was confirmed that the pressure transmission rod 3 of the first embodiment of the present invention can reduce the vibration after receiving the pressure wave of 20 kHz as compared with the pressure transmission rod 3R of the comparative product. . Thus, it was confirmed that the pressure sensor according to the first embodiment of the present invention reduces measurement errors due to vibration of a transverse wave generated when receiving a pressure wave, and improves detection accuracy.
The resonance frequency of the pressure transmission rod 3R of the comparative product was approximately 20 KHz, but the resonance frequency of the pressure transmission rod 3 according to the first embodiment was about 60 KHz, which is sufficiently higher than 20 KHz.
 上記第1の実施形態によれば、下記の効果を奏する。
(1)圧力センサ1は、ダイアフラム2と、素子設置部3bおよび圧力伝達部3aを有する圧力伝達ロッド3と、素子設置部3bの設置位置に設けられた圧力検知部5とを備える。圧力伝達ロッド3は、圧力伝達方向の中心軸Oとなる圧力伝達ロッド3の軸方向における圧力検知部5が設置された設置位置と異なる位置に、ダイアフラム2を介して伝達される圧力波により圧力伝達ロッド3に生じる振動の共振周波数を高めるための非対称剛性部3dを有する。このため、圧力伝達ロッド3に高周波成分を含む圧力波が伝達されても、振動が誘起されにくく、検出精度を向上することができる。
According to the first embodiment, the following effects can be obtained.
(1) The pressure sensor 1 includes a diaphragm 2, a pressure transmission rod 3 having an element installation part 3b and a pressure transmission part 3a, and a pressure detection part 5 provided at an installation position of the element installation part 3b. The pressure transmission rod 3 is pressed by a pressure wave transmitted through the diaphragm 2 at a position different from the installation position where the pressure detection unit 5 is installed in the axial direction of the pressure transmission rod 3 which is the central axis O of the pressure transmission direction. The transmission rod 3 has an asymmetrical rigid portion 3d for increasing the resonance frequency of the vibration generated. For this reason, even if a pressure wave containing a high-frequency component is transmitted to the pressure transmission rod 3, vibration is less likely to be induced, and detection accuracy can be improved.
(2)圧力伝達ロッド3における素子設置部3bおよび非対称剛性部3dがそれぞれ設けられた断面では、それぞれ、高剛性側と低剛性側とを有し、非対称剛性部3dの高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置は、素子設置部3bの高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置とは、圧力伝達ロッド3の中心軸Oに対して逆である。このような、非対称剛性部3dは、例えば、圧力伝達ロッド3の一部をカットして形成することが可能であり、効率的に生産することができる。 (2) The cross section of the pressure transmitting rod 3 where the element installation portion 3b and the asymmetric rigid portion 3d are provided respectively has a high rigidity side and a low rigidity side, and the high rigidity side and the low rigidity of the asymmetric rigid portion 3d. The relative arrangement in the direction orthogonal to the axial direction of the pressure transmitting rod 3 is relatively high in the direction orthogonal to the axial direction of the pressure transmitting rod 3 on the high rigidity side and the low rigidity side of the element installation portion 3b. The arrangement is opposite to the central axis O of the pressure transmission rod 3. Such an asymmetric rigid portion 3d can be formed by cutting a part of the pressure transmission rod 3, for example, and can be efficiently produced.
 上記第1の実施形態では、非対称剛性部3dを、圧力伝達部3aの一部をカットすることにより形成する構造として例示した。しかし、非対称剛性部3dを形成するには、上記以外の種々の方法および構造がある。以下、それらの実施形態について説明する。 In the first embodiment, the asymmetric rigid portion 3d is exemplified as a structure formed by cutting a part of the pressure transmitting portion 3a. However, there are various methods and structures other than those described above for forming the asymmetric rigid portion 3d. Hereinafter, those embodiments will be described.
-第2の実施形態-
 図8は、本発明の圧力センサの第2の実施形態を示し、図8(a)は素子設置部および非対称剛性部を含む要部断面図であり、図8(b)は、図8(a)の領域VIIIbの高剛性側と低剛性側を示す模式図であり、図8(c)は、図8(a)の領域VIIIcの高剛性側と低剛性側を示す模式図である。
 第2の実施形態では、図8(a)に示されるように、圧力伝達ロッド3の非対称剛性部3dが、中心軸Oに対し-x側に設けられた構造を有する。第2の実施形態の圧力伝達部3aは、第1の実施形態を示す図5の圧力伝達部3aの径を長手方向全域で細径とし、非対称剛性部3dと呼ぶ突部を細径外周面の所定軸方向領域に設けている。このような形状を採用して第1の実施形態と同様に、圧力伝達ロッド3の軸方向における剛性の非対称性を実現している。
-Second embodiment-
FIG. 8 shows a second embodiment of the pressure sensor of the present invention. FIG. 8A is a cross-sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 8A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region VIIIb, and FIG. 8C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region VIIIc in FIG.
In the second embodiment, as shown in FIG. 8A, the asymmetric rigid portion 3d of the pressure transmitting rod 3 has a structure provided on the −x side with respect to the central axis O. The pressure transmitting portion 3a according to the second embodiment has the diameter of the pressure transmitting portion 3a of the first embodiment shown in FIG. 5 reduced throughout the longitudinal direction, and a projection called an asymmetric rigid portion 3d having a small outer peripheral surface. In the predetermined axial direction region. By adopting such a shape, as in the first embodiment, asymmetry of rigidity in the axial direction of the pressure transmitting rod 3 is realized.
 第2の実施形態では、非対称剛性部3dは、圧力伝達部3aに一体に形成されており、圧力伝達部3aの-x方向の側面から、さらに-x方向に向けて突出する突出部として形成されている。従って、圧力伝達部3aは、中心軸Oに直交する方向において、中心軸Oより-x側の非対称剛性部3dが設けられた領域の断面積、換言すれば、剛性が、中心軸Oより+x側の非対称剛性部3dが設けられていない領域の断面積、換言すれば、剛性より大きい。つまり、非対称剛性部3dは、圧力伝達部3aの中心軸Oに対する剛性を非対称にするものである。 In the second embodiment, the asymmetric rigid portion 3d is formed integrally with the pressure transmitting portion 3a, and is formed as a projecting portion that further projects in the −x direction from the −x side surface of the pressure transmitting portion 3a. Have been. Therefore, in the direction orthogonal to the central axis O, the pressure transmitting portion 3a has a cross-sectional area of the region where the asymmetric rigid portion 3d on the −x side of the central axis O is provided, in other words, the rigidity is + x more than the central axis O. The cross-sectional area of the region where the side asymmetric rigid portion 3d is not provided, in other words, is larger than the rigidity. That is, the asymmetric rigid part 3d makes the rigidity of the pressure transmitting part 3a with respect to the central axis O asymmetric.
 図8(b)に示されるように、素子設置部3bは、第1の実施形態と同様、中心軸Oより+x方向側が高剛性側であり、中心軸Oより-x方向側が低剛性側である。
 図8(c)に示されるように、圧力伝達部3aには、中心軸Oより-x側に、中心軸Oからの断面積を大きくする非対称剛性部3dが設けられている。このため、圧力伝達部3aは、中心軸Oより-x方向側が、中心軸Oより+x方向側よりも剛性が大きい。つまり、非対称剛性部3dは、圧力伝達部3aの中心軸Oに対する剛性を非対称にするものであり、圧力伝達部3aの非対称剛性部3dが設けられた断面では、中心軸Oより-x方向側が高剛性側であり、中心軸Oより+x方向側が低剛性側である。
As shown in FIG. 8B, the element mounting portion 3b has a high rigidity side on the + x direction side from the central axis O and a low rigidity side on the −x direction side from the central axis O, as in the first embodiment. is there.
As shown in FIG. 8C, the pressure transmitting portion 3a is provided with an asymmetrical rigid portion 3d on the −x side with respect to the central axis O to increase the sectional area from the central axis O. Therefore, the pressure transmitting portion 3a has a greater rigidity on the −x direction side than the central axis O than on the + x direction side of the central axis O. In other words, the asymmetric rigid portion 3d makes the rigidity of the pressure transmitting portion 3a with respect to the central axis O asymmetric. In the cross section where the asymmetric rigid portion 3d of the pressure transmitting portion 3a is provided, the -x direction side of the central axis O is closer to the -x direction. It is on the high rigidity side, and the + x direction side from the center axis O is the low rigidity side.
 従って、第2の実施形態においても、圧力伝達部3aの非対称剛性部3dが設けられた断面における高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置は、素子設置部3bの高剛性側と低剛性側、の圧力伝達ロッド3の軸方向に直交する方向における相対的な配置とは、圧力伝達ロッド3の中心軸Oに対して逆である。このため、圧力伝達ロッド3には、第1の実施形態と同様に、素子設置部3b付近と非対称剛性部3d付近の2箇所を腹とする振動モードが誘起される。この振動モードは、非対称剛性部3dを有していない圧力伝達ロッド3に誘起される振動モードより波長が短いため、固有振動数が高い。
 第2の実施形態における他の構成は、第1の実施形態と同様である。
 従って、第2の実施形態においても、第1の実施形態と同様な効果(1)を奏する。また、第2の実施形態における非対称剛性部3dは、圧力伝達部3aと共に一体成型により形成することが可能であり、第1の実施形態と同様な効果(2)を奏する。なお、第2の実施形態では、圧力伝達部3aを切削加工して非対称剛性部3dを形成する圧力伝達部3aを切削加工して非対称剛性部3dを形成する第1の実施形態よりも製作コストを一層低減すること期待できる。
Therefore, also in the second embodiment, the relative arrangement in the direction orthogonal to the axial direction of the pressure transmission rod 3 on the high rigidity side and the low rigidity side in the cross section where the asymmetric rigid part 3d of the pressure transmitting part 3a is provided. Is opposite to the relative arrangement of the high rigidity side and the low rigidity side of the element installation portion 3b in the direction orthogonal to the axial direction of the pressure transmission rod 3 with respect to the center axis O of the pressure transmission rod 3. Therefore, as in the first embodiment, a vibration mode with two antinodes near the element installation part 3b and near the asymmetric rigid part 3d is induced in the pressure transmission rod 3. This vibration mode has a shorter natural wavelength than the vibration mode induced in the pressure transmission rod 3 having no asymmetric rigid portion 3d, and thus has a higher natural frequency.
Other configurations in the second embodiment are the same as those in the first embodiment.
Therefore, the second embodiment also has the same effect (1) as the first embodiment. Further, the asymmetric rigid portion 3d in the second embodiment can be formed by integral molding together with the pressure transmitting portion 3a, and has the same effect (2) as the first embodiment. In the second embodiment, the pressure transmitting portion 3a is cut to form the asymmetric rigid portion 3d. The pressure transmitting portion 3a is cut to form the asymmetric rigid portion 3d. The manufacturing cost is higher than in the first embodiment. Can be expected to be further reduced.
-第3の実施形態-
 図9は、本発明の圧力センサの第3の実施形態を示し、図9(a)は素子設置部および非対称剛性部を含む要部断面図であり、図9(b)は、図9(a)の領域IXbの高剛性側と低剛性側を示す模式図であり、図9(c)は、図9(a)の領域IXcの高剛性側と低剛性側を示す模式図である。
 第3の実施形態では、非対称剛性部3dは、圧力伝達ロッド3の圧力伝達部3aの一部が低剛性材料により形成された低剛性領域として形成されている。
 図9(a)に示されるように、非対称剛性部3dは、中心軸Oよりも+x方向側に形成されている。第3の実施形態では、圧力伝達部3aの非対称剛性部3dを除く全体に焼入れを施し、非対称剛性部3dのみに焼入れを施さない処理を行って形成される。
 すなわち、圧力伝達部3aを焼入れするために、圧力伝達部3a全体を適切な温度に加熱するが、この際、非対称剛性部3dを形成する領域は、例えば、冷却する等の処置を講じて焼入れ温度より低温に保持する。この状態で、圧力伝達部3a全体を急冷して焼入れを行うと、非対称剛性部3dのみが焼入れされず、圧力伝達部3aの他の領域よりも低剛性となる。なお、焼入れを行う圧力伝達部3aの材料として、例えば、SUS630等を用いることができる。
-Third embodiment-
9A and 9B show a third embodiment of the pressure sensor of the present invention. FIG. 9A is a sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 9B is a sectional view of FIG. 9A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region IXb, and FIG. 9C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region IXc in FIG.
In the third embodiment, the asymmetric rigid portion 3d is formed as a low rigidity region in which a part of the pressure transmitting portion 3a of the pressure transmitting rod 3 is formed of a low rigidity material.
As shown in FIG. 9A, the asymmetric rigid portion 3d is formed on the + x direction side of the central axis O. In the third embodiment, the pressure transmitting portion 3a is formed by quenching the entirety of the pressure transmitting portion 3a except for the asymmetric rigid portion 3d, and performing a process of not quenching only the asymmetric rigid portion 3d.
That is, in order to quench the pressure transmitting portion 3a, the entire pressure transmitting portion 3a is heated to an appropriate temperature. At this time, the region where the asymmetric rigid portion 3d is formed is quenched by taking measures such as cooling. Keep below temperature. In this state, when the entire pressure transmitting portion 3a is rapidly cooled and quenched, only the asymmetric rigid portion 3d is not quenched, and has a lower rigidity than other regions of the pressure transmitting portion 3a. Note that, for example, SUS630 or the like can be used as a material of the pressure transmitting unit 3a that performs quenching.
 図9(b)に示されるように、素子設置部3bは、第1の実施形態と同様、中心軸Oより+x方向側が高剛性側であり、中心軸Oより-x方向側が低剛性側である。
 圧力伝達部3aには、中心軸Oより+x側に、焼入れがされていない非対称剛性部3dが設けられている。このため、圧力伝達部3aの非対称剛性部3dが設けられた断面では、図9(c)に示されるように、中心軸Oより-x方向側が、中心軸Oより+x方向側よりも剛性が大きい。つまり、非対称剛性部3dは、圧力伝達部3aの中心軸Oに対する剛性を非対称にするものであり、圧力伝達部3aの非対称剛性部3dが設けられた断面は、中心軸Oより-x方向側が高剛性側であり、中心軸Oより+x方向側が低剛性側である。
As shown in FIG. 9B, in the element installation part 3b, as in the first embodiment, the + x direction side from the center axis O is on the high rigidity side, and the −x direction side from the center axis O is on the low rigidity side. is there.
The pressure transmitting portion 3a is provided with a non-hardened asymmetric rigid portion 3d on the + x side from the center axis O. Therefore, in the cross section of the pressure transmitting portion 3a where the asymmetric rigid portion 3d is provided, as shown in FIG. 9C, the rigidity on the −x direction side from the central axis O is higher than the + x direction side on the central axis O. large. In other words, the asymmetric rigid portion 3d makes the rigidity of the pressure transmitting portion 3a with respect to the central axis O asymmetric, and the cross section of the pressure transmitting portion 3a where the asymmetric rigid portion 3d is provided is on the −x direction side of the central axis O. It is on the high rigidity side, and the + x direction side from the center axis O is the low rigidity side.
 従って、第3の実施形態においても、圧力伝達部3aにおいて非対称剛性部3dが設けられた断面での高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置は、素子設置部3bの高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置とは、圧力伝達ロッド3の中心軸Oに対して逆である。このため、圧力伝達ロッド3には、第1の実施形態と同様に、素子設置部3b付近と非対称剛性部3d付近の2箇所を腹とする振動モードが誘起される。この振動モードは、非対称剛性部3dを有していない圧力伝達ロッド3に誘起される振動モードより波長が短いため、固有振動数が高い。 Therefore, also in the third embodiment, the relative positions in the direction orthogonal to the axial direction of the pressure transmission rod 3 on the high rigidity side and the low rigidity side in the cross section where the asymmetric rigid part 3d is provided in the pressure transmitting part 3a. The arrangement is opposite to the central arrangement O of the pressure transmission rod 3 on the high rigidity side and the low rigidity side of the element installation part 3b in the direction orthogonal to the axial direction of the pressure transmission rod 3. . Therefore, as in the first embodiment, a vibration mode with two antinodes near the element installation part 3b and near the asymmetric rigid part 3d is induced in the pressure transmission rod 3. This vibration mode has a shorter natural wavelength than the vibration mode induced in the pressure transmission rod 3 having no asymmetric rigid portion 3d, and thus has a higher natural frequency.
 なお、上記において、圧力伝達部3aの一部を除いて圧力伝達部3aを焼入れ温度に加熱する工程を、レーザーを用いて圧力伝達部3aを選択的に加熱するようにしてもよい。また、上記では、圧力伝達部3aの一部である非対称剛性部3dのみを焼入れせず、圧力伝達部3aの残りの部分を焼入れする構造として例示した。しかし、圧力伝達部3a全体に焼入れを行ってから、レーザー等を用いて、選択的に焼き戻しを行って、非対称剛性部3dを形成するようにしてもよい。 In the above, the step of heating the pressure transmitting unit 3a to the quenching temperature except for a part of the pressure transmitting unit 3a may be such that the pressure transmitting unit 3a is selectively heated using a laser. In the above description, the structure in which only the asymmetric rigid portion 3d which is a part of the pressure transmitting portion 3a is not quenched, but the remaining portion of the pressure transmitting portion 3a is quenched. However, the asymmetric rigid portion 3d may be formed by quenching the entire pressure transmitting portion 3a and then selectively tempering using a laser or the like.
 第3の実施形態における他の構成は、第1の実施形態と同様である。
 従って、第3の実施形態においても、第1の実施形態と同様な効果(1)を奏する。また、第3の実施形態における非対称剛性部3dは、圧力伝達部3aの焼入れを選択的に行わないようにすることで形成することが可能であり、第1の実施形態と同様な効果(2)を奏する。なお、第1の実施形態では、圧力伝達部3aを切削加工して非対称剛性部3dを形成するが、第3の実施形態では、局所的に焼入れの選択性を持たせるだけで非対称剛性部3dを形成することができる。このため、第1の実施形態よりも、製作コストを一層低減することが期待できる。
Other configurations in the third embodiment are the same as those in the first embodiment.
Therefore, the third embodiment also has the same effect (1) as the first embodiment. Further, the asymmetric rigid portion 3d in the third embodiment can be formed by not selectively quenching the pressure transmitting portion 3a, and has the same effect (2) as in the first embodiment. ). In the first embodiment, the pressure transmitting portion 3a is cut to form the asymmetric rigid portion 3d. However, in the third embodiment, the asymmetric rigid portion 3d is formed only by locally providing quenching selectivity. Can be formed. For this reason, it can be expected that the manufacturing cost is further reduced as compared with the first embodiment.
-第4の実施形態-
 図10は、本発明の圧力センサの第4の実施形態を示し、図10(a)は素子設置部および非対称剛性部を含む要部断面図であり、図10(b)は、図10(a)の領域Xbの高剛性側と低剛性側を示す模式図であり、図10(c)は、図10(a)の領域Xcの高剛性側と低剛性側を示す模式図である。
 第4の実施形態では、非対称剛性部3dは、圧力伝達ロッド3の圧力伝達部3aの一部を高剛性材料により形成された高剛性領域として形成されている。
 図10(a)に示されるように、非対称剛性部3dは、中心軸Oよりも-x方向側に形成されている。圧力伝達部3aの一部を高剛性とするには、例えば、レーザー等を用いて、圧力伝達部3aを局所的に焼入れをして非対称剛性部3dを形成する。
-Fourth embodiment-
FIG. 10 shows a fourth embodiment of the pressure sensor of the present invention. FIG. 10 (a) is a sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 10 (b) is a sectional view of FIG. 10A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region Xb, and FIG. 10C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region Xc in FIG.
In the fourth embodiment, the asymmetric rigid portion 3d is formed such that a part of the pressure transmitting portion 3a of the pressure transmitting rod 3 is a high rigid region formed of a high rigid material.
As shown in FIG. 10A, the asymmetric rigid portion 3d is formed on the −x direction side of the central axis O. In order to increase the rigidity of a part of the pressure transmitting portion 3a, the pressure transmitting portion 3a is locally quenched using, for example, a laser to form an asymmetric rigid portion 3d.
 図10(b)に示されるように、素子設置部3bは、第1の実施形態と同様、中心軸Oより+x方向側が高剛性側であり、中心軸Oより-x方向側が低剛性側である。
 圧力伝達部3aには、中心軸Oより-x側に、焼入れされている非対称剛性部3dが設けられている。このため、圧力伝達部3aの非対称剛性部3dが設けられた断面では、図10(c)に示されるように、中心軸Oより-x方向側が、中心軸Oより+x方向側よりも剛性が大きい。つまり、非対称剛性部3dは、圧力伝達部3aの中心軸Oに対する剛性を非対称にするものであり、圧力伝達部3aの非対称剛性部3dが設けられた断面では、中心軸Oより-x方向側が高剛性側であり、中心軸Oより+x方向側が低剛性側である。
As shown in FIG. 10B, the element installation portion 3b has the high rigidity side on the + x direction side from the central axis O and the low rigidity side on the −x direction side from the central axis O, as in the first embodiment. is there.
The pressure transmitting portion 3a is provided with a hardened asymmetric rigid portion 3d on the −x side from the center axis O. Therefore, in the cross section of the pressure transmitting portion 3a where the asymmetric rigid portion 3d is provided, as shown in FIG. 10 (c), the rigidity on the −x direction side from the central axis O is higher than the + x direction side on the central axis O. large. In other words, the asymmetric rigid portion 3d makes the rigidity of the pressure transmitting portion 3a with respect to the central axis O asymmetric. In the cross section where the asymmetric rigid portion 3d of the pressure transmitting portion 3a is provided, the -x direction side of the central axis O is closer to the -x direction. It is on the high rigidity side, and the + x direction side from the center axis O is the low rigidity side.
 従って、第4の実施形態においても、圧力伝達部3aにおいて非対称剛性部3dが設けられた断面における高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置は、素子設置部3bの高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置とは、圧力伝達ロッド3の中心軸Oに対して逆である。このため、圧力伝達ロッド3には、第1の実施形態と同様に、素子設置部3b付近と非対称剛性部3d付近の2箇所を腹とする振動モードが誘起される。この振動モードは、非対称剛性部3dを有していない圧力伝達ロッド3に誘起される振動モードより波長が短いため、固有振動数が高い。
 第4の実施形態における他の構成は、第1の実施形態と同様である。
 従って、第4の実施形態においても、第1の実施形態と同様な効果(1)を奏する。また、第4の実施形態における非対称剛性部3dは、圧力伝達部3a全体を焼入れし、その後、選択的に焼き戻すことで形成することが可能であり、第1の実施形態と同様な効果(2)を奏する。なお、第1の実施形態では、圧力伝達部3aを切削加工して非対称剛性部3dを形成するが、第4の実施形態では、局所的に焼き戻しの選択性を持たせるだけで非対称剛性部3dを形成することができる。このため、第1の実施形態よりも、製作コストを一層低減することが期待できる。
Therefore, also in the fourth embodiment, the relative arrangement in the direction orthogonal to the axial direction of the pressure transmission rod 3 on the high rigidity side and the low rigidity side in the cross section where the asymmetric rigid part 3d is provided in the pressure transmitting part 3a. Is opposite to the relative arrangement in the direction orthogonal to the axial direction of the pressure transmitting rod 3 on the high rigidity side and the low rigidity side of the element installation portion 3b with respect to the central axis O of the pressure transmitting rod 3. Therefore, as in the first embodiment, a vibration mode with two antinodes near the element installation part 3b and near the asymmetric rigid part 3d is induced in the pressure transmission rod 3. This vibration mode has a shorter natural wavelength than the vibration mode induced in the pressure transmission rod 3 having no asymmetric rigid portion 3d, and thus has a higher natural frequency.
Other configurations in the fourth embodiment are the same as those in the first embodiment.
Therefore, the fourth embodiment also has the same effect (1) as the first embodiment. Further, the asymmetric rigid portion 3d in the fourth embodiment can be formed by quenching the entire pressure transmitting portion 3a and then selectively tempering the same, and has the same effect as that of the first embodiment ( Perform 2). In the first embodiment, the pressure transmitting portion 3a is cut to form the asymmetric rigid portion 3d. However, in the fourth embodiment, the asymmetric rigid portion is formed only by locally giving temper selectivity. 3d can be formed. For this reason, it can be expected that the manufacturing cost is further reduced as compared with the first embodiment.
-第5の実施形態-
 図11は、本発明の圧力センサの第5の実施形態を示し、図11(a)は素子設置部および非対称剛性部を含む要部断面図であり、図11(b)は、図11(a)の領域XIbの高剛性側と低剛性側を示す模式図であり、図11(c)は、図11(a)の領域XIcの高剛性側と低剛性側を示す模式図である。
 第5の実施形態では、図11(a)に示されるように、図8(a)に示す第2の実施形態と同様、圧力伝達ロッド3の非対称剛性部3dが、中心軸Oに対し-x側に設けられた構造を有する。但し、非対称剛性部3dは、第2の実施形態に示す圧力伝達部3aに一体に形成されている構造では無く、圧力伝達部3aを第3の実施形態と同様の細径とされた圧力伝達部3aに別部材として剛性向上機能を発揮する部材(以下、剛性向上材と呼ぶ)を設けた構造としている。剛性向上材としてはガラス、セラミックス、金属等、圧力伝達部3aに固定可能で、実質的に、圧力伝達部3aの剛性を増強する素材であればよい。
 なお、剛性向上材は、細径の圧力伝達部3aの外周面の半周に設けられる半環状部材である。
 第5の実施形態では、非対称剛性部3dは、圧力伝達部3aに固定された剛性向上材を含んでおり、剛性向上材は、細径とした圧力伝達部3aの外周面の-x方向の外周面から、さらに-x方向に向けて突出する半リング状の突出部として形成されている。従って、圧力伝達部3aにおいて非対称剛性部3dが設けられた断面では、中心軸Oに直交する方向において、中心軸Oより-x側の非対称剛性部3dが設けられた領域の断面積が、換言すれば、剛性が、中心軸Oより+x側の非対称剛性部3dが設けられていない領域の断面積より、換言すれば、剛性より大きい。つまり、剛性向上材を含む非対称剛性部3d、圧力伝達部3aの中心軸Oに対する剛性を非対称にするものである。
-Fifth embodiment-
FIG. 11 shows a fifth embodiment of the pressure sensor of the present invention. FIG. 11A is a cross-sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 11A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XIb, and FIG. 11C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XIc in FIG.
In the fifth embodiment, as shown in FIG. 11A, similarly to the second embodiment shown in FIG. 8A, the asymmetric rigid portion 3d of the pressure transmission rod 3 is connected to the center axis O with respect to the center axis O. It has a structure provided on the x side. However, the asymmetric rigid portion 3d is not a structure integrally formed with the pressure transmitting portion 3a shown in the second embodiment, but a pressure transmitting portion in which the pressure transmitting portion 3a has the same small diameter as in the third embodiment. The portion 3a is provided with a member (hereinafter, referred to as a rigidity improving material) that exerts a rigidity improving function as a separate member. The rigidity improving material may be any material that can be fixed to the pressure transmitting portion 3a and substantially increases the rigidity of the pressure transmitting portion 3a, such as glass, ceramics, and metal.
The rigidity improving material is a semi-annular member provided on a half circumference of the outer peripheral surface of the small diameter pressure transmitting portion 3a.
In the fifth embodiment, the asymmetric rigid portion 3d includes a rigidity improving material fixed to the pressure transmitting portion 3a, and the rigidity improving material has a small diameter in the −x direction on the outer peripheral surface of the pressure transmitting portion 3a. It is formed as a semi-ring-shaped protrusion that protrudes further in the −x direction from the outer peripheral surface. Therefore, in the cross section where the asymmetric rigid portion 3d is provided in the pressure transmitting portion 3a, the cross-sectional area of the region where the asymmetric rigid portion 3d is provided on the −x side of the central axis O in the direction orthogonal to the central axis O is paraphrased. In this case, the rigidity is greater than the rigidity, in other words, the sectional area of the region on the + x side of the central axis O where the asymmetric rigid portion 3d is not provided. That is, the asymmetric rigidity portion 3d including the rigidity improving material and the rigidity with respect to the central axis O of the pressure transmitting portion 3a are made asymmetrical.
 図11(b)に示されるように、素子設置部3bは、第1の実施形態と同様、中心軸Oより+x方向側が高剛性側であり、中心軸Oより-x方向側が低剛性側である。
 図11(c)に示されるように、圧力伝達部3aには、中心軸Oより-x側に、中心軸Oからの断面積を大きくする剛性向上材を含む非対称剛性部3dが設けられている。このため、圧力伝達部3aの非対称剛性部3dが設けられた断面では、図11(c)に示されるように、中心軸Oより-x方向側が、中心軸Oより+x方向側よりも剛性が大きい。つまり、非対称剛性部3dは、圧力伝達部3aの中心軸Oに対する剛性を非対称にするものであり、圧力伝達部3aの非対称剛性部3dが設けられた断面では、中心軸Oより-x方向側が高剛性側であり、中心軸Oより+x方向側が低剛性側である。
As shown in FIG. 11B, the element mounting portion 3b has a high rigidity side on the + x direction side from the central axis O and a low rigidity side on the −x direction side from the central axis O, as in the first embodiment. is there.
As shown in FIG. 11 (c), the pressure transmitting portion 3a is provided with an asymmetric rigid portion 3d including a rigidity improving material for increasing the cross-sectional area from the central axis O on the −x side from the central axis O. I have. For this reason, in the cross section of the pressure transmitting portion 3a where the asymmetric rigid portion 3d is provided, the rigidity on the −x direction side from the central axis O is higher than the + x direction side on the central axis O, as shown in FIG. large. In other words, the asymmetric rigid portion 3d makes the rigidity of the pressure transmitting portion 3a with respect to the central axis O asymmetric. In the cross section where the asymmetric rigid portion 3d of the pressure transmitting portion 3a is provided, the -x direction side of the central axis O is closer to the -x direction. It is on the high rigidity side, and the + x direction side from the center axis O is the low rigidity side.
 従って、第5の実施形態においても、圧力伝達部3aにおいて非対称剛性部3dが設けられた断面での高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置は、素子設置部3bの高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置とは、圧力伝達ロッド3の中心軸Oに対して逆である。このため、圧力伝達ロッド3には、第1の実施形態と同様に、素子設置部3b付近と非対称剛性部3d付近の2箇所を腹とする振動モードが誘起される。この振動モードは、非対称剛性部3dを有していない圧力伝達ロッド3に誘起される振動モードより波長が短いため、固有振動数が高い。
 第5の実施形態における他の構成は、第1の実施形態と同様である。
 従って、第5の実施形態においても、第1の実施形態と同様な効果(1)を奏する。また、第5の実施形態における非対称剛性部3dは、圧力伝達部3aに剛性向上材を固定するだけで作製することが可能である。このため、第1の実施形態と同様な効果(2)を奏する。なお、第5の実施形態では、圧力伝達部3aを切削加工して非対称剛性部3dを形成する圧力伝達部3aを切削加工して非対称剛性部3dを形成する第1の実施形態よりも製作コストを一層低減すること期待できる。
Therefore, also in the fifth embodiment, the relative positions in the direction orthogonal to the axial direction of the pressure transmission rod 3 on the high rigidity side and the low rigidity side in the cross section where the asymmetric rigid portion 3d is provided in the pressure transmitting portion 3a. The arrangement is opposite to the central arrangement O of the pressure transmission rod 3 on the high rigidity side and the low rigidity side of the element installation part 3b in the direction orthogonal to the axial direction of the pressure transmission rod 3. . Therefore, as in the first embodiment, a vibration mode with two antinodes near the element installation part 3b and near the asymmetric rigid part 3d is induced in the pressure transmission rod 3. This vibration mode has a shorter natural wavelength than the vibration mode induced in the pressure transmission rod 3 having no asymmetric rigid portion 3d, and thus has a higher natural frequency.
Other configurations in the fifth embodiment are the same as those in the first embodiment.
Therefore, the fifth embodiment also has the same effect (1) as the first embodiment. Further, the asymmetric rigid portion 3d in the fifth embodiment can be manufactured only by fixing the rigidity improving material to the pressure transmitting portion 3a. For this reason, the same effect (2) as in the first embodiment is achieved. In the fifth embodiment, the pressure transmitting portion 3a is cut to form an asymmetric rigid portion 3d. The pressure transmitting portion 3a is cut to form an asymmetric rigid portion 3d. The manufacturing cost is higher than in the first embodiment. Can be expected to be further reduced.
-第6の実施形態-
 図12は、本発明の圧力センサの第6の実施形態を示し、図12(a)は素子設置部および非対称剛性部を含む要部断面図であり、図12(b)は、図12(a)の領域XIIbの高剛性側と低剛性側を示す模式図であり、図12(c)は、図12(a)の領域XIIcの高剛性側と低剛性側を示す模式図である。
 第6の実施形態では、圧力伝達部3aのダイアフラム2との接触部の中心軸O1を、圧力伝達部3a全体の中心軸Oから-x方向側にずらし、ここを非対称剛性部3dとしている。
 この構造では、圧力伝達部3aがダイアフラム2と接触する接触部の中心軸O1は、圧力伝達部3a全体の中心軸Oから-x方向側、すなわち、圧力検知部5側にずれている。その結果、圧力を受けたときに非対称剛性部3dが圧力伝達部3a全体の中心軸から見て圧力検知部5と反対側を内側として湾曲するように変形する。
-Sixth embodiment-
FIG. 12 shows a sixth embodiment of the pressure sensor of the present invention. FIG. 12 (a) is a sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 12 (b) is a sectional view of FIG. 12A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XIIb, and FIG. 12C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XIIc in FIG.
In the sixth embodiment, the central axis O 1 of the contact portion of the pressure transmitting portion 3a with the diaphragm 2 is shifted in the −x direction from the central axis O of the entire pressure transmitting portion 3a, and this is defined as an asymmetric rigid portion 3d. .
In this structure, the central axis O 1 of the contact portion where the pressure transmitting portion 3a contacts the diaphragm 2 is shifted from the central axis O of the entire pressure transmitting portion 3a toward the −x direction, that is, toward the pressure detecting portion 5. As a result, when pressure is applied, the asymmetric rigid portion 3d is deformed so as to be curved with the side opposite to the pressure detecting portion 5 inside as viewed from the central axis of the entire pressure transmitting portion 3a.
 図12(b)に示されるように、素子設置部3bは、第1の実施形態と同様、中心軸Oより+x方向側が高剛性側であり、中心軸Oより-x方向側が低剛性側である。
 圧力伝達部3aのダイアフラム2との接触部の中心軸O1は、圧力伝達部3a全体の中心軸Oから-x方向側に所定量ずれている。ダイアフラム2を介して圧力伝達部3aが受圧する燃焼内の圧縮力は、圧力伝達部3aのダイアフラム2との接触部の中心軸O1を中心とする軸力として圧力伝達部3aに伝達される。このため、図12(c)に示されるように、中心軸Oに対する剛性は、圧力伝達部3aのダイアフラム2との接触部の中心軸O1が設定された、中心軸Oより-x方向側の方が、中心軸Oより+x方向側よりも大きくなる。つまり、第6の実施形態では、圧力伝達部3aのダイアフラム2との接触部の中心軸O1が、圧力伝達部3a全体の中心軸Oからずれることにより、非対称剛性部3dが構成されている。従って、第6の実施形態においても、非対称剛性部3dは、圧力伝達部3aの中心軸Oに対する剛性を非対称にするものである。図12に示す構造では、圧力伝達部3aは、中心軸Oより-x方向側が高剛性側であり、中心軸Oより+x方向側が低剛性側である。
As shown in FIG. 12 (b), the element installation portion 3b has a high rigidity side on the + x direction side from the central axis O and a low rigidity side on the −x direction side from the central axis O, as in the first embodiment. is there.
The central axis O 1 of the contact portion of the pressure transmitting portion 3a with the diaphragm 2 is shifted by a predetermined amount from the central axis O of the entire pressure transmitting portion 3a toward the −x direction. Compressive force in the combustion pressure transmitting portion 3a through the diaphragm 2 is receiving is transmitted to the pressure transmitting portion 3a as an axial force around the center axis O 1 of the contact portion between the diaphragm 2 of the pressure transmitting portion 3a . For this reason, as shown in FIG. 12C, the rigidity with respect to the central axis O is -x direction side from the central axis O where the central axis O 1 of the contact portion of the pressure transmitting portion 3a with the diaphragm 2 is set. Is larger than the central axis O on the + x direction side. In other words, in the sixth embodiment, the center axis O 1 of the contact portion between the diaphragm 2 of the pressure transmitting portion 3a, by deviating from the center axis O of the total pressure transmitting portion 3a, asymmetric rigid portion 3d is constituted . Therefore, also in the sixth embodiment, the asymmetric rigid portion 3d makes the rigidity of the pressure transmitting portion 3a with respect to the central axis O asymmetric. In the structure shown in FIG. 12, the pressure transmitting portion 3a has a high rigidity side on the −x direction side from the central axis O and a low rigidity side on the + x direction side from the central axis O.
 以上のように、第6の実施形態においても、圧力伝達ロッド3においての非対称剛性部3dとして機能する部位で断面における見かけ上の高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置は、素子設置部3bの高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置とは、圧力伝達ロッド3の中心軸Oに対して逆である。このため、圧力伝達ロッド3には、第1の実施形態と同様に、素子設置部3b付近と非対称剛性部3d付近の2箇所を腹とする振動モードが誘起される。この振動モードは、非対称剛性部3dを有していない圧力伝達ロッド3に誘起される振動モードより波長が短いため、固有振動数が高い。
 第6の実施形態における他の構成は、第1の実施形態と同様である。
 従って、第6の実施形態においても、第1の実施形態と同様な効果(1)を奏する。また、第6の実施形態では、圧力伝達部3aのダイアフラム2との接触部の中心軸O1を、圧力伝達部3a全体の中心軸Oから圧力検知部5側にずらすだけで非対称剛性部3dを形成することが可能である。従って、第6の実施形態においても、第1の実施形態と同様な効果(2)を奏する。なお、第6の実施形態では、圧力伝達部3aを切削加工する必要がないので、圧力伝達部3aを切削加工して非対称剛性部3dを形成する圧力伝達部3aを切削加工して非対称剛性部3dを形成する第1の実施形態よりも製作コストを一層低減すること期待できる。
As described above, also in the sixth embodiment, the portion that functions as the asymmetric rigid portion 3d in the pressure transmission rod 3 is located on the apparent high rigidity side and low rigidity side in the cross section in the axial direction of the pressure transmission rod 3. The relative arrangement in the direction orthogonal to the relative arrangement in the direction orthogonal to the axial direction of the pressure transmission rod 3 on the high rigidity side and the low rigidity side of the element installation portion 3b is the central axis of the pressure transmission rod 3. The opposite is true for O. Therefore, as in the first embodiment, a vibration mode with two antinodes near the element installation part 3b and near the asymmetric rigid part 3d is induced in the pressure transmission rod 3. This vibration mode has a shorter natural wavelength than the vibration mode induced in the pressure transmission rod 3 having no asymmetric rigid portion 3d, and thus has a higher natural frequency.
Other configurations in the sixth embodiment are the same as those in the first embodiment.
Therefore, the sixth embodiment also has the same effect (1) as the first embodiment. Further, in the sixth embodiment, the center axis O 1 of the contact portion between the diaphragm 2 of the pressure transmitting portion 3a, asymmetric rigid portion 3d only shifted in the pressure detecting portion 5 side from the center axis O of the total pressure transmitting portion 3a Can be formed. Therefore, the sixth embodiment also has the same effect (2) as the first embodiment. In the sixth embodiment, since it is not necessary to cut the pressure transmitting portion 3a, the pressure transmitting portion 3a that forms the asymmetric rigid portion 3d by cutting the pressure transmitting portion 3a is formed by cutting the pressure transmitting portion 3a. It can be expected that the manufacturing cost is further reduced as compared with the first embodiment in which 3d is formed.
-第7の実施形態-
 図13は、本発明の圧力センサの第7の実施形態を示し、図13(a)は素子設置部および非対称剛性部を含む要部断面図であり、図13(b)は、図13(a)の領域XIIIbの高剛性側と低剛性側を示す模式図であり、図13(c)は、図13(a)の領域XIIIcの高剛性側と低剛性側を示す模式図である。
 第7の実施形態では、非対称剛性部3dは、高剛性固定部3cに設けられた構造を有する。
 非対称剛性部3dは、高剛性固定部3cの中心軸Oより+x方向側に設けられている。非対称剛性部3dは、中心軸Oに対し-x側の高剛性固定部3cの外周側の一部をカットして設けられている。つまり、非対称剛性部3dは、高剛性固定部3cの中心軸Oに対する剛性を非対称にするものである。
-Seventh embodiment-
FIG. 13 shows a seventh embodiment of the pressure sensor of the present invention. FIG. 13 (a) is a sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 13 (b) is a sectional view of FIG. 13A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XIIIb, and FIG. 13C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XIIIc in FIG.
In the seventh embodiment, the asymmetric rigid portion 3d has a structure provided in the high rigidity fixing portion 3c.
The asymmetric rigid portion 3d is provided on the + x direction side of the central axis O of the high rigidity fixing portion 3c. The asymmetric rigid portion 3d is provided by cutting a part on the outer peripheral side of the high rigidity fixing portion 3c on the −x side with respect to the central axis O. That is, the asymmetric rigid part 3d makes the rigidity of the high rigidity fixing part 3c with respect to the central axis O asymmetric.
 図13(b)に示されるように、素子設置部3bは、第1の実施形態と同様、中心軸Oより+x方向側が高剛性側であり、中心軸Oより-x方向側が低剛性側である。
 図13(c)に示されるように、高剛性固定部3cは、中心軸Oに対し+x側がカットされている。このため、高剛性固定部3cにおいて非対称剛性部3dが設けられた断面では、図13(c)に示されるように、中心軸Oより-x方向側が、中心軸Oよりx方向側よりも剛性が大きい。換言すれば、高剛性固定部3cは、中心軸Oより-x方向側が高剛性側であり、中心軸Oより+x方向側が低剛性側である。従って、高剛性固定部3cにおいて非対称剛性部3dが設けられた断面の高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置は、素子設置部3bの高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置とは、圧力伝達ロッド3の中心軸Oに対して逆である。
As shown in FIG. 13 (b), the element installation part 3b has a high rigidity side on the + x direction side from the central axis O and a low rigidity side on the −x direction side from the central axis O, as in the first embodiment. is there.
As shown in FIG. 13C, the high rigidity fixing portion 3c is cut on the + x side with respect to the central axis O. Therefore, in the section where the asymmetric rigid portion 3d is provided in the high rigidity fixing portion 3c, as shown in FIG. 13C, the −x direction side from the central axis O is more rigid than the x direction side from the central axis O. Is big. In other words, in the high rigidity fixing portion 3c, the −x direction side from the central axis O is the high rigidity side, and the + x direction side from the central axis O is the low rigidity side. Accordingly, the relative arrangement of the high rigidity side and the low rigidity side of the section provided with the asymmetric rigid portion 3d in the high rigidity fixing portion 3c in the direction orthogonal to the axial direction of the pressure transmission rod 3 is the same as that of the element installation portion 3b. The relative arrangement of the high rigidity side and the low rigidity side in the direction orthogonal to the axial direction of the pressure transmitting rod 3 is opposite to the center axis O of the pressure transmitting rod 3.
 このため、圧力伝達ロッド3には、第1の実施形態と同様に、素子設置部3b付近と高剛性固定部3cに設けられた非対称剛性部3d付近の2箇所を腹とする振動モードが誘起される。この振動モードは、非対称剛性部3dを有していない圧力伝達ロッド3に誘起される振動モードより波長が短いため、固有振動数が高い。
 第7の実施形態における他の構成は、第1の実施形態と同様である。
 従って、第7の実施形態においても、第1の実施形態と同様な効果(1)を奏する。また、第7の実施形態における非対称剛性部3dは、高剛性固定部3cの一部をカットすることで形成することができる。このため、第7の実施形態においても、第1の実施形態と同様な効果(2)を奏する。
For this reason, in the pressure transmission rod 3, as in the first embodiment, a vibration mode with two antinodes near the element installation part 3b and near the asymmetric rigid part 3d provided on the high rigidity fixing part 3c is induced. Is done. This vibration mode has a shorter natural wavelength than the vibration mode induced in the pressure transmission rod 3 having no asymmetric rigid portion 3d, and thus has a higher natural frequency.
Other configurations in the seventh embodiment are the same as those in the first embodiment.
Therefore, the seventh embodiment also has the same effect (1) as the first embodiment. Further, the asymmetric rigid portion 3d in the seventh embodiment can be formed by cutting a part of the high rigidity fixing portion 3c. Therefore, the seventh embodiment also has the same effect (2) as the first embodiment.
 なお、第1~第6の実施形態では、エンジンボディ内部において、圧力検知部5は、圧力伝達部3aに設けられた非対称剛性部3dよりもエンジンボディの外部に近い側に設けられている。これに対し、第7の実施形態では、エンジンボディ内部において、圧力検知部5は、高剛性固定部3cに設けられた非対称剛性部3dよりもエンジン燃焼室に近い側に設けられている。このため、第7の実施形態では、第1~第6の実施形態に比し圧縮力が伝達される、圧力伝達ロッド3のダイアフラム2との接触部から圧力検知部5までの長さ、すなわち、伝達経路長が短くなる。このため、伝達経路中における圧縮力の伝達ロスを小さくすることができる。これにより、第7の実施形態では、第1~第6の実施形態に比し、圧力検知感度を向上することができるという効果も奏する。また、ダイアフラム2の圧縮力が圧力検知部5までに伝達される伝達経路長が短くなるので、応答性も向上するという効果も奏する。 In the first to sixth embodiments, inside the engine body, the pressure detecting unit 5 is provided closer to the outside of the engine body than the asymmetric rigid part 3d provided in the pressure transmitting unit 3a. On the other hand, in the seventh embodiment, inside the engine body, the pressure detector 5 is provided closer to the engine combustion chamber than the asymmetric rigid portion 3d provided in the high rigidity fixing portion 3c. For this reason, in the seventh embodiment, the length from the contact portion of the pressure transmission rod 3 with the diaphragm 2 to the pressure detection portion 5 where the compressive force is transmitted as compared with the first to sixth embodiments, that is, , The transmission path length becomes shorter. Therefore, the transmission loss of the compressive force in the transmission path can be reduced. Thus, the seventh embodiment also has an effect that the pressure detection sensitivity can be improved as compared with the first to sixth embodiments. Further, since the length of the transmission path through which the compressive force of the diaphragm 2 is transmitted to the pressure detection unit 5 is reduced, the effect of improving the responsiveness is also achieved.
 但し、第7の実施形態では、圧力検知部5がエンジン燃焼室に近い為、エンジン内部の熱が圧力検知部5に伝わり易い。このため、圧力検知部5の温度上昇が大きくなり、出力変動や圧力検知素子の破損などが発生する可能性が大きくなる。すなわち、第7の実施形態と第1~第6の実施形態とでは、圧力検知感度および応答性と、圧力検知部の温度上昇とに関してトレードオフの関係にあるので、この点を留意して、状況に応じて選択することが好ましい。 However, in the seventh embodiment, since the pressure detection unit 5 is close to the engine combustion chamber, heat inside the engine is easily transmitted to the pressure detection unit 5. For this reason, the temperature rise of the pressure detection unit 5 increases, and the possibility of output fluctuation, damage to the pressure detection element, and the like increases. That is, in the seventh embodiment and the first to sixth embodiments, there is a trade-off relationship between the pressure detection sensitivity and the responsiveness and the temperature rise of the pressure detection unit. It is preferable to select according to the situation.
-第8の実施形態-
 図14は、本発明の圧力センサの第8の実施形態を示し、図14(a)は素子設置部および非対称剛性部を含む要部断面図であり、図14(b)は、図14(a)の領域XIVbの高剛性側と低剛性側を示す模式図であり、図14(c)は、図14(a)の領域XIVcの高剛性側と低剛性側を示す模式図である。
 第8の実施形態では、素子設置部3bの圧力検知部5が設置される素子設置面21と、圧力伝達部3aの一面24とが、中心軸Oに直交する方向において同一面とされた構造を有する。
 素子設置部3bの素子設置面21と圧力伝達部3aの一面24とは、中心軸Oの-x側に位置している。素子設置部3bの素子設置面21と反対側の面は、一部がカットされ、溝3fが形成されている。つまり、溝3fは、中心軸Oの+x側に設けられている。溝3fの底面は、中心軸Oと同一面付近に設けられている。但し、溝3fの底面の位置は、中心軸Oよりも+x側または-x側にずれていてもよい。非対称剛性部3dは、中心軸Oの-x側に、圧力伝達部3aの一部をカットして設けられている。
-Eighth embodiment-
FIG. 14 shows an eighth embodiment of the pressure sensor of the present invention. FIG. 14 (a) is a cross-sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 14 (b) is a sectional view of FIG. 14A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XIVb, and FIG. 14C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XIVc of FIG.
In the eighth embodiment, a structure in which an element installation surface 21 of the element installation unit 3b on which the pressure detection unit 5 is installed and one surface 24 of the pressure transmitting unit 3a are flush with each other in a direction orthogonal to the central axis O. Having.
The element installation surface 21 of the element installation part 3b and one surface 24 of the pressure transmitting part 3a are located on the −x side of the central axis O. A surface of the element installation portion 3b opposite to the element installation surface 21 is partially cut to form a groove 3f. That is, the groove 3f is provided on the + x side of the central axis O. The bottom surface of the groove 3f is provided near the same plane as the central axis O. However, the position of the bottom surface of the groove 3f may be shifted to the + x side or the -x side from the center axis O. The asymmetric rigid portion 3d is provided on the −x side of the central axis O by cutting a part of the pressure transmitting portion 3a.
 素子設置部3bは、中心軸Oに対し+x側がカットされ、溝3fが形成されている。このため、素子設置部3bは、図14(b)に示されるように、中心軸Oより-x方向側が高剛性側であり、中心軸Oより+x方向側が低剛性側である。
 圧力伝達部3aは、中心軸Oに対し-x側がカットされた非対称剛性部3dを有している。このため、圧力伝達部3aにおける非対称剛性部3dが設けられた断面では、図14(c)に示されるように、中心軸Oより+x方向側が高剛性側であり、中心軸Oより-方向側が低剛性側である。従って、圧力伝達部3aにおける非対称剛性部3dが設けられた断面における高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置は、素子設置部3bの高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置とは、圧力伝達ロッド3の中心軸Oに対して逆である。
The element installation portion 3b is cut on the + x side with respect to the central axis O, and a groove 3f is formed. Therefore, as shown in FIG. 14B, the element installation section 3b has a high rigidity side on the −x direction side from the central axis O and a low rigidity side on the + x direction side from the central axis O, as shown in FIG.
The pressure transmitting portion 3a has an asymmetric rigid portion 3d in which the -x side is cut with respect to the central axis O. Therefore, in the cross section of the pressure transmitting portion 3a where the asymmetric rigid portion 3d is provided, as shown in FIG. 14C, the + x direction side from the central axis O is the high rigidity side, and the − direction side from the central axis O is the negative side. On the low rigidity side. Therefore, the relative arrangement of the high rigidity side and the low rigidity side in the cross section of the pressure transmitting portion 3a where the asymmetric rigid portion 3d is provided in the direction orthogonal to the axial direction of the pressure transmitting rod 3 is the height of the element installation portion 3b. The relative arrangement of the rigid side and the low rigidity side in the direction orthogonal to the axial direction of the pressure transmitting rod 3 is opposite to the center axis O of the pressure transmitting rod 3.
 第8の実施形態における他の構成は、第1の実施形態と同様である。
 従って、第8の実施形態においても、第1の実施形態と同様な効果(1)、(2)を奏する。
 第8の実施形態では、圧力伝達部3aの一面24は、素子設置部3bの圧力検知部5が設置される素子設置面21と、中心軸Oに直交する方向において同一の高さに設けられている。このため、圧力検知部5を素子設置部3bに接合する接合工程や、圧力検知部5に信号線8を接続する接続工程において、冶具やロボットの先端を挿入し易くなる。このため、作業性の向上、および冶具やロボット先端構造を簡素化が可能となり、製造コストを低減することができる。
Other configurations in the eighth embodiment are the same as those in the first embodiment.
Therefore, the eighth embodiment has the same advantages (1) and (2) as the first embodiment.
In the eighth embodiment, one surface 24 of the pressure transmitting unit 3a is provided at the same height in the direction orthogonal to the central axis O as the element installation surface 21 of the element installation unit 3b on which the pressure detection unit 5 is installed. ing. For this reason, in the joining step of joining the pressure detecting section 5 to the element installation section 3b and the connecting step of connecting the signal line 8 to the pressure detecting section 5, it becomes easy to insert the tip of the jig or the robot. For this reason, the workability can be improved, and the jig and the robot tip structure can be simplified, and the manufacturing cost can be reduced.
-第9の実施形態-
 図15は、本発明の圧力センサの第9の実施形態を示し、図15(a)は素子設置部および非対称剛性部を含む要部断面図であり、図15(b)は、図15(a)の領域XVbの高剛性側と低剛性側を示す模式図であり、図15(c)は、図15(a)の領域XVcの高剛性側と低剛性側を示す模式図であり、図15(d)は、図15(a)の領域XVdの高剛性側と低剛性側を示す模式図である。
 第9の実施形態では、圧力伝達部3aに、2つの非対称剛性部3d、3dが設けられた構造を有する。
 圧力伝達部3aは、第1~第8の実施形態の圧力伝達部3aに比し、軸方向に少し長く形成され、2つの非対称剛性部3d、3dは、軸方向において重ならない、異なる位置に設けられている。
 非対称剛性部3dは、軸方向において素子設置部3bに近い位置に配置され、中心軸Oの+方向側の、圧力伝達部3aの外周側の一部をカットすることにより設けられている。非対称剛性部3dは、軸方向においてダイアフラム2に近い位置に配置され、中心軸Oの-方向側の、圧力伝達部3aの外周側の一部をカットすることにより設けられている。
-Ninth embodiment-
15A and 15B show a ninth embodiment of the pressure sensor of the present invention. FIG. 15A is a cross-sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 15A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XVb of FIG. 15A, and FIG. 15C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XVc of FIG. FIG. 15D is a schematic diagram showing the high rigidity side and the low rigidity side of the region XVd in FIG. 15A.
The ninth embodiment has a structure in which two asymmetric rigid portions 3d 1 and 3d 2 are provided in the pressure transmitting portion 3a.
The pressure transmitting portion 3a is formed slightly longer in the axial direction than the pressure transmitting portion 3a of the first to eighth embodiments, and the two asymmetric rigid portions 3d 1 and 3d 2 do not overlap in the axial direction. Position.
Asymmetric rigid portion 3d 1 is disposed at a position closer to the element mounting portion 3b in the axial direction, the + direction of the central axis O, is provided by cutting a part of the outer peripheral side of the pressure transmitting portion 3a. Asymmetric rigid portion 3d 2 is located closer to the diaphragm 2 in the axial direction, of the center axis O - direction side, is provided by cutting a part of the outer peripheral side of the pressure transmitting portion 3a.
 図15(b)に示されるように、素子設置部3bは、第1の実施形態と同様、中心軸Oより+x方向側が高剛性側であり、中心軸Oより-x方向側が低剛性側である。
 図15(c)に示されるように、非対称剛性部3dが設けられた圧力伝達部3aの領域XVcでは、中心軸Oより-x方向側が高剛性側であり、中心軸Oより+x方向側が低剛性側である。また、図15(d)に示されるように、非対称剛性部3dが設けられた圧力伝達部3aの領域XVdでは、中心軸Oより+x方向側が高剛性側であり、中心軸Oより-x方向側が低剛性側である。
As shown in FIG. 15B, the element installation portion 3b has a high rigidity side on the + x direction side from the central axis O and a low rigidity side on the −x direction side from the central axis O, as in the first embodiment. is there.
As shown in FIG. 15 (c), in the region XVc of the pressure transmitting portion 3a asymmetric rigid portion 3d 1 is provided, -x direction from the center axis O is high rigid side, from the + x direction is the center axis O On the low rigidity side. Further, as shown in FIG. 15 (d), in the region of the pressure transmitting portion 3a asymmetric rigid portion 3d 2 is provided XVd, the central axis O + x direction is high rigid side, -x from the center axis O The direction side is the low rigidity side.
 第9の実施形態において、圧力伝達部3aにおける非対称剛性部3d設けられた断面における高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置は、素子設置部3bの高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置とは、圧力伝達ロッド3の中心軸Oに対して逆である。また、第9の実施形態において、圧力伝達部3aの非対称剛性部3dが設けられた断面における高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における、相対的な配置は、圧力伝達部3aの非対称剛性部3dが設けられた断面における高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置とは、圧力伝達ロッド3の中心軸Oに対して逆である。従って、第9の実施形態では、素子設置部3b付近と非対称剛性部3d付近および非対称剛性部3d付近の3箇所を腹とする振動モードが誘起される。この振動モードは、非対称剛性部3dを有していない振動モードより波長が短いため、固有振動数が高い。その結果、ノッキング等の高周波成分を含む圧力波を受けても、振動が誘起されにくく、検出精度を向上することができる。 In the ninth embodiment, the high rigidity side and low-rigidity side of the asymmetric rigid portion 3d 1 provided the cross-section in the pressure transmitting portion 3a, the relative arrangement in the direction perpendicular to the axial direction of the pressure transmission rod 3, element The relative arrangement of the high rigidity side and the low rigidity side of the installation portion 3b in the direction orthogonal to the axial direction of the pressure transmission rod 3 is opposite to the center axis O of the pressure transmission rod 3. Further, in the ninth embodiment, the high rigidity side and low-rigidity side in a cross section asymmetric rigid portion 3d 2 of the pressure transmitting portion 3a is provided, in the direction perpendicular to the axial direction of the pressure transmission rod 3, relative arrangement, the high-rigidity side and low-rigidity side in a cross section asymmetric rigid portion 3d 1 of the pressure transmitting portion 3a is provided, the relative arrangement in the direction perpendicular to the axial direction of the pressure transmission rod 3, the pressure transmission rod 3 with respect to the central axis O. Accordingly, in the ninth embodiment, the vibration mode of the belly three near and around the asymmetric rigid portion 3d 2 element mounting portion 3b and around the asymmetric rigid portion 3d 1 is induced. This vibration mode has a shorter natural wavelength than the vibration mode having no asymmetric rigid portion 3d, and thus has a higher natural frequency. As a result, even if a pressure wave including a high-frequency component such as knocking is received, vibration is hardly induced, and detection accuracy can be improved.
 第9の実施形態における他の構成は、第1の実施形態と同様である。
 従って、第9の実施形態においても、第1の実施形態と同様な効果(1)、(2)を奏する。
Other configurations in the ninth embodiment are the same as those in the first embodiment.
Therefore, the ninth embodiment also has the same effects (1) and (2) as the first embodiment.
 第9の実施形態では、圧力伝達部3aは、第1~第8の実施形態の圧力伝達部3aに比し、軸方向に少し長く形成されている。換言すれば、圧力検知部5がエンジン等の燃焼室から離れた位置に設置されている。これにより、使用時に圧力検知部5に伝達される燃焼室内の熱が抑制される。このため、圧力検知部5の温度上昇を抑制して、圧力検知部5の出力変動を抑えたり、耐熱性の低い安価な圧力検知素子を用いたりすることが可能となる。 で は In the ninth embodiment, the pressure transmitting portion 3a is formed slightly longer in the axial direction than the pressure transmitting portion 3a of the first to eighth embodiments. In other words, the pressure detector 5 is installed at a position distant from a combustion chamber such as an engine. Thereby, the heat in the combustion chamber transmitted to the pressure detecting unit 5 during use is suppressed. For this reason, it is possible to suppress the temperature rise of the pressure detection unit 5 and suppress the output fluctuation of the pressure detection unit 5 or use an inexpensive pressure detection element having low heat resistance.
 通常、圧力伝達部3aの軸方向の長さを長くすると、誘起される振動モードの波長が長くなり、固有振動数が低下する。このため、ノッキング等の高周波成分を含む圧力波を受けたとき振動モードが誘起されて、計測誤差が発生する。しかし、第9の実施形態では、2箇所に設けられた非対称剛性部3d、3dにより、誘起されうる振動モードを、素子設置部3bと非対称剛性部3dの3箇所を腹とした波長の短いものにできるため、固有振動数の低下を抑制できる。その結果、ノッキング等の高周波成分を含む圧力波を受けても振動モードが誘起されず、計測誤差を抑制できる。
 なお、第9の実施形態では、非対称剛性部3d、3dを2箇所設けた構造として例示したが、非対称剛性部を3箇所以上設ける構造としてもよい。
Normally, when the axial length of the pressure transmitting portion 3a is increased, the wavelength of the induced vibration mode is increased, and the natural frequency is reduced. For this reason, when receiving a pressure wave including a high frequency component such as knocking, a vibration mode is induced, and a measurement error occurs. However, in the ninth embodiment, the vibration modes that can be induced by the asymmetric rigid portions 3d 1 and 3d 2 provided at two locations are set to the wavelengths with the antinodes at the three locations of the element installation portion 3b and the asymmetric rigid portion 3d. Since the length can be shortened, a decrease in the natural frequency can be suppressed. As a result, even when a pressure wave including a high frequency component such as knocking is received, a vibration mode is not induced, and a measurement error can be suppressed.
In the ninth embodiment, the structure in which the asymmetric rigid portions 3d 1 and 3d 2 are provided in two places is exemplified, but a structure in which three or more asymmetric rigid portions are provided may be adopted.
-第10の実施形態-
 図16は、本発明の圧力センサの第10の実施形態を示し、図16(a)は素子設置部および非対称剛性部を含む要部断面図であり、図16(b)は、図16(a)の領域XVIbの高剛性側と低剛性側を示す模式図であり、図16(c)は、図16(a)の領域XVIcの高剛性側と低剛性側を示す模式図である。第10の実施形態は、第1の実施形態に対し、素子設置部3bの、圧力検知部5を設置する素子設置面21の反対側にカット面3gを設け、さらに、カット面3gの一部をカットして溝3hを設けた構造を有する。
-Tenth embodiment-
16A and 16B show a pressure sensor according to a tenth embodiment of the present invention. FIG. 16A is a cross-sectional view of a main part including an element installation part and an asymmetric rigid part, and FIG. 16A is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XVIb, and FIG. 16C is a schematic diagram illustrating a high rigidity side and a low rigidity side of a region XVIc of FIG. In the tenth embodiment, a cut surface 3g is provided on the element installation portion 3b on the opposite side of the element installation surface 21 on which the pressure detection unit 5 is installed, and a part of the cut surface 3g is different from the first embodiment. Is cut to form a groove 3h.
 カット面3gは、第1の実施形態における素子設置部3bの圧力検知部5を設置する素子設置面21の反対側をカットして形成するので、素子設置部3bは、第1の実施形態の場合よりも厚さ(x方向の長さ)が薄く形成されている。つまり、素子設置部3bの領域XVIdは、素子設置部3bの他の領域XVIbより薄肉とされた薄肉部である。これにより、圧力伝達ロッド3の素子設置部3bが設けられた断面における全体の剛性は、第1の実施形態の場合よりも低下し、圧力検知部5における歪量が増大するので、圧力検知感度を向上することができる。素子設置部3bの溝3hは、カット面3gからさらに中心軸O側にカットして設けられる。素子設置部3bの溝3hは、高剛性固定部3cとの境界部付近に設けられている。 Since the cut surface 3g is formed by cutting the opposite side of the element installation surface 21 on which the pressure detection unit 5 of the element installation unit 3b is installed in the first embodiment, the element installation unit 3b is formed as in the first embodiment. The thickness (the length in the x direction) is smaller than in the case. That is, the region XVId of the element installation portion 3b is a thin portion made thinner than the other region XVIb of the element installation portion 3b. As a result, the overall rigidity of the pressure transmitting rod 3 in the cross section where the element installation portion 3b is provided is lower than that in the first embodiment, and the amount of distortion in the pressure detection unit 5 increases. Can be improved. The groove 3h of the element installation portion 3b is provided by further cutting from the cut surface 3g to the center axis O side. The groove 3h of the element installation portion 3b is provided near the boundary with the high rigidity fixing portion 3c.
 素子設置部3bの溝3hが設けられていない領域XVIbでは、素子設置部3bの厚さが第1の実施形の場合より薄いものの、中心軸Oに対する高剛性側と低剛性側の配置が変化することはなく、図16(b)に示されるように、第1の実施形態と同様、中心軸Oより+x方向側が高剛性側であり、中心軸Oより-x方向側が低剛性側である。
 圧力伝達部3aの非対称剛性部3dが設けられた領域XVIcでは、第1の実施形態と同様、図16(c)に示されるように、中心軸Oより-x方向側が高剛性側であり、中心軸Oより+x方向側が低剛性側である。また、図示はしないが、素子設置部3bに溝3hが設けられた断面における領域XVIdでは、図16(b)と同様、中心軸Oより+x方向側が高剛性側であり、中心軸Oより-x方向側が低剛性側である。
In the region XVIb where the groove 3h of the element installation part 3b is not provided, although the thickness of the element installation part 3b is thinner than in the first embodiment, the arrangement of the high rigidity side and the low rigidity side with respect to the center axis O changes. As shown in FIG. 16B, as in the first embodiment, the + x direction side from the central axis O is the high rigidity side, and the −x direction side from the central axis O is the low rigidity side, as in the first embodiment. .
In the region XVIc where the asymmetric rigid portion 3d of the pressure transmitting portion 3a is provided, as shown in FIG. 16C, the −x direction side from the center axis O is the high rigidity side, as in the first embodiment. The + x direction side from the center axis O is the low rigidity side. Although not shown, in the region XVId in the cross section in which the groove 3h is provided in the element mounting portion 3b, the + x direction side from the center axis O is the high rigidity side, and the −X side from the center axis O, as in FIG. The x direction side is the low rigidity side.
 従って、圧力伝達部3aにおいて非対称剛性部3dが設けられた高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置は、圧力伝達ロッド3において素子設置部3bが設けられた断面における高剛性側と低剛性側の、圧力伝達ロッド3の軸方向に直交する方向における相対的な配置とは、圧力伝達ロッド3の中心軸Oに対して逆である。 Therefore, the relative arrangement in the direction orthogonal to the axial direction of the pressure transmission rod 3 on the high rigidity side and the low rigidity side where the asymmetric rigid part 3d is provided in the pressure transmission part 3a is determined by the element installation part in the pressure transmission rod 3. The relative arrangement in the direction orthogonal to the axial direction of the pressure transmission rod 3 on the high rigidity side and the low rigidity side in the cross section provided with 3 b is opposite to the central axis O of the pressure transmission rod 3.
 第10の実施形態における他の構成は、第1の実施形態と同様である。
 従って、第10の実施形態においても、第1の実施形態と同様な効果(1)、(2)を奏する。
Other configurations in the tenth embodiment are the same as those in the first embodiment.
Therefore, the tenth embodiment also has the same advantages (1) and (2) as the first embodiment.
 素子設置部3bの溝3hは、高剛性固定部3cとの境界部付近に設けられている。素子設置部3bの溝3hは、素子設置部3bの軸方向におけるエンジンの燃焼室から最も離れた位置に設けられている。これにより、圧力検知感度を更に向上させている。
 溝3hによって圧力検知感度が向上する理由を、図17を用いて以下に説明する。
The groove 3h of the element installation portion 3b is provided near the boundary with the high rigidity fixing portion 3c. The groove 3h of the element installation part 3b is provided at a position farthest from the combustion chamber of the engine in the axial direction of the element installation part 3b. Thereby, the pressure detection sensitivity is further improved.
The reason why the pressure detection sensitivity is improved by the groove 3h will be described below with reference to FIG.
 図17は、図16(a)に示す受圧状態における圧力伝達ロッドの変形状態を示す図である。
 第10の実施形態では、圧力伝達ロッド3は、受圧時に、素子設置部3bの溝3hが設けられていない領域XVIbでは、素子設置面21を内側にして湾曲し、かつ、圧力伝達部3aの領域XVIcでは、非対称剛性部3dを内側にして湾曲するように変形する。第10の実施形態では、第1の実施形態とは異なり、素子設置部3bの高剛性固定部3c側に、溝3hが設けられている。溝3hが設けられた素子設置部3bの領域XVIdは、溝3hが設けられていない素子設置部3bの領域XVIbよりもx方向の長さである厚さが薄く、剛性が小さい。このため、溝3hが設けられた素子設置部3bの領域XVIdは、溝3hを内側として湾曲する。従って、素子設置部3bにおける素子設置部3bを内側として湾曲する変形領域の軸方向の長さが溝3hの分だけ短くなる。このため、素子設置部3bにおける内側に向かって湾曲する変形の曲率が小さくなる。つまり、素子設置部3bの高剛性固定部3c側に溝3hが設けられた第10の実施形態の圧力伝達ロッド3では、溝3hを設けない第1の実施形態の圧力伝達ロッド3に比し、圧力波を受圧したとき、素子設置部3bの曲率が小さくなるように湾曲する。このため、圧力検知部の設置位置を含む範囲内で生じる歪量が増大し、圧力検知感度が向上する。
 すなわち、第10の実施形態によれば、第1の実施形態の効果(1)、(2)を奏し、特に、圧力検知感度を一層向上する効果を奏する。
FIG. 17 is a diagram showing a deformed state of the pressure transmission rod in the pressure receiving state shown in FIG.
In the tenth embodiment, when pressure is received, the pressure transmission rod 3 is curved with the element installation surface 21 inside in the region XVIb where the groove 3h of the element installation portion 3b is not provided, and the pressure transmission rod 3 The region XVIc is deformed so as to be curved with the asymmetric rigid portion 3d inside. In the tenth embodiment, unlike the first embodiment, a groove 3h is provided on the high rigidity fixing portion 3c side of the element installation portion 3b. The region XVId of the element installation portion 3b provided with the groove 3h is thinner in the x direction than the region XVIb of the element installation portion 3b not provided with the groove 3h, and has a lower rigidity. For this reason, the region XVId of the element installation portion 3b provided with the groove 3h is curved with the groove 3h inside. Therefore, the axial length of the deformation region of the element installation section 3b that is curved with the element installation section 3b inside is reduced by the groove 3h. For this reason, the curvature of the deformation of the element installation portion 3b that curves inward is reduced. That is, the pressure transmission rod 3 of the tenth embodiment in which the groove 3h is provided on the high rigidity fixing portion 3c side of the element installation portion 3b is different from the pressure transmission rod 3 of the first embodiment in which the groove 3h is not provided. When the pressure wave is received, the element mounting portion 3b bends so that the curvature thereof becomes small. For this reason, the amount of distortion generated in the range including the installation position of the pressure detection unit increases, and the pressure detection sensitivity improves.
That is, according to the tenth embodiment, the effects (1) and (2) of the first embodiment are exhibited, and in particular, the effect of further improving the pressure detection sensitivity is exhibited.
 なお、本願発明の圧力センサは、エンジン等の内燃機関の燃焼圧以外の他の圧力を検知する圧力センサに適用することが可能である。 The pressure sensor of the present invention can be applied to a pressure sensor that detects a pressure other than the combustion pressure of an internal combustion engine such as an engine.
 上記では、種々の実施形態を説明したが、本発明はこれらの内容に限定されるものではない。上記各実施形態を組み合わせたり、変形をしたりしてもよく、本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Although various embodiments have been described above, the present invention is not limited to these embodiments. The above embodiments may be combined or modified, and other modes that can be considered within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2018-157703(2018年8月24日出願)
The disclosure of the following priority application is incorporated herein by reference.
Japanese patent application 2018-157703 (filed on August 24, 2018)
  1   圧力センサ
  2   ダイアフラム
  3   圧力伝達ロッド
  3a  圧力伝達部
  3b  素子設置部
  3c  高剛性固定部
  3d、3d、3d  非対称剛性部
  3e  剛性向上材
  3f  溝
  3g  カット面
  3h  溝
  5   圧力検知部
 21   素子設置面
  O   圧力伝達ロッドの中心軸
  O   圧力伝達部とダイアフラムとの接触部の中心軸
1 the pressure sensor 2 diaphragm 3 pressure transmitting rod 3a pressure transmitting portion 3b element mounting portion 3c highly rigid fixing part 3d, 3d 1, 3d 2 asymmetric rigid portion 3e improved rigidity member 3f groove 3g cut surface 3h groove 5 the pressure sensing portion 21 element mounting Surface O Central axis of pressure transmitting rod O 1 Central axis of contact part between pressure transmitting part and diaphragm

Claims (15)

  1.  受圧用のダイアフラムと、
     素子設置部、および前記ダイアフラムと前記素子設置部との間に設けられた圧力伝達部を有する圧力伝達ロッドと、
     前記圧力伝達ロッドの前記素子設置部の設置位置に設けられた圧力検知部とを備え、
     前記ダイアフラムから受けた圧縮力に応じて前記圧力検知部の前記設置位置を含む範囲内で生じる歪みを検知して出力する圧力センサであって、
     前記圧力伝達ロッドは、圧力伝達方向の中心軸となる前記圧力伝達ロッドの軸方向における前記圧力検知部が設置された前記設置位置と異なる位置に、前記ダイアフラムを介して伝達される圧力波により前記圧力伝達ロッドに生じる振動の共振周波数を高めるための非対称剛性部を有する、圧力センサ。
    A diaphragm for receiving pressure,
    An element installation portion, and a pressure transmission rod having a pressure transmission portion provided between the diaphragm and the element installation portion,
    A pressure detection unit provided at an installation position of the element installation unit of the pressure transmission rod,
    A pressure sensor that detects and outputs distortion generated within a range including the installation position of the pressure detection unit according to a compression force received from the diaphragm,
    The pressure transmission rod is provided with a pressure wave transmitted through the diaphragm at a position different from the installation position where the pressure detection unit is installed in the axial direction of the pressure transmission rod, which is a central axis of a pressure transmission direction. A pressure sensor having an asymmetric rigid portion for increasing a resonance frequency of vibration generated in a pressure transmission rod.
  2.  請求項1に記載の圧力センサであって、
     前記素子設置部および前記非対称剛性部は、それぞれ、高剛性側と低剛性側とを有し、
     前記圧力伝達ロッドにおける前記非対称剛性部が設けられた断面における前記高剛性側と前記低剛性側の、前記圧力伝達ロッドの軸方向に直交する方向における相対的な配置は、前記圧力伝達ロッドにおける前記素子設置部が設けられた断面における前記高剛性側と前記低剛性側の、前記圧力伝達ロッドの軸方向に直交する方向における相対的な配置とは、前記圧力伝達ロッドの中心軸に対して逆である圧力センサ。
    The pressure sensor according to claim 1, wherein
    The element mounting portion and the asymmetric rigid portion each have a high rigidity side and a low rigidity side,
    The relative arrangement of the high-rigidity side and the low-rigidity side in the cross section of the pressure transmission rod provided with the asymmetric rigid portion in the direction orthogonal to the axial direction of the pressure transmission rod is as follows. The relative arrangement of the high-rigidity side and the low-rigidity side in the cross section provided with the element installation portion in the direction orthogonal to the axial direction of the pressure transmission rod is opposite to the center axis of the pressure transmission rod. Pressure sensor.
  3.  請求項2に記載の圧力センサであって、
     前記圧力伝達ロッドは、前記素子設置部と前記非対称剛性部が設けられた各部位を互いに逆方向に突き出す腹として湾曲する圧力センサ。
    The pressure sensor according to claim 2, wherein
    A pressure sensor in which the pressure transmission rod is curved as an antinode protruding in a direction opposite to each part provided with the element installation part and the asymmetric rigid part.
  4.  請求項3に記載の圧力センサであって、
     前記圧力伝達ロッドは、前記圧力検知部が設置された前記設置位置よりも、前記圧力伝達ロッドの軸方向における前記ダイアフラム側の反対側に設けられた、前記素子設置部よりも剛性が高い高剛性固定部を有する圧力センサ。
    The pressure sensor according to claim 3, wherein
    The pressure transmission rod is provided on the opposite side of the diaphragm side in the axial direction of the pressure transmission rod from the installation position where the pressure detection unit is installed, and has high rigidity higher than the element installation unit. A pressure sensor having a fixed part.
  5.  請求項2に記載の圧力センサであって、
     前記圧力伝達ロッドにおける前記非対称剛性部が設けられた断面の前記低剛性側には、前記圧力伝達ロッドを部分的に除去して形成されたカット部が前記非対称剛性部として設けられている圧力センサ。
    The pressure sensor according to claim 2, wherein
    A pressure sensor in which a cut portion formed by partially removing the pressure transmission rod is provided as the asymmetric rigid portion on the low rigidity side of the cross section of the pressure transmission rod where the asymmetric rigid portion is provided. .
  6.  請求項5に記載の圧力センサであって、
     前記カット部は、前記圧力伝達部に設けられている圧力センサ。
    The pressure sensor according to claim 5, wherein
    The pressure sensor is provided in the pressure transmitting unit.
  7.  請求項2に記載の圧力センサであって、
     前記圧力伝達ロッドにおける前記非対称剛性部が設けられた断面の前記低剛性側には、前記圧力伝達ロッドを部分的に低剛性にした低剛性領域が設けられている圧力センサ。
    The pressure sensor according to claim 2, wherein
    A pressure sensor having a low-rigidity region in which the pressure-transmitting rod is partially reduced in rigidity on the low-rigidity side of a cross section of the pressure-transmitting rod where the asymmetric rigid portion is provided.
  8.  請求項7に記載の圧力センサであって、
     前記低剛性領域は、前記圧力伝達部の一部を他の領域より低剛性化する処理を行って形成された圧力センサ。
    The pressure sensor according to claim 7, wherein
    The low-stiffness region is a pressure sensor formed by performing a process of reducing a part of the pressure transmitting unit to have a lower rigidity than another region.
  9.  請求項2に記載の圧力センサであって、
     前記非対称剛性部の前記高剛性側には、前記圧力伝達ロッドを部分的に高剛性にした高剛性領域が設けられている圧力センサ。
    The pressure sensor according to claim 2, wherein
    A pressure sensor in which a high-rigidity region in which the pressure transmission rod is partially high-rigidity is provided on the high-rigidity side of the asymmetric rigid portion.
  10.  請求項9に記載の圧力センサであって、
     前記高剛性領域は、前記圧力伝達部の一部に高剛性化処理を行って形成された圧力センサ。
    The pressure sensor according to claim 9, wherein
    The high-rigidity area is a pressure sensor formed by performing a high-rigidity process on a part of the pressure transmitting unit.
  11.  請求項2に記載の圧力センサであって、
     前記非対称剛性部は、前記圧力伝達ロッドの前記中心軸に対し前記圧力伝達部と前記ダイアフラムとの接触部の中心をずらすことにより形成されている圧力センサ。
    The pressure sensor according to claim 2, wherein
    The pressure sensor wherein the asymmetric rigid portion is formed by shifting a center of a contact portion between the pressure transmitting portion and the diaphragm with respect to the central axis of the pressure transmitting rod.
  12.  請求項2に記載の圧力センサであって、
     前記非対称剛性部は、前記圧力伝達ロッドの軸方向における異なる位置の複数箇所に設けられている圧力センサ。
    The pressure sensor according to claim 2, wherein
    The pressure sensor is provided at a plurality of different positions in the axial direction of the pressure transmitting rod, wherein the asymmetric rigid portion is provided.
  13.  請求項1に記載の圧力センサであって、
     前記素子設置部は、前記圧力検知部が設けられた設置面の反対側に、前記素子設置部の一部を除去して形成された薄肉部を有する圧力センサ。
    The pressure sensor according to claim 1, wherein
    The pressure sensor having a thin portion formed by removing a part of the element installation part on a side opposite to an installation surface on which the pressure detection part is provided.
  14.  請求項1から13までのいずれか一項に記載の圧力センサであって、
     前記非対称剛性部は、前記圧力検知部の前記設置位置よりも、前記圧力伝達ロッドの軸方向における前記ダイアフラム側に設けられている圧力センサ。
    The pressure sensor according to any one of claims 1 to 13, wherein:
    The pressure sensor, wherein the asymmetric rigid portion is provided on the diaphragm side in the axial direction of the pressure transmission rod with respect to the installation position of the pressure detection portion.
  15.  請求項1から13までのいずれか一項に記載の圧力センサであって、
     前記非対称剛性部は、前記圧力検知部の前記設置位置よりも、前記圧力伝達ロッドの軸方向における前記ダイアフラム側の反対側に設けられている圧力センサ。
    The pressure sensor according to any one of claims 1 to 13, wherein:
    The pressure sensor, wherein the asymmetric rigid portion is provided on the opposite side of the diaphragm side in the axial direction of the pressure transmission rod from the installation position of the pressure detection portion.
PCT/JP2019/025599 2018-08-24 2019-06-27 Pressure sensor WO2020039740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018157703A JP6807902B2 (en) 2018-08-24 2018-08-24 Pressure sensor
JP2018-157703 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020039740A1 true WO2020039740A1 (en) 2020-02-27

Family

ID=69593098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025599 WO2020039740A1 (en) 2018-08-24 2019-06-27 Pressure sensor

Country Status (2)

Country Link
JP (1) JP6807902B2 (en)
WO (1) WO2020039740A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136384A (en) * 1994-11-07 1996-05-31 Matsushita Electric Ind Co Ltd Combustion pressure sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136384A (en) * 1994-11-07 1996-05-31 Matsushita Electric Ind Co Ltd Combustion pressure sensor

Also Published As

Publication number Publication date
JP6807902B2 (en) 2021-01-06
JP2020030183A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP5034394B2 (en) Pressure sensor
JP4848904B2 (en) Pressure sensor
US7404328B2 (en) Pressure sensor
JP2006010306A (en) Glow plug
WO2013147260A1 (en) Pressure detection device, and internal combustion engine with pressure detection device
US10473547B2 (en) Piezoelectric pressure sensor with accommodation for thermal deformation
US9733143B2 (en) Sensor for recording a pressure of a fluid medium
JP2009186209A (en) Pressure sensor
JP2015121426A (en) Assembly structure of joint structure with weld zone
JP4760558B2 (en) Temperature sensor
WO2020039740A1 (en) Pressure sensor
JP2014173995A (en) Pressure sensor and manufacturing method thereof
JP4434299B2 (en) Combustion pressure sensor
JP2001324402A (en) Pressure sensor and its production method
JP6948247B2 (en) Pressure sensor
JP3993857B2 (en) Pressure sensor
JP2009128036A (en) Pressure sensor
JP2010096656A (en) Pressure sensor
JP5001029B2 (en) Glow plug with combustion pressure sensor
JP2020106512A (en) In-cylinder pressure sensor
JP4381193B2 (en) Combustion pressure sensor
JP2019113380A (en) Pressure sensor
JP2007198169A (en) Combustion pressure sensor and internal combustion engine with sensor
JP2007263953A (en) Load sensor
JP6374550B1 (en) Pressure sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852546

Country of ref document: EP

Kind code of ref document: A1