WO2020039589A1 - Suction component generator, method for controlling suction component generator, and program therefor - Google Patents

Suction component generator, method for controlling suction component generator, and program therefor Download PDF

Info

Publication number
WO2020039589A1
WO2020039589A1 PCT/JP2018/031413 JP2018031413W WO2020039589A1 WO 2020039589 A1 WO2020039589 A1 WO 2020039589A1 JP 2018031413 W JP2018031413 W JP 2018031413W WO 2020039589 A1 WO2020039589 A1 WO 2020039589A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction component
source
amount
flavor
suction
Prior art date
Application number
PCT/JP2018/031413
Other languages
French (fr)
Japanese (ja)
Inventor
拓磨 中野
啓司 丸橋
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2018/031413 priority Critical patent/WO2020039589A1/en
Priority to EP18931219.2A priority patent/EP3841897A4/en
Priority to CN201880096904.5A priority patent/CN112638187A/en
Priority to JP2020537999A priority patent/JP6924904B2/en
Priority to TW107129960A priority patent/TW202008900A/en
Publication of WO2020039589A1 publication Critical patent/WO2020039589A1/en
Priority to US17/182,234 priority patent/US20210169148A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/30Devices using two or more structurally separated inhalable precursors, e.g. using two liquid precursors in two cartridges
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors

Definitions

  • the present invention relates to a suction component generation device that generates a suction component sucked by a user, and a method and a program for controlling the suction component generation device.
  • the smoking devices described in Patent Literature 1 and Patent Literature 2 include an aerosol source (for example, glycerin or propylene glycol) for generating an aerosol, and a flavor base such as a tobacco base for generating a flavor. .
  • an aerosol source for example, glycerin or propylene glycol
  • a flavor base such as a tobacco base for generating a flavor.
  • the smoking device described in Patent Document 1 includes an upstream segment composed of a tobacco filler or a processed tobacco filler material containing an aerosol-forming material, and a substrate such as a fiber of polyethylene terephthalate carrying a fragrance and / or an aerosol-forming material. And a downstream segment composed of In Patent Literature 1, an aerosol having a tobacco flavor or the like is generated by passing heated air through an upstream segment and a downstream segment.
  • the smoking device described in Patent Document 2 is configured to be able to simultaneously ingest nicotine from tobacco leaves (tobacco base material) and smoke from electronic cigarettes from an atomizer.
  • the smoking device has a heater for heating the leaves of the cigarette and a heater provided in the atomizer.
  • Patent Literature 2 describes that these heaters are separately controlled.
  • a first feature is a suction component generation device, wherein a first suction component source for generating a first suction component, a second suction component source for generating a second suction component, and the second suction component.
  • a second electrical load for adjusting an amount of the second suction component generated from the component source; and a control unit, wherein the control unit is configured to control the first suction component generated from the first suction component source. The point is that the power to be supplied to the second electric load is controlled based on a value related to the amount of the second electric load.
  • the first inhalation component source may include both an aerosol source and a flavor source.
  • the second inhalation component source can include both an aerosol source and a flavor source.
  • the first suction component source is one of an aerosol source and a flavor source
  • the second suction component source is preferably the other of the aerosol source and the flavor source.
  • the second electric load may include any of an atomizing electric load and a flavoring electric load described below, as far as possible.
  • a second feature is the suction component generation device according to the first feature, further comprising a first electric load capable of adjusting an amount of the first suction component generated from the first suction component source,
  • the value associated with the amount of the first suction component generated from the first suction component source is a measured or estimated value of the amount of the first suction component, the power supplied to the first electric load, the power of the first electric load.
  • the gist is that it is a temperature or a time for supplying power to the first electric load.
  • a third feature is the suction component generation device according to the second feature, wherein the first electric load is a temperature controller.
  • a fourth feature is the suction component generation device according to the first feature, further including a temperature sensor that monitors a temperature of an area where the first suction component is generated, and is generated from the first suction component source. The point is that the value related to the amount of the first suction component is a value acquired by the temperature sensor.
  • 5A fifth feature is the suction component generation device according to any of the first to fourth features, wherein the second electric load is a temperature controller.
  • a sixth feature is the suction component generation device according to any one of the first feature to the fifth feature, wherein the control unit is configured to change the second suction component according to a change in a value related to the amount of the first suction component.
  • the gist is to control the second electric load so as to suppress a change in the amount of the suction component.
  • a seventh feature is the suction component generation device according to any one of the first feature to the sixth feature, wherein the control unit is configured to control the second component associated with a variation in a value related to the amount of the first suction component.
  • the gist of the present invention is to control the second electric load so as to suppress the variation in the amount of the suction component.
  • An eighth feature is the suction component generation device according to the seventh feature, wherein a set value of a value related to the amount of the first suction component is configured to be variable, and the control unit sets the set value to The gist of the present invention is to control the second electric load so as to suppress a change in the amount of the second suction component when changed.
  • a ninth feature is the suction component generation device according to any one of the first to eighth features, wherein at least a part of the first suction component generated from the first suction component source is converted to the second suction component.
  • the gist of the present invention is to have a flow path that reaches the outlet through the suction component source.
  • a tenth feature is the suction component generation device according to the ninth feature, wherein the amount of the second suction component generated from the second suction component source is equal to the first suction component generated from the first suction component source.
  • the gist is that at least a part of the suction component is the amount of the second suction component generated from the second suction component source when passing through the second suction component source.
  • An eleventh feature is the suction component generation device according to the ninth feature or the tenth feature, wherein the first suction component source is an aerosol source, and the second suction component source is configured to add a flavor component to the aerosol.
  • the gist of the flavor source is to be provided.
  • a twelfth feature is the suction component generation device according to any one of the ninth feature to the eleventh feature, wherein the first flow path guides the first suction component to the suction port through the second suction component source; A second flow path that guides the first suction component to the suction port without passing through the second suction component source, and a flow rate adjustment unit that adjusts a ratio between a flow rate of the first flow path and a flow rate of the second flow path. It should be included.
  • a thirteenth feature is the suction component generation device according to the twelfth feature, wherein the control unit is configured to control the second electric component based on a target value of the amount of the second suction component generated from the second suction component source. It is configured to control the power supplied to the load and the flow rate adjusting means, and the control unit controls the flow rate adjusting means to control the second suction component generated from the second suction component source. When it is determined that the amount can achieve the target value, the gist is to control the flow rate adjusting unit without controlling the second electric load.
  • a fourteenth feature is the suction component generation device according to any one of the first feature to the eighth feature, wherein at least a part of the second suction component generated from the second suction component source is the first component.
  • the gist of the present invention is to have a flow path that reaches the outlet through the suction component source.
  • a fifteenth feature is the suction component generation device according to the thirteenth feature or the fourteenth feature, wherein the second suction component source is an aerosol source, and the first suction component source adds a flavor component to the aerosol.
  • the gist of the flavor source is to be provided.
  • a sixteenth feature is the suction component generation device according to the eleventh feature or the fifteenth feature, wherein a set value of a value related to the amount of the first suction component is variably configured, and The gist is that the variable range is defined by a value capable of giving a predetermined amount of the flavor component to the aerosol.
  • a seventeenth feature is the suction component generation device according to the eleventh feature, wherein the second electric load is a temperature controller, and a set value of a value related to the amount of the aerosol is variably configured.
  • the control unit controls the temperature controller to increase the temperature of the flavor source as the amount of aerosol generated from the aerosol source is smaller, and the lower limit of the set value is such that the flavor source is not burned. It is the gist that it is specified in the range.
  • An eighteenth feature is the suction component generation device according to the seventeenth feature, wherein the lower limit is variable in accordance with a value related to an amount of a flavor component generated from the flavor source.
  • a nineteenth feature is the suction component generation device according to the eleventh feature or the fifteenth feature, wherein a set value of a value related to the amount of the aerosol is configured to be variable, and an upper limit of the set value is The point is that the consumption rate of the aerosol source accompanying the generation of the aerosol is specified so as not to exceed the supply rate of the aerosol source to the place where the aerosol source is atomized.
  • a twentieth feature is the suction component generation device according to any of the first to nineteenth features, wherein a plurality of target values of the first suction component generation amount and the second suction component generation amount are provided.
  • the gist is to have a plurality of modes which are determined according to a combination with a plurality of target values and which can be selected by a user.
  • a twenty-first feature is the suction component generation device according to any one of the first to fifth features, wherein the control unit controls the amount of the first suction component generated from the first suction component source.
  • the gist is configured to control the second electric load based on a relationship between a related value and a value related to the amount of the second suction component generated from the second suction component source.
  • a twenty-second feature is the suction component generation device according to the twenty-first feature, further comprising an adjusting unit that adjusts an amount of the first suction component generated from the first suction component source, wherein the control unit includes: The gist is that it is configured to control both the second electric load and the adjusting means.
  • a twenty-third feature is the suction component generation device according to the twenty-second feature, wherein at least a portion of the first suction component generated from the first suction component source reaches an outlet through the second suction component source.
  • a flow source the first suction component source is an aerosol source
  • the second suction component source is a flavor source that imparts a flavor component to the aerosol
  • the control unit is configured to control a predetermined aerosol amount and a predetermined
  • the gist is that the adjusting means is preferentially controlled before controlling the second electric load.
  • a twenty-fourth feature is the suction component generation device according to any one of the twenty-first feature to the twenty-third feature, wherein the relationship is based on a value related to the amount of the first suction component and the second suction component source.
  • the gist is that it is determined by a predetermined function or a predetermined lookup table that associates a value related to the amount of the second suction component to be generated.
  • a twenty-fifth feature is the suction component generation device according to any one of the twenty-first feature to the twenty-fourth feature, wherein the relationship is based on the type of the first suction component source and the type of the second suction component source.
  • the gist is that they differ depending on at least one of them.
  • a twenty-sixth feature is that a first suction component source for generating a first suction component, a second suction component source for generating a second suction component, and the second suction component source generated from the second suction component source.
  • a second electrical load for adjusting the amount of the suction component the method comprising controlling a suction component generator having a second electrical load that adjusts the amount of the suction component. And controlling the electric power to be supplied to the second electric load.
  • the twenty-seventh feature is a gist of a program for causing a suction component generation device to execute the method according to the twenty-sixth feature.
  • FIG. 1 is a schematic diagram of a suction component generation device according to one embodiment.
  • FIG. 2 is a schematic diagram of an atomizing unit according to one embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a configuration of the suction sensor according to the embodiment.
  • FIG. 4 is a schematic diagram illustrating an example of a flow rate adjusting unit according to one embodiment.
  • FIG. 5 is a block diagram of the suction component generation device.
  • FIG. 6 is a flowchart illustrating control in the suction component generation device according to the embodiment.
  • FIG. 7 is a diagram illustrating an example of a combination of the target value of the flavor component and the target value of the aerosol amount.
  • FIG. 8 is a flowchart illustrating another example of control in the suction component generation device according to the embodiment.
  • FIG. 9 is a graph showing an example of the relationship between the target value of the flavor component and the target value of the aerosol amount.
  • FIG. 10 is a flowchart illustrating another example of
  • Patent Literature 1 generates an aerosol having a tobacco flavor and the like.
  • the amount of tobacco flavor relative to the amount of aerosol depends on the design of the device, and it is difficult to change the amount of aerosol and the amount of tobacco flavor independently of each other.
  • Patent Document 2 discloses that a heater for heating the leaf of a cigarette and a heater provided in an atomizer are separately controlled. However, Patent Document 2 has almost no specific description on how to control these heaters.
  • a suction component generation device includes a first suction component source for generating a first suction component, a second suction component source for generating a second suction component, and the second suction component source. And an electric load for generating the second suction component from the control unit.
  • the control unit is configured to control electric power supplied to the electric load based on a value related to an amount of the first suction component generated from the first suction component source.
  • a method of controlling a suction component generation device comprises: a first suction component source for generating a first suction component; a second suction component source for generating a second suction component; A second electrical load for generating the second suction component from the second suction component source, wherein the amount of the first suction component generated from the first suction component source is controlled. Controlling the power supplied to the second electric load based on the value related to the second electric load.
  • the program causes the suction component generation device to execute the above method.
  • the power supplied to the second electric load is controlled based on the value related to the amount of the first suction component generated from the first suction component source, and the second power generated from the second suction component source is controlled. 2.
  • the amount of the suction component is adjusted.
  • the amount of the second suction component included in the first suction component is appropriately variably configured according to the amount of the first suction component.
  • the amount of the first suction component affects the amount of the second suction component generated from the second suction component source
  • the amount of the first suction component is related to the amount of the first suction component generated from the first suction component source.
  • the amount of the second suction component can be appropriately adjusted by controlling the power supplied to the second electric load based on the value to be performed.
  • the amount of the flavor component (second suction component) in the aerosol can be appropriately adjusted based on the value related to the amount of the aerosol (first suction component).
  • the amount of the aerosol can be increased or decreased while the amount of the flavor component is kept constant. In this case, for example, the user can enjoy a desired flavor by keeping the amount of the flavor component in the aerosol constant while suppressing the amount of the aerosol in order to consider surrounding people. .
  • Patent Literature 2 nicotine is generated from tobacco leaves (tobacco base material), and smoke of electronic cigarettes generated by an atomizer is added to air containing nicotine. That is, e-cigarette smoke is produced downstream of the production of nicotine.
  • the amount of smoke (aerosol) of the electronic cigarette depends only on the output of the heater in the atomization unit, and the amount of the tobacco flavor component only depends on the output of the cigarette heater. Therefore, Patent Document 2 does not disclose the technical idea of adjusting the output of the cigarette heater based on the amount of smoke of the electronic cigarette or adjusting the output of the heater in the atomizing unit based on the amount of the tobacco flavor component. Please note.
  • FIG. 1 is an exploded view showing a suction component generation device according to one embodiment.
  • FIG. 2 is a schematic diagram of an atomizing unit according to one embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a configuration of the suction sensor according to the embodiment.
  • FIG. 4 is a schematic diagram illustrating an example of a flow rate adjusting unit according to one embodiment.
  • FIG. 5 is a block diagram of the suction component generation device.
  • the suction component generation device 100 may be a non-combustion type flavor suction device for sucking flavor without burning.
  • the suction component generation device 100 may be a portable flavor inhaler.
  • the suction component generation device 100 may have a shape extending along a predetermined direction A that is a direction from the non-mouth end E2 to the mouth end E1.
  • the suction component generation device 100 may include one end E1 having the mouth 141 for sucking the flavor, and the other end E2 opposite to the mouth 141.
  • the suction component generation device 100 may include a power supply unit 110 and an atomization unit 120.
  • the atomization unit 120 may be configured to be detachable from the power supply unit 110 via mechanical connection portions 111 and 121.
  • the later-described atomizing electric load 122R and flavor electric load 124R in the atomizing unit 120 are connected to a power supply provided in the power supply unit 110. 10 is electrically connected.
  • the atomizing unit 120 includes an aerosol source (aspirating component source) sucked by a user, and an atomizing electric load 122R that atomizes the aerosol source with power from the power supply 10.
  • the atomizing electric load 122R may be an element that can adjust the amount of aerosol (the amount of the suction component) generated from the aerosol source according to the supplied electric power.
  • the atomizing electric load 122R may be the atomizing temperature controller 122.
  • the atomizing electric load 122R constituting the atomizing temperature controller 122 may be a resistance heating element.
  • the atomizing unit 120 may include a reservoir 122P, a wick 122Q, and an atomizing electric load 122R.
  • the reservoir 122P may be configured to store a liquid aerosol source.
  • the reservoir 122P may be, for example, a porous body made of a material such as a resin web.
  • the wick 122Q may be a liquid holding member that transports the aerosol source from the reservoir 122P to the vicinity of the atomizing electric load 122R by using a capillary phenomenon.
  • the wick 122Q can be made of, for example, glass fiber or porous ceramic.
  • the atomizing electric load 122R heats the aerosol source held by the wick 122Q.
  • the atomizing electric load 122R is configured by, for example, a resistance heating element (for example, a heating wire) wound around the wick 122Q.
  • the electric load 122R for atomization may be, for example, a temperature controller 122 such as an electric heater.
  • the atomizing electric load 122R may be a temperature controller having a function of heating and cooling the aerosol source held by the wick 122Q.
  • the air that has flowed in from the inlet 125 through the flow path 127 passes near the atomizing electric load 122R in the atomizing unit 120.
  • the aerosol generated at the atomizing electric load 122R flows to the suction port 141 together with the air.
  • the aerosol source may be liquid at room temperature.
  • a polyhydric alcohol can be used as the aerosol source.
  • the aerosol source may include a tobacco raw material or an extract derived from a tobacco raw material that releases a flavor component upon heating.
  • the example of the aerosol source that is liquid at room temperature has been described in detail, but instead, an aerosol source that is solid at room temperature may be used.
  • the atomizing electric load 122R may be in contact with or in proximity to the solid aerosol source to generate aerosol from the solid aerosol source.
  • the atomizing unit 120 may include a flavor unit 130 that is configured to be replaceable.
  • the flavor unit 130 may have a cylinder 131 that stores a flavor source (a suction component source).
  • the cylinder 131 may include a membrane member 133 and a filter 132 through which air, aerosol, and the like can pass.
  • a flavor source may be provided in a space defined by the membrane member 133 and the filter 132.
  • the suction component generation device 100 has channels 127 and 128 that allow at least a part of the aerosol generated from the aerosol source to reach the outlet through the flavor source.
  • the flavor source in the flavor unit 130 imparts a flavor component to the aerosol generated by the atomizing electric load 122R of the atomization unit 120.
  • the flavor component imparted to the aerosol by the flavor source is carried to the suction port 141 of the suction component generation device 100.
  • the flavor source in the flavor unit 130 may be solid at room temperature.
  • the flavor source is constituted by a raw material piece of a plant material that imparts a flavor-tasting component to the aerosol.
  • a raw material piece constituting the flavor source a molded article obtained by molding a tobacco material such as chopped tobacco or tobacco raw material into granules can be used.
  • the flavor source may be a molded article formed by molding the tobacco material into a sheet.
  • the raw material piece which comprises a flavor source may be comprised by plants (for example, mint, herb, etc.) other than tobacco. Flavors such as menthol may be provided to the flavor source.
  • the flavor source may be movably accommodated in a space defined by the membrane member 133 and the filter 132. In this case, the flavor source flows in the flavor unit 130 during use, and the bias of the flavor source in contact with the flavor electric load 124R is reduced, so that the flavor component can be stably released.
  • the flavor source may be substantially fixed in the space defined by the membrane member 133 and the filter 132. In this case, heat can be efficiently transmitted from the flavor electric load 124R to the flavor source.
  • the flavor electric load 124R provided in the atomization unit 120 may be located around the cylindrical body 131 of the flavor unit 130 attached to the atomization unit 120.
  • the flavor electric load 124R may be configured to be able to adjust the amount of flavor (inhalation component) generated from the flavor source.
  • the flavor electric load 124R may be an element that can adjust the amount of flavor generated from the flavor source according to the supplied power.
  • the flavor electric load 124R may be a temperature controller 124 that can adjust the temperature of the flavor source.
  • the temperature controller 124 may be constituted by a resistance heating element.
  • the temperature controller 124 may be a cooling element such as a Peltier element.
  • the temperature controller 124 may be an element capable of performing both heating and cooling.
  • a heat insulating material 126 may be provided outside the flavor electric load 124R.
  • the heat insulating material 126 can reduce the heat transfer loss from the flavor electric load 124R, and can perform temperature control with energy saving.
  • the suction component generation device 100 may include a mouthpiece having a suction port for a user to suction the suction component.
  • the mouthpiece may be configured to be detachable from the atomizing unit 120 or the flavoring unit 130, or may be configured as an integral unit.
  • the suction component generation device 100 specifically, the atomization unit 120, includes a first flow path 128 that guides the aerosol to the mouth 141 through the flavor source, and a second flow path 129 that guides the aerosol to the mouth 141 without passing the flavor source. And may be provided. The aerosol passing through the second channel 129 reaches the mouth 141 without being imparted with a flavor from a flavor source.
  • the atomizing unit 120 may include a flow rate adjusting unit 730 that adjusts the ratio between the flow rate of the first flow path 128 and the flow rate of the second flow path 129.
  • the flow rate adjusting means 730 is provided between the atomizing unit 120 and the flavor unit 130, that is, near the boundary.
  • the amount of aerosol that passes through the flavor source can be adjusted irrespective of the amount of aerosol generated by the atomizing unit 120, the entire amount of the aerosol generated by the atomizing unit 120 is ventilated to the flavor source. Is maximized, the ratio between the aerosol and the flavor component contained in the gas reaching the mouth 141 can be controlled.
  • FIG. 4 is a schematic diagram showing an example of the flow rate adjusting means 730 according to one embodiment.
  • the flow rate adjusting means 730 may include two cylindrical members 731A and 731B coaxially arranged.
  • the first cylindrical member 731A and the second cylindrical member 731B may be configured to be rotatable around the rotation axis C, respectively.
  • the first columnar member 731A and the second columnar member 731B may have a through hole 760A and a through hole 760B at the rotation axis, respectively. Thereby, at least a part of the aerosol generated by the atomizing unit 120 flows into the first flow path 128 in the flavor unit 130 through the through holes 760A and 760B of the flow rate adjusting means 730.
  • the first columnar member 731A and the second columnar member 731B may have other through holes 760A, 760B penetrating along the predetermined direction A around the rotation axis. These 760A and 760B have different overlapping areas according to the relative positional relationship between the first cylindrical member 731A and the second cylindrical member 731B in the rotation direction. That is, the aerosol generated by the atomizing unit 120 flows into the second flow path 129 outside the flavoring unit 130 according to the relative positional relationship between the first cylindrical member 731A and the second cylindrical member 731B in the rotation direction.
  • the flow rate adjusting means 730 can adjust the ratio between the flow rate of the first flow path 128 and the flow rate of the second flow path 129.
  • the power supply unit 110 may include the power supply 10 and the control unit 50.
  • the control unit 50 may include a memory 52 that stores information necessary for performing various controls necessary for the operation of the suction component generation device 100. Further, the control unit 50 may include a notification unit that issues a notification for notifying the user of various types of information as needed.
  • the notification unit may be a light-emitting element that emits light, such as an LED, an element that emits sound, or a vibrator that emits vibration. Further, the notification unit may be configured by a combination of elements that emit light, sound, or vibration.
  • the power supply 10 stores electric power necessary for the operation of the suction component generation device 100.
  • the power supply 10 may be detachable from the power supply unit 110.
  • the power supply 10 may be a rechargeable battery such as a lithium ion secondary battery.
  • the control unit 50 may perform various controls necessary for the operation of the suction component generation device 100.
  • the control unit 50 may control power from the power supply 10 to the atomizing electric load 122R and the flavoring electric load 124R.
  • the control unit 50 may electrically and automatically operate the flow rate adjusting unit 730 described above. For example, if the flow rate adjusting unit 730 is in the mode shown in FIG. 4, the control unit 50 rotates at least one of the first cylindrical member 731A and the second cylindrical member 731B around the rotation axis C.
  • the control unit 50 may include a suction detection unit that detects a suction request operation by the user.
  • the suction detection unit may be, for example, a suction sensor 20 that detects a user's suction operation.
  • the suction detection unit may be, for example, a push button pressed by a user.
  • the controller 50 generates a command for operating the atomizing electric load 122R and / or the flavoring electric load 124R when the suction detection unit detects the suction request operation.
  • the control unit 50 may be configured to variably supply electric power to be supplied to the atomizing electric load 122R and the flavoring electric load 124R according to a mode designated by a user, an environment, or the like.
  • control unit 50 supplies power to the atomizing electric load 122R and / or the flavoring electric load 124R in the form of a power pulse.
  • control unit 50 can control the power supplied to the atomizing electric load 122R and / or the flavor electric load 124R by adjusting the duty ratio of the pulse width modulation (PWM) or the pulse frequency modulation (PFM). Out.
  • PWM pulse width modulation
  • PFM pulse frequency modulation
  • the inhalation component generation device 100 estimates the temperature of the aerosol source or the temperature controller 122 for nebulization or the temperature sensor 150 capable of estimating or acquiring the temperature of the flavor source or the temperature controller 124 for flavor as needed. And a possible temperature sensor 160.
  • the suction sensor 20 may be configured to output an output value that fluctuates according to suction from the suction port. Specifically, the suction sensor 20 outputs a value (for example, a voltage value or a current value) that changes according to the flow rate of the air sucked from the non-mouth side to the mouth side (that is, the user's puff operation). Sensor. Examples of such a sensor include a condenser microphone sensor and a known flow sensor.
  • FIG. 3 shows a specific example of the suction sensor 20.
  • the suction sensor 20 illustrated in FIG. 3 has a sensor main body 21, a cover 22, and a substrate 23.
  • the sensor main body 21 is composed of, for example, a capacitor.
  • the electric capacity of the sensor main body 21 is changed by vibration (pressure) generated by air sucked from the inlet 125 (that is, air sucked from the non-mouth side to the mouth side).
  • the cover 22 is provided on the suction side with respect to the sensor main body 21 and has an opening 40. By providing the cover 22 having the opening 40, the electric capacity of the sensor main body 21 is easily changed, and the response characteristics of the sensor main body 21 are improved.
  • the substrate 23 outputs a value (here, a voltage value) indicating the electric capacity of the sensor body 21 (capacitor).
  • the suction component generation device 100 may include an input unit 200 and a display unit 210.
  • the input unit 200 may be configured to be able to input various commands from a user.
  • the input unit 200 may be, for example, a touch panel type screen or an operation push button.
  • the display unit 210 may be a screen for displaying various information to a user.
  • the input unit 200 may be used, for example, for selecting a mode described later.
  • the input unit 200 may be used to set a target value of the generated aerosol and / or a target value of the flavor component.
  • the control unit 50 may adjust the amount of power supplied to the atomizing electric load 122R and / or the flavoring electric load 124R according to these target values.
  • FIG. 6 is a flowchart illustrating an example of control in the suction component generation device according to the embodiment.
  • the user sets a target value of the aerosol amount before starting the suction operation (Step S301).
  • the target value A of the aerosol amount may be selected from a plurality of options (modes), or may be set by specific numerical values.
  • the control unit 50 determines the power or the amount of power to be supplied to the atomizing temperature controller 122 according to the target value A of the aerosol amount (Step S302).
  • the target value of the aerosol amount is set.
  • a value related to the aerosol amount may be set.
  • the value related to the amount of aerosol may be, for example, the temperature of the temperature controller for atomization 122, the power supplied to the temperature controller 122 for atomization, the time for supplying power to the temperature controller 122 for atomization, or the like. .
  • the user sets the target value Y of the flavor component (step S303). Then, the control unit 50 determines a target temperature of the flavor temperature controller 124 (Step S304). More specifically, the control unit 50 controls the electric power supplied to the flavor temperature controller 124 according to the target value A of the aerosol amount and the target value Y of the flavor component, that is, the target of the flavor temperature controller 124. The temperature may be determined.
  • a target value of the amount of the flavor component is set.
  • a value related to the amount of the flavor component may be set.
  • the value related to the amount of the flavor component is, for example, the temperature of the flavor temperature controller 124, the power supplied to the flavor temperature controller 124, the time for supplying the power to the flavor temperature controller 124, and the flow rate adjusting unit 730. It may be the amount of aerosol vented to the flavor source, specifically, the degree of opening of the second channel 129 by the flow rate adjusting means 730, and the like.
  • the amount of flavor components generated in the aerosol can vary depending on the amount of aerosol passing through the flavor source and the temperature. For example, the greater the amount of aerosol passing through the flavor source, the greater the amount of flavor components generated in the aerosol. Also, the higher the temperature of the flavor source, the greater the amount of flavor components generated in the aerosol. Therefore, the control unit 50 determines the electric power to be supplied to the flavor temperature controller 124 (second electric load) according to the target value of the aerosol amount (the amount of the first suction component). Thereby, the amount of the flavor component contained in the aerosol amount can be controlled independently of the aerosol amount.
  • the control unit 50 detects the start of the suction cycle or the flavor source or the temperature controller for flavor.
  • the temperature of 124 is estimated or measured (step S305 and step S306).
  • the suction cycle can be detected, for example, by the user pressing a push button.
  • the suction cycle is a state in which the operation of the temperature controller for atomization 122 and / or the temperature controller for flavor 124 is possible by the user's suction operation, and may include one or more user's suction operations. It is a cycle.
  • the suction operation means an operation such as pressing of a push button by a user or suction from a suction port.
  • the temperature of the flavor source or flavor temperature controller 124 can be estimated or measured by the temperature sensor 160. Instead, when the temperature controller 124 for flavor is a heater including a resistance heating element, the control unit 50 estimates the temperature of the resistance heating element by estimating the electric resistance value from the voltage drop amount at the resistance heating element. Can be estimated. The amount of voltage drop in the resistance heating element can be measured by a known voltage sensor.
  • the control unit 50 determines whether the temperature of the flavor source or the flavor temperature controller 124 is more than a predetermined value ⁇ from the target temperature T target (step S307). When the temperature of the flavor source or the temperature controller for flavor 124 is more than a predetermined value ⁇ from the target temperature T target , the control unit 50 supplies electric power to the temperature controller for flavor 124, and Control is performed so that the temperature controller 124 maintains the temperature around the target temperature (step S308).
  • the predetermined value ⁇ is an allowable value of a temperature error, and is set, for example, in a range of several degrees Celsius to less than 10 degrees Celsius.
  • the control unit 50 monitors whether or not the user performs a suction operation (step S309).
  • the user's suction operation can be detected by, for example, the suction sensor 20 described above.
  • the control unit 50 supplies electric power to the atomizing electric load 122R (adjusting unit) to heat the atomizing temperature controller 122 (Step S310). Thereby, an aerosol is generated from the atomization unit.
  • the aerosol generated in the atomizing unit is imparted with a flavor by passing through a flavor source. The user will inhale the flavored aerosol.
  • control unit 50 When the control unit 50 detects the end of the suction operation (step S311), it stops supplying power to the atomizing electric load 122R (step S312). Here, the end of the suction operation can be detected by the suction sensor 20. In addition, even if the suction operation by the user is completed, the control unit 50 continues to supply power to the flavor temperature controller 124 so as to maintain the temperature of the flavor source at the target temperature until the suction cycle is completed. Good.
  • the control unit 50 may stop supplying power to the atomizing electric load 122R even at a timing other than the detection of the end of the suction operation. For example, when the user continues the suction operation for a very long time, or when the abnormality of the electric load 122R for atomization or the power supply 10 is detected, the supply of power to the electric load 122R for atomization may be stopped.
  • control unit 50 may stop supplying power to the flavor electric load 124R (step S314).
  • the control unit 50 may determine that the suction cycle has ended, for example, when a predetermined push button is pressed by the user or when a predetermined period has elapsed from the end of the previous suction operation.
  • the control unit 50 may determine that the suction cycle has ended when the suction operation has been detected a predetermined number of times during one suction cycle, or when a predetermined period has elapsed since the start of the suction cycle. Good.
  • the timings of starting and ending power supply to the atomizing electric load 122R and the flavoring electric load 124R are different. Instead, the timing of starting and / or ending the supply of power to the atomizing electric load 122R and the flavoring electric load 124R may be the same.
  • step S304 the control unit 50 determines the power to be supplied to the flavor temperature controller 124 (second electric load) according to the target value of the aerosol amount (the amount of the first suction component).
  • the control unit 50 may be configured to control the electric power supplied to the flavor electric load 124R based on a value related to the amount of the aerosol generated from the aerosol source.
  • the value associated with the amount of aerosol generated from the aerosol source is the measured or estimated value of the amount of aerosol, the power supplied to the electrical load for atomization 122R, the temperature of the electrical load for atomization 122R, the electrical load for atomization.
  • the time for supplying power to the 122R, the amount of power supplied to the atomizing electric load 122R, and the like may be used.
  • the value related to the amount of aerosol generated from the aerosol source may be a value acquired by a temperature sensor that monitors the temperature of the area where the aerosol is generated.
  • the value associated with the amount of the aerosol may be the amount of the aerosol itself. Even in these cases, the amount of the flavor component contained in the aerosol amount can be controlled independently of the aerosol amount.
  • control unit 50 controls the value based on the relationship between the value related to the amount of the aerosol generated from the aerosol source and the value related to the amount of the flavor component generated from the flavor source.
  • the flavor temperature controller 124 is configured to be controlled.
  • This relationship may be defined by a look-up table that associates a value related to the amount of the aerosol with a value related to the amount of the flavor component generated from the flavor source. That is, when the user sets a value related to the amount of the aerosol generated from the aerosol source and a value related to the amount of the flavor component generated from the flavor source, the control unit 50 stores the value in the memory 52.
  • the power to be supplied to the atomizing electric load 122R and the flavoring electric load 124R may be determined with reference to the reference table that has been set. That is, when the user sets a value related to the amount of the aerosol generated from the aerosol source and a value related to the amount of the flavor component generated from the flavor source, the control unit 50 stores the value in the memory 52.
  • the power to be supplied to the atomizing electric load 122R and the flavoring electric load 124R may be determined based on the reference table.
  • this relationship may be defined by a predetermined function that relates a value related to the amount of the aerosol to a value related to the amount of the flavor component generated from the flavor source. That is, when the user sets a value related to the amount of the aerosol generated from the aerosol source and a value related to the amount of the flavor component generated from the flavor source, the control unit 50 stores the value in the memory 52.
  • the power to be supplied to the atomizing electric load 122R and the flavoring electric load 124R may be calculated based on the predetermined function.
  • the predetermined function can be determined, for example, by a previously performed experiment.
  • the atomization is performed according to an arbitrary combination of a value related to the amount of the aerosol generated from the aerosol source and a value related to the amount of the flavor component generated from the flavor source.
  • the power supplied to the electric load 122R and the flavor electric load 124R can be determined continuously.
  • the relationship described above may be different depending on at least one of the type of the aerosol source and the type of the flavor source.
  • the types of the aerosol source and the flavor source may be determined by the difference in the composition of the aerosol source and the flavor source, respectively. Because the relationship between the value related to the amount of the aerosol generated from the aerosol source and the value related to the amount of the flavor component generated from the flavor source may differ depending on the difference in the composition of the aerosol source and the flavor source. .
  • the user sets both the target value of the aerosol amount and the target value of the flavor component.
  • the set value of the aerosol amount and / or the set value of the flavor component preferably has a desired upper limit and / or lower limit.
  • variable range of the set value of the amount of the aerosol and / or the amount of the flavor component is defined by a value capable of providing a predetermined amount of the flavor component to the aerosol.
  • a flavor component in a predetermined range can be imparted to the aerosol regardless of the aerosol amount. Therefore, the user can inhale a desired flavor regardless of the aerosol amount.
  • the upper limit of the set value of the value related to the amount of the flavor component is preferably lower than the combustion temperature of the flavor source. This can prevent the flavor source from being heated above the combustion temperature of the flavor source.
  • the upper limit of the set value of the value related to the amount of the flavor component when using tobacco raw material as a flavor source, the temperature of the flavor temperature regulator 124 is 200 ° C, preferably by a value corresponding to 150 ° C May be specified.
  • the upper limit of the set value of the value related to the amount of the flavor component is preferably a value corresponding to the boiling point of the aerosol source or lower. Thereby, the temperature of the flavor source is maintained at or below the boiling point of the aerosol source. In this case, a reduction in the amount of aerosol due to re-evaporation or diffusion of the aerosol passing through the flavor source can be suppressed.
  • the upper limit of the set value of the value related to the amount of the flavor component may be variable according to the set value of the value related to the aerosol amount as shown in FIG.
  • the “boiling point of the aerosol source” may be defined by the boiling point of the component with the largest weight percentage contained in the aerosol source.
  • the “boiling point of the aerosol source” may be defined by the boiling point of the component having the lowest boiling point in a single component among the plurality of aerosol precursors.
  • the aerosol source includes glycerin and propylene glycol, it may be specified at about 190 ° C., the boiling point of propylene glycol.
  • the boiling point of the aerosol source may be specified at about 250 ° C., which is the boiling point of glycerin.
  • the temperature of the flavor source is maintained at about 250 ° C. or lower, about 190 ° C. or lower, or about 100 ° C. or lower (boiling point of water) or lower. Is preferably performed. Therefore, when it is determined that the temperature of the flavor source determined according to the set value of the aerosol amount and / or the amount of the flavor component does not maintain the upper limit temperature, the control unit 50 displays an error on the display unit 210. The user may be prompted to change these set values.
  • the lower limit of the set value of the value related to the amount of the flavor component may be, for example, a value corresponding to ⁇ 10 ° C. or more, preferably 0 ° C. or more, more preferably 10 ° C. or more. Thereby, the aerosol passing through the flavor source can be suppressed from condensing in the air flow path, and the decrease in the amount of aerosol reaching the mouth can be suppressed.
  • the lower limit of the set value of the value related to the amount of the flavor component may be variable according to the set value of the value related to the aerosol amount as shown in FIG.
  • the upper limit of the set value of the value related to the amount of the aerosol is preferably defined so that the consumption rate of the aerosol source accompanying the generation of the aerosol does not exceed the supply rate of the aerosol source to where the aerosol source is atomized. .
  • the lower limit of the set value of the value related to the amount of the aerosol is: It is preferable that the flavor source is defined in a range where it is not burned.
  • the upper and / or lower limit of the set value of the value related to the amount of the aerosol may be variable according to the value related to the amount of the flavor component generated from the flavor source (see also FIG. 7).
  • FIG. 7 is a diagram showing an example of a combination of the target value of the flavor component and the target value of the aerosol amount.
  • the boundary line between the region R2 and the region R3 indicates the amount Y of the flavor component and the amount of the aerosol when the output of the atomizing temperature controller 122 is changed without operating the flavor temperature controller 124 at a certain atmospheric temperature.
  • A is a line indicating a possible value. Therefore, when the amount of the flavor component Y and the amount of the aerosol A indicated by the point P2 are set by the user, the control unit 50 operates the atomizing temperature controller 124 without operating the flavor temperature controller 124. 122 may be operated.
  • the present invention is not limited to the case where the amount Y of the flavor component and the amount A of the aerosol corresponding to the points on the boundary line between the region R2 and the region R3 shown in FIG. Even when the amount Y of the flavor component and the amount A of the aerosol in the line are set, the control unit 50 operates the temperature controller 122 for atomization without operating the temperature controller 124 for flavor. It should be done.
  • the width of the strip-shaped line (the width in the vertical axis direction in FIG. 7) that does not require the operation of the flavor temperature controller 124 is twice the predetermined value ⁇ in step S307 of the control flow shown in FIG. Note that this is related to 2 ⁇ ).
  • the region R2 is a region in which the amount of flavor components contained in the aerosol is larger than when the flavor temperature controller 124 is not operated. Therefore, when the amount Y of the flavor component and the amount A of the aerosol indicated by the point P3 are set, the control unit 50 may operate both the atomization temperature controller 122 and the flavor temperature controller 124. Good.
  • the boundary between the region R2 and the region R1 indicates the upper limit of the amount of the aerosol and the upper limit of the amount of the flavor component.
  • the upper limit of the amount of the flavor component may be set as described above. In this case, when the amount Y of the flavor component and the amount A of the aerosol represented by the point P4 are set, the control unit 50 can prompt the user to change the setting by displaying an error on the display unit 210. .
  • the region R3 is a region where the amount of the flavor component contained in the aerosol is smaller than when the flavor temperature controller 124 is not operated.
  • the desired amount Y of the flavor component and the amount A of the aerosol included in the region R3 can be achieved by operating the flow rate adjusting unit 730 described above.
  • the control unit 50 not only controls the power supplied to the flavor temperature controller 124 based on the target value of the amount of the flavor component generated from the flavor source, but also controls the flow rate adjusting unit 730 based on the target value. May also be controlled. More specifically, the control unit 50 may control both the power supplied to the flavor temperature controller 124 and the flow rate adjusting unit 730 in order to generate a desired flavor component amount and a desired aerosol amount. Good.
  • control unit 50 determines that the amount of the flavor component generated from the flavor source can achieve the target value under the control of the flow rate adjusting unit 730
  • the control unit 50 controls the flow rate without controlling the flavor temperature controller 124.
  • Means 730 may be controlled.
  • the control of the flow rate adjusting means 730 consumes less power than the control of the flavor temperature controller 124. Therefore, it is preferable to preferentially adjust the amount of the flavor component by the flow rate adjusting unit 730 before driving the flavor temperature controller 124.
  • the control unit 50 reduces the amount of the aerosol to be passed through the first flow path 128 by the flow rate adjusting unit 730, What is necessary is just to operate the temperature controller 122 for atomization. Instead, when the amount Y of the flavor component is reduced, the flavor source may be cooled by the flavor temperature controller 124 having a cooling function.
  • the predetermined target value in the region R3 has been realized by using the flow rate adjusting unit 730.
  • the predetermined target value in the region R3 can be realized by the flavor temperature controller 124 having a cooling function. That is, the amount of the flavor component in the aerosol can be reduced by lowering the temperature of the flavor source by the flavor temperature controller 124. Thereby, a predetermined target value in the region R3 where the ratio of the flavor component to the aerosol amount is low can be realized.
  • the boundary between the region R3 and the region R4 indicates the lower limit of the amount of the flavor component or the lower limit of the amount of the aerosol when the flow rate adjusting unit 730 is not used.
  • the lower limit of the amount of the flavor component or the lower limit of the amount of the aerosol may be set as described above. Therefore, when the amount Y of the flavor component and the amount A of the aerosol included in the region R4 are set, the control unit 50 can prompt the user to change the setting by displaying an error on the display unit 210.
  • the target values of the amount of the aerosol and the amount of the flavor component in the region R4 can be realized by using the flow rate adjusting means 730 or by using the flow rate adjusting means 730 and the cooling by the flavor temperature controller 124 in combination. .
  • control unit 50 allows a large amount of the aerosol generated by the atomization unit 120 to pass through the second flow path 129, and significantly reduces the amount of the aerosol to be passed through the first flow path. Can be greatly reduced. Thereby, the target values of the amount of the aerosol and the amount of the flavor component in the region R4 can be realized.
  • the temperature of the flavor source is lowered by the flavor temperature controller 124 and the amount of aerosol to be passed through the first flow path by the flow rate adjusting means 730 is also reduced, so that the amount and flavor of the aerosol in the region R4 are also reduced.
  • a target value for the amount of the component can be achieved.
  • the aerosol (smoke) discharged from the suction component generation device cannot be visually recognized or is difficult to be visually recognized.
  • the operation mode of the suction component generation device relating to such a target value can be said to be a “smokeless mode”.
  • the smokeless mode can be realized by, for example, not operating the atomizing temperature controller 122 or maintaining the amount of heating by the atomizing temperature controller 122 at a low value.
  • FIG. 8 is a flowchart illustrating an example of control in the suction component generation device according to the embodiment.
  • the control unit 50 controls the amount of the flavor component contained in the aerosol to be constant.
  • the amount of the flavor component may be set in advance, or may be set by the user before the suction operation.
  • the user sets a target value of the aerosol amount before starting the suction operation (step S301).
  • the target value A of the aerosol amount may be selected from a plurality of options (modes), or may be set by specific numerical values.
  • the control unit 50 determines the power or the amount of power to be supplied to the atomizing temperature controller 122 according to the target value A of the aerosol amount (Step S302).
  • control unit 50 determines the target temperature of the flavor temperature controller 124 according to the target value A of the aerosol amount (the amount of the first suction component) (step S304). More specifically, the control unit 50 determines the power to be supplied to the flavor temperature controller 124 based on the target value A of the aerosol amount so that the amount of the flavor component generated in the aerosol becomes constant.
  • Steps S305 to S314 thereafter are the same as those in the control flow shown in FIG. 6, and a detailed description thereof will be omitted.
  • control unit 50 restarts the control from step S301 when the target value of the aerosol amount is changed even during the suction cycle. At this time, the control unit 50 may keep the target value of the flavor component contained in the aerosol constant.
  • Fig. 9 shows an example of the relationship between the target value of the flavor component and the target value of the aerosol amount.
  • the solid line in FIG. 9 indicates the target value of the flavor component.
  • the dotted line in FIG. 9 indicates the target value of the aerosol amount.
  • step S304 the control unit 50 determines the power to be supplied to the flavor temperature controller 124 according to the target value of the aerosol amount (the amount of the first suction component).
  • the control unit 50 may be configured to control the electric power supplied to the flavor electric load 124R based on a value related to the amount of the aerosol generated from the aerosol source.
  • the values associated with the amount of aerosol generated from the aerosol source are as described above.
  • the amount of aerosol can be kept constant. Therefore, even if the amount of aerosol due to inhalation is reduced or eliminated, a certain amount of the flavor component is maintained, so that the user can enjoy the flavor without impairing the flavor. Accordingly, the amount of aerosol can be reduced without impairing the flavor by reducing the amount of aerosol when a person approaches the user during flavor inhalation.
  • the control unit 50 controlled the amount of the flavor component contained in the aerosol to be constant. Not limited to this, when the set value of the amount of the aerosol is changed, the control unit 50 controls the flavor to suppress the change in the amount of the flavor component accompanying the change in the value related to the amount of the aerosol.
  • the electric load 124 (second electric load) may be controlled. That is, the amount of the flavor component in the aerosol does not necessarily need to be kept constant, and may be controlled so as to reduce the amount of change in the flavor component. For example, the flavor component may be maintained within a range of preferably ⁇ 20%, more preferably ⁇ 10% of the target value.
  • control unit 50 may control the electric load for flavor 124 (the first electric load 124) to suppress the variation in the amount of the flavor source due to the variation in the value related to the amount of the aerosol. 2 electrical load).
  • the control unit 50 sets the flavor such that the smaller the amount of the aerosol generated from the aerosol source, the higher the temperature of the flavor source.
  • the temperature controller 124 may be controlled.
  • the lower limit of the set value of the value related to the amount of the aerosol is set, for example, in a range in which the flavor source is not burned.
  • the upper limit of the set value of the value related to the amount of the aerosol can be determined in the same manner as described above.
  • FIG. 10 is a flowchart illustrating an example of control in the suction component generation device according to the embodiment.
  • the control unit 50 sets a timer value (t) to 0 before detecting a user's suction operation (step S100).
  • the timing at which the value (t) of the timer is set to 0 may be, for example, the timing at which the flavor unit 130 has been replaced.
  • control unit 50 determines whether or not the user's suction operation has been detected (step S309). As described above, the control unit 50 can determine the user's suction operation based on the output signal from the suction sensor 20. Alternatively, the control unit 50 may determine the user's suction operation by pressing the push button by the user.
  • the control unit 50 estimates or acquires a value related to the amount of the flavor component generated from the flavor source (step S104).
  • the value associated with the amount of flavor component produced from the flavor source is a measured or estimated value of the amount of flavor component, the temperature of the flavor source or flavor temperature controller 124, the power supplied to the atomizing electrical load, the fog, It may be the temperature of the electrical load for atomization, the time for supplying power to the electrical load for atomization, or the like.
  • the control unit 50 calculates the temperature of the flavor source or the electric load for flavor 124R and the cumulative amount of power supplied to the electric load for atomization 122R as the value related to the amount of the flavor component generated from the flavor source. Time and get up.
  • the temperature of the flavor source or the electrical load for flavor 124R can be acquired by the temperature sensor 160, for example.
  • the temperature of the flavor electric load 124R can be estimated from the voltage drop of the flavor electric load 124R as described above.
  • the cumulative time during which power is supplied to the atomizing electric load 122R can be measured by measuring a period during which power is supplied to the atomizing electric load 122R with a timer.
  • the cumulative time during which power is supplied to the atomizing electric load 122R is one of specific examples for estimating a value related to the cumulative amount of aerosol that has passed through the flavor source.
  • the amount of the flavor component generated from the flavor source mainly depends on the amount of the aerosol that has passed through the flavor source and the temperature of the flavor source. Even if the aerosol amount and the temperature of the flavor source are the same, the amount of the flavor component released from the flavor source gradually decreases by increasing the number of times of suction. Therefore, the control unit 50 can estimate the amount of the flavor component generated from the flavor source based on the temperature of the flavor source or the flavor electric load 124R and the cumulative time of supplying the electric power to the atomizing electric load 122R.
  • control unit 50 determines the power or the amount of power to be supplied to the atomizing temperature controller 122 based on the value related to the amount of the flavor component generated from the flavor source (step S106). For example, the control unit 50 determines the power or the amount of power to be supplied to the atomizing temperature controller 122 (second electric load) such that the estimated value of the amount of the flavor component generated from the flavor source is constant. I just need.
  • control unit 50 may control the amount of the flavor component generated in the aerosol to be constant by adjusting the amount of the aerosol generated by the atomizing unit 120.
  • the control unit 50 may control the atomizing electric load 122R so as to suppress a change or variation in the amount of the flavor component. That is, the amount of the flavor component in the aerosol does not necessarily need to be kept constant, and may be controlled so as to reduce the amount of change in the flavor component.
  • the controller 50 turns on the timer (step S108), and starts supplying power to the atomizing temperature controller 122 based on the power or the amount of power determined in step S106 (step S110).
  • the timer can measure the accumulated time for supplying power to the atomizing temperature controller 122.
  • control unit 50 When the control unit 50 detects the end of the suction operation (step S311), it stops supplying power to the atomizing temperature controller 122 (step S312). Then, the control unit 50 stops the timer (Step S116).
  • control unit 50 monitors the user's suction operation, and when detecting the user's suction operation, repeats the steps from step S104 again.
  • control unit 50 may notify the user by a notification unit to replace the flavor unit with a new one.
  • the above-described flow described using FIGS. 6, 8, and 10 can be executed by the control unit 50. That is, the present invention may also include a program that causes the suction component generation device 100 to execute the above-described method, and a storage medium that stores the program. Such a storage medium may be a non-transitory storage medium.
  • control unit 50 only needs to be configured to control the electric power supplied to the flavor electric load 124R based on the value related to the amount of the aerosol generated from the aerosol source. .
  • control unit 50 may be configured to control the electric power supplied to the atomizing electric load 122R based on a value related to the amount of flavor generated from the flavor source.
  • the control unit 50 controls the amount of the flavor component contained in the aerosol to be substantially constant.
  • the control unit 50 may control the atomizing temperature controller and / or the flavor temperature controller so as to make the amount of the flavor component in the aerosol variable while keeping the amount of the aerosol constant.
  • the control unit 50 may use the control of the flow rate adjusting unit as needed.
  • the control unit 50 controls, for example, the amount of the aerosol so as to maintain the target value within a range of preferably ⁇ 20%, more preferably ⁇ 10%. This allows the user to enjoy a change in flavor without substantially changing the amount of aerosol.
  • the control unit 50 appropriately controls these. Thereby, it is possible to achieve the target amount of the aerosol and the amount of the flavor component.
  • the control unit 50 controls the flavor temperature controller 124R to generate an aerosol from the flavor source.
  • the output may be controlled.
  • the output of the flavor temperature controller 124R may be increased.
  • the control unit 50 controls the atomizing electric load 122R and the flavor based on the relationship between the value related to the amount of the aerosol generated from the aerosol source and the value related to the amount of the aerosol generated from the flavor source. It may be configured to control at least one of the electrical loads for use 124R.
  • the control unit 50 controls the atomizing electric load 122R and the flavor. Both of the electric loads 124R may be controlled.
  • the controller 50 controls the atomization temperature controller 122 (adjustment) before controlling the flavor temperature controller 124 (second electric load).
  • (Means) is preferably configured to be preferentially controlled.
  • the amount of the aerosol atomized by the atomizing unit 120 greatly affects the amount of flavor components generated by the flavor source. Therefore, the power supplied to the atomizing temperature controller 122 is preferentially controlled according to the target value of the aerosol amount, and then controlled by the flavor temperature controller 124 according to the target value of the flavor component amount. Is preferred.

Abstract

Provided is a suction component generator comprising: a first suction component source for generating a first suction component; a second suction component source for generating a second suction component; a second electrical load that adjusts the amount of the second suction components that are generated from the second suction component source; and a control unit. The control unit is configured so as to control electric power that is supplied to the second electrical load on the basis of the value related to the number of first suction components that are generated from the first suction component source.

Description

吸引成分生成装置、吸引成分生成装置を制御する方法及びプログラムSuction component generation device, method and program for controlling suction component generation device
 本発明は、ユーザによって吸引される吸引成分を生成する吸引成分生成装置と、吸引成分生成装置を制御する方法及びプログラムに関する。 The present invention relates to a suction component generation device that generates a suction component sucked by a user, and a method and a program for controlling the suction component generation device.
 シガレットに代わり、エアロゾル源をヒータのような電気的負荷で霧化することによって生じたエアロゾルを味わう電子たばこのような電気式の喫煙装置が知られている(特許文献1及び特許文献2)。 代 わ り Instead of cigarettes, there is known an electronic smoking device such as an electronic cigarette which tastes aerosol generated by atomizing an aerosol source with an electric load such as a heater (Patent Documents 1 and 2).
 特許文献1及び特許文献2に記載された喫煙装置は、エアロゾルを発生するためのエアロゾル源(例えばグリセリンやプロピレングリコール等)と、香味を発生するたばこ基材のような香味基材と、を有する。 The smoking devices described in Patent Literature 1 and Patent Literature 2 include an aerosol source (for example, glycerin or propylene glycol) for generating an aerosol, and a flavor base such as a tobacco base for generating a flavor. .
 特許文献1に記載された喫煙装置は、エアロゾル形成材料を含むタバコフィラー又は加工済みタバコフィラー材料から構成された上流セグメントと、香料及び/又はエアロゾル形成材料を担持するポリエチレンテレフタレートの繊維等の基材から構成された下流セグメントと、を有する。特許文献1では、加熱された空気が、上流セグメントと下流セグメントを通過することによって、タバコ香味等を有するエアロゾルが生成される。 The smoking device described in Patent Document 1 includes an upstream segment composed of a tobacco filler or a processed tobacco filler material containing an aerosol-forming material, and a substrate such as a fiber of polyethylene terephthalate carrying a fragrance and / or an aerosol-forming material. And a downstream segment composed of In Patent Literature 1, an aerosol having a tobacco flavor or the like is generated by passing heated air through an upstream segment and a downstream segment.
 特許文献2に記載された喫煙装置は、煙草の葉(たばこ基材)からのニコチンと、アトマイザーからの電子タバコの煙とを同時に摂取可能に構成されている。この喫煙装置は、紙巻煙草の葉を加熱するヒーターと、アトマイザー中に設けられたヒーターと、を有する。特許文献2には、これらのヒーターが別々にコントロールされることが記載されている。 喫 煙 The smoking device described in Patent Document 2 is configured to be able to simultaneously ingest nicotine from tobacco leaves (tobacco base material) and smoke from electronic cigarettes from an atomizer. The smoking device has a heater for heating the leaves of the cigarette and a heater provided in the atomizer. Patent Literature 2 describes that these heaters are separately controlled.
特許第5247711号公報Japanese Patent No. 5247711 特開2017-127300号公報JP-A-2017-127300
 第1の特徴は、吸引成分生成装置であって、第1吸引成分を生成するための第1吸引成分源と、第2吸引成分を生成するための第2吸引成分源と、前記第2吸引成分源から生成される前記第2吸引成分の量を調節する第2電気負荷と、制御部と、を有し、前記制御部は、前記第1吸引成分源から生成される前記第1吸引成分の量に関連する値に基づき前記第2電気負荷に供給する電力を制御するよう構成されていることを要旨とする。 A first feature is a suction component generation device, wherein a first suction component source for generating a first suction component, a second suction component source for generating a second suction component, and the second suction component. A second electrical load for adjusting an amount of the second suction component generated from the component source; and a control unit, wherein the control unit is configured to control the first suction component generated from the first suction component source. The point is that the power to be supplied to the second electric load is controlled based on a value related to the amount of the second electric load.
 ここで、第1吸引成分源は、エアロゾル源と香味源のいずれをも含み得る。第2吸引成分源は、エアロゾル源と香味源のいずれをも含み得る。ただし、第1吸引成分源がエアロゾル源と香味源のうちの一方である場合、第2吸引成分源は、エアロゾル源と香味源のうちの他方であることが好ましい。さらに、第2電気負荷は、可能な限り、後述する霧化用電気負荷と香味用電気負荷のいずれをも含み得る。 Here, the first inhalation component source may include both an aerosol source and a flavor source. The second inhalation component source can include both an aerosol source and a flavor source. However, when the first suction component source is one of an aerosol source and a flavor source, the second suction component source is preferably the other of the aerosol source and the flavor source. Further, the second electric load may include any of an atomizing electric load and a flavoring electric load described below, as far as possible.
 第2の特徴は、第1の特徴における吸引成分生成装置であって、前記第1吸引成分源から生成される前記第1吸引成分の量を調整可能な第1電気負荷を有し、前記第1吸引成分源から生成される前記第1吸引成分の量に関連する値は、第1吸引成分の量の測定値又は推定値、前記第1電気負荷に供給する電力、前記第1電気負荷の温度、又は第1電気負荷に電力を供給する時間であることを要旨とする。 A second feature is the suction component generation device according to the first feature, further comprising a first electric load capable of adjusting an amount of the first suction component generated from the first suction component source, The value associated with the amount of the first suction component generated from the first suction component source is a measured or estimated value of the amount of the first suction component, the power supplied to the first electric load, the power of the first electric load. The gist is that it is a temperature or a time for supplying power to the first electric load.
 第3の特徴は、第2の特徴における吸引成分生成装置であって、前記第1電気負荷は、温度調節器であることを要旨とする。 A third feature is the suction component generation device according to the second feature, wherein the first electric load is a temperature controller.
 第4の特徴は、第1の特徴における吸引成分生成装置であって、前記第1吸引成分が生成される領域の温度を監視する温度センサを有し、前記第1吸引成分源から生成される前記第1吸引成分の量に関連する値は、前記温度センサによって取得した値であることを要旨とする。 A fourth feature is the suction component generation device according to the first feature, further including a temperature sensor that monitors a temperature of an area where the first suction component is generated, and is generated from the first suction component source. The point is that the value related to the amount of the first suction component is a value acquired by the temperature sensor.
 第5の特徴は、第1の特徴から第4の特徴のいずれかにおける吸引成分生成装置であって、前記第2電気負荷は温度調節器であることを要旨とする。 5A fifth feature is the suction component generation device according to any of the first to fourth features, wherein the second electric load is a temperature controller.
 第6の特徴は、第1の特徴から第5の特徴のいずれかにおける吸引成分生成装置であって、前記制御部は、前記第1吸引成分の量に関連する値の変化に伴う前記第2吸引成分の量の変化を抑制するよう前記第2電気負荷を制御することを要旨とする。 A sixth feature is the suction component generation device according to any one of the first feature to the fifth feature, wherein the control unit is configured to change the second suction component according to a change in a value related to the amount of the first suction component. The gist is to control the second electric load so as to suppress a change in the amount of the suction component.
 第7の特徴は、第1の特徴から第6の特徴のいずれかにおける吸引成分生成装置であって、前記制御部は、前記第1吸引成分の量に関連する値のばらつきに伴う前記第2吸引成分の量のばらつきを抑制するよう前記第2電気負荷を制御することを要旨とする。 A seventh feature is the suction component generation device according to any one of the first feature to the sixth feature, wherein the control unit is configured to control the second component associated with a variation in a value related to the amount of the first suction component. The gist of the present invention is to control the second electric load so as to suppress the variation in the amount of the suction component.
 第8の特徴は、第7の特徴における吸引成分生成装置であって、前記第1吸引成分の量に関連する値の設定値が可変に構成されており、前記制御部は、前記設定値が変更された場合に、前記第2吸引成分の量の変化を抑制するよう前記第2電気負荷を制御することを要旨とする。 An eighth feature is the suction component generation device according to the seventh feature, wherein a set value of a value related to the amount of the first suction component is configured to be variable, and the control unit sets the set value to The gist of the present invention is to control the second electric load so as to suppress a change in the amount of the second suction component when changed.
 第9の特徴は、第1の特徴から第8の特徴のいずれかにおける吸引成分生成装置であって、前記第1吸引成分源から生成された前記第1吸引成分の少なくとも一部を前記第2吸引成分源を通して出口へ到達させる流路を有することを要旨とする。 A ninth feature is the suction component generation device according to any one of the first to eighth features, wherein at least a part of the first suction component generated from the first suction component source is converted to the second suction component. The gist of the present invention is to have a flow path that reaches the outlet through the suction component source.
 第10の特徴は、第9の特徴における吸引成分生成装置であって、前記第2吸引成分源から生成される第2吸引成分の量は、前記第1吸引成分源から生成された前記第1吸引成分の少なくとも一部が前記第2吸引成分源を通る際に前記第2吸引成分源から生成される第2吸引成分の量であることを要旨とする。 A tenth feature is the suction component generation device according to the ninth feature, wherein the amount of the second suction component generated from the second suction component source is equal to the first suction component generated from the first suction component source. The gist is that at least a part of the suction component is the amount of the second suction component generated from the second suction component source when passing through the second suction component source.
 第11の特徴は、第9の特徴又は第10の特徴における吸引成分生成装置であって、前記第1吸引成分源は、エアロゾル源であり、前記第2吸引成分源は、エアロゾルに香味成分を付与する香味源であることを要旨とする。 An eleventh feature is the suction component generation device according to the ninth feature or the tenth feature, wherein the first suction component source is an aerosol source, and the second suction component source is configured to add a flavor component to the aerosol. The gist of the flavor source is to be provided.
 第12の特徴は、第9の特徴から第11の特徴のいずれかにおける吸引成分生成装置であって、前記第1吸引成分を前記第2吸引成分源を通して吸口へ導く第1流路と、前記第1吸引成分を前記第2吸引成分源を通さず吸口へ導く第2流路と、前記第1流路の流量と前記第2流路の流量との割合を調整する流量調整手段と、を含むことを要旨とする。 A twelfth feature is the suction component generation device according to any one of the ninth feature to the eleventh feature, wherein the first flow path guides the first suction component to the suction port through the second suction component source; A second flow path that guides the first suction component to the suction port without passing through the second suction component source, and a flow rate adjustment unit that adjusts a ratio between a flow rate of the first flow path and a flow rate of the second flow path. It should be included.
 第13の特徴は、第12の特徴における吸引成分生成装置であって、前記制御部は、前記第2吸引成分源から生成される第2吸引成分の量の目標値に基づき、前記第2電気負荷に供給する電力と、前記流量調整手段と、を制御するよう構成されており、前記制御部は、前記流量調整手段の制御により、前記第2吸引成分源から生成される第2吸引成分の量が前記目標値を達成できると判断した場合、前記第2電気負荷を制御することなく、前記流量調整手段を制御することを要旨とする。 A thirteenth feature is the suction component generation device according to the twelfth feature, wherein the control unit is configured to control the second electric component based on a target value of the amount of the second suction component generated from the second suction component source. It is configured to control the power supplied to the load and the flow rate adjusting means, and the control unit controls the flow rate adjusting means to control the second suction component generated from the second suction component source. When it is determined that the amount can achieve the target value, the gist is to control the flow rate adjusting unit without controlling the second electric load.
 第14の特徴は、第1の特徴から第8の特徴のいずれかにおける吸引成分生成装置であって、前記第2吸引成分源から生成された前記第2吸引成分の少なくとも一部を前記第1吸引成分源を通して出口へ到達させる流路を有することを要旨とする。 A fourteenth feature is the suction component generation device according to any one of the first feature to the eighth feature, wherein at least a part of the second suction component generated from the second suction component source is the first component. The gist of the present invention is to have a flow path that reaches the outlet through the suction component source.
 第15の特徴は、第13の特徴又は第14の特徴における吸引成分生成装置であって、前記第2吸引成分源は、エアロゾル源であり、前記第1吸引成分源は、エアロゾルに香味成分を付与する香味源であることを要旨とする。 A fifteenth feature is the suction component generation device according to the thirteenth feature or the fourteenth feature, wherein the second suction component source is an aerosol source, and the first suction component source adds a flavor component to the aerosol. The gist of the flavor source is to be provided.
 第16の特徴は、第11の特徴又は第15の特徴における吸引成分生成装置であって、前記第1吸引成分の量に関連する値の設定値が可変に構成されており、前記設定値の可変範囲は、既定量の前記香味成分を前記エアロゾルに付与可能な値によって規定されることを要旨とする。 A sixteenth feature is the suction component generation device according to the eleventh feature or the fifteenth feature, wherein a set value of a value related to the amount of the first suction component is variably configured, and The gist is that the variable range is defined by a value capable of giving a predetermined amount of the flavor component to the aerosol.
 第17の特徴は、第11の特徴における吸引成分生成装置であって、前記第2電気負荷は、温度調節器であり、前記エアロゾルの量に関連する値の設定値が可変に構成されており、前記制御部は、前記エアロゾル源から生成されるエアロゾルの量が小さいほど前記香味源の温度を高くするように前記温度調節器を制御し、前記設定値の下限は、前記香味源が燃焼されない範囲に規定されることを要旨とする。 A seventeenth feature is the suction component generation device according to the eleventh feature, wherein the second electric load is a temperature controller, and a set value of a value related to the amount of the aerosol is variably configured. The control unit controls the temperature controller to increase the temperature of the flavor source as the amount of aerosol generated from the aerosol source is smaller, and the lower limit of the set value is such that the flavor source is not burned. It is the gist that it is specified in the range.
 第18の特徴は、第17の特徴における吸引成分生成装置であって、前記下限は、前記香味源から生成される香味成分の量に関する値に応じて可変であることを要旨とする。 An eighteenth feature is the suction component generation device according to the seventeenth feature, wherein the lower limit is variable in accordance with a value related to an amount of a flavor component generated from the flavor source.
 第19の特徴は、第11の特徴又は第15の特徴における吸引成分生成装置であって、前記エアロゾルの量に関連する値の設定値が可変に構成されており、前記設定値の上限は、エアロゾルの生成に伴う前記エアロゾル源の消費速度が前記エアロゾル源が霧化されるところへの前記エアロゾル源の供給速度を越えないよう規定されることを要旨とする。 A nineteenth feature is the suction component generation device according to the eleventh feature or the fifteenth feature, wherein a set value of a value related to the amount of the aerosol is configured to be variable, and an upper limit of the set value is The point is that the consumption rate of the aerosol source accompanying the generation of the aerosol is specified so as not to exceed the supply rate of the aerosol source to the place where the aerosol source is atomized.
 第20の特徴は、第1の特徴から第19の特徴のいずれかにおける吸引成分生成装置であって、前記第1吸引成分の生成量の複数の目標値と前記第2吸引成分の生成量の複数の目標値との組み合わせに応じて決められ、ユーザにより選択可能な複数のモードを有することを要旨とする。 A twentieth feature is the suction component generation device according to any of the first to nineteenth features, wherein a plurality of target values of the first suction component generation amount and the second suction component generation amount are provided. The gist is to have a plurality of modes which are determined according to a combination with a plurality of target values and which can be selected by a user.
 第21の特徴は、第1の特徴から第5の特徴のいずれかにおける吸引成分生成装置であって、前記制御部は、前記第1吸引成分源から生成される前記第1吸引成分の量に関連する値と、前記第2吸引成分源から生成される前記第2吸引成分の量に関連する値との関係に基づき、前記第2電気負荷を制御するよう構成されていることを要旨とする。 A twenty-first feature is the suction component generation device according to any one of the first to fifth features, wherein the control unit controls the amount of the first suction component generated from the first suction component source. The gist is configured to control the second electric load based on a relationship between a related value and a value related to the amount of the second suction component generated from the second suction component source. .
 第22の特徴は、第21の特徴における吸引成分生成装置であって、前記第1吸引成分源から生成される前記第1吸引成分の量を調整する調整手段を有し、前記制御部は、前記第2電気負荷と前記調整手段の両方を制御するよう構成されていることを要旨とする。 A twenty-second feature is the suction component generation device according to the twenty-first feature, further comprising an adjusting unit that adjusts an amount of the first suction component generated from the first suction component source, wherein the control unit includes: The gist is that it is configured to control both the second electric load and the adjusting means.
 第23の特徴は、第22の特徴における吸引成分生成装置であって、前記第1吸引成分源から生成された前記第1吸引成分の少なくとも一部を前記第2吸引成分源を通して出口へ到達させる流路を有し、前記第1吸引成分源は、エアロゾル源であり、前記第2吸引成分源は、エアロゾルに香味成分を付与する香味源であり、前記制御部は、所定のエアロゾル量及び所定の香味の量を達成するため、前記第2電気負荷を制御する前に前記調整手段を優先的に制御するよう構成されていることを要旨とする。 A twenty-third feature is the suction component generation device according to the twenty-second feature, wherein at least a portion of the first suction component generated from the first suction component source reaches an outlet through the second suction component source. A flow source, the first suction component source is an aerosol source, the second suction component source is a flavor source that imparts a flavor component to the aerosol, and the control unit is configured to control a predetermined aerosol amount and a predetermined In order to achieve the amount of flavor, the gist is that the adjusting means is preferentially controlled before controlling the second electric load.
 第24の特徴は、第21の特徴から第23の特徴のいずれかにおける吸引成分生成装置であって、前記関係は、前記第1吸引成分の量に関連する値と前記第2吸引成分源から生成される前記第2吸引成分の量に関連する値とを関連づける所定の関数又は所定の参照テーブルによって定められていることを要旨とする。 A twenty-fourth feature is the suction component generation device according to any one of the twenty-first feature to the twenty-third feature, wherein the relationship is based on a value related to the amount of the first suction component and the second suction component source. The gist is that it is determined by a predetermined function or a predetermined lookup table that associates a value related to the amount of the second suction component to be generated.
 第25の特徴は、第21の特徴から第24の特徴のいずれかにおける吸引成分生成装置であって、前記関係は、前記第1吸引成分源の種類と前記第2吸引成分源の種類との少なくとも一方に応じて異なっていることを要旨とする。 A twenty-fifth feature is the suction component generation device according to any one of the twenty-first feature to the twenty-fourth feature, wherein the relationship is based on the type of the first suction component source and the type of the second suction component source. The gist is that they differ depending on at least one of them.
 第26の特徴は、第1吸引成分を生成するための第1吸引成分源と、第2吸引成分を生成するための第2吸引成分源と、前記第2吸引成分源から生成される前記第2吸引成分の量を調節する第2電気負荷と、を有する吸引成分生成装置を制御する方法であって、前記第1吸引成分源から生成される前記第1吸引成分の量に関連する値に基づき、前記第2電気負荷に供給する電力を制御することを含むことを要旨とする。 A twenty-sixth feature is that a first suction component source for generating a first suction component, a second suction component source for generating a second suction component, and the second suction component source generated from the second suction component source. A second electrical load for adjusting the amount of the suction component, the method comprising controlling a suction component generator having a second electrical load that adjusts the amount of the suction component. And controlling the electric power to be supplied to the second electric load.
 第27の特徴は、第26の特徴に係る方法を吸引成分生成装置に実行させるプログラムであることを要旨とする。 27The twenty-seventh feature is a gist of a program for causing a suction component generation device to execute the method according to the twenty-sixth feature.
図1は、一実施形態に係る吸引成分生成装置の模式図である。FIG. 1 is a schematic diagram of a suction component generation device according to one embodiment. 図2は、一実施形態に係る霧化ユニットの模式図である。FIG. 2 is a schematic diagram of an atomizing unit according to one embodiment. 図3は、一実施形態に係る吸引センサの構成の一例を示す模式図である。FIG. 3 is a schematic diagram illustrating an example of a configuration of the suction sensor according to the embodiment. 図4は、一実施形態に係る流量調整手段の一例を示す模式図である。FIG. 4 is a schematic diagram illustrating an example of a flow rate adjusting unit according to one embodiment. 図5は、吸引成分生成装置のブロック図である。FIG. 5 is a block diagram of the suction component generation device. 図6は、一実施形態に係る吸引成分生成装置における制御を示すフローチャートである。FIG. 6 is a flowchart illustrating control in the suction component generation device according to the embodiment. 図7は、香味成分の目標値とエアロゾル量の目標値との組み合わせの一例を示す図である。FIG. 7 is a diagram illustrating an example of a combination of the target value of the flavor component and the target value of the aerosol amount. 図8は、一実施形態に係る吸引成分生成装置における制御の別の一例を示すフローチャートである。FIG. 8 is a flowchart illustrating another example of control in the suction component generation device according to the embodiment. 図9は、香味成分の目標値とエアロゾル量の目標値との関係の一例を示すグラフである。FIG. 9 is a graph showing an example of the relationship between the target value of the flavor component and the target value of the aerosol amount. 図10は、一実施形態に係る吸引成分生成装置における制御の別の一例を示すフローチャートである。FIG. 10 is a flowchart illustrating another example of control in the suction component generation device according to the embodiment.
 以下において、実施形態について説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なる場合があることに留意すべきである。 Hereinafter, embodiments will be described. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and ratios of dimensions may be different from actual ones.
 したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれる場合があることは勿論である。 Therefore, specific dimensions and the like should be determined in consideration of the following description. In addition, it goes without saying that the drawings may include portions having different dimensional relationships and ratios.
 [開示の概要]
 特許文献1に記載された喫煙装置は、タバコ香味等を有するエアロゾルを生成する。しかしながら、エアロゾルの量に対するタバコ香味の量は、装置の設計に応じて決まり、エアロゾルの量とタバコ香味の量とを互いに独立に変更することは困難である。
[Overview of disclosure]
The smoking device described in Patent Literature 1 generates an aerosol having a tobacco flavor and the like. However, the amount of tobacco flavor relative to the amount of aerosol depends on the design of the device, and it is difficult to change the amount of aerosol and the amount of tobacco flavor independently of each other.
 特許文献2は、紙巻煙草の葉を加熱するヒーターと、アトマイザー中に設けられたヒーターと、を別々にコントロールされることを開示する。しかしながら、特許文献2は、これらのヒータをどのように制御するかについて具体的な記載はほとんどない。 Patent Document 2 discloses that a heater for heating the leaf of a cigarette and a heater provided in an atomizer are separately controlled. However, Patent Document 2 has almost no specific description on how to control these heaters.
 一態様によれば、吸引成分生成装置は、第1吸引成分を生成するための第1吸引成分源と、第2吸引成分を生成するための第2吸引成分源と、前記第2吸引成分源から前記第2吸引成分を生成させる電気的負荷と、制御部と、を有する。前記制御部は、前記第1吸引成分源から生成される前記第1吸引成分の量に関連する値に基づき前記電気的負荷に供給する電力を制御するよう構成されている。 According to one aspect, a suction component generation device includes a first suction component source for generating a first suction component, a second suction component source for generating a second suction component, and the second suction component source. And an electric load for generating the second suction component from the control unit. The control unit is configured to control electric power supplied to the electric load based on a value related to an amount of the first suction component generated from the first suction component source.
 一態様によれば、吸引成分生成装置を制御する方法は、第1吸引成分を生成するための第1吸引成分源と、第2吸引成分を生成するための第2吸引成分源と、前記第2吸引成分源から前記第2吸引成分を生成させる第2電気負荷と、を有する吸引成分生成装置を制御する方法であって、前記第1吸引成分源から生成される前記第1吸引成分の量に関連する値に基づき、前記第2電気負荷に供給する電力を制御することを含む。 According to one aspect, a method of controlling a suction component generation device comprises: a first suction component source for generating a first suction component; a second suction component source for generating a second suction component; A second electrical load for generating the second suction component from the second suction component source, wherein the amount of the first suction component generated from the first suction component source is controlled. Controlling the power supplied to the second electric load based on the value related to the second electric load.
 一態様に係るプログラムは、上記の方法を吸引成分生成装置に実行させる。 プ ロ グ ラ ム The program according to one aspect causes the suction component generation device to execute the above method.
 上記態様によれば、第1吸引成分源から生成される第1吸引成分の量に関連する値に基づき、第2電気負荷に供給する電力が制御され、第2吸引成分源から生成される第2吸引成分の量が調整される。これにより、第1吸引成分中に含まれる第2吸引成分の量が、第1吸引成分の量に応じて適宜可変に構成される。特に、第1吸引成分の量が、第2吸引成分源から生成される第2吸引成分の量に影響を与える場合には、第1吸引成分源から生成される第1吸引成分の量に関連する値に基づき第2電気負荷に供給する電力を制御することで、第2吸引成分の量を適切に調整することができる。 According to the above aspect, the power supplied to the second electric load is controlled based on the value related to the amount of the first suction component generated from the first suction component source, and the second power generated from the second suction component source is controlled. 2. The amount of the suction component is adjusted. Thus, the amount of the second suction component included in the first suction component is appropriately variably configured according to the amount of the first suction component. In particular, when the amount of the first suction component affects the amount of the second suction component generated from the second suction component source, the amount of the first suction component is related to the amount of the first suction component generated from the first suction component source. The amount of the second suction component can be appropriately adjusted by controlling the power supplied to the second electric load based on the value to be performed.
 したがって、例えば、エアロゾル(第1吸引成分)の量に関連する値に基づき、エアロゾル中の香味成分(第2吸引成分)の量を適宜調整することもできる。具体的な一例として、香味成分の量を一定に維持したまま、エアロゾルの量を多くしたり、少なくしたりすることもできる。この場合、例えば、周囲の人への配慮のため、エアロゾルの量を抑えつつも、エアロゾル中の香味成分の量を一定に保つことで、ユーザは、所望の香味を味わうことができるようになる。 Therefore, for example, the amount of the flavor component (second suction component) in the aerosol can be appropriately adjusted based on the value related to the amount of the aerosol (first suction component). As a specific example, the amount of the aerosol can be increased or decreased while the amount of the flavor component is kept constant. In this case, for example, the user can enjoy a desired flavor by keeping the amount of the flavor component in the aerosol constant while suppressing the amount of the aerosol in order to consider surrounding people. .
 なお、特許文献2に記載された喫煙装置では、煙草の葉(たばこ基材)からニコチンを生成し、ニコチンを含む空気中にアトマイザーによって生成した電子タバコの煙が付加される。すなわち、電子タバコの煙はニコチンの生成よりも下流側で生成される。この場合、電子タバコの煙(エアロゾル)の量は霧化部でのヒータの出力のみに、タバコ香味成分量はタバコ用ヒータ出力のみに、それぞれ依存する。したがって、特許文献2は、電子タバコの煙の量に基づきタバコ用ヒータの出力を調整したり、タバコ香味成分量に基づき霧化部でのヒータの出力を調整するという技術的思想を開示しないことに留意されたい。 In the smoking device described in Patent Literature 2, nicotine is generated from tobacco leaves (tobacco base material), and smoke of electronic cigarettes generated by an atomizer is added to air containing nicotine. That is, e-cigarette smoke is produced downstream of the production of nicotine. In this case, the amount of smoke (aerosol) of the electronic cigarette depends only on the output of the heater in the atomization unit, and the amount of the tobacco flavor component only depends on the output of the cigarette heater. Therefore, Patent Document 2 does not disclose the technical idea of adjusting the output of the cigarette heater based on the amount of smoke of the electronic cigarette or adjusting the output of the heater in the atomizing unit based on the amount of the tobacco flavor component. Please note.
 (吸引成分生成装置)
 以下において、一実施形態に係る吸引成分生成装置について説明する。図1は、一実施形態に係る吸引成分生成装置を示す分解図である。図2は、一実施形態に係る霧化ユニットの模式図である。図3は、一実施形態に係る吸引センサの構成の一例を示す模式図である。図4は、一実施形態に係る流量調整手段の一例を示す模式図である。図5は、吸引成分生成装置のブロック図である。
(Suction component generator)
Hereinafter, a suction component generation device according to an embodiment will be described. FIG. 1 is an exploded view showing a suction component generation device according to one embodiment. FIG. 2 is a schematic diagram of an atomizing unit according to one embodiment. FIG. 3 is a schematic diagram illustrating an example of a configuration of the suction sensor according to the embodiment. FIG. 4 is a schematic diagram illustrating an example of a flow rate adjusting unit according to one embodiment. FIG. 5 is a block diagram of the suction component generation device.
 吸引成分生成装置100は、燃焼を伴わずに香味を吸引するための非燃焼型の香味吸引器であってよい。好ましくは、吸引成分生成装置100は、携帯型の香味吸引器であってよい。吸引成分生成装置100は、非吸口端E2から吸口端E1に向かう方向である所定方向Aに沿って延びる形状を有していてよい。この場合、吸引成分生成装置100は、香味を吸引する吸口141を有する一方の端部E1と、吸口141とは反対側の他方の端部E2と、を含んでいてよい。 The suction component generation device 100 may be a non-combustion type flavor suction device for sucking flavor without burning. Preferably, the suction component generation device 100 may be a portable flavor inhaler. The suction component generation device 100 may have a shape extending along a predetermined direction A that is a direction from the non-mouth end E2 to the mouth end E1. In this case, the suction component generation device 100 may include one end E1 having the mouth 141 for sucking the flavor, and the other end E2 opposite to the mouth 141.
 吸引成分生成装置100は、電源ユニット110及び霧化ユニット120を有していてよい。霧化ユニット120は、電源ユニット110に対して機械的な接続部分111,121を介して着脱可能に構成されていてよい。霧化ユニット120と電源ユニット110とが互いに機械的に接続されたときに、霧化ユニット120内の後述する霧化用電気負荷122R及び香味用電気負荷124Rは、電源ユニット110に設けられた電源10に電気的に接続される。 The suction component generation device 100 may include a power supply unit 110 and an atomization unit 120. The atomization unit 120 may be configured to be detachable from the power supply unit 110 via mechanical connection portions 111 and 121. When the atomizing unit 120 and the power supply unit 110 are mechanically connected to each other, the later-described atomizing electric load 122R and flavor electric load 124R in the atomizing unit 120 are connected to a power supply provided in the power supply unit 110. 10 is electrically connected.
 霧化ユニット120は、ユーザにより吸引されるエアロゾル源(吸引成分源)と、電源10からの電力によりエアロゾル源を霧化する霧化用電気負荷122Rと、を有する。 The atomizing unit 120 includes an aerosol source (aspirating component source) sucked by a user, and an atomizing electric load 122R that atomizes the aerosol source with power from the power supply 10.
 霧化用電気負荷122Rは、供給される電力に応じて、エアロゾル源から生成されるエアロゾル量(吸引成分の量)を調整可能な素子であればよい。例えば、霧化用電気負荷122Rは、霧化用温度調節器122であってよい。一例として、霧化用温度調節器122を構成する霧化用電気負荷122Rは、抵抗加熱素子であってよい。 電 気 The atomizing electric load 122R may be an element that can adjust the amount of aerosol (the amount of the suction component) generated from the aerosol source according to the supplied electric power. For example, the atomizing electric load 122R may be the atomizing temperature controller 122. As an example, the atomizing electric load 122R constituting the atomizing temperature controller 122 may be a resistance heating element.
 以下では、図1及び図2を参照しつつ、霧化ユニット120のより詳細な一例について説明する。霧化ユニット120は、リザーバ122Pと、ウィック122Qと、霧化用電気負荷122Rと、を有していてよい。リザーバ122Pは、液状のエアロゾル源を貯留するよう構成されていてよい。リザーバ122Pは、例えば、樹脂ウェブ等材料によって構成される多孔質体であってよい。ウィック122Qは、リザーバ122Pから毛管現象を利用してエアロゾル源を霧化用電気負荷122R近傍に輸送する液保持部材であってよい。ウィック122Qは、例えば、ガラス繊維や多孔質セラミックなどによって構成することができる。 Hereinafter, a more detailed example of the atomization unit 120 will be described with reference to FIGS. 1 and 2. The atomizing unit 120 may include a reservoir 122P, a wick 122Q, and an atomizing electric load 122R. The reservoir 122P may be configured to store a liquid aerosol source. The reservoir 122P may be, for example, a porous body made of a material such as a resin web. The wick 122Q may be a liquid holding member that transports the aerosol source from the reservoir 122P to the vicinity of the atomizing electric load 122R by using a capillary phenomenon. The wick 122Q can be made of, for example, glass fiber or porous ceramic.
 霧化用電気負荷122Rは、ウィック122Qに保持されるエアロゾル源を加熱する。霧化用電気負荷122Rは、例えば、ウィック122Qに巻き回される抵抗発熱体(例えば、電熱線)によって構成される。 電 気 The atomizing electric load 122R heats the aerosol source held by the wick 122Q. The atomizing electric load 122R is configured by, for example, a resistance heating element (for example, a heating wire) wound around the wick 122Q.
 霧化用電気負荷122Rは、例えば、電気ヒータのような温度調節器122であってよい。この代わりに、霧化用電気負荷122Rは、ウィック122Qに保持されるエアロゾル源を加熱及び冷却する機能を備えた温度調節器であってもよい。 The electric load 122R for atomization may be, for example, a temperature controller 122 such as an electric heater. Instead, the atomizing electric load 122R may be a temperature controller having a function of heating and cooling the aerosol source held by the wick 122Q.
 インレット125から流路127を通って流入した空気は、霧化ユニット120の内の霧化用電気負荷122R付近を通過する。霧化用電気負荷122Rのところで生成されたエアロゾルは、空気とともに吸口141の方へ流れる。 The air that has flowed in from the inlet 125 through the flow path 127 passes near the atomizing electric load 122R in the atomizing unit 120. The aerosol generated at the atomizing electric load 122R flows to the suction port 141 together with the air.
 エアロゾル源は、常温で液体であってよい。例えば、エアロゾル源としては、多価アルコールを用いることができる。エアロゾル源は、加熱することによって香喫味成分を放出するたばこ原料やたばこ原料由来の抽出物を含んでいてもよい。 The aerosol source may be liquid at room temperature. For example, a polyhydric alcohol can be used as the aerosol source. The aerosol source may include a tobacco raw material or an extract derived from a tobacco raw material that releases a flavor component upon heating.
 なお、上記実施形態では、常温で液体のエアロゾル源についての例を詳細に説明したが、この代わりに、エアロゾル源は、常温で固体のものを用いることもできる。この場合、霧化用電気負荷122Rは、固体状のエアロゾル源からエアロゾルを発生させるため、固体状のエアロゾル源に接し、又は近接していてよい。 In the above embodiment, the example of the aerosol source that is liquid at room temperature has been described in detail, but instead, an aerosol source that is solid at room temperature may be used. In this case, the atomizing electric load 122R may be in contact with or in proximity to the solid aerosol source to generate aerosol from the solid aerosol source.
 霧化ユニット120は、交換可能に構成された香味ユニット130を備えていてもよい。香味ユニット130は、香味源(吸引成分源)を収容する筒体131を有していてよい。筒体131は、空気やエアロゾル等が通過可能な膜部材133とフィルタ132とを含んでいてよい。膜部材133とフィルタ132とにより構成される空間内に香味源が設けられていてよい。 The atomizing unit 120 may include a flavor unit 130 that is configured to be replaceable. The flavor unit 130 may have a cylinder 131 that stores a flavor source (a suction component source). The cylinder 131 may include a membrane member 133 and a filter 132 through which air, aerosol, and the like can pass. A flavor source may be provided in a space defined by the membrane member 133 and the filter 132.
 吸引成分生成装置100は、エアロゾル源から生成されたエアロゾルの少なくとも一部を香味源を通して出口へ到達させる流路127,128を有する。これにより、香味ユニット130内の香味源は、霧化ユニット120の霧化用電気負荷122Rによって生成されたエアロゾルに香味成分を付与する。香味源によってエアロゾルに付与される香味成分は、吸引成分生成装置100の吸口141に運ばれる。 The suction component generation device 100 has channels 127 and 128 that allow at least a part of the aerosol generated from the aerosol source to reach the outlet through the flavor source. Thus, the flavor source in the flavor unit 130 imparts a flavor component to the aerosol generated by the atomizing electric load 122R of the atomization unit 120. The flavor component imparted to the aerosol by the flavor source is carried to the suction port 141 of the suction component generation device 100.
 香味ユニット130内の香味源は、常温で固体であってよい。一例として、香味源は、エアロゾルに香喫味成分を付与する植物材料の原料片によって構成される。香味源を構成する原料片としては、刻みたばこやたばこ原料のようなたばこ材料を粒状に成形した成形体を用いることができる。この代わりに、香味源は、たばこ材料をシート状に成形した成形体であってもよい。また、香味源を構成する原料片は、たばこ以外の植物(例えば、ミント、ハーブ等)によって構成されてもよい。香味源には、メントールなどの香料が付与されていてもよい。 The flavor source in the flavor unit 130 may be solid at room temperature. As an example, the flavor source is constituted by a raw material piece of a plant material that imparts a flavor-tasting component to the aerosol. As a raw material piece constituting the flavor source, a molded article obtained by molding a tobacco material such as chopped tobacco or tobacco raw material into granules can be used. Alternatively, the flavor source may be a molded article formed by molding the tobacco material into a sheet. Moreover, the raw material piece which comprises a flavor source may be comprised by plants (for example, mint, herb, etc.) other than tobacco. Flavors such as menthol may be provided to the flavor source.
 香味源は、膜部材133とフィルタ132とにより構成される空間内で流動可能に収容されていてもよい。この場合、使用時に香味ユニット130内で香味源が流動し、香味用電気負荷124Rと接触する香味源の偏りが少なくなるため、安定的に香味成分を放出することができる。 The flavor source may be movably accommodated in a space defined by the membrane member 133 and the filter 132. In this case, the flavor source flows in the flavor unit 130 during use, and the bias of the flavor source in contact with the flavor electric load 124R is reduced, so that the flavor component can be stably released.
 この代わりに、香味源は、膜部材133とフィルタ132とにより構成される空間内で実質的に固定されていてもよい。この場合には、香味用電気負荷124Rから香味源に熱を効率的に伝えることができる。 に Alternatively, the flavor source may be substantially fixed in the space defined by the membrane member 133 and the filter 132. In this case, heat can be efficiently transmitted from the flavor electric load 124R to the flavor source.
 霧化ユニット120に設けられた香味用電気負荷124Rは、霧化ユニット120に取り付けられた香味ユニット130の筒体131の周りに位置していてよい。香味用電気負荷124Rは、香味源から生成される香味(吸引成分)の量を調整可能に構成されていてよい。香味用電気負荷124Rは、供給される電力に応じて、香味源から生成される香味の量を調整できる素子であってよい。例えば、香味用電気負荷124Rは、香味源の温度を調節可能な温度調節器124であってよい。温度調節器124は、抵抗加熱素子によって構成されていてよい。この代わりに、温度調節器124は、例えばペルチェ素子のような冷却素子であってもよい。また、温度調節器124は、加熱と冷却の両方を実施できる素子であってもよい。 The flavor electric load 124R provided in the atomization unit 120 may be located around the cylindrical body 131 of the flavor unit 130 attached to the atomization unit 120. The flavor electric load 124R may be configured to be able to adjust the amount of flavor (inhalation component) generated from the flavor source. The flavor electric load 124R may be an element that can adjust the amount of flavor generated from the flavor source according to the supplied power. For example, the flavor electric load 124R may be a temperature controller 124 that can adjust the temperature of the flavor source. The temperature controller 124 may be constituted by a resistance heating element. Alternatively, the temperature controller 124 may be a cooling element such as a Peltier element. Further, the temperature controller 124 may be an element capable of performing both heating and cooling.
 香味用電気負荷124Rの外側には、断熱材126が設けられていてもよい。これにより、吸引成分生成装置100の外縁の温度と外気温の温度差が大きくなり過ぎることを抑制することができる。すなわち、吸引成分生成装置100の外縁が冷たくなり過ぎたり、熱くなり過ぎたりすることを抑制することができる。また、断熱材126によって、香味用電気負荷124Rからの伝熱ロスを低減することもでき、省エネルギーでの温度調節が可能となる。 断 熱 A heat insulating material 126 may be provided outside the flavor electric load 124R. Thus, it is possible to suppress the temperature difference between the outer edge temperature of the suction component generation device 100 and the outside air temperature from becoming too large. That is, it is possible to suppress the outer edge of the suction component generation device 100 from becoming too cold or too hot. In addition, the heat insulating material 126 can reduce the heat transfer loss from the flavor electric load 124R, and can perform temperature control with energy saving.
 吸引成分生成装置100は、使用者が吸引成分を吸引するための吸引口を有するマウスピースを含んでいてよい。マウスピースは、霧化ユニット120又は香味ユニット130に着脱可能に構成されていてもよく、一体不可分に構成されていてもよい。 The suction component generation device 100 may include a mouthpiece having a suction port for a user to suction the suction component. The mouthpiece may be configured to be detachable from the atomizing unit 120 or the flavoring unit 130, or may be configured as an integral unit.
 また、吸引成分生成装置100、具体的には霧化ユニット120は、エアロゾルを香味源を通して吸口141へ導く第1流路128と、エアロゾルを香味源を通さず吸口141へ導く第2流路129と、を有していてもよい。第2流路129を通るエアロゾルは、香味源から香味を付与されることなく、吸口141へ到達する。この場合、霧化ユニット120は、第1流路128の流量と第2流路129の流量との割合を調整する流量調整手段730と、を含んでいてもよい。流量調整手段730は、霧化ユニット120と香味ユニット130との間、すなわち境界付近に設けられている。これにより、霧化ユニット120で生成されるエアロゾル量によらず香味源を通気するエアロゾル量を調整することができるため、霧化ユニット120で生成されるエアロゾル量の全量を香味源に通気する場合を最大として、吸口141に達する気体に含まれるエアロゾルと香味成分との割合を制御することができる。 In addition, the suction component generation device 100, specifically, the atomization unit 120, includes a first flow path 128 that guides the aerosol to the mouth 141 through the flavor source, and a second flow path 129 that guides the aerosol to the mouth 141 without passing the flavor source. And may be provided. The aerosol passing through the second channel 129 reaches the mouth 141 without being imparted with a flavor from a flavor source. In this case, the atomizing unit 120 may include a flow rate adjusting unit 730 that adjusts the ratio between the flow rate of the first flow path 128 and the flow rate of the second flow path 129. The flow rate adjusting means 730 is provided between the atomizing unit 120 and the flavor unit 130, that is, near the boundary. Thereby, since the amount of aerosol that passes through the flavor source can be adjusted irrespective of the amount of aerosol generated by the atomizing unit 120, the entire amount of the aerosol generated by the atomizing unit 120 is ventilated to the flavor source. Is maximized, the ratio between the aerosol and the flavor component contained in the gas reaching the mouth 141 can be controlled.
 図4は、一実施形態に係る流量調整手段730の一例を示す模式図である。流量調整手段730は、互いに同軸に配置された2つの円柱部材731A,731Bを有していてよい。第1円柱部材731A及び第2円柱部材731Bは、回転軸Cまわりにそれぞれ回転可能に構成されていてよい。第1円柱部材731A及び第2円柱部材731Bは、回転軸のところで、それぞれ貫通孔760A及び貫通孔760Bを有していてよい。これにより、霧化ユニット120で生成されたエアロゾルの少なくとも一部は、流量調整手段730の貫通孔760A及び貫通孔760Bを通って香味ユニット130内の第1流路128に流れ込む。 FIG. 4 is a schematic diagram showing an example of the flow rate adjusting means 730 according to one embodiment. The flow rate adjusting means 730 may include two cylindrical members 731A and 731B coaxially arranged. The first cylindrical member 731A and the second cylindrical member 731B may be configured to be rotatable around the rotation axis C, respectively. The first columnar member 731A and the second columnar member 731B may have a through hole 760A and a through hole 760B at the rotation axis, respectively. Thereby, at least a part of the aerosol generated by the atomizing unit 120 flows into the first flow path 128 in the flavor unit 130 through the through holes 760A and 760B of the flow rate adjusting means 730.
 第1円柱部材731A及び第2円柱部材731Bは、回転軸のまわりに、所定方向Aに沿って貫通した別の貫通孔760A,760Bを有していてよい。これらの760A,760Bは、回転方向における第1円柱部材731Aと第2円柱部材731Bの相対的な位置関係に応じて、互いに重複する面積が変わる。すなわち、回転方向における第1円柱部材731Aと第2円柱部材731Bの相対的な位置関係に応じて、霧化ユニット120で生成されたエアロゾルが香味ユニット130外の第2流路129に流れ込む。このようにして、流量調整手段730は、第1流路128の流量と第2流路129の流量との割合を調整することができる。 The first columnar member 731A and the second columnar member 731B may have other through holes 760A, 760B penetrating along the predetermined direction A around the rotation axis. These 760A and 760B have different overlapping areas according to the relative positional relationship between the first cylindrical member 731A and the second cylindrical member 731B in the rotation direction. That is, the aerosol generated by the atomizing unit 120 flows into the second flow path 129 outside the flavoring unit 130 according to the relative positional relationship between the first cylindrical member 731A and the second cylindrical member 731B in the rotation direction. Thus, the flow rate adjusting means 730 can adjust the ratio between the flow rate of the first flow path 128 and the flow rate of the second flow path 129.
 電源ユニット110は、電源10及び制御部50を有していてよい。制御部50は、吸引成分生成装置100の動作に必要な各種の制御を実施するために必要な情報を記憶するメモリ52を有していてもよい。また、制御部50は、必要に応じて、各種の情報をユーザに知らせるための通知を発する通知部を備えていてもよい。通知部は、例えばLEDのように光を発する発光素子、音を発生する素子、又は振動を発するバイブレータであってもよい。また、通知部は、光、音又は振動を発する素子の組み合わせによって構成されていてもよい。 The power supply unit 110 may include the power supply 10 and the control unit 50. The control unit 50 may include a memory 52 that stores information necessary for performing various controls necessary for the operation of the suction component generation device 100. Further, the control unit 50 may include a notification unit that issues a notification for notifying the user of various types of information as needed. The notification unit may be a light-emitting element that emits light, such as an LED, an element that emits sound, or a vibrator that emits vibration. Further, the notification unit may be configured by a combination of elements that emit light, sound, or vibration.
 電源10は、吸引成分生成装置100の動作に必要な電力を蓄える。電源10は、電源ユニット110に対して着脱可能であってよい。電源10は、例えばリチウムイオン二次電池のような再充電可能な電池であってよい。 The power supply 10 stores electric power necessary for the operation of the suction component generation device 100. The power supply 10 may be detachable from the power supply unit 110. The power supply 10 may be a rechargeable battery such as a lithium ion secondary battery.
 制御部50は、吸引成分生成装置100の動作に必要な各種の制御を行ってもよい。例えば、制御部50は、電源10から霧化用電気負荷122R及び香味用電気負荷124Rへの電力を制御してもよい。また、制御部50は、前述した流量調整手段730を電気的に自動で稼働してもよい。例えば、流量調整手段730が図4に示す態様であれば、制御部50は、第1円柱部材731Aと第2円柱部材731Bの少なくとも一方を回転軸Cまわりに回転させる。 The control unit 50 may perform various controls necessary for the operation of the suction component generation device 100. For example, the control unit 50 may control power from the power supply 10 to the atomizing electric load 122R and the flavoring electric load 124R. Further, the control unit 50 may electrically and automatically operate the flow rate adjusting unit 730 described above. For example, if the flow rate adjusting unit 730 is in the mode shown in FIG. 4, the control unit 50 rotates at least one of the first cylindrical member 731A and the second cylindrical member 731B around the rotation axis C.
 制御部50は、ユーザによる吸引要求動作を検知する吸引検知ユニットを含んでいてよい。吸引検知ユニットは、例えばユーザの吸引動作を検出する吸引センサ20であってよい。この代わりに、吸引検知ユニットは、例えばユーザにより押される押しボタンであってもよい。 The control unit 50 may include a suction detection unit that detects a suction request operation by the user. The suction detection unit may be, for example, a suction sensor 20 that detects a user's suction operation. Alternatively, the suction detection unit may be, for example, a push button pressed by a user.
 制御部50は、吸引検知ユニットによって吸引要求動作が検出されたら、霧化用電気負荷122R及び/又は香味用電気負荷124Rを動作させるための指令を生成する。制御部50は、ユーザによって指定されたモード、又は環境等に応じて、霧化用電気負荷122Rと香味用電気負荷124Rに供給する電力を可変に構成されていてよい。 The controller 50 generates a command for operating the atomizing electric load 122R and / or the flavoring electric load 124R when the suction detection unit detects the suction request operation. The control unit 50 may be configured to variably supply electric power to be supplied to the atomizing electric load 122R and the flavoring electric load 124R according to a mode designated by a user, an environment, or the like.
 制御部50は、電力パルスの形態で霧化用電気負荷122R及び/又は香味用電気負荷124Rに電力を供給することが好ましい。これにより、制御部50は、パルス幅変調(PWM)又はパルス周波数変調(PFM)のデューティ比の調整により霧化用電気負荷122R及び/又は香味用電気負荷124Rに供給する電力を制御することがでる。 It is preferable that the control unit 50 supplies power to the atomizing electric load 122R and / or the flavoring electric load 124R in the form of a power pulse. Thereby, the control unit 50 can control the power supplied to the atomizing electric load 122R and / or the flavor electric load 124R by adjusting the duty ratio of the pulse width modulation (PWM) or the pulse frequency modulation (PFM). Out.
 霧化用電気負荷122Rに電力が供給されると、霧化用温度調節器122の温度が上昇し、エアロゾル源が気化又は霧化することによってエアロゾルが発生する。香味用電気負荷124Rに電力が供給されると、香味用温度調節器124の温度が変化し、その温度に応じて香味源から放出される香味成分の量が変化することになる。 (4) When electric power is supplied to the atomizing electric load 122R, the temperature of the atomizing temperature controller 122 rises, and the aerosol is vaporized or atomized to generate aerosol. When electric power is supplied to the flavor electric load 124R, the temperature of the flavor temperature controller 124 changes, and the amount of the flavor component released from the flavor source changes according to the temperature.
 吸引成分生成装置100は、必要に応じて、エアロゾル源又は霧化用温度調節器122の温度を推定又は取得可能な温度センサ150と、香味源又は香味用温度調節器124の温度を推定又は取得可能な温度センサ160と、を有していてもよい。 The inhalation component generation device 100 estimates the temperature of the aerosol source or the temperature controller 122 for nebulization or the temperature sensor 150 capable of estimating or acquiring the temperature of the flavor source or the temperature controller 124 for flavor as needed. And a possible temperature sensor 160.
 吸引センサ20は、吸口からの吸引に応じて変動する出力値を出力するよう構成されていてよい。具体的には、吸引センサ20は、非吸口側から吸口側に向けて吸引される空気の流量(すなわち、ユーザのパフ動作)に応じて変化する値(例えば、電圧値又は電流値)を出力するセンサであってよい。そのようなセンサとして、例えば、コンデンサマイクロフォンセンサや公知の流量センサなどが挙げられる。 The suction sensor 20 may be configured to output an output value that fluctuates according to suction from the suction port. Specifically, the suction sensor 20 outputs a value (for example, a voltage value or a current value) that changes according to the flow rate of the air sucked from the non-mouth side to the mouth side (that is, the user's puff operation). Sensor. Examples of such a sensor include a condenser microphone sensor and a known flow sensor.
 図3は、吸引センサ20の具体的一例を示している。図3に例示された吸引センサ20は、センサ本体21と、カバー22と、基板23と、を有する。センサ本体21は、例えば、コンデンサによって構成されている。センサ本体21の電気容量は、インレット125から吸引される空気(すなわち、非吸口側から吸口側に向けて吸引される空気)によって生じる振動(圧力)によって変化する。カバー22は、センサ本体21に対して吸口側に設けられており、開口40を有する。開口40を有するカバー22を設けることによって、センサ本体21の電気容量が変化しやすく、センサ本体21の応答特性が向上する。基板23は、センサ本体21(コンデンサ)の電気容量を示す値(ここでは、電圧値)を出力する。 FIG. 3 shows a specific example of the suction sensor 20. The suction sensor 20 illustrated in FIG. 3 has a sensor main body 21, a cover 22, and a substrate 23. The sensor main body 21 is composed of, for example, a capacitor. The electric capacity of the sensor main body 21 is changed by vibration (pressure) generated by air sucked from the inlet 125 (that is, air sucked from the non-mouth side to the mouth side). The cover 22 is provided on the suction side with respect to the sensor main body 21 and has an opening 40. By providing the cover 22 having the opening 40, the electric capacity of the sensor main body 21 is easily changed, and the response characteristics of the sensor main body 21 are improved. The substrate 23 outputs a value (here, a voltage value) indicating the electric capacity of the sensor body 21 (capacitor).
 吸引成分生成装置100は、入力部200と、表示部210と、を有していてよい。入力部200は、ユーザからの各種指令を入力することができるよう構成されていてよい。入力部200は、例えばタッチパネル式の画面であってもよく、操作用の押ボタンであってもよい。表示部210は、各種情報をユーザに表示するための画面であってよい。 The suction component generation device 100 may include an input unit 200 and a display unit 210. The input unit 200 may be configured to be able to input various commands from a user. The input unit 200 may be, for example, a touch panel type screen or an operation push button. The display unit 210 may be a screen for displaying various information to a user.
 入力部200は、例えば後述するモードの選択に用いられてもよい。また、入力部200は、生成されるエアロゾルの目標値及び/又は香味成分の目標値を設定するために用いられてもよい。制御部50は、これらの目標値に応じて、霧化用電気負荷122R及び/又は香味用電気負荷124Rに供給する電力の量を調整すればよい。 The input unit 200 may be used, for example, for selecting a mode described later. The input unit 200 may be used to set a target value of the generated aerosol and / or a target value of the flavor component. The control unit 50 may adjust the amount of power supplied to the atomizing electric load 122R and / or the flavoring electric load 124R according to these target values.
 (電気負荷の制御1)
 図6は、一実施形態に係る吸引成分生成装置における制御の一例を示すフローチャートである。本実施形態では、ユーザは、吸引動作を開始する前にエアロゾル量の目標値を設定する(ステップS301)。エアロゾル量の目標値Aは、複数の選択肢(モード)の中から選択されてもよく、具体的な数値によって設定されてもよい。制御部50は、エアロゾル量の目標値Aに応じて、霧化用温度調節器122に供給する電力又は電力量を決定する(ステップS302)。
(Control of electric load 1)
FIG. 6 is a flowchart illustrating an example of control in the suction component generation device according to the embodiment. In the present embodiment, the user sets a target value of the aerosol amount before starting the suction operation (Step S301). The target value A of the aerosol amount may be selected from a plurality of options (modes), or may be set by specific numerical values. The control unit 50 determines the power or the amount of power to be supplied to the atomizing temperature controller 122 according to the target value A of the aerosol amount (Step S302).
 なお、ステップS301では、エアロゾル量の目標値が設定されている。この代わりに、エアロゾル量に関連する値が設定されてもよい。エアロゾル量に関連する値は、例えば、霧化用温度調節器122の温度、霧化用温度調節器122へ供給する電力、霧化用温度調節器122へ電力を供給する時間等であってよい。 In step S301, the target value of the aerosol amount is set. Instead, a value related to the aerosol amount may be set. The value related to the amount of aerosol may be, for example, the temperature of the temperature controller for atomization 122, the power supplied to the temperature controller 122 for atomization, the time for supplying power to the temperature controller 122 for atomization, or the like. .
 ユーザは、香味成分の目標値Yを設定する(ステップS303)。それから、制御部50は、香味用温度調節器124の目標温度を決定する(ステップS304)。より具体的には、制御部50は、エアロゾル量の目標値Aと、香味成分の目標値Yと、に応じて香味用温度調節器124に供給する電力、すなわち香味用温度調節器124の目標温度を決定すればよい。 The user sets the target value Y of the flavor component (step S303). Then, the control unit 50 determines a target temperature of the flavor temperature controller 124 (Step S304). More specifically, the control unit 50 controls the electric power supplied to the flavor temperature controller 124 according to the target value A of the aerosol amount and the target value Y of the flavor component, that is, the target of the flavor temperature controller 124. The temperature may be determined.
 なお、ステップS303では、香味成分の量の目標値が設定されている。この代わりに、香味成分の量に関連する値が設定されてもよい。香味成分の量に関連する値は、例えば、香味用温度調節器124の温度、香味用温度調節器124へ供給する電力、香味用温度調節器124へ電力を供給する時間、流量調整手段730による香味源への通気エアロゾル量、具体的には流量調整手段730による第2流路129の開度等であってよい。 In step S303, a target value of the amount of the flavor component is set. Instead, a value related to the amount of the flavor component may be set. The value related to the amount of the flavor component is, for example, the temperature of the flavor temperature controller 124, the power supplied to the flavor temperature controller 124, the time for supplying the power to the flavor temperature controller 124, and the flow rate adjusting unit 730. It may be the amount of aerosol vented to the flavor source, specifically, the degree of opening of the second channel 129 by the flow rate adjusting means 730, and the like.
 エアロゾル中に生成される香味成分の量は、香味源を通るエアロゾルの量や温度に依存して変化し得る。例えば、香味源を通過するエアロゾルの量が多ければ多いほど、エアロゾル中に生成される香味成分の量は多くなる。また、香味源の温度が高いほど、エアロゾル中に生成される香味成分の量は多くなる。したがって、制御部50は、香味用温度調節器124(第2電気負荷)に供給する電力を、エアロゾル量(第1吸引成分の量)の目標値に応じて決定することになる。これにより、エアロゾル量に含まれる香味成分の量を、エアロゾル量とは独立に制御することができる。 量 The amount of flavor components generated in the aerosol can vary depending on the amount of aerosol passing through the flavor source and the temperature. For example, the greater the amount of aerosol passing through the flavor source, the greater the amount of flavor components generated in the aerosol. Also, the higher the temperature of the flavor source, the greater the amount of flavor components generated in the aerosol. Therefore, the control unit 50 determines the electric power to be supplied to the flavor temperature controller 124 (second electric load) according to the target value of the aerosol amount (the amount of the first suction component). Thereby, the amount of the flavor component contained in the aerosol amount can be controlled independently of the aerosol amount.
 霧化用温度調節器122に供給する電力と、香味用温度調節器124に供給する電力とが決定された後、制御部50は吸引サイクルの開始を検知すると、香味源又は香味用温度調節器124の温度を推定又は測定する(ステップS305及びステップS306)。吸引サイクルは、例えばユーザによる押しボタンの押下等によって検知することができる。なお、吸引サイクルは、ユーザの吸引動作により霧化用温度調節器122及び/又は香味用温度調節器124の動作が可能な状態な状態であり、1又は複数回のユーザの吸引動作を含み得るサイクルである。また、吸引動作は、ユーザによる押しボタンの押下や、吸口からの吸引のような動作を意味する。 After the power to be supplied to the atomizing temperature controller 122 and the power to be supplied to the flavor temperature controller 124 are determined, when the control unit 50 detects the start of the suction cycle, the control unit 50 detects the start of the suction cycle or the flavor source or the temperature controller for flavor. The temperature of 124 is estimated or measured (step S305 and step S306). The suction cycle can be detected, for example, by the user pressing a push button. The suction cycle is a state in which the operation of the temperature controller for atomization 122 and / or the temperature controller for flavor 124 is possible by the user's suction operation, and may include one or more user's suction operations. It is a cycle. In addition, the suction operation means an operation such as pressing of a push button by a user or suction from a suction port.
 香味源又は香味用温度調節器124の温度は、温度センサ160によって推定又は測定することができる。この代わりに、香味用温度調節器124が抵抗加熱素子を含むヒータである場合、制御部50は、抵抗加熱素子での電圧降下量から電気抵抗値を推定することによって、抵抗加熱素子の温度を推定することができる。なお、抵抗加熱素子での電圧降下量は、公知の電圧センサによって測定することができる。 The temperature of the flavor source or flavor temperature controller 124 can be estimated or measured by the temperature sensor 160. Instead, when the temperature controller 124 for flavor is a heater including a resistance heating element, the control unit 50 estimates the temperature of the resistance heating element by estimating the electric resistance value from the voltage drop amount at the resistance heating element. Can be estimated. The amount of voltage drop in the resistance heating element can be measured by a known voltage sensor.
 制御部50は、香味源又は香味用温度調節器124の温度が目標温度Ttargetから所定の値Δよりも離れているかどうか判断する(ステップS307)。香味源又は香味用温度調節器124の温度が目標温度Ttargetから所定の値Δよりも離れている場合、制御部50は、香味用温度調節器124へ電力を供給し、香味源又は香味用温度調節器124が目標温度付近に維持するよう制御する(ステップS308)。所定の値Δは、温度の誤差の許容値であり、例えば数℃~10℃未満の範囲に設定される。 The control unit 50 determines whether the temperature of the flavor source or the flavor temperature controller 124 is more than a predetermined value Δ from the target temperature T target (step S307). When the temperature of the flavor source or the temperature controller for flavor 124 is more than a predetermined value Δ from the target temperature T target , the control unit 50 supplies electric power to the temperature controller for flavor 124, and Control is performed so that the temperature controller 124 maintains the temperature around the target temperature (step S308). The predetermined value Δ is an allowable value of a temperature error, and is set, for example, in a range of several degrees Celsius to less than 10 degrees Celsius.
 また、香味源又は香味用温度調節器124の温度と目標温度Ttargetとの差が所定の値Δ以下の場合、香味用温度調節器124への電力供給を行う必要はない。これにより、吸引成分生成装置の省電力化が可能である。 When the difference between the temperature of the flavor source or the temperature controller for flavor 124 and the target temperature T target is equal to or smaller than the predetermined value Δ, it is not necessary to supply power to the temperature controller for flavor 124. Thereby, power saving of the suction component generation device is possible.
 制御部50は、霧化用温度調節器122に供給する電力と、香味用温度調節器124に供給する電力とが決定された後、ユーザの吸引動作の有無を監視する(ステップS309)。ユーザの吸引動作は、例えば前述した吸引センサ20によって検知することができる。 After the power to be supplied to the atomizing temperature controller 122 and the power to be supplied to the flavor temperature controller 124 are determined, the control unit 50 monitors whether or not the user performs a suction operation (step S309). The user's suction operation can be detected by, for example, the suction sensor 20 described above.
 ユーザの吸引動作が検知されると、制御部50は、霧化用電気負荷122R(調整手段)に電力を供給し、霧化用温度調節器122を加熱する(ステップS310)。これにより、霧化ユニットからエアロゾルが生成される。霧化ユニットで生成されたエアロゾルは、香味源を通ることにより、香味が付与される。ユーザは、香味が付与されたエアロゾルを吸引することになる。 When the user's suction operation is detected, the control unit 50 supplies electric power to the atomizing electric load 122R (adjusting unit) to heat the atomizing temperature controller 122 (Step S310). Thereby, an aerosol is generated from the atomization unit. The aerosol generated in the atomizing unit is imparted with a flavor by passing through a flavor source. The user will inhale the flavored aerosol.
 制御部50は、吸引動作の終了を検知すると(ステップS311)、霧化用電気負荷122Rへの電力の供給を停止する(ステップS312)。ここで、吸引動作の終了は、吸引センサ20によって検知することができる。なお、ユーザによる吸引動作が終了したとしても、制御部50は、吸引サイクルが終了するまでは香味源の温度を目標温度に維持するよう香味用温度調節器124への電力供給を継続してもよい。 When the control unit 50 detects the end of the suction operation (step S311), it stops supplying power to the atomizing electric load 122R (step S312). Here, the end of the suction operation can be detected by the suction sensor 20. In addition, even if the suction operation by the user is completed, the control unit 50 continues to supply power to the flavor temperature controller 124 so as to maintain the temperature of the flavor source at the target temperature until the suction cycle is completed. Good.
 また、制御部50は、吸引動作の終了の検知以外のタイミングであっても、霧化用電気負荷122Rへの電力の供給を停止してもよい。例えば、ユーザが非常に長く吸引動作を継続した場合や、霧化用電気負荷122Rや電源10の異常を検知した場合に、霧化用電気負荷122Rへの電力の供給を停止してもよい。 The control unit 50 may stop supplying power to the atomizing electric load 122R even at a timing other than the detection of the end of the suction operation. For example, when the user continues the suction operation for a very long time, or when the abnormality of the electric load 122R for atomization or the power supply 10 is detected, the supply of power to the electric load 122R for atomization may be stopped.
 制御部50は、吸引サイクルの終了を検知すると(ステップS313)、香味用電気負荷124Rへの電力の供給を停止すればよい(ステップS314)。制御部50は、例えば、ユーザにより所定の押しボタンが押下された場合や、前回の吸引動作の終了から所定の期間が経過した場合に、吸引サイクルの終了と判断してもよい。この代わりに、制御部50は、1回の吸引サイクル中に吸引動作を所定回数検知した場合や、吸引サイクルの開始から所定の期間が経過した場合に、吸引サイクルが終了したと判断してもよい。 When the control unit 50 detects the end of the suction cycle (step S313), the control unit 50 may stop supplying power to the flavor electric load 124R (step S314). The control unit 50 may determine that the suction cycle has ended, for example, when a predetermined push button is pressed by the user or when a predetermined period has elapsed from the end of the previous suction operation. Alternatively, the control unit 50 may determine that the suction cycle has ended when the suction operation has been detected a predetermined number of times during one suction cycle, or when a predetermined period has elapsed since the start of the suction cycle. Good.
 前述した制御フローでは、霧化用電気負荷122Rと香味用電気負荷124Rへの電力の供給の開始及び終了のタイミングが異なっている。この代わりに、霧化用電気負荷122Rと香味用電気負荷124Rへの電力の供給の開始及び/又は終了のタイミングは、同じであってもよい。 で は In the control flow described above, the timings of starting and ending power supply to the atomizing electric load 122R and the flavoring electric load 124R are different. Instead, the timing of starting and / or ending the supply of power to the atomizing electric load 122R and the flavoring electric load 124R may be the same.
 上記ステップS304では、制御部50は、香味用温度調節器124(第2電気負荷)に供給する電力を、エアロゾル量(第1吸引成分の量)の目標値に応じて決定する。これに限らず、制御部50は、エアロゾル源から生成されるエアロゾルの量に関連する値に基づき、香味用電気負荷124Rに供給する電力を制御するよう構成されていてよい。 In step S304, the control unit 50 determines the power to be supplied to the flavor temperature controller 124 (second electric load) according to the target value of the aerosol amount (the amount of the first suction component). Not limited to this, the control unit 50 may be configured to control the electric power supplied to the flavor electric load 124R based on a value related to the amount of the aerosol generated from the aerosol source.
 エアロゾル源から生成されるエアロゾルの量に関連する値は、エアロゾルの量の測定値又は推定値、霧化用電気負荷122Rに供給する電力、霧化用電気負荷122Rの温度、霧化用電気負荷122Rに電力を供給する時間、霧化用電気負荷122Rに供給する電力量等であってもよい。また、エアロゾル源から生成されるエアロゾルの量に関連する値は、エアロゾルが生成される領域の温度を監視する温度センサによって取得した値であってもよい。さらに、エアロゾルの量に関連する値は、エアロゾルの量そのものであってもよい。これらの場合であっても、エアロゾル量に含まれる香味成分の量を、エアロゾル量とは独立に制御することができる。 The value associated with the amount of aerosol generated from the aerosol source is the measured or estimated value of the amount of aerosol, the power supplied to the electrical load for atomization 122R, the temperature of the electrical load for atomization 122R, the electrical load for atomization. The time for supplying power to the 122R, the amount of power supplied to the atomizing electric load 122R, and the like may be used. Further, the value related to the amount of aerosol generated from the aerosol source may be a value acquired by a temperature sensor that monitors the temperature of the area where the aerosol is generated. Further, the value associated with the amount of the aerosol may be the amount of the aerosol itself. Even in these cases, the amount of the flavor component contained in the aerosol amount can be controlled independently of the aerosol amount.
 図6に示す制御フローによれば、制御部50は、エアロゾル源から生成されるエアロゾルの量に関連する値と、香味源から生成される香味成分の量に関連する値との関係に基づき、香味用温度調節器124を制御するよう構成されている。 According to the control flow illustrated in FIG. 6, the control unit 50 controls the value based on the relationship between the value related to the amount of the aerosol generated from the aerosol source and the value related to the amount of the flavor component generated from the flavor source. The flavor temperature controller 124 is configured to be controlled.
 この関係は、エアロゾルの量に関連する値と香味源から生成される香味成分の量に関連する値とを関連づける参照テーブルによって定められていてよい。すなわち、ユーザにより、エアロゾル源から生成されるエアロゾルの量に関連する値と、香味源から生成される香味成分の量に関連する値とが設定された場合、制御部50は、メモリ52に記憶されている参照テーブルを参照し、霧化用電気負荷122R及び香味用電気負荷124Rに供給する電力を決定すればよい。すなわち、ユーザにより、エアロゾル源から生成されるエアロゾルの量に関連する値と、香味源から生成される香味成分の量に関連する値とが設定された場合、制御部50は、メモリ52に記憶されている参照テーブルに基づき、霧化用電気負荷122R及び香味用電気負荷124Rに供給する電力を決定すればよい。 This relationship may be defined by a look-up table that associates a value related to the amount of the aerosol with a value related to the amount of the flavor component generated from the flavor source. That is, when the user sets a value related to the amount of the aerosol generated from the aerosol source and a value related to the amount of the flavor component generated from the flavor source, the control unit 50 stores the value in the memory 52. The power to be supplied to the atomizing electric load 122R and the flavoring electric load 124R may be determined with reference to the reference table that has been set. That is, when the user sets a value related to the amount of the aerosol generated from the aerosol source and a value related to the amount of the flavor component generated from the flavor source, the control unit 50 stores the value in the memory 52. The power to be supplied to the atomizing electric load 122R and the flavoring electric load 124R may be determined based on the reference table.
 この代わりに、この関係は、エアロゾルの量に関連する値と香味源から生成される香味成分の量に関連する値とを関連づける所定の関数によって定められていてもよい。すなわち、ユーザにより、エアロゾル源から生成されるエアロゾルの量に関連する値と、香味源から生成される香味成分の量に関連する値とが設定された場合、制御部50は、メモリ52に記憶されている所定の関数に基づき、霧化用電気負荷122R及び香味用電気負荷124Rに供給する電力を算出すればよい。所定の関数は、例えば予め行われた実験により決定することができる。また、所定の関数を利用すれば、エアロゾル源から生成されるエアロゾルの量に関連する値と、香味源から生成される香味成分の量に関連する値の任意の組み合わせに応じて、霧化用電気負荷122R及び香味用電気負荷124Rに供給する電力を連続的に決定することができる。 {Alternatively, this relationship may be defined by a predetermined function that relates a value related to the amount of the aerosol to a value related to the amount of the flavor component generated from the flavor source. That is, when the user sets a value related to the amount of the aerosol generated from the aerosol source and a value related to the amount of the flavor component generated from the flavor source, the control unit 50 stores the value in the memory 52. The power to be supplied to the atomizing electric load 122R and the flavoring electric load 124R may be calculated based on the predetermined function. The predetermined function can be determined, for example, by a previously performed experiment. Further, if a predetermined function is used, the atomization is performed according to an arbitrary combination of a value related to the amount of the aerosol generated from the aerosol source and a value related to the amount of the flavor component generated from the flavor source. The power supplied to the electric load 122R and the flavor electric load 124R can be determined continuously.
 前述した関係は、エアロゾル源の種類と香味源の種類との少なくとも一方に応じて異なっていてよい。ここでエアロゾル源及び香味源の種類とは、それぞれエアロゾル源及び香味源の組成の違いによって決定されていてもよい。エアロゾル源から生成されるエアロゾルの量に関連する値と、香味源から生成される香味成分の量に関連する値との関係は、エアロゾル源及び香味源の組成の違いによって、異なり得るからである。 The relationship described above may be different depending on at least one of the type of the aerosol source and the type of the flavor source. Here, the types of the aerosol source and the flavor source may be determined by the difference in the composition of the aerosol source and the flavor source, respectively. Because the relationship between the value related to the amount of the aerosol generated from the aerosol source and the value related to the amount of the flavor component generated from the flavor source may differ depending on the difference in the composition of the aerosol source and the flavor source. .
 上記態様によれば、ユーザは、エアロゾル量の目標値と、香味成分の目標値の両方を設定する。この場合、エアロゾル量の設定値及び/又は香味成分の設定値とは、所望の上限値及び/又は下限値を有することが好ましい。 According to the above aspect, the user sets both the target value of the aerosol amount and the target value of the flavor component. In this case, the set value of the aerosol amount and / or the set value of the flavor component preferably has a desired upper limit and / or lower limit.
 例えば、エアロゾル量及び/又は香味成分の量の設定値の可変範囲は、既定量の香味成分をエアロゾルに付与可能な値によって規定されることが好ましい。これにより、エアロゾル量によらず既定の範囲の量の香味成分をエアロゾルに付与することができる。したがって、ユーザがエアロゾル量によらず所望の香味を吸引することができる。 For example, it is preferable that the variable range of the set value of the amount of the aerosol and / or the amount of the flavor component is defined by a value capable of providing a predetermined amount of the flavor component to the aerosol. Thereby, a flavor component in a predetermined range can be imparted to the aerosol regardless of the aerosol amount. Therefore, the user can inhale a desired flavor regardless of the aerosol amount.
 香味成分の量に関連する値の設定値の上限は、香味源の燃焼温度未満であることが好ましい。これにより、香味源の燃焼温度以上に香味源を加熱してしまうことを防止することができる。具体的には、香味成分の量に関連する値の設定値の上限は、香味源としてたばこ原料を用いる場合、香味用温度調整器124の温度が200℃、好ましくは150℃に相当する値によって規定されていてよい。 上限 The upper limit of the set value of the value related to the amount of the flavor component is preferably lower than the combustion temperature of the flavor source. This can prevent the flavor source from being heated above the combustion temperature of the flavor source. Specifically, the upper limit of the set value of the value related to the amount of the flavor component, when using tobacco raw material as a flavor source, the temperature of the flavor temperature regulator 124 is 200 ° C, preferably by a value corresponding to 150 ° C May be specified.
 香味成分の量に関連する値の設定値の上限は、エアロゾル源の沸点以下に相当する値であることが好ましい。これにより、香味源の温度が、エアロゾル源の沸点以下に維持される。この場合、香味源を通過するエアロゾルが再蒸発や拡散することによるエアロゾル量の低減を抑制できる。なお、香味成分の量に関連する値の設定値の上限は、図7に示すようにエアロゾル量に関連する値の設定値に応じて可変であってよい。 (4) The upper limit of the set value of the value related to the amount of the flavor component is preferably a value corresponding to the boiling point of the aerosol source or lower. Thereby, the temperature of the flavor source is maintained at or below the boiling point of the aerosol source. In this case, a reduction in the amount of aerosol due to re-evaporation or diffusion of the aerosol passing through the flavor source can be suppressed. The upper limit of the set value of the value related to the amount of the flavor component may be variable according to the set value of the value related to the aerosol amount as shown in FIG.
 エアロゾル源が複数のエアロゾル前駆体、例えばグリセリンやプロピレングリコール等を含む場合、「エアロゾル源の沸点」は、エアロゾル源に含まれる重量%が最も大きい成分の沸点によって規定されてよい。この代わりに、「エアロゾル源の沸点」は、複数のエアロゾル前駆体のうち単成分での沸点が最も低い成分の沸点によって規定されてもよい。例えば、エアロゾル源がグリセリンとプロピレングリコールを含む場合、プロピレングリコールの沸点である約190℃に規定されていてもよい。また、グリセリンの含有率がプロピレングリコールよりも多い場合、エアロゾル源の沸点は、グリセリンの沸点である約250℃に規定されていてもよい。 場合 When the aerosol source contains a plurality of aerosol precursors, such as glycerin and propylene glycol, the “boiling point of the aerosol source” may be defined by the boiling point of the component with the largest weight percentage contained in the aerosol source. Alternatively, the “boiling point of the aerosol source” may be defined by the boiling point of the component having the lowest boiling point in a single component among the plurality of aerosol precursors. For example, if the aerosol source includes glycerin and propylene glycol, it may be specified at about 190 ° C., the boiling point of propylene glycol. In addition, when the content of glycerin is higher than that of propylene glycol, the boiling point of the aerosol source may be specified at about 250 ° C., which is the boiling point of glycerin.
 また、上述したエアロゾルの再蒸発や拡散によるエアロゾル量の低減を抑制するという観点では、香味源の温度は約250℃以下、約190℃以下、又は約100℃以下(水の沸点)以下に維持されることが好ましい。したがって、制御部50は、エアロゾル量及び/又は香味成分の量の設定値に応じて定まる香味源の温度がこれらの上限の温度を維持しないと判断されると、表示部210にエラーを表示し、これらの設定値の変更を促せばよい。 In addition, from the viewpoint of suppressing the reduction of the aerosol amount due to the re-evaporation or diffusion of the aerosol described above, the temperature of the flavor source is maintained at about 250 ° C. or lower, about 190 ° C. or lower, or about 100 ° C. or lower (boiling point of water) or lower. Is preferably performed. Therefore, when it is determined that the temperature of the flavor source determined according to the set value of the aerosol amount and / or the amount of the flavor component does not maintain the upper limit temperature, the control unit 50 displays an error on the display unit 210. The user may be prompted to change these set values.
 香味成分の量に関連する値の設定値の下限は、例えば、-10℃以上、好ましくは0℃以上、より好ましくは10℃以上に相当する値であってよい。これにより、香味源を通過するエアロゾルが空気流路内に凝縮することを抑制でき、吸口に達するエアロゾル量の低下を抑制できる。なお、香味成分の量に関連する値の設定値の下限は、図7に示すようにエアロゾル量に関連する値の設定値に応じて可変であってよい。 (4) The lower limit of the set value of the value related to the amount of the flavor component may be, for example, a value corresponding to −10 ° C. or more, preferably 0 ° C. or more, more preferably 10 ° C. or more. Thereby, the aerosol passing through the flavor source can be suppressed from condensing in the air flow path, and the decrease in the amount of aerosol reaching the mouth can be suppressed. The lower limit of the set value of the value related to the amount of the flavor component may be variable according to the set value of the value related to the aerosol amount as shown in FIG.
 エアロゾルの量に関連する値の設定値の上限は、エアロゾルの生成に伴うエアロゾル源の消費速度がエアロゾル源が霧化されるところへのエアロゾル源の供給速度を越えないよう規定されることが好ましい。また、エアロゾル源から生成されるエアロゾルの量が小さいほど香味源の温度を高くするように香味用温度調節器124を制御する態様においては、エアロゾルの量に関連する値の設定値の下限は、香味源が燃焼されない範囲に規定されることが好ましい。エアロゾルの量に関連する値の設定値の上限及び/又は下限は、香味源から生成される香味成分の量に関する値に応じて可変であってよい(図7も参照)。 The upper limit of the set value of the value related to the amount of the aerosol is preferably defined so that the consumption rate of the aerosol source accompanying the generation of the aerosol does not exceed the supply rate of the aerosol source to where the aerosol source is atomized. . Further, in a mode of controlling the flavor temperature controller 124 so as to increase the temperature of the flavor source as the amount of the aerosol generated from the aerosol source is smaller, the lower limit of the set value of the value related to the amount of the aerosol is: It is preferable that the flavor source is defined in a range where it is not burned. The upper and / or lower limit of the set value of the value related to the amount of the aerosol may be variable according to the value related to the amount of the flavor component generated from the flavor source (see also FIG. 7).
 図7は、香味成分の目標値とエアロゾル量の目標値との組み合わせの一例を示す図である。領域R2と領域R3の境界線は、ある雰囲気温度において香味用温度調節器124を動作させることなく、霧化用温度調節器122の出力を変えた場合に、香味成分の量Yとエアロゾルの量Aとが取り得る値を示すラインである。したがって、ユーザにより、点P2で示される香味成分の量Yとエアロゾルの量Aとが設定された場合、制御部50は、香味用温度調節器124を動作させることなく、霧化用温度調節器122を動作させればよい。 FIG. 7 is a diagram showing an example of a combination of the target value of the flavor component and the target value of the aerosol amount. The boundary line between the region R2 and the region R3 indicates the amount Y of the flavor component and the amount of the aerosol when the output of the atomizing temperature controller 122 is changed without operating the flavor temperature controller 124 at a certain atmospheric temperature. A is a line indicating a possible value. Therefore, when the amount of the flavor component Y and the amount of the aerosol A indicated by the point P2 are set by the user, the control unit 50 operates the atomizing temperature controller 124 without operating the flavor temperature controller 124. 122 may be operated.
 なお、図7に示す領域R2と領域R3の境界線上の点に相当する香味成分の量Yとエアロゾルの量Aとが設定された場合に限られず、当該境界線から所定の幅を有する帯状のライン内に相当する香味成分の量Yとエアロゾルの量Aとが設定された場合にも、制御部50は、香味用温度調節器124を動作させることなく、霧化用温度調節器122を動作させればよい。ここで、香味用温度調節器124を動作させる必要のない帯状のラインの幅(図7の縦軸方向の幅)は、図6に示す制御フローのステップS307における所定の値Δの2倍(2Δ)に関連することに留意されたい。 Note that the present invention is not limited to the case where the amount Y of the flavor component and the amount A of the aerosol corresponding to the points on the boundary line between the region R2 and the region R3 shown in FIG. Even when the amount Y of the flavor component and the amount A of the aerosol in the line are set, the control unit 50 operates the temperature controller 122 for atomization without operating the temperature controller 124 for flavor. It should be done. Here, the width of the strip-shaped line (the width in the vertical axis direction in FIG. 7) that does not require the operation of the flavor temperature controller 124 is twice the predetermined value Δ in step S307 of the control flow shown in FIG. Note that this is related to 2Δ).
 また、領域R2は、香味用温度調節器124を動作させない場合と比較すると、エアロゾル中に含まれる香味成分の量が多い領域である。したがって、点P3で示される香味成分の量Yとエアロゾルの量Aとが設定された場合、制御部50は、霧化用温度調節器122と香味用温度調節器124の両方を動作させればよい。 領域 The region R2 is a region in which the amount of flavor components contained in the aerosol is larger than when the flavor temperature controller 124 is not operated. Therefore, when the amount Y of the flavor component and the amount A of the aerosol indicated by the point P3 are set, the control unit 50 may operate both the atomization temperature controller 122 and the flavor temperature controller 124. Good.
 領域R2と領域R1の境界は、エアロゾル量の上限値及び香味成分の量の上限値を示している。香味成分の量の上限値は、前述したように設定されていてよい。この場合、点P4で示される香味成分の量Yとエアロゾルの量Aとが設定された場合、制御部50は表示部210にエラーを表示させることによって、ユーザに設定の変更を促すことができる。 The boundary between the region R2 and the region R1 indicates the upper limit of the amount of the aerosol and the upper limit of the amount of the flavor component. The upper limit of the amount of the flavor component may be set as described above. In this case, when the amount Y of the flavor component and the amount A of the aerosol represented by the point P4 are set, the control unit 50 can prompt the user to change the setting by displaying an error on the display unit 210. .
 領域R3は、香味用温度調節器124を動作させない場合と比較すると、エアロゾル中に含まれる香味成分の量が小さい領域である。この場合、前述した流量調整手段730を稼働させることにより、領域R3に含まれる所望の香味成分の量Yとエアロゾルの量Aとを達成することができる。例えば、霧化ユニット120で生成されたエアロゾルの一部を第2流路129に通気させると、エアロゾル中の香味成分の量を低下させることができる。このように、制御部50は、香味源から生成される香味成分の量の目標値に基づき香味用温度調節器124に供給する電力を制御するだけでなく、当該目標値に基づき流量調整手段730をも制御するよう構成されていてよい。より具体的には、制御部50は、所望の香味成分量とエアロゾル量を生成するために、香味用温度調節器124に供給する電力と流量調整手段730の両方を制御することがあってもよい。 The region R3 is a region where the amount of the flavor component contained in the aerosol is smaller than when the flavor temperature controller 124 is not operated. In this case, the desired amount Y of the flavor component and the amount A of the aerosol included in the region R3 can be achieved by operating the flow rate adjusting unit 730 described above. For example, when a part of the aerosol generated by the atomizing unit 120 is passed through the second channel 129, the amount of the flavor component in the aerosol can be reduced. As described above, the control unit 50 not only controls the power supplied to the flavor temperature controller 124 based on the target value of the amount of the flavor component generated from the flavor source, but also controls the flow rate adjusting unit 730 based on the target value. May also be controlled. More specifically, the control unit 50 may control both the power supplied to the flavor temperature controller 124 and the flow rate adjusting unit 730 in order to generate a desired flavor component amount and a desired aerosol amount. Good.
 また、制御部50は、流量調整手段730の制御により、香味源から生成される香味成分の量が目標値を達成できると判断した場合、香味用温度調節器124を制御することなく、流量調整手段730を制御してもよい。香味用温度調節器124の制御よりも流量調整手段730の制御の方が消費電力が小さい。したがって、香味用温度調節器124を駆動する前に、流量調整手段730によって優先的に香味成分の量を調整することが好ましい。 In addition, when the control unit 50 determines that the amount of the flavor component generated from the flavor source can achieve the target value under the control of the flow rate adjusting unit 730, the control unit 50 controls the flow rate without controlling the flavor temperature controller 124. Means 730 may be controlled. The control of the flow rate adjusting means 730 consumes less power than the control of the flavor temperature controller 124. Therefore, it is preferable to preferentially adjust the amount of the flavor component by the flow rate adjusting unit 730 before driving the flavor temperature controller 124.
 図7の点P1で示される香味成分の量Yとエアロゾルの量Aとが設定された場合、制御部50は、流量調整手段730によって第1流路128に通気させるエアロゾルの量を減らしつつ、霧化用温度調節器122を動作させればよい。この代わりに、香味成分の量Yを減らす場合には、冷却機能を有する香味用温度調節器124により香味源を冷やしてもよい。 When the amount Y of the flavor component and the amount A of the aerosol indicated by the point P1 in FIG. 7 are set, the control unit 50 reduces the amount of the aerosol to be passed through the first flow path 128 by the flow rate adjusting unit 730, What is necessary is just to operate the temperature controller 122 for atomization. Instead, when the amount Y of the flavor component is reduced, the flavor source may be cooled by the flavor temperature controller 124 having a cooling function.
 前述した例では、領域R3における所定の目標値、例えば点P1は、流量調整手段730を用いて実現された。この代わりに、領域R3における所定の目標値は、冷却機能を有する香味用温度調節器124によっても実現できる。すなわち、香味用温度調節器124によって香味源の温度を下げることにより、エアロゾル中の香味成分の量を低下させることができる。 これにより、エアロゾル量に対する香味成分の割合が低い領域R3における所定の目標値を実現できる。 In the example described above, the predetermined target value in the region R3, for example, the point P1, has been realized by using the flow rate adjusting unit 730. Alternatively, the predetermined target value in the region R3 can be realized by the flavor temperature controller 124 having a cooling function. That is, the amount of the flavor component in the aerosol can be reduced by lowering the temperature of the flavor source by the flavor temperature controller 124. Thereby, a predetermined target value in the region R3 where the ratio of the flavor component to the aerosol amount is low can be realized.
 領域R3と領域R4の境界は、流量調整手段730を用いない場合における香味成分の量の下限値又はエアロゾルの量の下限値を示している。香味成分の量の下限値又はエアロゾルの量の下限値は、前述したように設定されていてよい。したがって、領域R4に含まれる香味成分の量Yとエアロゾルの量Aとが設定された場合、制御部50は表示部210にエラーを表示させることによって、ユーザに設定の変更を促すことができる。 The boundary between the region R3 and the region R4 indicates the lower limit of the amount of the flavor component or the lower limit of the amount of the aerosol when the flow rate adjusting unit 730 is not used. The lower limit of the amount of the flavor component or the lower limit of the amount of the aerosol may be set as described above. Therefore, when the amount Y of the flavor component and the amount A of the aerosol included in the region R4 are set, the control unit 50 can prompt the user to change the setting by displaying an error on the display unit 210.
 この代わりに、領域R4内のエアロゾルの量及び香味成分の量の目標値は、流量調整手段730の使用、あるいは流量調整手段730と香味用温度調節器124による冷却の併用によって実現することができる。 Alternatively, the target values of the amount of the aerosol and the amount of the flavor component in the region R4 can be realized by using the flow rate adjusting means 730 or by using the flow rate adjusting means 730 and the cooling by the flavor temperature controller 124 in combination. .
 例えば、制御部50は、霧化ユニット120で生成されたエアロゾルの多くを第2流路129に通気させ、第1流路に通気させるエアロゾルの量を大幅に減らすことによって、エアロゾル中の香味成分の量を大幅に低下させることができる。これにより、領域R4内のエアロゾルの量及び香味成分の量の目標値を実現できる。 For example, the control unit 50 allows a large amount of the aerosol generated by the atomization unit 120 to pass through the second flow path 129, and significantly reduces the amount of the aerosol to be passed through the first flow path. Can be greatly reduced. Thereby, the target values of the amount of the aerosol and the amount of the flavor component in the region R4 can be realized.
 この代わりに、香味用温度調節器124によって香味源の温度を低下させるとともに、流量調整手段730によって第1流路に通気させるエアロゾルの量を減らすことによっても、領域R4内のエアロゾルの量及び香味成分の量の目標値を実現できる。 Instead of this, the temperature of the flavor source is lowered by the flavor temperature controller 124 and the amount of aerosol to be passed through the first flow path by the flow rate adjusting means 730 is also reduced, so that the amount and flavor of the aerosol in the region R4 are also reduced. A target value for the amount of the component can be achieved.
 図7における香味成分の目標値とエアロゾル量の目標値との組み合わせについて、エアロゾル量の目標値が小さい領域では、吸引成分生成装置から排出されるエアロゾル(煙)が視認できない又は視認しにくくなる。そのような目標値に関する吸引成分生成装置の動作モードは、「無煙モード」とも言える。無煙モードは、例えば、霧化用温度調節器122を動作させない、又は霧化用温度調節器122による加熱量を低い値に維持することで実現できる。 組 み 合 わ せ Regarding the combination of the target value of the flavor component and the target value of the aerosol amount in FIG. 7, in a region where the target value of the aerosol amount is small, the aerosol (smoke) discharged from the suction component generation device cannot be visually recognized or is difficult to be visually recognized. The operation mode of the suction component generation device relating to such a target value can be said to be a “smokeless mode”. The smokeless mode can be realized by, for example, not operating the atomizing temperature controller 122 or maintaining the amount of heating by the atomizing temperature controller 122 at a low value.
 霧化用温度調節器122と香味用温度調節器124の両方に実質的に電力を供給しない場合、図7における領域R2とR3の境界線上であって、エアロゾル量Aが0のモードが実現される。すなわち、霧化用温度調節器122と香味用温度調節器124の両方に実質的に電力を供給しない場合であっても、図7に示すように、ユーザは、多少の香味成分を吸引することができる。言い換えると、香味成分量Yの設定値次第では、霧化用温度調節器122と香味用温度調節器124の両方に実質的に電力を供給しない態様も考えられる。 When substantially no power is supplied to both the atomizing temperature controller 122 and the flavor temperature controller 124, a mode in which the aerosol amount A is 0 on the boundary between the regions R2 and R3 in FIG. 7 is realized. You. That is, even when substantially no power is supplied to both the atomizing temperature controller 122 and the flavor temperature controller 124, as shown in FIG. Can be. In other words, depending on the set value of the flavor component amount Y, a mode in which substantially no power is supplied to both the atomizing temperature controller 122 and the flavor temperature controller 124 is also conceivable.
 (電気負荷の制御2)
 図8は、一実施形態に係る吸引成分生成装置における制御の一例を示すフローチャートである。本実施形態では、制御部50は、エアロゾル中に含まれる香味成分の量を一定にするよう制御する。香味成分の量は、予め設定されていてもよく、吸引動作前にユーザによって設定されてもよい。
(Control of electric load 2)
FIG. 8 is a flowchart illustrating an example of control in the suction component generation device according to the embodiment. In the present embodiment, the control unit 50 controls the amount of the flavor component contained in the aerosol to be constant. The amount of the flavor component may be set in advance, or may be set by the user before the suction operation.
 まず、ユーザは、吸引動作を開始する前にエアロゾル量の目標値を設定する(ステップS301)。エアロゾル量の目標値Aは、複数の選択肢(モード)の中から選択されてもよく、具体的な数値によって設定されてもよい。制御部50は、エアロゾル量の目標値Aに応じて、霧化用温度調節器122に供給する電力又は電力量を決定する(ステップS302)。 First, the user sets a target value of the aerosol amount before starting the suction operation (step S301). The target value A of the aerosol amount may be selected from a plurality of options (modes), or may be set by specific numerical values. The control unit 50 determines the power or the amount of power to be supplied to the atomizing temperature controller 122 according to the target value A of the aerosol amount (Step S302).
 次に、制御部50は、エアロゾル量(第1吸引成分の量)の目標値Aに応じて、香味用温度調節器124の目標温度を決定する(ステップS304)。より具体的には、制御部50は、エアロゾル量の目標値Aに基づき、エアロゾル中に生成される香味成分の量が一定となるよう、香味用温度調節器124に供給する電力を決定する。 Next, the control unit 50 determines the target temperature of the flavor temperature controller 124 according to the target value A of the aerosol amount (the amount of the first suction component) (step S304). More specifically, the control unit 50 determines the power to be supplied to the flavor temperature controller 124 based on the target value A of the aerosol amount so that the amount of the flavor component generated in the aerosol becomes constant.
 これ以降のステップS305~S314については、図6に示す制御フローと同様であるため、具体的な説明を省略する。 {Steps S305 to S314 thereafter are the same as those in the control flow shown in FIG. 6, and a detailed description thereof will be omitted.
 ここで、制御部50は、吸引サイクル中であっても、エアロゾル量の目標値が変更された場合には、ステップS301から制御をやり直すことが好ましい。この際に、制御部50は、エアロゾル中に含まれる香味成分の目標値は一定に維持したままであってよい。 Here, it is preferable that the control unit 50 restarts the control from step S301 when the target value of the aerosol amount is changed even during the suction cycle. At this time, the control unit 50 may keep the target value of the flavor component contained in the aerosol constant.
 図9は、香味成分の目標値とエアロゾル量の目標値との関係の一例を示している。図9の実線は、香味成分の目標値を示している。図9の点線は、エアロゾル量の目標値を示している。図9に示すように、香味成分の目標値を一定に維持したままで、エアロゾル量の目標値が変更された場合、香味源の温度、すなわち香味用温度調節器124に供給する電力を、変更されたエアロゾル量の目標値に応じて変更すればよい。 Fig. 9 shows an example of the relationship between the target value of the flavor component and the target value of the aerosol amount. The solid line in FIG. 9 indicates the target value of the flavor component. The dotted line in FIG. 9 indicates the target value of the aerosol amount. As shown in FIG. 9, when the target value of the aerosol amount is changed while the target value of the flavor component is kept constant, the temperature of the flavor source, that is, the power supplied to the flavor temperature controller 124 is changed. What is necessary is just to change according to the target value of the obtained aerosol amount.
 上記ステップS304では、制御部50は、香味用温度調節器124に供給する電力を、エアロゾル量(第1吸引成分の量)の目標値に応じて決定する。これに限らず、制御部50は、エアロゾル源から生成されるエアロゾルの量に関連する値に基づき、香味用電気負荷124Rに供給する電力を制御するよう構成されていてよい。エアロゾル源から生成されるエアロゾルの量に関連する値は、前述したとおりである。 In step S304, the control unit 50 determines the power to be supplied to the flavor temperature controller 124 according to the target value of the aerosol amount (the amount of the first suction component). Not limited to this, the control unit 50 may be configured to control the electric power supplied to the flavor electric load 124R based on a value related to the amount of the aerosol generated from the aerosol source. The values associated with the amount of aerosol generated from the aerosol source are as described above.
 本制御フローでは、エアロゾル量が変わっても、エアロゾル中に含まれる香味成分の量を一定に維持することができる。したがって、吸引に伴うエアロゾルの量を低下又は無くしたとしても、一定の香味成分の量が維持されるため、ユーザは、香味を損なうことなく味わうことができる。これにより、香味の吸引中にユーザの近くに人が近付いたときにエアロゾル量を低下させることによって、香味を損なうことなく、目に見えるエアロゾル量を低減させることができる。 In this control flow, even if the amount of aerosol changes, the amount of flavor components contained in the aerosol can be kept constant. Therefore, even if the amount of aerosol due to inhalation is reduced or eliminated, a certain amount of the flavor component is maintained, so that the user can enjoy the flavor without impairing the flavor. Accordingly, the amount of aerosol can be reduced without impairing the flavor by reducing the amount of aerosol when a person approaches the user during flavor inhalation.
 図8に示す制御フローでは、制御部50は、エアロゾル中に含まれる香味成分の量を一定にするよう制御した。これに限らず、制御部50は、エアロゾルの量の設定値が変更された場合に、制御部50は、エアロゾルの量に関連する値の変化に伴う香味成分の量の変化を抑制するよう香味用電気負荷124(第2電気負荷)を制御すればよい。すなわち、エアロゾル中の香味成分の量は必ずしも一定に維持される必要はなく、香味成分の変化量を緩和するよう制御されればよい。例えば、香味成分は、その目標値の好ましくは±20%の範囲内、より好ましくは±10%の範囲内に維持されればよい。 で は In the control flow shown in FIG. 8, the control unit 50 controlled the amount of the flavor component contained in the aerosol to be constant. Not limited to this, when the set value of the amount of the aerosol is changed, the control unit 50 controls the flavor to suppress the change in the amount of the flavor component accompanying the change in the value related to the amount of the aerosol. The electric load 124 (second electric load) may be controlled. That is, the amount of the flavor component in the aerosol does not necessarily need to be kept constant, and may be controlled so as to reduce the amount of change in the flavor component. For example, the flavor component may be maintained within a range of preferably ± 20%, more preferably ± 10% of the target value.
 また、エアロゾルの量の設定値が変更された場合に限らず、制御部50は、エアロゾルの量に関連する値のばらつきに伴う香味源の量のばらつきを抑制するよう香味用電気負荷124(第2電気負荷)を制御してもよい。 In addition to the case where the set value of the amount of the aerosol is changed, the control unit 50 may control the electric load for flavor 124 (the first electric load 124) to suppress the variation in the amount of the flavor source due to the variation in the value related to the amount of the aerosol. 2 electrical load).
 図8に示す制御フローのように、香味成分の変化量を緩和するよう制御する場合、制御部50は、エアロゾル源から生成されるエアロゾルの量が小さいほど香味源の温度を高くするように香味用温度調節器124を制御すればよい。この場合、エアロゾルの量に関連する値の設定値の下限は、例えば香味源が燃焼されない範囲に規定されることが好ましい。また、エアロゾルの量に関連する値の設定値の上限は、前述の説明と同様に決定することができる。 When control is performed to reduce the amount of change in the flavor component as in the control flow illustrated in FIG. 8, the control unit 50 sets the flavor such that the smaller the amount of the aerosol generated from the aerosol source, the higher the temperature of the flavor source. The temperature controller 124 may be controlled. In this case, it is preferable that the lower limit of the set value of the value related to the amount of the aerosol is set, for example, in a range in which the flavor source is not burned. Further, the upper limit of the set value of the value related to the amount of the aerosol can be determined in the same manner as described above.
 (電気負荷の制御3)
 図10は、一実施形態に係る吸引成分生成装置における制御の一例を示すフローチャートである。本実施形態では、制御部50は、ユーザの吸引動作を検知する前に、タイマーの値(t)を0にセットする(ステップS100)。なお、タイマーの値(t)を0にセットするタイミングは、例えば香味ユニット130が交換されたタイミングであってよい。
(Control of electric load 3)
FIG. 10 is a flowchart illustrating an example of control in the suction component generation device according to the embodiment. In the present embodiment, the control unit 50 sets a timer value (t) to 0 before detecting a user's suction operation (step S100). The timing at which the value (t) of the timer is set to 0 may be, for example, the timing at which the flavor unit 130 has been replaced.
 次に、制御部50は、ユーザの吸引動作の検知したかどうかを判断する(ステップS309)。前述したように、制御部50は、ユーザの吸引動作を、吸引センサ20からの出力信号によって判断することができる。この代わりに、制御部50は、ユーザによる押しボタンの押下によってユーザの吸引動作を判断してもよい。 Next, the control unit 50 determines whether or not the user's suction operation has been detected (step S309). As described above, the control unit 50 can determine the user's suction operation based on the output signal from the suction sensor 20. Alternatively, the control unit 50 may determine the user's suction operation by pressing the push button by the user.
 ユーザの吸引動作を検出したら、制御部50は、香味源から生成される香味成分の量に関連する値を推定又は取得する(ステップS104)。香味源から生成される香味成分の量に関連する値は、香味成分の量の測定値又は推定値、香味源又は香味用温度調整器124の温度、霧化用電気負荷に供給する電力、霧化用電気負荷の温度、又は霧化用電気負荷に電力を供給する時間等であってよい。 When detecting the user's suction operation, the control unit 50 estimates or acquires a value related to the amount of the flavor component generated from the flavor source (step S104). The value associated with the amount of flavor component produced from the flavor source is a measured or estimated value of the amount of flavor component, the temperature of the flavor source or flavor temperature controller 124, the power supplied to the atomizing electrical load, the fog, It may be the temperature of the electrical load for atomization, the time for supplying power to the electrical load for atomization, or the like.
 具体的一例では、制御部50は、香味源から生成される香味成分の量に関連する値として、香味源又は香味用電気負荷124Rの温度と、霧化用電気負荷122Rへ電力を供給した累積の時間と、を取得する。香味源又は香味用電気負荷124Rの温度は、例えば温度センサ160によって取得できる。この代わりに、香味用電気負荷124Rの温度は、前述したように香味用電気負荷124Rの電圧降下量から推定することもできる。また、霧化用電気負荷122Rへ電力を供給した累積の時間は、霧化用電気負荷122Rへ電力を供給した期間をタイマーで計測することによって測定可能である。霧化用電気負荷122Rへ電力を供給した累積の時間は、香味源に通気した累積エアロゾル量に関連する値を推定するための具体例の1つである。 In a specific example, the control unit 50 calculates the temperature of the flavor source or the electric load for flavor 124R and the cumulative amount of power supplied to the electric load for atomization 122R as the value related to the amount of the flavor component generated from the flavor source. Time and get up. The temperature of the flavor source or the electrical load for flavor 124R can be acquired by the temperature sensor 160, for example. Alternatively, the temperature of the flavor electric load 124R can be estimated from the voltage drop of the flavor electric load 124R as described above. The cumulative time during which power is supplied to the atomizing electric load 122R can be measured by measuring a period during which power is supplied to the atomizing electric load 122R with a timer. The cumulative time during which power is supplied to the atomizing electric load 122R is one of specific examples for estimating a value related to the cumulative amount of aerosol that has passed through the flavor source.
 香味源から生成される香味成分の量は、主として、香味源を通過したエアロゾルの量と、香味源の温度とに依存する。同一のエアロゾル量及び香味源の温度であっても、吸引回数を重ねることで、香味源から放出される香味成分の量は漸減する。したがって、制御部50は、香味源又は香味用電気負荷124Rの温度と、霧化用電気負荷122Rへ電力を供給した累積の時間とによって、香味源から生成される香味成分の量を推定できる。 量 The amount of the flavor component generated from the flavor source mainly depends on the amount of the aerosol that has passed through the flavor source and the temperature of the flavor source. Even if the aerosol amount and the temperature of the flavor source are the same, the amount of the flavor component released from the flavor source gradually decreases by increasing the number of times of suction. Therefore, the control unit 50 can estimate the amount of the flavor component generated from the flavor source based on the temperature of the flavor source or the flavor electric load 124R and the cumulative time of supplying the electric power to the atomizing electric load 122R.
 次に、制御部50は、香味源から生成される香味成分の量に関連する値に基づいて、霧化用温度調節器122に供給する電力又は電力量を決定する(ステップS106)。例えば、制御部50は、香味源から生成される香味成分の量を推定値が一定になるように、霧化用温度調節器122(第2電気負荷)に供給する電力又は電力量を決定すればよい。 Next, the control unit 50 determines the power or the amount of power to be supplied to the atomizing temperature controller 122 based on the value related to the amount of the flavor component generated from the flavor source (step S106). For example, the control unit 50 determines the power or the amount of power to be supplied to the atomizing temperature controller 122 (second electric load) such that the estimated value of the amount of the flavor component generated from the flavor source is constant. I just need.
 すなわち、制御部50は、霧化ユニット120で生成されるエアロゾルの量を調整することによって、エアロゾル中に生成される香味成分の量を一定にするよう制御すればよい。これに限らず、制御部50は、香味成分の量の変化又はばらつきを抑制するよう霧化用電気負荷122Rを制御してもよい。すなわち、エアロゾル中の香味成分の量は必ずしも一定に維持される必要はなく、香味成分の変化量を緩和するよう制御されればよい。 That is, the control unit 50 may control the amount of the flavor component generated in the aerosol to be constant by adjusting the amount of the aerosol generated by the atomizing unit 120. Not limited to this, the control unit 50 may control the atomizing electric load 122R so as to suppress a change or variation in the amount of the flavor component. That is, the amount of the flavor component in the aerosol does not necessarily need to be kept constant, and may be controlled so as to reduce the amount of change in the flavor component.
 それから、制御部50は、タイマーをONにし(ステップS108)、ステップS106で決定された電力又は電力量に基づき、霧化用温度調節器122に電力の供給を開始する(ステップS110)。タイマーは、霧化用温度調節器122に電力を供給した累積時間を計測することができる。 Then, the controller 50 turns on the timer (step S108), and starts supplying power to the atomizing temperature controller 122 based on the power or the amount of power determined in step S106 (step S110). The timer can measure the accumulated time for supplying power to the atomizing temperature controller 122.
 制御部50は、吸引動作の終了を検知すると(ステップS311)、霧化用温度調節器122への電力の供給を停止する(ステップS312)。それから、制御部50は、タイマーを停止する(ステップS116)。 When the control unit 50 detects the end of the suction operation (step S311), it stops supplying power to the atomizing temperature controller 122 (step S312). Then, the control unit 50 stops the timer (Step S116).
 なお、制御部50は、タイマーの値が所定の閾値以下の場合、ユーザの吸引動作を監視し、ユーザの吸引動作を検知すると、再度ステップS104以降のステップを繰り返す。 When the value of the timer is equal to or less than the predetermined threshold, the control unit 50 monitors the user's suction operation, and when detecting the user's suction operation, repeats the steps from step S104 again.
 タイマーの値が所定の閾値を超えた場合、制御部50は、香味ユニットを新品に交換するよう、通知部によってユーザに報知してもよい。 If the value of the timer exceeds a predetermined threshold, the control unit 50 may notify the user by a notification unit to replace the flavor unit with a new one.
 (プログラム及び記憶媒体)
 図6,8,10を用いて説明した前述のフローは、制御部50が実行することができる。すなわち、本発明は、吸引成分生成装置100に前述の方法を実行させるプログラム、当該プログラムが格納された記憶媒体をも含んでいてよい。このような記憶媒体は、非一過性の記憶媒体であってよい。
(Program and storage medium)
The above-described flow described using FIGS. 6, 8, and 10 can be executed by the control unit 50. That is, the present invention may also include a program that causes the suction component generation device 100 to execute the above-described method, and a storage medium that stores the program. Such a storage medium may be a non-transitory storage medium.
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
[Other Embodiments]
Although the present invention has been described with reference to the above-described embodiments, it should not be understood that the description and drawings forming part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples, and operation techniques will be apparent to those skilled in the art.
 以上で説明した実施形態により、制御部50は、エアロゾル源から生成されるエアロゾルの量に関連する値に基づき香味用電気負荷124Rに供給する電力を制御するよう構成されていればよいことがわかる。この代わりに、制御部50は、香味源から生成される香味の量に関連する値に基づき霧化用電気負荷122Rに供給する電力を制御するよう構成されていてもよい。 According to the embodiment described above, it can be understood that the control unit 50 only needs to be configured to control the electric power supplied to the flavor electric load 124R based on the value related to the amount of the aerosol generated from the aerosol source. . Instead, the control unit 50 may be configured to control the electric power supplied to the atomizing electric load 122R based on a value related to the amount of flavor generated from the flavor source.
 また、前述した電気負荷の制御2では、制御部50は、エアロゾル中に含まれる香味成分の量を概ね一定にするよう制御した。この代わりに、制御部50は、エアロゾルの量を一定にしつつ、エアロゾル中の香味成分の量を可変にするよう、霧化用温度調整器及び/又は香味用温度調整器を制御してもよい。この場合、制御部50は、必要に応じて流量調整手段の制御を併用してもよい。制御部50は、例えば、エアロゾルの量を、その目標値の好ましくは±20%の範囲内、より好ましくは±10%の範囲内に維持するよう制御する。これにより、ユーザは、エアロゾルの量をほとんど変えることなく、香味の変化を愉しむことができる。なお、エアロゾルの量と香味成分の量は、前述したように霧化用温度調整器、香味用温度調整器及び/又は流量調整手段の制御に依存するため、制御部50はこれらを適宜制御することによって目標のエアロゾルの量と香味成分の量を実現できる。 {Circle around (2)} In the above-described control 2 of the electric load, the control unit 50 controls the amount of the flavor component contained in the aerosol to be substantially constant. Instead, the control unit 50 may control the atomizing temperature controller and / or the flavor temperature controller so as to make the amount of the flavor component in the aerosol variable while keeping the amount of the aerosol constant. . In this case, the control unit 50 may use the control of the flow rate adjusting unit as needed. The control unit 50 controls, for example, the amount of the aerosol so as to maintain the target value within a range of preferably ± 20%, more preferably ± 10%. This allows the user to enjoy a change in flavor without substantially changing the amount of aerosol. Since the amount of the aerosol and the amount of the flavor component depend on the control of the atomizing temperature controller, the flavor temperature controller, and / or the flow rate adjusting means as described above, the control unit 50 appropriately controls these. Thereby, it is possible to achieve the target amount of the aerosol and the amount of the flavor component.
 また、前述した電気負荷の制御1~3では、香味源からエアロゾルを生成することについては言及されていないが、制御部50は、香味源からエアロゾルを生成するように香味用温度調節器124Rの出力を制御してもよい。香味源からエアロゾルを生成させるためには、香味用温度調節器124Rの出力を高くすればよい。この場合、制御部50は、エアロゾル源から生成されるエアロゾルの量に関連する値と、香味源から生成されるエアロゾルの量に関連する値との関係に基づき、霧化用電気負荷122Rと香味用電気負荷124Rの少なくとも一方を制御するよう構成されていてもよい。さらに、エアロゾル源から生成されるエアロゾルの量に関連する値と、香味源から生成されるエアロゾルの量に関連する値との関係に応じて、制御部50は、霧化用電気負荷122Rと香味用電気負荷124Rの両方を制御してもよい。この場合、所定のエアロゾル量及び所定の香味の量を達成するため、制御部50は、香味用温度調節器124(第2電気負荷)を制御する前に、霧化用温度調節器122(調整手段)を優先的に制御するよう構成されていることが好ましい。霧化ユニット120で霧化されたエアロゾルの量は、香味源で生成される香味成分の量に大きく影響を与える。したがって、霧化用温度調節器122に供給する電力をエアロゾルの量の目標値に応じて優先的に制御し、それから香味用温度調節器124によって香味成分の量の目標値に合わせて制御することが好ましい。 Further, in the above-described control 1 to 3 of the electric load, the generation of an aerosol from a flavor source is not mentioned, but the control unit 50 controls the flavor temperature controller 124R to generate an aerosol from the flavor source. The output may be controlled. In order to generate an aerosol from a flavor source, the output of the flavor temperature controller 124R may be increased. In this case, the control unit 50 controls the atomizing electric load 122R and the flavor based on the relationship between the value related to the amount of the aerosol generated from the aerosol source and the value related to the amount of the aerosol generated from the flavor source. It may be configured to control at least one of the electrical loads for use 124R. Further, in accordance with the relationship between the value related to the amount of the aerosol generated from the aerosol source and the value related to the amount of the aerosol generated from the flavor source, the control unit 50 controls the atomizing electric load 122R and the flavor. Both of the electric loads 124R may be controlled. In this case, in order to achieve a predetermined amount of aerosol and a predetermined amount of flavor, the controller 50 controls the atomization temperature controller 122 (adjustment) before controlling the flavor temperature controller 124 (second electric load). (Means) is preferably configured to be preferentially controlled. The amount of the aerosol atomized by the atomizing unit 120 greatly affects the amount of flavor components generated by the flavor source. Therefore, the power supplied to the atomizing temperature controller 122 is preferentially controlled according to the target value of the aerosol amount, and then controlled by the flavor temperature controller 124 according to the target value of the flavor component amount. Is preferred.

Claims (27)

  1.  第1吸引成分を生成するための第1吸引成分源と、
     第2吸引成分を生成するための第2吸引成分源と、
     前記第2吸引成分源から生成される前記第2吸引成分の量を調節する第2電気負荷と、
     制御部と、を有し、
     前記制御部は、前記第1吸引成分源から生成される前記第1吸引成分の量に関連する値に基づき前記第2電気負荷に供給する電力を制御するよう構成されている、吸引成分生成装置。
    A first suction component source for producing a first suction component;
    A second suction component source for producing a second suction component;
    A second electrical load for adjusting an amount of the second suction component generated from the second suction component source;
    And a control unit,
    The suction component generation device, wherein the control unit is configured to control power supplied to the second electric load based on a value related to an amount of the first suction component generated from the first suction component source. .
  2.  前記第1吸引成分源から生成される前記第1吸引成分の量を調整可能な第1電気負荷を有し、
     前記第1吸引成分源から生成される前記第1吸引成分の量に関連する値は、第1吸引成分の量の測定値又は推定値、前記第1電気負荷に供給する電力、前記第1電気負荷の温度、又は第1電気負荷に電力を供給する時間である、請求項1に記載の吸引成分生成装置。
    A first electric load capable of adjusting an amount of the first suction component generated from the first suction component source;
    The value associated with the amount of the first suction component generated from the first suction component source is a measured or estimated value of the amount of the first suction component, the power supplied to the first electrical load, the first electricity The suction component generation device according to claim 1, wherein the suction component generation device is a temperature of the load or a time for supplying power to the first electric load.
  3.  前記第1電気負荷は、温度調節器である、請求項2に記載の吸引成分生成装置。 The suction component generation device according to claim 2, wherein the first electric load is a temperature controller.
  4.  前記第1吸引成分が生成される領域の温度を監視する温度センサを有し、
     前記第1吸引成分源から生成される前記第1吸引成分の量に関連する値は、前記温度センサによって取得した値である、請求項1に記載の吸引成分生成装置。
    A temperature sensor that monitors a temperature of a region where the first suction component is generated,
    The suction component generation device according to claim 1, wherein the value related to the amount of the first suction component generated from the first suction component source is a value acquired by the temperature sensor.
  5.  前記第2電気負荷は温度調節器である、請求項1から4のいずれか1項に記載の吸引成分生成装置。 The suction component generation device according to any one of claims 1 to 4, wherein the second electric load is a temperature controller.
  6.  前記制御部は、前記第1吸引成分の量に関連する値の変化に伴う前記第2吸引成分の量の変化を抑制するよう前記第2電気負荷を制御する、請求項1から5のいずれか1項に記載の吸引成分生成装置。 The said control part controls the said 2nd electric load so that the change of the quantity of the said 2nd suction component accompanying the change of the value relevant to the quantity of the said 1st suction component may be suppressed. Item 2. The suction component generation device according to item 1.
  7.  前記制御部は、前記第1吸引成分の量に関連する値のばらつきに伴う前記第2吸引成分の量のばらつきを抑制するよう前記第2電気負荷を制御する、請求項1から6のいずれか1項に記載の吸引成分生成装置。 7. The controller according to claim 1, wherein the control unit controls the second electric load so as to suppress a variation in the amount of the second suction component due to a variation in a value related to the amount of the first suction component. 8. Item 2. The suction component generation device according to item 1.
  8.  前記第1吸引成分の量に関連する値の設定値が可変に構成されており、
     前記制御部は、前記設定値が変更された場合に、前記第2吸引成分の量の変化を抑制するよう前記第2電気負荷を制御する、請求項7に記載の吸引成分生成装置。
    The set value of the value related to the amount of the first suction component is configured to be variable,
    The suction component generation device according to claim 7, wherein the control unit controls the second electric load so as to suppress a change in the amount of the second suction component when the set value is changed.
  9.  前記第1吸引成分源から生成された前記第1吸引成分の少なくとも一部を前記第2吸引成分源を通して出口へ到達させる流路を有する、請求項1から8のいずれか1項に記載の吸引成分生成装置。 The suction according to any one of claims 1 to 8, further comprising a flow path that causes at least a part of the first suction component generated from the first suction component source to reach an outlet through the second suction component source. Component generator.
  10.  前記第2吸引成分源から生成される第2吸引成分の量は、前記第1吸引成分源から生成された前記第1吸引成分の少なくとも一部が前記第2吸引成分源を通る際に前記第2吸引成分源から生成される第2吸引成分の量である、請求項9に記載の吸引成分生成装置。 The amount of the second suction component generated from the second suction component source is determined by the second suction component when at least a portion of the first suction component generated from the first suction component source passes through the second suction component source. 10. The suction component generation device according to claim 9, wherein the amount of the second suction component generated from the two suction component sources.
  11.  前記第1吸引成分源は、エアロゾル源であり、
     前記第2吸引成分源は、エアロゾルに香味成分を付与する香味源である、請求項9又は10に記載の吸引成分生成装置。
    The first inhalation component source is an aerosol source;
    The suction component generation device according to claim 9 or 10, wherein the second suction component source is a flavor source that imparts a flavor component to the aerosol.
  12.  前記第1吸引成分を前記第2吸引成分源を通して吸口へ導く第1流路と、
     前記第1吸引成分を前記第2吸引成分源を通さず吸口へ導く第2流路と、
     前記第1流路の流量と前記第2流路の流量との割合を調整する流量調整手段と、を含む、請求項9から11のいずれか1項に記載の吸引成分生成装置。
    A first flow path for guiding the first suction component to the suction port through the second suction component source;
    A second flow path that guides the first suction component to a suction port without passing through the second suction component source;
    The suction component generation device according to any one of claims 9 to 11, further comprising a flow rate adjusting unit configured to adjust a ratio between a flow rate of the first flow path and a flow rate of the second flow path.
  13.  前記制御部は、前記第2吸引成分源から生成される第2吸引成分の量の目標値に基づき、前記第2電気負荷に供給する電力と、前記流量調整手段と、を制御するよう構成されており、
     前記制御部は、前記流量調整手段の制御により、前記第2吸引成分源から生成される第2吸引成分の量が前記目標値を達成できると判断した場合、前記第2電気負荷を制御することなく、前記流量調整手段を制御する、請求項12に記載の吸引成分生成装置。
    The control unit is configured to control the power supplied to the second electric load and the flow rate adjusting unit based on a target value of the amount of the second suction component generated from the second suction component source. And
    The control unit may control the second electric load when the control unit determines that the amount of the second suction component generated from the second suction component source can achieve the target value under the control of the flow rate adjustment unit. The suction component generation device according to claim 12, wherein the suction component generation device controls the flow rate adjusting unit.
  14.  前記第2吸引成分源から生成された前記第2吸引成分の少なくとも一部を前記第1吸引成分源を通して出口へ到達させる流路を有する、請求項1から8のいずれか1項に記載の吸引成分生成装置。 The suction according to any one of claims 1 to 8, further comprising a flow path that causes at least a part of the second suction component generated from the second suction component source to reach an outlet through the first suction component source. Component generator.
  15.  前記第2吸引成分源は、エアロゾル源であり、
     前記第1吸引成分源は、エアロゾルに香味成分を付与する香味源である、請求項13又は14に記載の吸引成分生成装置。
    The second inhalation component source is an aerosol source;
    The suction component generation device according to claim 13, wherein the first suction component source is a flavor source that imparts a flavor component to an aerosol.
  16.  前記第1吸引成分の量に関連する値の設定値が可変に構成されており、
     前記設定値の可変範囲は、既定量の前記香味成分を前記エアロゾルに付与可能な値によって規定される、請求項11又は15に記載の吸引成分生成装置。
    The set value of the value related to the amount of the first suction component is configured to be variable,
    The inhalation component generation device according to claim 11, wherein the variable range of the set value is defined by a value capable of giving a predetermined amount of the flavor component to the aerosol.
  17.  前記第2電気負荷は、温度調節器であり、
     前記エアロゾルの量に関連する値の設定値が可変に構成されており、
     前記制御部は、前記エアロゾル源から生成されるエアロゾルの量が小さいほど前記香味源の温度を高くするように前記温度調節器を制御し、
     前記設定値の下限は、前記香味源が燃焼されない範囲に規定される、請求項11に記載の吸引成分生成装置。
    The second electric load is a temperature controller,
    The set value of the value related to the amount of the aerosol is configured to be variable,
    The control unit controls the temperature controller to increase the temperature of the flavor source as the amount of aerosol generated from the aerosol source is smaller,
    The suction component generation device according to claim 11, wherein the lower limit of the set value is defined in a range in which the flavor source is not burned.
  18.  前記下限は、前記香味源から生成される香味成分の量に関する値に応じて可変である、請求項17に記載の吸引成分生成装置。 18. The suction component generation device according to claim 17, wherein the lower limit is variable according to a value relating to an amount of a flavor component generated from the flavor source.
  19.  前記エアロゾルの量に関連する値の設定値が可変に構成されており、
     前記設定値の上限は、エアロゾルの生成に伴う前記エアロゾル源の消費速度が前記エアロゾル源が霧化されるところへの前記エアロゾル源の供給速度を越えないよう規定される、請求項11又は15に記載の吸引成分生成装置。
    The set value of the value related to the amount of the aerosol is configured to be variable,
    The upper limit of the set value is defined so that a consumption rate of the aerosol source accompanying generation of the aerosol does not exceed a supply rate of the aerosol source to a place where the aerosol source is atomized. A suction component generation device as described in the above.
  20.  前記第1吸引成分の生成量の複数の目標値と前記第2吸引成分の生成量の複数の目標値との組み合わせに応じて決められ、ユーザにより選択可能な複数のモードを有する、請求項1から19のいずれか1項に記載の吸引成分生成装置。 2. A plurality of modes which are determined according to a combination of a plurality of target values of the generation amount of the first suction component and a plurality of target values of the generation amount of the second suction component, and have a plurality of modes selectable by a user. 20. The suction component generation device according to any one of items 1 to 19.
  21.  前記制御部は、前記第1吸引成分源から生成される前記第1吸引成分の量に関連する値と、前記第2吸引成分源から生成される前記第2吸引成分の量に関連する値との関係に基づき、前記第2電気負荷を制御するよう構成されている、請求項1から5のいずれか1項に記載の吸引成分生成装置。 The control unit may include a value related to the amount of the first suction component generated from the first suction component source, and a value related to the amount of the second suction component generated from the second suction component source. The suction component generation device according to any one of claims 1 to 5, wherein the suction component generation device is configured to control the second electric load based on the relationship:
  22.  前記第1吸引成分源から生成される前記第1吸引成分の量を調整する調整手段を有し、
     前記制御部は、前記第2電気負荷と前記調整手段の両方を制御するよう構成されている、請求項21に記載の吸引成分生成装置。
    Adjusting means for adjusting the amount of the first suction component generated from the first suction component source;
    22. The suction component generation device according to claim 21, wherein the control unit is configured to control both the second electric load and the adjustment unit.
  23.  前記第1吸引成分源から生成された前記第1吸引成分の少なくとも一部を前記第2吸引成分源を通して出口へ到達させる流路を有し、
     前記第1吸引成分源は、エアロゾル源であり、
     前記第2吸引成分源は、エアロゾルに香味成分を付与する香味源であり、
     前記制御部は、所定のエアロゾル量及び所定の香味の量を達成するため、前記第2電気負荷を制御する前に前記調整手段を優先的に制御するよう構成されている、請求項22に記載の吸引成分生成装置。
    A flow path that causes at least a part of the first suction component generated from the first suction component source to reach an outlet through the second suction component source;
    The first inhalation component source is an aerosol source;
    The second suction component source is a flavor source that imparts a flavor component to the aerosol,
    23. The control unit according to claim 22, wherein the control unit is configured to preferentially control the adjustment unit before controlling the second electric load to achieve a predetermined aerosol amount and a predetermined flavor amount. Suction component generator.
  24.  前記関係は、前記第1吸引成分の量に関連する値と前記第2吸引成分源から生成される前記第2吸引成分の量に関連する値とを関連づける所定の関数又は所定の参照テーブルによって定められている、請求項21から23のいずれか1項に記載の吸引成分生成装置。 The relationship is defined by a predetermined function or a predetermined lookup table that associates a value related to the amount of the first suction component with a value related to the amount of the second suction component generated from the second suction component source. The suction component generation device according to any one of claims 21 to 23, wherein the suction component generation device is provided.
  25.  前記関係は、前記第1吸引成分源の種類と前記第2吸引成分源の種類との少なくとも一方に応じて異なっている、請求項21から24のいずれか1項に記載の吸引成分生成装置。 吸引 The suction component generation device according to any one of claims 21 to 24, wherein the relationship is different depending on at least one of the type of the first suction component source and the type of the second suction component source.
  26.  第1吸引成分を生成するための第1吸引成分源と、第2吸引成分を生成するための第2吸引成分源と、前記第2吸引成分源から生成される前記第2吸引成分の量を調節する第2電気負荷と、を有する吸引成分生成装置を制御する方法であって、
     前記第1吸引成分源から生成される前記第1吸引成分の量に関連する値に基づき、前記第2電気負荷に供給する電力を制御することを含む、吸引成分生成装置を制御する方法。
    A first suction component source for generating a first suction component, a second suction component source for generating a second suction component, and an amount of the second suction component generated from the second suction component source. A second electrical load to be adjusted, the method comprising:
    A method for controlling a suction component generation device, comprising controlling power supplied to the second electric load based on a value related to an amount of the first suction component generated from the first suction component source.
  27.  請求項26に記載の方法を吸引成分生成装置に実行させるプログラム。 A program for causing a suction component generation device to execute the method according to claim 26.
PCT/JP2018/031413 2018-08-24 2018-08-24 Suction component generator, method for controlling suction component generator, and program therefor WO2020039589A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2018/031413 WO2020039589A1 (en) 2018-08-24 2018-08-24 Suction component generator, method for controlling suction component generator, and program therefor
EP18931219.2A EP3841897A4 (en) 2018-08-24 2018-08-24 Suction component generator, method for controlling suction component generator, and program therefor
CN201880096904.5A CN112638187A (en) 2018-08-24 2018-08-24 Aspirated component generation device, method for controlling aspirated component generation device, and program
JP2020537999A JP6924904B2 (en) 2018-08-24 2018-08-24 Suction component generator, method and program to control the suction component generator
TW107129960A TW202008900A (en) 2018-08-24 2018-08-28 Inhalant component generating apparatus, method and program for controlling inhalant component generating apparatus
US17/182,234 US20210169148A1 (en) 2018-08-24 2021-02-23 Suction component generator, method for controlling suction component generator, and program therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031413 WO2020039589A1 (en) 2018-08-24 2018-08-24 Suction component generator, method for controlling suction component generator, and program therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/182,234 Continuation US20210169148A1 (en) 2018-08-24 2021-02-23 Suction component generator, method for controlling suction component generator, and program therefor

Publications (1)

Publication Number Publication Date
WO2020039589A1 true WO2020039589A1 (en) 2020-02-27

Family

ID=69592928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031413 WO2020039589A1 (en) 2018-08-24 2018-08-24 Suction component generator, method for controlling suction component generator, and program therefor

Country Status (6)

Country Link
US (1) US20210169148A1 (en)
EP (1) EP3841897A4 (en)
JP (1) JP6924904B2 (en)
CN (1) CN112638187A (en)
TW (1) TW202008900A (en)
WO (1) WO2020039589A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6834052B1 (en) * 2020-09-30 2021-02-24 日本たばこ産業株式会社 Power supply unit of aerosol generator
JP6899026B1 (en) * 2020-09-30 2021-07-07 日本たばこ産業株式会社 Aerosol aspirator power supply unit, aerosol aspirator, and aerosol aspirator system
WO2021260897A1 (en) 2020-06-25 2021-12-30 日本たばこ産業株式会社 Inhaling device, control method, and program
WO2021260894A1 (en) 2020-06-25 2021-12-30 日本たばこ産業株式会社 Inhaling device, control method, and program
EP3935967A2 (en) 2020-07-08 2022-01-12 Japan Tobacco Inc. Control unit of aerosol generation device
EP3935968A2 (en) 2020-07-08 2022-01-12 Japan Tobacco Inc. Control unit of aerosol generation device
KR20220044137A (en) 2020-09-30 2022-04-06 니뽄 다바코 산교 가부시키가이샤 Power supply unit for aerosol generation device
EP3977870A1 (en) 2020-09-30 2022-04-06 Japan Tobacco Inc. Power supply unit for aerosol inhaler, and aerosol inhaler
EP3977876A1 (en) 2020-09-30 2022-04-06 Japan Tobacco Inc. Power supply unit for aerosol generation device, and aerosol generation device
RU2775594C1 (en) * 2020-09-30 2022-07-05 Джапан Тобакко Инк. Power supply unit for aerosol generating device
KR20220107882A (en) * 2021-01-26 2022-08-02 주식회사 케이티앤지 Aerosol generating device
JP2022536007A (en) * 2020-05-14 2022-08-12 ケーティー アンド ジー コーポレイション Aerosol generation system
WO2022190211A1 (en) 2021-03-09 2022-09-15 日本たばこ産業株式会社 Inhalation device and program
JP2022542728A (en) * 2020-06-16 2022-10-07 ケーティー アンド ジー コーポレイション Aerosol generator and method of operation
WO2022230433A1 (en) * 2021-04-28 2022-11-03 日本たばこ産業株式会社 Power unit for inhaler
JP2023020903A (en) * 2021-07-30 2023-02-09 深▲せん▼麦克韋爾科技有限公司 Heating module and electronic atomization device
WO2023112219A1 (en) * 2021-12-15 2023-06-22 日本たばこ産業株式会社 Information processing device, information processing method, and program
WO2023112247A1 (en) * 2021-12-16 2023-06-22 日本たばこ産業株式会社 Aerosol generation system and terminal device
WO2023112248A1 (en) * 2021-12-16 2023-06-22 日本たばこ産業株式会社 Aerosol generation system and terminal device
JP7405906B2 (en) 2021-08-18 2023-12-26 深▲せん▼麦克韋爾科技有限公司 electronic atomization device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113115989A (en) * 2020-12-07 2021-07-16 深圳麦克韦尔科技有限公司 Seasoning component and electronic atomization device
KR102604614B1 (en) * 2021-08-03 2023-11-20 주식회사 케이티앤지 Nicotine inhaler
KR20230060873A (en) * 2021-10-28 2023-05-08 주식회사 케이티앤지 Aerosol-generating apparatus having a plurality of heaters and aerosol-generating article used therewith

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247711B2 (en) 1972-02-23 1977-12-05
JP2016516402A (en) * 2013-03-15 2016-06-09 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generation system with selective heating
JP2017127300A (en) 2016-01-14 2017-07-27 清水 和彦 Smokeless smoking article
WO2017185051A1 (en) * 2016-04-22 2017-10-26 Pax Labs, Inc. Aerosol devices having compartmentalized materials
WO2018055761A1 (en) * 2016-09-26 2018-03-29 日本たばこ産業株式会社 Flavor inhaler

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8820330B2 (en) * 2011-10-28 2014-09-02 Evolv, Llc Electronic vaporizer that simulates smoking with power control
US20140299137A1 (en) * 2013-04-05 2014-10-09 Johnson Creek Enterprises, LLC Electronic cigarette and method and apparatus for controlling the same
GB2522727B (en) * 2013-11-26 2017-01-25 Purity Health Pharma Ltd Pulmonary delivery devices
CN104571192B (en) * 2015-01-22 2017-06-06 卓尔悦欧洲控股有限公司 Temperature control system and its control method
EA036219B1 (en) * 2015-05-01 2020-10-15 Джапан Тобакко Инк. Non-burning type flavor inhaler and atomizing unit
EP4205577A1 (en) * 2015-11-19 2023-07-05 Fontem Ventures B.V. Electronic smoking device with non-simultaneously operated heating elements
US10368581B2 (en) * 2016-03-11 2019-08-06 Altria Client Services Llc Multiple dispersion generator e-vaping device
CA3014990A1 (en) * 2016-04-11 2017-10-19 Philip Morris Products S.A. Shisha device for heating a substrate without combustion
EA035415B1 (en) * 2016-07-27 2020-06-10 Джапан Тобакко Инк. Flavor inhaler
DE102016114718B4 (en) * 2016-08-09 2021-02-25 Hauni Maschinenbau Gmbh Inhaler
CN108391852A (en) * 2017-12-18 2018-08-14 卓尔悦欧洲控股有限公司 control method, device and electronic cigarette

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247711B2 (en) 1972-02-23 1977-12-05
JP2016516402A (en) * 2013-03-15 2016-06-09 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generation system with selective heating
JP2017127300A (en) 2016-01-14 2017-07-27 清水 和彦 Smokeless smoking article
WO2017185051A1 (en) * 2016-04-22 2017-10-26 Pax Labs, Inc. Aerosol devices having compartmentalized materials
WO2018055761A1 (en) * 2016-09-26 2018-03-29 日本たばこ産業株式会社 Flavor inhaler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3841897A4

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022536007A (en) * 2020-05-14 2022-08-12 ケーティー アンド ジー コーポレイション Aerosol generation system
JP7264577B2 (en) 2020-05-14 2023-04-25 ケーティー アンド ジー コーポレイション Aerosol-generating system, method and program for controlling aerosol-generating system
JP7180952B2 (en) 2020-06-16 2022-11-30 ケーティー アンド ジー コーポレイション Aerosol generator and method of operation
JP2022542728A (en) * 2020-06-16 2022-10-07 ケーティー アンド ジー コーポレイション Aerosol generator and method of operation
WO2021260897A1 (en) 2020-06-25 2021-12-30 日本たばこ産業株式会社 Inhaling device, control method, and program
WO2021260894A1 (en) 2020-06-25 2021-12-30 日本たばこ産業株式会社 Inhaling device, control method, and program
EP4289299A2 (en) 2020-07-08 2023-12-13 Japan Tobacco, Inc. Control unit of aerosol generation device
EP3935967A2 (en) 2020-07-08 2022-01-12 Japan Tobacco Inc. Control unit of aerosol generation device
EP3935968A2 (en) 2020-07-08 2022-01-12 Japan Tobacco Inc. Control unit of aerosol generation device
EP3977870A1 (en) 2020-09-30 2022-04-06 Japan Tobacco Inc. Power supply unit for aerosol inhaler, and aerosol inhaler
JP6834052B1 (en) * 2020-09-30 2021-02-24 日本たばこ産業株式会社 Power supply unit of aerosol generator
EP3977869A1 (en) 2020-09-30 2022-04-06 Japan Tobacco Inc. Power supply unit for aerosol generation device
JP2022057842A (en) * 2020-09-30 2022-04-11 日本たばこ産業株式会社 Power supply unit for aerosol suction device, aerosol suction device, and aerosol suction system
JP2022057844A (en) * 2020-09-30 2022-04-11 日本たばこ産業株式会社 Power supply unit for aerosol generation apparatus
CN114304736A (en) * 2020-09-30 2022-04-12 日本烟草产业株式会社 Power supply unit for an aerosol generating device
US11297878B1 (en) 2020-09-30 2022-04-12 Japan Tobacco Inc. Power supply unit for aerosol generation device
US11304454B1 (en) 2020-09-30 2022-04-19 Japan Tobacco Inc. Power supply unit for aerosol generation device, and aerosol generation device
US11369149B2 (en) 2020-09-30 2022-06-28 Japan Tobacco Inc. Power supply unit for aerosol inhaler, and aerosol inhaler
RU2775594C1 (en) * 2020-09-30 2022-07-05 Джапан Тобакко Инк. Power supply unit for aerosol generating device
JP6899026B1 (en) * 2020-09-30 2021-07-07 日本たばこ産業株式会社 Aerosol aspirator power supply unit, aerosol aspirator, and aerosol aspirator system
EP3977876A1 (en) 2020-09-30 2022-04-06 Japan Tobacco Inc. Power supply unit for aerosol generation device, and aerosol generation device
US11812789B2 (en) 2020-09-30 2023-11-14 Japan Tobacco Inc. Power supply unit for aerosol generation device
EP3977875A1 (en) 2020-09-30 2022-04-06 Japan Tobacco Inc. Power supply unit for aerosol inhaler, aerosol inhaler, and aerosol inhale system
KR20220044137A (en) 2020-09-30 2022-04-06 니뽄 다바코 산교 가부시키가이샤 Power supply unit for aerosol generation device
EP3977871A1 (en) 2020-09-30 2022-04-06 Japan Tobacco Inc. Power supply unit for aerosol generation device
US11559085B2 (en) 2020-09-30 2023-01-24 Japan Tobacco Inc. Power supply unit for aerosol inhaler, aerosol inhaler, and aerosol inhale system
KR102608372B1 (en) 2021-01-26 2023-12-01 주식회사 케이티앤지 Aerosol generating device
KR20220107882A (en) * 2021-01-26 2022-08-02 주식회사 케이티앤지 Aerosol generating device
WO2022190211A1 (en) 2021-03-09 2022-09-15 日本たばこ産業株式会社 Inhalation device and program
WO2022230433A1 (en) * 2021-04-28 2022-11-03 日本たばこ産業株式会社 Power unit for inhaler
JP2023020903A (en) * 2021-07-30 2023-02-09 深▲せん▼麦克韋爾科技有限公司 Heating module and electronic atomization device
JP7405906B2 (en) 2021-08-18 2023-12-26 深▲せん▼麦克韋爾科技有限公司 electronic atomization device
WO2023112219A1 (en) * 2021-12-15 2023-06-22 日本たばこ産業株式会社 Information processing device, information processing method, and program
WO2023112247A1 (en) * 2021-12-16 2023-06-22 日本たばこ産業株式会社 Aerosol generation system and terminal device
WO2023112248A1 (en) * 2021-12-16 2023-06-22 日本たばこ産業株式会社 Aerosol generation system and terminal device

Also Published As

Publication number Publication date
TW202008900A (en) 2020-03-01
EP3841897A4 (en) 2021-08-04
JPWO2020039589A1 (en) 2021-02-18
US20210169148A1 (en) 2021-06-10
JP6924904B2 (en) 2021-08-25
CN112638187A (en) 2021-04-09
EP3841897A1 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
WO2020039589A1 (en) Suction component generator, method for controlling suction component generator, and program therefor
EP3548128B1 (en) Aerosol-generating system with adjustable pump flow rate
CN109123794B (en) Electronic cigarette device
TWI679942B (en) Flavor inhaling device
JP6670384B2 (en) Flavor aspirator, cartridge and flavor unit
JP7122441B2 (en) FLAVOR GENERATION DEVICE, POWER SUPPLY UNIT, METHOD AND PROGRAM FOR CONTROLLING FLAVOR GENERATION DEVICE
EP3039974B1 (en) Non-combusting flavor inhaler
US20160262459A1 (en) Electronic vaporization device
JP7117390B2 (en) Control unit, aerosol generator, method and program for controlling heater, and smoking article
JP2019047784A (en) Heating control arrangement for electronic smoking article and associated system and method
KR20210075109A (en) Aerosol-generating device and heating chamber for aerosol-generating device
CN111052857A (en) Adaptive power output smoking article for identifying attributes of aerosol generating element and related methods
US11019847B2 (en) Aerosol delivery devices including a selector and related methods
KR20210075112A (en) Aerosol-generating device and heating chamber for aerosol-generating device
US20130319440A1 (en) Variable power control electronic cigarette
JP2023129478A (en) Aerosol-generating device having improved power supply controller
JP7345014B2 (en) Aerosol generation device and method for controlling it
RU2740355C2 (en) Analogue control component for aerosol delivery device
JP2023103468A (en) Control unit, aerosol generating device, method and program for controlling heater, and smoking article
EP3801080A1 (en) Detection of adverse heater conditions in an electrically heated aerosol generating system
RU2760285C1 (en) Induction charger for aerosol delivery device
WO2021105379A1 (en) Aerosol generation device, controller for an aerosol generation device, method of controlling an aerosol generation device
KR20230056581A (en) Electronic atomization device and heating control device and heating control method thereof
RU2741282C1 (en) Steam generation systems
RU2772162C1 (en) Control unit, an aerosol generating device, a method and a computer-readable data carrier for controlling the heater, as well as a smoking product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020537999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018931219

Country of ref document: EP

Effective date: 20210324