WO2023112248A1 - Aerosol generation system and terminal device - Google Patents

Aerosol generation system and terminal device Download PDF

Info

Publication number
WO2023112248A1
WO2023112248A1 PCT/JP2021/046494 JP2021046494W WO2023112248A1 WO 2023112248 A1 WO2023112248 A1 WO 2023112248A1 JP 2021046494 W JP2021046494 W JP 2021046494W WO 2023112248 A1 WO2023112248 A1 WO 2023112248A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
suction
aerosol
heating
period
Prior art date
Application number
PCT/JP2021/046494
Other languages
French (fr)
Japanese (ja)
Inventor
広輔 大澤
徳子 大澤
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2021/046494 priority Critical patent/WO2023112248A1/en
Publication of WO2023112248A1 publication Critical patent/WO2023112248A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present invention relates to an aerosol generation system and a terminal device.
  • the suction device uses a base material including an aerosol source for generating an aerosol and a flavor source for imparting a flavor component to the generated aerosol to generate an aerosol imparted with a flavor component.
  • a user can enjoy the flavor by inhaling the flavor component-applied aerosol generated by the suction device.
  • the action of the user inhaling the aerosol is hereinafter also referred to as puffing or puffing action.
  • Patent Document 1 in a suction device that heats an aerosol source as a liquid to generate an aerosol, attention is paid to the fact that the heating element is cooled as the flow rate of the gas passing through the heating element increases. Techniques have been disclosed to increase the temperature of the heating element by as much.
  • Patent Document 1 the technology described in Patent Document 1 above is based on a suction device that heats a liquid aerosol source to generate aerosol.
  • the heating element of this type of suction device can heat up quickly. Therefore, it is difficult to apply the technology described in Patent Document 1 to a suction device having a heating element that is difficult to raise the temperature of instantly.
  • the present invention has been made in view of the above problems, and an object of the present invention is to improve the quality of user experience using a heating element that is difficult to heat up instantaneously. It is to provide a mechanism.
  • a power supply section a holding section that holds a base material containing an aerosol source, and the base material held by the holding section is displaced from the power supply section.
  • a heating unit that heats using the supplied electric power;
  • a detection unit that detects information regarding suction of aerosol generated from the substrate heated by the heating unit; and
  • a power supply unit that supplies power to the heating unit.
  • control unit increases the suction amount of the aerosol in the first suction period indicated by the information detected by the detection unit in the first suction period, the more the first
  • aerosol generating system that increases the amount of power supplied to the heating unit per unit time during a second suction period that is a suction period after the suction period of .
  • the control unit may increase the temperature of the heating unit during the second suction period as the amount of suction of the aerosol during the first suction period increases.
  • the control unit predicts the start timing of the second suction period, and the temperature of the heating unit at the predicted start timing of the second suction period is a time series of target values of parameters related to the temperature of the heating unit.
  • the temperature may be controlled to be the sum of the temperature of the heating unit corresponding to the heating setting that defines the transition and the temperature increase width that increases as the suction amount of the aerosol in the first suction period increases. .
  • the control unit adds the temperature of the heating unit corresponding to the heating setting and the temperature rise range from the predicted start timing of the second suction period to the actual end of the second suction period.
  • the temperature may be controlled so that the temperature of the heating unit is maintained.
  • the controller controls the power supply amount per unit time to the heating unit during the second suction period to be a first power supply amount based on the heating setting and a second power supply amount corresponding to the temperature rise range. may be controlled to be the sum of
  • the control unit may predict the start timing of the second suction period based on the interval of the suction period detected in the past.
  • the aerosol generation system may further include a notification unit that notifies information indicating a timing when the temperature of the heating unit reaches a temperature obtained by adding the temperature of the heating unit corresponding to the heating setting and the temperature increase range. good.
  • the control unit may set a correspondence relationship between the suction amount of the aerosol during the first suction period and the increase in the amount of power supplied to the heating unit per unit time during the second suction period.
  • the control unit may set the correspondence relationship according to the type of the base material.
  • the aerosol generation system may include a communication unit that communicates with another device, and the control unit may set the correspondence according to information received by the communication unit.
  • the control unit may set the correspondence according to a user's operation.
  • the control unit sets the operation mode selected from an operation mode group consisting of a plurality of operation modes including a first operation mode and a second operation mode, and when the first operation mode is set, performs control to increase the power supply amount per unit time to the heating unit in the second suction period as the amount of suction of the aerosol in the first suction period increases, and the second operation mode is When set, the power supply amount per unit time to the heating unit during the second suction period may be controlled regardless of the suction amount of the aerosol during the first suction period.
  • the aerosol generation system may include a communication unit that communicates with another device, and the control unit may operate in the operation mode according to information received by the communication unit.
  • the communication unit may receive an identifier indicating the first operation mode or the second operation mode.
  • the controller determines that the longer the time length of the first suction period indicated by the information detected by the detection unit in the first suction period, the later the suction period than the first suction period.
  • the amount of power supplied to the heating unit per unit time in the suction period of 2 may be increased.
  • the aerosol generating system may further include the base material.
  • the first suction period includes a plurality of the suction periods, and the suction amount of the aerosol in the first suction period is the suction amount of the aerosol in the plurality of suction periods included in the first suction period. It may be a statistic calculated from
  • a power supply unit a holding unit that holds a substrate containing an aerosol source, and a substrate that is held by the holding unit.
  • Communicate with an aerosol generation system having a heating unit that heats using power supplied from a power supply unit, and a detection unit that detects information regarding inhalation of the aerosol generated from the substrate heated by the heating unit.
  • a control unit that controls the communication unit to transmit information for setting execution or non-execution of control for increasing the power supply amount per unit time to the heating unit in a certain second suction period to the aerosol generation system. and a terminal device is provided.
  • a mechanism is provided that can further improve the quality of user experience using a heating element that is difficult to heat up instantaneously.
  • FIG. 4 is a graph showing an example of transition of temperature of a heating unit when temperature control is performed based on the heating profile shown in Table 1.
  • FIG. 7 is a graph showing an example of transition of the temperature of the heating unit when power supply control is performed based on the heating profile shown in Table 1 and the amount of aerosol sucked in the first sucking period. It is a flowchart which shows an example of the flow of the process performed by the suction device which concerns on this embodiment.
  • a suction device is a device that produces a substance that is suctioned by a user.
  • the substance produced by the suction device is an aerosol.
  • the substance produced by the suction device may be a gas.
  • FIG. 1 is a schematic diagram schematically showing a configuration example of a suction device.
  • the suction device 100 includes a power supply unit 111, a sensor unit 112, a notification unit 113, a storage unit 114, a communication unit 115, a control unit 116, a heating unit 121, a holding unit 140, and Insulation 144 is included.
  • the power supply unit 111 accumulates power.
  • the power supply unit 111 supplies electric power to each component of the suction device 100 under the control of the control unit 116 .
  • the power supply unit 111 may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery.
  • the sensor unit 112 acquires various information regarding the suction device 100 .
  • the sensor unit 112 is configured by a pressure sensor such as a condenser microphone, a flow rate sensor, a temperature sensor, or the like, and acquires a value associated with suction by the user.
  • the sensor unit 112 is configured by an input device, such as a button or switch, that receives information input from the user.
  • the notification unit 113 notifies the user of information.
  • the notification unit 113 is configured by, for example, a light emitting device that emits light, a display device that displays an image, a sound output device that outputs sound, or a vibration device that vibrates.
  • the storage unit 114 stores various information for the operation of the suction device 100 .
  • the storage unit 114 is configured by, for example, a non-volatile storage medium such as flash memory.
  • the communication unit 115 is a communication interface capable of performing communication conforming to any wired or wireless communication standard.
  • a communication standard for example, Wi-Fi (registered trademark) or bluetooth (registered trademark) can be adopted.
  • the control unit 116 functions as an arithmetic processing device and a control device, and controls the general operations within the suction device 100 according to various programs.
  • the control unit 116 is realized by an electronic circuit such as a CPU (Central Processing Unit) and a microprocessor.
  • the holding part 140 has an internal space 141 and holds the stick-shaped base material 150 while accommodating a part of the stick-shaped base material 150 in the internal space 141 .
  • the holding part 140 has an opening 142 that communicates the internal space 141 with the outside, and holds the stick-shaped substrate 150 inserted into the internal space 141 through the opening 142 .
  • the holding portion 140 is a cylindrical body having an opening 142 and a bottom portion 143 as a bottom surface, and defines a columnar internal space 141 .
  • An air flow path for supplying air to the internal space 141 is connected to the holding portion 140 .
  • An air inlet hole which is an inlet of air to the air flow path, is arranged on the side surface of the suction device 100, for example.
  • Air outflow holes which are outlets for air from the air flow path to the internal space 141 , are arranged, for example, in the bottom portion 143 .
  • the stick-type base material 150 includes a base material portion 151 and a mouthpiece portion 152 .
  • Substrate portion 151 includes an aerosol source. Aerosol sources are, for example, polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water.
  • the aerosol source may contain tobacco-derived or non-tobacco-derived flavoring ingredients. If the inhalation device 100 is a medical inhaler, such as a nebulizer, the aerosol source may contain a medicament. In addition, in this configuration example, the aerosol source is not limited to liquid, and may be solid.
  • the stick-shaped base material 150 When the stick-shaped base material 150 is held by the holding part 140 , at least part of the base material part 151 is accommodated in the internal space 141 and at least part of the mouthpiece part 152 protrudes from the opening 142 .
  • the heating unit 121 heats the aerosol source to atomize the aerosol source and generate an aerosol.
  • the heating section 121 is configured in a film shape and arranged so as to cover the outer circumference of the holding section 140 . Then, when the heating part 121 generates heat, the base material part 151 of the stick-type base material 150 is heated from the outer periphery, and an aerosol is generated.
  • the heating unit 121 generates heat when supplied with power from the power supply unit 111 .
  • power may be supplied when the sensor unit 112 detects that the user has started sucking and/or that predetermined information has been input. Then, the power supply may be stopped when the sensor unit 112 detects that the user has finished sucking and/or that predetermined information has been input.
  • the heat insulation part 144 prevents heat transfer from the heating part 121 to other components.
  • the heat insulating part 144 is made of a vacuum heat insulating material, an airgel heat insulating material, or the like.
  • suction device 100 has been described above.
  • the configuration of the suction device 100 is not limited to the above, and various configurations exemplified below can be adopted.
  • the heating part 121 may be configured in a blade shape and arranged to protrude from the bottom part 143 of the holding part 140 into the internal space 141 .
  • the blade-shaped heating part 121 is inserted into the base material part 151 of the stick-shaped base material 150 and heats the base material part 151 of the stick-shaped base material 150 from the inside.
  • the heating part 121 may be arranged to cover the bottom part 143 of the holding part 140 .
  • the heating unit 121 is a combination of two or more of the first heating unit that covers the outer periphery of the holding unit 140, the blade-like second heating unit, and the third heating unit that covers the bottom part 143 of the holding unit 140. may be configured as
  • the holding part 140 may include an opening/closing mechanism such as a hinge that opens/closes a portion of the outer shell that forms the internal space 141 .
  • the holding part 140 may hold the stick-shaped base material 150 inserted into the internal space 141 by opening and closing the outer shell.
  • the heating part 121 may be provided at the holding part 140 at the holding part 140 and heat the stick-shaped base material 150 while pressing it.
  • the stick-type substrate 150 is an example of a substrate that contains an aerosol source and contributes to the generation of aerosol. Also, the aerosol is generated by the combination of the suction device 100 and the stick-shaped substrate 150 . As such, the combination of suction device 100 and stick-type substrate 150 may be viewed as an aerosol generating system.
  • FIG. 2 is a diagram showing an example of the configuration of the system 1 according to one embodiment of the invention.
  • system 1 includes suction device 100 and terminal device 200 .
  • the configuration of the suction device 100 is as described above.
  • the terminal device 200 is a device used by the user of the suction device 100.
  • the terminal device 200 is configured by any information processing device such as a smart phone, tablet terminal, or wearable device.
  • the terminal device 200 includes an input unit 210, an output unit 220, a communication unit 230, a storage unit 240, and a control unit 250.
  • the input unit 210 has a function of receiving input of various information.
  • the input unit 210 may include an input device that receives input of information from the user.
  • Input devices include, for example, buttons, keyboards, touch panels, and microphones.
  • the input unit 210 may include various sensors such as an image sensor and an inertial sensor, and may receive user's actions as inputs.
  • the output unit 220 has a function of outputting information.
  • the output unit 220 may include an output device that outputs information to the user.
  • Examples of the output device include a display device that displays information, a light emitting device that emits light, a vibration device that vibrates, and a sound output device that outputs sound.
  • An example of a display device is a display.
  • An example of a light emitting device is an LED (Light Emitting Diode).
  • An example of a vibration device is an eccentric motor.
  • An example of a sound output device is a speaker.
  • the output unit 220 notifies the user of the information input from the control unit 250 by outputting the information.
  • the communication unit 230 is a communication interface for transmitting and receiving information between the terminal device 200 and other devices.
  • the communication unit 230 performs communication conforming to any wired or wireless communication standard.
  • a communication standard for example, wireless LAN (Local Area Network), wired LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be adopted.
  • the storage unit 240 stores various information for the operation of the terminal device 200.
  • the storage unit 240 is configured by, for example, a non-volatile storage medium such as flash memory.
  • the control unit 250 functions as an arithmetic processing device or a control device, and controls overall operations within the terminal device 200 according to various programs.
  • the control unit 250 is realized by an electronic circuit such as a CPU (Central Processing Unit) or a microprocessor.
  • the control unit 250 may include a ROM (Read Only Memory) for storing programs to be used, calculation parameters, etc., and a RAM (Random Access Memory) for temporarily storing parameters, etc. that change as appropriate.
  • the terminal device 200 executes various processes under the control of the control unit 250 . Processing of information input by the input unit 210, output of information by the output unit 220, transmission and reception of information by the communication unit 230, and storage and reading of information by the storage unit 240 are examples of processing controlled by the control unit 250. be. Other processes executed by the terminal device 200 such as information input to each component and processing based on information output from each component are also controlled by the control unit 250 .
  • control unit 250 may be implemented using an application.
  • the application may be pre-installed or downloaded.
  • functions of the control unit 250 may be realized by PWA (Progressive Web Apps).
  • Heating profile The control unit 116 controls the operation of the heating unit 121 based on the heating profile. Control of the operation of the heating unit 121 is realized by controlling power supply from the power supply unit 111 to the heating unit 121 .
  • the heating unit 121 heats the stick-shaped substrate 150 using power supplied from the power supply unit 111 .
  • a heating profile is information that defines the time-series transition of the target value of the temperature of the heating unit 121 .
  • a heating profile is an example of a heating setting in this embodiment.
  • the control unit 116 controls the operation of the heating unit 121 so that the temperature of the heating unit 121 (hereinafter also referred to as the actual temperature) changes in the same manner as the target temperature specified in the heating profile.
  • the heating profile is typically designed to optimize the flavor experienced by the user when the user inhales the aerosol produced from the stick-shaped substrate 150 . Therefore, by controlling the operation of the heating unit 121 based on the heating profile, it is possible to optimize the flavor tasted by the user.
  • a heating profile includes one or more combinations of a target temperature and information indicating the timing at which the target temperature should be reached. Then, the control unit 116 controls the temperature of the heating unit 121 while switching the target temperature according to the lapse of time from the start of heating based on the heating profile. Specifically, the control unit 116 controls the temperature of the heating unit 121 based on the deviation between the current actual temperature and the target temperature corresponding to the elapsed time from the start of heating based on the heating profile. Temperature control of the heating unit 121 can be realized by, for example, known feedback control. Feedback control may be, for example, PID control (Proportional-Integral-Differential Controller).
  • the control unit 116 can cause power from the power supply unit 111 to be supplied to the heating unit 121 in the form of pulses by pulse width modulation (PWM) or pulse frequency modulation (PFM). In that case, the control unit 116 can control the temperature of the heating unit 121 by adjusting the duty ratio or frequency of the power pulse in feedback control. Alternatively, control unit 116 may perform simple on/off control in feedback control. For example, the control unit 116 performs heating by the heating unit 121 until the actual temperature reaches the target temperature, and stops heating by the heating unit 121 when the actual temperature reaches the target temperature. When the temperature becomes low, heating by the heating unit 121 may be performed again. In addition, control section 116 may adjust the voltage in feedback control.
  • PWM pulse width modulation
  • PFM pulse frequency modulation
  • the temperature of the heating unit 121 can be quantified by, for example, measuring or estimating the electrical resistance of the heating unit 121 (more precisely, the heating resistor that constitutes the heating unit 121). This is because the electrical resistance value of the heating resistor changes according to the temperature.
  • the electrical resistance value of the heating resistor can be estimated, for example, by measuring the amount of voltage drop in the heating resistor.
  • the amount of voltage drop across the heating resistor can be measured by a voltage sensor that measures the potential difference applied to the heating resistor.
  • the temperature of heating unit 121 can be measured by a temperature sensor such as a thermistor installed near heating unit 121 .
  • a period from the start to the end of the process of generating an aerosol using the stick-shaped base material 150 is hereinafter also referred to as a heating session.
  • a heating session is a period during which power supply to the heating unit 121 is controlled based on the heating profile.
  • the beginning of the heating session is the timing at which heating based on the heating profile is started.
  • the end of the heating session is when a sufficient amount of aerosol is no longer produced.
  • the heating session includes a first half preheating period and a second half puffable period.
  • the puffable period is the period during which a sufficient amount of aerosol is assumed to be generated.
  • the preheating period is the period from the start of heating to the start of the puffable period. Heating performed in the preheating period is also referred to as preheating.
  • a heating profile may include multiple periods in which different target temperatures are set.
  • the temperature may be controlled so as to reach the target temperature set for a certain period at any timing during the period, or the temperature may be controlled so as to reach the end of the period. In any case, it is possible to change the temperature of the heating unit 121 in the same manner as the target temperature defined in the heating profile.
  • FIG. 3 is a graph showing an example of transition of the temperature of the heating unit 121 when temperature control is performed based on the heating profile shown in Table 1.
  • the horizontal axis of this graph is time (seconds).
  • the vertical axis of this graph is the temperature of the heating unit 121 .
  • a line 21 in this graph indicates transition of the temperature of the heating unit 121 .
  • the temperature of the heating unit 121 transitions in the same manner as the target temperature defined in the heating profile.
  • the heating profile first includes an initial heating period.
  • the initial temperature rising period is a period during which the temperature of the heating unit 121 rises from the initial temperature.
  • the initial temperature is the temperature of the heating unit 121 at the start of heating.
  • the temperature of the heating unit 121 reaches 310° C. 17 seconds after the start of heating and is maintained at 310° C. until 35 seconds after the start of heating.
  • the temperature of the stick-type substrate 150 reaches a temperature at which a sufficient amount of aerosol is generated.
  • the heating profile includes an intermediate temperature decrease period after the initial temperature increase period.
  • the intermediate temperature drop period is a period during which the temperature of the heating unit 121 is lowered.
  • the temperature of the heating unit 121 drops from 310° C. to 260° C. from 35 seconds to 45 seconds after the start of heating. During this period, power supply to the heating unit 121 may be stopped. Even in that case, a sufficient amount of aerosol is generated by the residual heat of the heating part 121 and the stick-shaped base material 150 .
  • the heating unit 121 is kept at a high temperature, the aerosol source contained in the stick-shaped base material 150 is rapidly consumed, and the flavor deteriorates such that the flavor tasted by the user becomes too strong.
  • the intermediate temperature-lowering period in the middle it is possible to avoid such flavor deterioration and improve the quality of the user's puff experience.
  • the heating profile includes a reheating period after an intermediate temperature decreasing period.
  • the reheating period is a period during which the temperature of the heating unit 121 increases.
  • the temperature of the heating unit 121 rises from 260° C. to 290° C. from 45 seconds to 180 seconds after the start of heating, and reaches 290° C. until 260 seconds after the start of heating. maintained at If the temperature of the heating part 121 is continued to be lowered, the temperature of the stick-shaped base material 150 is also lowered, so the amount of aerosol generated is reduced, and the flavor that the user can enjoy may be deteriorated.
  • the heating profile progresses to the latter half, the remaining amount of the aerosol source contained in the stick-type substrate 150 decreases, so even if the heating is continued at the same temperature, the amount of aerosol generated tends to decrease.
  • by raising the temperature again in the second half of the heating profile to increase the amount of aerosol generated it is possible to compensate for the decrease in the amount of aerosol generated due to the decrease in the remaining amount of the aerosol source. This makes it possible to prevent the flavor that the user enjoys from deteriorating even in the second half of the heating profile.
  • the heating profile finally includes a heating end period.
  • the heating end period is a period after the reheating period and is a period during which heating is not performed.
  • the target temperature does not have to be set.
  • the temperature of the heating section 121 decreases after 260 seconds from the start of heating. Power supply to the heating unit 121 may be terminated 260 seconds after the start of heating. Even in that case, a sufficient amount of aerosol is generated for a while by the residual heat of the heating part 121 and the stick-shaped base material 150 .
  • the puffable period ie, the heating session, ends 270 seconds after the start of heating.
  • the timing at which the puffable period starts and ends may be notified to the user. Furthermore, the user may be notified of the timing (for example, the timing when the power supply to the heating unit 121 ends) that is a predetermined time before the end of the puffable period. In that case, the user can perform puffing during the puffable period by referring to such notification.
  • the sensor unit 112 is an example of a detection unit that detects information regarding suction of aerosol generated from the stick-shaped base material 150 heated by the heating unit 121 .
  • Control unit 116 acquires the amount of suction based on the information detected by sensor unit 112 .
  • the inhaled amount is the amount of aerosol inhaled by the user in one inhalation.
  • the amount of aerosol inhaled by the user is believed to be correlated (eg, proportional) to the amount of air inhaled by the user. Therefore, the control unit 116 may calculate the amount of sucked air as the amount of sucked aerosol.
  • the sensor unit 112 may include a flow sensor that detects the flow rate of fluid.
  • the flow rate sensor is provided, for example, in an air flow path that supplies air to the internal space 141 .
  • the flow rate sensor detects the flow rate of air flowing through the air flow path as the user inhales.
  • the control unit 116 determines the period during which an increase in the flow rate due to the user's inhalation is detected as the inhalation period.
  • the inhalation period is a period of one breath from the start of inhalation of the aerosol by the user to the end of the inhalation. Then, the control unit 116 calculates the amount of suction by integrating the flow rate detected during the suction period. Alternatively, the control unit 116 may calculate the suction amount by multiplying the time length of the suction period and the flow rate per unit time.
  • the sensor unit 112 may include a pressure sensor.
  • the pressure sensor is arranged, for example, in the airflow path, and detects pressure changes in the airflow path due to user's suction.
  • the control unit 116 determines a period in which a pressure change accompanying the user's suction is detected as the suction period. Then, the control unit 116 estimates the amount of suction based on the integrated value of the pressure that has changed during the suction period. Alternatively, the control unit 116 may calculate the amount of suction by multiplying the length of time of the suction period by the amount of change in pressure per unit time.
  • the sensor unit 112 may include a sensor that detects the resistance value of the heating unit 121.
  • the temperature of the heating unit 121 decreases as new air flows into the internal space 141 as the user inhales.
  • the resistance value of the heating portion 121 changes as the temperature of the heating portion 121 changes. Therefore, the control unit 116 determines a period in which a change in the resistance value of the heating unit 121 due to suction by the user is detected as the suction period. Then, the control unit 116 estimates the amount of suction based on the integrated value of the resistance values that have changed during the suction period. Alternatively, the control unit 116 may calculate the amount of suction by multiplying the time length of the suction period by the amount of change in the resistance value per unit time.
  • the sensor unit 112 may include a sensor that detects the air pressure inside and outside the suction device 100 .
  • An example of the air pressure inside the suction device 100 is the air pressure in the air flow path connected to the holding section 140 . Since the air pressure in the air flow path decreases as the user inhales, an air pressure difference occurs between the inside and outside of the suction device 100 . Therefore, the control unit 116 determines the period during which the pressure difference associated with the user's inhalation is detected as the inhalation period. Then, the control unit 116 estimates the suction amount based on the integrated value of the air pressure difference during the suction period. Alternatively, the control unit 116 may calculate the amount of suction by multiplying the length of time of the suction period and the average value of the pressure difference.
  • Control unit 116 controls the amount of aerosol suctioned in the first suction period indicated by the information detected by sensor unit 112 in the first suction period to increase the second suction amount.
  • the amount of power supplied to the heating unit 121 per unit time during the suction period is increased.
  • An increase in the amount of power supplied per unit time is achieved, for example, by improving the duty ratio of the power pulse.
  • the amount of power supplied to the heating unit 121 per unit time increases, the amount of heat generated by the heating unit 121 increases. Therefore, it is possible to reduce the decrease in the suction amount of the aerosol and the flavor component due to the temperature decrease of the heating unit 121, thereby improving the quality of user experience.
  • the second suction period is a suction period later than the first suction period.
  • the second suction period may be the next suction period after the first suction period. Aerosol inhalations are typically separated by seconds or more.
  • a sufficient grace period for calculating the suction amount is provided between the first suction period for which the suction amount is calculated and the second suction period for which the power supply amount is controlled. can be ensured. Further, it takes time for the temperature of the heating unit 121 to reach the desired temperature after the amount of power supplied to the heating unit 121 is increased. In this regard, according to this configuration, it is possible to ensure a sufficient grace period for raising the temperature of the heating unit 121 to the desired temperature between the first suction period and the second suction period. .
  • the control unit 116 may increase the temperature of the heating unit 121 during the second suction period as the amount of aerosol sucked during the first suction period increases. In other words, the control unit 116 controls the amount of power supplied to the heating unit 121 per unit time so that the temperature of the heating unit 121 in the second suction period rises as the amount of aerosol sucked in the first suction period increases. may be increased. According to such a configuration, as the amount of aerosol sucked in the first sucking period increases, the temperature of the heating unit 121 rises in the second sucking period, and more aerosol and flavor component are delivered to the user. Become.
  • the temperature of the heating unit 121 increases as the amount of power supplied to the heating unit 121 per unit time increases, and the temperature decreases as the amount of power supply decreases. Also, when the amount of power supplied to the heating unit 121 per unit time is constant, the temperature of the heating unit 121 is maintained at a temperature corresponding to the amount of power supplied.
  • control unit 116 performs temperature control based on the heating profile. Therefore, the control unit 116 performs temperature control in the second suction period based on the amount of aerosol sucked in the first suction period in addition to the heating profile. This point will be specifically described with reference to FIG.
  • FIG. 4 is a graph showing an example of transition of the temperature of the heating unit 121 when power supply control is performed based on the heating profile shown in Table 1 and the amount of aerosol sucked in the first sucking period.
  • the horizontal axis of this graph is time (seconds).
  • the vertical axis of this graph is the temperature of the heating unit 121 .
  • a line 21 in this graph indicates transition of the temperature of the heating unit 121 .
  • the temperature of the heating unit 121 reaches 290° C. when 200 seconds have passed since the start of heating.
  • the control unit 116 predicts the start timing of the second suction period. At that time, the control unit 116 may predict the start timing of the second suction period based on the interval of the suction period detected in the past. For example, when the user sucked at an average interval of 30 seconds in the past heating session, and the previous suction was performed 180 seconds after the start of heating, the control unit 116 controls the It is predicted that the next suction period (corresponding to the second suction period) will start.
  • the control unit 116 determines that the temperature of the heating unit 121 at the predicted start timing of the second suction period corresponds to the temperature of the heating unit 121 (that is, the target temperature) corresponding to the heating profile, and the aerosol in the first suction period.
  • the temperature is controlled to be the sum of the temperature rise range that increases as the amount of suction of the air increases.
  • the start timing of the second suction period is predicted to be 210 seconds after the start of heating. It is also assumed that the temperature rise width corresponding to the amount of aerosol sucked in the first sucking period (for example, the last sucking period) is 15°C.
  • control unit 116 controls the temperature of the heating unit 121 so that the temperature of the heating unit 121 reaches 305° C., which is the sum of the target temperature of 290° C. defined in the heating profile and the temperature increase width of 15° C., 210 seconds after the start of heating. , controls power supply to the heating unit 121 . Specifically, control unit 116 increases the amount of power supplied to heating unit 121 after 200 seconds from the start of heating. As a result, as shown in FIG. 4, the temperature of the heating unit 121 gradually increases from 200 seconds after the start of heating, and reaches 305° C. after 210 seconds from the start of heating.
  • control unit 116 maintains the temperature of the heating unit 121 at a temperature obtained by adding the temperature increase range to the target temperature from the predicted start timing of the second suction period to the actual end of the second suction period. control so that In the example shown in FIG. 4, puffs are detected from 212 seconds to 215 seconds after the start of heating. Therefore, control unit 116 controls power supply to heating unit 121 so that the temperature of heating unit 121 is maintained at 305° C. from 210 seconds to 215 seconds after the start of heating.
  • the notification unit 113 may notify the user of information indicating the timing at which the temperature of the heating unit 121 reaches the temperature obtained by adding the temperature increase range to the target temperature.
  • the notification unit 113 may emit light or vibrate 210 seconds after the start of heating. According to such a configuration, the user can perform suction at an appropriate timing by referring to the notification. Note that the timing at which the temperature of the heating unit 121 reaches the temperature obtained by adding the temperature increase range to the target temperature and the timing of the notification by the notification unit 113 may be mixed up.
  • the temperature of the heating unit 121 basically increases along the target temperature, and the temperature of the heating unit 121 temporarily increases during the suction period. According to such a configuration, it is possible to reproduce a user experience similar to that of a combustible cigarette while providing a suitable user experience based on the heating profile.
  • the control unit 116 sets the amount of power supply per unit time to the heating unit 121 during the second suction period to correspond to the first amount of power supply based on the heating profile and the range of temperature rise. is controlled so as to be the sum with the second power supply amount.
  • the first power supply amount is the power supply amount for temperature control based on the heating profile.
  • the second amount of power supply is the amount of power supply corresponding to the amount of aerosol sucked in the first sucking period. That is, the control unit 116 increases the amount of power supply according to the amount of suction at the timing when the suction is performed while controlling the power supply so that the temperature of the heating unit 121 changes along the target temperature. With such a configuration, the temperature control described with reference to FIG. 4 can be realized.
  • FIG. 5 is a flowchart showing an example of the flow of processing executed by the suction device 100 according to this embodiment.
  • the control unit 116 determines whether or not a user operation requesting the start of heating has been detected (step S102).
  • An example of a user operation requesting the start of heating is an operation on the suction device 100 such as operating a switch or the like provided on the suction device 100 .
  • Another example of a user operation that requests initiation of heating is inserting a stick-shaped substrate 150 into the suction device 100 .
  • the insertion of the stick-type substrate 150 into the suction device 100 is performed by a capacitance-type proximity sensor that detects the capacitance of the space near the opening 142, or a pressure sensor that detects the pressure in the internal space 141. , can be detected.
  • step S102 NO
  • the control unit 116 waits until a user operation requesting the start of heating is detected.
  • control unit 116 controls the operation of the heating unit 121 to start heating based on the heating profile (step S104). For example, the control unit 116 starts power supply from the power supply unit 111 to the heating unit 121 based on the heating profile.
  • the control unit 116 predicts the start timing of the next suction period (step S106).
  • the start timing of the first suction period can be predicted, for example, based on the start timing of the first suction period in the previous heating session.
  • the start timing of the second and subsequent suction periods can be predicted, for example, based on the end timing of the previous suction period and the interval between the suction periods in the previous heating session.
  • control unit 116 performs power supply control according to the amount of aerosol sucked based on the predicted start timing of the next sucking period (step S108). For example, the control unit 116 determines that the temperature of the heating unit 121 at the predicted start timing of the next suction period is the target temperature in the heating profile plus the temperature increase range corresponding to the amount of aerosol sucked in the previous suction period. The power supply to the heating unit 121 is controlled so as to reach
  • the control unit 116 determines whether or not a condition for terminating power supply control according to the amount of aerosol sucked is satisfied (step S110).
  • a condition for ending power supply control according to the amount of aerosol sucked is that the user has finished sucking, that is, the end of the sucking period has been detected.
  • Another example of the termination condition of the power supply control according to the aerosol suction amount is that a predetermined time has passed since the power supply control according to the aerosol suction amount was started.
  • step S110 If it is determined that the termination condition of the power supply control according to the aerosol suction amount is not satisfied (step S110: NO), the control unit 116 waits until the power supply control termination condition based on the aerosol suction amount is satisfied. stand by. As a result, from the predicted start timing of the second suction period to the actual end of the second suction period, the temperature of the heating unit 121 is equal to the target temperature defined in the heating profile plus the temperature rise range. will be maintained.
  • step S110 When it is determined that the termination condition for power supply control according to the aerosol suction amount is satisfied (step S110: YES), the control unit 116 ends power supply control according to the aerosol suction amount (step S112). That is, the control unit 116 returns to power supply control based on the heating profile. As a result, the temperature of the heating section 121 is lowered to the target temperature specified in the heating profile.
  • control unit 116 determines whether or not the termination condition is satisfied (step S114).
  • An example of the end condition is that a predetermined time has passed since the start of heating.
  • Another example of the termination condition is that the number of times of suction from the start of heating has reached a predetermined number.
  • step S114 NO
  • the process returns to step S106.
  • control unit 116 terminates heating based on the heating profile (step S116). Specifically, control unit 116 terminates power supply from power supply unit 111 to heating unit 121 . After that, the process ends.
  • the correspondence relationship between the amount of aerosol sucked in the first sucking period and the amount of increase in the amount of power supply per unit time to the heating unit 121 in the second sucking period may be set variably. good.
  • Such a setting is hereinafter also referred to as the first setting.
  • the first setting will be described in detail below.
  • the control unit 116 may set a correspondence relationship between the amount of aerosol sucked in the first sucking period and the amount of increase in the amount of power supplied to the heating unit 121 per unit time in the second sucking period. In other words, the control unit 116 may set a correspondence relationship between the amount of aerosol sucked in the first sucking period and the temperature rise width of the heating unit 121 in the second sucking period. According to such a configuration, it is possible to further improve the quality of user experience by appropriately changing the correspondence relationship.
  • control unit 116 may set the correspondence relationship according to the type of the stick-shaped base material 150 . This is because the appropriate correspondence relationship may vary depending on the type of stick-type base material 150 . With such a configuration, it is possible to set the above-described suitable correspondence relationship for each type of stick-shaped base material 150 .
  • control unit 116 may set the correspondence according to the information received by the communication unit 115 .
  • the control unit 116 receives information indicating the correspondence to be set, and sets the correspondence indicated by the received information.
  • the terminal device 200 is an example of the transmission source of the information indicating the correspondence relationship to be set. That is, the terminal device 200 may transmit information indicating the correspondence relationship to be set to the suction device 100 .
  • Another example of a transmission source of information indicating the correspondence relationship to be set is a server. According to such a configuration, it is possible to set the above-mentioned suitable correspondence notified from another device.
  • the communication unit 115 can receive an identifier indicating the correspondence to be set as information indicating the correspondence to be set. For example, an identifier of about several bits is assigned in advance to each of the plurality of candidates for the correspondence relationship that can be set, and the assigned identifier is transmitted and received. With such a configuration, it is possible to reduce the amount of communication.
  • control unit 116 may set the correspondence relationship according to the user's operation detected by the sensor unit 112 . According to such a configuration, it is possible to set the correspondence relationship according to the user's preference.
  • Second setting In the above example, control is performed to increase the power supply amount per unit time to the heating unit 121 in the second suction period as the amount of aerosol suction in the first suction period increases. , the execution/non-execution of such control may be set variably. Such settings are hereinafter also referred to as second settings. The second setting will be described in detail below.
  • the control unit 116 sets an operation mode selected from an operation mode group consisting of a plurality of operation modes including a first operation mode and a second operation mode. Then, the control unit 116 operates according to the set operation mode.
  • control unit 116 performs the above control. That is, when the first operation mode is set, the control unit 116 determines the power supply amount per unit time to the heating unit 121 in the second suction period based on the heating profile and the amount of aerosol in the first suction period. Control based on suction volume.
  • control unit 116 does not perform the above control.
  • control unit 116 controls the power supply per unit time to the heating unit 121 during the second suction period regardless of the suction amount of the aerosol during the first suction period.
  • control amount e.g. control amount of power supply based on heating profile
  • the control unit 116 may operate in an operation mode according to the information received by the communication unit 115. For example, when information indicating the operation mode to be set is received by the communication unit 115, the control unit 116 sets the operation mode indicated by the received information.
  • the terminal device 200 is an example of a transmission source of information indicating the operation mode to be set. That is, the terminal device 200 may transmit information indicating the operation mode to be set to the suction device 100 . Another source of information indicating the operation mode to be set is the server.
  • the information indicating the operation mode to be set is the execution or non-execution of control to increase the power supply amount per unit time to the heating unit 121 in the second suction period as the amount of aerosol suction in the first suction period increases. is an example of information for setting According to such a configuration, it is possible to set a suitable operation mode notified from another device.
  • the communication unit 115 can receive an identifier indicating the first operation mode or the second operation mode as information indicating the operation mode to be set. For example, an identifier of about several bits is assigned in advance to each of a plurality of operation modes included in the operation mode group, and the assigned identifier is transmitted and received. With such a configuration, it is possible to reduce the amount of communication.
  • control unit 116 may set the operation mode according to the type of the stick-shaped base material 150. This is because the appropriate operation mode may differ depending on the type of stick-type base material 150 . Such a configuration makes it possible to deliver a suitable amount of aerosol and flavoring ingredients to the user.
  • control unit 116 may set the operation mode according to the user's operation detected by the sensor unit 112 . With such a configuration, it is possible to set an operation mode according to user's preference.
  • the method of calculating the amount of aerosol inhaled by the user was exemplified, but the present invention is not limited to the example described above.
  • the length of time of the inhalation period may be used as the aerosol inhalation amount. This is because the length of time of the suction period is considered to increase as the amount of suction increases.
  • the control unit 116 increases the power supply amount per unit time to the heating unit 121 in the second suction period as the time length of the first suction period is longer. According to this configuration, the time length of the suction period, which is easier to obtain, can be substituted for the suction amount, so it is possible to reduce the processing load for calculating the suction amount.
  • the first suction period is the suction period immediately before the second suction period, but the present invention is not limited to such an example.
  • the first suction period may be two or more suction periods before the second suction period, or may be a suction period in a past heating session.
  • the first suction period may include multiple suction periods.
  • the amount of aerosol sucked in the first sucking period may be a statistic calculated from the sucked amount of aerosol in a plurality of sucking periods included in the first sucking period.
  • An example of a statistic is an average or weighted average.
  • power supply control in the current heating session may be performed based on the average value of the amount of aerosol sucked in a plurality of sucking periods in the previous heating session. According to such a configuration, it is possible to reduce the influence of variations in the amount of aerosol sucked that occur in each sucking period on the quality of user experience.
  • the heating profile is information that defines the time-series transition of the target value of the temperature of the heating unit 121, but the present invention is not limited to this example.
  • the heating profile may be any information that defines the time-series transition of the target value of the parameter related to the temperature of the heating unit 121 .
  • the control unit 116 controls the operation of the heating unit 121 so that the measured value of the parameter related to the temperature of the heating unit 121 transitions in the same manner as the target value of the parameter related to the temperature of the heating unit 121 defined in the heating profile. do it.
  • Parameters related to the temperature of the heating unit 121 include the resistance value of the heating unit 121 in addition to the temperature itself of the heating unit 121 described in the above embodiment.
  • the temperature of the heating unit 121 is increased by increasing the amount of power supplied to the heating unit 121 per unit time during the second suction period. is not limited to For example, if the amount of suction by the user is excessively large, the effect of increasing the temperature of the heating unit 121 due to the increase in the amount of power supplied to the heating unit 121 per unit time is canceled, and the temperature of the heating unit 121 may decrease. That is, the present invention is not necessarily limited to raising the temperature of the heating unit 121 during the second suction period.
  • a series of processes by each device described in this specification may be implemented using software, hardware, or a combination of software and hardware.
  • a program that constitutes software is stored in advance in a recording medium (more specifically, a non-temporary computer-readable storage medium) provided inside or outside each device, for example.
  • a recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like.
  • the above computer program may be distributed, for example, via a network without using a recording medium.
  • the following configuration also belongs to the technical scope of the present invention.
  • a power supply a holding part holding a substrate containing an aerosol source; a heating unit that heats the base material held by the holding unit using electric power supplied from the power supply unit; a detection unit that detects information about suction of aerosol generated from the substrate heated by the heating unit; a control unit that controls power supply from the power supply unit to the heating unit; with The controller determines that the greater the suction amount of the aerosol in the first suction period indicated by the information detected by the detection unit in the first suction period, the later the suction period than the first suction period. increasing the amount of power supplied to the heating unit per unit time in the second suction period, Aerosol generation system.
  • the control unit increases the temperature of the heating unit during the second suction period as the suction amount of the aerosol during the first suction period increases.
  • (3) The control unit predicts the start timing of the second suction period, and the temperature of the heating unit at the predicted start timing of the second suction period is a time series of target values of parameters related to the temperature of the heating unit.
  • the temperature of the heating unit corresponding to the heating setting that defines the transition and the temperature increase width that increases as the amount of aerosol sucked in the first sucking period increases.
  • the control unit adds the temperature of the heating unit corresponding to the heating setting and the temperature rise range from the predicted start timing of the second suction period to the actual end of the second suction period. controlling the temperature so that the temperature of the heating unit is maintained;
  • the controller controls the power supply amount per unit time to the heating unit during the second suction period to be a first power supply amount based on the heating setting and a second power supply amount corresponding to the temperature rise range. is controlled to be the sum of The aerosol generating system according to (3) or (4) above.
  • the control unit predicts the start timing of the second suction period based on the interval of the suction period detected in the past.
  • the aerosol generation system further comprises a notification unit that notifies information indicating the timing when the temperature of the heating unit reaches a temperature obtained by adding the temperature of the heating unit corresponding to the heating setting and the temperature increase width.
  • the aerosol generating system according to any one of (3) to (6) above.
  • the control unit sets a correspondence relationship between the suction amount of the aerosol in the first suction period and the increase in the amount of power supply per unit time to the heating unit in the second suction period.
  • the aerosol generating system according to any one of (1) to (7) above.
  • the control unit sets the correspondence relationship according to the type of the base material, The aerosol generating system according to (8) above.
  • the aerosol generation system comprises a communication unit that communicates with another device, The control unit sets the correspondence relationship according to the information received by the communication unit.
  • the aerosol generating system according to (8) or (9) above.
  • the control unit sets the correspondence relationship according to a user operation, The aerosol generating system according to any one of (8) to (10) above.
  • (12) The control unit setting the operation mode selected from an operation mode group consisting of a plurality of operation modes including a first operation mode and a second operation mode; When the first operation mode is set, the amount of power supplied to the heating unit per unit time during the second suction period is increased as the amount of suction of the aerosol during the first suction period increases.
  • the aerosol generating system according to any one of (1) to (11) above. (13)
  • the aerosol generation system comprises a communication unit that communicates with another device, The control unit operates in the operation mode according to the information received by the communication unit.
  • the communication unit receives an identifier indicating the first operation mode or the second operation mode;
  • the controller determines that the longer the time length of the first suction period indicated by the information detected by the detection unit in the first suction period, the later the suction period than the first suction period. increasing the amount of power supplied per unit time to the heating unit during the suction period of 2;
  • the aerosol generating system according to any one of (1) to (14) above.
  • the first suction period includes a plurality of the suction periods,
  • the aerosol suction amount in the first suction period is a statistic calculated from the aerosol suction amounts in a plurality of the suction periods included in the first suction period.
  • the aerosol generating system according to any one of (1) to (15) above.
  • the aerosol-generating system further comprising the substrate;
  • the aerosol generating system according to any one of (1) to (16) above.
  • a power supply unit a holding unit that holds a substrate containing an aerosol source, a heating unit that heats the substrate held by the holding unit using power supplied from the power supply unit, and the heating unit a communication unit that communicates with an aerosol generation system having a detection unit that detects information about inhalation of an aerosol generated from the substrate heated by The greater the suction amount of the aerosol in the first suction period indicated by the information detected by the detection unit in the first suction period, the second suction period that is later than the first suction period.
  • a control unit that controls the communication unit to transmit to the aerosol generation system information for setting whether or not to perform control for increasing the amount of power supplied to the heating unit per unit time during the suction period; terminal device.
  • Reference Signs List 1 system 100 suction device 111 power supply unit 112 sensor unit 113 notification unit 114 storage unit 115 communication unit 116 control unit 121 heating unit 140 holding unit 141 internal space 142 opening 143 bottom 144 heat insulating unit 150 stick-type substrate 151 substrate unit 152 mouthpiece Unit 200 Terminal device 210 Input unit 220 Output unit 230 Communication unit 240 Storage unit 250 Control unit

Abstract

[Problem] To provide a mechanism that can further improve the quality of user experience with the use of a heating element that is difficult to be subjected to instantaneous temperature elevation. [Solution] An aerosol generation system comprising: a power supply unit; a retention unit for retaining a base material that contains an aerosol source; a heating unit for heating the base material being retained by the retention unit by means of electricity supplied from the power supply unit; a detection unit for detecting information regarding inhalation of the aerosol generated from the base material heated by the heating unit; and a control unit for controlling the electricity to be fed to the heating unit from the power supply unit, wherein the larger the amount of aerosol inhaled during a first inhalation period indicated by the information detected by the detection unit in the first inhalation period, the more the control unit increases the amount of electricity to be fed per unit time to the heating unit during a second inhalation period that takes place subsequent to the first inhalation period.

Description

エアロゾル生成システム、及び端末装置Aerosol generation system and terminal device
 本発明は、エアロゾル生成システム、及び端末装置に関する。 The present invention relates to an aerosol generation system and a terminal device.
 電子タバコ及びネブライザ等の、ユーザに吸引される物質を生成する吸引装置が広く普及している。例えば、吸引装置は、エアロゾルを生成するためのエアロゾル源、及び生成されたエアロゾルに香味成分を付与するための香味源等を含む基材を用いて、香味成分が付与されたエアロゾルを生成する。ユーザは、吸引装置により生成された、香味成分が付与されたエアロゾルを吸引することで、香味を味わうことができる。ユーザがエアロゾルを吸引する動作を、以下ではパフ又はパフ動作とも称する。 Inhalation devices, such as electronic cigarettes and nebulizers, that produce substances that are inhaled by the user are widespread. For example, the suction device uses a base material including an aerosol source for generating an aerosol and a flavor source for imparting a flavor component to the generated aerosol to generate an aerosol imparted with a flavor component. A user can enjoy the flavor by inhaling the flavor component-applied aerosol generated by the suction device. The action of the user inhaling the aerosol is hereinafter also referred to as puffing or puffing action.
 吸引装置を用いたユーザ体験の質を向上させるための様々な技術が検討されている。例えば、下記特許文献1では、液体としてのエアロゾル源を加熱してエアロゾルを生成する吸引装置において、加熱要素を通過する気体の流量が多いほど加熱要素が冷却されることに着目し、流量が多いほど加熱要素の温度を高める技術が開示されている。 Various technologies are being considered to improve the quality of user experience using suction devices. For example, in Patent Document 1 below, in a suction device that heats an aerosol source as a liquid to generate an aerosol, attention is paid to the fact that the heating element is cooled as the flow rate of the gas passing through the heating element increases. Techniques have been disclosed to increase the temperature of the heating element by as much.
特許第6674429号公報Japanese Patent No. 6674429
 しかし、上記特許文献1に記載の技術は、液体としてのエアロゾル源を加熱してエアロゾルを生成するタイプの吸引装置を前提とする技術であった。当該タイプの吸引装置の加熱要素は、瞬時に昇温可能である。そのため、瞬時の昇温が困難な加熱要素を有する吸引装置には、上記特許文献1に記載の技術を適用することは困難であった。 However, the technology described in Patent Document 1 above is based on a suction device that heats a liquid aerosol source to generate aerosol. The heating element of this type of suction device can heat up quickly. Therefore, it is difficult to apply the technology described in Patent Document 1 to a suction device having a heating element that is difficult to raise the temperature of instantly.
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、瞬時の昇温が困難な加熱要素を用いたユーザ体験の質をより向上させることが可能な仕組みを提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to improve the quality of user experience using a heating element that is difficult to heat up instantaneously. It is to provide a mechanism.
 上記課題を解決するために、本発明のある観点によれば、電源部と、エアロゾル源を含有した基材を保持する保持部と、前記保持部により保持された前記基材を前記電源部から供給された電力を使用して加熱する加熱部と、前記加熱部により加熱された前記基材から発生したエアロゾルの吸引に関する情報を検出する検出部と、前記電源部から前記加熱部への給電を制御する制御部と、を備え、前記制御部は、第1の吸引期間において前記検出部により検出された情報により示される前記第1の吸引期間における前記エアロゾルの吸引量が多いほど、前記第1の吸引期間よりも後の吸引期間である第2の吸引期間における前記加熱部への単位時間当たりの給電量を増加させる、エアロゾル生成システムが提供される。 In order to solve the above problems, according to one aspect of the present invention, a power supply section, a holding section that holds a base material containing an aerosol source, and the base material held by the holding section is displaced from the power supply section. a heating unit that heats using the supplied electric power; a detection unit that detects information regarding suction of aerosol generated from the substrate heated by the heating unit; and a power supply unit that supplies power to the heating unit. a control unit for controlling, the control unit increases the suction amount of the aerosol in the first suction period indicated by the information detected by the detection unit in the first suction period, the more the first There is provided an aerosol generating system that increases the amount of power supplied to the heating unit per unit time during a second suction period that is a suction period after the suction period of .
 前記制御部は、前記第1の吸引期間における前記エアロゾルの吸引量が多いほど、前記第2の吸引期間における前記加熱部の温度を上昇させてもよい。 The control unit may increase the temperature of the heating unit during the second suction period as the amount of suction of the aerosol during the first suction period increases.
 前記制御部は、前記第2の吸引期間の開始タイミングを予測し、予測した前記第2の吸引期間の開始タイミングにおける前記加熱部の温度が、前記加熱部の温度に関するパラメータの目標値の時系列推移を規定した加熱設定に対応する前記加熱部の温度と、前記第1の吸引期間における前記エアロゾルの吸引量が多いほど増加する温度上昇幅と、を加算した温度になるよう制御してもよい。 The control unit predicts the start timing of the second suction period, and the temperature of the heating unit at the predicted start timing of the second suction period is a time series of target values of parameters related to the temperature of the heating unit. The temperature may be controlled to be the sum of the temperature of the heating unit corresponding to the heating setting that defines the transition and the temperature increase width that increases as the suction amount of the aerosol in the first suction period increases. .
 前記制御部は、予測した前記第2の吸引期間の開始タイミングから前記第2の吸引期間が実際に終了するまで、前記加熱設定に対応する前記加熱部の温度と前記温度上昇幅とを加算した温度に前記加熱部の温度が維持されるよう制御してもよい。 The control unit adds the temperature of the heating unit corresponding to the heating setting and the temperature rise range from the predicted start timing of the second suction period to the actual end of the second suction period. The temperature may be controlled so that the temperature of the heating unit is maintained.
 前記制御部は、前記第2の吸引期間における前記加熱部への単位時間当たりの給電量が、前記加熱設定に基づく第1の給電量と、前記温度上昇幅に対応する第2の給電量との和になるよう制御してもよい。 The controller controls the power supply amount per unit time to the heating unit during the second suction period to be a first power supply amount based on the heating setting and a second power supply amount corresponding to the temperature rise range. may be controlled to be the sum of
 前記制御部は、過去に検出された前記吸引期間の間隔に基づいて前記第2の吸引期間の開始タイミングを予測してもよい。 The control unit may predict the start timing of the second suction period based on the interval of the suction period detected in the past.
 前記エアロゾル生成システムは、前記加熱設定に対応する前記加熱部の温度と前記温度上昇幅とを加算した温度に前記加熱部の温度が達したタイミングを示す情報を通知する通知部をさらに備えてもよい。 The aerosol generation system may further include a notification unit that notifies information indicating a timing when the temperature of the heating unit reaches a temperature obtained by adding the temperature of the heating unit corresponding to the heating setting and the temperature increase range. good.
 前記制御部は、前記第1の吸引期間における前記エアロゾルの吸引量と前記第2の吸引期間における前記加熱部への単位時間当たりの給電量の増加量との対応関係を設定してもよい。 The control unit may set a correspondence relationship between the suction amount of the aerosol during the first suction period and the increase in the amount of power supplied to the heating unit per unit time during the second suction period.
 前記制御部は、前記対応関係を、前記基材の種類に応じて設定してもよい。 The control unit may set the correspondence relationship according to the type of the base material.
 前記エアロゾル生成システムは、他の装置と通信する通信部を備え、前記制御部は、前記対応関係を、前記通信部により受信された情報に応じて設定してもよい。 The aerosol generation system may include a communication unit that communicates with another device, and the control unit may set the correspondence according to information received by the communication unit.
 前記制御部は、前記対応関係を、ユーザ操作に応じて設定してもよい。 The control unit may set the correspondence according to a user's operation.
 前記制御部は、第1の動作モード及び第2の動作モードを含む複数の動作モードから成る動作モード群から選択された前記動作モードを設定し、前記第1の動作モードが設定された場合には、前記第1の吸引期間における前記エアロゾルの吸引量が多いほど前記第2の吸引期間における前記加熱部への単位時間当たりの給電量を増加させる制御を実施し、前記第2の動作モードが設定された場合には、前記第1の吸引期間における前記エアロゾルの吸引量によらず前記第2の吸引期間における前記加熱部への単位時間当たりの給電量を制御してもよい。 The control unit sets the operation mode selected from an operation mode group consisting of a plurality of operation modes including a first operation mode and a second operation mode, and when the first operation mode is set, performs control to increase the power supply amount per unit time to the heating unit in the second suction period as the amount of suction of the aerosol in the first suction period increases, and the second operation mode is When set, the power supply amount per unit time to the heating unit during the second suction period may be controlled regardless of the suction amount of the aerosol during the first suction period.
 前記エアロゾル生成システムは、他の装置と通信する通信部を備え、前記制御部は、前記通信部により受信された情報に応じた前記動作モードで動作してもよい。 The aerosol generation system may include a communication unit that communicates with another device, and the control unit may operate in the operation mode according to information received by the communication unit.
 前記通信部は、前記第1の動作モード又は前記第2の動作モードを示す識別子を受信してもよい。 The communication unit may receive an identifier indicating the first operation mode or the second operation mode.
 前記制御部は、第1の吸引期間において前記検出部により検出された情報により示される前記第1の吸引期間の時間長が長いほど、前記第1の吸引期間よりも後の吸引期間である第2の吸引期間における前記加熱部への単位時間当たりの給電量を増加させてもよい。 The controller determines that the longer the time length of the first suction period indicated by the information detected by the detection unit in the first suction period, the later the suction period than the first suction period. The amount of power supplied to the heating unit per unit time in the suction period of 2 may be increased.
 前記エアロゾル生成システムは、前記基材をさらに備えてもよい。 The aerosol generating system may further include the base material.
 前記第1の吸引期間は、複数の前記吸引期間を含み、前記第1の吸引期間における前記エアロゾルの吸引量は、前記第1の吸引期間に含まれる複数の前記吸引期間における前記エアロゾルの吸引量から計算される統計量であってもよい。 The first suction period includes a plurality of the suction periods, and the suction amount of the aerosol in the first suction period is the suction amount of the aerosol in the plurality of suction periods included in the first suction period. It may be a statistic calculated from
 また、上記課題を解決するために、本発明の別の観点によれば、電源部と、エアロゾル源を含有した基材を保持する保持部と、前記保持部により保持された前記基材を前記電源部から供給された電力を使用して加熱する加熱部と、前記加熱部により加熱された前記基材から発生したエアロゾルの吸引に関する情報を検出する検出部と、を有するエアロゾル生成システムと通信する通信部と、第1の吸引期間において前記検出部により検出された情報により示される前記第1の吸引期間における前記エアロゾルの吸引量が多いほど、前記第1の吸引期間よりも後の吸引期間である第2の吸引期間における前記加熱部への単位時間当たりの給電量を増加させる制御の実施又は不実施を設定するための情報を前記エアロゾル生成システムへ送信するよう前記通信部を制御する制御部と、を備える端末装置が提供される。 Further, in order to solve the above problems, according to another aspect of the present invention, a power supply unit, a holding unit that holds a substrate containing an aerosol source, and a substrate that is held by the holding unit. Communicate with an aerosol generation system having a heating unit that heats using power supplied from a power supply unit, and a detection unit that detects information regarding inhalation of the aerosol generated from the substrate heated by the heating unit. The greater the suction amount of the aerosol during the first suction period indicated by the communication unit and the information detected by the detection unit during the first suction period, A control unit that controls the communication unit to transmit information for setting execution or non-execution of control for increasing the power supply amount per unit time to the heating unit in a certain second suction period to the aerosol generation system. and a terminal device is provided.
 以上説明したように本発明によれば、瞬時の昇温が困難な加熱要素を用いたユーザ体験の質をより向上させることが可能な仕組みが提供される。 As described above, according to the present invention, a mechanism is provided that can further improve the quality of user experience using a heating element that is difficult to heat up instantaneously.
吸引装置の構成例を模式的に示す模式図である。It is a schematic diagram which shows the structural example of a suction device typically. 本発明の一実施形態に係るシステムの構成の一例を示す図である。It is a figure showing an example of composition of a system concerning one embodiment of the present invention. 表1に示した加熱プロファイルに基づき温度制御を行った場合の加熱部の温度の推移の一例を示すグラフである。4 is a graph showing an example of transition of temperature of a heating unit when temperature control is performed based on the heating profile shown in Table 1. FIG. 表1に示した加熱プロファイル及び第1の吸引期間におけるエアロゾルの吸引量に基づく給電制御を行った場合の加熱部の温度の推移の一例を示すグラフである。7 is a graph showing an example of transition of the temperature of the heating unit when power supply control is performed based on the heating profile shown in Table 1 and the amount of aerosol sucked in the first sucking period. 本実施形態に係る吸引装置により実行される処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the process performed by the suction device which concerns on this embodiment.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.
 <1.吸引装置の構成例>
 吸引装置は、ユーザにより吸引される物質を生成する装置である。以下では、吸引装置により生成される物質が、エアロゾルであるものとして説明する。他に、吸引装置により生成される物質は、気体であってもよい。
<1. Configuration example of suction device>
A suction device is a device that produces a substance that is suctioned by a user. In the following description, it is assumed that the substance produced by the suction device is an aerosol. Alternatively, the substance produced by the suction device may be a gas.
 図1は、吸引装置の構成例を模式的に示す模式図である。図1に示すように、本構成例に係る吸引装置100は、電源部111、センサ部112、通知部113、記憶部114、通信部115、制御部116、加熱部121、保持部140、及び断熱部144を含む。 FIG. 1 is a schematic diagram schematically showing a configuration example of a suction device. As shown in FIG. 1, the suction device 100 according to this configuration example includes a power supply unit 111, a sensor unit 112, a notification unit 113, a storage unit 114, a communication unit 115, a control unit 116, a heating unit 121, a holding unit 140, and Insulation 144 is included.
 電源部111は、電力を蓄積する。そして、電源部111は、制御部116による制御に基づいて、吸引装置100の各構成要素に電力を供給する。電源部111は、例えば、リチウムイオン二次電池等の充電式バッテリにより構成され得る。 The power supply unit 111 accumulates power. The power supply unit 111 supplies electric power to each component of the suction device 100 under the control of the control unit 116 . The power supply unit 111 may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery.
 センサ部112は、吸引装置100に関する各種情報を取得する。一例として、センサ部112は、コンデンサマイクロホン等の圧力センサ、流量センサ又は温度センサ等により構成され、ユーザによる吸引に伴う値を取得する。他の一例として、センサ部112は、ボタン又はスイッチ等の、ユーザからの情報の入力を受け付ける入力装置により構成される。 The sensor unit 112 acquires various information regarding the suction device 100 . As an example, the sensor unit 112 is configured by a pressure sensor such as a condenser microphone, a flow rate sensor, a temperature sensor, or the like, and acquires a value associated with suction by the user. As another example, the sensor unit 112 is configured by an input device, such as a button or switch, that receives information input from the user.
 通知部113は、情報をユーザに通知する。通知部113は、例えば、発光する発光装置、画像を表示する表示装置、音を出力する音出力装置、又は振動する振動装置等により構成される。 The notification unit 113 notifies the user of information. The notification unit 113 is configured by, for example, a light emitting device that emits light, a display device that displays an image, a sound output device that outputs sound, or a vibration device that vibrates.
 記憶部114は、吸引装置100の動作のための各種情報を記憶する。記憶部114は、例えば、フラッシュメモリ等の不揮発性の記憶媒体により構成される。 The storage unit 114 stores various information for the operation of the suction device 100 . The storage unit 114 is configured by, for example, a non-volatile storage medium such as flash memory.
 通信部115は、有線又は無線の任意の通信規格に準拠した通信を行うことが可能な通信インタフェースである。かかる通信規格としては、例えば、Wi-Fi(登録商標)、又はluetooth(登録商標)等が採用され得る。 The communication unit 115 is a communication interface capable of performing communication conforming to any wired or wireless communication standard. As such a communication standard, for example, Wi-Fi (registered trademark) or bluetooth (registered trademark) can be adopted.
 制御部116は、演算処理装置及び制御装置として機能し、各種プログラムに従って吸引装置100内の動作全般を制御する。制御部116は、例えばCPU(Central Processing Unit)、及びマイクロプロセッサ等の電子回路によって実現される。 The control unit 116 functions as an arithmetic processing device and a control device, and controls the general operations within the suction device 100 according to various programs. The control unit 116 is realized by an electronic circuit such as a CPU (Central Processing Unit) and a microprocessor.
 保持部140は、内部空間141を有し、内部空間141にスティック型基材150の一部を収容しながらスティック型基材150を保持する。保持部140は、内部空間141を外部に連通する開口142を有し、開口142から内部空間141に挿入されたスティック型基材150を保持する。例えば、保持部140は、開口142及び底部143を底面とする筒状体であり、柱状の内部空間141を画定する。保持部140には、内部空間141に空気を供給する空気流路が接続される。空気流路への空気の入口である空気流入孔は、例えば、吸引装置100の側面に配置される。空気流路から内部空間141への空気の出口である空気流出孔は、例えば、底部143に配置される。 The holding part 140 has an internal space 141 and holds the stick-shaped base material 150 while accommodating a part of the stick-shaped base material 150 in the internal space 141 . The holding part 140 has an opening 142 that communicates the internal space 141 with the outside, and holds the stick-shaped substrate 150 inserted into the internal space 141 through the opening 142 . For example, the holding portion 140 is a cylindrical body having an opening 142 and a bottom portion 143 as a bottom surface, and defines a columnar internal space 141 . An air flow path for supplying air to the internal space 141 is connected to the holding portion 140 . An air inlet hole, which is an inlet of air to the air flow path, is arranged on the side surface of the suction device 100, for example. Air outflow holes, which are outlets for air from the air flow path to the internal space 141 , are arranged, for example, in the bottom portion 143 .
 スティック型基材150は、基材部151、及び吸口部152を含む。基材部151は、エアロゾル源を含む。エアロゾル源は、例えば、グリセリン及びプロピレングリコール等の多価アルコール、並びに水等の液体である。エアロゾル源は、たばこ由来又は非たばこ由来の香味成分を含んでいてもよい。吸引装置100がネブライザ等の医療用吸入器である場合、エアロゾル源は、薬剤を含んでもよい。なお、本構成例において、エアロゾル源は液体に限られるものではなく、固体であってもよい。スティック型基材150が保持部140に保持された状態において、基材部151の少なくとも一部は内部空間141に収容され、吸口部152の少なくとも一部は開口142から突出する。そして、開口142から突出した吸口部152をユーザが咥えて吸引すると、図示しない空気流路を経由して内部空間141に空気が流入し、基材部151から発生するエアロゾルと共にユーザの口内に到達する。 The stick-type base material 150 includes a base material portion 151 and a mouthpiece portion 152 . Substrate portion 151 includes an aerosol source. Aerosol sources are, for example, polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water. The aerosol source may contain tobacco-derived or non-tobacco-derived flavoring ingredients. If the inhalation device 100 is a medical inhaler, such as a nebulizer, the aerosol source may contain a medicament. In addition, in this configuration example, the aerosol source is not limited to liquid, and may be solid. When the stick-shaped base material 150 is held by the holding part 140 , at least part of the base material part 151 is accommodated in the internal space 141 and at least part of the mouthpiece part 152 protrudes from the opening 142 . When the user sucks the mouthpiece 152 protruding from the opening 142, air flows into the internal space 141 through an air flow path (not shown) and reaches the user's mouth together with the aerosol generated from the base material 151. do.
 加熱部121は、エアロゾル源を加熱することで、エアロゾル源を霧化してエアロゾルを生成する。図1に示した例では、加熱部121は、フィルム状に構成され、保持部140の外周を覆うように配置される。そして、加熱部121が発熱すると、スティック型基材150の基材部151が外周から加熱され、エアロゾルが生成される。加熱部121は、電源部111から給電されると発熱する。一例として、ユーザが吸引を開始したこと、及び/又は所定の情報が入力されたことが、センサ部112により検出された場合に、給電されてもよい。そして、ユーザが吸引を終了したこと、及び/又は所定の情報が入力されたことが、センサ部112により検出された場合に、給電が停止されてもよい。 The heating unit 121 heats the aerosol source to atomize the aerosol source and generate an aerosol. In the example shown in FIG. 1 , the heating section 121 is configured in a film shape and arranged so as to cover the outer circumference of the holding section 140 . Then, when the heating part 121 generates heat, the base material part 151 of the stick-type base material 150 is heated from the outer periphery, and an aerosol is generated. The heating unit 121 generates heat when supplied with power from the power supply unit 111 . As an example, power may be supplied when the sensor unit 112 detects that the user has started sucking and/or that predetermined information has been input. Then, the power supply may be stopped when the sensor unit 112 detects that the user has finished sucking and/or that predetermined information has been input.
 断熱部144は、加熱部121から他の構成要素への伝熱を防止する。例えば、断熱部144は、真空断熱材、又はエアロゲル断熱材等により構成される。 The heat insulation part 144 prevents heat transfer from the heating part 121 to other components. For example, the heat insulating part 144 is made of a vacuum heat insulating material, an airgel heat insulating material, or the like.
 以上、吸引装置100の構成例を説明した。もちろん吸引装置100の構成は上記に限定されず、以下に例示する多様な構成をとり得る。 The configuration example of the suction device 100 has been described above. Of course, the configuration of the suction device 100 is not limited to the above, and various configurations exemplified below can be adopted.
 一例として、加熱部121は、ブレード状に構成され、保持部140の底部143から内部空間141に突出するように配置されてもよい。その場合、ブレード状の加熱部121は、スティック型基材150の基材部151に挿入され、スティック型基材150の基材部151を内部から加熱する。他の一例として、加熱部121は、保持部140の底部143を覆うように配置されてもよい。また、加熱部121は、保持部140の外周を覆う第1の加熱部、ブレード状の第2の加熱部、及び保持部140の底部143を覆う第3の加熱部のうち、2以上の組み合わせとして構成されてもよい。 As an example, the heating part 121 may be configured in a blade shape and arranged to protrude from the bottom part 143 of the holding part 140 into the internal space 141 . In that case, the blade-shaped heating part 121 is inserted into the base material part 151 of the stick-shaped base material 150 and heats the base material part 151 of the stick-shaped base material 150 from the inside. As another example, the heating part 121 may be arranged to cover the bottom part 143 of the holding part 140 . Further, the heating unit 121 is a combination of two or more of the first heating unit that covers the outer periphery of the holding unit 140, the blade-like second heating unit, and the third heating unit that covers the bottom part 143 of the holding unit 140. may be configured as
 他の一例として、保持部140は、内部空間141を形成する外殻の一部を開閉する、ヒンジ等の開閉機構を含んでいてもよい。そして、保持部140は、外殻を開閉することで、内部空間141に挿入されたスティック型基材150を挟持してもよい。その場合、加熱部121は、保持部140における当該挟持箇所に設けられ、スティック型基材150を押圧しながら加熱してもよい。 As another example, the holding part 140 may include an opening/closing mechanism such as a hinge that opens/closes a portion of the outer shell that forms the internal space 141 . The holding part 140 may hold the stick-shaped base material 150 inserted into the internal space 141 by opening and closing the outer shell. In that case, the heating part 121 may be provided at the holding part 140 at the holding part 140 and heat the stick-shaped base material 150 while pressing it.
 スティック型基材150は、エアロゾル源を含有し、エアロゾルの生成に寄与する基材の一例である。また、吸引装置100とスティック型基材150との組み合わせにより、エアロゾルが生成される。そのため、吸引装置100とスティック型基材150との組み合わせは、エアロゾル生成システムとして捉えられてもよい。 The stick-type substrate 150 is an example of a substrate that contains an aerosol source and contributes to the generation of aerosol. Also, the aerosol is generated by the combination of the suction device 100 and the stick-shaped substrate 150 . As such, the combination of suction device 100 and stick-type substrate 150 may be viewed as an aerosol generating system.
 <2.システム構成>
 図2は、本発明の一実施形態に係るシステム1の構成の一例を示す図である。図2に示すように、システム1は、吸引装置100、及び端末装置200を含む。吸引装置100の構成は、上記説明した通りである。
<2. System configuration>
FIG. 2 is a diagram showing an example of the configuration of the system 1 according to one embodiment of the invention. As shown in FIG. 2 , system 1 includes suction device 100 and terminal device 200 . The configuration of the suction device 100 is as described above.
 端末装置200は、吸引装置100のユーザにより使用される装置である。例えば、端末装置200は、スマートフォン、タブレット端末又はウェアラブルデバイス等の任意の情報処理装置により構成される。図2に示すように、端末装置200は、入力部210、出力部220、通信部230、記憶部240、及び制御部250を含む。 The terminal device 200 is a device used by the user of the suction device 100. For example, the terminal device 200 is configured by any information processing device such as a smart phone, tablet terminal, or wearable device. As shown in FIG. 2, the terminal device 200 includes an input unit 210, an output unit 220, a communication unit 230, a storage unit 240, and a control unit 250.
 入力部210は、各種情報の入力を受け付ける機能を有する。入力部210は、ユーザからの情報の入力を受け付ける入力装置を含んでいてもよい。入力装置としては、例えば、ボタン、キーボード、タッチパネル、及びマイク等が挙げられる。他にも、入力部210は、画像センサ及び慣性センサ等の各種センサを含んでいてもよく、ユーザの動作を入力として受け付けてもよい。 The input unit 210 has a function of receiving input of various information. The input unit 210 may include an input device that receives input of information from the user. Input devices include, for example, buttons, keyboards, touch panels, and microphones. In addition, the input unit 210 may include various sensors such as an image sensor and an inertial sensor, and may receive user's actions as inputs.
 出力部220は、情報を出力する機能を有する。出力部220は、ユーザに対し情報を出力する出力装置を含んでいてもよい。出力装置としては、例えば、情報を表示する表示装置、発光する発光装置、振動する振動装置、及び音を出力する音出力装置等が挙げられる。表示装置の一例は、ディスプレイである。発光装置の一例は、LED(Light Emitting Diode)である。振動装置の一例は、偏心モータである。音出力装置の一例は、スピーカである。出力部220は、制御部250から入力された情報を出力することで、情報をユーザに通知する。 The output unit 220 has a function of outputting information. The output unit 220 may include an output device that outputs information to the user. Examples of the output device include a display device that displays information, a light emitting device that emits light, a vibration device that vibrates, and a sound output device that outputs sound. An example of a display device is a display. An example of a light emitting device is an LED (Light Emitting Diode). An example of a vibration device is an eccentric motor. An example of a sound output device is a speaker. The output unit 220 notifies the user of the information input from the control unit 250 by outputting the information.
 通信部230は、端末装置200と他の装置との間で情報の送受信を行うための、通信インタフェースである。通信部230は、有線又は無線の任意の通信規格に準拠した通信を行う。かかる通信規格としては、例えば、無線LAN(Local Area Network)、有線LAN、Wi-Fi(登録商標)、又はBluetooth(登録商標)等が採用され得る。 The communication unit 230 is a communication interface for transmitting and receiving information between the terminal device 200 and other devices. The communication unit 230 performs communication conforming to any wired or wireless communication standard. As such a communication standard, for example, wireless LAN (Local Area Network), wired LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be adopted.
 記憶部240は、端末装置200の動作のための各種情報を記憶する。記憶部240は、例えば、フラッシュメモリ等の不揮発性の記憶媒体により構成される。 The storage unit 240 stores various information for the operation of the terminal device 200. The storage unit 240 is configured by, for example, a non-volatile storage medium such as flash memory.
 制御部250は、演算処理装置又は制御装置として機能し、各種プログラムに従って端末装置200内の動作全般を制御する。制御部250は、例えばCPU(Central Processing Unit)、又はマイクロプロセッサ等の電子回路によって実現される。他に、制御部250は、使用するプログラム及び演算パラメータ等を記憶するROM(Read Only Memory)、並びに適宜変化するパラメータ等を一時記憶するRAM(Random Access Memory)を含んでいてもよい。端末装置200は、制御部250による制御に基づいて、各種処理を実行する。入力部210により入力された情報の処理、出力部220による情報の出力、通信部230による情報の送受信、並びに記憶部240による情報の記憶及び読み出しは、制御部250により制御される処理の一例である。各構成要素への情報の入力、及び各構成要素から出力された情報に基づく処理等、端末装置200により実行されるその他の処理も、制御部250により制御される。 The control unit 250 functions as an arithmetic processing device or a control device, and controls overall operations within the terminal device 200 according to various programs. The control unit 250 is realized by an electronic circuit such as a CPU (Central Processing Unit) or a microprocessor. In addition, the control unit 250 may include a ROM (Read Only Memory) for storing programs to be used, calculation parameters, etc., and a RAM (Random Access Memory) for temporarily storing parameters, etc. that change as appropriate. The terminal device 200 executes various processes under the control of the control unit 250 . Processing of information input by the input unit 210, output of information by the output unit 220, transmission and reception of information by the communication unit 230, and storage and reading of information by the storage unit 240 are examples of processing controlled by the control unit 250. be. Other processes executed by the terminal device 200 such as information input to each component and processing based on information output from each component are also controlled by the control unit 250 .
 なお、制御部250の機能は、アプリケーションを用いて実現されてもよい。当該アプリケーションは、プリインストールされていてもよいし、ダウンロードされてもよい。また、制御部250の機能は、PWA(Progressive Web Apps)により実現されてもよい。 Note that the functions of the control unit 250 may be implemented using an application. The application may be pre-installed or downloaded. Also, the functions of the control unit 250 may be realized by PWA (Progressive Web Apps).
 <3.技術的特徴>
 (1)加熱プロファイル
 制御部116は、加熱プロファイルに基づいて、加熱部121の動作を制御する。加熱部121の動作の制御は、電源部111から加熱部121への給電を制御することにより、実現される。加熱部121は、電源部111から供給された電力を使用してスティック型基材150を加熱する。加熱プロファイルとは、加熱部121の温度の目標値の時系列推移が規定された情報である。加熱プロファイルは、本実施形態における加熱設定の一例である。
<3. Technical features>
(1) Heating profile The control unit 116 controls the operation of the heating unit 121 based on the heating profile. Control of the operation of the heating unit 121 is realized by controlling power supply from the power supply unit 111 to the heating unit 121 . The heating unit 121 heats the stick-shaped substrate 150 using power supplied from the power supply unit 111 . A heating profile is information that defines the time-series transition of the target value of the temperature of the heating unit 121 . A heating profile is an example of a heating setting in this embodiment.
 制御部116は、加熱部121の温度(以下、実温度とも称する)が、加熱プロファイルにおいて規定された目標温度と同様に推移するように、加熱部121の動作を制御する。加熱プロファイルは、典型的には、スティック型基材150から生成されるエアロゾルをユーザが吸引した際にユーザが味わう香味が最適になるように設計される。よって、加熱プロファイルに基づいて加熱部121の動作を制御することにより、ユーザが味わう香味を最適にすることができる。 The control unit 116 controls the operation of the heating unit 121 so that the temperature of the heating unit 121 (hereinafter also referred to as the actual temperature) changes in the same manner as the target temperature specified in the heating profile. The heating profile is typically designed to optimize the flavor experienced by the user when the user inhales the aerosol produced from the stick-shaped substrate 150 . Therefore, by controlling the operation of the heating unit 121 based on the heating profile, it is possible to optimize the flavor tasted by the user.
 加熱プロファイルは、目標温度と、当該目標温度に到達すべきタイミングを示す情報と、の組み合わせを、ひとつ以上含む。そして、制御部116は、加熱プロファイルに基づく加熱を開始してからの時間経過に応じて、目標温度を切り替えながら加熱部121の温度を制御する。詳しくは、制御部116は、現在の実温度と、加熱プロファイルに基づく加熱を開始してからの経過時間に対応する目標温度と、の乖離に基づいて、加熱部121の温度を制御する。加熱部121の温度制御は、例えば公知のフィードバック制御によって実現できる。フィードバック制御は、例えばPID制御(Proportional-Integral-Differential Controller)であってよい。制御部116は、電源部111からの電力を、パルス幅変調(PWM)又はパルス周波数変調(PFM)によるパルスの形態で、加熱部121に供給させ得る。その場合、制御部116は、フィードバック制御において、電力パルスのデューティ比、又は周波数を調整することによって、加熱部121の温度制御を行うことができる。若しくは、制御部116は、フィードバック制御において、単純なオン/オフ制御を行ってもよい。例えば、制御部116は、実温度が目標温度に到達するまで加熱部121による加熱を実行し、実温度が目標温度に到達した場合に加熱部121による加熱を停止し、実温度が目標温度より低くなると加熱部121による加熱を再度実行してもよい。その他に、制御部116は、フィードバック制御において、電圧を調整してもよい。 A heating profile includes one or more combinations of a target temperature and information indicating the timing at which the target temperature should be reached. Then, the control unit 116 controls the temperature of the heating unit 121 while switching the target temperature according to the lapse of time from the start of heating based on the heating profile. Specifically, the control unit 116 controls the temperature of the heating unit 121 based on the deviation between the current actual temperature and the target temperature corresponding to the elapsed time from the start of heating based on the heating profile. Temperature control of the heating unit 121 can be realized by, for example, known feedback control. Feedback control may be, for example, PID control (Proportional-Integral-Differential Controller). The control unit 116 can cause power from the power supply unit 111 to be supplied to the heating unit 121 in the form of pulses by pulse width modulation (PWM) or pulse frequency modulation (PFM). In that case, the control unit 116 can control the temperature of the heating unit 121 by adjusting the duty ratio or frequency of the power pulse in feedback control. Alternatively, control unit 116 may perform simple on/off control in feedback control. For example, the control unit 116 performs heating by the heating unit 121 until the actual temperature reaches the target temperature, and stops heating by the heating unit 121 when the actual temperature reaches the target temperature. When the temperature becomes low, heating by the heating unit 121 may be performed again. In addition, control section 116 may adjust the voltage in feedback control.
 加熱部121の温度は、例えば、加熱部121(より正確には、加熱部121を構成する発熱抵抗体)の電気抵抗値を測定又は推定することによって定量できる。これは、発熱抵抗体の電気抵抗値が、温度に応じて変化するためである。発熱抵抗体の電気抵抗値は、例えば、発熱抵抗体での電圧低下量を測定することによって推定できる。発熱抵抗体での電圧低下量は、発熱抵抗体に印加される電位差を測定する電圧センサによって測定できる。他の例では、加熱部121の温度は、加熱部121付近に設置されたサーミスタ等の温度センサによって測定されることができる。 The temperature of the heating unit 121 can be quantified by, for example, measuring or estimating the electrical resistance of the heating unit 121 (more precisely, the heating resistor that constitutes the heating unit 121). This is because the electrical resistance value of the heating resistor changes according to the temperature. The electrical resistance value of the heating resistor can be estimated, for example, by measuring the amount of voltage drop in the heating resistor. The amount of voltage drop across the heating resistor can be measured by a voltage sensor that measures the potential difference applied to the heating resistor. In another example, the temperature of heating unit 121 can be measured by a temperature sensor such as a thermistor installed near heating unit 121 .
 スティック型基材150を用いてエアロゾルを生成する処理が開始してから終了するまでの期間を、以下では加熱セッションとも称する。換言すると、加熱セッションとは、加熱プロファイルに基づいて加熱部121への給電が制御される期間である。加熱セッションの始期は、加熱プロファイルに基づく加熱が開始されるタイミングである。加熱セッションの終期は、十分な量のエアロゾルが生成されなくなったタイミングである。加熱セッションは、前半の予備加熱期間、及び後半のパフ可能期間を含む。パフ可能期間とは、十分な量のエアロゾルが発生すると想定される期間である。予備加熱期間とは、加熱が開始されてからパフ可能期間が開始されるまでの期間である。予備加熱期間において行われる加熱は、予備加熱とも称される。 A period from the start to the end of the process of generating an aerosol using the stick-shaped base material 150 is hereinafter also referred to as a heating session. In other words, a heating session is a period during which power supply to the heating unit 121 is controlled based on the heating profile. The beginning of the heating session is the timing at which heating based on the heating profile is started. The end of the heating session is when a sufficient amount of aerosol is no longer produced. The heating session includes a first half preheating period and a second half puffable period. The puffable period is the period during which a sufficient amount of aerosol is assumed to be generated. The preheating period is the period from the start of heating to the start of the puffable period. Heating performed in the preheating period is also referred to as preheating.
 加熱プロファイルは、異なる目標温度が設定された複数の期間を含んでいてもよい。ある期間に設定された目標温度に、当該期間の任意のタイミングで達するよう温度制御されてもよいし、当該期間の終期に達するよう温度制御されてもよい。いずれにせよ、加熱プロファイルに規定された目標温度の推移と同様に、加熱部121の温度を推移させることが可能となる。 A heating profile may include multiple periods in which different target temperatures are set. The temperature may be controlled so as to reach the target temperature set for a certain period at any timing during the period, or the temperature may be controlled so as to reach the end of the period. In any case, it is possible to change the temperature of the heating unit 121 in the same manner as the target temperature defined in the heating profile.
 加熱プロファイルの一例を、下記の表1に示す。 An example of a heating profile is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 制御部116が表1に示した加熱プロファイルに従い温度制御を行った場合の、加熱部121の温度の推移について、図3を参照しながら説明する。図3は、表1に示した加熱プロファイルに基づき温度制御を行った場合の加熱部121の温度の推移の一例を示すグラフである。本グラフの横軸は、時間(秒)である。本グラフの縦軸は、加熱部121の温度である。本グラフにおける線21は、加熱部121の温度の推移を示している。図3に示すように、加熱部121の温度は、加熱プロファイルにおいて規定された目標温度の推移と同様に推移している。 The transition of the temperature of the heating unit 121 when the control unit 116 performs temperature control according to the heating profile shown in Table 1 will be described with reference to FIG. FIG. 3 is a graph showing an example of transition of the temperature of the heating unit 121 when temperature control is performed based on the heating profile shown in Table 1. In FIG. The horizontal axis of this graph is time (seconds). The vertical axis of this graph is the temperature of the heating unit 121 . A line 21 in this graph indicates transition of the temperature of the heating unit 121 . As shown in FIG. 3, the temperature of the heating unit 121 transitions in the same manner as the target temperature defined in the heating profile.
 表1に示したように、加熱プロファイルは、最初に初期昇温期間を含む。初期昇温期間とは、加熱部121の温度が初期温度から上昇する期間である。初期温度とは、加熱開始時の加熱部121の温度である。図3に示すように、初期昇温期間では、加熱部121の温度は、加熱開始から17秒後に310℃に到達し、加熱開始から35秒後まで310℃に維持されている。これにより、スティック型基材150の温度が十分な量のエアロゾルが発生する温度に到達することが想定される。加熱開始後すぐに310℃まで一気に昇温されることで、予備加熱を早期に終え、パフ可能期間を早期に開始させることが可能となる。なお、図3では、加熱開始から17秒後に予備加熱期間が終了している。 As shown in Table 1, the heating profile first includes an initial heating period. The initial temperature rising period is a period during which the temperature of the heating unit 121 rises from the initial temperature. The initial temperature is the temperature of the heating unit 121 at the start of heating. As shown in FIG. 3, in the initial heating period, the temperature of the heating unit 121 reaches 310° C. 17 seconds after the start of heating and is maintained at 310° C. until 35 seconds after the start of heating. As a result, it is assumed that the temperature of the stick-type substrate 150 reaches a temperature at which a sufficient amount of aerosol is generated. By rapidly raising the temperature to 310° C. immediately after the start of heating, it is possible to finish preheating early and start the puffable period early. Note that in FIG. 3, the preheating period ends 17 seconds after the start of heating.
 表1に示したように、加熱プロファイルは、初期昇温期間の後に途中降温期間を含む。途中降温期間とは、加熱部121の温度が低下する期間である。図3に示すように、途中降温期間では、加熱部121の温度は、加熱開始から35秒後から45秒後にかけて、310℃から260℃に低下している。かかる期間において、加熱部121への給電が停止されてもよい。その場合であっても、加熱部121及びスティック型基材150の余熱により、十分な量のエアロゾルが生成される。ここで、加熱部121を高温のまま維持すると、スティック型基材150に含まれるエアロゾル源が急速に消費され、ユーザが味わう香味が強すぎてしまう等の香味の劣化が生じ得る。その点、途中降温期間を途中に設けることで、そのような香味の劣化を回避して、ユーザのパフ体験の質を向上させることが可能である。 As shown in Table 1, the heating profile includes an intermediate temperature decrease period after the initial temperature increase period. The intermediate temperature drop period is a period during which the temperature of the heating unit 121 is lowered. As shown in FIG. 3, during the mid-temperature drop period, the temperature of the heating unit 121 drops from 310° C. to 260° C. from 35 seconds to 45 seconds after the start of heating. During this period, power supply to the heating unit 121 may be stopped. Even in that case, a sufficient amount of aerosol is generated by the residual heat of the heating part 121 and the stick-shaped base material 150 . Here, if the heating unit 121 is kept at a high temperature, the aerosol source contained in the stick-shaped base material 150 is rapidly consumed, and the flavor deteriorates such that the flavor tasted by the user becomes too strong. In this regard, by providing an intermediate temperature-lowering period in the middle, it is possible to avoid such flavor deterioration and improve the quality of the user's puff experience.
 表1に示したように、加熱プロファイルは、途中降温期間の後に再昇温期間を含む。再昇温期間とは、加熱部121の温度が上昇する期間である。図3に示すように、再昇温期間では、加熱部121の温度は、加熱開始から45秒後から180秒後にかけて、260℃から290℃まで上昇し、加熱開始から260秒後まで290℃に維持されている。加熱部121を降温させ続けると、スティック型基材150も降温するので、エアロゾルの生成量が低下し、ユーザが味わう香味が劣化してしまい得る。また、加熱プロファイルの後半に進むほど、スティック型基材150に含有されたエアロゾル源の残量が低下するので、同一温度で加熱を継続してもエアロゾルの生成量が低下する傾向にある。その点、加熱プロファイルの後半において再度昇温させてエアロゾルの生成量を増加させることで、エアロゾル源の残量低下に伴うエアロゾルの生成量の低下を補うことができる。これにより、加熱プロファイルの後半においても、ユーザが味わう香味の劣化を防止することが可能となる。 As shown in Table 1, the heating profile includes a reheating period after an intermediate temperature decreasing period. The reheating period is a period during which the temperature of the heating unit 121 increases. As shown in FIG. 3, in the reheating period, the temperature of the heating unit 121 rises from 260° C. to 290° C. from 45 seconds to 180 seconds after the start of heating, and reaches 290° C. until 260 seconds after the start of heating. maintained at If the temperature of the heating part 121 is continued to be lowered, the temperature of the stick-shaped base material 150 is also lowered, so the amount of aerosol generated is reduced, and the flavor that the user can enjoy may be deteriorated. In addition, as the heating profile progresses to the latter half, the remaining amount of the aerosol source contained in the stick-type substrate 150 decreases, so even if the heating is continued at the same temperature, the amount of aerosol generated tends to decrease. In this regard, by raising the temperature again in the second half of the heating profile to increase the amount of aerosol generated, it is possible to compensate for the decrease in the amount of aerosol generated due to the decrease in the remaining amount of the aerosol source. This makes it possible to prevent the flavor that the user enjoys from deteriorating even in the second half of the heating profile.
 表1に示したように、加熱プロファイルは、最後に加熱終了期間を含む。加熱終了期間とは、再昇温期間の後の期間であって、加熱しない期間である。目標温度は、設定されていなくてもよい。図3に示すように、加熱部121の温度は、加熱開始から260秒後以降、低下している。加熱開始から260秒後に、加熱部121への給電が終了してもよい。その場合であっても、しばらくの間、加熱部121及びスティック型基材150の余熱により、十分な量のエアロゾルが生成される。図3に示した例では、加熱開始から270秒後に、パフ可能期間、即ち加熱セッションは終了する。 As shown in Table 1, the heating profile finally includes a heating end period. The heating end period is a period after the reheating period and is a period during which heating is not performed. The target temperature does not have to be set. As shown in FIG. 3, the temperature of the heating section 121 decreases after 260 seconds from the start of heating. Power supply to the heating unit 121 may be terminated 260 seconds after the start of heating. Even in that case, a sufficient amount of aerosol is generated for a while by the residual heat of the heating part 121 and the stick-shaped base material 150 . In the example shown in FIG. 3, the puffable period, ie, the heating session, ends 270 seconds after the start of heating.
 パフ可能期間が開始するタイミング及び終了するタイミングが、ユーザに通知されてもよい。さらに、パフ可能期間が終了するよりも所定時間前のタイミング(例えば、加熱部121への給電が終了するタイミング)が、ユーザに通知されてもよい。その場合、ユーザは、かかる通知を参考に、パフ可能期間においてパフを行うことができる。 The timing at which the puffable period starts and ends may be notified to the user. Furthermore, the user may be notified of the timing (for example, the timing when the power supply to the heating unit 121 ends) that is a predetermined time before the end of the puffable period. In that case, the user can perform puffing during the puffable period by referring to such notification.
 (2)吸引量の取得
 センサ部112は、加熱部121により加熱されたスティック型基材150から発生したエアロゾルの吸引に関する情報を検出する検出部の一例である。制御部116は、センサ部112により検出された情報に基づいて、吸引量を取得する。吸引量とは、1回の吸引においてユーザにより吸引されたエアロゾルの量である。ユーザに吸引されるエアロゾルの量は、ユーザに吸引される空気の量に相関する(例えば、比例する)と考えられる。そのため、制御部116は、空気の吸引量を、エアロゾルの吸引量として計算してもよい。
(2) Acquisition of Suction Amount The sensor unit 112 is an example of a detection unit that detects information regarding suction of aerosol generated from the stick-shaped base material 150 heated by the heating unit 121 . Control unit 116 acquires the amount of suction based on the information detected by sensor unit 112 . The inhaled amount is the amount of aerosol inhaled by the user in one inhalation. The amount of aerosol inhaled by the user is believed to be correlated (eg, proportional) to the amount of air inhaled by the user. Therefore, the control unit 116 may calculate the amount of sucked air as the amount of sucked aerosol.
 センサ部112は、流体の流量を検出する流量センサを含んでいてもよい。流量センサは、例えば、内部空間141に空気を供給する空気流路に設けられる。そして、流量センサは、ユーザによる吸引に伴い空気流路を流れる空気の流量を検出する。制御部116は、ユーザの吸引に伴う流量の増加が検出された期間を、吸引期間として判定する。吸引期間とは、ユーザによるエアロゾルの吸引が開始されてから終了するまでの一呼吸の期間である。そして、制御部116は、吸引期間において検出された流量を積算することで、吸引量を計算する。若しくは、制御部116は、吸引期間の時間長と単位時間当たりの流量とを乗算することで、吸引量を計算してもよい。 The sensor unit 112 may include a flow sensor that detects the flow rate of fluid. The flow rate sensor is provided, for example, in an air flow path that supplies air to the internal space 141 . The flow rate sensor detects the flow rate of air flowing through the air flow path as the user inhales. The control unit 116 determines the period during which an increase in the flow rate due to the user's inhalation is detected as the inhalation period. The inhalation period is a period of one breath from the start of inhalation of the aerosol by the user to the end of the inhalation. Then, the control unit 116 calculates the amount of suction by integrating the flow rate detected during the suction period. Alternatively, the control unit 116 may calculate the suction amount by multiplying the time length of the suction period and the flow rate per unit time.
 センサ部112は、圧力センサを含んでいてもよい。圧力センサは、例えば空気流路に配置され、ユーザの吸引に伴う空気流路内の圧力変化を検出する。制御部116は、ユーザの吸引に伴う圧力変化が検出された期間を、吸引期間として判定する。そして、制御部116は、吸引期間において変化した圧力の積算値に基づいて、吸引量を推定する。若しくは、制御部116は、吸引期間の時間長と単位時間当たりの圧力の変化量とを乗算することで、吸引量を計算してもよい。 The sensor unit 112 may include a pressure sensor. The pressure sensor is arranged, for example, in the airflow path, and detects pressure changes in the airflow path due to user's suction. The control unit 116 determines a period in which a pressure change accompanying the user's suction is detected as the suction period. Then, the control unit 116 estimates the amount of suction based on the integrated value of the pressure that has changed during the suction period. Alternatively, the control unit 116 may calculate the amount of suction by multiplying the length of time of the suction period by the amount of change in pressure per unit time.
 センサ部112は、加熱部121の抵抗値を検出するセンサを含んでいてもよい。加熱部121の温度は、ユーザの吸引に伴い新たな空気が内部空間141に流入することで低下する。そして、加熱部121の抵抗値は、加熱部121の温度変化に伴い変化する。そこで、制御部116は、ユーザの吸引に伴う加熱部121の抵抗値の変化が検出された期間を、吸引期間として判定する。そして、制御部116は、吸引期間において変化した抵抗値の積算値に基づいて、吸引量を推定する。若しくは、制御部116は、吸引期間の時間長と単位時間当たりの抵抗値の変化量とを乗算することで、吸引量を計算してもよい。 The sensor unit 112 may include a sensor that detects the resistance value of the heating unit 121. The temperature of the heating unit 121 decreases as new air flows into the internal space 141 as the user inhales. The resistance value of the heating portion 121 changes as the temperature of the heating portion 121 changes. Therefore, the control unit 116 determines a period in which a change in the resistance value of the heating unit 121 due to suction by the user is detected as the suction period. Then, the control unit 116 estimates the amount of suction based on the integrated value of the resistance values that have changed during the suction period. Alternatively, the control unit 116 may calculate the amount of suction by multiplying the time length of the suction period by the amount of change in the resistance value per unit time.
 センサ部112は、吸引装置100内外の気圧を検出するセンサを含んでいてもよい。吸引装置100内部の気圧の一例は、保持部140に接続された空気流路の気圧である。ユーザの吸引に伴い空気流路の気圧は低下するため、吸引装置100内外の気圧差が発生する。そこで、制御部116は、ユーザの吸引に伴う気圧差が検出された期間を、吸引期間として判定する。そして、制御部116は、吸引期間における気圧差の積算値に基づいて、吸引量を推定する。若しくは、制御部116は、吸引期間の時間長と気圧差の平均値とを乗算することで、吸引量を計算してもよい。 The sensor unit 112 may include a sensor that detects the air pressure inside and outside the suction device 100 . An example of the air pressure inside the suction device 100 is the air pressure in the air flow path connected to the holding section 140 . Since the air pressure in the air flow path decreases as the user inhales, an air pressure difference occurs between the inside and outside of the suction device 100 . Therefore, the control unit 116 determines the period during which the pressure difference associated with the user's inhalation is detected as the inhalation period. Then, the control unit 116 estimates the suction amount based on the integrated value of the air pressure difference during the suction period. Alternatively, the control unit 116 may calculate the amount of suction by multiplying the length of time of the suction period and the average value of the pressure difference.
 (3)吸引量に応じた給電量の制御
 制御部116は、第1の吸引期間においてセンサ部112により検出された情報により示される第1の吸引期間におけるエアロゾルの吸引量が多いほど、第2の吸引期間における加熱部121への単位時間当たりの給電量を増加させる。単位時間当たりの給電量の増加は、例えば、電力パルスのデューティ比を向上させることにより実現される。加熱部121への単位時間当たりの給電量が増加するほど、加熱部121の発熱量が増加するので、ユーザの吸引に伴う加熱部121の温度低下を軽減することができる。従って、加熱部121の温度低下に起因するエアロゾル及び香味成分の吸引量の低下を軽減して、ユーザ体験の質を向上させることが可能となる。
(3) Control of power supply amount according to suction amount Control unit 116 controls the amount of aerosol suctioned in the first suction period indicated by the information detected by sensor unit 112 in the first suction period to increase the second suction amount. The amount of power supplied to the heating unit 121 per unit time during the suction period is increased. An increase in the amount of power supplied per unit time is achieved, for example, by improving the duty ratio of the power pulse. As the amount of power supplied to the heating unit 121 per unit time increases, the amount of heat generated by the heating unit 121 increases. Therefore, it is possible to reduce the decrease in the suction amount of the aerosol and the flavor component due to the temperature decrease of the heating unit 121, thereby improving the quality of user experience.
 第2の吸引期間は、第1の吸引期間よりも後の吸引期間である。一例として、第2の吸引期間は、第1の吸引期間の次の吸引期間であってもよい。エアロゾルの吸引は典型的には数秒以上の間隔を空けて行われる。この点、かかる構成によれば、吸引量の計算対象である第1の吸引期間と給電量の制御対象となる第2の吸引期間との間に、吸引量を計算するための十分な猶予期間を確保することが可能となる。また、加熱部121への給電量を増加させてから、加熱部121の温度が所望温度まで到達するまでに時間がかかる。この点、かかる構成によれば、第1の吸引期間と第2の吸引期間との間に、加熱部121の温度を所望温度まで上昇させるための十分な猶予期間を確保することが可能となる。 The second suction period is a suction period later than the first suction period. As an example, the second suction period may be the next suction period after the first suction period. Aerosol inhalations are typically separated by seconds or more. In this regard, according to this configuration, a sufficient grace period for calculating the suction amount is provided between the first suction period for which the suction amount is calculated and the second suction period for which the power supply amount is controlled. can be ensured. Further, it takes time for the temperature of the heating unit 121 to reach the desired temperature after the amount of power supplied to the heating unit 121 is increased. In this regard, according to this configuration, it is possible to ensure a sufficient grace period for raising the temperature of the heating unit 121 to the desired temperature between the first suction period and the second suction period. .
 制御部116は、第1の吸引期間におけるエアロゾルの吸引量が多いほど、第2の吸引期間における加熱部121の温度を上昇させてもよい。換言すると、制御部116は、第1の吸引期間におけるエアロゾルの吸引量が多いほど、第2の吸引期間における加熱部121の温度が上昇するように、加熱部121への単位時間当たりの給電量を増加させてもよい。かかる構成によれば、第1の吸引期間におけるエアロゾルの吸引量が多いほど、第2の吸引期間において加熱部121の温度が上昇し、より多くのエアロゾル及び香味成分がユーザに送達されることとなる。紙巻たばこのような燃焼式のたばこでは、吸引量が多いほどたばこがよく燃え、より多くの香味成分がユーザに送達されることが知られている。この点、かかる構成によれば、燃焼式のたばこと同様のユーザ体験を再現することが可能となる。 The control unit 116 may increase the temperature of the heating unit 121 during the second suction period as the amount of aerosol sucked during the first suction period increases. In other words, the control unit 116 controls the amount of power supplied to the heating unit 121 per unit time so that the temperature of the heating unit 121 in the second suction period rises as the amount of aerosol sucked in the first suction period increases. may be increased. According to such a configuration, as the amount of aerosol sucked in the first sucking period increases, the temperature of the heating unit 121 rises in the second sucking period, and more aerosol and flavor component are delivered to the user. Become. In combustible tobacco, such as cigarettes, it is known that the higher the puff, the better the tobacco burns and the more flavor components are delivered to the user. In this regard, according to this configuration, it is possible to reproduce a user experience similar to that of a combustible cigarette.
 なお、本明細書では、加熱部121への単位時間当たりの給電量が増加するほど加熱部121の温度が上昇し、給電量が減少するほど温度が低下するものとする。また、加熱部121への単位時間当たりの給電量が一定である場合、加熱部121の温度は、当該給電量に応じた温度で維持されるものとする。 In this specification, it is assumed that the temperature of the heating unit 121 increases as the amount of power supplied to the heating unit 121 per unit time increases, and the temperature decreases as the amount of power supply decreases. Also, when the amount of power supplied to the heating unit 121 per unit time is constant, the temperature of the heating unit 121 is maintained at a temperature corresponding to the amount of power supplied.
 上記説明したように、制御部116は、加熱プロファイルに基づく温度制御を行う。そこで、制御部116は、加熱プロファイルに加え、第1の吸引期間におけるエアロゾルの吸引量に基づいて、第2の吸引期間における温度制御を行う。この点について、図4を参照しながら具体的に説明する。 As described above, the control unit 116 performs temperature control based on the heating profile. Therefore, the control unit 116 performs temperature control in the second suction period based on the amount of aerosol sucked in the first suction period in addition to the heating profile. This point will be specifically described with reference to FIG.
 図4は、表1に示した加熱プロファイル及び第1の吸引期間におけるエアロゾルの吸引量に基づく給電制御を行った場合の加熱部121の温度の推移の一例を示すグラフである。本グラフの横軸は、時間(秒)である。本グラフの縦軸は、加熱部121の温度である。本グラフにおける線21は、加熱部121の温度の推移を示している。図4に示すように、加熱部121の温度は、加熱開始から200秒経過時点で290℃となっている。 FIG. 4 is a graph showing an example of transition of the temperature of the heating unit 121 when power supply control is performed based on the heating profile shown in Table 1 and the amount of aerosol sucked in the first sucking period. The horizontal axis of this graph is time (seconds). The vertical axis of this graph is the temperature of the heating unit 121 . A line 21 in this graph indicates transition of the temperature of the heating unit 121 . As shown in FIG. 4, the temperature of the heating unit 121 reaches 290° C. when 200 seconds have passed since the start of heating.
 まず、制御部116は、第2の吸引期間の開始タイミングを予測する。その際、制御部116は、過去に検出された吸引期間の間隔に基づいて第2の吸引期間の開始タイミングを予測してもよい。例えば、ユーザが過去の加熱セッションにおいて平均で30秒間隔で吸引を行う場合であって、前回の吸引が加熱開始から180秒後に行われていた場合、制御部116は、加熱開始から210秒後に次の吸引期間(第2の吸引期間に相当)が開始すると予測する。 First, the control unit 116 predicts the start timing of the second suction period. At that time, the control unit 116 may predict the start timing of the second suction period based on the interval of the suction period detected in the past. For example, when the user sucked at an average interval of 30 seconds in the past heating session, and the previous suction was performed 180 seconds after the start of heating, the control unit 116 controls the It is predicted that the next suction period (corresponding to the second suction period) will start.
 そして、制御部116は、予測した第2の吸引期間の開始タイミングにおける加熱部121の温度が、加熱プロファイルに対応する加熱部121の温度(即ち、目標温度)と、第1の吸引期間におけるエアロゾルの吸引量が多いほど増加する温度上昇幅と、を加算した温度になるよう制御する。図4に示した例では、第2の吸引期間の開始タイミングは、加熱開始から210秒後であると予測されている。そして、第1の吸引期間(例えば、前回の吸引期間)におけるエアロゾルの吸引量に対応する温度上昇幅は15℃であるものとする。そこで、制御部116は、加熱開始から210秒後に、加熱プロファイルに規定された目標温度である290℃と温度上昇幅である15℃とを加算した305℃に加熱部121の温度が到達するよう、加熱部121への給電を制御する。具体的には、制御部116は、加熱開始から200秒後から加熱部121への給電量を増加させる。これにより、図4に示すように、加熱開始から200秒後から徐々に加熱部121の温度が上昇して、加熱開始から210秒後に加熱部121の温度が305℃に到達している。 Then, the control unit 116 determines that the temperature of the heating unit 121 at the predicted start timing of the second suction period corresponds to the temperature of the heating unit 121 (that is, the target temperature) corresponding to the heating profile, and the aerosol in the first suction period. The temperature is controlled to be the sum of the temperature rise range that increases as the amount of suction of the air increases. In the example shown in FIG. 4, the start timing of the second suction period is predicted to be 210 seconds after the start of heating. It is also assumed that the temperature rise width corresponding to the amount of aerosol sucked in the first sucking period (for example, the last sucking period) is 15°C. Therefore, the control unit 116 controls the temperature of the heating unit 121 so that the temperature of the heating unit 121 reaches 305° C., which is the sum of the target temperature of 290° C. defined in the heating profile and the temperature increase width of 15° C., 210 seconds after the start of heating. , controls power supply to the heating unit 121 . Specifically, control unit 116 increases the amount of power supplied to heating unit 121 after 200 seconds from the start of heating. As a result, as shown in FIG. 4, the temperature of the heating unit 121 gradually increases from 200 seconds after the start of heating, and reaches 305° C. after 210 seconds from the start of heating.
 その後、制御部116は、予測した第2の吸引期間の開始タイミングから第2の吸引期間が実際に終了するまで、目標温度に上記温度上昇幅を加算した温度に加熱部121の温度が維持されるよう制御する。図4に示した例では、加熱開始から212秒後から215秒後までにかけて、パフが検出されている。そのため、制御部116は、加熱開始から210秒後から215秒後までにかけて、加熱部121の温度が305℃を維持するよう、加熱部121への給電を制御する。 After that, the control unit 116 maintains the temperature of the heating unit 121 at a temperature obtained by adding the temperature increase range to the target temperature from the predicted start timing of the second suction period to the actual end of the second suction period. control so that In the example shown in FIG. 4, puffs are detected from 212 seconds to 215 seconds after the start of heating. Therefore, control unit 116 controls power supply to heating unit 121 so that the temperature of heating unit 121 is maintained at 305° C. from 210 seconds to 215 seconds after the start of heating.
 通知部113は、目標温度に上記温度上昇幅を加算した温度に加熱部121の温度が達したタイミングを示す情報をユーザに通知してもよい。図4に示した例では、通知部113は、加熱開始から210秒後に、発光したり振動したりしてもよい。かかる構成によれば、ユーザは、当該通知を参考に適切なタイミングで吸引を行うことが可能となる。なお、目標温度に上記温度上昇幅を加算した温度に加熱部121の温度が達したタイミングと、通知部113による通知のタイミングとは、前後していてもよい。 The notification unit 113 may notify the user of information indicating the timing at which the temperature of the heating unit 121 reaches the temperature obtained by adding the temperature increase range to the target temperature. In the example shown in FIG. 4, the notification unit 113 may emit light or vibrate 210 seconds after the start of heating. According to such a configuration, the user can perform suction at an appropriate timing by referring to the notification. Note that the timing at which the temperature of the heating unit 121 reaches the temperature obtained by adding the temperature increase range to the target temperature and the timing of the notification by the notification unit 113 may be mixed up.
 以上、図4を参照しながら本実施形態に係る給電制御の具体例を説明した。本制御によれば、加熱部121の温度が基本的には目標温度に沿って推移しつつ、吸引期間において加熱部121の温度が一時的に上昇する。かかる構成によれば、加熱プロファイルに基づく好適なユーザ体験を提供しつつ、燃焼式のたばこと同様のユーザ体験を再現することが可能となる。 A specific example of power supply control according to the present embodiment has been described above with reference to FIG. According to this control, the temperature of the heating unit 121 basically increases along the target temperature, and the temperature of the heating unit 121 temporarily increases during the suction period. According to such a configuration, it is possible to reproduce a user experience similar to that of a combustible cigarette while providing a suitable user experience based on the heating profile.
 上記温度制御を実現するために、制御部116は、第2の吸引期間における加熱部121への単位時間当たりの給電量が、加熱プロファイルに基づく第1の給電量と、上記温度上昇幅に対応する第2の給電量との和になるよう制御する。第1の給電量は、加熱プロファイルに基づく温度制御のための給電量である。第2の給電量は、第1の吸引期間におけるエアロゾルの吸引量に応じた給電量である。即ち、制御部116は、加熱部121の温度が目標温度に沿って推移するよう給電制御しつつも、吸引が行われるタイミングにおいては吸引量に応じて給電量を増加させる。かかる構成により、図4を参照しながら説明した温度制御を実現することができる。 In order to realize the above temperature control, the control unit 116 sets the amount of power supply per unit time to the heating unit 121 during the second suction period to correspond to the first amount of power supply based on the heating profile and the range of temperature rise. is controlled so as to be the sum with the second power supply amount. The first power supply amount is the power supply amount for temperature control based on the heating profile. The second amount of power supply is the amount of power supply corresponding to the amount of aerosol sucked in the first sucking period. That is, the control unit 116 increases the amount of power supply according to the amount of suction at the timing when the suction is performed while controlling the power supply so that the temperature of the heating unit 121 changes along the target temperature. With such a configuration, the temperature control described with reference to FIG. 4 can be realized.
 続いて、上記説明した給電制御に関する処理の流れを、図5を参照しながら説明する。図5は、本実施形態に係る吸引装置100により実行される処理の流れの一例を示すフローチャートである。 Next, the flow of processing related to power supply control described above will be described with reference to FIG. FIG. 5 is a flowchart showing an example of the flow of processing executed by the suction device 100 according to this embodiment.
 図5に示すように、まず、制御部116は、加熱開始を要求するユーザ操作が検出されたか否かを判定する(ステップS102)。加熱開始を要求するユーザ操作の一例は、吸引装置100に設けられたスイッチ等を操作すること等の、吸引装置100に対する操作である。加熱開始を要求するユーザ操作の他の一例は、吸引装置100にスティック型基材150を挿入することである。なお、吸引装置100へのスティック型基材150の挿入は、開口142付近の空間の静電容量を検出する静電容量型の近接センサ、又は内部空間141内の圧力を検出する圧力センサ等により、検出され得る。 As shown in FIG. 5, first, the control unit 116 determines whether or not a user operation requesting the start of heating has been detected (step S102). An example of a user operation requesting the start of heating is an operation on the suction device 100 such as operating a switch or the like provided on the suction device 100 . Another example of a user operation that requests initiation of heating is inserting a stick-shaped substrate 150 into the suction device 100 . The insertion of the stick-type substrate 150 into the suction device 100 is performed by a capacitance-type proximity sensor that detects the capacitance of the space near the opening 142, or a pressure sensor that detects the pressure in the internal space 141. , can be detected.
 加熱開始を要求するユーザ操作が検出されていないと判定された場合(ステップS102:NO)、制御部116は、加熱開始を要求するユーザ操作が検出されるまで待機する。 When it is determined that a user operation requesting the start of heating has not been detected (step S102: NO), the control unit 116 waits until a user operation requesting the start of heating is detected.
 加熱開始を要求するユーザ操作が検出されたと判定された場合(ステップS102:YES)、制御部116は、加熱プロファイルに基づく加熱を開始するよう加熱部121の動作を制御する(ステップS104)。例えば、制御部116は、加熱プロファイルに基づき、電源部111から加熱部121への給電を開始する。 When it is determined that a user operation requesting the start of heating has been detected (step S102: YES), the control unit 116 controls the operation of the heating unit 121 to start heating based on the heating profile (step S104). For example, the control unit 116 starts power supply from the power supply unit 111 to the heating unit 121 based on the heating profile.
 次いで、制御部116は、次の吸引期間の開始タイミングを予測する(ステップS106)。初回の吸引期間の開始タイミングは、例えば、前回の加熱セッションにおける初回の吸引期間の開始タイミングに基づいて予測され得る。2回目以降の吸引期間の開始タイミングは、例えば、前回の吸引期間の終了タイミングと、前回の加熱セッションにおける吸引期間の間隔と、に基づいて予測され得る。 Next, the control unit 116 predicts the start timing of the next suction period (step S106). The start timing of the first suction period can be predicted, for example, based on the start timing of the first suction period in the previous heating session. The start timing of the second and subsequent suction periods can be predicted, for example, based on the end timing of the previous suction period and the interval between the suction periods in the previous heating session.
 次に、制御部116は、予測した次の吸引期間の開始タイミングに基づいて、エアロゾルの吸引量に応じた給電制御を行う(ステップS108)。例えば、制御部116は、予測した次の吸引期間の開始タイミングにおける加熱部121の温度が、加熱プロファイルにおける目標温度に、前回の吸引期間におけるエアロゾルの吸引量に応じた温度上昇幅を加算した温度に到達するよう、加熱部121への給電を制御する。 Next, the control unit 116 performs power supply control according to the amount of aerosol sucked based on the predicted start timing of the next sucking period (step S108). For example, the control unit 116 determines that the temperature of the heating unit 121 at the predicted start timing of the next suction period is the target temperature in the heating profile plus the temperature increase range corresponding to the amount of aerosol sucked in the previous suction period. The power supply to the heating unit 121 is controlled so as to reach
 次いで、制御部116は、エアロゾルの吸引量に応じた給電制御の終了条件が満たされたか否かを判定する(ステップS110)。エアロゾルの吸引量に応じた給電制御の終了条件の一例は、ユーザが吸引を終了したこと、即ち吸引期間の終了が検出されたことである。エアロゾルの吸引量に応じた給電制御の終了条件の他の一例は、エアロゾルの吸引量に応じた給電制御が開始されてから所定時間が経過したことである。 Next, the control unit 116 determines whether or not a condition for terminating power supply control according to the amount of aerosol sucked is satisfied (step S110). An example of a condition for ending power supply control according to the amount of aerosol sucked is that the user has finished sucking, that is, the end of the sucking period has been detected. Another example of the termination condition of the power supply control according to the aerosol suction amount is that a predetermined time has passed since the power supply control according to the aerosol suction amount was started.
 エアロゾルの吸引量に応じた給電制御の終了条件が満たされていないと判定された場合(ステップS110:NO)、制御部116は、エアロゾルの吸引量に応じた給電制御の終了条件が満たされるまで待機する。これにより、予測した第2の吸引期間の開始タイミングから第2の吸引期間が実際に終了するまで、加熱プロファイルに規定された目標温度に上記温度上昇幅を加算した温度に加熱部121の温度が維持されこととなる。 If it is determined that the termination condition of the power supply control according to the aerosol suction amount is not satisfied (step S110: NO), the control unit 116 waits until the power supply control termination condition based on the aerosol suction amount is satisfied. stand by. As a result, from the predicted start timing of the second suction period to the actual end of the second suction period, the temperature of the heating unit 121 is equal to the target temperature defined in the heating profile plus the temperature rise range. will be maintained.
 エアロゾルの吸引量に応じた給電制御の終了条件が満たされたと判定された場合(ステップS110:YES)、制御部116は、エアロゾルの吸引量に応じた給電制御を終了する(ステップS112)。即ち、制御部116は、加熱プロファイルに基づく給電制御に戻る。これにより、加熱部121の温度は、加熱プロファイルに規定された目標温度まで低下することとなる。 When it is determined that the termination condition for power supply control according to the aerosol suction amount is satisfied (step S110: YES), the control unit 116 ends power supply control according to the aerosol suction amount (step S112). That is, the control unit 116 returns to power supply control based on the heating profile. As a result, the temperature of the heating section 121 is lowered to the target temperature specified in the heating profile.
 次に、制御部116は、終了条件が満たされたか否かを判定する(ステップS114)。終了条件の一例は、加熱開始から所定時間が経過したことである。終了条件の他の一例は、加熱開始からの吸引回数が所定回数に達したことである。 Next, the control unit 116 determines whether or not the termination condition is satisfied (step S114). An example of the end condition is that a predetermined time has passed since the start of heating. Another example of the termination condition is that the number of times of suction from the start of heating has reached a predetermined number.
 終了条件が満たされていないと判定された場合(ステップS114:NO)、処理はステップS106に戻る。 If it is determined that the termination condition is not satisfied (step S114: NO), the process returns to step S106.
 終了条件が満たされたと判定された場合(ステップS114:YES)、制御部116は、加熱プロファイルに基づく加熱を終了する(ステップS116)。詳しくは、制御部116は、電源部111から加熱部121への給電を終了する。その後、処理は終了する。 When it is determined that the termination condition is satisfied (step S114: YES), the control unit 116 terminates heating based on the heating profile (step S116). Specifically, control unit 116 terminates power supply from power supply unit 111 to heating unit 121 . After that, the process ends.
 (4)第1の設定
 第1の吸引期間におけるエアロゾルの吸引量と第2の吸引期間における加熱部121への単位時間当たりの給電量の増加量との対応関係は、可変に設定されてもよい。かかる設定を、以下では第1の設定とも称する。以下、第1の設定について詳しく説明する。
(4) First setting The correspondence relationship between the amount of aerosol sucked in the first sucking period and the amount of increase in the amount of power supply per unit time to the heating unit 121 in the second sucking period may be set variably. good. Such a setting is hereinafter also referred to as the first setting. The first setting will be described in detail below.
 制御部116は、第1の吸引期間におけるエアロゾルの吸引量と第2の吸引期間における加熱部121への単位時間当たりの給電量の増加量との対応関係を設定してもよい。換言すると、制御部116は、第1の吸引期間におけるエアロゾルの吸引量と第2の吸引期間における加熱部121の温度上昇幅との対応関係を設定してもよい。かかる構成によれば、上記対応関係を適宜変更することで、ユーザ体験の質をより向上させることが可能となる。 The control unit 116 may set a correspondence relationship between the amount of aerosol sucked in the first sucking period and the amount of increase in the amount of power supplied to the heating unit 121 per unit time in the second sucking period. In other words, the control unit 116 may set a correspondence relationship between the amount of aerosol sucked in the first sucking period and the temperature rise width of the heating unit 121 in the second sucking period. According to such a configuration, it is possible to further improve the quality of user experience by appropriately changing the correspondence relationship.
 一例として、制御部116は、上記対応関係を、スティック型基材150の種類に応じて設定してもよい。スティック型基材150の種類によって、適切な上記対応関係が異なり得るためである。かかる構成によれば、スティック型基材150の種類ごとに好適な上記対応関係を設定することが可能となる。 As an example, the control unit 116 may set the correspondence relationship according to the type of the stick-shaped base material 150 . This is because the appropriate correspondence relationship may vary depending on the type of stick-type base material 150 . With such a configuration, it is possible to set the above-described suitable correspondence relationship for each type of stick-shaped base material 150 .
 他の一例として、制御部116は、上記対応関係を、通信部115により受信された情報に応じて設定してもよい。例えば、制御部116は、設定すべき対応関係を示す情報を受信し、受信した情報により示される上記対応関係を設定する。設定すべき上記対応関係を示す情報の送信元としては、端末装置200が挙げられる。即ち、端末装置200は、設定すべき上記対応関係を示す情報を吸引装置100に送信してもよい。他に、設定すべき上記対応関係を示す情報の送信元としては、サーバが挙げられる。かかる構成によれば、他の装置から通知された好適な上記対応関係を設定することが可能となる。 As another example, the control unit 116 may set the correspondence according to the information received by the communication unit 115 . For example, the control unit 116 receives information indicating the correspondence to be set, and sets the correspondence indicated by the received information. The terminal device 200 is an example of the transmission source of the information indicating the correspondence relationship to be set. That is, the terminal device 200 may transmit information indicating the correspondence relationship to be set to the suction device 100 . Another example of a transmission source of information indicating the correspondence relationship to be set is a server. According to such a configuration, it is possible to set the above-mentioned suitable correspondence notified from another device.
 なお、通信部115は、設定すべき上記対応関係を示す情報として、設定すべき上記対応関係を示す識別子を受信し得る。例えば、設定可能な上記対応関係の複数の候補の各々に、数ビット程度の識別子が予め割り当てられ、割り当てられた識別子が送受信される。かかる構成によれば、通信量を削減することが可能となる。 Note that the communication unit 115 can receive an identifier indicating the correspondence to be set as information indicating the correspondence to be set. For example, an identifier of about several bits is assigned in advance to each of the plurality of candidates for the correspondence relationship that can be set, and the assigned identifier is transmitted and received. With such a configuration, it is possible to reduce the amount of communication.
 他の一例として、制御部116は、上記対応関係を、センサ部112により検出されたユーザ操作に応じて設定してもよい。かかる構成によれば、ユーザの好みに応じた上記対応関係を設定することが可能となる。 As another example, the control unit 116 may set the correspondence relationship according to the user's operation detected by the sensor unit 112 . According to such a configuration, it is possible to set the correspondence relationship according to the user's preference.
 (5)第2の設定
 上記では、第1の吸引期間におけるエアロゾルの吸引量が多いほど、第2の吸引期間における加熱部121への単位時間当たりの給電量を増加させる制御が実施される例を説明したが、かかる制御の実施/不実施が可変に設定されてもよい。かかる設定を、以下では第2の設定とも称する。以下、第2の設定について詳しく説明する。
(5) Second setting In the above example, control is performed to increase the power supply amount per unit time to the heating unit 121 in the second suction period as the amount of aerosol suction in the first suction period increases. , the execution/non-execution of such control may be set variably. Such settings are hereinafter also referred to as second settings. The second setting will be described in detail below.
 制御部116は、第1の動作モード及び第2の動作モードを含む複数の動作モードから成る動作モード群から選択された動作モードを設定する。そして、制御部116は、設定された動作モードに従って動作する。第1の動作モードが設定された場合、制御部116は、上記制御を実施する。即ち、制御部116は、第1の動作モードが設定された場合には、第2の吸引期間における加熱部121への単位時間当たりの給電量を、加熱プロファイル及び第1の吸引期間におけるエアロゾルの吸引量に基づいて制御する。他方、第2の動作モードが設定された場合、制御部116は、上記制御を実施しない。即ち、制御部116は、第2の動作モードが設定された場合には、第1の吸引期間におけるエアロゾルの吸引量によらず、第2の吸引期間における加熱部121への単位時間当たりの給電量を制御する(例えば、加熱プロファイルに基づく給電量の制御を行う)。かかる構成によれば、上記制御の実施/不実施を適宜変更することで、ユーザ体験の質をより向上させることが可能となる。 The control unit 116 sets an operation mode selected from an operation mode group consisting of a plurality of operation modes including a first operation mode and a second operation mode. Then, the control unit 116 operates according to the set operation mode. When the first operation mode is set, control unit 116 performs the above control. That is, when the first operation mode is set, the control unit 116 determines the power supply amount per unit time to the heating unit 121 in the second suction period based on the heating profile and the amount of aerosol in the first suction period. Control based on suction volume. On the other hand, when the second operation mode is set, control unit 116 does not perform the above control. That is, when the second operation mode is set, the control unit 116 controls the power supply per unit time to the heating unit 121 during the second suction period regardless of the suction amount of the aerosol during the first suction period. control amount (e.g. control amount of power supply based on heating profile); According to such a configuration, it is possible to further improve the quality of user experience by appropriately changing the execution/non-execution of the control.
 制御部116は、通信部115により受信された情報に応じた動作モードで動作してもよい。例えば、制御部116は、設定すべき動作モードを示す情報が通信部115により受信されると、受信された情報により示される動作モードを設定する。設定すべき動作モードを示す情報の送信元としては、端末装置200が挙げられる。即ち、端末装置200は、設定すべき動作モードを示す情報を吸引装置100に送信してもよい。他に、設定すべき動作モードを示す情報の送信元としては、サーバが挙げられる。設定すべき動作モードを示す情報は、第1の吸引期間におけるエアロゾルの吸引量が多いほど、第2の吸引期間における加熱部121への単位時間当たりの給電量を増加させる制御の実施又は不実施を設定するための情報の一例である。かかる構成によれば、他の装置から通知された好適な動作モードを設定することが可能となる。 The control unit 116 may operate in an operation mode according to the information received by the communication unit 115. For example, when information indicating the operation mode to be set is received by the communication unit 115, the control unit 116 sets the operation mode indicated by the received information. The terminal device 200 is an example of a transmission source of information indicating the operation mode to be set. That is, the terminal device 200 may transmit information indicating the operation mode to be set to the suction device 100 . Another source of information indicating the operation mode to be set is the server. The information indicating the operation mode to be set is the execution or non-execution of control to increase the power supply amount per unit time to the heating unit 121 in the second suction period as the amount of aerosol suction in the first suction period increases. is an example of information for setting According to such a configuration, it is possible to set a suitable operation mode notified from another device.
 通信部115は、設定すべき動作モードを示す情報として、第1の動作モード又は第2の動作モードを示す識別子を受信し得る。例えば、動作モード群に含まれる複数の動作モードの各々に、数ビット程度の識別子が予め割り当てられ、割り当てられた識別子が送受信される。かかる構成によれば、通信量を削減することが可能となる。 The communication unit 115 can receive an identifier indicating the first operation mode or the second operation mode as information indicating the operation mode to be set. For example, an identifier of about several bits is assigned in advance to each of a plurality of operation modes included in the operation mode group, and the assigned identifier is transmitted and received. With such a configuration, it is possible to reduce the amount of communication.
 他にも、制御部116は、動作モードを、スティック型基材150の種類に応じて設定してもよい。スティック型基材150の種類によって、適切な動作モードが異なり得るためである。かかる構成によれば、ユーザに好適な量のエアロゾル及び香味成分を送達することが可能となる。 Alternatively, the control unit 116 may set the operation mode according to the type of the stick-shaped base material 150. This is because the appropriate operation mode may differ depending on the type of stick-type base material 150 . Such a configuration makes it possible to deliver a suitable amount of aerosol and flavoring ingredients to the user.
 また、制御部116は、動作モードを、センサ部112により検出されたユーザ操作に応じて設定してもよい。かかる構成によれば、ユーザの好みに応じた動作モードを設定することが可能となる。 Also, the control unit 116 may set the operation mode according to the user's operation detected by the sensor unit 112 . With such a configuration, it is possible to set an operation mode according to user's preference.
 <4.補足>
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
<4. Supplement>
Although the preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also belong to the technical scope of the present invention.
 例えば、上記実施形態では、ユーザによるエアロゾルの吸引量を計算する方法について例示したが、本発明は上記説明した例に限定されない。エアロゾルの吸引量として、吸引期間の時間長が使用されてもよい。吸引期間の時間長は、吸引量が多いほど長くなると考えられるためである。この場合、制御部116は、第1の吸引期間の時間長が長いほど、第2の吸引期間における加熱部121への単位時間当たりの給電量を増加させる。かかる構成によれば、吸引量として、より取得容易な吸引期間の時間長を代用することができるので、吸引量の計算のための処理負荷を軽減することが可能となる。 For example, in the above embodiment, the method of calculating the amount of aerosol inhaled by the user was exemplified, but the present invention is not limited to the example described above. The length of time of the inhalation period may be used as the aerosol inhalation amount. This is because the length of time of the suction period is considered to increase as the amount of suction increases. In this case, the control unit 116 increases the power supply amount per unit time to the heating unit 121 in the second suction period as the time length of the first suction period is longer. According to this configuration, the time length of the suction period, which is easier to obtain, can be substituted for the suction amount, so it is possible to reduce the processing load for calculating the suction amount.
 例えば、上記実施形態では、第1の吸引期間が第2の吸引期間の1つ前の吸引期間である例を説明したが、本発明はかかる例に限定されない。第1の吸引期間は、第2の吸引期間の2つ以上前の吸引期間であってもよいし、過去の加熱セッションにおける吸引期間であってもよい。 For example, in the above embodiment, the first suction period is the suction period immediately before the second suction period, but the present invention is not limited to such an example. The first suction period may be two or more suction periods before the second suction period, or may be a suction period in a past heating session.
 例えば、上記実施形態では、第1の吸引期間が1つの吸引期間である例を説明したが、本発明はかかる例に限定されない。第1の吸引期間は、複数の吸引期間を含んでいてもよい。そして、第1の吸引期間におけるエアロゾルの吸引量は、第1の吸引期間に含まれる複数の吸引期間におけるエアロゾルの吸引量から計算される統計量であってもよい。統計値の一例としては、平均値又は重み付き平均値が挙げられる。例えば、前回の加熱セッションにおける複数の吸引期間におけるエアロゾルの吸引量の平均値に基づいて、今回の加熱セッションにおける給電制御が行われてもよい。かかる構成によれば、吸引期間ごとに発生したエアロゾルの吸引量のばらつきがユーザ体験の質に与える影響を軽減することが可能となる。 For example, in the above embodiment, an example in which the first suction period is one suction period has been described, but the present invention is not limited to such an example. The first suction period may include multiple suction periods. The amount of aerosol sucked in the first sucking period may be a statistic calculated from the sucked amount of aerosol in a plurality of sucking periods included in the first sucking period. An example of a statistic is an average or weighted average. For example, power supply control in the current heating session may be performed based on the average value of the amount of aerosol sucked in a plurality of sucking periods in the previous heating session. According to such a configuration, it is possible to reduce the influence of variations in the amount of aerosol sucked that occur in each sucking period on the quality of user experience.
 例えば、上記実施形態では、加熱プロファイルとは、加熱部121の温度の目標値の時系列推移が規定された情報であると説明したが、本発明はかかる例に限定されない。加熱プロファイルは、加熱部121の温度に関するパラメータの目標値の時系列推移が規定された情報であればよい。そして、制御部116は、加熱部121の温度に関するパラメータの実測値が、加熱プロファイルにおいて規定された加熱部121の温度に関するパラメータの目標値と同様に推移するように、加熱部121の動作を制御すればよい。加熱部121の温度に関するパラメータは、上記実施形態において説明した加熱部121の温度そのものの他に、加熱部121の抵抗値が挙げられる。 For example, in the above embodiment, the heating profile is information that defines the time-series transition of the target value of the temperature of the heating unit 121, but the present invention is not limited to this example. The heating profile may be any information that defines the time-series transition of the target value of the parameter related to the temperature of the heating unit 121 . Then, the control unit 116 controls the operation of the heating unit 121 so that the measured value of the parameter related to the temperature of the heating unit 121 transitions in the same manner as the target value of the parameter related to the temperature of the heating unit 121 defined in the heating profile. do it. Parameters related to the temperature of the heating unit 121 include the resistance value of the heating unit 121 in addition to the temperature itself of the heating unit 121 described in the above embodiment.
 例えば、上記実施形態では、第2の吸引期間において、加熱部121への単位時間当たりの給電量を増加させることで、加熱部121の温度が上昇する例を説明したが、本発明はかかる例に限定されない。例えば、ユーザによる吸引量が過度に多い場合、加熱部121への単位時間当たりの給電量の増加に伴う加熱部121の温度上昇の効果が打ち消され、加熱部121の温度が低下し得る。即ち、本発明は、必ずしも第2の吸引期間における加熱部121の温度を上昇させるものに限定されない。 For example, in the above-described embodiment, an example in which the temperature of the heating unit 121 is increased by increasing the amount of power supplied to the heating unit 121 per unit time during the second suction period has been described. is not limited to For example, if the amount of suction by the user is excessively large, the effect of increasing the temperature of the heating unit 121 due to the increase in the amount of power supplied to the heating unit 121 per unit time is canceled, and the temperature of the heating unit 121 may decrease. That is, the present invention is not necessarily limited to raising the temperature of the heating unit 121 during the second suction period.
 なお、本明細書において説明した各装置による一連の処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられる記録媒体(詳しくは、コンピュータにより読み取り可能な非一時的な記憶媒体)に予め格納される。そして、各プログラムは、例えば、本明細書において説明した各装置を制御するコンピュータによる実行時にRAMに読み込まれ、CPUなどのプロセッサにより実行される。上記記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。 A series of processes by each device described in this specification may be implemented using software, hardware, or a combination of software and hardware. A program that constitutes software is stored in advance in a recording medium (more specifically, a non-temporary computer-readable storage medium) provided inside or outside each device, for example. Each program, for example, is read into a RAM when executed by a computer that controls each device described in this specification, and is executed by a processor such as a CPU. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Also, the above computer program may be distributed, for example, via a network without using a recording medium.
 また、本明細書においてフローチャート及びシーケンス図を用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。 Also, the processes described using the flowcharts and sequence diagrams in this specification do not necessarily have to be executed in the illustrated order. Some processing steps may be performed in parallel. Also, additional processing steps may be employed, and some processing steps may be omitted.
 なお、以下のような構成も本発明の技術的範囲に属する。
(1)
 電源部と、
 エアロゾル源を含有した基材を保持する保持部と、
 前記保持部により保持された前記基材を前記電源部から供給された電力を使用して加熱する加熱部と、
 前記加熱部により加熱された前記基材から発生したエアロゾルの吸引に関する情報を検出する検出部と、
 前記電源部から前記加熱部への給電を制御する制御部と、
 を備え、
 前記制御部は、第1の吸引期間において前記検出部により検出された情報により示される前記第1の吸引期間における前記エアロゾルの吸引量が多いほど、前記第1の吸引期間よりも後の吸引期間である第2の吸引期間における前記加熱部への単位時間当たりの給電量を増加させる、
 エアロゾル生成システム。
(2)
 前記制御部は、前記第1の吸引期間における前記エアロゾルの吸引量が多いほど、前記第2の吸引期間における前記加熱部の温度を上昇させる、
 前記(1)に記載のエアロゾル生成システム。
(3)
 前記制御部は、前記第2の吸引期間の開始タイミングを予測し、予測した前記第2の吸引期間の開始タイミングにおける前記加熱部の温度が、前記加熱部の温度に関するパラメータの目標値の時系列推移を規定した加熱設定に対応する前記加熱部の温度と、前記第1の吸引期間における前記エアロゾルの吸引量が多いほど増加する温度上昇幅と、を加算した温度になるよう制御する、
 前記(2)に記載のエアロゾル生成システム。
(4)
 前記制御部は、予測した前記第2の吸引期間の開始タイミングから前記第2の吸引期間が実際に終了するまで、前記加熱設定に対応する前記加熱部の温度と前記温度上昇幅とを加算した温度に前記加熱部の温度が維持されるよう制御する、
 前記(3)に記載のエアロゾル生成システム。
(5)
 前記制御部は、前記第2の吸引期間における前記加熱部への単位時間当たりの給電量が、前記加熱設定に基づく第1の給電量と、前記温度上昇幅に対応する第2の給電量との和になるよう制御する、
 前記(3)又は(4)に記載のエアロゾル生成システム。
(6)
 前記制御部は、過去に検出された前記吸引期間の間隔に基づいて前記第2の吸引期間の開始タイミングを予測する、
 前記(3)~(5)のいずれか一項に記載のエアロゾル生成システム。
(7)
 前記エアロゾル生成システムは、前記加熱設定に対応する前記加熱部の温度と前記温度上昇幅とを加算した温度に前記加熱部の温度が達したタイミングを示す情報を通知する通知部をさらに備える、
 前記(3)~(6)のいずれか一項に記載のエアロゾル生成システム。
(8)
 前記制御部は、前記第1の吸引期間における前記エアロゾルの吸引量と前記第2の吸引期間における前記加熱部への単位時間当たりの給電量の増加量との対応関係を設定する、
 前記(1)~(7)のいずれか一項に記載のエアロゾル生成システム。
(9)
 前記制御部は、前記対応関係を、前記基材の種類に応じて設定する、
 前記(8)に記載のエアロゾル生成システム。
(10)
 前記エアロゾル生成システムは、他の装置と通信する通信部を備え、
 前記制御部は、前記対応関係を、前記通信部により受信された情報に応じて設定する、
 前記(8)又は(9)に記載のエアロゾル生成システム。
(11)
 前記制御部は、前記対応関係を、ユーザ操作に応じて設定する、
 前記(8)~(10)のいずれか一項に記載のエアロゾル生成システム。
(12)
 前記制御部は、
  第1の動作モード及び第2の動作モードを含む複数の動作モードから成る動作モード群から選択された前記動作モードを設定し、
  前記第1の動作モードが設定された場合には、前記第1の吸引期間における前記エアロゾルの吸引量が多いほど前記第2の吸引期間における前記加熱部への単位時間当たりの給電量を増加させる制御を実施し、
  前記第2の動作モードが設定された場合には、前記第1の吸引期間における前記エアロゾルの吸引量によらず前記第2の吸引期間における前記加熱部への単位時間当たりの給電量を制御する、
 前記(1)~(11)のいずれか一項に記載のエアロゾル生成システム。
(13)
 前記エアロゾル生成システムは、他の装置と通信する通信部を備え、
 前記制御部は、前記通信部により受信された情報に応じた前記動作モードで動作する、
 前記(12)に記載のエアロゾル生成システム。
(14)
 前記通信部は、前記第1の動作モード又は前記第2の動作モードを示す識別子を受信する、
 前記(13)に記載のエアロゾル生成システム。
(15)
 前記制御部は、第1の吸引期間において前記検出部により検出された情報により示される前記第1の吸引期間の時間長が長いほど、前記第1の吸引期間よりも後の吸引期間である第2の吸引期間における前記加熱部への単位時間当たりの給電量を増加させる、
 前記(1)~(14)のいずれか一項に記載のエアロゾル生成システム。
(16)
 前記第1の吸引期間は、複数の前記吸引期間を含み、
 前記第1の吸引期間における前記エアロゾルの吸引量は、前記第1の吸引期間に含まれる複数の前記吸引期間における前記エアロゾルの吸引量から計算される統計量である、
 前記(1)~(15)のいずれか一項に記載のエアロゾル生成システム。
(17)
 前記エアロゾル生成システムは、前記基材をさらに備える、
 前記(1)~(16)のいずれか一項に記載のエアロゾル生成システム。
(18)
 電源部と、エアロゾル源を含有した基材を保持する保持部と、前記保持部により保持された前記基材を前記電源部から供給された電力を使用して加熱する加熱部と、前記加熱部により加熱された前記基材から発生したエアロゾルの吸引に関する情報を検出する検出部と、を有するエアロゾル生成システムと通信する通信部と、
 第1の吸引期間において前記検出部により検出された情報により示される前記第1の吸引期間における前記エアロゾルの吸引量が多いほど、前記第1の吸引期間よりも後の吸引期間である第2の吸引期間における前記加熱部への単位時間当たりの給電量を増加させる制御の実施又は不実施を設定するための情報を前記エアロゾル生成システムへ送信するよう前記通信部を制御する制御部と、
 を備える端末装置。
The following configuration also belongs to the technical scope of the present invention.
(1)
a power supply;
a holding part holding a substrate containing an aerosol source;
a heating unit that heats the base material held by the holding unit using electric power supplied from the power supply unit;
a detection unit that detects information about suction of aerosol generated from the substrate heated by the heating unit;
a control unit that controls power supply from the power supply unit to the heating unit;
with
The controller determines that the greater the suction amount of the aerosol in the first suction period indicated by the information detected by the detection unit in the first suction period, the later the suction period than the first suction period. increasing the amount of power supplied to the heating unit per unit time in the second suction period,
Aerosol generation system.
(2)
The control unit increases the temperature of the heating unit during the second suction period as the suction amount of the aerosol during the first suction period increases.
The aerosol generating system according to (1) above.
(3)
The control unit predicts the start timing of the second suction period, and the temperature of the heating unit at the predicted start timing of the second suction period is a time series of target values of parameters related to the temperature of the heating unit. The temperature of the heating unit corresponding to the heating setting that defines the transition and the temperature increase width that increases as the amount of aerosol sucked in the first sucking period increases.
The aerosol generating system according to (2) above.
(4)
The control unit adds the temperature of the heating unit corresponding to the heating setting and the temperature rise range from the predicted start timing of the second suction period to the actual end of the second suction period. controlling the temperature so that the temperature of the heating unit is maintained;
The aerosol generating system according to (3) above.
(5)
The controller controls the power supply amount per unit time to the heating unit during the second suction period to be a first power supply amount based on the heating setting and a second power supply amount corresponding to the temperature rise range. is controlled to be the sum of
The aerosol generating system according to (3) or (4) above.
(6)
The control unit predicts the start timing of the second suction period based on the interval of the suction period detected in the past.
The aerosol generating system according to any one of (3) to (5) above.
(7)
The aerosol generation system further comprises a notification unit that notifies information indicating the timing when the temperature of the heating unit reaches a temperature obtained by adding the temperature of the heating unit corresponding to the heating setting and the temperature increase width.
The aerosol generating system according to any one of (3) to (6) above.
(8)
The control unit sets a correspondence relationship between the suction amount of the aerosol in the first suction period and the increase in the amount of power supply per unit time to the heating unit in the second suction period.
The aerosol generating system according to any one of (1) to (7) above.
(9)
The control unit sets the correspondence relationship according to the type of the base material,
The aerosol generating system according to (8) above.
(10)
The aerosol generation system comprises a communication unit that communicates with another device,
The control unit sets the correspondence relationship according to the information received by the communication unit.
The aerosol generating system according to (8) or (9) above.
(11)
The control unit sets the correspondence relationship according to a user operation,
The aerosol generating system according to any one of (8) to (10) above.
(12)
The control unit
setting the operation mode selected from an operation mode group consisting of a plurality of operation modes including a first operation mode and a second operation mode;
When the first operation mode is set, the amount of power supplied to the heating unit per unit time during the second suction period is increased as the amount of suction of the aerosol during the first suction period increases. enforce control,
When the second operation mode is set, the power supply amount per unit time to the heating unit during the second suction period is controlled regardless of the suction amount of the aerosol during the first suction period. ,
The aerosol generating system according to any one of (1) to (11) above.
(13)
The aerosol generation system comprises a communication unit that communicates with another device,
The control unit operates in the operation mode according to the information received by the communication unit.
The aerosol generating system according to (12) above.
(14)
the communication unit receives an identifier indicating the first operation mode or the second operation mode;
The aerosol generating system according to (13) above.
(15)
The controller determines that the longer the time length of the first suction period indicated by the information detected by the detection unit in the first suction period, the later the suction period than the first suction period. increasing the amount of power supplied per unit time to the heating unit during the suction period of 2;
The aerosol generating system according to any one of (1) to (14) above.
(16)
The first suction period includes a plurality of the suction periods,
The aerosol suction amount in the first suction period is a statistic calculated from the aerosol suction amounts in a plurality of the suction periods included in the first suction period.
The aerosol generating system according to any one of (1) to (15) above.
(17)
the aerosol-generating system further comprising the substrate;
The aerosol generating system according to any one of (1) to (16) above.
(18)
a power supply unit, a holding unit that holds a substrate containing an aerosol source, a heating unit that heats the substrate held by the holding unit using power supplied from the power supply unit, and the heating unit a communication unit that communicates with an aerosol generation system having a detection unit that detects information about inhalation of an aerosol generated from the substrate heated by
The greater the suction amount of the aerosol in the first suction period indicated by the information detected by the detection unit in the first suction period, the second suction period that is later than the first suction period. a control unit that controls the communication unit to transmit to the aerosol generation system information for setting whether or not to perform control for increasing the amount of power supplied to the heating unit per unit time during the suction period;
terminal device.
 1    システム
 100  吸引装置
 111  電源部
 112  センサ部
 113  通知部
 114  記憶部
 115  通信部
 116  制御部
 121  加熱部
 140  保持部
 141  内部空間
 142  開口
 143  底部
 144  断熱部
 150  スティック型基材
 151  基材部
 152  吸口部
 200  端末装置
 210  入力部
 220  出力部
 230  通信部
 240  記憶部
 250  制御部
Reference Signs List 1 system 100 suction device 111 power supply unit 112 sensor unit 113 notification unit 114 storage unit 115 communication unit 116 control unit 121 heating unit 140 holding unit 141 internal space 142 opening 143 bottom 144 heat insulating unit 150 stick-type substrate 151 substrate unit 152 mouthpiece Unit 200 Terminal device 210 Input unit 220 Output unit 230 Communication unit 240 Storage unit 250 Control unit

Claims (18)

  1.  電源部と、
     エアロゾル源を含有した基材を保持する保持部と、
     前記保持部により保持された前記基材を前記電源部から供給された電力を使用して加熱する加熱部と、
     前記加熱部により加熱された前記基材から発生したエアロゾルの吸引に関する情報を検出する検出部と、
     前記電源部から前記加熱部への給電を制御する制御部と、
     を備え、
     前記制御部は、第1の吸引期間において前記検出部により検出された情報により示される前記第1の吸引期間における前記エアロゾルの吸引量が多いほど、前記第1の吸引期間よりも後の吸引期間である第2の吸引期間における前記加熱部への単位時間当たりの給電量を増加させる、
     エアロゾル生成システム。
    a power supply;
    a holding part holding a substrate containing an aerosol source;
    a heating unit that heats the base material held by the holding unit using electric power supplied from the power supply unit;
    a detection unit that detects information about suction of aerosol generated from the substrate heated by the heating unit;
    a control unit that controls power supply from the power supply unit to the heating unit;
    with
    The controller determines that the greater the suction amount of the aerosol in the first suction period indicated by the information detected by the detection unit in the first suction period, the later the suction period than the first suction period. increasing the amount of power supplied to the heating unit per unit time in the second suction period,
    Aerosol generation system.
  2.  前記制御部は、前記第1の吸引期間における前記エアロゾルの吸引量が多いほど、前記第2の吸引期間における前記加熱部の温度を上昇させる、
     請求項1に記載のエアロゾル生成システム。
    The control unit increases the temperature of the heating unit during the second suction period as the suction amount of the aerosol during the first suction period increases.
    2. The aerosol generating system of claim 1.
  3.  前記制御部は、前記第2の吸引期間の開始タイミングを予測し、予測した前記第2の吸引期間の開始タイミングにおける前記加熱部の温度が、前記加熱部の温度に関するパラメータの目標値の時系列推移を規定した加熱設定に対応する前記加熱部の温度と、前記第1の吸引期間における前記エアロゾルの吸引量が多いほど増加する温度上昇幅と、を加算した温度になるよう制御する、
     請求項2に記載のエアロゾル生成システム。
    The control unit predicts the start timing of the second suction period, and the temperature of the heating unit at the predicted start timing of the second suction period is a time series of target values of parameters related to the temperature of the heating unit. The temperature of the heating unit corresponding to the heating setting that defines the transition and the temperature increase width that increases as the amount of aerosol sucked in the first sucking period increases.
    3. The aerosol generating system of claim 2.
  4.  前記制御部は、予測した前記第2の吸引期間の開始タイミングから前記第2の吸引期間が実際に終了するまで、前記加熱設定に対応する前記加熱部の温度と前記温度上昇幅とを加算した温度に前記加熱部の温度が維持されるよう制御する、
     請求項3に記載のエアロゾル生成システム。
    The control unit adds the temperature of the heating unit corresponding to the heating setting and the temperature rise range from the predicted start timing of the second suction period to the actual end of the second suction period. controlling the temperature so that the temperature of the heating unit is maintained;
    4. The aerosol generating system of claim 3.
  5.  前記制御部は、前記第2の吸引期間における前記加熱部への単位時間当たりの給電量が、前記加熱設定に基づく第1の給電量と、前記温度上昇幅に対応する第2の給電量との和になるよう制御する、
     請求項3又は4に記載のエアロゾル生成システム。
    The controller controls the power supply amount per unit time to the heating unit during the second suction period to be a first power supply amount based on the heating setting and a second power supply amount corresponding to the temperature rise range. is controlled to be the sum of
    5. An aerosol generating system according to claim 3 or 4.
  6.  前記制御部は、過去に検出された前記吸引期間の間隔に基づいて前記第2の吸引期間の開始タイミングを予測する、
     請求項3~5のいずれか一項に記載のエアロゾル生成システム。
    The control unit predicts the start timing of the second suction period based on the interval of the suction period detected in the past.
    Aerosol generating system according to any one of claims 3-5.
  7.  前記エアロゾル生成システムは、前記加熱設定に対応する前記加熱部の温度と前記温度上昇幅とを加算した温度に前記加熱部の温度が達したタイミングを示す情報を通知する通知部をさらに備える、
     請求項3~6のいずれか一項に記載のエアロゾル生成システム。
    The aerosol generation system further comprises a notification unit that notifies information indicating the timing when the temperature of the heating unit reaches a temperature obtained by adding the temperature of the heating unit corresponding to the heating setting and the temperature increase width.
    Aerosol generating system according to any one of claims 3-6.
  8.  前記制御部は、前記第1の吸引期間における前記エアロゾルの吸引量と前記第2の吸引期間における前記加熱部への単位時間当たりの給電量の増加量との対応関係を設定する、
     請求項1~7のいずれか一項に記載のエアロゾル生成システム。
    The control unit sets a correspondence relationship between the suction amount of the aerosol in the first suction period and the increase in the amount of power supply per unit time to the heating unit in the second suction period.
    Aerosol generating system according to any one of claims 1-7.
  9.  前記制御部は、前記対応関係を、前記基材の種類に応じて設定する、
     請求項8に記載のエアロゾル生成システム。
    The control unit sets the correspondence relationship according to the type of the base material,
    9. The aerosol generating system of claim 8.
  10.  前記エアロゾル生成システムは、他の装置と通信する通信部を備え、
     前記制御部は、前記対応関係を、前記通信部により受信された情報に応じて設定する、
     請求項8又は9に記載のエアロゾル生成システム。
    The aerosol generation system comprises a communication unit that communicates with another device,
    The control unit sets the correspondence relationship according to the information received by the communication unit.
    10. Aerosol generating system according to claim 8 or 9.
  11.  前記制御部は、前記対応関係を、ユーザ操作に応じて設定する、
     請求項8~10のいずれか一項に記載のエアロゾル生成システム。
    The control unit sets the correspondence relationship according to a user operation,
    Aerosol generating system according to any one of claims 8-10.
  12.  前記制御部は、
      第1の動作モード及び第2の動作モードを含む複数の動作モードから成る動作モード群から選択された前記動作モードを設定し、
      前記第1の動作モードが設定された場合には、前記第1の吸引期間における前記エアロゾルの吸引量が多いほど前記第2の吸引期間における前記加熱部への単位時間当たりの給電量を増加させる制御を実施し、
      前記第2の動作モードが設定された場合には、前記第1の吸引期間における前記エアロゾルの吸引量によらず前記第2の吸引期間における前記加熱部への単位時間当たりの給電量を制御する、
     請求項1~11のいずれか一項に記載のエアロゾル生成システム。
    The control unit
    setting the operation mode selected from an operation mode group consisting of a plurality of operation modes including a first operation mode and a second operation mode;
    When the first operation mode is set, the amount of power supplied to the heating unit per unit time during the second suction period is increased as the amount of suction of the aerosol during the first suction period increases. enforce control,
    When the second operation mode is set, the power supply amount per unit time to the heating unit during the second suction period is controlled regardless of the suction amount of the aerosol during the first suction period. ,
    Aerosol generating system according to any one of claims 1-11.
  13.  前記エアロゾル生成システムは、他の装置と通信する通信部を備え、
     前記制御部は、前記通信部により受信された情報に応じた前記動作モードで動作する、
     請求項12に記載のエアロゾル生成システム。
    The aerosol generation system comprises a communication unit that communicates with another device,
    The control unit operates in the operation mode according to the information received by the communication unit.
    13. The aerosol generating system of claim 12.
  14.  前記通信部は、前記第1の動作モード又は前記第2の動作モードを示す識別子を受信する、
     請求項13に記載のエアロゾル生成システム。
    the communication unit receives an identifier indicating the first operation mode or the second operation mode;
    14. The aerosol generating system of claim 13.
  15.  前記制御部は、第1の吸引期間において前記検出部により検出された情報により示される前記第1の吸引期間の時間長が長いほど、前記第1の吸引期間よりも後の吸引期間である第2の吸引期間における前記加熱部への単位時間当たりの給電量を増加させる、
     請求項1~14のいずれか一項に記載のエアロゾル生成システム。
    The controller determines that the longer the time length of the first suction period indicated by the information detected by the detection unit in the first suction period, the later the suction period than the first suction period. increasing the amount of power supplied per unit time to the heating unit during the suction period of 2;
    Aerosol generating system according to any one of claims 1-14.
  16.  前記第1の吸引期間は、複数の前記吸引期間を含み、
     前記第1の吸引期間における前記エアロゾルの吸引量は、前記第1の吸引期間に含まれる複数の前記吸引期間における前記エアロゾルの吸引量から計算される統計量である、
     請求項1~15のいずれか一項に記載のエアロゾル生成システム。
    The first suction period includes a plurality of the suction periods,
    The aerosol suction amount in the first suction period is a statistic calculated from the aerosol suction amounts in a plurality of the suction periods included in the first suction period.
    Aerosol generating system according to any one of claims 1-15.
  17.  前記エアロゾル生成システムは、前記基材をさらに備える、
     請求項1~16のいずれか一項に記載のエアロゾル生成システム。
    the aerosol-generating system further comprising the substrate;
    Aerosol generating system according to any one of claims 1-16.
  18.  電源部と、エアロゾル源を含有した基材を保持する保持部と、前記保持部により保持された前記基材を前記電源部から供給された電力を使用して加熱する加熱部と、前記加熱部により加熱された前記基材から発生したエアロゾルの吸引に関する情報を検出する検出部と、を有するエアロゾル生成システムと通信する通信部と、
     第1の吸引期間において前記検出部により検出された情報により示される前記第1の吸引期間における前記エアロゾルの吸引量が多いほど、前記第1の吸引期間よりも後の吸引期間である第2の吸引期間における前記加熱部への単位時間当たりの給電量を増加させる制御の実施又は不実施を設定するための情報を前記エアロゾル生成システムへ送信するよう前記通信部を制御する制御部と、
     を備える端末装置。
    a power supply unit, a holding unit that holds a substrate containing an aerosol source, a heating unit that heats the substrate held by the holding unit using power supplied from the power supply unit, and the heating unit a communication unit that communicates with an aerosol generation system having a detection unit that detects information about inhalation of an aerosol generated from the substrate heated by
    The greater the suction amount of the aerosol in the first suction period indicated by the information detected by the detection unit in the first suction period, the second suction period that is later than the first suction period. a control unit that controls the communication unit to transmit to the aerosol generation system information for setting execution or non-execution of control for increasing the amount of power supplied to the heating unit per unit time during the suction period;
    terminal device.
PCT/JP2021/046494 2021-12-16 2021-12-16 Aerosol generation system and terminal device WO2023112248A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046494 WO2023112248A1 (en) 2021-12-16 2021-12-16 Aerosol generation system and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046494 WO2023112248A1 (en) 2021-12-16 2021-12-16 Aerosol generation system and terminal device

Publications (1)

Publication Number Publication Date
WO2023112248A1 true WO2023112248A1 (en) 2023-06-22

Family

ID=86773809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046494 WO2023112248A1 (en) 2021-12-16 2021-12-16 Aerosol generation system and terminal device

Country Status (1)

Country Link
WO (1) WO2023112248A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082248A1 (en) * 2017-10-23 2019-05-02 日本たばこ産業株式会社 Inhalant component generation device, processor for external power supply, method for controlling inhalant component generating device, and program
WO2019146063A1 (en) * 2018-01-26 2019-08-01 日本たばこ産業株式会社 Aerosol generation device, and method and program for operating same
WO2020039589A1 (en) * 2018-08-24 2020-02-27 日本たばこ産業株式会社 Suction component generator, method for controlling suction component generator, and program therefor
WO2020044385A1 (en) * 2018-08-27 2020-03-05 日本たばこ産業株式会社 Flavor component delivery device
JP2020195386A (en) * 2020-08-18 2020-12-10 日本たばこ産業株式会社 Suction ingredient generation device, method for controlling suction ingredient generation device, suction ingredient generation system, and program
JP6890203B1 (en) * 2020-09-30 2021-06-18 日本たばこ産業株式会社 Power supply unit of aerosol generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082248A1 (en) * 2017-10-23 2019-05-02 日本たばこ産業株式会社 Inhalant component generation device, processor for external power supply, method for controlling inhalant component generating device, and program
WO2019146063A1 (en) * 2018-01-26 2019-08-01 日本たばこ産業株式会社 Aerosol generation device, and method and program for operating same
WO2020039589A1 (en) * 2018-08-24 2020-02-27 日本たばこ産業株式会社 Suction component generator, method for controlling suction component generator, and program therefor
WO2020044385A1 (en) * 2018-08-27 2020-03-05 日本たばこ産業株式会社 Flavor component delivery device
JP2020195386A (en) * 2020-08-18 2020-12-10 日本たばこ産業株式会社 Suction ingredient generation device, method for controlling suction ingredient generation device, suction ingredient generation system, and program
JP6890203B1 (en) * 2020-09-30 2021-06-18 日本たばこ産業株式会社 Power supply unit of aerosol generator

Similar Documents

Publication Publication Date Title
US20220361586A1 (en) Delivery prediction apparatus and method
WO2019011623A1 (en) Control of total particulate matter production
WO2021260894A1 (en) Inhaling device, control method, and program
WO2023112248A1 (en) Aerosol generation system and terminal device
EP4316286A1 (en) Inhalation device, control method, and program
EP4316290A1 (en) Inhalation device, control method, and program
WO2023112247A1 (en) Aerosol generation system and terminal device
EP4074200A1 (en) Inhalation device, control method, and program
US20220361585A1 (en) Electronic aerosol provision system and method
WO2022219673A1 (en) Control device, control method, and program
WO2023095216A1 (en) System and method
WO2023112149A1 (en) Information processing device, information processing method, and program
WO2023181180A1 (en) Information processing device, information processing method, and program
US20240108823A1 (en) Inhalation device, base material, and control method
WO2023037445A1 (en) Inhalation device, substrate, and control method
WO2023073931A1 (en) Inhalation device, base material, and control method
EP4212041A1 (en) Inhalation device, terminal device, and program
WO2023181280A1 (en) Aerosol generation system, control method, and program
EP4212043A1 (en) Inhalation device, terminal device, and program
EP4212046A1 (en) Inhalation device, terminal device, and program
EP4212044A1 (en) Inhalation device, terminal device, and program
WO2023181179A1 (en) Information processing device, information processing method, and program
WO2023073932A1 (en) Inhalation device, substrate, and control method
WO2024024004A1 (en) Aerosol generation system, control method, and program
WO2022130545A1 (en) Control method, inhalation device, terminal device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968163

Country of ref document: EP

Kind code of ref document: A1