WO2020039470A1 - 画像処理システム - Google Patents

画像処理システム Download PDF

Info

Publication number
WO2020039470A1
WO2020039470A1 PCT/JP2018/030642 JP2018030642W WO2020039470A1 WO 2020039470 A1 WO2020039470 A1 WO 2020039470A1 JP 2018030642 W JP2018030642 W JP 2018030642W WO 2020039470 A1 WO2020039470 A1 WO 2020039470A1
Authority
WO
WIPO (PCT)
Prior art keywords
image information
image
processing unit
information
processing system
Prior art date
Application number
PCT/JP2018/030642
Other languages
English (en)
French (fr)
Inventor
一人 小山
克彦 洞口
健二郎 兼平
典久 羽田
Original Assignee
ダットジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダットジャパン株式会社 filed Critical ダットジャパン株式会社
Priority to PCT/JP2018/030642 priority Critical patent/WO2020039470A1/ja
Priority to JP2020537904A priority patent/JP6910622B2/ja
Publication of WO2020039470A1 publication Critical patent/WO2020039470A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/387Composing, repositioning or otherwise geometrically modifying originals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to an image processing system.
  • Patent Documents 1 and 2 disclose techniques for associating feature points between image information.
  • Patent Document 3 discloses a technique for improving the accuracy of generating an object shape from a captured image.
  • Patent Literature 4 discloses an image evaluation method for selecting a good quality image.
  • processing time increases because high-resolution image information is used. For example, even if the overlap ratio between image information is about 60%, if the image information is about 5,000 sheets, even if a dedicated computer equipped with a GPU (Graphics Processing Unit) is used, it takes several days or one day. Processing time of about a week may be required. Therefore, a reduction in processing time is required.
  • the present inventors have invented an image processing system that can reduce the processing time required for reconstructing a three-dimensional model.
  • a first invention is an image processing system for a plurality of image information used for modeling an object, wherein the image processing system includes an image information input reception processing unit that receives an input of the plurality of image information, An overlap processing unit that specifies image information that satisfies a condition relating to a degree of overlap of a reference image information with a shooting area in the received image information, and an image quality determination process that determines image quality of the image information And determining, from among the image information specified by the overlap processing unit, image information that satisfies a condition related to image quality using a result determined by the image quality determination processing unit; Is an image processing system that selects an image as an output target.
  • a part of image information having a high degree of overlap can be thinned out, and the number of image information used for modeling can be reduced. Can be reduced.
  • image information is selected in consideration of image quality, modeling can be performed with high-quality image information, so that accuracy in modeling can be improved.
  • the image processing system includes: a photographing position estimating processing unit that estimates photographing position and other information when the input image information is not associated with photographing position and other information. It can be configured like a system.
  • the shooting of the target object is preferably performed. Can be estimated.
  • the photographing position estimation processing section calculates a moving amount by associating each feature point of the image information to be compared, and calculates a relative position using the calculated moving amount. To estimate information such as the photographing position of the image information.
  • the image processing system can be configured as an image processing system having a shooting area calculation processing unit that calculates a shooting area in the image information using information such as a shooting position in the image information. .
  • ⁇ ⁇ A shooting area of image information can be calculated by using the present invention.
  • a fifth invention is an image processing system, comprising: an image information input reception processing unit that receives input of a plurality of image information obtained by photographing an object; and an image information selection processing unit that selects image information from the plurality of image information.
  • the image information selection processing unit selects image information that satisfies a condition related to image quality from image information that satisfies a condition related to the degree of overlap of the imaging regions of image information. is there.
  • the present invention is preferably used when selecting necessary image information from a plurality of pieces of image information.
  • the image processing system includes an output processing unit that outputs the image information selected by the image information selection processing unit to software that executes a process of modeling an object based on the image information. It can be configured like a processing system.
  • the first invention can be realized by causing a computer to read and execute the program of the present invention. That is, the image information input reception processing unit that receives input of a plurality of pieces of image information used to model a target object, of the image information that has received the input, which overlaps with the shooting area of the reference image information An image processing program that functions as an overlap processing unit that specifies image information that satisfies a condition related to a degree, and an image quality determination processing unit that determines the image quality of the image information, wherein the image information specified by the overlap processing unit And an image processing program for identifying image information satisfying a condition relating to image quality using a result determined by the image quality determination processing unit, and selecting the image information as an output target.
  • the fifth invention can be realized by causing a computer to read and execute the program of the present invention. That is, an image processing program that causes a computer to function as an image information input reception processing unit that receives input of a plurality of pieces of image information of an image of an object and an image information selection processing unit that selects image information from the plurality of pieces of image information.
  • the image information selection processing unit is an image processing program that selects image information that satisfies a condition related to image quality from among image information that satisfies a condition related to the degree of overlap of imaging regions of image information.
  • the processing time required for reconstructing the three-dimensional model can be reduced.
  • image information in consideration of image quality, it is possible to improve the accuracy of reconstruction of a three-dimensional model.
  • FIG. 4 is a block diagram illustrating an example of a processing function of a shooting position estimation processing unit in the image processing system according to the present invention. It is a block diagram showing an example of the processing function of the image information selection processing part in the image processing system of the present invention.
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of a computer used in the image processing system of the present invention.
  • 5 is a flowchart illustrating an example of an overall processing process of the image processing system according to the present invention. 5 is a flowchart illustrating an example of a processing process of a photographing position estimation process of the image processing system of the present invention.
  • FIG. 6 is a flowchart illustrating an example of a processing process of image information selection processing of the image processing system of the present invention. It is a figure showing an example of the concept of processing in an image information selection processing part. 9 is a table showing experimental results comparing a case where SfM processing is executed using all image information and a case where SfM processing is executed using image information selected using the present invention. It is a figure which shows the 3D model which performed SfM processing using all the image information, and the 3D model which performed SfM processing using the image information selected using this invention.
  • FIG. 1 shows an example of the configuration of the entire processing function of the image processing system 1 of the present invention
  • FIG. 2 shows an example of the configuration of the processing function of a shooting position estimation processing section 21 described later
  • FIG. An example of the configuration of the processing function is shown in FIG. 3, and an example of the hardware configuration of a computer used in the image processing system 1 is shown in FIG.
  • the image processing system 1 uses the control computer 2.
  • the control computer 2 is a computer for implementing a processing function in the image processing system 1.
  • the control computer 2 includes an arithmetic device 70 such as a CPU that executes arithmetic processing of a program, a storage device 71 such as a RAM or a hard disk that stores information, a display device 72 such as a display, and an input device 73 that inputs information. And a communication device 74 for communicating processing results of the arithmetic device 70 and information stored in the storage device 71.
  • the display device 72 and the input device 73 may be integrally configured. Touch panel displays are often used in portable communication terminals such as tablet computers and smartphones, for example, but are not limited thereto.
  • the touch panel display is a device in which the functions of the display device 72 and the input device 73 are integrated in that the input can be directly performed on the display by a predetermined input device (such as a pen for a touch panel) or a finger.
  • a predetermined input device such as a pen for a touch panel
  • the image processing system 1 may be realized by one computer, but a part or all of the functions may be realized by a plurality of computers.
  • the computer in this case may be, for example, a cloud server.
  • the computer in the image processing system 1 may be a portable communication terminal such as a mobile phone, a smartphone, and a tablet computer.
  • the respective means in the image processing system 1 of the present invention are only logically distinguished in function, and may have the same physical or practical area.
  • the image processing system 1 includes an image information input reception processing unit 20, a shooting position estimation processing unit 21, a shooting area calculation processing unit 22, an image information selection processing unit 23, and an output processing unit 24.
  • the image information input reception processing unit 20 receives input of image information of an image of an object such as a structure from an imaging device or the like.
  • the image information may be a moving image or a still image. In the case of a moving image, processing is performed after converting the image into a still image for each frame. Image information obtained by capturing an object or the like is continuous, and the preceding and succeeding image information are close to each other in the capturing position. For this reason, in the image information for which the input is received by the image information input reception processing unit 20, the same area is photographed from different positions (different viewpoints) for the preceding and succeeding image information. Note that the same area may be photographed from the same position (the same viewpoint). Further, by attaching a device for recording the shooting position and the shooting direction to the shooting device, information indicating the shooting position and the shooting direction (information such as the shooting position) may be associated with each image information. .
  • the shooting position estimation processing unit 21 executes a process of estimating the shooting position and the like information of the image information when the shooting information and the like information are not associated with the image information. That is, of the image information received by the image information input reception processing unit 20, the feature points of two pieces of image information to be compared are associated with each other, and the relative position is calculated based on the information. presume.
  • the imaging position estimation processing unit 21 includes a feature point extraction processing unit 210, a feature point correspondence search processing unit 211, and a relative position calculation processing unit 212.
  • the feature point extraction processing unit 210 extracts feature points in the image information.
  • a process for extracting a feature point for example, SIFT, SURF, ORB, KAZE, or the like has been described as an example, but is not limited thereto.
  • the feature point correspondence search processing unit 211 obtains a projection matrix that associates feature points in two pieces of image information.
  • the relative position calculation processing unit 212 calculates a relative position of the image information PY with respect to the image information PX using the movement amount calculated based on the projection matrix specified by the feature point correspondence search processing unit 211, and obtains the information as a shooting position or the like. presume.
  • the feature point correspondence search processing unit 211 obtains a projection matrix that associates the feature point in the image information P1 with the feature point in the image information P2 by a known method. Since the feature point vectors are mainly translation and rotation, the other feature points are deleted as being erroneously determined. Then, the relative position calculation processing unit 212 calculates the amount of movement from the image information P1 to the image information P2 based on the projection matrix obtained by the feature point correspondence search processing unit 211, thereby obtaining the image information P1 of the image information P2. Is obtained and estimated as information such as a photographing position.
  • the photographing position estimation processing unit 21 may use the image information received by the image information input reception processing unit 20 as it is in the above-described processing. After the data amount is reduced by, for example, reducing the size of the data, the processing of the feature point extraction processing unit 210, the feature point correspondence search processing unit 211, and the relative position calculation processing unit 212 may be performed. This is because the color of the image information and the size of the image information are not required to extract the feature points.
  • the shooting area calculation processing unit 22 calculates the shooting area of the target object based on the shooting position information associated with the image information or the shooting position information estimated by the shooting position estimation processing unit 21. Specifically, input of information of the imaging device (imaging element size, focal length of the lens) and the average distance to the imaging target are received, and based on these information, the actual size (size) of the object shown in the image information is obtained. Is calculated. Then, a shooting area is calculated from shooting position and other information indicating a shooting position and a shooting direction, using a length of mm obtained by converting the length of a pixel unit of a shot image into an actual size.
  • the image information selection processing unit 23 executes a process of selecting necessary image information from the image information in the image information input reception processing unit 20 (decreasing unnecessary image information).
  • the image information selection processing unit 23 includes an overlap processing unit 230 and an image quality determination processing unit 231.
  • the overlap processing unit 230 specifies image information in which the overlap ratio of the image information of interest to the shooting area is equal to or greater than a predetermined threshold. Then, of the specified image information, the optimum image information by the image quality determination processing in the image quality determination processing unit 231 is specified and added as an output target list.
  • the overlap ratio can be calculated by calculating the ratio of how much the imaging regions of the two pieces of image information to be compared overlap.
  • the image quality determination processing unit 231 determines whether the image information is the optimal image information. Whether or not the image information is optimal can be determined by scoring elements related to image quality, such as image information with high contrast and image information with clear edges. Whether or not the image information is optimal is not limited to these, and any processing may be used as long as the processing is used to determine good image quality (no blurring or blurring in image information). Can be. For example, the image quality may be learned and determined by machine learning. Whether or not the contrast is high can be determined based on the variance of the luminance value in the image information, and a score (evaluation value) corresponding to the magnitude of the variance is given. Image information having a large variance is given a high score as high contrast.
  • Whether or not the image information has an edge can be obtained from the variance of the Laplacian filter (difference filter), and a score (evaluation value) corresponding to the magnitude of the variance is given.
  • a score evaluation value
  • an image quality score which is an evaluation value obtained by scoring elements related to image quality, is calculated. If the image quality score is high, it can be determined that the image information is suitable for reconstruction of a three-dimensional model or the like, and if the image quality score is low, it can be determined that the image information is not so.
  • the processing relating to the contrast and the edge is not limited to these, and other processing can be used.
  • the threshold value of the overlap ratio may receive an input at an arbitrary timing or may be set to a predetermined value in advance.
  • the process of scoring the image quality of each image information in the image quality determination processing section 231 may be performed at any timing as long as it is not used.
  • FIG. 8 shows an example of the concept of the processing in the image information selection processing unit 23.
  • the overlap processing unit 230 searches for image information that satisfies a predetermined overlap ratio (for example, 20%) from image information after the image information P1. .
  • a predetermined overlap ratio for example, 20%
  • the image information P2 the overlap rate to P1 is 60%
  • the image information P3 the overlap rate to P1 is 40%
  • the image information P4 the overlap rate to P1 is 20%
  • the image quality scores of the image information P2, P3, and P4 specified by the image quality determination processing unit 231 are 10, 30, and 20, respectively.
  • the overlap processing unit 230 selects the image information P3 having the highest image quality score and adds it to the output target list.
  • the overlap processing unit 230 searches for image information whose overlap ratio to the image information P3 is equal to or greater than a predetermined threshold from image information after the image information P3. .
  • the image information P4 (the overlap rate to P3 is 80%)
  • the image information P5 (the overlap rate to P3 is 40%)
  • the image information P6 (the overlap rate to P3 is 20%) are specified.
  • the image quality scores of the image information P4, P5, and P6 specified by the image quality determination processing unit 231 are 20, 30, and 40.
  • the overlap processing unit 230 selects the image information P6 having the highest image quality score and adds it to the output target list.
  • the overlap processing unit 230 repeats the same processing as described above on the basis of the selected image information P6 until there is no subsequent image information.
  • the overlap processing unit 230 selects the image information having the best image quality score determined by the image quality determination processing unit 231 from the image information that satisfies the overlap ratio threshold, but is not limited to one. May be selected. For example, image information whose image quality score is equal to or greater than a certain threshold may be added to the output target list. When a plurality of pieces of image information are selected, it is preferable, but not limited, to select the last one of the selected pieces of image information as the image information to be used as a reference for the next processing.
  • the image information selection processing unit 23 may execute a process of adding image information that is image information around the shooting area and that has not been added to the output target list to the output target list. More specifically, for the entire imaging area covered by the image information included in the output target list, an image in which the entire current imaging area can be enlarged from image information not included in the output target list This is done by adding information to the output target list.
  • the output processing unit 24 extracts the image information in the output target list, and outputs the extracted image information as image information used in the reconstruction processing of the three-dimensional model.
  • image information in the output target list is input to software that executes SfM processing.
  • the control computer 2 reads image information P1 to Pn obtained by photographing an object such as a structure to be three-dimensionally modeled, and the image information input reception processing unit 20 receives the input (S100). At this time, if there is information such as a photographing position, the input is received in association with the image information.
  • the image information input reception processing unit 20 causes the storage device 71 to store the input image information, the photographing position, and the like.
  • the shooting position estimation processing unit 21 executes a shooting position estimation process (S120).
  • the photographing position estimation processing unit 21 first converts the image information stored in the storage device 71 into gray scale, and reduces the vertical and horizontal sizes of the file by an equal size. Then, the feature point extraction processing unit 210 extracts a feature point of the image information P1 used as the origin of the information such as the photographing position (S200). Further, the photographing position and the photographing direction of the image information P1 are set as the reference origin. The photographing position and photographing direction may be input by a person in charge.
  • the feature point correspondence search processing unit 211 sets the image information P1 as the first comparative image PX, and sets the image information P2 next to the image information P1 as the second comparative image PY (S220). Further, the feature point extraction processing unit 210 extracts feature points of the second comparison image PY (image information P2) (S230).
  • the feature point correspondence search processing unit 211 deletes the feature points having vectors other than the translation and rotation. Then, a projection matrix that associates the feature points of the first comparative image PX with the feature points of the second comparative image PY is obtained (S240).
  • the relative position calculation processing unit 212 calculates the amount of movement from the shooting position of the first comparison image PX to the second comparison image PY based on the projection matrix, and calculates the relative position of the second comparison image PY. (S250).
  • the relative position of the image information P2 with respect to the shooting position of the image information P1 can be specified.
  • the second comparison image PY is used as the first comparison image PX
  • the image information P3 next to the second comparison image PY is used as the second comparison image. 2 is set as the comparison image PX (S270), and the same processing as in S230 and thereafter is repeated.
  • the photographing position estimation processing unit 21 determines the relative position based on information such as the photographing position of the image information P1 as the origin. , The absolute position of the information such as the photographing position of each image information is estimated.
  • the photographing position estimating processing unit 21 estimates the photographing position and other information of each image information as described above, or when the photographing position and other information is associated with the image information (S110), the photographing area calculation processing unit 22 Calculates the photographing area (the area where the image information is captured) in each of the image information P1 to Pn based on the photographing position information (S130).
  • the image information selection processing unit 23 After the photographing region calculation processing unit 22 calculates the photographing region in each of the image information P1 to Pn, the image information selection processing unit 23 performs an image information selection process of thinning out unnecessary image information and selecting necessary image information. (S140).
  • the image information selection processing unit 23 adds the image information P1 to the output target list as reference image information (S300). Then, the overlap processing unit 230 sets the image information P1 as the image information of interest P ⁇ and the shooting area A1 of the image information P1 as the shooting area A ⁇ of the image information of interest P ⁇ (S310).
  • the overlap processing unit 230 converts the image information having the photographing area that is equal to or more than the threshold value of the overlap ratio to the photographing area A ⁇ , for example, 20% or more, from the image information after the attention image information P ⁇ (image information P1). Search and specify (S320).
  • the image information P2 the overlap rate to P1 is 60%
  • the image information P3 the overlap rate to P1 is 40%
  • the image information P4 the overlap rate to P1 is 20%
  • the image information selection processing unit 23 performs image information having an image quality score that satisfies a predetermined condition based on the image quality score scored by the image quality determination processing unit 231.
  • the image information having the highest image quality score is specified as image information to be added to the output target list, and the image information is added to the output target list (S330).
  • the image quality scores of the image information P2, P3, and P4 specified by the image quality determination processing unit 231 are 10, 30, and 20, respectively
  • the image information P3 is specified as the image information to be added to the output target list. I do.
  • the image information P3 added to the output target list is set as the image information P ⁇
  • the shooting area A3 of the image information P3 is set as the shooting area A ⁇ of the image information P ⁇ (S330).
  • the image information P ⁇ (image information P3) is set as the target image information P ⁇
  • the shooting area A ⁇ is set as the shooting area A ⁇ of the target image information P ⁇ ( It is set as the shooting area A3) of the image information P3 (S350). Then, the processing from S320 is repeated.
  • the overlap processing unit 230 performs the same processing. For example, as shown in FIG. 8, image information having a photographing area whose overlap ratio with the photographing area A ⁇ (the photographing area A3 of the image information P3) is equal to or more than 20% is placed after the image information P ⁇ (image information P3). Searching from the image information of, the image information P4 (the overlap ratio to P3 is 80%), the image information P5 (the overlap ratio to P3 is 40%), and the image information P6 (the overlap ratio to P3 is 20%) are specified. (S320).
  • the image information satisfying the condition regarding the image quality score for example, the image information P6 having the best image quality score is selected from the output targets. It is specified as image information to be added to the list (S330).
  • the image information P ⁇ (image information P6) is set as the target image information P ⁇ , and the shooting region A ⁇ is set as the shooting region A ⁇ ( It is set as a shooting area A6 of the image information P6 (S350). Then, the processing from S320 is repeated.
  • the image information selection processing section 23 repeats the above processing until there is no subsequent image information.
  • the information of the output target list which is a list of image information selected by the image information selection processing unit 23, is stored in the storage device 71.
  • the image information selection processing unit 23 determines in S340 that there is no subsequent image information, the image information selection processing unit 23 adds the image information that is in the periphery of the shooting area and has not been added to the output target list to the output target list.
  • a process is performed (S360). This processing may be performed manually by a person in charge.
  • the output processing unit 24 extracts and outputs the image information in the output target list from the storage device 71 (S150). For example, image information is passed to software that executes SfM processing.
  • the software that executes the SfM processing executes the SfM processing based on the image information received from the image processing system 1 of the present invention, thereby shortening the processing time and improving the accuracy of the three-dimensional processing.
  • the model can be reconstructed.
  • FIG. 9 The experimental results shown in FIG. In the experiment of FIG. 9, Intel Core i7-6850K 3.6 GHz as a CPU, 64 GB as a memory, three NVIDIA GTX 1060 as Graphics, Windows 10 64 bit as an OS, and Agi PhotoScanVer. 1.4.1 was used.
  • the processing time when the SfM processing is performed on all 141 pieces of image information is 4 hours, 24 minutes, and 1 second, whereas the processing by the image processing system 1 of the present invention is performed.
  • the processing time of the processing of the present invention (pre-selection processing time) was 8 minutes and 45 seconds, and the processing time when the SfM processing was executed was 3 hours, 9 minutes and 50 seconds. Therefore, the total processing time is also 3 hours, 18 minutes, and 35 seconds, and the processing time of 1 hour, 5 minutes, and 26 seconds (about 30% of the whole) can be reduced.
  • all images are 141 images. However, in actual work, for example, about 5000 images of one bridge are used for reconstructing a three-dimensional model. Therefore, it takes about three days as a processing time. If the processing time of about 30% can be reduced by using the image processing system 1 of the present invention, the processing time of about 2.1 days is sufficient, and the processing time is greatly reduced.
  • FIG. 10 shows a three-dimensional model of the pier portion of the bridge when the data is output based on the experimental results of FIG.
  • FIG. 10A shows a case where the SfM process is performed using all 141 image information
  • FIG. 10B shows an SfM process using the 70 image information output by the process of the present invention. Is executed. Even if image information is selected by the processing of the present invention, a three-dimensional model can be reconstructed.
  • the image processing system 1 of the present invention can be applied not only to SfM processing but also to a case where one image information or a model is reconstructed based on a plurality of pieces of image information, for example, a case where a photograph of a structure is synthesized in a panoramic manner.
  • the processing time required for reconstructing the three-dimensional model can be reduced.
  • image information in consideration of image quality, it is possible to improve the accuracy of reconstruction of a three-dimensional model.
  • image processing system 2 control computer 20: image information input reception processing unit 21: shooting position estimation processing unit 22: shooting area calculation processing unit 23: image information selection processing unit 24: output processing unit 70: arithmetic unit 71: storage Device 72: Display device 73: Input device 74: Communication device 210: Feature point extraction processing unit 211: Feature point correspondence search processing unit 212: Relative position calculation processing unit 230: Overlap processing unit 231: Image quality determination processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

本発明は,画像処理システムを提供することを目的とする。 対象物をモデル化するために用いる複数の画像情報に対する画像処理システムであって,画像処理システムは,複数の画像情報の入力を受け付ける画像情報入力受付処理部と,入力を受け付けた画像情報のうち,基準とする画像情報の撮影領域との重複度合いに関する条件を充足する画像情報を特定するオーバーラップ処理部と,画像情報の画質の判定を行う画質判定処理部と,を有しており,オーバーラップ処理部において特定した画像情報のうち,画質判定処理部で判定した結果を用いて,画質に関する条件を充足する画像情報を特定し,その画像情報を出力対象として選択する,画像処理システムである。

Description

画像処理システム
 本発明は,画像処理システムに関する。
 近年,橋梁,ダム,トンネルなどの各種構造物の老朽化の維持管理や災害対策などの観点から,構造物の点検業務が重要となっている。構造物の点検業務においては,点検ロボットやUAV(Unmanned Aerial Vehicle),情報技術の活用する取り組みが行われている。
 そして点検業務の一つの方法として,検査対象物となる構造物の状況を3次元モデルで再現することで,構造物の損傷や劣化の状況をコンピュータの画面上で確認する方法がある。
 3次元モデルで再現する場合,構造物を多視点から撮影した画像情報を用い,画像情報間の特徴点を対応づけ,その特徴点の3次元上の座標を,三角測量の原理により,3次元形状を再現する技術を用いる。この技術は,SfM(Structure from Motion)と呼ばれている。
 SfMを用いる場合,同一の構造物の同一箇所を異なる視点から,少なくとも2以上の視点から画像を撮影していなければならない。そのため,SfMに用いる画像情報では,撮影位置を変更しながら,ほかの画像情報と撮影範囲が重なる(オーバーラップ)するように撮影されている。
 特許文献1および特許文献2には,画像情報間の特徴点を対応づける技術が開示されている。また特許文献3には撮影した画像から物体形状を生成する精度を向上させる技術が開示されている。さらに,特許文献4には良質の画像を選定する画像評価方法が開示されている。
特開2017-021427号公報 特開2017-041141号公報 特開2014-109819号公報 特開2008-234509号公報
 SfMを用いて構造物の画像を撮影して構造物の3次元モデルを生成する場合,2次元の画像情報から3次元に再構成する必要があることから,膨大な処理時間が発生する。とくに点検業務の場合,高解像度の画像情報を用いるため,処理時間が大きくなる。たとえば画像情報間のオーバーラップ率を60%程度とした場合であっても,画像情報が5000枚程度の場合,GPU(Graphics Processing Unit)を搭載した専用のコンピュータを用いたとしても数日や1週間程度の処理時間を要することがある。そのため処理時間の短縮が求められている。
 しかし特許文献1乃至特許文献3の技術をSfMに適用したとしても,多少の高速化は期待できる可能性があるが,大幅な処理時間の短縮を図ることはできない。なぜならSfMにおける処理時間は,画像情報の枚数の組み合わせ数に比例することから,SfMそのものにおける処理の高速化では解決が難しいからである。
 また,特許文献4の方法で選定される画像の「最良の写真」とは情緒的な「良い写真」の意味である。そのため,かかる方法を用いたとしても,計測上の精度の高いデータとしての意味での最良の写真を得ることはできない。
 そこで本発明者は上記課題に鑑み,3次元モデルの再構成に要する処理時間の短縮を図ることができる画像処理システムを発明した。
 第1の発明は,対象物をモデル化するために用いる複数の画像情報に対する画像処理システムであって,前記画像処理システムは,前記複数の画像情報の入力を受け付ける画像情報入力受付処理部と,前記入力を受け付けた画像情報のうち,基準とする画像情報の撮影領域との重複度合いに関する条件を充足する画像情報を特定するオーバーラップ処理部と,前記画像情報の画質の判定を行う画質判定処理部と,を有しており,前記オーバーラップ処理部において特定した画像情報のうち,前記画質判定処理部で判定した結果を用いて,画質に関する条件を充足する画像情報を特定し,その画像情報を出力対象として選択する,画像処理システムである。
 本発明のように構成することで,対象物をモデル化するために用いる画像情報のうち,重複度合いが高い画像情報についてはその一部を間引くことができ,モデル化に用いる画像情報の数を減らすことができる。また,画質を考慮して画像情報の選択をしているので,高品質の画像情報でモデル化を実行できるので,モデル化の際の精度を向上させることができる。
 上述の発明において,前記画像処理システムは,前記入力を受け付けた画像情報に撮影位置等情報が対応づけられていない場合には,撮影位置等情報を推定する撮影位置推定処理部,を有する画像処理システムのように構成することができる。
 撮影装置に撮影位置や撮影方向を計測する装置を取り付けた上で対象物の撮影を行うことが好ましいが,そうでない場合であっても,本発明の処理を用いることで,撮影位置や撮影方向である撮影位置等情報を推定することができる。
 上述の発明において,前記撮影位置推定処理部は,比較対象とする画像情報のそれぞれの特徴点を対応づけることでその移動量を算出し,前記算出した移動量を用いて相対位置を算出することで画像情報の撮影位置等情報を推定する,画像処理システムのように構成することができる。
 撮影位置等情報の推定処理にはさまざまな処理があるが,本発明の処理のように実行するとよい。
 上述の発明において,前記画像処理システムは,画像情報における撮影位置等情報を用いて,その画像情報における撮影領域を算出する撮影領域算出処理部,を有する画像処理システムのように構成することができる。
 画像情報の撮影領域は本発明を用いることで算出できる。
 第5の発明は,画像処理システムであって,対象物を撮影した複数の画像情報の入力を受け付ける画像情報入力受付処理部と,前記複数の画像情報から画像情報を選択する画像情報選択処理部と,を有しており,前記画像情報選択処理部は,画像情報の撮影領域の重複度合いに関する条件を充足する画像情報のうち,画質に関する条件を充足する画像情報を選択する,画像処理システムである。
 複数の画像情報から必要な画像情報を選択する場合には,本発明を用いることがよい。
 上述の発明において,前記画像処理システムは,前記画像情報選択処理部で選択した画像情報を,画像情報に基づいて対象物のモデル化の処理を実行するソフトウェアに出力する出力処理部,を有する画像処理システムのように構成することができる。
 上述の各発明は,本発明の処理によって選択した画像情報は,複数の画像情報に基づいて対象物をモデル化するためのソフトウェアに出力すると,高い技術的効果を得ることができる。
 第1の発明は,本発明のプログラムをコンピュータに読み込ませて実行することで実現できる。すなわち,コンピュータを,対象物をモデル化するために用いる複数の画像情報の入力を受け付ける画像情報入力受付処理部,前記入力を受け付けた画像情報のうち,基準とする画像情報の撮影領域との重複度合いに関する条件を充足する画像情報を特定するオーバーラップ処理部,前記画像情報の画質の判定を行う画質判定処理部,として機能させる画像処理プログラムであって,前記オーバーラップ処理部において特定した画像情報のうち,前記画質判定処理部で判定した結果を用いて,画質に関する条件を充足する画像情報を特定し,その画像情報を出力対象として選択する,画像処理プログラムである。
 第5の発明は,本発明のプログラムをコンピュータに読み込ませて実行することで実現できる。すなわち,コンピュータを,対象物を撮影した複数の画像情報の入力を受け付ける画像情報入力受付処理部,前記複数の画像情報から画像情報を選択する画像情報選択処理部,として機能させる画像処理プログラムであって,前記画像情報選択処理部は,画像情報の撮影領域の重複度合いに関する条件を充足する画像情報のうち,画質に関する条件を充足する画像情報を選択する,画像処理プログラムである。
 本発明の画像処理システムを発明することで,3次元モデルの再構成に要する処理時間の短縮を図ることができる。また,画質を加味した画像情報を選択することで,3次元モデルの再構成についても精度の向上を図ることができる。
本発明の画像処理システムの処理機能の一例を示すブロック図である。 本発明の画像処理システムにおける撮影位置推定処理部の処理機能の一例を示すブロック図である。 本発明の画像処理システムにおける画像情報選択処理部の処理機能の一例を示すブロック図である。 本発明の画像処理システムで用いるコンピュータのハードウェア構成の一例を示すブロック図である。 本発明の画像処理システムの全体の処理プロセスの一例を示すフローチャートである。 本発明の画像処理システムの撮影位置推定処理の処理プロセスの一例を示すフローチャートである。 本発明の画像処理システムの画像情報選択処理の処理プロセスの一例を示すフローチャートである。 画像情報選択処理部における処理の概念の一例を示す図である。 すべての画像情報を用いてSfMの処理を実行した場合と,本発明を用いて選択した画像情報を用いてSfMの処理を実行した場合を比較した実験結果を示す表である。 すべての画像情報を用いてSfMの処理を実行した3次元モデルと,本発明を用いて選択した画像情報を用いてSfMの処理を実行した3次元モデルとを示す図である。
 本発明の画像処理システム1の全体の処理機能の構成の一例を図1に,後述する撮影位置推定処理部21の処理機能の構成の一例を図2に,後述する画像情報選択処理部23の処理機能の構成の一例を図3に,画像処理システム1で用いるコンピュータのハードウェア構成の一例を図4に示す。
 画像処理システム1は制御コンピュータ2を用いる。制御コンピュータ2は,画像処理システム1における処理機能を実現するためのコンピュータである。
 制御コンピュータ2は,プログラムの演算処理を実行するCPUなどの演算装置70と,情報を記憶するRAMやハードディスクなどの記憶装置71と,ディスプレイなどの表示装置72と,情報の入力を行う入力装置73と,演算装置70の処理結果や記憶装置71に記憶する情報を通信する通信装置74とを有している。なお,コンピュータがタッチパネルディスプレイを備えている場合には表示装置72と入力装置73とが一体的に構成されていてもよい。タッチパネルディスプレイは,たとえばタブレット型コンピュータやスマートフォンなどの可搬型通信端末などで利用されることが多いが,それに限定するものではない。
 タッチパネルディスプレイは,そのディスプレイ上で,直接,所定の入力デバイス(タッチパネル用のペンなど)や指などによって入力を行える点で,表示装置72と入力装置73の機能が一体化した装置である。
 画像処理システム1は一台のコンピュータによって実現されていてもよいが,その一部または全部の機能が複数のコンピュータによって実現されていてもよい。この場合のコンピュータとして,たとえばクラウドサーバであってもよい。また,画像処理システム1におけるコンピュータが,携帯電話,スマートフォン,タブレット型コンピュータなどの可搬型通信端末であってもよい。
 本発明の画像処理システム1における各手段は,その機能が論理的に区別されているのみであって,物理上あるいは事実上は同一の領域を為していても良い。
 画像処理システム1は,画像情報入力受付処理部20と撮影位置推定処理部21と撮影領域算出処理部22と画像情報選択処理部23と出力処理部24とを有する。
 画像情報入力受付処理部20は,構造物などの対象物を撮影した画像情報の入力を撮影装置などから受け付ける。なお画像情報としては動画像であってもよいし静止画像であってもよい。動画像の場合には,フレームごとの静止画像に変換したうえで処理を実行する。対象物などを撮影した画像情報は連続しており,前後の画像情報同士は,撮影位置も近接している。そのため,画像情報入力受付処理部20で入力を受け付ける画像情報では,前後の画像情報について,同じ領域を異なる位置(異なる視点)から撮影している。なお,同じ領域を同じ位置(同じ視点)から撮影していてもよい。また,画像情報には,撮影位置および撮影方向を記録する装置を撮影装置に取り付けることで,画像情報ごとに撮影位置および撮影方向を示す情報(撮影位置等情報)を対応づけておいてもよい。
 撮影位置推定処理部21は,画像情報に撮影位置等情報が対応づけられていない場合に,当該画像情報の撮影位置等情報を推定する処理を実行する。すなわち,画像情報入力受付処理部20で入力を受け付けた画像情報のうち,比較対象とする2つの画像情報の特徴点を対応づけ,それに基づいて相対位置を算出することで,撮影位置等情報を推定する。
 撮影位置推定処理部21は,特徴点抽出処理部210と特徴点対応検索処理部211と相対位置算出処理部212とを有する。
 特徴点抽出処理部210は,画像情報における特徴点を抽出する。特徴点を抽出する処理としては,たとえばSIFT,SURF,ORB,KAZEなどが一例としたあるが,それに限定されない。
 特徴点対応検索処理部211は,2つの画像情報における特徴点を対応づける射影行列を求める。
 相対位置算出処理部212は,特徴点対応検索処理部211で特定した射影行列に基づいて算出した移動量を用いて,画像情報PXに対する画像情報PYの相対位置を算出し,撮影位置等情報として推定する。
 具体的には,画像情報入力受付処理部20で入力を受け付けた一つの画像情報P1,たとえば画像情報入力受付処理部20で入力を受け付けた画像情報のうちの最初の画像情報を特定し,その画像情報P1に対する特徴点を特徴点抽出処理部210が抽出する。また,その画像情報P1の撮影位置を原点として設定する。そして,当該画像情報P1と比較する画像情報P2(たとえば画像情報P1の次の画像情報など,画像情報P1にオーバーラップする領域がある画像情報)を特定し,画像情報P2の特徴点を特徴点抽出処理部210が抽出する。そして,特徴点対応検索処理部211は,画像情報P1における特徴点と画像情報P2における特徴点とを対応づける射影行列を公知の手法により求める。なお,特徴点のベクトルは主に,平行移動と回転であることから,それ以外の特徴点は誤判定であるとして削除する。そして,相対位置算出処理部212は,特徴点対応検索処理部211が求めた射影行列に基づいて,画像情報P1から画像情報P2への移動量を算出することで,画像情報P2の画像情報P1に対する相対位置を求め,撮影位置等情報として推定する。
 なお,撮影位置推定処理部21は,上述の処理において画像情報入力受付処理部20で受け付けた画像情報をそのまま用いてもよいが,たとえばグレースケールなどへの変換,ファイルの大きさ(縦や横の大きさ)の縮小などをしてデータ量を減らしたあとに,特徴点抽出処理部210,特徴点対応検索処理部211,相対位置算出処理部212の処理などをしてもよい。特徴点を抽出するにあたり,画像情報の色と画像情報の大きさは必要ないからである。
 撮影領域算出処理部22は,画像情報に対応づけられた撮影位置等情報または撮影位置推定処理部21で推定した撮影位置等情報に基づいて,対象物の撮影領域を算出する。具体的には撮影装置の情報(撮像素子サイズ,レンズの焦点距離)と撮影対象物までの平均距離の入力を受け付け,これらの情報に基づいて画像情報に写っている物体の実際のサイズ(大きさ)を算出する。そして,撮影画像のピクセル単位の長さを実寸換算したmmの長さを利用し,撮影位置と撮影方向とを示す撮影位置等情報から撮影領域を算出する。
 画像情報選択処理部23は,画像情報入力受付処理部20で画像情報のうち,必要な画像情報を選択する(不要な画像情報を間引く)処理を実行する。画像情報選択処理部23は,オーバーラップ処理部230と画質判定処理部231とを有する。
 オーバーラップ処理部230は,注目する画像情報の撮影領域へのオーバーラップ率が所定の閾値以上である画像情報を特定する。そして,特定した画像情報のうち,画質判定処理部231における画質判定処理による最適な画像情報を特定し,出力対象リストとして追加する。オーバーラップ率は比較対象とする2つの画像情報の撮影領域がどれだけ重複しているかの比率の算出で行える。
 画質判定処理部231は,画像情報が最適な画像情報であるか否かを判定する。最適な画像情報か否かは,コントラストが高い画像情報であるか,エッジのはっきりした画像情報であるかなど,画質に関する要素をスコアリングすることで判定できる。最適な画像情報であるか否かは,これらに限定するものではなく,画質の良さ(画像情報にボケやブレがない)を判定することに用いる処理であればいかなる処理であっても用いることができる。たとえば機械学習によって,画質の良さを学習させ,判定させてもよい。コントラストが高いか否かは,画像情報における輝度値の分散に基づいて判定でき,分散の大きさに応じたスコア(評価値)を付与する。分散が大きい画像情報は高コントラストとして高いスコアが付与される。またエッジのある画像情報か否かは,ラプラシアンフィルタ(差分フィルタ)の分散から求めることができ,分散の大きさに応じたスコア(評価値)を付与する。コントラストおよびエッジに対する各評価値を用いて所定の演算をすることで,画質に関する要素をスコアリングした評価値である画質スコアを算出する。画質スコアが高ければ3次元モデルの再構成などに向いている計測上の精度の高い画像情報と判定でき,低ければそうではない画像情報と判定できる。なお,コントラスト,エッジに関する処理についても,これらに限定するものではなく,ほかの処理を用いることができる。また,オーバーラップ率の閾値は,任意のタイミングで入力を受け付けてもよいし,あらかじめ所定値が設定されていてもよい。
 画質判定処理部231における各画像情報の画質をスコアリングする処理は,それを用いる前であればいかなるタイミングで行ってもよい。
 図8に画像情報選択処理部23における処理の概念の一例を示す。注目する画像情報がP1であったとき,オーバーラップ処理部230は,あらかじめ定められたオーバーラップ率(たとえば20%)を充足する画像情報を,画像情報P1よりも後の画像情報から探索をする。そして,探索の結果,画像情報P2(P1へのオーバーラップ率60%),画像情報P3(P1へのオーバーラップ率40%,),画像情報P4(P1へのオーバーラップ20%)を特定したとする。また,画質判定処理部231で特定した画像情報P2,P3,P4の画質スコアがそれぞれ10,30,20であったとする。
 このとき,オーバーラップ処理部230は,もっとも画質スコアの高い画像情報P3を選択し,出力対象リストに追加をする。
 つぎに,オーバーラップ処理部230は,選択した画像情報P3を基準に,画像情報P3へのオーバーラップ率が所定の閾値以上の画像情報を,画像情報P3よりも後の画像情報から探索をする。そして,探索の結果,画像情報P4(P3へのオーバーラップ率80%),画像情報P5(P3へのオーバーラップ率40%,),画像情報P6(P3へのオーバーラップ20%)を特定したとする。また,画質判定処理部231で特定した画像情報P4,P5,P6の画質スコアが20,30,40であったとする。このとき,オーバーラップ処理部230は,もっとも画質スコアの高い画像情報P6を選択し,出力対象リストに追加をする。
 つぎに,オーバーラップ処理部230は,選択した画像情報P6を基準に,上述と同様の処理を,後続する画像情報がなくなるまで繰り返す。
 このように,従来であれば,画像情報P1乃至P6の6枚の画像情報があったところ,画像情報P1,画像情報P3,画像情報P6の3枚のみを選択し,画像情報P2,画像情報P4,画像情報P5を間引くことができる。また選択した3枚の画像情報はいずれも画質がオーバーラップしていたほかの画像情報より良いので,3次元モデルの再構成にあたり,精度を向上することもできる。
 なお,オーバーラップ処理部230は,オーバーラップ率の閾値を充足する画像情報のうち,画質判定処理部231で判定した画質スコアがもっともよい画像情報を選択したが,一つに限ることなく,複数の画像情報を選択するようにしても良い。たとえば画質スコアが一定の閾値以上である画像情報を出力対象リストに追加するようにしても良い。複数の画像情報を選択した場合,次の処理の基準とする画像情報としては,選択した画像情報のうち,もっとも後ろにある画像情報を選択することが好ましいがそれに限定しない。
 また,オーバーラップによる判定で画像情報を選択する場合,たとえば構造物の隅の方の画像情報など,画像情報の抜けが発生する可能性がある。そこで,画像情報選択処理部23は,撮影領域の周辺にある画像情報であって,出力対象リストに加えていない画像情報を出力対象リストに追加をする処理を実行してもよい。具体的には,出力対象リストに含まれている画像情報がカバーしている撮影領域全体に対し,出力対象リストに含まれていない画像情報から,今の撮影領域全体を拡大することができる画像情報を出力対象リストに追加することで行う。
 出力処理部24は,出力対象リストにある画像情報を抽出し,3次元モデルの再構成処理などで用いる画像情報として出力をする。たとえばSfMの処理を実行するソフトウェアに出力対象リストにある画像情報を入力する。
 つぎに本発明の画像処理システム1を用いた処理プロセスの一例を,図5乃至図7のフローチャートを用いて説明する。
 まず3次元モデル化する構造物などの対象物を撮影した画像情報P1乃至Pnを制御コンピュータ2に読み込ませ,画像情報入力受付処理部20でその入力を受け付ける(S100)。この際に,撮影位置等情報がある場合には,画像情報に対応づけてその入力を受け付ける。画像情報入力受付処理部20は,入力を受け付けた画像情報,撮影位置等情報を記憶装置71に記憶させる。
 そして撮影位置等情報が画像情報に対応づけられていない場合(S110),撮影位置推定処理部21は,撮影位置推定処理を実行する(S120)。
 具体的には,まず撮影位置推定処理部21は,記憶装置71に記憶した画像情報について,グレースケールに変換をし,また,ファイルの縦,横のサイズを等倍で縮小する。そして,特徴点抽出処理部210は,撮影位置等情報の原点として用いる画像情報P1の特徴点を抽出する(S200)。また画像情報P1の撮影位置およびその撮影方向を基準となる原点として設定する。なお,撮影位置および撮影方向は,担当者による入力を受け付けてもよい。
 そして,特徴点対応検索処理部211は,画像情報P1を第1の比較画像PX,画像情報P1の次の画像情報P2を第2の比較画像PYとして設定する(S220)。また特徴点抽出処理部210は,第2の比較画像PY(画像情報P2)の特徴点を抽出する(S230)。
 このように第1の比較画像PX,第2の比較画像PYの特徴点がそれぞれ抽出できると,特徴点対応検索処理部211は,平行移動と回転以外であるベクトルを有する特徴点を削除した上で,第1の比較画像PXの特徴点と,第2の比較画像PYの特徴点とを対応づける射影行列を求める(S240)。
 そして,相対位置算出処理部212は,射影行列に基づいて第1の比較画像PXの撮影位置から第2の比較画像PYへの移動量を算出し,第2の比較画像PYの相対位置を算出する(S250)。これによって,画像情報P2の画像情報P1の撮影位置に対する相対位置が特定できる。
 そして,画像情報P2の次に画像情報がある場合(S260),第2の比較画像PYを第1の比較画像PX,第2の比較画像PY(画像情報P2)の次の画像情報P3を第2の比較画像PXとして設定して(S270),S230以降と同様の処理を反復する。
 このような処理を実行することで,隣り合う画像情報同士の相対位置が特定できるので,撮影位置推定処理部21は,原点とした画像情報P1の撮影位置等情報に基づいて相対位置を絶対位置に変換することで,各画像情報の撮影位置等情報の絶対位置を推定する。
 以上のようにして撮影位置推定処理部21で各画像情報の撮影位置等情報の推定処理後,または画像情報に撮影位置等情報が対応づけられている場合(S110),撮影領域算出処理部22が,撮影位置等情報に基づいて,各画像情報P1乃至Pnにおける撮影領域(画像情報が写している領域)を算出する(S130)。
 撮影領域算出処理部22において,各画像情報P1乃至Pnにおける撮影領域を算出後,画像情報選択処理部23は,不要な画像情報を間引き,必要な画像情報を選択する画像情報選択処理を実行する(S140)。
 まず画像情報選択処理部23は,基準とする画像情報として画像情報P1を出力対象リストに追加する(S300)。そしてオーバーラップ処理部230は,画像情報P1を注目画像情報Pαに,画像情報P1の撮影領域A1を注目画像情報Pαの撮影領域Aαとして設定する(S310)。
 そして,オーバーラップ処理部230は,撮影領域Aαへのオーバーラップ率の閾値以上,たとえば20%以上となる撮影領域を有する画像情報を,注目画像情報Pα(画像情報P1)より後の画像情報から探索し,特定する(S320)。図8の場合,画像情報P2(P1へのオーバーラップ率60%),画像情報P3(P1へのオーバーラップ率40%,),画像情報P4(P1へのオーバーラップ20%)を特定したとする。なお,画像情報は連続的であるため,いったん,オーバーラップ率の閾値を充足しない画像情報があった場合,それ以後の画像情報ではオーバーラップ率の閾値を充足することは考えにくい。そのため,オーバーラップ処理部230がオーバーラップ率の閾値を充足しない画像情報があることを判定した場合には,その時点でオーバーラップ率を充足する画像情報の探索を終了してもよい。
 そしてS320においてオーバーラップ率を充足する画像情報を特定すると,画像情報選択処理部23は,画質判定処理部231でスコアリングした画質スコアに基づいて,所定条件を充足する画質スコアを有する画像情報,たとえばもっとも高い画質スコアを有する画像情報を出力対象リストに追加する画像情報として特定し,その画像情報を出力対象リストに追加する(S330)。たとえば,図8において,画質判定処理部231で特定した画像情報P2,P3,P4の画質スコアがそれぞれ10,30,20であったとすると,画像情報P3を出力対象リストに追加する画像情報として特定する。また,出力対象リストに追加した画像情報P3を画像情報Pβ,画像情報P3の撮影領域A3を画像情報Pβの撮影領域Aβとして設定する(S330)。
 そして出力対象リストに追加した画像情報P3のあとに画像情報がある場合(S340),画像情報Pβ(画像情報P3)を注目画像情報Pαに,撮影領域Aβを注目画像情報Pαの撮影領域Aα(画像情報P3の撮影領域A3)として設定する(S350)。そして,S320以降の処理を反復する。
 オーバーラップ処理部230は,同様の処理を実行する。たとえば図8に示すように,撮影領域Aα(画像情報P3の撮影領域A3)へのオーバーラップ率が20%以上となる撮影領域を有する画像情報を,注目画像情報Pα(画像情報P3)より後の画像情報から探索し,画像情報P4(P3へのオーバーラップ率80%),画像情報P5(P3へのオーバーラップ率40%,),画像情報P6(P3へのオーバーラップ20%)を特定する(S320)。そして,特定した画像情報P4,P5,P6の画質スコアが20,30,40であったとすると,その中から画質スコアに関する条件を充足する画像情報,たとえば画質スコアがもっともよい画像情報P6を出力対象リストに追加する画像情報として特定する(S330)。
 そして出力対象リストに追加した画像情報P6のあとに画像情報がある場合(S340),画像情報Pβ(画像情報P6)を注目画像情報Pαに,撮影領域Aβを注目画像情報Pαの撮影領域Aα(画像情報P6の撮影領域A6)として設定する(S350)。そして,S320以降の処理を反復する。
 画像情報選択処理部23は,以上の処理を,後続する画像情報がなくなるまで繰り返す。
 なお画像情報選択処理部23が選択した画像情報のリストである出力対象リストの情報は,記憶装置71に記憶される。
 画像情報選択処理部23は,S340で後続する画像情報がなくなったことを判定すると,撮影領域の周辺にある画像情報であって,出力対象リストに加えていない画像情報を出力対象リストに追加をする処理を実行する(S360)。この処理としては,担当者が手作業で行ってもよい。
 以上のように画像情報選択処理部23による画像情報選択処理の終了後,出力処理部24は,出力対象リストにある画像情報を記憶装置71から抽出して出力する(S150)。たとえばSfMの処理を実行するソフトウェアに画像情報を渡す。
 そしてSfMの処理を実行するソフトウェアは,本発明の画像処理システム1から受け取った画像情報に基づいてSfMの処理を実行することで,従来よりも処理時間を短縮して,かつ精度の良い3次元モデルの再構成を行うことができる。
 本発明の画像処理システム1を用いることで,対象物の全体を一度に処理するのではなく,部分(たとえば橋梁のうち橋脚部分)に分けて処理を実行することが可能となる。
 対象物(橋梁の橋脚部分)を撮影したすべての画像情報が141枚の場合について,本発明の画像処理システムによってオーバーラップ率を70%以上として選択した画像情報が70枚となったとき,図9に示す実験結果となった。なお,図9の実験では,CPUとしてIntel Core i7-6850K 3.6GHz,メモリとして64GB,GraphicsとしてNVIDIA GTX1060を3枚,OSとしてWindows10 64bit,三次元化プログラムとしてAgi社PhotoScanVer.1.4.1を用いた。
 図9の実験結果によれば,141枚のすべての画像情報についてSfMの処理を実行した場合の処理時間が4時間24分1秒であるのに対し,本発明の画像処理システム1による処理を用いた場合には,本発明の処理(事前選別処理時間)の処理時間が8分45秒,SfMの処理を実行した場合の処理時間が3時間9分50秒であった。そのため,合計の処理時間でも3時間18分35秒となり,1時間5分26秒(全体の30%程度)の処理時間を短縮できている。図9ではすべての画像が141枚であったが,実際の作業では,たとえば一つの橋梁は5000枚程度の画像情報が3次元モデルの再構成に用いられる。そのため処理時間として3日程度要している。本発明の画像処理システム1を用いて30%程度の処理時間が短縮できれば,2.1日程度の処理時間で足り,大幅な処理時間の短縮となる。
 また図9の実験結果で出力した際の,橋梁の橋脚部分の3次元モデルが図10である。図10(a)が141枚のすべての画像情報を用いてSfMの処理を実行した場合であり,図10(b)が本発明の処理によって出力した70枚の画像情報を用いてSfMの処理を実行した場合である。本発明の処理によって画像情報を選択したとしても,3次元モデルを再構成できる。
 本発明の画像処理システム1は,SfMの処理のほか,複数の画像情報に基づいて一つの画像情報やモデルを再構成する場合,たとえば構造物の写真をパノラマ合成する場合などにも適用できる。
 また,機械学習用の正解データの作成処理にも用いることができる。すなわち,画像情報に写っている物体を認識するための機械学習をさせるには,画像情報のどこに何が写っているのかの正解データを用意しなければならない。この正解データの作成の際に,物体を撮影した画像情報から同じような画像情報(オーバーラップ率が大きく変化のない画像情報)を取り除いて正解データを作成する作業を効率化する処理にも適用することができる。
 本発明の画像処理システム1を発明することで,3次元モデルの再構成に要する処理時間の短縮を図ることができる。また,画質を加味した画像情報を選択することで,3次元モデルの再構成についても精度の向上を図ることができる。
 1:画像処理システム
 2:制御コンピュータ
20:画像情報入力受付処理部
21:撮影位置推定処理部
22:撮影領域算出処理部
23:画像情報選択処理部
24:出力処理部
70:演算装置
71:記憶装置
72:表示装置
73:入力装置
74:通信装置
210:特徴点抽出処理部
211:特徴点対応検索処理部
212:相対位置算出処理部
230:オーバーラップ処理部
231:画質判定処理部

Claims (8)

  1.  対象物をモデル化するために用いる複数の画像情報に対する画像処理システムであって,
     前記画像処理システムは,
     前記複数の画像情報の入力を受け付ける画像情報入力受付処理部と,
     前記入力を受け付けた画像情報のうち,基準とする画像情報の撮影領域との重複度合いに関する条件を充足する画像情報を特定するオーバーラップ処理部と,
     前記画像情報の画質の判定を行う画質判定処理部と,を有しており,
     前記オーバーラップ処理部において特定した画像情報のうち,前記画質判定処理部で判定した結果を用いて,画質に関する条件を充足する画像情報を特定し,その画像情報を出力対象として選択する,
     ことを特徴とする画像処理システム。
  2.  前記画像処理システムは,
     前記入力を受け付けた画像情報に撮影位置等情報が対応づけられていない場合には,撮影位置等情報を推定する撮影位置推定処理部,
     を有することを特徴とする請求項1に記載の画像処理システム。
  3.  前記撮影位置推定処理部は,
     比較対象とする画像情報のそれぞれの特徴点を対応づけることでその移動量を算出し,前記算出した移動量を用いて相対位置を算出することで画像情報の撮影位置等情報を推定する,
     ことを特徴とする請求項2に記載の画像処理システム。
  4.  前記画像処理システムは,
     画像情報における撮影位置等情報を用いて,その画像情報における撮影領域を算出する撮影領域算出処理部,
     を有することを特徴とする請求項2または請求項3に記載の画像処理システム。
  5.  画像処理システムであって,
     対象物を撮影した複数の画像情報の入力を受け付ける画像情報入力受付処理部と,
     前記複数の画像情報から画像情報を選択する画像情報選択処理部と,を有しており,
     前記画像情報選択処理部は,
     画像情報の撮影領域の重複度合いに関する条件を充足する画像情報のうち,画質に関する条件を充足する画像情報を選択する,
     ことを特徴とする画像処理システム。
  6.  前記画像処理システムは,
     前記画像情報選択処理部で選択した画像情報を,画像情報に基づいて対象物のモデル化の処理を実行するソフトウェアに出力する出力処理部,
     を有することを特徴とする請求項1から請求項5のいずれかに記載の画像処理システム。
  7.  コンピュータを,
     対象物をモデル化するために用いる複数の画像情報の入力を受け付ける画像情報入力受付処理部,
     前記入力を受け付けた画像情報のうち,基準とする画像情報の撮影領域との重複度合いに関する条件を充足する画像情報を特定するオーバーラップ処理部,
     前記画像情報の画質の判定を行う画質判定処理部,
     として機能させる画像処理プログラムであって,
     前記オーバーラップ処理部において特定した画像情報のうち,前記画質判定処理部で判定した結果を用いて,画質に関する条件を充足する画像情報を特定し,その画像情報を出力対象として選択する,
     ことを特徴とする画像処理プログラム。
  8.  コンピュータを,
     対象物を撮影した複数の画像情報の入力を受け付ける画像情報入力受付処理部,
     前記複数の画像情報から画像情報を選択する画像情報選択処理部,
     として機能させる画像処理プログラムであって,
     前記画像情報選択処理部は,
     画像情報の撮影領域の重複度合いに関する条件を充足する画像情報のうち,画質に関する条件を充足する画像情報を選択する,
     ことを特徴とする画像処理プログラム。
PCT/JP2018/030642 2018-08-20 2018-08-20 画像処理システム WO2020039470A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/030642 WO2020039470A1 (ja) 2018-08-20 2018-08-20 画像処理システム
JP2020537904A JP6910622B2 (ja) 2018-08-20 2018-08-20 画像処理システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/030642 WO2020039470A1 (ja) 2018-08-20 2018-08-20 画像処理システム

Publications (1)

Publication Number Publication Date
WO2020039470A1 true WO2020039470A1 (ja) 2020-02-27

Family

ID=69592502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030642 WO2020039470A1 (ja) 2018-08-20 2018-08-20 画像処理システム

Country Status (2)

Country Link
JP (1) JP6910622B2 (ja)
WO (1) WO2020039470A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181024A1 (ja) * 2021-02-26 2022-09-01 富士フイルム株式会社 情報処理装置、情報処理方法、及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139367A (ja) * 2009-12-28 2011-07-14 Canon Inc 画像処理装置および画像処理方法
JP2017182695A (ja) * 2016-03-31 2017-10-05 富士通株式会社 情報処理プログラム、情報処理方法および情報処理装置
JP2018090982A (ja) * 2016-11-30 2018-06-14 国際航業株式会社 点検装置、及び点検方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139367A (ja) * 2009-12-28 2011-07-14 Canon Inc 画像処理装置および画像処理方法
JP2017182695A (ja) * 2016-03-31 2017-10-05 富士通株式会社 情報処理プログラム、情報処理方法および情報処理装置
JP2018090982A (ja) * 2016-11-30 2018-06-14 国際航業株式会社 点検装置、及び点検方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181024A1 (ja) * 2021-02-26 2022-09-01 富士フイルム株式会社 情報処理装置、情報処理方法、及びプログラム

Also Published As

Publication number Publication date
JPWO2020039470A1 (ja) 2021-08-10
JP6910622B2 (ja) 2021-07-28

Similar Documents

Publication Publication Date Title
US10789765B2 (en) Three-dimensional reconstruction method
US8928736B2 (en) Three-dimensional modeling apparatus, three-dimensional modeling method and computer-readable recording medium storing three-dimensional modeling program
JP6491517B2 (ja) 画像認識ar装置並びにその姿勢推定装置及び姿勢追跡装置
JP5977591B2 (ja) 画像処理装置及びそれを備えた撮像装置、画像処理方法、並びに画像処理プログラムを記録したコンピュータ読み取り可能な記録媒体
US9542735B2 (en) Method and device to compose an image by eliminating one or more moving objects
US8368768B2 (en) Image processing apparatus, image processing method, and program
WO2017091927A1 (zh) 图像处理方法和双摄像头系统
CN107749987B (zh) 一种基于块运动估计的数字视频稳像方法
US10785469B2 (en) Generation apparatus and method for generating a virtual viewpoint image
US20200410688A1 (en) Image Segmentation Method, Image Segmentation Apparatus, Image Segmentation Device
US11900529B2 (en) Image processing apparatus and method for generation of a three-dimensional model used for generating a virtual viewpoint image
CN105809664B (zh) 生成三维图像的方法和装置
CN111105452A (zh) 基于双目视觉的高低分辨率融合立体匹配方法
CN114981845A (zh) 图像扫描方法及装置、设备、存储介质
JP6910622B2 (ja) 画像処理システム
US20120038785A1 (en) Method for producing high resolution image
US9098746B2 (en) Building texture extracting apparatus and method thereof
CN116051736A (zh) 一种三维重建方法、装置、边缘设备和存储介质
CN112085842A (zh) 深度值确定方法及装置、电子设备和存储介质
CN113034345B (zh) 一种基于sfm重建的人脸识别方法及系统
CN114066731A (zh) 生成全景图的方法、装置、电子设备及存储介质
US10430971B2 (en) Parallax calculating apparatus
JP2020101922A (ja) 画像処理装置、画像処理方法およびプログラム
CN113222986B (zh) 连铸坯角点及边缘轮廓点集定位方法、系统、介质及装置
CN109472860B (zh) 基于人工智能的深度图平衡选优方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020537904

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930967

Country of ref document: EP

Kind code of ref document: A1