WO2020038436A1 - 一种改进型极低频微振动信号感应器 - Google Patents

一种改进型极低频微振动信号感应器 Download PDF

Info

Publication number
WO2020038436A1
WO2020038436A1 PCT/CN2019/101989 CN2019101989W WO2020038436A1 WO 2020038436 A1 WO2020038436 A1 WO 2020038436A1 CN 2019101989 W CN2019101989 W CN 2019101989W WO 2020038436 A1 WO2020038436 A1 WO 2020038436A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
receiving sheet
sheet
vibration signal
low frequency
Prior art date
Application number
PCT/CN2019/101989
Other languages
English (en)
French (fr)
Inventor
张健挺
Original Assignee
德清县德意电脑有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德清县德意电脑有限公司 filed Critical 德清县德意电脑有限公司
Publication of WO2020038436A1 publication Critical patent/WO2020038436A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices

Definitions

  • the invention relates to the field of vibration induction, in particular to an improved ultra-low frequency micro-vibration signal sensor.
  • Announced patent CN205562026U discloses an extremely low frequency micro-vibration signal sensor, which includes a vibration receiving sheet, a piezoelectric film sensing sheet, and a hollow support for supporting the vibration receiving sheet.
  • the vibration receiving sheet is made of carbon fiber material, Glass fiber materials, metal materials, plastic sheet materials and other sheet materials, these materials should have high tensile strength, high elastic modulus, strong creep resistance, and can effectively respond to the vibration of 0.1Hz ⁇ 1000Hz.
  • the vibration receiving sheet is cooperatively connected with the bracket to form a support for the periphery of the vibration receiving sheet 1 by the bracket.
  • the base is a circuit board
  • the bracket is fixedly connected to the circuit board
  • the piezoelectric thin film sensor sheet is electrically connected to the circuit board.
  • the design structure is lightweight and does not require additional structures.
  • the piezoelectric thin film sensor sheet is directly connected to an external circuit through a circuit board in a shielded space.
  • the frame body is provided with a perforation, and the piezoelectric thin film sensor sheet is electrically connected to an external circuit through the perforation.
  • the frame is substantially an open container.
  • the bracket is connected to the circuit board by welding, riveting or screwing, which not only saves space and reduces manufacturing steps.
  • the piezoelectric thin film sensing sheet is flatly attached to the bottom surface of the vibration receiving sheet.
  • the vibration receiving sheet is a plate capable of responding to a longitudinal vibration signal of 0.1 Hz to 1000 Hz and having a conductive property.
  • the piezoelectric thin film sensor sheet is placed in a shielded space, so that external electromagnetic signals cannot interfere with the electrical signals converted by the piezoelectric thin film sensor sheet, and the response is more accurate.
  • the example 3 uses a circuit board as the Base, the bracket is soldered to the circuit board with solder, which not only saves space, but also reduces manufacturing steps.
  • FIG. 1 is a schematic structural diagram of a combined state of an extremely low frequency micro-vibration signal sensor in Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a separated state in FIG. 1.
  • FIG. 3 is a schematic structural diagram of a combined state of an extremely low frequency micro-vibration signal sensor in Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a separated state in FIG. 3.
  • FIG. 5 is a schematic structural diagram of a combined state of an extremely low frequency microvibration signal sensor according to Embodiment 3 of the present invention.
  • FIG. 7 is a graph measured in a case where a signal of a vibration source is not actually measured in Embodiment 2 of the present invention.
  • piezoelectric film sensing sheet means "a sensor that generates a corresponding electrical signal as the vibration receiving sheet deforms"
  • “Vibration receiving sheet” has high tensile strength, high elastic modulus, strong creep resistance, and can effectively respond to vibration from 0.1Hz to 1000Hz.
  • the choice of materials includes but is not limited to composite conductive plates and metal plates;
  • the present invention provides a specific embodiment of an improved ultra-low frequency micro-vibration signal sensor, which includes a vibration receiving sheet 2, a piezoelectric film sensing sheet, and a hollow for supporting the vibration receiving sheet 2.
  • the bowl-shaped frame A, the vibration receiving sheet 2 and the frame A are connected in a specific manner.
  • a specific matching method please refer to the improved method of the publication CN205562026U.
  • the vibration receiving sheet is matched with the frame A.
  • the connection forms the support of the frame A on the edge of the vibration receiving sheet 2 and limits the vibration receiving sheet to prevent the vibration receiving sheet from being displaced when receiving the vibration signal.
  • the shielding space is sufficient space for elastic deformation of the vibration receiving sheet 2 in the vertical direction.
  • the vibration receiving sheet 2 is a sheet-like material such as a composite conductive plate, a metal plate, etc. These materials should have conductivity, high tensile strength, high elastic modulus, strong creep resistance, and be effective for 0.1 Hz to 1000 Hz. Response to vibrations;
  • the frame A is a material that is conductive and has a compression resistance.
  • the shapes of the frame A and the vibration receiving sheet 2 match each other;
  • the shape of the frame A can be changed in various ways, and can be a variety of container shapes such as bowls and cups, or other shapes, as long as it can form a shielding space.
  • the embodiment 2 has the same inventive concept as the embodiment 1, except that the frame is divided into a bracket and a base.
  • the base is a plate in this embodiment, which can be a metal or a conductive plate, as shown in Figures 3 to 4.
  • the present invention provides a specific embodiment of an improved ultra-low frequency micro-vibration signal sensor, which includes a vibration receiving sheet 2, a piezoelectric film sensing sheet, a hollow support 4 and a base 5 for supporting the vibration receiving sheet 2,
  • the vibration receiving sheet 2 is a sheet-like material such as a composite conductive plate, a metal plate, etc.
  • These materials should have conductivity, high tensile strength, high elastic modulus, strong creep resistance, light weight, and can effectively resist 0.1 Responding to vibrations from Hz to 1000Hz, it can follow the vibration source to produce deformation, and it will not generate resonance interference, which improves fidelity.
  • the vibration receiving sheet 2 and the hollow support 4 are cooperatively connected to form a support for the edge of the vibration receiving sheet 2 by the hollow support 4.
  • the hollow support 4 is installed on the base 5.
  • the vibration receiving sheet 2, the hollow support 4 and the base 5 surround Combined to form a shielding space 3, the piezoelectric thin film sensor sheet is flatly attached to the center of the bottom surface of the vibration receiving sheet 2.
  • the leads of the piezoelectric thin film sensor sheet 1 pass through the side wall of the hollow support 4. The perforations made above lead to the outside of the hollow support.
  • the function of the cavity is to leave enough space for elastic deformation of the vibration receiving sheet 2 in the vertical direction.
  • the hollow support 4 is a material which is conductive and has a compression resistance.
  • the shapes of the hollow support 4 and the vibration receiving sheet 2 match each other.
  • the hollow support 4 and the base 5 can be matched and connected to each other.
  • the vibration receiving sheet 2 and the hollow support 4 and the base 5 for supporting the vibration receiving sheet 2 The mating connections are integrated into one whole without displacement.
  • the products of the embodiments of the present invention have a simple structure, low cost, high sensitivity, and small volume. Achieve full coverage of extremely low frequency signals.
  • the basic design principle of the present invention is that when the vibration receiving sheet 2 receives a longitudinal vibration signal, it deforms accordingly with the vibration signal, and the piezoelectric thin film sensing sheet close to the vibration receiving sheet 2 deforms to generate a corresponding electrical signal. Due to the above-mentioned design structure, a micro-vibration signal in an extremely low frequency band (0.1 Hz to 1000 Hz) can be sensitively sensed. And it is widely used in the detection of industrial vibration and cardiac shock vibration.
  • the shielding space 3 is constructed to have sufficient elastic deformation space in the vertical direction for the vibration receiving sheet 2, and at the same time has a shielding effect to avoid external electromagnetic signal interference.
  • the vibration receiving sheet is a creep-resistant sheet material capable of responding to a longitudinal vibration signal of 0.1 Hz to 1000 Hz and having mechanical properties, and can well follow the vibration source to deform without generating resonance itself. Disturb and improve fidelity.
  • the improved ultra-low frequency micro-vibration signal sensor of this embodiment 3 includes a vibration receiving sheet, a piezoelectric film sensing sheet, a metal (or conductive) hollow support and a base, and the hollow support and the base uniformly support the vibration receiving sheet to make the vibration
  • the receiving sheet does not shift when receiving the vibration signal, and effectively filters the lateral vibration signal.
  • the hollow support, the vibration receiving sheet and the base, that is, the PCB board together form a shielding space, and the piezoelectric thin film sensing sheet is attached to the vibration.
  • the bottom surface of the receiving sheet is located in the shielding space.
  • the hollow bracket, the vibration receiving sheet and the PCB have good conductive properties. After being connected with the "ground wire", an electromagnetic shielding space is formed.
  • the piezoelectric film sensing sheet is located in the shielding space. , Solve the problem that the piezoelectric thin film sensor is susceptible to electromagnetic interference.
  • the basic design principle of the present invention is that when the vibration receiving sheet receives a longitudinal vibration signal, it deforms accordingly with the vibration signal, and the piezoelectric thin film sensing sheet close to the vibration receiving sheet deforms to generate a corresponding electrical signal. Due to the above-mentioned design structure, a micro-vibration signal in an extremely low frequency band (0.1 Hz to 1000 Hz) can be sensitively sensed. And it is widely used in the detection of industrial vibration and cardiac shock vibration.
  • the ultra-low frequency micro-vibration signal sensors provided in the above embodiments 1 to 3 all define a shielding space, and the shielding space can effectively avoid the interference of external electromagnetic signals.
  • the product has a simple structure, low cost, high sensitivity, and small size. Achieve full coverage of extremely low frequency signals.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种极低频微振动信号感应器,其包括振动接收片(2)、压电薄膜传感片(1)以及架体(A),架体(A)均匀支撑振动接收片(2),以使振动接收片(2)在接收振动信号时不发生位移,架体(A)与振动接收片(2)限定出一个屏蔽空间,压电薄膜传感片(1)贴在振动接收片(2)的底面且位于屏蔽空间内,振动接收片(2)和架体(A)具有导电性能,与"地线"连接后形成一个电磁屏蔽的空间,压电薄膜传感片(1)位于屏蔽空间内。

Description

一种改进型极低频微振动信号感应器
本申请要求于2018年08月23日提交中国专利局、申请号为201810964081.5、发明名称为“一种改进型极低频微振动信号感应器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及振动感应领域,具体涉及一种改进型极低频微振动信号感应器。
背景技术
近年来,随着科学技术的发展,许多关键元器件精度和计算机运算能力的提高,对于振动信号的感应收集分析能力有了显著的提高。使得振动信号的应用有了更广扩的领域,比如心冲击,精密数控设备,桥梁振动监测等等,但是现有技术设备对于极低频段(如0.1Hz~1000Hz)微弱振动信号的检测缺乏有效而低成本的手段。
公告专利CN205562026U公开了一种极低频微振动信号感应器,包括振动接收片、压电薄膜传感片和用于支撑振动接收片的呈中空状的支架,所述振动接收片是采用碳纤材料、玻纤材料、金属材料、塑料板材等片状材料,这些材料应具有高抗拉强度,高弹性模量,抗蠕变性强,并能有效对0.1Hz~1000Hz的振动作出响应。振动接收片与支架配合连接,形成支架对振动接收片1周边的支撑。振动接收片的底面与支架内的通孔形成一个腔体,所述压电薄膜传感片平贴在振动接收片1底面中心位置。其中:该腔体的作用是为振动接收片在垂直方向留有足够的弹性变形空间。支架内的通孔为台阶孔,振动接收片嵌置入该台阶孔内,振动接收片1的边沿能够与支架2的台阶孔内壁相互贴合。该台阶孔能够起到对振动接收片1横向固定作用。产品结构简单,成本低廉,灵敏度高,体积小;实现对极低频信号的全覆盖。
发明内容
本发明针对公告专利CN205562026U提出的技术方案进行改进,提出一种能够精确感应并采集到极低频段(0.1Hz~1000Hz)微振动信号的一种极低频微振动信号感应器,该感应器包括振动接收片、压电薄膜传感片以及架体,架体均匀支撑振动接收片,以使振动接收片在接收振动信号时不发生位移,所述架体与振动接收片限定出一个屏蔽空间,所述压电薄膜传感片贴在振动接收片的底面且位于该屏蔽空间内,振动接收片和架体具有导电性能,与“地线”连接后形成一个电磁屏蔽的空间,压电薄膜传感片位于该屏蔽空间内,解决压电薄膜传感片易受电磁干扰的问题。
在本发明的提供的优选实施方案中,所述架体为一体件;在本发明另一些更优选实施方案中,所述架体具有中空支架以及底座,中空支架一端安装在底座上,另一端与振动接收片配合,以使中空的支架被构造成一个封闭的屏蔽空间。在本发明再一些优选实施方案中,所述底座为一板件,所述板件与中空支架一体成型或者固定连接,固定连接的方式包括但不限于焊接、铆接或者螺接。
在本发明一些优选实施方式中,所述底座为电路板,所述支架与电路板固定连接,所述压电薄膜传感片与电路板电连接,该设计结构轻便,不需要额外的结构,使压电薄膜传感片直接在屏蔽空间内通过电路板与外部电路连接。
在本发明提供一些较优的实施方式中,所述架体上开设有穿孔,通过该穿孔,将压电薄膜传感片与外部电路电连接。
在本发明一些具体实施方式,架体大致呈敞口的容器状。
在本发明另一些具体实施方式,所述支架通过焊接、铆接或者螺接的方式与电路板连接,不但节约了空间,减少了制作步骤。
进一步地,所述压电薄膜传感片平贴在振动接收片底面。
更进一步地,所述振动接收片是一块能够对0.1Hz~1000Hz的纵向振动信号作出响应且具有导电性能的板材。
再进一步地,所述架体由具有导电且抗压性能的材料制成。
本发明将压电薄膜传感片置于屏蔽空间内,使外界的电磁信号无法干扰到由压电薄膜传感片所转换成的电信号,反应更加精确领域;本次实例 3用电路板作为底座,把支架用焊锡焊接到电路板上,不但节约了空间,减少了制作步骤。
采用上述设计结构能够灵敏地感应到极低频段(0.1Hz~1000Hz)的微振动信号。而且可以广泛地应用于工业振动,心冲击信号振动的检测。
说明书附图
图1为本发明实施例1中的一种极低频微振动信号感应器的结合状态结构示意图。
图2为图1中分离状态结构示意图。
图3为本发明实施例2中的一种极低频微振动信号感应器的结合状态结构示意图。
图4为图3中分离状态结构示意图。
图5为本发明实施例3中的一种极低频微振动信号感应器的结合状态结构示意图。
图6为图4中分离状态结构示意图。
图7为本发明实施例2实测无振动源信号情况下所测图形。
图8为未实施本发明实测无振动源信号情况下所测图形。
具体实施方式
下面结合附图对本发明进行详细的说明,
其中,在本发明中:
“压电薄膜传感片”是指“随振动接收片变形而产生相应电信号的传感器”;
“振动接收片”为高抗拉强度,高弹性模量,抗蠕变性强,并能有效对0.1Hz~1000Hz的振动作出响应,材料的选择包括但限于复合导电板材、金属板材;
所述“架体”、“中空支架”采用导电材料制成;
实施例1
如图1~2所示,本发明提供一种改进型极低频微振动信号感应器的具体实施例,包括振动接收片2、压电薄膜传感片和用于支撑振动接收片 2的呈中空碗状的架体A,振动接收片2、和架体A配合连接,具体的配合方式可以参考公告专利CN205562026U提高的配合方式,如采用台阶孔嵌置的方式,振动接收片与架体A配合连接,形成架体A对振动接收片2边缘的支撑,限位振动接收片,避免振动接收片在接收到振动信号时不会发生位移。振动接收片2的底面与架体A内的腔体形成一个屏蔽空间3,所述压电薄膜传感片平贴(例如粘贴)在振动接收片2底面中心位置,压电薄膜传感片1的引线11通过在架体A上所开的穿孔A0引到架体外部。
其中,屏蔽空间为振动接收片2在垂直方向留有足够的弹性变形空间。
所述振动接收片2是采用为复合导电板材、金属板材等片状材料,这些材料应具有导电,高抗拉强度,高弹性模量,抗蠕变性强,并能有效对0.1Hz~1000Hz的振动作出响应;
所述架体A是为导电并具备抗压性能的材料。
架体A与振动接收片2的形状相互匹配;
关于架体A的形状可以做多种变换,可以呈碗状、杯状等多种容器状,也可以为其他形状,只要能形成屏蔽空间即可。
本发明实施例的产品结构简单,成本低廉,灵敏度高,体积小。实现对极低频信号的全覆盖。本发明的基本设计原理为,当振动接收片2接收到纵向的振动信号后,随振动信号作出相应的变形,紧贴振动接收片2的压电薄膜传感片变形产生相应电信号。由于采用上述设计结构能够灵敏地感应到极低频段(0.1Hz~1000Hz)的微振动信号。而且广泛地应用于工业振动,心冲击振动的检测。
由图7本发明实例实测数据可以看到,在无振动源情况下,所述改进型极低频微振动信号感应器感应到的空载信号非常小大致数值在±5以内。而图8未实施本发明的产品,所感应到的空载信号相对就比较大了,其值在±15以内。
实施例2
本实施例2与实施例1的发明构思相同,不同在于将架体拆分为支架和底座,底座在本实施例中为一板件,可以是金属也可以是导电板材,如 图3~4所示,本发明提供一种改进型极低频微振动信号感应器的具体实施例,包括振动接收片2、压电薄膜传感片、用于支撑振动接收片2的中空支架4和底座5,所述振动接收片2是采用为复合导电板材、金属板材等片状材料,这些材料应具有导电,高抗拉强度,高弹性模量,抗蠕变性强,质量轻,并能有效对0.1Hz~1000Hz的振动作出响应,能很好地跟随振动源产生变形,且自身不会产生谐振干扰,提高保真性。
振动接收片2与中空支架4配合连接,形成中空支架4对振动接收片2边缘的支撑,中空支架4安装在底座5上,如图所示,振动接收片2、中空支架4与底座5围合形成一个屏蔽空间3,所述压电薄膜传感片平贴在振动接收片2底面中心位置,同样地,如图3所示,压电薄膜传感片1的引线通过在中空支架4侧壁上所开的穿孔引到中空支架外部。
其中:该腔体的作用是为振动接收片2在垂直方向留有足够的弹性变形空间。
其中:所述中空支架4是为导电并具备抗压性能的材料。且中空支架4与振动接收片2的形状相互匹配,中空支架4与底座5可以互相匹配连接,在接收振动信号时,振动接收片2、用于支撑振动接收片2的中空支架4和底座5配合连接成一个整体,不发生位移。
本发明实施例的产品结构简单,成本低廉,灵敏度高,体积小。实现对极低频信号的全覆盖。本发明的基本设计原理为,当振动接收片2接收到纵向的振动信号后,随振动信号作出相应的变形,紧贴振动接收片2的压电薄膜传感片变形产生相应电信号。由于采用上述设计结构能够灵敏地感应到极低频段(0.1Hz~1000Hz)的微振动信号。而且广泛地应用于工业振动,心冲击振动的检测。
实施例3
本实施例在实施例2的基础上,不同在于将底座设计成电路板(PCB板),基于该发明构思,将中空支架直接通过焊接,铆接,螺丝紧固的方法固定在电路板上,如图1和2所示,压电薄膜传感片1的引线通过电路板的铜箔走线,将电信号连接到外部电路,底座、中空支架与振动接收片围合形成一个电磁屏蔽空间,所述压电薄膜传感片平贴在振动接收片2底面中心位置且同时位于该屏蔽空间之内,采用线路板代替底座,实现构 造屏蔽空间的同时避免了将压电薄膜传感片引线引出外部的问题,结构更为简洁轻便;
该屏蔽空间3构造出空间是为振动接收片2在垂直方向留有足够的弹性变形空间,且同时具有屏蔽作用是为了避免外部电磁信号干扰。
具体地,所述振动接收片是一块能够对0.1Hz~1000Hz的纵向振动信号作出响应的、且具备机械性能的抗蠕变板材,能很好地跟随振动源产生变形,且自身不会产生谐振干扰,提高保真性。
本实施例3的改进型极低频微振动信号感应器包括振动接收片、压电薄膜传感片、金属(或导电)的中空支架和底座,中空支架和底座均匀支撑振动接收片,以使振动接收片在接收振动信号时不发生位移,且有效过滤横向振动信号,所述中空支架、振动接收片和底座,即PCB板共同构筑出一个屏蔽空间,所述压电薄膜传感片贴在振动接收片的底面且位于该屏蔽空间内,中空支架、振动接收片与PCB板具有良好导电性能,与“地线”连接后形成一个电磁屏蔽的空间,压电薄膜传感片位于该屏蔽空间内,解决压电薄膜传感片易受电磁干扰的问题。
本发明的基本设计原理为,当振动接收片接收到纵向的振动信号后,随振动信号作出相应的变形,紧贴振动接收片的压电薄膜传感片变形产生相应电信号。由于采用上述设计结构能够灵敏地感应到极低频段(0.1Hz~1000Hz)的微振动信号。而且广泛地应用于工业振动,心冲击振动的检测。
上述实施例1~3提供的极低频微振动信号感应器均限定出一个屏蔽空间,通过该屏蔽空间可以有效避免外界电磁信号的干扰,产品结构简单,成本低廉,灵敏度高,体积小。实现对极低频信号的全覆盖。
上述实施例是对本发明的说明,不是对本发明的限定,任何对本发明简单变换后的方案均属于本发明的保护范围。

Claims (9)

  1. 一种极低频微振动信号感应器,其特征在于:该感应器包括振动接收片、压电薄膜传感片以及架体,所述振动接收片与架体具有导电性,架体支撑振动接收片,所述架体与振动接收片限定出一个屏蔽空间,所述压电薄膜传感片贴在振动接收片的底面且位于该屏蔽空间内。
  2. 根据权利要求1所述的极低频微振动信号感应器,其特征在于:所述架体具有中空支架以及底座,中空支架一端安装在底座上,另一端与振动接收片配合,以使中空的支架被构造成一个封闭的屏蔽空间。
  3. 根据权利要求2所述的极低频微振动信号感应器,其特征在于:所述底座为一板件,所述板件与中空支架一体成型或者固定连接。
  4. 根据权利要求2所述的极低频微振动信号感应器,其特征在于:所述底座为电路板,所述中空支架与电路板固定连接,所述压电薄膜传感片与电路板电连接。
  5. 根据权利要求1所述的极低频微振动信号感应器,其特征在于:所述架体大致呈敞口的容器状。
  6. 根据权利要求4所述的极低频微振动信号感应器,其特征在于:所述中空支架通过焊接、铆接或者螺接的方式与电路板连接。
  7. 根据权利要求1所述的极低频微振动信号感应器,其特征在于:所述压电薄膜传感片平贴在振动接收片底面。
  8. 根据权利要求1所述的极低频微振动信号感应器,其特征在于:所述振动接收片是一块能够对0.1Hz~1000Hz的纵向振动信号作出响应且具有导电性的板材。
  9. 根据权利要求1所述的极低频微振动信号感应器,其特征在于:所述架体由具有导电且抗压性能的材料制成。
PCT/CN2019/101989 2018-08-23 2019-08-22 一种改进型极低频微振动信号感应器 WO2020038436A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810964081.5A CN108760027A (zh) 2018-08-23 2018-08-23 一种改进型极低频微振动信号感应器
CN201810964081.5 2018-08-23

Publications (1)

Publication Number Publication Date
WO2020038436A1 true WO2020038436A1 (zh) 2020-02-27

Family

ID=63967631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101989 WO2020038436A1 (zh) 2018-08-23 2019-08-22 一种改进型极低频微振动信号感应器

Country Status (2)

Country Link
CN (1) CN108760027A (zh)
WO (1) WO2020038436A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760027A (zh) * 2018-08-23 2018-11-06 德清县德意电脑有限公司 一种改进型极低频微振动信号感应器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101059367A (zh) * 2006-04-19 2007-10-24 株式会社电装 振动传感器及振动检测方法
CN102075837A (zh) * 2010-12-22 2011-05-25 汉得利(常州)电子有限公司 一种高频率高灵敏度超声波传感器
CN204348004U (zh) * 2015-01-13 2015-05-20 无锡物联网产业研究院 一种入侵探测器
US9267824B1 (en) * 2015-02-02 2016-02-23 Goodrich Corporation Sensor systems
CN205562026U (zh) * 2016-03-31 2016-09-07 德清县德意电脑有限公司 一种极低频微振动信号感应器
CN108398181A (zh) * 2018-02-06 2018-08-14 麒盛科技股份有限公司 一体式生理信号检测传感器
CN108760027A (zh) * 2018-08-23 2018-11-06 德清县德意电脑有限公司 一种改进型极低频微振动信号感应器
CN208653638U (zh) * 2018-08-23 2019-03-26 德清县德意电脑有限公司 一种改进型极低频微振动信号感应器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0165517B1 (ko) * 1996-03-07 1999-05-01 김광호 진동 검출 센서
CN105726037A (zh) * 2016-03-31 2016-07-06 德清县德意电脑有限公司 一种改进结构的心冲击图信号采集系统
CN105651375A (zh) * 2016-03-31 2016-06-08 德清县德意电脑有限公司 一种极低频微振动信号感应器
JP6775211B2 (ja) * 2016-08-29 2020-10-28 積水化学工業株式会社 圧電センサ構造体
CN108378855A (zh) * 2018-03-21 2018-08-10 德清县德意电脑有限公司 一种改进的心冲击图信号系统
CN108362371A (zh) * 2018-04-08 2018-08-03 东莞泉声电子有限公司 振动膜结构及振动检测传感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101059367A (zh) * 2006-04-19 2007-10-24 株式会社电装 振动传感器及振动检测方法
CN102075837A (zh) * 2010-12-22 2011-05-25 汉得利(常州)电子有限公司 一种高频率高灵敏度超声波传感器
CN204348004U (zh) * 2015-01-13 2015-05-20 无锡物联网产业研究院 一种入侵探测器
US9267824B1 (en) * 2015-02-02 2016-02-23 Goodrich Corporation Sensor systems
CN205562026U (zh) * 2016-03-31 2016-09-07 德清县德意电脑有限公司 一种极低频微振动信号感应器
CN108398181A (zh) * 2018-02-06 2018-08-14 麒盛科技股份有限公司 一体式生理信号检测传感器
CN108760027A (zh) * 2018-08-23 2018-11-06 德清县德意电脑有限公司 一种改进型极低频微振动信号感应器
CN208653638U (zh) * 2018-08-23 2019-03-26 德清县德意电脑有限公司 一种改进型极低频微振动信号感应器

Also Published As

Publication number Publication date
CN108760027A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN111131988B (zh) 振动传感器和音频设备
US7353711B2 (en) Capacitive sensor
CN111818409B (zh) 骨声纹传感器和电子设备
WO2020191576A1 (zh) 一种传感器
CN106535071B (zh) Mems麦克风与环境传感器的集成装置及其制造方法
WO2020113698A1 (zh) 组合传感器和电子设备
CN101982864B (zh) 可变电容器的可动电极、压力传感器及血压测量设备
WO2021196944A1 (zh) 一种分体式压电传感器
WO2021031497A1 (zh) 一种振动感测装置
CA2482043A1 (en) Piezoelectric vibration sensor
WO2020038436A1 (zh) 一种改进型极低频微振动信号感应器
US20020007677A1 (en) Printed circuit board inclinometer/accelerometer
US10793419B2 (en) MEMS assembly
JP2004294413A (ja) 圧力センサ、送信機、及びタイヤ状態監視装置
JPS62294921A (ja) 超音波検出装置
CN205616568U (zh) 一种集成传感器的封装结构
WO2022000792A1 (zh) 振动传感器
WO2023142866A1 (zh) 机械振动式驻极体骨声纹传感器
JP2004245622A (ja) 圧力センサ、送信機、及びタイヤ状態監視装置
WO2019153666A1 (zh) 一体式生理信号检测传感器
CN208653638U (zh) 一种改进型极低频微振动信号感应器
JP2008026080A (ja) 圧力センサ
US20110075863A1 (en) Condenser Microphone
US11307215B2 (en) Acceleration sensor core unit, and method for preventing deflection of a base board on which acceleration sensor is mounted
CN210638721U (zh) 一种组合传感器以及振动感测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851474

Country of ref document: EP

Kind code of ref document: A1