WO2020037648A1 - Rape gene resistant to pyrimidine salicylic acid herbicides and use thereof - Google Patents

Rape gene resistant to pyrimidine salicylic acid herbicides and use thereof Download PDF

Info

Publication number
WO2020037648A1
WO2020037648A1 PCT/CN2018/102232 CN2018102232W WO2020037648A1 WO 2020037648 A1 WO2020037648 A1 WO 2020037648A1 CN 2018102232 W CN2018102232 W CN 2018102232W WO 2020037648 A1 WO2020037648 A1 WO 2020037648A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
mutated
acetolactate synthase
plant
mutation
Prior art date
Application number
PCT/CN2018/102232
Other languages
French (fr)
Chinese (zh)
Inventor
胡茂龙
浦惠明
龙卫华
高建芹
张洁夫
陈松
Original Assignee
江苏省农业科学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省农业科学院 filed Critical 江苏省农业科学院
Priority to PCT/CN2018/102232 priority Critical patent/WO2020037648A1/en
Priority to CA3087906A priority patent/CA3087906A1/en
Priority to DE112018006599.5T priority patent/DE112018006599T5/en
Priority to CN201880072169.4A priority patent/CN112154207B/en
Publication of WO2020037648A1 publication Critical patent/WO2020037648A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • C12N15/8278Sulfonylurea
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01006Acetolactate synthase (2.2.1.6)

Abstract

Provided are a rape gene which is resistant to pyrimidine salicylic acid herbicides and the use thereof, and further provided are a rape plant and parts thereof which can withstand pyrimidine salicylic acid herbicides.

Description

油菜抗嘧啶水杨酸类除草剂基因及其应用Rape pyrimidine-salicylic acid-resistant herbicide gene and application thereof 技术领域Technical field
本发明涉及植物基因工程技术领域,具体地,涉及油菜抗嘧啶水杨酸类除草剂基因及其应用。更具体地,本发明涉及耐受嘧啶水杨酸类除草剂的油菜植物及其部分、抗性基因、突变蛋白及其应用。The invention relates to the technical field of plant genetic engineering, in particular to rapeseed pyrimidine-salicylic acid herbicide gene and application thereof. More specifically, the present invention relates to a rape plant that is tolerant to pyrimidine salicylic acid herbicides and parts thereof, resistance genes, muteins, and applications thereof.
背景技术Background technique
油菜(Brassica napus L.)是我国第一大油料作物,为我国半数以上的人口提供食用油来源。油菜生产过程中一类重要的生物危害是农田杂草,其不但与油菜作物争水争肥争光,而且改变油菜作物田间小气候,甚至有些杂草还是油菜作物病虫害的中间寄主,加快病虫害的蔓延,严重影响油菜作物产量和品质。然而,人工除草费时、费力,增加生产成本。因此,应用除草剂防治田间杂草成为人们的必然选择。Rape (Brassica napus L.) is China's largest oilseed crop, providing edible oil sources for more than half of the population in China. One of the important biological hazards in rapeseed production is farmland weeds. It not only competes with rapeseed for water and fertilizer, but also changes the microclimate of rapeseed fields. Some weeds are also intermediate hosts of rapeseed pests and diseases, and accelerate the spread of pests and diseases It severely affects the yield and quality of rapeseed crops. However, manual weeding is time consuming and laborious, increasing production costs. Therefore, the application of herbicides to control field weeds has become an inevitable choice for people.
除草剂主要是通过抑制或干扰植物关键的代谢过程而抑制植物生长或杀死植物。以氨基酸生物合成过程中的关键酶为靶标,是研发新型高效除草剂的一个重要方向和热点。以乙酰乳酸合酶(acetolactate synthase,ALS;EC2.2..16)为靶酶开发的除草剂,己经成为新型高效除草剂的主流产品。ALS是催化支链氨基酸(缬氨酸、亮氨酸和异亮氨酸)生物合成第一步的酶。ALS抑制剂类除草剂能抑制植物细胞内的ALS酶活性,阻碍支链氨基酸(缬氨酸、亮氨酸和异亮氨酸)生物合成,从而抑制植物细胞的分裂和生长。20世纪90年代初,日本组合化学公司以乙酰乳酸合酶为靶标开发了一类新型ALS类除草剂嘧啶水杨酸(pyrimidyl-benzoates,PB)类除草剂,也称嘧啶氧(硫)苯甲酸类除草剂。该类除草剂的第一个商品化品种为嘧草硫醚(pyrithiobac-sodium)。随后,于1993年开发了嘧草醚(pyriminobac-methyl)、1996年开发了双草醚(bispyribac-sodium,农美利)。Herbicides mainly inhibit or disrupt plants by inhibiting or interfering with key metabolic processes in plants. Targeting key enzymes in the amino acid biosynthesis process is an important direction and hot spot in the development of new and efficient herbicides. Herbicides developed with acetolactate synthase (ALS; EC2.2..16) as the target enzyme have become mainstream products of new high-efficiency herbicides. ALS is an enzyme that catalyzes the first step in the biosynthesis of branched-chain amino acids (valine, leucine, and isoleucine). ALS inhibitor herbicides can inhibit ALS enzyme activity in plant cells, hinder branch chain amino acids (valine, leucine, and isoleucine) biosynthesis, thereby inhibiting plant cell division and growth. In the early 1990s, the Japanese combination chemical company developed a new class of ALS herbicides, pyrimidyl-benzoates (PB) herbicides, targeting acetolactate synthase, also known as pyrimidineoxy (thio) benzoic acid Herbicides. The first commercial variety of this class of herbicide was pyrithiobac-sodium. Subsequently, pyriminobac-methyl was developed in 1993, and bispyribac-sodium (Nongmeili) was developed in 1996.
自从ALS类除草剂被应用到农业以来,观察到敏感的植物种类(包括天然存在的杂草)偶尔显现出对这类除草剂的自发耐受性。在ALS基因特定位点处的单碱基被取代通常导致或多或少的抗性,具有突变的ALS等位基因的植物显示出对ALS类除草剂的不同水平的耐受性,这依赖于所述ALS类除草剂的化学结构和ALS基因的点突变位点。Since the application of ALS herbicides to agriculture, it has been observed that sensitive plant species, including naturally occurring weeds, occasionally show spontaneous tolerance to such herbicides. Substitution of a single base at a specific site in the ALS gene usually results in more or less resistance, and plants with mutated ALS alleles show different levels of tolerance to ALS herbicides, depending on The chemical structure of the ALS herbicide and the point mutation site of the ALS gene.
研究发现,ALS上氨基酸替换发生的位点及其位点处替换氨基酸不同产生的抗性功能存在显著差异(Yu Q,Han HP,Martin M,Vila-Aiub,Powles SB.AHAS herbicide resistance endowing mutations:effect on AHAS functionality and plant growth.J Exp  Botany,2010,61:3925-3934)。不同位点氨基酸替换产生的ALS抑制剂除草剂抗性效应存在显著差异,同时不同位点突变对其它ALS抑制剂除草剂存在比较复杂的交互抗性关系。The study found that there are significant differences in the resistance function of ALS at the site where the amino acid substitution occurs and the substitution of different amino acids at the site (Yu Q, Han HP, Martin M, Vila-Aiub, Powles SB.AHAS, herbicide, resistance endowing, mutations: effect, functionality, and plant growth. J. Exp. Botany, 2010, 61: 3925-3934). There are significant differences in the resistance effects of ALS inhibitor herbicides caused by amino acid substitutions at different sites, and at the same time, different site mutations have a more complex cross-resistance relationship to other ALS inhibitor herbicides.
本领域还非常需要获得相对于强生命力的杂草具有生长优势的油菜植物,需要获得可耐受嘧啶水杨酸类除草剂的非转基因油菜植物。There is also a great need in the art to obtain rapeseed plants that have a growth advantage over strong weeds, and to obtain non-transgenic rapeseed plants that can tolerate pyrimidine salicylic acid herbicides.
发明概述Summary of invention
本发明解决了这种需要,并提供了突变的乙酰乳酸合酶(ALS)核酸和这些突变的核酸编码的蛋白。本发明还涉及包含这些突变核酸和蛋白的油菜植物、细胞和种子,所述突变赋予油菜植物对于嘧啶水杨酸类除草剂的耐受,其中所述ALS基因编码的ALS多肽在其位置556处含有不同于色氨酸的氨基酸并且在其位置635处含有不同于丝氨酸的氨基酸。在优选的实施方式中,所述ALS基因编码的ALS多肽具有选自下列的双重突变:W556L和S635N;W556L和S635T;W556L和S635I。在最优选的实施方式中,所述ALS基因编码的ALS多肽具有下列突变:W556L和S635N。The present invention addresses this need and provides mutant acetolactate synthase (ALS) nucleic acids and proteins encoded by these mutant nucleic acids. The invention also relates to rapeseed plants, cells and seeds comprising these mutant nucleic acids and proteins, said mutations conferring tolerance to a pyrimidine salicylic acid herbicide, wherein the ALS polypeptide encoded by the ALS gene is at position 556 thereof Contains amino acids different from tryptophan and contains amino acids different from serine at position 635. In a preferred embodiment, the ALS polypeptide encoded by the ALS gene has a double mutation selected from the group consisting of: W556L and S635N; W556L and S635T; W556L and S635I. In the most preferred embodiment, the ALS polypeptide encoded by the ALS gene has the following mutations: W556L and S635N.
在一个实施方式中,本发明提供了编码突变的乙酰乳酸合酶(ALS3)的分离的核酸,所述突变的乙酰乳酸合酶(ALS3)蛋白包含如下的突变:In one embodiment, the invention provides an isolated nucleic acid encoding a mutant acetolactate synthase (ALS3), said mutant acetolactate synthase (ALS3) protein comprising the following mutations:
在对应于SEQ ID NO:2的位置556的位置处色氨酸(W)突变为亮氨酸(L);和Mutation of tryptophan (W) to leucine (L) at a position corresponding to position 556 of SEQ ID NO: 2; and
在对应于SEQ ID NO:2的位置635的位置处丝氨酸(S)突变为天冬酰胺(N)、苏氨酸(T)或异亮氨酸(I);The serine (S) is mutated to asparagine (N), threonine (T) or isoleucine (I) at a position corresponding to position 635 of SEQ ID NO: 2;
优选地,所述的分离的核酸的核苷酸序列如SEQ ID NO:3所示;Preferably, the nucleotide sequence of the isolated nucleic acid is as shown in SEQ ID NO: 3;
优选地,其中所述突变的ALS3蛋白的氨基酸序列如SEQ ID NO:4所示。Preferably, the amino acid sequence of the mutated ALS3 protein is as shown in SEQ ID NO: 4.
在一个方面,本发明提供了表达盒、载体或细胞,其含有本发明所述的核酸。相应地,本发明提供了本发明的核酸、表达盒、载体或细胞或突变的乙酰乳酸合酶(ALS3)蛋白用于产生抗嘧啶水杨酸类除草剂植物的用途,优选地,所述植物为油菜。In one aspect, the invention provides an expression cassette, vector or cell, which contains a nucleic acid according to the invention. Accordingly, the present invention provides the use of a nucleic acid, an expression cassette, a vector or a cell or a mutant acetolactate synthase (ALS3) protein of the present invention for producing a pyrimidine salicylic acid herbicide-resistant plant. Preferably, the plant For rapeseed.
在另一个方面,本发明提供了产生具有嘧啶水杨酸类除草剂抗性的植物的方法,其特征在于,包括如下步骤:In another aspect, the present invention provides a method for producing a plant having pyrimidine salicylic acid herbicide resistance, which comprises the following steps:
将本发明所述的核酸导入植物,优选地通过转基因、杂交、回交或无性繁殖等步骤将本发明所述的核酸导入植物,其中所述植物表达本发明所述的突变的乙酰乳酸合酶(ALS3)蛋白并具有嘧啶水杨酸类除草剂抗性。The nucleic acid according to the present invention is introduced into a plant, and preferably the nucleic acid according to the present invention is introduced into a plant through steps such as transgenic, hybridization, backcrossing or asexual propagation, wherein the plant expresses the mutant acetolactate synthase according to the present invention. (ALS3) protein and has pyrimidine salicylic acid herbicide resistance.
在又一个方面,本发明提供了抗嘧啶水杨酸类除草剂的非转基因植物或其部分,其 包含编码突变的乙酰乳酸合酶蛋白的分离的核酸,所述突变的乙酰乳酸合酶蛋白包含如下的突变:In yet another aspect, the present invention provides a non-transgenic plant or part thereof that is resistant to a pyrimidine salicylic acid herbicide, comprising an isolated nucleic acid encoding a mutant acetolactate synthase protein, the mutant acetolactate synthase protein comprising The following mutations:
在对应于SEQ ID NO:2的位置556的位置处色氨酸(W)突变为亮氨酸(L);和Mutation of tryptophan (W) to leucine (L) at a position corresponding to position 556 of SEQ ID NO: 2; and
在对应于SEQ ID NO:2的位置635的位置处丝氨酸(S)突变为天冬酰胺(N)、苏氨酸(T)或异亮氨酸(I),The serine (S) is mutated to asparagine (N), threonine (T) or isoleucine (I) at the position corresponding to position 635 of SEQ ID NO: 2,
优选地,其中所述植物是油菜;其中所述部分为植物的器官、组织和细胞,并且优选种子;Preferably, wherein said plant is rape; wherein said parts are organs, tissues and cells of the plant, and preferably seeds;
优选地,其中所述蛋白包含在对应于SEQ ID NO:2的位置556的位置处色氨酸(W)突变为亮氨酸(L)和在对应于SEQ ID NO:2的位置635的位置处丝氨酸(S)突变为天冬酰胺(N);Preferably, wherein said protein comprises a mutation of tryptophan (W) to leucine (L) at a position corresponding to position 556 of SEQ ID NO: 2 and a position corresponding to position 635 of SEQ ID NO: 2 Mutation of serine (S) to asparagine (N);
更优选地,其中所述突变的ALS3蛋白的氨基酸序列如SEQ ID NO:4所示。More preferably, the amino acid sequence of the mutated ALS3 protein is shown in SEQ ID NO: 4.
在另一个方面,本发明提供了在含有油菜植物的田地中控制杂草的方法,所述方法包括施用有效量的嘧啶水杨酸类除草剂至含有所述杂草和油菜植物的所述田地,所述油菜植物包含编码突变的乙酰乳酸合酶蛋白的分离的核酸,所述突变的乙酰乳酸合酶蛋白包含如下的突变:In another aspect, the present invention provides a method for controlling weeds in a field containing rape plants, the method comprising applying an effective amount of a pyrimidine salicylic acid herbicide to the field containing the weeds and rape plants The rapeseed plant contains an isolated nucleic acid encoding a mutant acetolactate synthase protein, and the mutant acetolactate synthase protein contains the following mutations:
在对应于SEQ ID NO:2的位置556的位置处色氨酸(W)突变为亮氨酸(L);和Mutation of tryptophan (W) to leucine (L) at a position corresponding to position 556 of SEQ ID NO: 2; and
在对应于SEQ ID NO:2的位置635的位置处丝氨酸(S)突变为天冬酰胺(N)、苏氨酸(T)或异亮氨酸(I);The serine (S) is mutated to asparagine (N), threonine (T) or isoleucine (I) at a position corresponding to position 635 of SEQ ID NO: 2;
优选地,其中所述蛋白包含在对应于SEQ ID NO:2的位置556的位置处色氨酸(W)突变为亮氨酸(L)和在对应于SEQ ID NO:2的位置635的位置处丝氨酸(S)突变为天冬酰胺(N);Preferably, wherein said protein comprises a mutation of tryptophan (W) to leucine (L) at a position corresponding to position 556 of SEQ ID NO: 2 and a position corresponding to position 635 of SEQ ID NO: 2 Mutation of serine (S) to asparagine (N);
更优选地,其中所述突变的ALS3蛋白的氨基酸序列如SEQ ID NO:4所示。More preferably, the amino acid sequence of the mutated ALS3 protein is shown in SEQ ID NO: 4.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1显示了不同来源的油菜ALS3氨基酸部分序列比对结果。Figure 1 shows the results of amino acid partial sequence alignment of rapeseed ALS3 from different sources.
ALS3,Genbank上参考序列(登录号:Z11526);ALS3_N131野生型品系N131的ALS3氨基酸部分序列;ALS3_EM28抗性品系EM28的ALS3氨基酸部分序列;ALS3_Sh4抗性材料Sh4的ALS3氨基酸部分序列;ALS3_Sh5抗性材料Sh5的ALS3氨基酸部分序列;ALS3_Sh6抗性材料Sh6的ALS3氨基酸部分序列;ALS3_Sh7抗性材料Sh7的ALS3氨基酸部分序列。箭头表示突变氨基酸。ALS3, reference sequence on Genbank (accession number: Z11526); ALS3 amino acid partial sequence of ALS3_N131 wild type strain N131; ALS3_EM28 resistant EM3 amino acid partial sequence of EM28; ALS3_Sh4 resistant material Sh4; ALS3 amino acid partial sequence of Sh5; ALS3_Sh6 resistant material Sh6; ALS3 amino acid partial sequence of ALS3_Sh7 resistant material Sh7. Arrows indicate mutant amino acids.
图2显示了不同浓度的苯磺隆对野生型和突变体的ALS酶活性体外抑制。Figure 2 shows the in vitro inhibition of wild-type and mutant ALS enzyme activity by bensulfuron-methyl at different concentrations.
图3显示了不同浓度的咪唑乙烟酸对野生型和突变体的ALS酶活性体外抑制。Figure 3 shows the in vitro inhibition of ALS enzyme activity of wild-type and mutants by different concentrations of imidazolenic acid.
图4显示了不同浓度的双草醚对野生型和突变体的ALS酶活性体外抑制。Figure 4 shows the in vitro inhibition of ALS enzyme activity of wild-type and mutants by bisamprol at different concentrations.
图5显示了转入了抗除草剂基因的拟南芥和烟草喷施除草剂后的抗性表现(Col,野生型拟南芥,3A-1和3A-2转入了抗除草剂基因的拟南芥;Tob,野生型烟草,Y3A-1和Y3A-2转入了抗除草剂基因的烟草)。+表示喷施60g a.i.ha –1双草醚处理,-表示未用除草剂处理。 Figure 5 shows the resistance performance of herbicide-resistant Arabidopsis thaliana and tobacco after spraying with herbicide (Col, wild-type Arabidopsis, 3A-1 and 3A-2 Arabidopsis; Tob, wild-type tobacco, Y3A-1 and Y3A-2 transgenic tobacco-resistant tobacco). + Indicates spraying with 60 g of aiha -1 bispyrisol,-indicates no treatment with herbicide.
发明详述Detailed description of the invention
通过参考在附图中描述和/或说明的并且在下面说明书中详细说明的非限制性实施方案以及实例将更全面地说明本发明的实施方案以及它们的不同特征以及有利的细节。应当注意的是在附图中所述的特征不必按比例绘制,并且当本领域技术人员可以认可时,一个实施方案的特征可以与其他实施方案一起使用,尽管在此没有清楚地说明。Reference will be made to the non-limiting embodiments and examples described and / or illustrated in the accompanying drawings and detailed in the description below to more fully illustrate the embodiments of the invention and their different features and advantageous details. It should be noted that the features described in the drawings are not necessarily drawn to scale, and that features of one embodiment may be used with other embodiments when recognized by those skilled in the art, although not explicitly illustrated herein.
定义definition
除非另外说明,权利要求以及说明书中所使用的术语是如下面列出定义的。Unless otherwise stated, the terms used in the claims and the specification are defined as listed below.
术语“非转基因”是指没有通过适当的生物载体或通过任何其他物理方式引入各个基因。但是,突变的基因可通过授粉(自然地或通过育种方法)被传递,以产生另一种含有该特定基因的非转基因植物。The term "non-transgenic" means that the individual genes have not been introduced by an appropriate biological vector or by any other physical means. However, the mutated gene can be passed on by pollination (naturally or by breeding methods) to produce another non-transgenic plant containing the specific gene.
“内源”基因意指植物中不是通过基因工程技术引入到所述植物中的基因。By "endogenous" gene is meant a gene in a plant that is not introduced into said plant by genetic engineering techniques.
术语“核苷酸序列”、“多核苷酸”、“核酸序列”、“核酸”、“核酸分子”在本文中可互换使用,其是指任意长度的聚合无支链形式的核苷酸,核糖核苷酸或者脱氧核糖核苷酸或其二者组合。核酸序列包括DNA、cDNA、基因组DNA、RNA,包括合成形式以及混合的聚合物,包括正义链和反义链,或可以含有非天然的或衍生的核苷酸碱基,本领域技术人员可理解这点。The terms "nucleotide sequence", "polynucleotide", "nucleic acid sequence", "nucleic acid", "nucleic acid molecule" are used interchangeably herein and refer to a polymerized unbranched form of nucleotides of any length , Ribonucleotides or deoxyribonucleotides, or a combination of both. Nucleic acid sequences include DNA, cDNA, genomic DNA, RNA, including synthetic forms, and mixed polymers, including the sense and antisense strands, or may contain unnatural or derived nucleotide bases, as will be understood by those skilled in the art this point.
当用于本文时,术语“多肽”或“蛋白质”(本文中这两个术语可互换地使用)意指包含给定长度的氨基酸链的肽、蛋白质或多肽,其中所述氨基酸残基通过共价的肽键连接。但是,本发明也包括所述蛋白质/多肽的肽模拟物(其中氨基酸和/或肽键已经被功能性类似物替换),以及除了所述20种基因编码的氨基酸之外的氨基酸例如硒代半胱氨酸。肽、寡肽和蛋白质可被称为多肽。所述术语多肽还指(不排除)多肽的修饰,例如糖基化、乙酰化、磷酸化等。这种修饰很好地记载于基础文献中,并更详细地记载于专著以及研究文 献中。As used herein, the term "polypeptide" or "protein" (these two terms are used interchangeably herein) means a peptide, protein or polypeptide comprising an amino acid chain of a given length, wherein the amino acid residue is Covalent peptide bonds. However, the present invention also includes peptide mimics of the protein / polypeptide (in which amino acids and / or peptide bonds have been replaced by functional analogs), and amino acids other than the amino acids encoded by the 20 genes, such as selenohalides Cystine. Peptides, oligopeptides, and proteins can be referred to as polypeptides. The term polypeptide also refers to (but does not exclude) modification of the polypeptide, such as glycosylation, acetylation, phosphorylation, and the like. This modification is well documented in the basic literature and in more detail in monographs and research literature.
氨基酸取代包括氨基酸改变,其中氨基酸被不同的天然存在的氨基酸残基代替。这种取代可被分类为“保守的”,其中野生型ALS蛋白质中含有的氨基酸残基被另外的天然存在且特性相似的氨基酸替换,例如或本发明中包括的取代还可能是“非保守的”,其中存在于野生型ALS蛋白质中的氨基酸残基被具有不同性质的氨基酸取代,例如来自于不同组的天然存在的氨基酸(例如用丙氨酸取代带电荷的或疏水的氨基酸)。本文使用的“相似的氨基酸”是指具有相似的氨基酸侧链的氨基酸,即具有极性、非极性或接近中性的侧链的氨基酸。本文使用的“不相似氨基酸”是指具有不同氨基酸侧链的氨基酸,例如具有极性侧链的氨基酸与具有非极性侧链的氨基酸是不相似的。极性侧链通常趋向存在于蛋白质的表面,在此它们可以与细胞中存在的水环境相互作用(“亲水性”氨基酸)。另一方面,“非极性”氨基酸趋向于位于蛋白质内的中心,在此它们可以与相似的非极性相邻分子相互作用(“疏水性”氨基酸)。具有极性侧链的氨基酸的实例为精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酰胺、谷氨酸、组氨酸、赖氨酸、丝氨酸和苏氨酸(全部为亲水性氨基酸,除了半胱氨酸为疏水性的)。具有非极性侧链的氨基酸的实例为丙氨酸、甘氨酸、异亮氨酸、亮氨酸、甲硫氨酸、苯丙氨酸、脯氨酸和色氨酸(全部为疏水性的,除了甘氨酸为中性的)。Amino acid substitutions include amino acid changes in which amino acids are replaced by different naturally occurring amino acid residues. Such substitutions can be classified as "conservative" in which the amino acid residues contained in the wild-type ALS protein are replaced by another naturally occurring and similarly characteristic amino acid. For example, or the substitutions included in the present invention may also be "non-conservative" ", Where the amino acid residues present in the wild-type ALS protein are replaced with amino acids having different properties, such as naturally occurring amino acids from different groups (such as the replacement of charged or hydrophobic amino acids with alanine). As used herein, "similar amino acids" refers to amino acids with similar amino acid side chains, ie, amino acids with polar, non-polar, or near neutral side chains. As used herein, "dissimilar amino acids" refer to amino acids with different amino acid side chains, for example, amino acids with polar side chains are not similar to amino acids with non-polar side chains. Polar side chains often tend to be present on the surface of proteins, where they can interact with the water environment present in the cell ("hydrophilic" amino acids). On the other hand, "non-polar" amino acids tend to be located in the center of the protein, where they can interact with similar non-polar neighboring molecules ("hydrophobic" amino acids). Examples of amino acids with polar side chains are arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, histidine, lysine, serine, and threonine ( All are hydrophilic amino acids except cysteine is hydrophobic). Examples of amino acids with non-polar side chains are alanine, glycine, isoleucine, leucine, methionine, phenylalanine, proline and tryptophan (all are hydrophobic, Except glycine is neutral).
通常,本领域技术人员根据其通常的常识和使用术语ALS、ALSL、AHAS或AHASL的上下文即可知晓分别是指所述核苷酸序列或核酸,或者是指所述氨基酸序列或多肽。Generally, those skilled in the art can know, based on their common sense and the context of using the terms ALS, ALSL, AHAS, or AHASL, to refer to the nucleotide sequence or nucleic acid, or the amino acid sequence or polypeptide, respectively.
当用于本文时,术语“基因”是指任何长度的核苷酸(核糖核苷酸或脱氧核糖核苷的聚合形式。该术语包括双链和单链的DNA和RNA。其还包括已知类型的修饰,例如甲基化、“加帽”、用类似物取代一个或多个天然存在的核苷酸。优选地,基因包括编码本文所定义的多肽的编码序列。“编码序列”是当被置于或在适当调节序列的控制下可被转录为mRNA和/或被翻译为多肽的核苷酸序列。所述编码序列的界限是由5'末端的翻译起始密码子和3'末端的翻译终止密码子确定的。编码序列可以包括但不限于mRNA、cDNA、重组核酸序列或基因组DNA,但是某些情况下也可能存在内含子。As used herein, the term "gene" refers to a polymerized form of nucleotides (ribonucleotides or deoxyribonucleosides) of any length. This term includes double- and single-stranded DNA and RNA. It also includes known Types of modification, such as methylation, "capping," replacing one or more naturally occurring nucleotides with analogs. Preferably, the gene includes a coding sequence that encodes a polypeptide as defined herein. The "coding sequence" is when A nucleotide sequence that is placed or under the control of appropriate regulatory sequences that can be transcribed into mRNA and / or translated into a polypeptide. The boundaries of the coding sequence are the translation initiation codon at the 5 'end and the 3' end The translation stop codon is determined. The coding sequence can include, but is not limited to, mRNA, cDNA, recombinant nucleic acid sequence or genomic DNA, but introns may be present in some cases.
当用于本文时,术语“甘蓝型油菜(Brassica napus)”可缩写为“油菜(B.napus)”。此外,本文中使用了术语“油菜”。所述三个术语可互换使用并且应被理解为完全包括栽培形式的油菜。相似地,例如术语“拟南芥(Arabidopsis thaliana)”可缩写为“拟南芥(A.thaliana)”。在本文中这两个术语可互换地使用。As used herein, the term "Brassica napus" may be abbreviated as "B. napus". In addition, the term "rapeseed" is used herein. The three terms are used interchangeably and should be understood to completely include rape in cultivated form. Similarly, for example, the term "Arabidopsis thaliana" can be abbreviated as "A. thaliana". These two terms are used interchangeably herein.
当用于本发明时,术语“位置”意指氨基酸在本文描述的氨基酸序列中的位置或核苷 酸在本文描述的核苷酸序列中的位置,例如SEQ ID NO:1所示的野生型油菜ALS3蛋白的编码序列或SEQ ID NO:2所示的野生型油菜ALS3蛋白的氨基酸序列中的位置或其对应位置。本文使用的术语“对应的”还包括不仅由前述核苷酸/氨基酸的编号所确定的位置。由于在ALS 5'非翻译区(UTR)(包括启动子和/或任何其他的调节序列)或基因(包括外显子和内含子)中其他位置处核苷酸的缺失或插入,本发明中可被取代的给定核苷酸的位置可以不同。相似地,由于在ALS多肽中其他位置氨基酸的缺失或插入,本发明中可被替换的给定氨基酸的位置可以不同。因此,本发明中“对应位置”应被理解为在所指示编号处的核苷酸/氨基酸可以不同,但仍然可具有相似的相邻核苷酸/氨基酸。所述可被交换、缺失或插入的核苷酸/氨基酸也被术语“对应位置”所包括。为了确定在给定的ALS核苷酸/氨基酸序列中核苷酸残基或氨基酸残基是否对应于核苷酸序列SEQ ID NO:1或氨基酸序列SEQ ID NO:2中的某些位置,本领域技术人员可使用本领域中公知的工具和方法,例如人工地或通过使用计算机程序的比对,例如BLAST(Altschul et al.(1990),Journal of Molecular Biology,215,403-410)(其代表基本局部比对搜索工具)或ClustalW(Thompson et al.(1994),Nucleic Acid Res.,22,4673-4680)或任何其他适合于产生序列比对的适合程序。When used in the present invention, the term "position" means the position of an amino acid in an amino acid sequence described herein or the position of a nucleotide in a nucleotide sequence described herein, such as the wild type shown in SEQ ID NO: 1 The position in the coding sequence of the rape ALS3 protein or the amino acid sequence of the wild-type rape ALS3 protein shown in SEQ ID NO: 2 or its corresponding position. The term "corresponding" as used herein also includes positions determined not only by the aforementioned nucleotide / amino acid numbering. Due to deletions or insertions of nucleotides at other positions in the ALS 5 'untranslated region (UTR) (including promoters and / or any other regulatory sequences) or genes (including exons and introns), the present invention The position of a given nucleotide that can be substituted in the can be different. Similarly, given amino acid deletions or insertions at other positions in the ALS polypeptide, the positions of a given amino acid that can be replaced in the present invention may differ. Therefore, "corresponding positions" in the present invention should be understood as the nucleotides / amino acids at the indicated numbers may be different, but still may have similar adjacent nucleotides / amino acids. Said nucleotides / amino acids which can be exchanged, deleted or inserted are also included by the term "corresponding position". In order to determine whether a nucleotide residue or an amino acid residue in a given ALS nucleotide / amino acid sequence corresponds to a certain position in the nucleotide sequence SEQ ID NO: 1 or the amino acid sequence SEQ ID NO: 2, the art Skilled artisans can use tools and methods well known in the art, such as comparisons manually or by using computer programs, such as BLAST (Altschul et al. (1990), Journal of Molecular Biology, 215, 403-410) (which represents a substantial local Alignment Search Tool) or ClustalW (Thompson et al. (1994), Nucleic Acid Res., 22, 4673-4680) or any other suitable program suitable for generating sequence alignments.
具体地,本发明提供了一种油菜植物,在所述油菜植物的内源ALS基因编码的多肽位置556处发生色氨酸W→亮氨酸L取代,这是由于在对应于SEQ ID NO:1中示出的核苷酸序列位置1667的位置处"G"核苷酸突变为"T"核苷酸。并且,在所述油菜植物的内源ALS基因编码的多肽位置635处发生丝氨酸S→天冬酰胺N取代,这是由于在对应于SEQ ID NO:1中示出的核苷酸序列位置1904的位置处"G"核苷酸突变为"A"核苷酸。在最优选的实施方案中,本发明提供了一种油菜植物,在所述油菜植物的内源ALS3基因包含SEQ ID NO:3所示的核苷酸序列(或由其组成),其编码SEQ ID NO:4所示的突变的ALS3多肽。Specifically, the present invention provides a rapeseed plant in which a tryptophan W → leucine L substitution occurs at a position 556 of a polypeptide encoded by the endogenous ALS gene of the rapeseed plant, which is due to corresponding to SEQ ID ID NO: The "G" nucleotide is mutated to the "T" nucleotide at the position 1667 of the nucleotide sequence shown in 1. And, a serine S → asparagine N substitution occurred at the position 635 of the polypeptide encoded by the endogenous ALS gene of the rape plant, which is due to the nucleotide sequence position 1904 corresponding to the nucleotide sequence shown in SEQ ID NO: 1 The "G" nucleotide is mutated to the "A" nucleotide at the position. In the most preferred embodiment, the present invention provides a rapeseed plant, and the endogenous ALS3 gene of the rapeseed plant comprises (or consists of) the nucleotide sequence shown in SEQ ID NO: 3, which encodes SEQ ID mutated ALS3 polypeptide shown by NO: 4.
可根据Singh(1991),Proc.Natl.Acad.Sci.88:4572-4576中描述的测定法来测量ALS活性。本文提到的编码ALS多肽的ALS核苷酸序列优选地可赋予对本文所述的一种或多种嘧啶水杨酸类除草剂的耐受性(或者,对嘧啶水杨酸类除草剂更低的敏感度)。这是由于本文所述的导致氨基酸取代的点突变。因此,对嘧啶水杨酸类除草剂的耐受性(或者,对嘧啶水杨酸类除草剂更低的敏感度)可通过在存在嘧啶水杨酸类除草剂的情况下,从来自含有突变ALS序列的植物和没有突变ALS序列的植物的细胞提取物中获得ALS并比较其活性来测量,例如Singh et al(1988)[J.Chromatogr.,444,251-261]中描述的方法。当 使用植物时,优选地在存在多种浓度的嘧啶水杨酸类除草剂的情况下,更优选在存在多种浓度的嘧啶水杨酸类除草剂"双草醚的情况下,在野生型的细胞提取物或叶提取物以及在所获得突变体的油菜细胞提取物或叶提取物中测定ALS活性。当用于本文时,敏感度更低,反之亦然,可被看作是“耐受性更高”或“抗性更高”。相似地,“耐受性更高”或“抗性更高”,反之亦然,可被看作是“敏感度更低”。ALS activity can be measured according to the assay described in Singh (1991), Proc. Natl. Acad. Sci. 88: 4572-4576. The ALS nucleotide sequences encoding ALS polypeptides referred to herein preferably confer resistance to one or more pyrimidinesalicylic acid herbicides described herein (alternatively, Low sensitivity). This is due to the point mutations described herein that lead to amino acid substitutions. Therefore, tolerance to pyrimidine salicylic acid herbicides (or, less sensitive to pyrimidine salicylic acid herbicides) can be derived from the presence of mutations in the presence of pyrimidine salicylic acid herbicides. ALS is obtained from cell extracts of plants of the ALS sequence and plants without a mutant ALS sequence and their activity is measured for comparison, for example the method described in Singh et al (1988) [J. Chromatogr., 444, 251-261]. When using plants, preferably in the presence of multiple concentrations of pyrimidinesalicylic acid herbicides, more preferably in the presence of multiple concentrations of pyrimidinesalicylic acid herbicide "bisoxafen," in the wild type ALS activity in cell extracts or leaf extracts of rapeseed and rapeseed cell extracts or leaf extracts of the obtained mutants. When used herein, the sensitivity is lower, and vice versa, can be considered as "resistant "Higher tolerance" or "higher resistance." Similarly, "higher tolerance" or "higher resistance", and vice versa, can be considered "less sensitive."
术语“嘧啶水杨酸类除草剂”不意图受限于可干扰ALS酶活性的单一除草剂。因此,除非另有说明或可从上下文中明显看出,否则“嘧啶水杨酸类除草剂”可以是本领域中已知的一种除草剂或者两种、三种、四种或多种除草剂的混合物,所述除草剂优选为本文所列出的那些,例如嘧草硫醚、氯酯磺草胺、环酯草醚、双草醚、嘧草醚、嘧啶肟草醚等。The term "pyrimidinesalicylic acid herbicide" is not intended to be limited to a single herbicide that can interfere with the enzyme activity of ALS. Therefore, unless otherwise stated or apparent from the context, a "pyrimidinesalicylic acid herbicide" may be one herbicide or two, three, four, or more herbicides known in the art. Mixtures of agents, the herbicides are preferably those listed herein, such as, for example, sulfamethoxazole, sulfachlor, ciprofen, bispyribac, sulfamethoxam, sulfamethoxam, and the like.
本发明提供了具有内源性乙酰乳酸合酶(ALS)基因突变的可耐受嘧啶水杨酸类除草剂的油菜植物。用于本文时,除非另有明确说明,否则术语“植物”意指处在任何发育阶段的植物。植物的部分可被连接到整个完整植物或者可从整个完整植物分离。这样的植物的部分包括但不限于植物的器官、组织和细胞,优选种子。本发明的油菜植物在内源ALS基因方面是非转基因的。当然,可通过基因工程或通过常规方法例如杂交来将外源基因转移到所述植物中。The present invention provides a rapeseed plant that is tolerant to pyrimidine salicylic acid herbicides and has an endogenous acetolactate synthase (ALS) gene mutation. As used herein, the term "plant" means a plant at any stage of development, unless explicitly stated otherwise. A part of the plant may be connected to the whole plant or may be separated from the whole plant. Parts of such plants include, but are not limited to, the organs, tissues and cells of the plant, preferably seeds. The rapeseed plant of the present invention is non-transgenic with respect to the endogenous ALS gene. Of course, the exogenous gene can be transferred into the plant by genetic engineering or by conventional methods such as crossing.
以下基于实施例对本发明进行描述,但是本发明并不仅仅限于这些实施例。The present invention is described below based on examples, but the present invention is not limited to these examples.
实施例1Example 1
在之前申请的专利(胡茂龙等,中国专利:CN 107245480 A,具有除草剂抗性的乙酰乳酸合酶突变蛋白及其应用)中,通过对野生型油菜品系N131(公知公用,见浦惠明等,江苏农业学报,2010,26(6):1432-1434)进行甲磺酸乙酯(EMS)诱变处理,在诱变的M2代,我们筛选并鉴定获得了抗磺酰脲类除草剂突变体EM28。EM28植株种子于2017年06月 19日保藏于中国微生物菌种保藏管理委员会普通微生物中心(CGMCC),地址:北京市朝阳区北辰西路1号院3号,邮编:100101,保藏编号为CGMCC No.14299,该菌株的分类命名为:甘蓝型油菜(Brassica napus)。后续的遗传和抗性鉴定研究发现,EM28的抗性性状是由1个核基因控制的不完全显性性状,对咪唑啉酮类、磺酰脲类除草剂具有抗性而对嘧啶水杨酸类除草剂敏感。因此,为期望获得抗嘧啶水杨酸类除草剂油菜种质或资源满足抗除草剂油菜品种选育的需求,我们再次对EM28种子进行EMS诱变处理,EMS诱变方法同前。待M2代菜苗长至3-4叶期时,喷 施嘧啶水杨酸类除草剂双草醚[化学名称:2,6-双(4,6-二甲氧嘧啶基-2-氧基)苯酸钠。分子式:C 19H 17N 4NaO 8。CAS号:125401-92-5(钠盐)],喷施杂草防治推荐使用浓度60g a.i.ha –1的双草醚,进行抗嘧啶水杨酸除草剂种质的筛选。处理3周后,油菜幼苗几乎全部接近死亡,只有10株菜苗存活并正常生长。将这10株疑似为抗嘧啶水杨酸除草剂油菜单株编号为Sh1至Sh10,待菜苗生长至5-6叶期后,移至油菜育种大田,当年花期套袋自交收获得到M3种子。在光照培养室内,对M3种子苗期喷施双草醚除草剂杂草防治的推荐使用浓度,进行抗性效应鉴定。从喷药1周开始,每天观察药害反应。结果发现,其中编号为Sh1、Sh2、Sh3、Sh8、Sh9、Sh10的6个株系和对照在喷药后1周就有药害反应,菜苗心叶开始变黄,并渐渐腐烂,最后死亡,这几株菜苗应为高密度种植条件下药剂漏喷所致;其中编号为Sh4、Sh5、Sh6和Sh7的4个株系表现出较强抗性,无任何药害症状,能正常生长。至此,我们获得了4个抗嘧啶水杨酸类除草剂甘蓝型油菜新种质。后期通过经典遗传学研究发现,抗性性状在F 2代群体中的成活株和死亡株的分离比例为3:1,符合单显性基因的遗传规律。也就是说,突变基因为显性遗传,单基因控制。 In the previously applied patents (Hu Maolong et al., Chinese Patent: CN 107245480 A, herbicide-resistant acetolactate synthase mutant protein and its application), the wild-type rapeseed line N131 (known and public, see Pu Huiming et al.) , Jiangsu Journal of Agricultural Sciences, 2010, 26 (6): 1432-1434) Ethyl methanesulfonate (EMS) mutagenesis treatment. In the M2 generation of mutagenesis, we screened and identified mutations resistant to sulfonylurea herbicides.体 EM28. The seed of EM28 plant was deposited on June 19, 2017 at the Common Microbiological Center (CGMCC) of the China Microbial Strain Collection Management Committee, Address: No. 3, No. 1, Beichen West Road, Chaoyang District, Beijing, 100101, deposit number CGMCC No .14299, the taxonomic name of this strain: Brassica napus. Subsequent genetic and resistance identification studies found that the resistance trait of EM28 is an incomplete dominant trait controlled by one nuclear gene. It is resistant to imidazolinone and sulfonylurea herbicides and resistant to pyrimidine salicylic acid. Herbicides are sensitive. Therefore, in order to obtain the germplasm or resources of pyrimidine-salicylic acid-resistant rapeseed to meet the needs of breeding of herbicide-resistant rapeseed varieties, we again performed EMS mutagenesis on EM28 seeds. When the M2 generation of vegetable seedlings reaches the 3-4 leaf stage, spray the pyrimidine salicylic acid herbicide bisoxafen [chemical name: 2,6-bis (4,6-dimethoxypyrimidin-2-oxy) Sodium benzoate. Molecular formula: C 19 H 17 N 4 NaO 8 . CAS number: 125401-92-5 (sodium salt)], spraying weeds is recommended to use oxadiazine at a concentration of 60g aiha -1 for screening of pyrimidine-salicylic acid-resistant herbicides. After 3 weeks of treatment, almost all rape seedlings were near death, and only 10 rape seedlings survived and grew normally. These 10 strains suspected to be pyrimidine-salicylic acid-resistant herbicide oil menu strains are numbered Sh1 to Sh10. After the vegetable seedlings have grown to the 5-6 leaf stage, they are moved to rapeseed breeding fields, and M3 seeds are harvested by self-bagging during flowering. In the light culture room, the recommended concentration of spraying the bispyribenzide herbicide weed control on M3 seeds at seedling stage was used to identify the resistance effect. From 1 week after spraying, observe the phytotoxicity reaction every day. It was found that the six strains numbered Sh1, Sh2, Sh3, Sh8, Sh9, and Sh10 had a phytotoxicity reaction one week after spraying. The heart leaves of the vegetable seedlings began to turn yellow, and gradually rot, and finally died. These seedlings should be caused by leakage of pesticides under high-density planting conditions; the four strains numbered Sh4, Sh5, Sh6, and Sh7 showed strong resistance without any symptoms of phytotoxicity and could grow normally. So far, we have obtained 4 new germplasms of Brassica napus resistant to pyrimidine salicylic acid herbicides. Later, through classical genetics research, it was found that the resistance traits in the F 2 generation population had a 3: 1 separation ratio between the living and dead strains, which was consistent with the genetic rule of single dominant genes. In other words, the mutant gene is dominant and controlled by a single gene.
实施例2:抗嘧啶水杨酸类除草剂甘蓝型油菜新种质中抗性基因的分子克隆Example 2: Molecular cloning of a resistance gene in a new germplasm of Brassica napus resistant to pyrimidine salicylic acid herbicides
嘧啶水杨酸类除草剂属于ALS抑制剂类除草剂大类,这类除草剂的靶标是乙酰乳酸合酶。在甘蓝型油菜基因组内共有3个具有功能的乙酰乳酸合酶基因,分别是位于A基因组ALS2和ALS3(Genebank登录号:Z11525和Z11526),C基因组的ALS1(Genebank登录号:Z11524)。根据这3个ALS基因序列,分别设计3对PCR引物。ALS1引物1:GTGGATCTAACTGTTCTTGA和引物2:AGAGATGAAGCTGGTGATC。ALS2引物1:GAGTGTTGCGAGAAATTGCTT和引物2:TTGATTATTCTATGCTCTCTTCTG。ALS3引物1:ATGGTTAGATGAGAGAGAGAGAG和引物2:GGTCGCACTAAGTACTGAGAG。采用CTAB法分别提取抗性株系Sh4、Sh5、Sh6、Sh7和不抗株系Sh1、Sh2、Sh3、Sh8、Sh9、Sh10以及N131、EM28的叶片基因组DNA,PCR克隆野生型与突变体ALS1、ALS2和ALS3基因。按东洋纺(上海)生物科技有限公司高保真性DNA聚合酶KOD-Plus试剂盒说明书配制50μL PCR反应体系。在MJ Research PTC-200型PCR仪上进行扩增,反应程序为94℃预变性5min;94℃变性30s,55℃退火30s,72℃延伸2.5min,共35个循环。产物经平末端加A后,在1.2%(V/W)琼脂糖凝胶电泳分离后,用北京Tiangen公司生产的琼脂糖凝胶DNA回收试剂盒(目录号:DP209)纯化回收,纯化的PCR产物委托南京金斯瑞生物有限公司测序。 测序比对发现,4个抗性株系在ALS3基因上均检测到两个位点发生了点突变。即,ALS3基因的第+1667处发生点突变,核苷酸由G变为T,导致相应编码蛋白的第556位由色氨酸(W)突变为亮氨酸(L);第+1904处发生点突变,核苷酸由G变为A,导致相应编码蛋白的第635位由丝氨酸(S)突变为天冬酰胺酸(N)(图1)。因此,与突变体EM28相比,抗性株系中的ALS3基因增加了1个新的突变位点(S635N),其核苷酸如SEQ ID NO:3所示,氨基酸序列如SEQ ID NO:4所示。ALS3基因的双位点突变(W556L和S635N)增加了抗性突变体对嘧啶水杨酸类除草剂的抗性。Pyrimidine salicylic acid herbicides belong to the class of ALS inhibitor herbicides. The target of this type of herbicide is acetolactate synthase. There are three functional acetolactate synthase genes in the Brassica napus genome, which are located in the A genome ALS2 and ALS3 (Genebank accession numbers: Z11525 and Z11526), and the C genome of ALS1 (Genebank accession number: Z11524). Based on these three ALS gene sequences, three pairs of PCR primers were designed. ALS1 primer 1: GTGGATCTAACTGTTCTTGA and primer 2: AGAGATGAAGCTGGTGATC. ALS2 primer 1: GAGTGTTGCGAGAAATTGCTT and primer 2: TTGATTATTCTATGCTCTCTTCTG. ALS3 primer 1: AGGGTTAGATGAGAGAGAGAGAG and primer 2: GGTCGCACTAAGTACTGAGAG. The CTAB method was used to extract leaf genomic DNA from resistant strains Sh4, Sh5, Sh6, Sh7 and non-resistant strains Sh1, Sh2, Sh3, Sh8, Sh9, Sh10, and N131 and EM28. PCR wild-type and mutant ALS1 were cloned. ALS2 and ALS3 genes. 50μL PCR reaction system was prepared according to the instructions of Toyobo (Shanghai) Biotechnology Co., Ltd. high-fidelity DNA polymerase KOD-Plus kit. Amplification was performed on a MJ Research PTC-200 PCR instrument. The reaction procedure was pre-denaturation at 94 ° C for 5 minutes; denaturation at 94 ° C for 30s, annealing at 55 ° C for 30s, and extension at 72 ° C for 2.5 minutes, a total of 35 cycles. After adding A to the blunt end, the product was separated by 1.2% (V / W) agarose gel electrophoresis, and then purified and recovered using an agarose gel DNA recovery kit (catalog number: DP209) produced by Beijing Tiangen Company. The purified PCR The products were commissioned by Nanjing Kingsray Biological Co., Ltd. for sequencing. Sequencing comparisons revealed that four resistant strains detected point mutations at two loci in the ALS3 gene. That is, a point mutation occurred at the + 1667th position of the ALS3 gene, and the nucleotide changed from G to T, which resulted in the 556th mutation of the corresponding encoded protein from tryptophan (W) to leucine (L); at +1904 A point mutation occurred, and the nucleotide changed from G to A, resulting in a mutation at position 635 of the corresponding encoded protein from serine (S) to asparaginic acid (N) (Figure 1). Therefore, compared with the mutant EM28, the ALS3 gene in the resistant strain has a new mutation site (S635N), the nucleotides of which are shown in SEQ ID NO: 3 and the amino acid sequence of which is shown in SEQ ID NO: 4 shown. A two-site mutation of the ALS3 gene (W556L and S635N) increased the resistance of resistant mutants to pyrimidine salicylic acid herbicides.
实施例3:抗性株系的除草剂抗性效应评价与鉴定Example 3: Evaluation and identification of herbicide resistance effects of resistant lines
选择生长势强、株型好的Sh7,暂定名为RP-1,作为抗性株系代表,以N131和EM28作为对照材料,采用田间鉴定和温室盆栽试验两种方法对RP-1的抗性效应进行鉴定与评价。油菜田间鉴定试验在江苏省农业科学院油菜隔离繁殖区进行,温室盆栽试验在恒温光照培养室中进行。待所有处理材料播种出苗生长至3-4叶苗龄,分别喷施在我国广泛使用的3种ALS抑制剂类除草剂,其中嘧啶水杨酸类除草剂为双草醚[2,6-双(4,6-二甲氧嘧啶基-2-氧基)苯酸钠]、SU类除草剂为苯磺隆(2-[N-(4-甲氧基-6-甲基-1,3,5-三嗪-2-基)-N-甲基氨基甲酰胺基磺酰基]苯甲酸甲酯)、IMI类除草剂为咪唑乙烟酸[(RS)-5-乙基-2-(4-异丙基-4-甲基-5-氧代-1H-咪唑啉-2-基)烟酸]。喷药3周后,根据菜苗的生长表现确定不同用药浓度下菜苗的抗性效应,结果如表1所示。从表1可以看出,ALS3基因的双位点突变(W556L和S635N)材料RP-1增加了对嘧啶水杨酸类除草剂的抗性。Sh7 with strong growth potential and good plant type was tentatively named RP-1. As a representative of the resistant strains, N131 and EM28 were used as control materials. Two methods, field identification and greenhouse pot test, were used for resistance to RP-1. Sexual effects are identified and evaluated. The rape field identification test was conducted in the rape isolation breeding area of the Jiangsu Academy of Agricultural Sciences, and the greenhouse pot experiment was performed in a constant temperature light culture room. After all the treated materials are sown and emerged to grow to 3-4 leaf seedling age, three kinds of ALS inhibitor herbicides widely used in China are sprayed, among which the pyrimidine salicylic acid herbicide is bispyrither [2,6-bis (4 , 6-dimethoxypyrimidin-2-oxy) sodium benzoate], SU-type herbicide is besulfuron-methyl (2- [N- (4-methoxy-6-methyl-1,3,5 -Triazin-2-yl) -N-methylcarbamidosulfonyl] benzoic acid methyl ester) and IMI herbicides are imidazolenicotinic acid ((RS) -5-ethyl-2- (4-isopropyl) 4-methyl-5-oxo-1H-imidazolin-2-yl) nicotinic acid]. Three weeks after spraying, the resistance effect of vegetable seedlings under different drug concentrations was determined according to the growth performance of vegetable seedlings. The results are shown in Table 1. As can be seen from Table 1, the two-site mutation (W556L and S635N) material RP-1 of the ALS3 gene increased resistance to pyrimidine salicylic acid herbicides.
表1 不同浓度的ALS抑制剂类除草剂处理3个油菜后的抗性表现Table 1 Resistance performance of ALS inhibitor herbicides at different concentrations after treating three rapeseed
Figure PCTCN2018102232-appb-000001
Figure PCTCN2018102232-appb-000001
表注:R代表除草剂处理后油菜植株生长良好,无药害表现;S代表除草剂处理后油菜植株生长受到严重抑制,表现明显药害,最终菜苗死亡(以下同)。Table note: R represents that the rapeseed plants grow well after herbicide treatment, and there is no phytotoxicity; S represents that the growth of rapeseed plants is severely inhibited after herbicide treatment, showing obvious phytotoxicity, and the final vegetable seedlings die (the same below).
实施例4:除草剂对ALS酶活性的抑制性试验Example 4: Inhibition test of ALS enzyme activity by herbicide
根据抗性表型鉴定结果,在体外进行酶活性离体测定试验,比较RP-1、EM28和原始野生型N131的中ALS酶被3种类型除草剂双草醚(PB类)、苯磺隆(SU类)和咪 唑乙烟酸(IMI类)的抑制影响,比较3个材料间的差异。ALS酶活性测定参照Singh等的方法(Singh BK,et al.,Analytical Biochemistry,1988,171:173-179)。具体的,分别取0.2g叶片样品,在研钵中用液氮研磨粉碎,将磨好的样品加入含有4.5ml的初酶提取液[100mM K2HPO4、0.5mM MgCl2、0.5mM硫胺素焦磷酸(TPP)、10μM黄素腺嘌呤双核苷酸(FAD)、10mM丙酮酸钠、10%(v/v)丙三醇、1mM二硫苏糖醇、1mM苯甲基磺酰氟(PMSF)、0.5%(w/v)聚乙烯基吡咯烷酮]中,于4℃、12000rpm离心20min。取上清液,加入等体积的饱和(NH4)2SO4,于冰上放置30min后,4℃、12000rpm离心20min,弃上清液,加入1mL初酶提取液,振荡溶解,获得每个样品的ALS酶液。取200μL提取好的ALS酶液,分别加入360μL 50mM Hepes-NaOH(PH=7.5)酶反应缓冲液、80μL 20mM TPP、80μL 200μM FAD、80μL 2M丙酮酸钠+200mM MgCl2和不同浓度的ALS类除草剂,混匀、放入37℃反应1h后,加入160μL 3M H2SO4终止反应,60℃脱羧15min。然后加入780μL 5.5%α-萘酚溶液和780μL 0.55%肌酸,65℃显色15min,在530nm比色,读取吸光值,根据标准曲线计算酶活性。将未加入除草剂对照的ALS酶活性分别记为100%,计算双草醚(PB类)、苯磺隆(SU类)和咪唑乙烟酸(IMI类)除草剂对RP-1、EM28和原始野生型N131的ALS酶活性的影响。According to the results of resistance phenotypic identification, an in vitro enzyme activity test was performed to compare the ALS enzyme in RP-1, EM28 and the original wild-type N131 with three types of herbicides bispyribenzol (PB), benzsulfuron (SU type) and imidazolidinic acid (IMI type), compared the difference between the three materials. For the measurement of ALS enzyme activity, refer to the method of Singh et al. (Singh BK, et al., Analytical Biochemistry, 1988, 171: 173-179). Specifically, 0.2 g of leaf samples were taken and ground and pulverized with liquid nitrogen in a mortar. The ground sample was added to a 4.5 ml primary enzyme extract [100 mM K2HPO4, 0.5 mM MgCl2, 0.5 mM thiamine pyrophosphate ( TPP), 10 μM flavin adenine dinucleotide (FAD), 10 mM sodium pyruvate, 10% (v / v) glycerol, 1 mM dithiothreitol, 1 mM benzylsulfonyl fluoride (PMSF), 0.5 % (W / v) polyvinylpyrrolidone], centrifuged at 4 ° C and 12000 rpm for 20 min. Take the supernatant, add an equal volume of saturated (NH4) 2SO4, place it on ice for 30 minutes, centrifuge at 4 ° C and 12000 rpm for 20 minutes, discard the supernatant, add 1 mL of the initial enzyme extract, and shake to dissolve to obtain ALS for each sample Enzyme solution. Take 200 μL of the extracted ALS enzyme solution, and add 360 μL of 50 mM Hepes-NaOH (PH = 7.5) enzyme reaction buffer, 80 μL of 20 mM TPP, 80 μL of 200 μM FAD, 80 μL of 2 M sodium pyruvate + 200 mM MgCl2, and ALS herbicides with different concentrations After mixing and placing at 37 ° C for 1 hour, 160 μL of 3M H2SO4 was added to terminate the reaction, and decarboxylation was performed at 60 ° C for 15 minutes. Then add 780 μL of a 5.5% α-naphthol solution and 780 μL of 0.55% creatine, develop a color at 65 ° C for 15 minutes, and compare the color at 530 nm. Read the absorbance and calculate the enzyme activity according to the standard curve. The ALS enzyme activity of the herbicide-free control was recorded as 100%, respectively, and the bispyribenzol (PB type), besulfuron (SU type) and imidazolenic acid (IMI type) herbicide pair RP-1, EM28 and the original wild type were calculated. Effect of N131 ALS enzyme activity.
从图2和3可以看出,随着SU类除草剂苯磺隆和IMI类除草剂咪唑乙烟酸浓度的增加,野生型N131、EM28和RP-1的ALS酶活性均受到抑制,但EM28和RP-1中的突变酶都表现对除草剂具有一定抗性,因为与野生型N131相比,随苯磺隆浓度增加,EM28和RP-1中的ALS酶活性抑制下降趋势较缓,二者变化趋势相同。It can be seen from Figures 2 and 3 that with the increase of the concentrations of the SU herbicides bensulfuron and the IMI herbicide imidazolenicotinic acid, the ALS enzyme activities of wild-type N131, EM28, and RP-1 were all inhibited, but EM28 and RP- The mutant enzymes in 1 all showed a certain resistance to herbicides, because compared with wild-type N131, the inhibition of ALS enzyme activity in EM28 and RP-1 decreased more slowly with the increase of bensulfuron-methyl, and the change trends of both the same.
从图4可以看出,RP-1中的突变酶表现对嘧啶水杨酸类除草剂双草醚具有较强抗性,因为与N131和EM28相比,随双草醚浓度增加,N131和EM28中的ALS酶活性快速下降,且变化趋势相同,而RP-1中的突变酶活性受到除草剂抑制程度较轻,即使在高浓度(250μmol L-1)双草醚条件下,RP-1中的突变酶活性是对照的51%左右。然而,此时N131和EM28酶活性抑制率接近100%,即,N131和EM28中的ALS基本没有了活性,分别仅为对照的4%和10%。综上,突变体RP-1中的ALS酶对嘧啶水杨酸类除草剂双草醚的敏感性显著低于N131和EM28中ALS酶,从而进一步说明,ALS3基因的双位点突变(W556L和S635N)赋予了RP-1对嘧啶水杨酸类除草剂抗性。It can be seen from Figure 4 that the mutant enzyme in RP-1 shows strong resistance to the pyrimidine salicylic acid herbicide dioxadi because, as compared with N131 and EM28, N131 and EM28 increase with the increase of the dioxadi concentration The ALS enzyme activity in RP-1 decreased rapidly and showed the same trend, while the mutant enzyme activity in RP-1 was lightly inhibited by herbicides. Even under high concentration (250 μmol L-1) bispyrisol, The mutant enzyme activity was about 51% of the control. However, at this time, the inhibition rates of N131 and EM28 enzyme activity were close to 100%, that is, the ALS in N131 and EM28 had basically no activity, only 4% and 10% of the control, respectively. In summary, the sensitivity of the ALS enzyme in the mutant RP-1 to the pyrimidine salicylate herbicide dioxadi is significantly lower than that of the ALS enzymes in N131 and EM28, which further illustrates that the two-site mutation of the ALS3 gene (W556L and S635N) confers resistance to pyrimidine salicylic acid herbicides.
实施例5:抗性基因在拟南芥中的功能验证Example 5: Functional verification of resistance genes in Arabidopsis
构建植物表达载体,通过常规的农杆菌介导法将抗性基因转入拟南芥植株,在转基因后代中PCR筛选阳性纯合转基因株系进行除草剂表型鉴定。过程简言之,根据ALS3 基因序列设计特异引物,ALS3引物 3:5'CGC GGTACCCTCTCTCTCTCTCATCTAACCAT3'和ALS3引物 4:5'CGC ACTAGTCTCTCAGTACTTAGTGCGACC3',其5'分别加入KpnI和SpeI酶切修饰位点,下划线序列为酶切位点。以突变体RP-1的基因组DNA为模板,PCR扩增获得抗性基因,其核苷酸如SEQ ID NO:3所示,氨基酸序列如SEQ ID NO:4所示。PCR产物按实施例2方法经回收、克隆、测序,获得带有突变酶编码基因的重组T载体。用KpnI和SpeI双酶切T载体获得含目的基因的片段回收、连接到同样经双酶切的pCAMBIA1390载体上(购自澳大利亚CAMBI公司),得到重组的植物表达载体。将构建好的重组载体转化大肠杆菌DH5α,提取质粒用于酶切和测序检测。将检测表明正确的含有目的基因的重组载体转化农杆菌EHA105菌株,提取质粒进行PCR和酶切鉴定。培养获得的重组菌株,利用农杆菌侵染花序法(flower dipping)转化拟南芥。T0代中在培养基上经抗生素筛选后,获得T1代植株移栽到盆钵中,置于人工培养箱中生长,PCR筛选、扩繁获得T3代的纯合转基因株系。在T3代转基因苗期,喷施60g a.i.ha –1双草醚进行抗性鉴定。喷药处理3周后,所有转基因拟南芥幼苗生长状态良好,而未转基因的拟南芥(Col)幼苗全部黄化死亡(图5),表明RP-1中核苷酸如SEQ ID NO:3所示的乙酰乳酸合酶突变基因在拟南芥中表达具有抗嘧啶水杨酸类除草剂的功能。 A plant expression vector was constructed, and the resistance gene was transferred into an Arabidopsis thaliana plant by a conventional Agrobacterium-mediated method, and positive homozygous transgenic lines were screened by PCR in the transgenic offspring to identify the herbicide phenotype. In brief, specific primers were designed based on the ALS3 gene sequence. ALS3 primers 3: 5'CGC GGTACC CTCTCTCTCTCTCATCTAACCAT3 'and ALS3 primers 4: 5'CGC ACTAGT CTCTCAGTACTTAGTGCGACC3', 5 ′ of which were added with KpnI and SpeI restriction sites, underlined The sequence is a restriction site. Using the genomic DNA of the mutant RP-1 as a template, the resistance gene was obtained by PCR amplification. The nucleotides are shown in SEQ ID NO: 3 and the amino acid sequence is shown in SEQ ID NO: 4. The PCR product was recovered, cloned, and sequenced according to the method of Example 2 to obtain a recombinant T vector carrying a gene encoding a mutant enzyme. A KpnI and SpeI double-digested T vector was used to obtain a fragment containing the gene of interest, which was recovered and ligated to the same double-digested pCAMBIA1390 vector (purchased from Australian CAMBI) to obtain a recombinant plant expression vector. The constructed recombinant vector was transformed into E. coli DH5α, and the plasmid was extracted for digestion and sequencing. Agrobacterium tumefaciens EHA105 strain was transformed with the recombinant vector containing the correct target gene, and the plasmid was extracted for identification by PCR and enzyme digestion. The obtained recombinant strain was cultured, and the Arabidopsis thaliana was transformed by Agrobacterium flower dipping. After the T0 generation was screened with antibiotics on the medium, the T1 generation plants were transplanted into pots, grown in artificial incubators, and screened and expanded to obtain homozygous transgenic lines of the T3 generation. In the T3 generation of transgenic seedlings, 60g of aiha -1 bisoxafen was sprayed for resistance identification. After 3 weeks of spraying treatment, all transgenic Arabidopsis seedlings grew well, while all non-transgenic Arabidopsis (Col) seedlings were yellowed and died (Figure 5), indicating that the nucleotides in RP-1 are as shown in SEQ ID NO: 3 The shown acetolactate synthase mutant gene is expressed in Arabidopsis thaliana and functions as a pyrimidine salicylic acid herbicide.
实施例6:抗性基因在烟草中的功能验证Example 6: Functional verification of resistance genes in tobacco
按照实施例5的方法,将RP-1中核苷酸如SEQ ID NO:3所示的乙酰乳酸合酶突变基因克隆至植物表达载体pCAMBIA1390质粒(购自澳大利亚CAMBI公司)中。挑选阳性克隆转化农杆菌EHA105,采用常规的农杆菌介导法转化本氏烟叶盘,获得转基因植株烟草收种后,经PCR鉴定,在T3代转基因烟草苗期,喷施60g a.i.ha –1双草醚进行抗性鉴定。喷药处理3周后,所有转基因烟草幼苗生长状态良好,而未转基因的烟草(Tob)幼苗全部黄化死亡(图5),表明RP-1中核苷酸如SEQ ID NO:3所示的乙酰乳酸合酶突变基因在烟草中表达也具有抗嘧啶水杨酸类除草剂的功能。 According to the method of Example 5, the acetolactate synthase mutation gene of the nucleotide in RP-1 as shown in SEQ ID NO: 3 was cloned into the plant expression vector pCAMBIA1390 plasmid (purchased from Australian CAMBI company). The positive clones were selected to transform Agrobacterium EHA105. The conventional Agrobacterium-mediated transformation method was used to transform the tobacco leaf disc of Benn's. After the transgenic plants were harvested, they were identified by PCR. At the seedling stage of T3 generation transgenic tobacco, 60g aiha -1 was sprayed. Ether was identified for resistance. After 3 weeks of spraying treatment, all transgenic tobacco seedlings grew well, while all non-transgenic tobacco (Tob) seedlings yellowed and died (Figure 5), indicating that the nucleotides in RP-1 are as shown in SEQ ID NO: 3. The expression of lactate synthase mutant gene in tobacco also has the function of resistance to pyrimidine salicylic acid herbicides.
实施例7:抗性基因在普通油菜中的功能验证Example 7: Functional verification of resistance genes in common rapeseed
采用杂交转育方法将RP-1中核苷酸如SEQ ID NO:3所示的乙酰乳酸合酶突变基因导入其它对嘧啶水杨酸类除草剂无抗性的普通油菜品种或品系。过程简言之,用RP-1分别与无抗性的普通油菜品种恢复系3075R(浦惠明等,2002,江苏农业科学,4:33-34)和3018R(浦惠明等,1999,江苏农业科学,6:32-33)配制杂交组合,当年收获2个F1种子在油菜春化培养室进行加代种植,花期选生长一致的单株套袋自交,收获F2种 子在南京江苏省农科院溧水植物科学基地播种,每个F2群体播种20行,苗期取F2群体单株叶片,提取DNA,PCR扩增ALS3基因,产物按实例2步骤纯化、回收、测序。根据测序结果,筛选具有RP-1中核苷酸如SEQ ID NO:3所示的乙酰乳酸合酶突变基因的纯合型F2单株。于油菜花期对每个入选的F2单株套袋自交,收获F3种子。在F3代苗期,喷施60g a.i.ha –1双草醚进行抗性鉴定。喷药处理3周后,所有入选的导入抗性基因的油菜幼苗生长状态良好,而未含抗性基因的油菜幼苗全部黄化死亡,表明RP-1中核苷酸如SEQ ID NO:3所示的乙酰乳酸合酶突变基因在油菜中表达也具有抗嘧啶水杨酸类除草剂的功能。 The acetolactate synthase mutation gene of nucleotides in RP-1 as shown in SEQ ID NO: 3 is introduced into other common rapeseed varieties or strains that are not resistant to pyrimidine salicylic acid herbicides by hybridization. In brief, RP-1 and 3075R (Pu Huiming et al., 2002, Jiangsu Agricultural Science, 4: 33-34) and 3018R (Pu Huiming et al., 1999, Jiangsu) were used to restore the non-resistant common rapeseed varieties. Agricultural Sciences, 6: 32-33) Prepare hybrid combinations, harvest two F1 seeds in the rape vernalization culture room for additional planting in the same year, select a single plant with self-bagging and self-consistent growth during flowering, and harvest F2 seeds in Nanjing Jiangsu Province. The plant was seeded at the Yuanshui Water Plant Science Base. Each F2 population was sown 20 rows. A single leaf of the F2 population was taken at seedling stage, DNA was extracted, and the ALS3 gene was amplified by PCR. The product was purified, recovered, and sequenced according to Example 2. According to the sequencing results, a homozygous F2 single strain having an acetolactate synthase mutation gene as shown in SEQ ID NO: 3 in RP-1 was screened. At the flowering stage of rape, each selected F2 single plant was self-bagging, and F3 seeds were harvested. In the F3 seedling stage, 60g of aiha -1 bisoxafen was sprayed for resistance identification. After 3 weeks of spraying treatment, all selected rapeseed seedlings with resistance genes introduced were growing well, but all rapeseed seedlings without resistance genes were yellowed and died, indicating that the nucleotides in RP-1 are shown in SEQ ID NO: 3 The expression of the acetolactate synthase mutant gene in rapeseed also has the function of resistance to pyrimidine salicylic acid herbicides.
实施例8:抗性突变位点不同氨基酸替换的抗性功能研究Example 8: Study on resistance function of different amino acid substitutions in resistance mutation sites
为明确本发明中ALS3在Trp556和Ser635的两个位点突变成其他氨基酸后产生的抗性功能,我们通过查阅大量相关文献,设计了5种氨基酸突变组合(表2),通过人工引入点突变位点并构建其植物表达载体,转化拟南芥验证其抗性功能。过程简言之,以突变体RP-1基因组为模板,利用PCR技术进行定点突变操作,实验委托南京钟鼎生物技术有限公司完成。结果获得了5个突变基因分别为:LT,ALS3基因的第+1667处核苷酸由G变为T,第+1904处核苷酸由G变为C,导致相应编码蛋白的第556位由色氨酸(W)突变为亮氨酸(L),第635位由丝氨酸(S)突变为苏氨酸(T);LI,ALS3基因的第+1667处核苷酸由G变为T和+1904处核苷酸由G变为T,导致相应编码蛋白的第556位由色氨酸(W)突变为亮氨酸(L)和635位由丝氨酸(S)突变为异亮氨酸(I);GN,ALS3基因的第+1666处核苷酸由T变为G和+1904处核苷酸由G变为A,导致相应编码蛋白的第556位由色氨酸(W)突变为甘氨酸(G)和635位由丝氨酸(S)突变为天冬酰胺酸(N);GT,ALS3基因的第+1666处核苷酸由T变为G和+1904处核苷酸由G变为C,导致相应编码蛋白的第556位由色氨酸(W)突变为甘氨酸(G)和635位由丝氨酸(S)突变为苏氨酸(T);GI,ALS3基因的第+1666处核苷酸由T变为G和+1904处核苷酸由G变为T,导致相应编码蛋白的第556位由色氨酸(W)突变为甘氨酸(G)和635位由丝氨酸(S)突变为异亮氨酸(I)(表2)。In order to clarify the resistance function of ALS3 in the present invention after mutation of two sites of Trp556 and Ser635 into other amino acids, we have consulted a large number of relevant literatures and designed five combinations of amino acid mutations (Table 2). The mutant site was constructed and its plant expression vector was constructed and transformed into Arabidopsis to verify its resistance function. In short, the mutant RP-1 genome was used as a template and PCR was used to perform site-directed mutagenesis. The experiment was commissioned by Nanjing Zhongding Biotechnology Co., Ltd. As a result, five mutant genes were obtained: LT, the + 1667th nucleotide of the ALS3 gene changed from G to T, and the + 1904th nucleotide changed from G to C, resulting in the 556th position of the corresponding encoded protein. Tryptophan (W) is mutated to leucine (L), serine (S) is mutated to threonine (T) at position 635; LI, the nucleotide at +1667 of ALS3 gene is changed from G to T and The nucleotide at +1904 changed from G to T, which resulted in mutation of tryptophan (W) to leucine (L) at position 556 and mutation of serine (S) to isoleucine at position 635 ( I); GN, the + 1666th nucleotide at +1666 changed from T to G and the + 1904th nucleotide changed from G to A, resulting in mutation of tryptophan (W) at position 556 of the corresponding encoded protein Glycine (G) and 635 positions were mutated from serine (S) to asparaginic acid (N); GT, ALS3 genes changed from T to G at +1666 and from G to +1904 C, resulting in mutation of tryptophan (W) to glycine (G) at position 556 and threonine (T) of serine (S) at position 635; GI, +1666 nucleus of ALS3 gene Glycylic acid changes from T to G and +1904 nucleotide changes from G to T, resulting in 556 of the corresponding encoded protein from tryptophan (W) was mutated to glycine (G) and 635 with serine (S) was mutated to isoleucine (I) (Table 2).
按照实施例5的方法,将上述5个突变序列构建至植物表达载体pCAMBIA1390质粒(购自澳大利亚CAMBI公司)中,转化拟南芥,获得阳性转基因苗后,苗期喷施60g a.i.ha –1的双草醚进行抗性鉴定。喷药处理3周后,LT和LI的所有转基因拟南芥幼苗生长状态良好,而GN、GT和GI的转基因拟南芥以及未转基因的拟南芥幼苗全部黄化死亡(表2),表明LT和LI氨基酸突变组合的序列在拟南芥中表达具有抗嘧啶水杨酸类除 草剂的功能。 According to the method of Example 5, the above five mutant sequences were constructed into the plant expression vector pCAMBIA1390 plasmid (purchased from Australian CAMBI company), and transformed into Arabidopsis thaliana. After obtaining a positive transgenic seedling, 60 g of aiha -1 was sprayed at the seedling stage. Glyoxysin was tested for resistance. After 3 weeks of spray treatment, all the transgenic Arabidopsis seedlings of LT and LI grew well, while the transgenic Arabidopsis thaliana and non-transgenic Arabidopsis seedlings of GN, GT and GI all yellowed and died (Table 2), indicating The sequence of the combination of LT and LI amino acid mutations is expressed in Arabidopsis and has the function of resistance to pyrimidine salicylic acid herbicides.
表2 不同氨基酸突变组合序列在拟南芥中的抗性表现Table 2 Resistance performance of different amino acid mutation combination sequences in Arabidopsis
Figure PCTCN2018102232-appb-000002
Figure PCTCN2018102232-appb-000002
注:斜体加粗字母表示突变的碱基,R代表除草剂处理后,转基因植株生长良好,无药害表现,S代表除草剂处理后油菜植株生长受到严重抑制,表现明显药害,最终菜苗死亡。Note: Bold bold italics indicate mutated bases, R represents herbicide treatment, the transgenic plants grow well and have no phytotoxicity performance, S represents herbicide treatment. Rape plant growth is severely inhibited, showing significant phytotoxicity, and eventually vegetable seedlings die .
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式作出多种变更或修改,但这些变更和修改均落入本发明的保护范围。Although the specific embodiments of the present invention have been described above, those skilled in the art should understand that these are merely examples, and the protection scope of the present invention is defined by the appended claims. Those skilled in the art can make various changes or modifications to these embodiments without departing from the principle and essence of the present invention, but these changes and modifications fall within the protection scope of the present invention.

Claims (7)

  1. 编码突变的乙酰乳酸合酶蛋白的分离的核酸,所述突变的乙酰乳酸合酶蛋白包含如下的突变:An isolated nucleic acid encoding a mutated acetolactate synthase protein comprising the following mutations:
    在对应于SEQ ID NO:2的位置556的位置处色氨酸(W)突变为亮氨酸(L);和Mutation of tryptophan (W) to leucine (L) at a position corresponding to position 556 of SEQ ID NO: 2; and
    在对应于SEQ ID NO:2的位置635的位置处丝氨酸(S)突变为天冬酰胺(N)、苏氨酸(T)或异亮氨酸(I);The serine (S) is mutated to asparagine (N), threonine (T) or isoleucine (I) at a position corresponding to position 635 of SEQ ID NO: 2;
    优选地,所述的分离的核酸的核苷酸序列如SEQ ID NO:3所示;Preferably, the nucleotide sequence of the isolated nucleic acid is as shown in SEQ ID NO: 3;
    优选地,其中所述突变的乙酰乳酸合酶蛋白的氨基酸序列如SEQ ID NO:4所示。Preferably, the amino acid sequence of the mutated acetolactate synthase protein is shown in SEQ ID NO: 4.
  2. 表达盒、载体或细胞,其包含权利要求1所述的核酸。An expression cassette, vector or cell comprising the nucleic acid of claim 1.
  3. 突变的乙酰乳酸合酶蛋白,其包含如下的突变:Mutated acetolactate synthase protein, which contains the following mutations:
    在对应于SEQ ID NO:2的位置556的位置处色氨酸(W)突变为亮氨酸(L);和Mutation of tryptophan (W) to leucine (L) at a position corresponding to position 556 of SEQ ID NO: 2; and
    在对应于SEQ ID NO:2的位置635的位置处丝氨酸(S)突变为天冬酰胺(N)、苏氨酸(T)或异亮氨酸(I);The serine (S) is mutated to asparagine (N), threonine (T) or isoleucine (I) at a position corresponding to position 635 of SEQ ID NO: 2;
    优选地,其中所述蛋白包含在对应于SEQ ID NO:2的位置556的位置处色氨酸(W)突变为亮氨酸(L)和在对应于SEQ ID NO:2的位置635的位置处丝氨酸(S)突变为天冬酰胺(N);Preferably, wherein said protein comprises a mutation of tryptophan (W) to leucine (L) at a position corresponding to position 556 of SEQ ID NO: 2 and a position corresponding to position 635 of SEQ ID NO: 2 Mutation of serine (S) to asparagine (N);
    更优选地,其中所述突变的乙酰乳酸合酶蛋白的氨基酸序列如SEQ ID NO:4所示。More preferably, the amino acid sequence of the mutated acetolactate synthase protein is shown in SEQ ID NO: 4.
  4. 权利要求1所述的核酸或权利要求2所述的表达盒、载体或细胞或权利要求3所述的突变的乙酰乳酸合酶蛋白用于产生抗嘧啶水杨酸类除草剂植物的用途,优选地,所述植物为油菜,所述核酸编码甘蓝型油菜(Brassica napus)ALS3蛋白。The use of the nucleic acid according to claim 1 or the expression cassette, vector or cell according to claim 2 or the mutant acetolactate synthase protein according to claim 3 for producing a pyrimidine salicylic acid herbicide-resistant plant, preferably Preferably, the plant is rapeseed, and the nucleic acid encodes Brassica napus ALS3 protein.
  5. 产生具有嘧啶水杨酸类除草剂抗性的植物的方法,其特征在于,包括如下步骤:A method for producing a plant having pyrimidine salicylic acid herbicide resistance, comprising the following steps:
    将权利要求1所述的核酸导入植物,优选地通过转基因、杂交、回交或无性繁殖等步骤将权利要求1所述的核酸导入植物,其中所述植物表达权利要求3所述的突变的乙酰乳酸合酶蛋白并具有嘧啶水杨酸类除草剂抗性。The nucleic acid according to claim 1 is introduced into a plant, and preferably the nucleic acid according to claim 1 is introduced into a plant through steps such as transgenic, cross, backcross or asexual propagation, wherein the plant expresses the mutant acetyl group according to claim 3. Lactic acid synthase protein and has pyrimidine salicylic acid herbicide resistance.
  6. 抗嘧啶水杨酸类除草剂的非转基因植物或其部分,其包含编码突变的乙酰乳酸合酶蛋白的分离的核酸,所述突变的乙酰乳酸合酶蛋白包含如下的突变:Non-transgenic plants or parts thereof resistant to pyrimidine salicylic acid herbicides, comprising an isolated nucleic acid encoding a mutant acetolactate synthase protein, said mutant acetolactate synthase protein comprising the following mutations:
    在对应于SEQ ID NO:2的位置556的位置处色氨酸(W)突变为亮氨酸(L);和Mutation of tryptophan (W) to leucine (L) at a position corresponding to position 556 of SEQ ID NO: 2; and
    在对应于SEQ ID NO:2的位置635的位置处丝氨酸(S)突变为天冬酰胺(N)、苏氨酸(T)或异亮氨酸(I),The serine (S) is mutated to asparagine (N), threonine (T) or isoleucine (I) at the position corresponding to position 635 of SEQ ID NO: 2,
    优选地,其中所述植物是油菜;其中所述部分为植物的器官、组织和细胞,并且优选种子;Preferably, wherein said plant is rape; wherein said parts are organs, tissues and cells of the plant, and preferably seeds;
    优选地,其中所述突变的乙酰乳酸合酶蛋白包含在对应于SEQ ID NO:2的位置556的位置处色氨酸(W)突变为亮氨酸(L)和在对应于SEQ ID NO:2的位置635的位置处丝氨酸(S)突变为天冬酰胺(N);Preferably, wherein the mutated acetolactate synthase protein comprises a tryptophan (W) mutation at a position corresponding to position 556 of SEQ ID NO: 2 to a leucine (L) and a SEQ ID NO: The serine (S) at position 635 of 2 is mutated to asparagine (N);
    更优选地,其中所述突变的乙酰乳酸合酶蛋白的氨基酸序列如SEQ ID NO:4所示。More preferably, the amino acid sequence of the mutated acetolactate synthase protein is shown in SEQ ID NO: 4.
  7. 在含有油菜植物的田地中控制杂草的方法,所述方法包括施用有效量的嘧啶水杨酸类除草剂至含有所述杂草和油菜植物的所述田地,所述油菜植物包含编码突变的乙酰乳酸合酶蛋白的分离的核酸,所述突变的乙酰乳酸合酶蛋白包含如下的突变:Method for controlling weeds in a field containing rapeseed plants, said method comprising applying an effective amount of a pyrimidine salicylic acid herbicide to said field containing said weeds and rapeseed plants, said rapeseed plants comprising An isolated nucleic acid of an acetolactate synthase protein, the mutant acetolactate synthase protein contains the following mutations:
    在对应于SEQ ID NO:2的位置556的位置处色氨酸(W)突变为亮氨酸(L);和Mutation of tryptophan (W) to leucine (L) at a position corresponding to position 556 of SEQ ID NO: 2; and
    在对应于SEQ ID NO:2的位置635的位置处丝氨酸(S)突变为天冬酰胺(N)、苏氨酸(T)或异亮氨酸(I);The serine (S) is mutated to asparagine (N), threonine (T) or isoleucine (I) at a position corresponding to position 635 of SEQ ID NO: 2;
    优选地,其中所述突变的乙酰乳酸合酶蛋白包含在对应于SEQ ID NO:2的位置556的位置处色氨酸(W)突变为亮氨酸(L)和在对应于SEQ ID NO:2的位置635的位置处丝氨酸(S)突变为天冬酰胺(N);Preferably, wherein the mutated acetolactate synthase protein comprises a tryptophan (W) mutation at a position corresponding to position 556 of SEQ ID NO: 2 to a leucine (L) and a SEQ ID NO: The serine (S) at position 635 of 2 is mutated to asparagine (N);
    更优选地,其中所述突变的乙酰乳酸合酶蛋白的氨基酸序列如SEQ ID NO:4所示。More preferably, the amino acid sequence of the mutated acetolactate synthase protein is shown in SEQ ID NO: 4.
PCT/CN2018/102232 2018-08-24 2018-08-24 Rape gene resistant to pyrimidine salicylic acid herbicides and use thereof WO2020037648A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/102232 WO2020037648A1 (en) 2018-08-24 2018-08-24 Rape gene resistant to pyrimidine salicylic acid herbicides and use thereof
CA3087906A CA3087906A1 (en) 2018-08-24 2018-08-24 Rape gene resistant to pyrimidine salicylic acid herbicides and use thereof
DE112018006599.5T DE112018006599T5 (en) 2018-08-24 2018-08-24 Canola gene resistant to pyrimidinyl salicylate herbicide and its uses
CN201880072169.4A CN112154207B (en) 2018-08-24 2018-08-24 Rape anti-pyrimidine salicylic acid herbicide gene and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/102232 WO2020037648A1 (en) 2018-08-24 2018-08-24 Rape gene resistant to pyrimidine salicylic acid herbicides and use thereof

Publications (1)

Publication Number Publication Date
WO2020037648A1 true WO2020037648A1 (en) 2020-02-27

Family

ID=69592185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102232 WO2020037648A1 (en) 2018-08-24 2018-08-24 Rape gene resistant to pyrimidine salicylic acid herbicides and use thereof

Country Status (4)

Country Link
CN (1) CN112154207B (en)
CA (1) CA3087906A1 (en)
DE (1) DE112018006599T5 (en)
WO (1) WO2020037648A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107245480A (en) * 2017-07-13 2017-10-13 江苏省农业科学院 Acetolactate synthase mutain and its application with Herbicid resistant
CN108330116A (en) * 2018-02-07 2018-07-27 北京大北农生物技术有限公司 Herbicide tolerant protein, its encoding gene and purposes
WO2018140936A1 (en) * 2017-01-30 2018-08-02 Intrexon Corporation Molecular switches

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018140936A1 (en) * 2017-01-30 2018-08-02 Intrexon Corporation Molecular switches
CN107245480A (en) * 2017-07-13 2017-10-13 江苏省农业科学院 Acetolactate synthase mutain and its application with Herbicid resistant
CN108330116A (en) * 2018-02-07 2018-07-27 北京大北农生物技术有限公司 Herbicide tolerant protein, its encoding gene and purposes

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE Genbank [online] 14 November 2006 (2006-11-14), RUTLEDGE, R. G. ET AL.: "B.napus gene for acetohydroxyacid synthase III", Database accession no. Z11526.1 *
DATABASE Genbank [online] 28 January 2015 (2015-01-28), S UN, Y.: "Brassica napus cultivar Zhongshuang No.9 acetolactate synthetase (ALS3) gene , complete cds", Database accession no. KM836812.1 *
HU , MAOLONG ET AL.: "Enzymatic Characteristics of Acetolactate Synthase Mutant S638N in Brassica Napus and Its Resistance to ALS Inhibitor Herbicides", ACTA AGRONOMICA SINICA, vol. 41, no. 9, 30 September 2015 (2015-09-30), pages 1353 - 1360, ISSN: 0496-3490 *
SIBONY, M. ET AL.: "Molecular basis for multiple resistance to acetolactate synthase-inhibiting herbicides and atrazine in Amaranthus blitoides (prostrate pigweed", PLANTA, vol. 216, 18 December 2002 (2002-12-18), pages 1022 - 1027, XP002631640, ISSN: 1432-2048 *

Also Published As

Publication number Publication date
CA3087906A1 (en) 2020-02-27
CN112154207B (en) 2022-03-22
CN112154207A (en) 2020-12-29
DE112018006599T5 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
JP6375398B2 (en) ALS inhibitor herbicide resistant beta-bulgaris mutant
JP6965219B2 (en) Mutant protoporphyrinogen IX oxidase (PPX) gene
US10557146B2 (en) Modified plants
US11519000B2 (en) Methodologies and compositions for creating targeted recombination and breaking linkage between traits
WO2019136938A1 (en) Accase mutant protein enabling plant to have herbicide resistance, and application thereof
CN107245480B (en) Acetolactate synthase mutant protein with herbicide resistance and application thereof
WO2019024534A1 (en) Rice als mutant protein for conferring herbicide resistance to plants, and use thereof
WO2017177765A1 (en) Applications of als mutant type gene in resisting against herbicides
WO2019000806A1 (en) Method for creating male sterility line of solanum lycopersicum by means of genome editing, and application thereof
US20200255855A1 (en) MAIZE CYTOPLASMIC MALE STERILITY (CMS) S-TYPE RESTORER GENE Rf3
BR112021000115A2 (en) BESTROFINA DAS ALGAS VERDES BICARBONATE CARRIERS
WO2019130018A1 (en) Methods of increasing yield and/or abiotic stress tolerance
WO2020037648A1 (en) Rape gene resistant to pyrimidine salicylic acid herbicides and use thereof
WO2020037642A1 (en) Rapeseed triazole pyrimidinesulfonamide herbicide resistance gene and application thereof
CA3200892A1 (en) Compositions and methods to increase resistance to phytophthora sojae in soybean
CN112980869A (en) Application of PP2CG1 gene in regulation of low temperature stress resistance of arabidopsis thaliana
Hakozaki et al. Expression and developmental function of the 3-ketoacyl-ACP synthase2 gene in Arabidopsis thaliana
US20220251591A1 (en) Abiotic stress tolerant plants and methods
CN112175985B (en) Method for improving herbicide resistance of leguminous plants and application thereof
US11976289B2 (en) Abiotic stress tolerant plants and methods
US20210222190A1 (en) Cysdv resistance in members of the cucurbitaceae family
WO2022132927A1 (en) Compositions and methods to increase resistance to phytophthora sojae in soybean
US20220259613A1 (en) Abiotic stress tolerant plants and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3087906

Country of ref document: CA

122 Ep: pct application non-entry in european phase

Ref document number: 18931075

Country of ref document: EP

Kind code of ref document: A1