WO2020037092A1 - Imidazo[4,5-c]quinoline derived nlrp3-modulators - Google Patents

Imidazo[4,5-c]quinoline derived nlrp3-modulators Download PDF

Info

Publication number
WO2020037092A1
WO2020037092A1 PCT/US2019/046592 US2019046592W WO2020037092A1 WO 2020037092 A1 WO2020037092 A1 WO 2020037092A1 US 2019046592 W US2019046592 W US 2019046592W WO 2020037092 A1 WO2020037092 A1 WO 2020037092A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
compound
pharmaceutically acceptable
independently
acceptable salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2019/046592
Other languages
English (en)
French (fr)
Inventor
Yong Zhang
Ashvinikumar V. Gavai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innate Tumor Immunity Inc
Original Assignee
Innate Tumor Immunity Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innate Tumor Immunity Inc filed Critical Innate Tumor Immunity Inc
Priority to ES19759842T priority Critical patent/ES2974964T3/es
Priority to US17/267,516 priority patent/US12024513B2/en
Priority to KR1020217007430A priority patent/KR102817037B1/ko
Priority to EP19759842.8A priority patent/EP3837015B1/en
Priority to CN201980068466.6A priority patent/CN112996567A/zh
Priority to JP2021507737A priority patent/JP7433291B2/ja
Publication of WO2020037092A1 publication Critical patent/WO2020037092A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • the compounds of the invention can be used alone, in combination with other compounds of the present invention, or in combination with one or more other agent(s).
  • R 1 is independently 2,2-difluoroethyl or isopropyl
  • R 1 is independently selected from: 2,2-difluoroethyl, isopropyl, cyclopropyl, and cyclobutyl;
  • R 2 , R 3 and R 5 are independently selected from: H, halogen and Ci-4 alkyl.
  • R 2 is independently H, halogen or C alkyl.
  • R 2 is H or halogen.
  • R 2 is H.
  • R 2 is halogen.
  • R 2 is C alkyl.
  • Methods include in vitro methods, e.g., contacting a sample that includes one or more cells comprising NLRP3 (e.g., THP-l cells) with the chemical entity.
  • Methods can also include in vivo methods; e.g., administering the chemical entity to a subject (e.g., a human) having a disease in which an increase in NLRP3 signaling may correct a deficiency in innate immune activity that contributes to the pathology and/or symptoms and/or progression of the disease (e.g., cancer; e.g., a refractory cancer).
  • methods of treating cancer are featured that include
  • Embodiments can include one or more of the following features.
  • the chemical entity can be administered in combination with one or more additional cancer therapies (e.g., surgery, radiotherapy, chemotherapy, toxin therapy, immunotherapy, cryotherapy or gene therapy, or a combination thereof; e.g., cancer therapies that include administering one or more (e.g., two, three, four, five, six, or more) additional anti-cancer agents.
  • additional cancer therapies e.g., surgery, radiotherapy, chemotherapy, toxin therapy, immunotherapy, cryotherapy or gene therapy, or a combination thereof.
  • cancer therapies that include administering one or more (e.g., two, three, four, five, six, or more) additional anti-cancer agents.
  • the compounds described herein are agonists (e.g. full agonists) of NLRP3. In other embodiments, the compounds described herein are partial agonists of NLRP3.
  • administration is systemic.
  • suppositories can be prepared by mixing the chemical entities described herein with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum and release the active compound.
  • suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum and release the active compound.
  • compositions for rectal administration are in the form of an enema.
  • the excipients are sterile and generally free of undesirable matter. These compositions can be sterilized by conventional, well-known sterilization techniques. For various oral dosage form excipients such as tablets and capsules sterility is not required. The USP/NF standard is usually sufficient.
  • Ocular compositions can include, without limitation, one or more of any of the following: viscogens (e.g., Carboxymethylcellulose, Glycerin, Polyvinylpyrrolidone, Polyethylene glycol); Stabilizers (e.g., Pluronic (triblock copolymers), Cyclodextrins); Preservatives (e.g., Benzalkonium chloride, ETDA, SofZia (boric acid, propylene glycol, sorbitol, and zinc chloride; Alcon Laboratories, Inc.), Purite (stabilized oxychloro complex; Allergan, Inc.)).
  • viscogens e.g., Carboxymethylcellulose, Glycerin, Polyvinylpyrrolidone, Polyethylene glycol
  • Stabilizers e.g., Pluronic (triblock copolymers), Cyclodextrins
  • Preservatives e.g., Benzalkonium chloride, ETDA, SofZ
  • the dosages may be varied depending on the requirement of the patient, the severity of the condition being treating and the particular compound being employed. Determination of the proper dosage for a particular situation can be determined by one skilled in the medical arts.
  • the total daily dosage may be divided and administered in portions throughout the day or by means providing continuous delivery.
  • Merkel cell carcinoma mesothelioma, mouth cancer, oral cancer, osteosarcoma, ovarian cancer, penile cancer, pharyngeal cancer, prostate cancer, rectal cancer, salivary gland cancer, skin cancer, small intestine cancer, soft tissue sarcoma, testicular cancer, throat cancer, thyroid cancer, urethral cancer, uterine cancer, vaginal cancer, and vulvar cancer.
  • CD8+ T-cell infiltration refers to percent of CD8+ cells of all nucleated cells by immunohistochemistry of tumor biopsy specimens.
  • a type II topoisomerase inhibitor is, without limitation, epipodophyllotoxin.
  • an epipodophyllotoxin is, without limitation, an amsacrine, etoposid, etoposide phosphate and/or teniposide.
  • a type II topoisomerase inhibitor is, without limitation, epipodophyllotoxin.
  • an epipodophyllotoxin is, without limitation, an amsacrine, etoposid, etoposide phosphate and/or teniposide.
  • the compounds of this invention may be prepared using the reactions and techniques described in this section (e.g., Scheme 1).
  • Step 4 The fourth step of Scheme 1 may be accomplished by treating compound (iv) with a suitable base, such as sodium hydroxide, in a solvent such as methanol at an appropriate temperature, such as 75 °C, to give compound (v).
  • a suitable base such as sodium hydroxide
  • a solvent such as methanol

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
PCT/US2019/046592 2018-08-16 2019-08-15 Imidazo[4,5-c]quinoline derived nlrp3-modulators Ceased WO2020037092A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES19759842T ES2974964T3 (es) 2018-08-16 2019-08-15 Moduladores de NLRP3 derivados de imidazo[4,5-c]quinolina
US17/267,516 US12024513B2 (en) 2018-08-16 2019-08-15 NLRP3 modulators
KR1020217007430A KR102817037B1 (ko) 2018-08-16 2019-08-15 이미다조[4,5-c]퀴놀린 유래 NLRP3-조정제
EP19759842.8A EP3837015B1 (en) 2018-08-16 2019-08-15 Imidazo[4,5-c]quinoline derived nlrp3-modulators
CN201980068466.6A CN112996567A (zh) 2018-08-16 2019-08-15 咪唑并[4,5-c]喹啉衍生的nlrp3-调节剂
JP2021507737A JP7433291B2 (ja) 2018-08-16 2019-08-15 イミダゾ[4,5-c]キノリン誘導体のNLRP3モジュレーター

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862764900P 2018-08-16 2018-08-16
US62/764,900 2018-08-16

Publications (1)

Publication Number Publication Date
WO2020037092A1 true WO2020037092A1 (en) 2020-02-20

Family

ID=67777458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2019/046592 Ceased WO2020037092A1 (en) 2018-08-16 2019-08-15 Imidazo[4,5-c]quinoline derived nlrp3-modulators

Country Status (7)

Country Link
US (1) US12024513B2 (enExample)
EP (1) EP3837015B1 (enExample)
JP (1) JP7433291B2 (enExample)
KR (1) KR102817037B1 (enExample)
CN (1) CN112996567A (enExample)
ES (1) ES2974964T3 (enExample)
WO (1) WO2020037092A1 (enExample)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021142252A1 (en) * 2020-01-10 2021-07-15 Incyte Corporation Tricyclic compounds as inhibitors of kras
US11530218B2 (en) 2020-01-20 2022-12-20 Incyte Corporation Spiro compounds as inhibitors of KRAS
US11739102B2 (en) 2020-05-13 2023-08-29 Incyte Corporation Fused pyrimidine compounds as KRAS inhibitors
US11767320B2 (en) 2020-10-02 2023-09-26 Incyte Corporation Bicyclic dione compounds as inhibitors of KRAS
US11939328B2 (en) 2021-10-14 2024-03-26 Incyte Corporation Quinoline compounds as inhibitors of KRAS
US11999752B2 (en) 2020-08-28 2024-06-04 Incyte Corporation Vinyl imidazole compounds as inhibitors of KRAS
US12030883B2 (en) 2021-09-21 2024-07-09 Incyte Corporation Hetero-tricyclic compounds as inhibitors of KRAS
US12030884B2 (en) 2021-10-01 2024-07-09 Incyte Corporation Pyrazoloquinoline KRAS inhibitors
US12441727B2 (en) 2021-07-07 2025-10-14 Incyte Corporation Tricyclic compounds as inhibitors of KRAS
US12441742B2 (en) 2021-08-31 2025-10-14 Incyte Corporation Naphthyridine compounds as inhibitors of KRAS

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021002642A2 (pt) 2018-08-16 2021-05-04 Innate Tumor Immunity, Inc. compostos de 4-amino-1h-imidazo[4,5-c]quinolina substituídos e métodos aprimorados para a preparação dos mesmos
WO2022204112A1 (en) 2021-03-22 2022-09-29 Incyte Corporation Imidazole and triazole kras inhibitors

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037504A2 (en) 1998-12-23 2000-06-29 Pfizer Inc. Human monoclonal antibodies to ctla-4
US6984720B1 (en) 1999-08-24 2006-01-10 Medarex, Inc. Human CTLA-4 antibodies
WO2008156712A1 (en) 2007-06-18 2008-12-24 N. V. Organon Antibodies to human programmed death receptor pd-1
US7927613B2 (en) 2002-02-15 2011-04-19 University Of South Florida Pharmaceutical co-crystal compositions
US7943743B2 (en) 2005-07-01 2011-05-17 Medarex, Inc. Human monoclonal antibodies to programmed death ligand 1 (PD-L1)
WO2011066389A1 (en) 2009-11-24 2011-06-03 Medimmmune, Limited Targeted binding agents against b7-h1
US8217149B2 (en) 2008-12-09 2012-07-10 Genentech, Inc. Anti-PD-L1 antibodies, compositions and articles of manufacture
WO2012145493A1 (en) 2011-04-20 2012-10-26 Amplimmune, Inc. Antibodies and other molecules that bind b7-h1 and pd-1
WO2013079174A1 (en) 2011-11-28 2013-06-06 Merck Patent Gmbh Anti-pd-l1 antibodies and uses thereof
WO2013173223A1 (en) 2012-05-15 2013-11-21 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting pd-1/pd-l1 signaling
WO2013181634A2 (en) 2012-05-31 2013-12-05 Sorrento Therapeutics Inc. Antigen binding proteins that bind pd-l1
WO2014179664A2 (en) 2013-05-02 2014-11-06 Anaptysbio, Inc. Antibodies directed against programmed death-1 (pd-1)
WO2014189805A1 (en) 2013-05-18 2014-11-27 Auro Biotech, Inc. Compositions and methods for activating "stimulator of interferon gene"-dependent signalling
WO2014194302A2 (en) 2013-05-31 2014-12-04 Sorrento Therapeutics, Inc. Antigen binding proteins that bind pd-1
WO2015035606A1 (en) 2013-09-13 2015-03-19 Beigene, Ltd. Anti-pd1 antibodies and their use as therapeutics and diagnostics
WO2015085847A1 (zh) 2013-12-12 2015-06-18 上海恒瑞医药有限公司 Pd-1抗体、其抗原结合片段及其医药用途
WO2015112900A1 (en) 2014-01-24 2015-07-30 Dana-Farber Cancer Institue, Inc. Antibody molecules to pd-1 and uses thereof
WO2015112800A1 (en) 2014-01-23 2015-07-30 Regeneron Pharmaceuticals, Inc. Human antibodies to pd-1
WO2016149201A2 (en) 2015-03-13 2016-09-22 Cytomx Therapeutics, Inc. Anti-pdl1 antibodies, activatable anti-pdl1 antibodies, and methods of use thereof
WO2016196237A1 (en) 2015-05-29 2016-12-08 Agenus Inc. Anti-ctla-4 antibodies and methods of use thereof
WO2017025016A1 (en) 2015-08-10 2017-02-16 Innovent Biologics (Suzhou) Co., Ltd. Pd-1 antibodies
WO2017034916A1 (en) 2015-08-24 2017-03-02 Eli Lilly And Company Pd-l1 ("programmed death-ligand 1") antibodies
WO2017040790A1 (en) 2015-09-01 2017-03-09 Agenus Inc. Anti-pd-1 antibodies and methods of use thereof
WO2017132825A1 (zh) 2016-02-02 2017-08-10 华为技术有限公司 确定发射功率的方法、用户设备和基站
WO2017133540A1 (en) 2016-02-02 2017-08-10 Innovent Biologics (Suzhou) Co., Ltd. Pd-1 antibodies
WO2017184746A1 (en) * 2016-04-19 2017-10-26 Ifm Therapeutics, Inc Nlrp3 modulators
WO2018152396A1 (en) * 2017-02-17 2018-08-23 Innate Tumor Immunity, Inc. Substituted imidazo-quinolines as nlrp3 modulators

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1590348A1 (en) 2002-12-20 2005-11-02 3M Innovative Properties Company Aryl / hetaryl substituted imidazoquinolines
WO2005123079A2 (en) 2004-06-14 2005-12-29 3M Innovative Properties Company Urea substituted imidazopyridines, imidazoquinolines, and imidazonaphthyridines
US20070259881A1 (en) 2004-06-18 2007-11-08 Dellaria Joseph F Jr Substituted Imidazo Ring Systems and Methods
EP2571877B1 (en) * 2010-05-17 2018-08-15 Boehringer Ingelheim International GmbH 1h-imidazo[4,5-c]quinolines
WO2015095780A1 (en) 2013-12-20 2015-06-25 The University Of Kansas Toll-like receptor 8 agonists
CN112546230A (zh) 2014-07-09 2021-03-26 博笛生物科技有限公司 用于治疗癌症的联合治疗组合物和联合治疗方法
CN112546238A (zh) 2014-09-01 2021-03-26 博笛生物科技有限公司 用于治疗肿瘤的抗-pd-l1结合物
WO2017040670A1 (en) 2015-09-01 2017-03-09 Ifm Therapeutics, Inc Immune cells having increased immunity or resistance to an immunosuppressive cytokine and use of the same
WO2017046675A1 (en) * 2015-09-14 2017-03-23 Pfizer Inc. Novel imidazo [4,5-c] quinoline and imidazo [4,5-c][1,5] naphthyridine derivatives as lrrk2 inhibitors
WO2017184735A1 (en) 2016-04-19 2017-10-26 Ifm Therapeutics, Inc Nlrp3 modulators

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037504A2 (en) 1998-12-23 2000-06-29 Pfizer Inc. Human monoclonal antibodies to ctla-4
US6984720B1 (en) 1999-08-24 2006-01-10 Medarex, Inc. Human CTLA-4 antibodies
US7927613B2 (en) 2002-02-15 2011-04-19 University Of South Florida Pharmaceutical co-crystal compositions
US7943743B2 (en) 2005-07-01 2011-05-17 Medarex, Inc. Human monoclonal antibodies to programmed death ligand 1 (PD-L1)
WO2008156712A1 (en) 2007-06-18 2008-12-24 N. V. Organon Antibodies to human programmed death receptor pd-1
US8217149B2 (en) 2008-12-09 2012-07-10 Genentech, Inc. Anti-PD-L1 antibodies, compositions and articles of manufacture
WO2011066389A1 (en) 2009-11-24 2011-06-03 Medimmmune, Limited Targeted binding agents against b7-h1
WO2012145493A1 (en) 2011-04-20 2012-10-26 Amplimmune, Inc. Antibodies and other molecules that bind b7-h1 and pd-1
WO2013079174A1 (en) 2011-11-28 2013-06-06 Merck Patent Gmbh Anti-pd-l1 antibodies and uses thereof
WO2013173223A1 (en) 2012-05-15 2013-11-21 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting pd-1/pd-l1 signaling
WO2013181634A2 (en) 2012-05-31 2013-12-05 Sorrento Therapeutics Inc. Antigen binding proteins that bind pd-l1
WO2014179664A2 (en) 2013-05-02 2014-11-06 Anaptysbio, Inc. Antibodies directed against programmed death-1 (pd-1)
US20150056224A1 (en) 2013-05-18 2015-02-26 Aduro Biotech, Inc. Compositions and methods for activating stimulator of interferon gene-dependent signalling
WO2014189805A1 (en) 2013-05-18 2014-11-27 Auro Biotech, Inc. Compositions and methods for activating "stimulator of interferon gene"-dependent signalling
WO2014194302A2 (en) 2013-05-31 2014-12-04 Sorrento Therapeutics, Inc. Antigen binding proteins that bind pd-1
WO2015035606A1 (en) 2013-09-13 2015-03-19 Beigene, Ltd. Anti-pd1 antibodies and their use as therapeutics and diagnostics
US20150079109A1 (en) 2013-09-13 2015-03-19 Beigene, Ltd. Anti-PD1 Antibodies and their Use as Therapeutics and Diagnostics
WO2015085847A1 (zh) 2013-12-12 2015-06-18 上海恒瑞医药有限公司 Pd-1抗体、其抗原结合片段及其医药用途
WO2015112800A1 (en) 2014-01-23 2015-07-30 Regeneron Pharmaceuticals, Inc. Human antibodies to pd-1
WO2015112900A1 (en) 2014-01-24 2015-07-30 Dana-Farber Cancer Institue, Inc. Antibody molecules to pd-1 and uses thereof
WO2016149201A2 (en) 2015-03-13 2016-09-22 Cytomx Therapeutics, Inc. Anti-pdl1 antibodies, activatable anti-pdl1 antibodies, and methods of use thereof
WO2016196237A1 (en) 2015-05-29 2016-12-08 Agenus Inc. Anti-ctla-4 antibodies and methods of use thereof
WO2017025016A1 (en) 2015-08-10 2017-02-16 Innovent Biologics (Suzhou) Co., Ltd. Pd-1 antibodies
WO2017024465A1 (en) 2015-08-10 2017-02-16 Innovent Biologics (Suzhou) Co., Ltd. Pd-1 antibodies
WO2017034916A1 (en) 2015-08-24 2017-03-02 Eli Lilly And Company Pd-l1 ("programmed death-ligand 1") antibodies
WO2017040790A1 (en) 2015-09-01 2017-03-09 Agenus Inc. Anti-pd-1 antibodies and methods of use thereof
WO2017132825A1 (zh) 2016-02-02 2017-08-10 华为技术有限公司 确定发射功率的方法、用户设备和基站
WO2017133540A1 (en) 2016-02-02 2017-08-10 Innovent Biologics (Suzhou) Co., Ltd. Pd-1 antibodies
WO2017184746A1 (en) * 2016-04-19 2017-10-26 Ifm Therapeutics, Inc Nlrp3 modulators
WO2018152396A1 (en) * 2017-02-17 2018-08-23 Innate Tumor Immunity, Inc. Substituted imidazo-quinolines as nlrp3 modulators

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
"Encyclopedia of Reagents for Organic Synthesis", 1995, JOHN WILEY AND SONS
"Pharmaceutical Preformulation and Formulation", 2009, THE PHARMACEUTICAL PRESS AND THE AMERICAN PHARMACEUTICAL ASSOCIATION
"Remington: The Science and Practice of Pharmacy", 2012, PHARMACEUTICAL PRESS
BAUERNFEIND, FHORNUNG, V.: "Of inflammasomes and pathogens—sensing of microbes by the inflammasome", EMBO MOLECULAR MEDICINE, vol. 5, no. 6, 2013, pages 814 - 826
CHAPUT, C. ET AL.: "NOD-like receptors in lung diseases", FRONTIERS IN IMMUNOLOGY, vol. 4, 2013
CHEN, L-C. ET AL., EMBO MOL MED., vol. 4, no. 12, 2012, pages 1276 - 1293
FILIPSKI, K.J. ET AL., CURRENT TOPICS IN MEDICINAL CHEMISTRY, vol. 13, 2013, pages 776 - 802
HERBST ET AL., J CLIN ONCOL, vol. 31, 2013, pages 3000
HIROTA, J. A. ET AL.: "The airway epithelium nucleotide-binding domain and leucine-rich repeat protein 3 inflammasome is activated by urban particulate matter", JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, vol. 129, no. 4, 2012
L. FIESERM. FIESER: "Fieser and Fieser's Reagents for Organic Synthesis", 1994, JOHN WILEY AND SONS
LAMMERS ET AL.: "Effect of Intratumoral Injection on the Biodistribution and the Therapeutic Potential of HPMA Copolymer-Based Drug Delivery Systems", NEOPLASIA, vol. 10, 2006, pages 788 - 795
MA, Z. ET AL., CLIN. CANCER RES., 11 January 2016 (2016-01-11)
POSTOW, M. J., CLIN. ONCOL., vol. 33, 2015, pages 1
R. LAROCK: "Comprehensive Organic Transformations", 1989, VCH PUBLISHERS
RIBAS, UPDATE CANCER THER., vol. 2, no. 3, 2007, pages 133 - 39
SI-YANG LIU ET AL., J HEMATOL. ONCOL., vol. 10, 2017, pages 136
SI-YANG LIU ET AL., J. HEMATOL. ONCOL., vol. 10, 2017, pages 136
T. W. GREENERGM. WUTS: "Protective Groups in Organic Synthesis", 1991, JOHN WILEY AND SONS
TING, J. P. Y. ET AL.: "The NLR gene family: a standard nomenclature", IMMUNITY, vol. 28, no. 3, 2008, pages 285 - 287
TSE, B. W-C. ET AL., PLOS ONE, vol. 6, no. 9, 2011, pages e24241
ZHANG ET AL., CELL DISCOV., vol. 7, March 2017 (2017-03-01), pages 3

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021142252A1 (en) * 2020-01-10 2021-07-15 Incyte Corporation Tricyclic compounds as inhibitors of kras
JP2023509795A (ja) * 2020-01-10 2023-03-09 インサイト コーポレーション Krasの阻害剤としての三環式化合物
JP7667160B2 (ja) 2020-01-10 2025-04-22 インサイト コーポレーション Krasの阻害剤としての三環式化合物
US11530218B2 (en) 2020-01-20 2022-12-20 Incyte Corporation Spiro compounds as inhibitors of KRAS
US11739102B2 (en) 2020-05-13 2023-08-29 Incyte Corporation Fused pyrimidine compounds as KRAS inhibitors
US11999752B2 (en) 2020-08-28 2024-06-04 Incyte Corporation Vinyl imidazole compounds as inhibitors of KRAS
US11767320B2 (en) 2020-10-02 2023-09-26 Incyte Corporation Bicyclic dione compounds as inhibitors of KRAS
US12441727B2 (en) 2021-07-07 2025-10-14 Incyte Corporation Tricyclic compounds as inhibitors of KRAS
US12441742B2 (en) 2021-08-31 2025-10-14 Incyte Corporation Naphthyridine compounds as inhibitors of KRAS
US12030883B2 (en) 2021-09-21 2024-07-09 Incyte Corporation Hetero-tricyclic compounds as inhibitors of KRAS
US12030884B2 (en) 2021-10-01 2024-07-09 Incyte Corporation Pyrazoloquinoline KRAS inhibitors
US11939328B2 (en) 2021-10-14 2024-03-26 Incyte Corporation Quinoline compounds as inhibitors of KRAS

Also Published As

Publication number Publication date
JP7433291B2 (ja) 2024-02-19
JP2021534158A (ja) 2021-12-09
US12024513B2 (en) 2024-07-02
EP3837015B1 (en) 2024-02-14
US20210317118A1 (en) 2021-10-14
ES2974964T3 (es) 2024-07-02
KR102817037B1 (ko) 2025-06-04
EP3837015A1 (en) 2021-06-23
CN112996567A (zh) 2021-06-18
KR20210045430A (ko) 2021-04-26

Similar Documents

Publication Publication Date Title
EP3837014B1 (en) Imidazo[4,5-c]quinoline derived nlrp3-modulators
EP3837015B1 (en) Imidazo[4,5-c]quinoline derived nlrp3-modulators
US10533007B2 (en) NLRP3 modulators
EP3753938B1 (en) Substututed imidazo-quinolines as nlrp3 modulators
US10556903B2 (en) NLRP3 modulators
US12150937B2 (en) NLRP3 modulators
US12391675B2 (en) NLRP3 modulators
US12338228B2 (en) NLRP3 modulators
EP3911416A1 (en) Substituted quinazolines as nlrp3 modulators, for use in the treatment of cancer
US12492200B2 (en) NLRP3 modulators
NZ757257B2 (en) Substituted imidazo-quinolines as nlrp3 modulators
HK40003517A (en) Substituted imidazo-quinolines as nlrp3 modulators
HK40003517B (en) Substituted imidazo-quinolines as nlrp3 modulators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19759842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507737

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217007430

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019759842

Country of ref document: EP

Effective date: 20210316