WO2020034900A1 - Odn的逻辑拓扑信息的获取方法、装置、设备和存储介质 - Google Patents

Odn的逻辑拓扑信息的获取方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2020034900A1
WO2020034900A1 PCT/CN2019/099926 CN2019099926W WO2020034900A1 WO 2020034900 A1 WO2020034900 A1 WO 2020034900A1 CN 2019099926 W CN2019099926 W CN 2019099926W WO 2020034900 A1 WO2020034900 A1 WO 2020034900A1
Authority
WO
WIPO (PCT)
Prior art keywords
onu
pon port
characteristic data
identification information
topology information
Prior art date
Application number
PCT/CN2019/099926
Other languages
English (en)
French (fr)
Inventor
谢于明
李健
肖欣
郑刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to FIEP19849232.4T priority Critical patent/FI3826230T3/fi
Priority to JP2021507589A priority patent/JP7174832B2/ja
Priority to KR1020217006521A priority patent/KR102487453B1/ko
Priority to EP19849232.4A priority patent/EP3826230B1/en
Publication of WO2020034900A1 publication Critical patent/WO2020034900A1/zh
Priority to US17/172,382 priority patent/US11405103B2/en
Priority to US17/859,029 priority patent/US11722217B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0793Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • H04J14/086Medium access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/085Retrieval of network configuration; Tracking network configuration history
    • H04L41/0853Retrieval of network configuration; Tracking network configuration history by actively collecting configuration information or by backing up configuration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/22Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks comprising specially adapted graphical user interfaces [GUI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5009Determining service level performance parameters or violations of service level contracts, e.g. violations of agreed response time or mean time between failures [MTBF]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • H04L43/028Capturing of monitoring data by filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • H04L43/065Generation of reports related to network devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • H04L43/067Generation of reports using time frame reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/087Jitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0084Quality of service aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches

Definitions

  • the present application relates to optical fiber network technology, and in particular, to a method, a device, a device, and a storage medium for acquiring logical topology information of an optical distribution network (ODN).
  • ODN optical distribution network
  • Fig. 1 is a schematic diagram of a passive optical fiber network system architecture.
  • a passive optical network (PON) network system is mainly composed of an optical line terminal (Optical Line Terminal, OLT) and a passive optical network.
  • the device consists of an optical distribution network (ODN) and a user-side optical network unit (ONU); usually a point-to-multipoint tree topology is used, as shown in Figure 1, which can be determined: 1 ) All ONUs are connected to the PON port of the OLT, that is, there is a certain topological relationship between the ONU and the PON port; 2) In the specific implementation, the ONU can pass through the primary optical splitter (optical splitter) and / or the secondary optical splitter (optical splitter) Connected to the PON port, there is a certain topology relationship between the ONU and the secondary optical splitter.
  • the tree topology includes at least the topology information of the ONU and the PON port and the topology information of the ONU and the secondary optical splitting.
  • the topology information is used to locate the fault.
  • the current common methods for obtaining topology information include: The topology information of all ONUs connected to the PON port of the OLT. The PON port of the OLT to which the ONU belongs can be confirmed through PPPoE and other methods to obtain the corresponding Topology information. 2) The topology information of the branch fiber / optical splitter to which the ONU is connected is maintained through manual input.
  • This application provides a method, a device, a device, and a storage medium for acquiring logical topology information of an ODN, which are used to solve the current PON network fault operation and maintenance process.
  • the correspondence between the ONU and the branch fiber / splitter of the existing network often changes. It is tedious to maintain the topology information of the branch fiber / splitter by manual input, and the problem of inaccurate topology information often occurs.
  • the present application provides a method for acquiring logical topology information of an ODN, which method includes:
  • the characteristic data includes at least one of a received optical power and an alarm event
  • the alarm event includes Alarm occurrence time and alarm type
  • a feature vector corresponding to the first ONU is obtained;
  • the feature vector corresponding to the first ONU includes: the first ONU is used to indicate reception within the first time window A characteristic of a change in optical power, and / or, an alarm occurrence time and an alarm type on the first ONU;
  • topology information includes identification information of at least one group of first ONUs, and identification information of each group of first ONUs Used to indicate that the first ONU in the group is connected to the same non-level optical splitter.
  • the topology information of the ONU is obtained by analyzing the characteristics of the ONU.
  • the topology information of the ONU is simple and fast, and the obtained topology information is relatively accurate. No manual input is required to maintain the topology information of the optical splitter.
  • the acquiring the identification information and characteristic data of each first ONU whose optical path changes under the first PON port includes:
  • the ONUs whose optical paths are not changed under the first PON port are filtered to obtain identification information and characteristic data of each first ONU whose optical paths are changed under the first PON port.
  • the manner in which the electronic device (such as a server) executing the technical solution obtains the identification information and characteristic data of each ONU under the first PON port may be each of the first PON port received by the data acquisition device.
  • the identification information and characteristic data of the ONU may also be the identification information and characteristic data of each ONU under the first PON port reported by the OLT, or may be the identification information of each ONU actively obtained from the data acquisition device or the OLT and Characteristic data, this scheme is not limited.
  • the characteristic data of each first ONU further includes: a ranging result.
  • the ONUs whose optical paths under the first PON port have not changed are filtered to obtain each of the first changed optical paths under the first PON port.
  • ONU identification information and characteristic data including:
  • the difference between the maximum and minimum values of the received optical power of the ONU within the first time window is compared with a preset threshold, and the difference between the maximum and minimum values of the received optical power is less than Filtering the threshold ONU to obtain identification information and characteristic data of each first ONU whose optical path changes under the first PON port;
  • Filter ONUs that do not include a preset alarm type in the alarm type according to the alarm occurrence time and alarm type of each ONU within the first time window, and obtain the information of each first ONU whose optical path changes under the first PON port. Identification information and characteristic data.
  • the difference between the maximum and minimum values of the received optical power can be used for filtering and comparing with the threshold value, or the preset alarm type can be used for filtering alone, and the above two solutions can also be combined. That is, first filter according to the preset alarm type, and then use the difference between the maximum and minimum values of the received optical power to compare with the threshold to filter, or first use the difference between the maximum and minimum values of the received optical power The value is compared with the threshold value for filtering, and then the filtering is performed according to a preset alarm type. There is no limitation on this solution.
  • obtaining the feature vector corresponding to each first ONU according to the feature data of each first ONU includes:
  • a required feature is extracted from the feature data of the first ONU to form a feature vector corresponding to the first ONU.
  • a sample vector may be set in advance, and the sample vector includes features required for subsequent clustering, and then the sample vector is used to extract the required features from the feature data of the first ONU to form the first ONU
  • the corresponding feature vector can also directly extract the required features from the feature data of the first ONU to form the feature vector corresponding to the first ONU, which is not limited in this solution.
  • the characteristics of the first ONU used to indicate changes in the received optical power within the first time window include: jitter degree, jitter number, cliff degree, trend degradation degree, and minimum value appearing for the first time At least two of the relative time position of the time, the relative time position of the first occurrence of the maximum value, the ratio of the length of the longest continuous subsequence that is greater than the mean, and the ratio of the length of the longest continuous subsequence that is less than the mean;
  • the degree is the standard deviation or average difference of the received optical power data of the ONU within the first time window
  • the jitter number is the cumulative number of times that the ONU jitter degree is greater than a preset threshold
  • the cliff degree is used to indicate the ONU received light
  • the degree of the trend degradation is represented by a trend coefficient of linearly fitting the exponential weighted moving average of the received optical power in the first time window. .
  • the clustering analysis of the feature vector corresponding to each first ONU to obtain the topology information corresponding to the first PON port includes:
  • the first PON port includes a two-level optical splitting structure
  • the method further includes:
  • Matrix conversion is performed on the topological information obtained from at least two historical clustering processes corresponding to the first PON port to obtain a distance matrix corresponding to each historical clustering result; wherein the values in the distance matrix represent any two first The distance between an ONU;
  • the first ONU whose optical path changes under the first PON port is clustered by using a density-based clustering method to obtain new topology information corresponding to the first PON port.
  • the method further includes:
  • the present application provides an apparatus for acquiring logical topology information of an ODN, where the apparatus includes:
  • An obtaining module configured to obtain identification information of each first ONU whose optical path changes under the first PON port and characteristic data within a first time window, where the characteristic data includes at least one of a received optical power and an alarm event
  • the alarm event includes an alarm occurrence time and an alarm type
  • a processing module configured to obtain a feature vector corresponding to the first ONU according to the feature data of each first ONU; the feature vector corresponding to the first ONU includes: the first ONU used to represent the first ONU A characteristic of a change in the received optical power within a time window, and / or, an alarm occurrence time and an alarm type on the first ONU;
  • the processing module is further configured to perform cluster analysis on a feature vector corresponding to each first ONU to obtain topology information corresponding to the first PON port, where the topology information includes at least one set of identification information of the first ONU, and each The identification information of the first ONU in the group is used to indicate that the first ONU in the group is connected to the same non-level optical splitter.
  • the obtaining module is specifically configured to:
  • the ONUs whose optical paths are not changed under the first PON port are filtered to obtain identification information and characteristic data of each first ONU whose optical paths are changed under the first PON port.
  • the characteristic data of each first ONU further includes: a ranging result.
  • the obtaining module is specifically configured to:
  • the difference between the maximum and minimum values of the received optical power of the ONU within the first time window is compared with a preset threshold, and the difference between the maximum and minimum values of the received optical power is less than Filtering the threshold ONU to obtain identification information and characteristic data of each first ONU whose optical path changes under the first PON port;
  • Filter ONUs that do not include a preset alarm type in the alarm type according to the alarm occurrence time and alarm type that each ONU has occurred within the time window, and obtain each first ONU whose optical path changes under the first PON port. Identification information and characteristic data.
  • processing module is specifically configured to:
  • a required feature is extracted from the feature data of the first ONU to form a feature vector corresponding to the first ONU.
  • the characteristics of the first ONU used to indicate changes in the received optical power within the first time window include: jitter degree, jitter number, cliff degree, trend degradation degree, and minimum value appearing for the first time At least two of the relative time position of the time, the relative time position of the first occurrence of the maximum value, the ratio of the length of the longest continuous subsequence that is greater than the mean, and the ratio of the length of the longest continuous subsequence that is less than the mean;
  • the degree is the standard deviation or the average difference of the received optical power data of the ONU within the first time window
  • the jitter number is the cumulative number of times that the jitter degree of the ONU is greater than a preset threshold
  • the cliff degree is used to indicate the received light of the ONU
  • the degree of the trend degradation is represented by a trend coefficient of linearly fitting the exponential weighted moving average of the received optical power in the first time window
  • processing module is specifically configured to:
  • the first PON port includes a two-level optical splitting structure
  • the processing module is further configured to:
  • Matrix conversion is performed on the topological information obtained from at least two historical clustering processes corresponding to the first PON port to obtain a distance matrix corresponding to each historical clustering result; wherein the values in the distance matrix represent any two first The distance between an ONU;
  • the first ONU whose optical path changes under the first PON port is clustered by using a density-based clustering method to obtain new topology information corresponding to the first PON port.
  • the device further includes: a display module;
  • the processing module is further configured to generate a corresponding ODN network logical topology map according to the topology information corresponding to the first PON port;
  • the display module is configured to display the logical topology diagram of the ODN network.
  • the present application provides an electronic device including a memory, a processor, a receiver, a display, and a computer program.
  • the computer program is stored in the memory, and the processor runs the computer program to execute a first A method for acquiring logical topology information of an ODN according to any one of the aspects.
  • the present application provides a storage medium, including: a readable storage medium and a computer program stored in the readable storage medium, the computer program being used to implement the ODN of any one of the first aspects Method for obtaining logical topology information.
  • the method, device, device, and storage medium for obtaining the logical topology information of the ODN provided in this application, by obtaining the identification information and characteristic data of each first ONU whose optical path changes under the first PON port, according to each first ONU's Feature data, obtain a feature vector corresponding to each first ONU, perform a cluster analysis on the feature vector corresponding to each first ONU, and obtain topology information corresponding to the first PON port, and the topology information includes at least one non-level 1 optical splitter
  • the identification information of the ONU connected to the router that is, the topology information of the ONU is obtained directly by analyzing the characteristics of the ONU. Maintenance pressure.
  • Figure 1 is a schematic diagram of a passive optical fiber network system architecture
  • FIG. 2 is a flowchart of Embodiment 1 of a method for acquiring logical topology information of an ODN provided by this application;
  • FIG. 2 is a flowchart of Embodiment 1 of a method for acquiring logical topology information of an ODN provided by this application;
  • FIG. 3 is a schematic diagram of a jitter degree of a received optical power of an ONU provided by the present application
  • FIG. 4 is a schematic diagram of a trend degradation degree of an ONU provided by this application.
  • FIG. 5 is a schematic diagram of an KPI index of an ONU provided by this application.
  • FIG. 6 is a flowchart of a second embodiment of a method for acquiring logical topology information of an ODN provided by this application;
  • FIG. 7 is a schematic diagram of a logical topology diagram of an ODN network provided by this application.
  • FIG. 8 is a schematic structural diagram of a first embodiment of a device provided by this application.
  • FIG. 9 is a schematic structural diagram of a second embodiment of an apparatus for acquiring logical topology information of an ODN provided by this application.
  • FIG. 10 is a schematic structural diagram of a first embodiment of an electronic device provided by this application.
  • the topology of all Optical Network Units (ONUs) connected to Passive Optical Networks (PON) ports of Optical Line Terminals (OLT) The information can be used to confirm the PON port of the OLT to which the ONU belongs through PPPoE and other methods. This part of the topology information is accurate.
  • the topology information of which ONUs are connected to a branch fiber / splitter is maintained through manual input. During the PON network fault operation and maintenance process, the correspondence between the ONU and the branch fiber / optical splitter of the existing network often changes. It is tedious to maintain the topology information of the branch fiber / optical splitter by manual input. This part of the topology information often appears inaccurate.
  • this application provides a method for acquiring logical topology information of an ODN, which can be applied to an electronic device.
  • the electronic device may be a network server or a server specifically configured to acquire network topology information. It can also be a terminal device such as a computer that can perform data analysis processing, or it can be a server or a software module in the device, which is not limited in this solution.
  • the ODN logical topology discovery system mainly includes the following modules: (1) Collection and storage of characteristic data, (2) ) ONU feature mining and (3) cluster analysis to obtain the required topology information.
  • a topology update function module may also be included.
  • the technical solution of the present application collects a large number of device data indicators and big data technology to mine key parameter characteristics of data indicators in the operation of the device; fully utilizes the consistent characteristics of ONU group behavior to establish an algorithm model for automatic learning of ODN logical topology and incremental discovery , And apply online, incrementally discover branch topology information.
  • the PON network system to which this technical solution is applied includes multiple OLTs, each OLT is provided with a PON port, and all ONUs are connected to the PON port.
  • the optical splitter is connected to the ONU through multiple second-level optical splitters. It is also possible to continue to use the third-level optical splitter to connect to the ONU under the second-level optical splitter, and so on. The number of levels can be configured according to the needs of the actual application.
  • the data collected in the ONU includes the ONU's received optical power, transmitted optical power, bias current, and ranging results, etc .; the OLT device is connected to the OLT.
  • the received optical power of the ONU may be selected as the key performance indicator (Key Performance Indicator (KPI) of the analysis).
  • KPI Key Performance Indicator
  • the ONU includes all optical network units, such as: Optical Network Equipment (Optical Network Terminal, ONT), Multiple Tenant Unit (MTU), Multiple Household Unit (Multiple Dwelling Unit) , MDU) and so on.
  • ONT Optical Network Terminal
  • MTU Multiple Tenant Unit
  • MDU Multiple Household Unit
  • FIG. 2 is a flowchart of Embodiment 1 of a method for acquiring logical topology information of an ODN provided in this application. As shown in FIG. 2, the method for acquiring logical topology information of an ODN specifically includes the following steps:
  • S101 Obtain identification information of each first ONU whose optical path changes under the first PON port and characteristic data within a first time window.
  • this step is generally implemented in a data acquisition and storage module of an electronic device.
  • its characteristic data in the first time window includes at least one of the received optical power and the alarm event, and the alarm event includes the alarm occurrence time and the alarm type.
  • the first time window here can be set according to the actual situation, which is not limited.
  • the way to obtain the identification information and characteristic data of all the first ONUs whose optical path changes under the PON port is to obtain the identification information and characteristic data of each ONU under the first PON port, and then according to the characteristic data, The ONUs whose optical paths under the first PON port have not changed are filtered to obtain identification information and characteristic data of each first ONU whose optical paths are changed under the first PON port.
  • the specific implementation of this solution includes at least the following Two ways:
  • the first implementation manner receiving identification information and characteristic data of each ONU under the first PON port sent by a data acquisition device; and filtering ONUs whose optical paths have not changed under the first PON port according to the characteristic data To obtain identification information and characteristic data of each first ONU whose optical path changes under the first PON port.
  • a data acquisition platform also known as a data acquisition device
  • the ONU periodically reports its own characteristic data to the data acquisition device.
  • the reporting period can be configured according to actual conditions, such as reporting.
  • the period is 5 minutes.
  • the data acquisition device receives the characteristic data reported by the ONU under the first PON port, and stores the corresponding data according to the identification information of the ONU.
  • the characteristic data here may be received optical power data of the ONU, alarm events, and ranging results, etc., so as to perform topology learning during subsequent analysis.
  • the data acquisition device After the data acquisition device obtains all the representation information and characteristic data of the ONU, it reports the data to the execution subject in the solution, that is, to the electronic device. During the processing of the data, the electronic device processes the data according to the characteristic data.
  • the ONUs under the first PON port are filtered, and ONUs whose optical paths have not changed are filtered out, leaving only identification information and characteristic data of all the first ONUs whose optical paths have changed.
  • the data acquisition device may filter the ONUs under the first PON port according to the characteristic data, and filter out ONUs whose optical paths have not changed, leaving only the first ones whose optical paths have changed.
  • An ONU identification information and characteristic data and then report the identification information and characteristic data of the ONU whose optical path is changed to the electronic device, there is no limitation on this solution.
  • the second implementation manner receiving identification information and characteristic data of each ONU under the first PON port sent by the first OLT; and filtering ONUs whose optical paths have not changed under the first PON port according to the characteristic data To obtain identification information and characteristic data of each first ONU whose optical path changes under the first PON port.
  • the ONU can report the characteristic data to the OLT periodically, and the OLT periodically reports the obtained identification information of the ONU and the corresponding characteristic data to the electronic device for processing.
  • the reporting period can be configured according to the actual situation, for example: the reporting period is 15 minutes.
  • the OLT obtains the identification information and corresponding characteristic data of the ONU
  • the ONU that has not changed the optical path is filtered out, and then the identification information and characteristic data of the first ONU that has the changed optical path are obtained.
  • the identification information and characteristic data of the first ONU whose optical path changes are reported to the electronic device that performs data analysis and topology learning.
  • the OLT may directly report the ONU identification information and corresponding characteristic data.
  • the electronic device After receiving the identification information and corresponding characteristic data of the ONU under the first PON port, the electronic device filters out ONUs whose optical paths have not changed, and then obtains the identification information and characteristic data of the first ONU whose optical paths have changed.
  • the characteristic data of each first ONU may further include a ranging result.
  • the meaning is that filtering is performed by using the difference between the maximum and minimum received optical power of the same ONU within the time window to be greater than or equal to the expert experience threshold.
  • the threshold can be configured in advance, for example:
  • RxPower max is the maximum value of the ONU received optical power in the time window
  • RxPower min is the minimum value of the ONU received optical power in the time window
  • RxPower th is a set threshold.
  • the default value can be 1dB.
  • ONUs whose difference between the maximum value and the minimum value of the received optical power is less than the threshold can be filtered to obtain identification information and characteristics of each first ONU whose optical path changes under the first PON port. data.
  • this solution is that the required alarm types are set in advance, and ONUs that are not the preset alarm type are filtered out according to the alarm occurrence time and alarm type of each ONU within the time window, and then the rest Identification information and characteristic data of each first ONU whose optical path changes under the first PON port.
  • preset preset alarm types such as Loss Of Signal (LOSi) and Loss Of Frame (LOFi) can be set in advance.
  • the preset alarm type is generally an alarm indicating that the optical path is interrupted.
  • LOFi refers to the uplink frame where an OLT cannot locate an ONU for 4 consecutive frames, and a LOFi alarm is generated. You can take the ONU offline.
  • LOSi refers to the fact that the OLT cannot receive uplink light from an ONU for 4 consecutive frames, a LOSi alarm is generated, and the ONU can be taken offline at the same time.
  • S102 Obtain a feature vector corresponding to the first ONU according to the feature data of each first ONU.
  • the feature vector corresponding to the first ONU includes: the first ONU is used to indicate a change in the received optical power within the first time window. Characteristics, and / or, alarm occurrence time and alarm type on the first ONU.
  • the electronic device needs to obtain a characteristic vector of each ONU, where the characteristic vector includes the first ONU's A characteristic for indicating a change in the received optical power within the first time window, and / or, an alarm occurrence time and an alarm type on the first ONU.
  • the characteristic vector includes the first ONU's A characteristic for indicating a change in the received optical power within the first time window, and / or, an alarm occurrence time and an alarm type on the first ONU.
  • a required feature is extracted from the feature data of the first ONU to form a feature vector corresponding to the first ONU.
  • the characteristics of the first ONU used to indicate changes in received optical power within the first time window include: jitter degree, jitter number, cliff degree, trend degradation degree, and time when the minimum value first appears. At least two of the relative position, the relative position of the time when the maximum value first appears, the ratio of the length of the longest continuous subsequence that is greater than the mean, and the ratio of the length of the longest continuous subsequence that is less than the mean; wherein the degree of jitter is The standard deviation or average difference of the received optical power data of the ONU within the first time window, the jitter number is the cumulative number of times that the ONU jitter degree is greater than a preset threshold, and the cliff degree is used to indicate that the ONU received optical power is within The magnitude of the attenuation change from a stable value to another stable value within a unit time, and the degree of the trend degradation is represented by a trend coefficient of linearly fitting the exponential weighted moving average of the received optical power in the first time window.
  • the feature vector corresponding to the first ONU includes an alarm event, it specifically includes: an alarm occurrence time and an alarm type.
  • sample feature vector also referred to as a sample vector
  • a feature of the first ONU that is used to represent a change in the received optical power within the first time window (also referred to as an ONU Characteristics of the time series of the received optical power): jitter degree, jitter number, cliff degree, trend degradation degree, time when the minimum value first appears, time when the maximum value first appears, length of the longest continuous subsequence greater than the average value, At least two of the longest continuous subsequence lengths less than the mean; alarm events occurring on the ONU: alarm occurrence time, alarm name; optical distance from the ONU to the OLT: ranging (also known as ranging results).
  • the extraction feature of the optical power time series is to analyze the sequence within a period of time, and it needs to configure the time length, for example, it can be configured as 1 day.
  • the electronic device After obtaining the characteristic data of all the first ONUs, the electronic device analyzes the configured KPI data and the time window using big data technology, extracts the parameters in the characteristic data, and obtains the characteristic vector of each first ONU.
  • Each parameter in the feature vector is described in detail below, as follows:
  • Figure 3 is a schematic diagram of the jitter degree of the received optical power of the ONU provided in this application. As shown in Figure 3, it can be seen that the received optical power of the ONU generally has a small change. When the optical path between the OLT and the ONU occurs, When the change occurs, the received optical power of multiple ONTs / ONUs connected to the same PON port of the OLT device changes. The standard deviation of the ONU's received optical power data within the time window can be calculated separately, indicating the degree of jitter.
  • Number of jitters The number of jitters can be expressed by the cumulative number of jitters greater than a certain threshold.
  • the received optical power of the ONU changes from a stable value to another stable value within a unit time.
  • the attenuation change is greater than a certain threshold, such as the attenuation threshold is 3dB. If the attenuation degree loss is less than the threshold, it is directly set to 0; if it is greater than the threshold, a normalized value is used.
  • the normalization processing method is (loss-loss min ) / (loss max -loss min ), and the loss max and loss min are the maximum and minimum values of the ont cliff, respectively.
  • the unit time here can be one acquisition cycle or multiple acquisition cycles. The unit time can be set according to the actual situation.
  • FIG. 4 is a schematic diagram of the trend degradation degree of the ONU provided in this application. As shown in FIG. 4, the degradation degree of the ONU is shown.
  • the electronic device performs exponentially weighted moving average (EWMA) on the KPI in the time window, and then performs a linear fit, using the trend coefficient as the degree of deterioration.
  • EWMA exponentially weighted moving average
  • Proportion of the length of the longest continuous subsequence that is greater than the average Calculate the average value of the received optical power of the ONU in the time window, and then count the length of the continuous subsequences that are greater than the average, and take the longest subsequence.
  • the time span of the longest continuous subsequence greater than the average in a received optical power time series is L1
  • the time span of the entire sequence is L0
  • Proportion of the length of the longest continuous subsequence smaller than the average Calculate the average value of the received optical power of the ONU in the time window, and then count the length of the continuous subsequences shorter than the average, and take the longest subsequence. For example, in a received optical power time series, the time span of the longest continuous subsequence smaller than the average is L2, and the time span of the entire sequence is L0, then this characteristic value can be obtained by using L2 / L0.
  • Alarm occurrence time Also called relative alarm occurrence time, the time when the ONU generates an alarm. For example, when a secondary backbone fiber fails, multiple ONUs connected to the same PON port of the OLT device have an alarm in a short period of time. occur. Assuming that the alarm occurrence time is t a1 , the time series start time is t 0 , and the end time is t n , then (t a1 -t 0 ) / (t n -t 0 ) is used to represent this characteristic value.
  • Alarm type The type of alarm generated by the ONU. For example, when a secondary backbone fiber fails, multiple ONUs connected to the same PON port of the OLT device generate a critical alarm within an approximate time window. For example: If a LOSi and LOFi alarm occurs on an ONU, this characteristic value is 1, otherwise it is 0.
  • k) ONU ranging The distance between the ONU and the PON port of the OLT equipment can be collected in the ONU equipment. Ranging does not change much with time. For a given ONU, it can be considered that the ranging is the average of the sequence. Assume that the ONU optical ranging is Len1, and the maximum ranging of all ONUs under this PON port is maxLen, then Len1 / maxLen is used as the characteristic value of this ONU ranging.
  • cluster analysis is performed on the feature vector of each ONU, that is, the subsequent process is performed.
  • S103 Perform cluster analysis on the feature vector corresponding to each first ONU to obtain topology information corresponding to the first PON port; the topology information includes identification information of at least one group of the first ONU, and the identification information of each group of the first ONU is used for Indicates that the first ONU in the group is connected to the same non-level optical splitter.
  • FIG. 5 is a schematic diagram of the KPI indicator of the ONU provided in the present application.
  • the characteristic data of the ONU connected to the same two-level optical splitter has certain similarities. That is, KPIs have certain similarities, so after obtaining the feature vector corresponding to each first ONU, cluster analysis can be performed according to the feature vector to determine which first ONUs are connected to the same non-level optical splitter. under.
  • the clustering process can be implemented by a clustering algorithm, and in particular, a clustering algorithm based on similarity can be used.
  • Cluster ONUs For example, during this cluster analysis, Affinity Propagation (AP) clustering algorithm can be used.
  • AP Affinity Propagation
  • the similarity between node i and node j is expressed as S (i, j).
  • the formula is as follows, which is the negative value of the Euclidean distance between the feature vectors. The larger the value of S (i, j), the closer the node i is to the node j, and the ability of the node j as the cluster center of the node i in the AP clustering.
  • a similarity matrix mat-S can be obtained by calculating the similarity of all the first ONUs in pairs. If the number of ONUs is p, the dimension of the generated similarity matrix mat-S is p * p.
  • N represents the number of features of the feature vector
  • Example of clustering results Assuming a1, a2, a3, a5, and a6 are the numbers of different ONUs under the first PON port. If a1, a2, and a3 are similar, and a5 and a6 are similar, the clustering result is It will be shaped like ⁇ 'cluster-1': [a1, a2, a3], 'cluster-2': [a5, a6] ⁇ , which is a cluster of similar ONU clusters.
  • the clustering result ⁇ 'cluster-1': [a1, a2, a3], 'cluster-2': [a5, a6] ⁇ corresponds to the meaning of topology Therefore, a1, a2, and a3 are under the same two-level optical splitter, and a5 and a6 are under the same two-level optical splitter.
  • ONUs connected to other levels of optical splitters can also perform cluster analysis in the above manner, and finally obtain the topology information corresponding to the first PON port.
  • the topology information includes identification information of multiple groups of ONUs, and its meaning is within each group.
  • the ONU corresponding to the identification information of the ONU is connected to the same non-level optical splitter.
  • the electronic device may also generate a corresponding ODN network logical topology map according to the obtained topology information under the PON port, and directly display the ODN network logical topology map to the user, so that the user can directly Determine the topology of the ONU.
  • the method for acquiring the logical topology information of the ODN obtains, through electronic devices such as a server or a terminal device, identification information and characteristic data of each first ONU whose optical path changes under the first PON port, and according to each first ONU Obtain the feature vector corresponding to each first ONU, perform cluster analysis on the feature vector corresponding to each first ONU, and obtain topology information corresponding to the first PON port, and the topology information includes at least one non-level one
  • the identification information of the ONU connected to the optical splitter that is, the topology information of the ONU is directly obtained by analyzing the characteristics of the ONU, which is simple and fast, and the obtained topological information is relatively accurate. It is not necessary to maintain the topological information of the optical splitter by manual input, reducing Stress of manual maintenance.
  • the topology update module can be used to save the historical topology found for a certain period of time. The data is comprehensively judged based on the newly discovered topology and several historical topologies to obtain the true ODN topology information that is more in line with the actual situation. The details are described below through a specific embodiment.
  • FIG. 6 is a flowchart of a second embodiment of a method for acquiring logical topology information of an ODN provided in this application. As shown in FIG. 6, based on the above embodiment, if the first PON port includes a two-level optical splitting structure, the The method for obtaining the logical topology information of the ODN further includes the following steps:
  • S201 Perform matrix conversion on the topological information obtained from at least two historical clustering processes corresponding to the first PON port to obtain a distance matrix corresponding to each historical clustering result; wherein the values in the distance matrix represent any two first ONUs the distance between.
  • the number of historical topologies saved in the electronic device can be set through configuration. If N-topology is set to 3, the historical topology data is saved twice, and the current topology and the historical two topology are integrated. analysis.
  • a single clustering result of a logical topology that is, the topology information of a word is converted into a pairwise distance matrix between ONUs.
  • a clustering result is ⁇ 'cluster1': [a1, a2, a3, a4], 'cluster2': [a5, a6, a7, a8] ⁇ , where a1, ..., a8 are the first PON
  • the numbers of different ONUs under the port that is, a1, a2, a3, and a4 may be under the same two-level optical splitter, and a5, a6, a7, and a8 may be under the same two-level optical splitter.
  • Device 1 ' [a1, a2, a3, a4],' Secondary beam splitter 2 ': [a5, a6, a7, a8] ⁇ .
  • the results of clustering into a distance matrix are as follows:
  • 0 in the matrix indicates similarity, and 1 indicates dissimilarity.
  • the clustering result of the first historical topology is ⁇ 'secondary beam splitter 1': [a1, a3, a4], 'secondary beam splitter 2': [a5, a6, a7, a8] ⁇ ,
  • the same can be converted into a distance matrix as follows:
  • 0 in the matrix indicates similarity, and 1 indicates dissimilarity.
  • the clustering result of the second historical topology is ⁇ 'secondary beam splitter 1': [a1, a2, a4], 'secondary beam splitter 2': [a5, a6, a7, a8] ⁇ ,
  • the same can be converted into a distance matrix as follows:
  • 0 in the matrix indicates similarity, and 1 indicates dissimilarity.
  • the multiple historical clustering results corresponding to the first PON port that is, the distance matrix corresponding to the topology information obtained through the solution of the first embodiment can be summed according to the above steps to obtain a comprehensive
  • the distance matrix specifically, in the above example, the above three distance matrices can be added to obtain a comprehensive distance matrix as follows:
  • the above-mentioned comprehensive distance matrix can be modified to improve the accuracy of the clustering result.
  • each element of this matrix is modified, and the modification method is set as The fixed threshold th1 is set to 0, otherwise it is set to n.
  • n 3
  • the threshold is 2. That is, set the values less than 2 in the matrix above to 0 and other settings to 3, you can get the following modified matrix:
  • S203 According to the comprehensive distance matrix, the first ONU whose optical path changes under the first PON port is clustered and analyzed by using a density-based clustering method to obtain new topology information corresponding to the first PON port.
  • a density-based clustering method can be used to perform a cluster analysis on the first ONU whose optical path changes under the PON port to obtain a new clustering result, that is, a new Topology information.
  • a density-based clustering method is used for this matrix, for example: Density-Based Spatial Clustering Applications with Noise (DBSCAN), and the neighborhood distance is set to th1 (threshold value obtained in the previous step), set the minimum number of neighbors minPts to 3 (can be set to the minimum number of ont under the second-level light splitting according to the actual situation), then the synthesis of the three clustering results can be obtained as ⁇ 'second-level Beamsplitter 1 ': [a1, a2, a3, a4],' Secondary beamsplitter 2 ': [a5, a6, a7, a8] ⁇ .
  • DBSCAN Density-Based Spatial Clustering Applications with Noise
  • the clustering results indicate that a1, a2, a3, and a4 are connected under the second-level optical splitter 1 and a5, a6, a7, and a8 are connected under the second-level optical splitter 2.
  • Core object If the number of sample points in the neighborhood of a given object eps is greater than or equal to minPts, the object is called the core object;
  • Direct density is reachable: For the two sample points p and q in D, if p is within the eps neighborhood of q and q is a core object, then the object p satisfies direct density reachability starting from q;
  • Density connection If there is an object o such that p and q are reachable from o with respect to the density of eps and minPts, then the objects p to q are connected with respect to the density of eps and minPts.
  • Step 1 Determine whether the input point is the core object.
  • Step 2 Find all direct density reachable points in the eps neighborhood of the core object.
  • Step 3 Repeat steps 1 and 2 until all input points are judged.
  • Step 4 Find the set of maximum density connected objects for all direct density reachable points in the eps neighborhood of all core objects, and merge the density reachable objects to form a cluster.
  • Step 5 Repeat step 4 until all core object eps neighborhoods have been traversed. The multiple clusters formed so far are the final clustering results.
  • the method for acquiring the logical topology information of the ODN further includes the following steps: generating a corresponding logical topology map of the ODN network according to the topology information corresponding to the first PON port, and converting the logical logic of the ODN network The topology is displayed.
  • FIG. 7 is a schematic diagram of a logical topology diagram of an ODN network provided by the present application.
  • the logical topology of the ODN network generated by the clustered topology information shows that the PON port is connected to a first-level optical splitter, and the first-level optical splitter is connected to a second-level optical splitter 1 and a second-level optical splitter 2.
  • the four ONUs a1, a2, a3, and a4 under the PON port are connected under the same secondary optical splitter 1, and the four ONUs a5, a6, a7, and a8 are connected under the same secondary optical splitter 2.
  • the method for acquiring the logical topology information of the ODN solves the problem that the branch topology (such as the secondary topology) is unknown, and the data of the asset management system of the branch topology (such as the secondary topology) is inaccurate, resulting in difficulty in fault location and positioning time. Long, high maintenance costs. At the same time, it can reduce the cost of maintaining asset management information manually, and avoid the inaccuracy of the asset management information caused by the frequent change of the correspondence between the ONT and the secondary optical splitter. In addition, the topology information is used to improve the remote automatic positioning rate. Reduce the reliance on professional maintenance tools, reduce ineffective site visits by equipment maintenance personnel, improve processing efficiency, and reduce maintenance costs.
  • FIG. 8 is a schematic structural diagram of a first embodiment of an apparatus provided in this application. As shown in FIG. 8, the apparatus 10 for acquiring logical topology information of an ODN includes:
  • An obtaining module 11 is configured to obtain identification information of each first ONU whose optical path changes under the first PON port and characteristic data in a first time window, where the characteristic data includes at least one of a received optical power and an alarm event
  • the alarm event includes an alarm occurrence time and an alarm type
  • the processing module 12 is configured to obtain a feature vector corresponding to the first ONU according to the feature data of each first ONU.
  • the feature vector corresponding to the first ONU includes: the first ONU is used to represent the first time. A characteristic of a change in the received optical power within the window, and / or, an alarm occurrence time and an alarm type on the first ONU;
  • the processing module 12 is further configured to perform cluster analysis on a feature vector corresponding to each first ONU to obtain topology information corresponding to the first PON port, where the topology information includes identification information of at least one group of the first ONU, The identification information of the first ONU in each group is used to indicate that the first ONU in the group is connected to the same non-level optical splitter.
  • the apparatus for acquiring the logical topology information of the ODN provided by this embodiment is configured to implement the technical solution provided by any of the foregoing method embodiments.
  • the implementation principles and technical effects are similar.
  • the ONU topology information is obtained by analyzing the characteristics of the ONU, which is simple It is fast and the obtained topology information is relatively accurate. It is not necessary to maintain the topology information of the optical splitter through manual input.
  • the obtaining module 11 is specifically configured to:
  • the ONUs whose optical paths are not changed under the first PON port are filtered to obtain identification information and characteristic data of each first ONU whose optical paths are changed under the first PON port.
  • the characteristic data of each first ONU further includes: a ranging result.
  • the obtaining module 11 is specifically configured to:
  • the difference between the maximum and minimum values of the received optical power of the ONU within the first time window is compared with a preset threshold, and the difference between the maximum and minimum values of the received optical power is less than Filtering the threshold ONU to obtain identification information and characteristic data of each first ONU whose optical path changes under the first PON port;
  • Filter ONUs that do not include a preset alarm type in the alarm type according to the alarm occurrence time and alarm type that each ONU has occurred within the first time window, and obtain each change in the optical path under the first PON port. Identification information and characteristic data of each first ONU.
  • processing module 12 is specifically configured to:
  • a required feature is extracted from the feature data of the first ONU to form a feature vector corresponding to the first ONU.
  • the characteristics of the first ONU used to indicate changes in the received optical power within the first time window include: jitter degree, jitter number, cliff degree, trend degradation degree, and minimum value appearing for the first time At least two of the relative time position of the time, the relative time position of the first occurrence of the maximum value, the ratio of the length of the longest continuous subsequence that is greater than the mean, and the ratio of the length of the longest continuous subsequence that is less than the mean;
  • the degree is the standard deviation or average difference of the received optical power data of the ONU within the first time window
  • the jitter number is the cumulative number of times that the ONU jitter degree is greater than a preset threshold
  • the cliff degree is used to indicate the ONU received light
  • the degree of the trend degradation is represented by a trend coefficient of linearly fitting the exponential weighted moving average of the received optical power in the first time window. .
  • processing module 12 is specifically configured to:
  • the topology information corresponding to the first PON port includes identification information of multiple groups of first ONUs, and each group of first ONUs The identification information is used to determine that the first ONU in the group is connected to the same secondary optical splitter.
  • the first PON port includes a two-level optical splitting structure
  • the processing module 12 is further configured to:
  • Matrix conversion is performed on the topological information obtained from at least two historical clustering processes corresponding to the first PON port to obtain a distance matrix corresponding to each historical clustering result; wherein the values in the distance matrix represent any two first The distance between an ONU;
  • the first ONU whose optical path changes under the first PON port is clustered by using a density-based clustering method to obtain new topology information corresponding to the first PON port.
  • the apparatus for acquiring the logical topology information of the ODN provided by any one of the foregoing embodiments is configured to execute the technical solution provided by any one of the foregoing method embodiments.
  • the implementation principles and technical effects are similar, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of a second embodiment of an apparatus for acquiring logical topology information of an ODN provided in this application.
  • the apparatus 10 for acquiring logical topology information of an ODN further includes: : Display module 13;
  • the processing module 12 is further configured to generate a corresponding ODN network logical topology map according to the topology information corresponding to the first PON port;
  • the display module 13 is configured to display the logical topology diagram of the ODN network.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of an electronic device provided in this application. As shown in FIG. 10, the electronic device specifically includes:
  • a memory a processor, a receiver, a display, and a computer program, where the computer program is stored in the memory, and the processor runs the computer program to execute a method for acquiring logical topology information of an ODN provided by any one of the foregoing method embodiments Technical solutions.
  • This application also provides a storage medium, including: a readable storage medium and a computer program stored in the readable storage medium, where the computer program is used to implement the logical topology information of the ODN provided by any one of the foregoing method embodiments. Get the technical solution of the method.
  • the present application also provides a computer program product, which includes: when the computer program product runs on a computer, a technical solution for causing the computer to execute a method for acquiring logical topology information of an ODN provided by any of the foregoing method embodiments.
  • the processor may be a central processing unit (English: Central Processing Unit, CPU for short), or other general-purpose processors, digital signal processors (English: Digital Signal Processor) , Referred to as DSP), application specific integrated circuit (English: Application Specific Integrated Circuit, referred to as ASIC), etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like. The steps combined with the method disclosed in this application may be directly embodied as being executed by a hardware processor, or may be executed and completed by using a combination of hardware and software modules in the processor.
  • All or part of the steps for implementing the foregoing method embodiments may be completed by a program instructing related hardware.
  • the aforementioned program can be stored in a readable memory.
  • the steps including the foregoing method embodiments are executed; and the foregoing memory (storage medium) includes: read-only memory (English: read-only memory (abbreviation: ROM)), RAM, flash memory, hard disk, Solid state hard disk, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disk (English: optical disc) and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请提供一种ODN的逻辑拓扑信息的获取方法、装置、设备和存储介质,该方法包括:获取第一PON端口下光路发生变化的每个第一ONU的标识信息以及第一时间窗内的特征数据,特征数据包括接收光功率和告警事件中的至少一种,根据每个第一ONU的特征数据,获取每个第一ONU对应的特征向量,对每个第一ONU对应的特征向量进行聚类分析,获取第一PON端口对应的拓扑信息,拓扑信息包括至少一组第一ONU的标识信息,每组第一ONU的标识信息用于表示组内的第一ONU挂接在同一个非一级分光器下。通过对ONU的特征分析,得到ONU的拓扑信息,简单快捷,并且得到的拓扑信息比较准确,不需要通过人工输入来维护分光器的拓扑信息。

Description

ODN的逻辑拓扑信息的获取方法、装置、设备和存储介质 技术领域
本申请涉及光纤网络技术,尤其涉及一种光配线网络(Optical Distribution Network,ODN)的逻辑拓扑信息的获取方法、装置、设备和存储介质。
背景技术
图1是为一种无源光纤网络系统架构示意图,如图1所示,无源光纤网络(Passive Optical Network,PON)网络系统主要由光线路终端(Optical Line Terminal,OLT)、含有无源光器件的光配线网(Optical Distribution Network,ODN)、用户端的光网络单元(Optical Network Unit,ONU)组成;通常采用点到多点的树型拓扑结构,如图1所示,可以确定:1)所有ONU挂接在OLT的PON端口上,即ONU与PON端口之间有一定的拓扑关系;2)具体实现中ONU可以通过一级分光(分光器)和/或二级分光(分光器)挂接在PON端口上,ONU与二级分光器之间存在一定的拓扑关系。该树形拓扑结构至少包括ONU与PON端口的拓扑信息以及ONU与二级分光的拓扑信息。
在目前的家庭宽带故障处理中,需要对出现故障的位置进行定位,一般来说OLT、ONT和ODN引入的故障占比较高,然而PON网络故障的场景复杂、线路长,因此需要根据PON网络的拓扑信息进行故障的定位,目前常用的获取拓扑信息的方式包括:所有ONU挂接在OLT的PON端口上的拓扑信息,可通过PPPoE等方式来确认ONU所属的OLT的PON端口,从而得到相应的拓扑信息。2)ONU挂接在哪个分支光纤/分光器上的拓扑信息是通过人工输入进行维护的。
然而,PON网络故障运维过程中,ONU与现网的分支光纤/分光器的对应关系经常变动,通过人工输入来维护分支光纤/分光器的拓扑信息较为繁琐,经常出现此部分拓扑信息不准确。
发明内容
本申请提供一种ODN的逻辑拓扑信息的获取方法、装置、设备和存储介质,用于解决目前的PON网络故障运维过程中,ONU与现网的分支光纤/分光器的对应关系经常变动,通过人工输入来维护分支光纤/分光器的拓扑信息较为繁琐,经常出现此部分拓扑信息不准确的问题。
第一方面,本申请提供一种ODN的逻辑拓扑信息的获取方法,所述方法包括:
获取第一PON端口下光路发生变化的每个第一ONU的标识信息以及第一时间窗内的特征数据,所述特征数据包括接收光功率和告警事件中的至少一种,所述告警事件包括告 警发生时间和告警类型;
根据每个第一ONU的特征数据,获取所述第一ONU对应的特征向量;所述第一ONU对应的特征向量包括:所述第一ONU的用于表示所述第一时间窗内的接收光功率的变化的特征,和/或,所述第一ONU上的告警发生时间和告警类型;
对每个第一ONU对应的特征向量进行聚类分析,获取所述第一PON端口对应的拓扑信息,所述拓扑信息包括至少一组第一ONU的标识信息,每组第一ONU的标识信息用于表示组内的第一ONU挂接在同一个非一级分光器下。
在该方案中,通过对ONU的特征分析,得到ONU的拓扑信息,简单快捷,并且得到的拓扑信息比较准确,不需要通过人工输入来维护分光器的拓扑信息。
在上述方案的一种具体实现中,所述获取第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据,包括:
获取所述第一PON端口下的每个ONU的标识信息以及特征数据;
根据特征数据,对所述第一PON端口下光路没有发生变化的ONU进行过滤,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。
在该方案,执行该技术方案的电子设备(例如服务器)获取第一PON端口下的每个ONU的标识信息以及特征数据的方式,可以是接收数据采集设备上报的第一PON端口下的每个ONU的标识信息以及特征数据,也可以是接收OLT上报的第一PON端口下的每个ONU的标识信息以及特征数据,也可以是主动向数据采集设备或者OLT获取的每个ONU的标识信息以及特征数据,对此本方案不做限制。
可选的,每个第一ONU的特征数据还包括:测距结果。
在上述方案的另一种具体实现中,所述根据特征数据,对所述第一PON端口下光路没有发生变化的ONU进行过滤,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据,包括:
将ONU在所述第一时间窗内的接收光功率的最大值和最小值之间的差值,与预设的阈值进行对比,将接收光功率的最大值和最小值之间的差值小于所述阈值的ONU过滤掉,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据;
和/或,
根据每个ONU在第一时间窗内告警发生时间和告警类型,将告警类型中不包括预设告警类型的ONU过滤掉,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。
该方案的实现中,可以单独使用接收光功率的最大值和最小值之间的差值与阈值对比进行过滤,也可以单独使用预设的告警类型进行过滤,还可以将上述两种方案进行结合,即先根据预设的告警类型进行过滤,再使用接收光功率的最大值和最小值之间的差值与阈值对比进行过滤,或者先使用接收光功率的最大值和最小值之间的差值与阈值对比进行过滤,再根据预设的告警类型进行过滤,对此本方案不做限制。
在上述方案的一种具体实现中,所述根据每个第一ONU的特征数据,获取每个第一ONU对应的特征向量,包括:
针对每个第一ONU,从所述第一ONU的特征数据中提取出需要的特征,组成所述第 一ONU对应的特征向量。
该方案的一种具体实现中,可以预先设置样本向量,样本向量中包括后续聚类需要的特征,然后采用该样本向量,从第一ONU的特征数据中提取出需要的特征,组成第一ONU对应的特征向量,也可以直接从第一ONU的特征数据中提取出需要的特征,组成第一ONU对应的特征向量,本方案对此不做限制。
可选的,所述第一ONU的用于表示所述第一时间窗内的接收光功率的变化的特征,包括:抖动程度、抖动次数、断崖程度、趋势劣化程度、最小值第一次出现的时间相对位置、最大值第一次出现的时间相对位置、大于均值的最长连续子序列长度占比、小于均值的最长连续子序列长度占比中的至少两个;其中,所述抖动程度为所述第一时间窗内ONU的接收光功率数据的标准差或平均差,所述抖动次数为ONU的抖动程度大于预设阈值的累计次数,所述断崖程度用于表示ONU的接收光功率在单位时间内从稳定值衰减到另外一个稳定值的衰减变化大小,所述趋势劣化程度用所述第一时间窗内的接收光功率进行指数加权滑动平均后进行线性拟合的趋势系数表示。
在本方案的另一具体实现方式中,所述对每个第一ONU对应的特征向量进行聚类分析,获取所述第一PON端口对应的拓扑信息,包括:
根据每个第一ONU对应的特征向量,分别获取任两个第一ONU对应的特征向量之间的相似度矩阵;
将所有相似度矩阵作为聚类算法的输入,得到所述第一PON端口对应的拓扑信息。
在本方案的另一具体实现方式中,所述第一PON端口下包括两级分光结构,则所述方法还包括:
将所述第一PON端口对应的至少两次历史聚类过程得到的拓扑信息进行矩阵转换,得到每次历史聚类结果对应的距离矩阵;其中,所述距离矩阵中的数值表示任两个第一ONU之间的距离;
将所述第一PON端口对应的至少两次历史聚类结果对应的距离矩阵相加,得到综合距离矩阵;
根据所述综合距离矩阵,对所述第一PON端口下光路发生变化的第一ONU采用基于密度的聚类方式进行聚类分析,得到所述第一PON端口对应的新的拓扑信息。
该方案中,通过对几次历史聚类结果进行综合分析,可以进一步提高得到的拓扑信息的准确度。
在上述任一实现方式的基础上,所述方法还包括:
根据所述第一PON端口对应的拓扑信息生成对应的ODN网络逻辑拓扑图;
将所述ODN网络逻辑拓扑图进行显示。
第二方面,本申请提供一种ODN的逻辑拓扑信息的获取装置,所述装置包括:
获取模块,用于获取第一PON端口下光路发生变化的每个第一ONU的标识信息以及在第一时间窗内的特征数据,所述特征数据包括接收光功率和告警事件中的至少一种,所述告警事件包括告警发生时间和告警类型;
处理模块,用于根据每个第一ONU的特征数据,获取所述第一ONU对应的特征向量;所述第一ONU对应的特征向量包括:所述第一ONU的用于表示所述第一时间窗内 的接收光功率的变化的特征,和/或,所述第一ONU上的告警发生时间和告警类型;
所述处理模块还用于对每个第一ONU对应的特征向量进行聚类分析,获取所述第一PON端口对应的拓扑信息,所述拓扑信息包括至少一组第一ONU的标识信息,每组第一ONU的标识信息用于表示组内的第一ONU挂接在同一个非一级分光器下。
可选的,所述获取模块具体用于:
获取所述第一PON端口下的每个ONU的标识信息以及特征数据;
根据特征数据,对所述第一PON端口下光路没有发生变化的ONU进行过滤,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。
可选的,每个第一ONU的特征数据还包括:测距结果。
可选的,所述获取模块具体用于:
将ONU在所述第一时间窗内的接收光功率的最大值和最小值之间的差值,与预设的阈值进行对比,将接收光功率的最大值和最小值之间的差值小于所述阈值的ONU过滤掉,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据;
和/或,
根据每个ONU在时间窗内出现过的告警发生时间和告警类型,将告警类型中不包括预设告警类型的ONU过滤掉,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。
可选的,所述处理模块具体用于:
针对每个第一ONU,从所述第一ONU的特征数据中提取出需要的特征,组成所述第一ONU对应的特征向量。
可选的,所述第一ONU的用于表示所述第一时间窗内的接收光功率的变化的特征,包括:抖动程度、抖动次数、断崖程度、趋势劣化程度、最小值第一次出现的时间相对位置、最大值第一次出现的时间相对位置、大于均值的最长连续子序列长度占比、小于均值的最长连续子序列长度占比中的至少两个;其中,所述抖动程度为所述第一时间窗内ONU的接收光功率数据的标准差或平均差,所述抖动次数为ONU的抖动程度大于预设阈值的累计次数,所述断崖程度用于表示ONU的接收光功率在单位时间内从稳定值衰减到另外一个稳定值的衰减变化大小,所述趋势劣化程度用所述第一时间窗内的接收光功率进行指数加权滑动平均后进行线性拟合的趋势系数表示。
可选的,所述处理模块具体用于:
根据每个第一ONU对应的特征向量,分别获取任两个第一ONU对应的特征向量之间的相似度矩阵;
将所有相似度矩阵作为聚类算法的输入,得到所述第一PON端口对应的拓扑信息。
可选的,所述第一PON端口下包括两级分光结构,则所述处理模块还用于:
将所述第一PON端口对应的至少两次历史聚类过程得到的拓扑信息进行矩阵转换,得到每次历史聚类结果对应的距离矩阵;其中,所述距离矩阵中的数值表示任两个第一ONU之间的距离;
将所述第一PON端口对应的至少两次历史聚类结果对应的距离矩阵相加,得到综合距离矩阵;
根据所述综合距离矩阵,对所述第一PON端口下光路发生变化的第一ONU采用基于密度的聚类方式进行聚类分析,得到所述第一PON端口对应的新的拓扑信息。
可选的,所述装置还包括:显示模块;
所述处理模块还用于根据所述第一PON端口对应的拓扑信息生成对应的ODN网络逻辑拓扑图;
所述显示模块用于将所述ODN网络逻辑拓扑图进行显示。
第三方面,本申请提供一种电子设备,包括:存储器、处理器、接收器、显示器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行第一方面任一项所述的ODN的逻辑拓扑信息的获取方法。
第四方面,本申请提供一种存储介质,包括:可读存储介质和存储在所述可读存储介质中的计算机程序,所述计算机程序用于实现第一方面任一项所述的ODN的逻辑拓扑信息的获取方法。
本申请提供的ODN的逻辑拓扑信息的获取方法、装置、设备和存储介质,通过获取第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据,根据每个第一ONU的特征数据,获取每个第一ONU对应的特征向量,对每个第一ONU对应的特征向量进行聚类分析,获取所述第一PON端口对应的拓扑信息,拓扑信息包括至少一个非一级分光器挂接的ONU的标识信息,即直接通过对ONU的特征分析,得到ONU的拓扑信息,简单快捷,并且得到的拓扑信息比较准确,不需要通过人工输入来维护分光器的拓扑信息,减轻人工维护的压力。
附图说明
图1是为一种无源光纤网络系统架构示意图;
图2为本申请提供的ODN的逻辑拓扑信息的获取方法实施例一的流程图;
图3为本申请提供的ONU的接收光功率的抖动程度的示意图;
图4为本申请提供的ONU的趋势劣化程度的示意图;
图5为本申请提供的ONU的KPI指标的示意图;
图6为本申请提供的ODN的逻辑拓扑信息的获取方法实施例二的流程图;
图7为本申请提供的一种ODN网络逻辑拓扑图的示意图;
图8为本申请提供的装置实施例一的结构示意图;
图9为本申请提供的ODN的逻辑拓扑信息的获取装置实施例二的结构示意图;
图10为本申请提供的电子设备实施例一的结构示意图。
具体实施方式
目前提供的ODN拓扑发现方案中,所有的光网络单元(Optical Network Unit,ONU)挂接在光线路终端(Optical Line Terminal,OLT)的无源光纤网络(Passive Optical Network,PON)端口上的拓扑信息,是可通过PPPoE等方式来确认ONU所属的OLT的PON端口,此部分拓扑信息是准确的。哪些ONU挂接在某个分支光纤/分光器上的拓扑信息是通过人 工输入进行维护的。PON网络故障运维过程中,ONU与现网的分支光纤/分光器的对应关系经常变动,通过人工输入来维护分支光纤/分光器的拓扑信息较为繁琐,经常出现此部分拓扑信息不准确。
针对上述存在的问题,本申请提供一种ODN的逻辑拓扑信息的获取方法,可以应用在电子设备中,该电子设备可以是网络服务器,也可以是专门设置的用于获取网络的拓扑信息的服务器,也可以是能够进行数据分析处理的电脑等终端设备,还可以是服务器或者设备中的一个软件模块,对此本方案不做限制。无论是在服务器或者终端设备等中实现,还是在某个电子设备中通过一个软件模块来实现,ODN逻辑拓扑发现系统主要包括以下几个模块:(1)即特征数据的采集与存储,(2)ONU的特征挖掘,(3)聚类分析,得到需要的拓扑信息。可选的,还可以包括拓扑更新功能模块。
本申请的技术方案通过采集海量的设备数据指标,大数据技术挖掘设备运行中数据指标的关键参数特征;充分利用ONU群体行为的一致性特征,建立ODN逻辑拓扑自动学习、增量发现的算法模型,并在线应用,增量发现分支拓扑信息。
下面通过几个具体实施例对本申请提供的ODN的逻辑拓扑信息的获取方法进行说明。该技术方案应用的PON网络系统中包括多个OLT,每个OLT设置有PON端口,所有的ONU均挂接在PON端口下,可以通过一级分光器进行分光挂接ONU,也可以在一级分光器下再通过多个二级分光器进行分光挂接ONU,也可以继续在二级分光器下采用三级分光器分光挂接ONU,以此类推,在该PON网络系统中,不限制分光级别的数量,可以根据实际应用的需要配置不同层级的分光器挂接ONU。
在该ODN的逻辑拓扑信息的获取方法的具体实现中,在ONU中采集到的数据有ONU接收光功率、发送光功率、偏置电流、测距结果等;在OLT设备中获取到OLT下连接的每个ONU的告警发生时间、告警类型等。在本方案的一种实现中,可以选择ONU的接收光功率作为分析的关键性能指标(Key Performance Indicator,KPI)。
除了上述,该方案中还应该理解,ONU包括所有的光网络单元,例如包括:光网络设备(Optical Network Terminal,ONT),多租户单元(Multiple Tenant Unit,MTU),多住户单元(Multiple Dwelling Unit,MDU)等。
图2为本申请提供的ODN的逻辑拓扑信息的获取方法实施例一的流程图,如图2所示,该ODN的逻辑拓扑信息的获取方法具体包括以下步骤:
S101:获取第一PON端口下光路发生变化的每个第一ONU的标识信息以及第一时间窗内的特征数据。
在本步骤中,该步骤一般电子设备的数据采集和存储模块中进行实现。
在PON网络系统运行维护过程中,执行该方案的电子设备需要不断的获取每个PON端口下的每一个ONU的特征数据,为了区分是那个ONU也需要同时获取不同的ONU的标识信息,本方案中以一个PON端口(即第一PON端口)下的数据收集和处理分析为例,对该方案进行说明。
对于ONU来说,其在第一时间窗内的特征数据包括接收光功率和告警事件中的至少一种,告警事件包括告警发生时间和告警类型。此处的第一时间窗可以根据实际情况进行设置,对此不做限制。
一般来说,获取PON端口下的光路发生变化的所有的第一ONU的标识信息和特征数据的方式为获取第一PON端口下的每个ONU的标识信息以及特征数据,然后根据特征数据,对所述第一PON端口下光路没有发生变化的ONU进行过滤,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据,在该方案的具体实现中至少包括以下两种方式:
第一种实现方式:接收数据采集设备发送的所述第一PON端口下的每个ONU的标识信息以及特征数据;根据特征数据,对所述第一PON端口下光路没有发生变化的ONU进行过滤,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。
为了能够收集数据,可以专门设置数据采集平台,也称为数据采集设备,ONU在运行过程中,周期性的将自己的特征数据上报数据采集设备,上报周期可以根据实际情况进行配置,例如:上报周期为5分钟。数据采集设备接收了第一PON端口下的ONU上报的特征数据,同时根据ONU的标识信息进行对应存储。这里的特征数据可以是ONU的接收光功率数据,告警事件以及测距结果等,以便后续分析过程中进行拓扑学习。
数据采集设备在获取到所有的ONU的表示信息和特征数据之后,将该些数据上报给该方案中的执行主体,即上报给电子设备,电子设备在对数据进行处理的过程中,根据特征数据对第一PON端口下的ONU进行筛选,将光路没有发生变化的ONU过滤掉,只留下光路发生变化的所有的第一ONU的标识信息以及特征数据。
可选的,在该方案的具体实现中,也可以是数据采集设备根据特征数据对第一PON端口下的ONU进行筛选,将光路没有发生变化的ONU过滤掉,只留下光路发生变化的第一ONU的标识信息以及特征数据,然后将该光路发生变化的ONU的标识信息以及特征数据上报至电子设备,对此本方案不做限制。
第二种实现方式:接收第一OLT发送的所述第一PON端口下的每个ONU的标识信息以及特征数据;根据特征数据,对所述第一PON端口下光路没有发生变化的ONU进行过滤,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。
在本方案中,不需要专门设置数据采集设备,ONU可以周期性的将特征数据上报至OLT,再由OLT将得到的ONU的标识信息以及对应的特征数据周期性的上报到电子设备中进行处理分析,上报周期可以根据实际情况进行配置,例如:上报周期为15分钟。
同样的,在本方案中可以是OLT获取到ONU的标识信息和对应的特征数据之后,将光路没有发生变化的ONU过滤掉,然后得到光路发生变化的第一ONU的标识信息和特征数据,将该光路发生变化的第一ONU的标识信息和特征数据上报给进行数据分析和拓扑学习的电子设备。
也可以是OLT获取到ONU的标识信息和对应的特征数据之后,直接进行上报。电子设备接收到第一PON端口下的ONU的标识信息和对应的特征数据之后,将光路没有发生变化的ONU过滤掉,然后得到光路发生变化的第一ONU的标识信息和特征数据。
在上述方案的具体实现中,每个第一ONU的特征数据还可以包括测距结果。
在上述两种实现方案中,均需要对接收到的ONU的标识信息和特征数据进行过滤,过滤掉光路没有发生变化的ONU,具体的,可以采用以下几种方式进行过滤:
(1)、将ONU在时间窗内的接收光功率的最大值和最小值之间的差值,与预设的阈值进行对比,将接收光功率的最大值和最小值之间的差值小于所述阈值的ONU过滤掉,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。
在该方案中,其含义是采用时间窗内的同一个ONU接收光功率的最大值、最小值间的差值大于或等于专家经验阈值进行过滤,该阈值可以预先进行配置,例如:
RxPower max-RxPower min≥RxPower th
其中,RxPower max是时间窗内的ONU接收光功率的最大值,RxPower min是时间窗内的ONU接收光功率的最小值,RxPower th是设定的阈值,例如可以默认取值为1dB。
通过上述公式可以将接收光功率的最大值和最小值之间的差值小于所述阈值的ONU过滤掉,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。
(2)、根据每个ONU在时间窗内出现过的告警发生时间和告警类型,将告警类型不是预设告警类型的ONU过滤掉,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。
该方案的含义是,预先设定需要的告警类型,在根据每个ONU在时间窗内出现过的告警发生时间和告警类型,将不是设定的预设告警类型的ONU过滤掉,然后剩下第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。例如,可以预先设置需要的预设告警类型如:信号丢失(Loss Of Signal,LOSi)、帧丢失(Loss Of Frame,LOFi)。具体实现中,预设的告警类型一般是指示光路发生中断的告警,在该方案中,可以理解,LOFi指的是OLT连续4帧不能定位到某个ONU的上行帧,则产生LOFi告警,同时可以将ONU下线。LOSi指的是OLT连续4帧不能收到某个ONU发出的上行光,则产生LOSi告警,同时可以将ONU下线。
(3)、将上述的两种方式进行结合,即在采用特征数据中的接收光功率的最大值和最小值的差值与设定阈值进行比较之后,将接收光功率的最大值和最小值之间的差值小于所述阈值的ONU过滤掉,将剩余的ONU,再使用预设告警类型进行过滤,最终得到第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。
S102:根据每个第一ONU的特征数据,获取第一ONU对应的特征向量;第一ONU对应的特征向量包括:第一ONU的用于表示所述第一时间窗内的接收光功率的变化的特征,和/或,第一ONU上的告警发生时间和告警类型。
在本步骤中,电子设备在获取到了第一PON端口下光路发生变化的每个第一ONU 的标识信息以及特征数据之后,需要获取每个ONU的特征向量,该特征向量中包括第一ONU的用于表示所述第一时间窗内的接收光功率的变化的特征,和/或,第一ONU上的告警发生时间和告警类型。在一种具体的实现中。可以针对每个第一ONU,根据预先定义的样本向量,从所述第一ONU的特征数据中提取出需要的特征,组成所述第一ONU对应的特征向量。
其中,所述第一ONU的用于表示所述第一时间窗内的接收光功率的变化的特征,包括:抖动程度、抖动次数、断崖程度、趋势劣化程度、最小值第一次出现的时间相对位置、最大值第一次出现的时间相对位置、大于均值的最长连续子序列长度占比、小于均值的最长连续子序列长度占比中的至少两个;其中,所述抖动程度为所述第一时间窗内ONU的接收光功率数据的标准差或平均差,所述抖动次数为ONU的抖动程度大于预设阈值的累计次数,所述断崖程度用于表示ONU的接收光功率在单位时间内从稳定值衰减到另外一个稳定值的衰减变化大小,所述趋势劣化程度用所述第一时间窗内的接收光功率进行指数加权滑动平均后进行线性拟合的趋势系数表示。
另外,如果所述第一ONU对应的特征向量包括告警事件,则具体包括:告警发生时间以及告警类型。
该方案的含义是,首先定义样本特征向量,也称为样本向量,该样本向量包括:第一ONU的用于表示所述第一时间窗内的接收光功率的变化的特征(也称为ONU接收光功率时间序列的特征):抖动程度、抖动次数、断崖程度、趋势劣化程度、最小值第一次出现的时间、最大值第一次出现的时间、大于均值的最长连续子序列长度、小于均值的最长连续子序列长度中的至少两个;ONU上发生的告警事件:告警发生时间、告警名称;ONU到OLT的光距:测距(或者也称为测距结果)。其中光功率时间序列提取特征是对一段时间窗内的序列进行分析,需要配置时间长度,比如可以配置为1天。
一种样本向量的具体示意如下:
Figure PCTCN2019099926-appb-000001
电子设备在获取所有的第一ONU的特征数据之后,采用大数据技术对配置的KPI数据和时间窗进行分析,提取特征数据中的参数,得到每个第一ONU的特征向量。下面对特征向量中的每个参数进行具体说明,具体如下:
a)、抖动程度:图3为本申请提供的ONU的接收光功率的抖动程度的示意图,如图3所示,可知ONU的接收光功率一般情况下变化幅度小,当OLT与ONU间光路发生变化时,会导致OLT设备同一个PON口下挂的多个ONT/ONU接收光功率发生变化。可分别计算时间窗内ONU接收光功率数据的标准差,表示抖动程度。
b)、抖动次数:可通过抖动程度大于某阈值的累计次数,表示抖动次数。
c)、断崖程度:ONU的接收光功率在单位时间内从稳定值衰减变化到另外一个稳定值,衰减变化大于某阈值,如衰减阈值为3dB。如果衰减程度loss小于阈值,则直接设置为0;如果大于阈值则采用归一化的值。归一化处理方式为(loss-loss min)/(loss max-loss min),loss max和loss min分别为所以ont断崖的最大值和最小值。这里的单位时间可以是一个采集周期,也可以是多个采集周期,单位时间可以根据实际情况进行设置。
d)、趋势劣化程度:图4为本申请提供的ONU的趋势劣化程度的示意图,如图4所示,示出了ONU的劣化程度。电子设备对时间窗内的KPI进行指数加权滑动平均(EWMA),然后做线性拟合,将趋势系数作为劣化程度。
e)、最小值第一次出现的时间相对位置:时间窗口内ONU的接收光功率最小值第一次出现的时间相对于整个时间序列的相对位置。例如某接收光功率序列是从t0时刻开始,在t1时刻突降有了一个最大值,序列结束的时间是tn,则最小值第一次出现的时间相对位置=(t1-t0)/(tn-t0)。
f)、最大值第一次出现的时间相对位置:时间窗口内ONU的接收光功率最大值第一次出现的时间相对于整个时间序列的相对位置。例如某接收光功率序列是从t0时刻开始,在t1时刻突升有了一个最大值,序列结束的时间是tn,则最大值第一次出现的时间相对位置=(t1-t0)/(tn-t0)。
g)、大于均值的最长连续子序列长度占比:计算时间窗口内ONU的接收光功率平均值,然后统计大于均值的连续子序列长度,取最长的子序列。例如某接收光功率时间序列中大于均值的最长连续子序列时间跨度为L1,整个序列的时间跨度为L0,则用L1/L0即可得此 特征值。
h)、小于均值的最长连续子序列长度占比:计算时间窗口内ONU的接收光功率平均值,然后统计小于均值的连续子序列长度,取最长的子序列。例如某接收光功率时间序列中小于均值的最长连续子序列时间跨度为L2,整个序列的时间跨度为L0,则用L2/L0即可得此特征值。
i)、告警发生时间:也称为告警发生相对时间,ONU产生告警的时间,如二级主干光纤发生故障时,OLT设备同一个PON口下挂的多个ONU在较短时间内都有告警发生。假设告警发生时间为t a1,时间序列开始时间是t 0,结束时间为t n,则用(t a1-t 0)/(t n-t 0)表示此特征值。
j)、告警类型:ONU产生告警的类型,如二级主干光纤发生故障时,OLT设备同一个PON口下挂的多个ONU在近似时间窗内发生关键告警。例如:如果某ONU发生LOSi,LOFi告警,则此特征值为1,否则为0。
k)、ONU测距:ONU与OLT设备PON口间的距离,可在ONU设备中采集到。测距随时间变化不大,对于一个给定的ONU,可以认为其测距就是序列的平均值。假设此ONU光测距为Len1,此PON口下所有ONU测距最大的为maxLen,则用Len1/maxLen作为此ONU测距的特征值。
在按照上述的方式得到每个第一ONU的特征向量之后,对每个ONU的特征向量进行聚类分析,即执行后续过程。
S103:对每个第一ONU对应的特征向量进行聚类分析,获取第一PON端口对应的拓扑信息;拓扑信息包括至少一组第一ONU的标识信息,每组第一ONU的标识信息用于表示组内的第一ONU挂接在同一个非一级分光器下。
在二级分光器,或者三级分光器等非一级分光器下,挂接着多个ONU,当非一级光线或者非一级分光器发生异常时候,OLT设备同一个PON端口下的ONU的KPI指标行为具有相似性,例如,图5为本申请提供的ONU的KPI指标的示意图,如图5所示,其中挂接在同一个二级分光器下的ONU的特征数据具备一定的相似性,即KPI具备一定的相似性,因此在得到了每个第一ONU对应的特征向量之后,可以根据特征向量进行聚类分析,以确定哪些个第一ONU挂接在同一个非一级分光器下。
下面以该非一级分光器为二级分光器为例,对该聚类过程进行说明,一般来说,该聚类过程可以采用聚类算法实现,特别是可以采用基于相似度的聚类算法对ONU进行聚类,例如:在该聚类分析过程中,可以采用近邻传播(Affinity Propagation,AP)聚类算法,详细的实现步骤如下:
a)、将OLT设备的同一PON口下挂的所有的光路发生变化的第一ONU按照步骤S102提取特征向量X i={x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,x 9,x 10,x 11},每个第一ONU的特征向量作为一个节点。
b)、节点i与节点j之间的相似度表示为S(i,j),公式如下所示,即为特征向量之间的欧式距离的负值。S(i,j)值越大表示节点i与节点j越接近,在AP聚类中也即节点j作为节点i的聚类中心的能力。将所有的第一ONU两两计算相似度即可以得到一个相似度矩阵mat-S。 如果ONU数量为p,则生成的相似度矩阵mat-S的维度为p*p。
Figure PCTCN2019099926-appb-000002
其中,N表示特征向量的特征个数;
c)、将相似度矩阵mat-S作为AP聚类的输入,既可以得到一个聚类的结果。聚类结果举例:假设a1,a2,a3,a5,a6为上述的第一PON端口下不同ONU的编号,如果a1,a2,a3之间比较相似,a5,a6比较相似,则聚类的结果会形如{‘簇-1’:[a1,a2,a3],‘簇-2’:[a5,a6]},即将相似的ONU聚类的一个簇里面。以该非一级分光器为二级分光器为例,聚类结果{‘簇-1’:[a1,a2,a3],‘簇-2’:[a5,a6]}对应到拓扑的意义为,a1,a2,a3在同一个二级分光器下,a5,a6在同一个二级分光器下。
即其他级别的分光器下挂接的ONU同样的可以采用上述方式进行聚类分析,最终得到第一PON端口对应的拓扑信息,拓扑信息包括多组ONU的标识信息,其含义是每一组内的ONU的标识信息对应的ONU挂接在同一个非一级分光器下。
可选的,在执行完上述步骤,电子设备还可以根据得到的PON端口下的拓扑信息生成对应的ODN网络逻辑拓扑图,并将该ODN网络逻辑拓扑图直接展示给用户,以便用户能够直接的确定ONU的拓扑情况。
本实施例提供的ODN的逻辑拓扑信息的获取方法,通过服务器或者终端设备等电子设备获取第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据,根据每个第一ONU的特征数据,获取每个第一ONU对应的特征向量,对每个第一ONU对应的特征向量进行聚类分析,获取所述第一PON端口对应的拓扑信息,拓扑信息包括至少一个非一级分光器挂接的ONU的标识信息,即直接通过对ONU的特征分析,得到ONU的拓扑信息,简单快捷,并且得到的拓扑信息比较准确,不需要通过人工输入来维护分光器的拓扑信息,减轻人工维护的压力。
由于会存在某些时候一些ONU下线或者运维人员拔插更换ONU导致ODN发生变化的情况,因此该方案还可以对拓扑进行更新,可以通过拓扑更新模块实现,保存一定时间的历史拓扑发现的数据,通过当次新发现的拓扑和历史的几次拓扑进行综合判断,得出更符合实际情况的真实ODN拓扑信息,具体的下面通过一具体实施例进行介绍。
图6为本申请提供的ODN的逻辑拓扑信息的获取方法实施例二的流程图,如图6所示,在上述实施例的基础上,如果第一PON端口下包括两级分光结构,则该ODN的逻辑拓扑信息的获取方法还包括以下步骤:
S201:将第一PON端口对应的至少两次历史聚类过程得到的拓扑信息进行矩阵转换,得到每次历史聚类结果对应的距离矩阵;其中,距离矩阵中的数值表示任两个第一ONU之间的距离。
在本步骤中,电子设备中保存的历史拓扑的数量N-topology可以通过配置设置,如果N-topology设置为3,即保存两次历史拓扑数据,通过当次拓扑和历史的两次拓扑进行综合分析。
具体进行拓扑更新的方案中,首先,将逻辑拓扑单次聚类结果,即单词的拓扑信息转换成ONU之间的两两距离矩阵。假设某次聚类结果为{‘簇1’:[a1,a2,a3,a4],‘簇2’:[a5,a6,a7,a8]},其中a1,…,a8为此第一PON口下不同ONU的编号,即a1,a2,a3,a4可能在同一个二级分光器下,a5,a6,a7,a8可能在同一个二级分光器下,也表示为{‘二级分光器1’:[a1,a2,a3,a4],‘二级分光器2’:[a5,a6,a7,a8]}。将聚类的结果转换为距离矩阵具体如下:
Figure PCTCN2019099926-appb-000003
矩阵中的0表示相似,1表示不相似。
假设第一个历史拓扑的聚类结果(即拓扑信息)为{‘二级分光器1’:[a1,a3,a4],‘二级分光器2’:[a5,a6,a7,a8]},则同样的可以转成距离矩阵如下所示:
Figure PCTCN2019099926-appb-000004
矩阵中的0表示相似,1表示不相似。
假设第二个历史拓扑的聚类结果(即拓扑信息)为{‘二级分光器1’:[a1,a2,a4],‘二级分光器2’:[a5,a6,a7,a8]},则同样的可以转成距离矩阵如下所示:
Figure PCTCN2019099926-appb-000005
矩阵中的0表示相似,1表示不相似。
S202:将第一PON端口对应的至少两次历史聚类结果对应的距离矩阵相加,得到综合距离矩阵。
在本步骤中,可以按照上述步骤的方式,将该第一PON端口对应的多次历史聚类结果,也就是通过实施例一的方案得到的拓扑信息对应的距离矩阵求和,得到一个综合的距离矩阵,具体的,在上述实例中,可以将上面三个距离矩阵相加后得到综合的一个距离矩阵如下:
Figure PCTCN2019099926-appb-000006
可选的,该方案中还可以对上述的综合的距离矩阵进行修正,以提高聚类结果的准确性,在一种具体的实现方法中,对此矩阵每个元素进行修正,修正方式为设定的阈值th1则设置为0,否则设置为n。
阈值th1为>=n*0.6的最小整数。此处n=3,则阈值为2。即将上图矩阵中小于2的值设置为0,其他设置为3,则可以得到下面的修正后的矩阵:
Figure PCTCN2019099926-appb-000007
S203:根据综合距离矩阵,对第一PON端口下光路发生变化的第一ONU采用基于密度的聚类方式进行聚类分析,得到第一PON端口对应的新的拓扑信息。
在本步骤中,得到了综合距离矩阵之后,可以采用基于密度的聚类方法,再次对PON端口下的光路发生变化的第一ONU进行聚类分析,得到新的聚类结果,也就是新的拓扑信息。
按照前述的实例中得到的综合矩阵,对此矩阵采用基于密度的聚类方法,例如:基于密度的噪声应用空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN),设置邻域距离为th1(上一步骤得出的阈值),设置邻域最小对象数minPts为3(可以根据实际情况设置为二级分光下最小ont数量),则可以得到三次聚类结果的综合为{‘二级分光器1’:[a1,a2,a3,a4],‘二级分光器2’:[a5,a6,a7,a8]}。
该聚类结果表示a1,a2,a3,a4挂接在二级分光器1之下,a5,a6,a7,a8挂接在二级分光器2之下。
在该方案中的DBSCAN聚类原理和步骤如下:
a),输入:样本集D,邻域半径eps,邻域样本点数最小值minPts。
b),概念:
邻域:对于D中的任一对象,如果有其他样本点和此对象的欧式距离小于eps,则称其他样本点位于此对象eps邻域内;
核心对象:如果给定对象eps邻域内的样本点数大于等于minPts,则称该对象为核心对象;
直接密度可达:对于D中的两个样本点p,q,如果p在q的eps邻域内,且q是一个核心对象,则称对象p满足从q出发是直接密度可达;
密度可达:对于样本集合D,如果存在一个对象链p 1,p 2,…,p n,p 1=p,p n=p,对于p i∈D(1≤i≤n),p i+1是从p i关于eps和minPts直接密度可达,则对象p是从对象q关于eps邻域和minPts密度可达;
密度相连:如果存在对象o,使得p和q都是从o关于eps和minPts密度可达,那么对象p到q是关于eps和minPts密度相连的。
c)聚类步骤
步骤1.判断输入点是否为核心对象。
步骤2:找出核心对象的eps邻域中的所有直接密度可达点。
步骤3:重复步骤1和步骤2直到所有输入点判断完毕。
步骤4:对所有的核心对象的eps邻域内所有的直接密度可达点找到最大密度相连对象集合,合并密度可达对象形成一个簇。
步骤5:重复步骤4,知道所有的核心对象eps邻域都遍历完毕。至此形成的多个簇即是最终的聚类结果。
在上述实施例的基础上,本申请提供的ODN的逻辑拓扑信息的获取方法还包括以下步骤:根据第一PON端口对应的拓扑信息生成对应的ODN网络逻辑拓扑图,并将所述ODN网络逻辑拓扑图进行显示。
图7为本申请提供的一种ODN网络逻辑拓扑图的示意图。如图7所示,聚类得到的拓扑信息生成的ODN网络逻辑拓扑图中表示,该PON端口下连接一级分光器,一级分光器下连接二级分光器1和二级分光器2,PON口下a1,a2,a3,a4四个ONU在同一个二级分光1下挂接,a5,a6,a7,a8四个ONU挂接在同一个二级分光器2下。
本实施例提供的ODN的逻辑拓扑信息的获取方法,解决了分支拓扑(如二级拓扑)不可知、分支拓扑(如二级拓扑)的资管系统数据不准,导致故障定位困难,定位时间长,维护成本高的问题。同时可以降低通过人工来维护资管信息带来的成本开销,避免ONT与二级分光器的对应关系经常变动带来的资管信息不准确性;另外,利用拓扑信息,提高远程自动定位率,减少对维护专业工具的依赖,减少设备维护人员的无效上站,提升处理效率,降低维护成本。
图8为本申请提供的装置实施例一的结构示意图,如图8所示,该ODN的逻辑拓扑信息的获取装置10包括:
获取模块11,用于获取第一PON端口下光路发生变化的每个第一ONU的标识信息以及第一时间窗内的特征数据,所述特征数据包括接收光功率和告警事件中的至少一种,所述告警事件包括告警发生时间和告警类型;
处理模块12,用于根据每个第一ONU的特征数据,获取所述第一ONU对应的特征向量;第一ONU对应的特征向量包括:所述第一ONU的用于表示所述第一时间窗内的接收光功率的变化的特征,和/或,所述第一ONU上的告警发生时间和告警类型;
所述处理模块12还用于对每个第一ONU对应的特征向量进行聚类分析,获取所述第一PON端口对应的拓扑信息,所述拓扑信息包括至少一组第一ONU的标识信息,每组第一ONU的标识信息用于表示组内的第一ONU挂接在同一个非一级分光器下。
本实施例提供的ODN的逻辑拓扑信息的获取装置,用于执行前述任一方法实施例提供的技术方案,其实现原理和技术效果类似,通过对ONU的特征分析,得到ONU的拓扑信息,简单快捷,并且得到的拓扑信息比较准确,不需要通过人工输入来维护分光器的拓扑信息。
在上述实施例的基础上,一种具体的实现方式中,所述获取模块11具体用于:
获取所述第一PON端口下的每个ONU的标识信息以及特征数据;
根据特征数据,对所述第一PON端口下光路没有发生变化的ONU进行过滤,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。
可选的,每个第一ONU的特征数据还包括:测距结果。
可选的,所述获取模块11具体用于:
将ONU在所述第一时间窗内的接收光功率的最大值和最小值之间的差值,与预设的阈值进行对比,将接收光功率的最大值和最小值之间的差值小于所述阈值的ONU过滤掉,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据;
和/或,
根据每个ONU在所述第一时间窗内出现过的告警发生时间和告警类型,将告警类型中不包括预设告警类型的ONU过滤掉,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。
可选的,所述处理模块12具体用于:
针对每个第一ONU,从所述第一ONU的特征数据中提取出需要的特征,组成所述第一ONU对应的特征向量。
可选的,所述第一ONU的用于表示所述第一时间窗内的接收光功率的变化的特征,包括:抖动程度、抖动次数、断崖程度、趋势劣化程度、最小值第一次出现的时间相对位置、最大值第一次出现的时间相对位置、大于均值的最长连续子序列长度占比、小于均值的最长连续子序列长度占比中的至少两个;其中,所述抖动程度为所述第一时间窗内ONU的接收光功率数据的标准差或平均差,所述抖动次数为ONU的抖动程度大于预设阈值的累计次数,所述断崖程度用于表示ONU的接收光功率在单位时间内从稳定值衰减到另外一个稳定值的衰减变化大小,所述趋势劣化程度用所述第一时间窗内的接收光功率进行指数加权滑动平均后进行线性拟合的趋势系数表示。
可选的,所述处理模块12具体用于:
根据每个第一ONU对应的特征向量,分别获取任两个第一ONU对应的特征向量之间的相似度矩阵;
将所有相似度矩阵作为聚类算法的输入,得到所述第一PON端口对应的拓扑信息;所述第一PON端口对应的拓扑信息包括多组第一ONU的标识信息,每组第一ONU的标识信息用于确定组内的第一ONU挂接在同一二级分光器下。
可选的,所述第一PON端口下包括两级分光结构,则所述处理模块12还用于:
将所述第一PON端口对应的至少两次历史聚类过程得到的拓扑信息进行矩阵转换,得到每次历史聚类结果对应的距离矩阵;其中,所述距离矩阵中的数值表示任两个第一ONU之间的距离;
将所述第一PON端口对应的至少两次历史聚类结果对应的距离矩阵相加,得到综合距离矩阵;
根据所述综合距离矩阵,对所述第一PON端口下光路发生变化的第一ONU采用基于密度的聚类方式进行聚类分析,得到所述第一PON端口对应的新的拓扑信息。
上述任一实施例提供的ODN的逻辑拓扑信息的获取装置,用于执行前述任一方法实施例提供的技术方案,其实现原理和技术效果类似,在此不再赘述。
图9为本申请提供的ODN的逻辑拓扑信息的获取装置实施例二的结构示意图,如图9所示,在上述任一实施例的基础上,该ODN的逻辑拓扑信息的获取装置10还 包括:显示模块13;
所述处理模块12还用于根据所述第一PON端口对应的拓扑信息生成对应的ODN网络逻辑拓扑图;
所述显示模块13用于将所述ODN网络逻辑拓扑图进行显示。
本实施例提供的ODN的逻辑拓扑信息的获取装置,其实现原理和技术效果类似,在此不再赘述。
图10为本申请提供的电子设备实施例一的结构示意图,如图10所示,该电子设备具体包括:
存储器、处理器、接收器、显示器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行前述任一方法实施例提供的ODN的逻辑拓扑信息的获取方法的技术方案。
本申请还提供一种存储介质,包括:可读存储介质和存储在所述可读存储介质中的计算机程序,所述计算机程序用于实现前述任一方法实施例提供的ODN的逻辑拓扑信息的获取方法的技术方案。
本申请还提供一种计算机程序产品,包括:当所述计算机程序产品在计算机上运行时,使得所述计算机执行前述任一方法实施例提供的ODN的逻辑拓扑信息的获取方法的技术方案。
在上述的电子设备的具体实现中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。

Claims (20)

  1. 一种光配线网络ODN的逻辑拓扑信息的获取方法,其特征在于,所述方法包括:
    获取第一无源光纤网络PON端口下光路发生变化的每个第一光网络单元ONU的标识信息以及第一时间窗内的特征数据,所述特征数据包括接收光功率和告警事件中的至少一种,所述告警事件包括告警发生时间和告警类型;
    根据每个第一ONU的特征数据,获取所述第一ONU对应的特征向量;所述第一ONU对应的特征向量包括:所述第一ONU的用于表示所述第一时间窗内的接收光功率的变化的特征,和/或,所述第一ONU上的告警发生时间和告警类型;
    对每个第一ONU对应的特征向量进行聚类分析,获取所述第一PON端口对应的拓扑信息,所述拓扑信息包括至少一组第一ONU的标识信息,每组第一ONU的标识信息用于表示组内的第一ONU挂接在同一个非一级分光器下。
  2. 根据权利要求1所述的方法,其特征在于,所述获取第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据,包括:
    获取所述第一PON端口下的每个ONU的标识信息以及特征数据;
    根据特征数据,对所述第一PON端口下光路没有发生变化的ONU进行过滤,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。
  3. 根据权利要求2所述的方法,其特征在于,每个第一ONU的特征数据还包括:测距结果。
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据特征数据,对所述第一PON端口下光路没有发生变化的ONU进行过滤,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据,包括:
    将ONU在所述第一时间窗内的接收光功率的最大值和最小值之间的差值,与预设的阈值进行对比,将接收光功率的最大值和最小值之间的差值小于所述阈值的ONU过滤掉,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据;
    和/或,
    根据每个ONU在第一时间窗内告警发生时间和告警类型,将告警类型中不包括预设告警类型的ONU过滤掉,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述根据每个第一ONU的特征数据,获取所述第一ONU对应的特征向量,包括:
    针对每个第一ONU,从所述第一ONU的特征数据中提取出需要的特征,组成所述第一ONU对应的特征向量。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述第一ONU的用于表示所述第一时间窗内的接收光功率的变化的特征,包括:抖动程度、抖动次数、断崖程度、趋势劣化程度、最小值第一次出现的时间相对位置、最大值第一次出现的时间相对位置、大于均值的最长连续子序列长度占比、小于均值的最长连续子序列长度占比中的至少两个;其中,所述抖动程度为所述第一时间窗内ONU的接收光功率数据的标准差或平均差,所 述抖动次数为ONU的抖动程度大于预设阈值的累计次数,所述断崖程度用于表示ONU的接收光功率在单位时间内从稳定值衰减到另外一个稳定值的衰减变化大小,所述趋势劣化程度用所述第一时间窗内的接收光功率进行指数加权滑动平均后进行线性拟合的趋势系数表示。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述对每个第一ONU对应的特征向量进行聚类分析,获取所述第一PON端口对应的拓扑信息,包括:
    根据每个第一ONU对应的特征向量,分别获取任两个第一ONU对应的特征向量之间的相似度矩阵;
    将所有相似度矩阵作为聚类算法的输入,得到所述第一PON端口对应的拓扑信息。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述第一PON端口下包括两级分光结构,则所述方法还包括:
    将所述第一PON端口对应的至少两次历史聚类过程得到的拓扑信息进行矩阵转换,得到每次历史聚类结果对应的距离矩阵;其中,所述距离矩阵中的数值表示任两个第一ONU之间的距离;
    将所述第一PON端口对应的至少两次历史聚类结果对应的距离矩阵相加,得到综合距离矩阵;
    根据所述综合距离矩阵,对所述第一PON端口下光路发生变化的第一ONU采用基于密度的聚类方式进行聚类分析,得到所述第一PON端口对应的新的拓扑信息。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一PON端口对应的拓扑信息生成对应的ODN网络逻辑拓扑图;
    将所述ODN网络逻辑拓扑图进行显示。
  10. 一种ODN的逻辑拓扑信息的获取装置,其特征在于,所述装置包括:
    获取模块,用于获取第一无源光纤网络PON端口下光路发生变化的每个第一光网络单元ONU的标识信息以及第一时间窗内的特征数据,所述特征数据包括接收光功率和告警事件中的至少一种,所述告警事件包括告警发生时间和告警类型;
    处理模块,用于根据每个第一ONU的特征数据,获取所述第一ONU对应的特征向量;所述第一ONU对应的特征向量包括:所述第一ONU的用于表示所述第一时间窗内的接收光功率的变化的特征,和/或,所述第一ONU上的告警发生时间和告警类型;
    所述处理模块还用于对每个第一ONU对应的特征向量进行聚类分析,获取所述第一PON端口对应的拓扑信息,所述拓扑信息包括至少一组第一ONU的标识信息,每组第一ONU的标识信息用于表示组内的第一ONU挂接在同一个非一级分光器下。
  11. 根据权利要求10所述的装置,其特征在于,所述获取模块具体用于:
    获取所述第一PON端口下的每个ONU的标识信息以及特征数据;
    根据特征数据,对所述第一PON端口下光路没有发生变化的ONU进行过滤,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。
  12. 根据权利要求11所述的装置,其特征在于,每个第一ONU的特征数据还包括:测距结果。
  13. 根据权利要求11或12所述的装置,其特征在于,所述获取模块具体用于:
    将ONU在所述第一时间窗内的接收光功率的最大值和最小值之间的差值,与预设的阈值进行对比,将接收光功率的最大值和最小值之间的差值小于所述阈值的ONU过滤掉,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据;
    和/或,
    根据每个ONU在所述第一时间窗内出现过的告警发生时间和告警类型,将告警类型中不包括预设告警类型的ONU过滤掉,得到所述第一PON端口下光路发生变化的每个第一ONU的标识信息以及特征数据。
  14. 根据权利要求10至13任一项所述的装置,其特征在于,所述处理模块具体用于:
    针对每个第一ONU,从所述第一ONU的特征数据中提取出需要的特征,组成所述第一ONU对应的特征向量。
  15. 根据权利要求10至14任一项所述的装置,其特征在于,所述第一ONU的用于表示所述第一时间窗内的接收光功率的变化的特征,包括:抖动程度、抖动次数、断崖程度、趋势劣化程度、最小值第一次出现的时间相对位置、最大值第一次出现的时间相对位置、大于均值的最长连续子序列长度占比、小于均值的最长连续子序列长度占比中的至少两个;其中,所述抖动程度为所述第一时间窗内ONU的接收光功率数据的标准差或平均差,所述抖动次数为ONU的抖动程度大于预设阈值的累计次数,所述断崖程度用于表示ONU的接收光功率在单位时间内从稳定值衰减到另外一个稳定值的衰减变化大小,所述趋势劣化程度用所述第一时间窗内的接收光功率进行指数加权滑动平均后进行线性拟合的趋势系数表示。
  16. 根据权利要求10至15任一项所述的装置,其特征在于,所述处理模块具体用于:
    根据每个第一ONU对应的特征向量,分别获取任两个第一ONU对应的特征向量之间的相似度矩阵;
    将所有相似度矩阵作为聚类算法的输入,得到所述第一PON端口对应的拓扑信息。
  17. 根据权利要求10至16任一项所述的装置,其特征在于,所述第一PON端口下包括两级分光结构,则所述处理模块还用于:
    将所述第一PON端口对应的至少两次历史聚类过程得到的拓扑信息进行矩阵转换,得到每次历史聚类结果对应的距离矩阵;其中,所述距离矩阵中的数值表示任两个第一ONU之间的距离;
    将所述第一PON端口对应的至少两次历史聚类结果对应的距离矩阵相加,得到综合距离矩阵;
    根据所述综合距离矩阵,对所述第一PON端口下光路发生变化的第一ONU采用基于密度的聚类方式进行聚类分析,得到所述第一PON端口对应的新的拓扑信息。
  18. 根据权利要求10至17任一项所述的装置,其特征在于,所述装置还包括:显示模块;
    所述处理模块还用于根据所述第一PON端口对应的拓扑信息生成对应的ODN网络逻辑拓扑图;
    所述显示模块用于将所述ODN网络逻辑拓扑图进行显示。
  19. 一种电子设备,其特征在于,包括:存储器、处理器、接收器、显示器以及计算 机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行权利要求1至9任一项所述的ODN的逻辑拓扑信息的获取方法。
  20. 一种存储介质,其特征在于,包括:可读存储介质和存储在所述可读存储介质中的计算机程序,所述计算机程序用于实现权利要求1至9任一项所述的ODN的逻辑拓扑信息的获取方法。
PCT/CN2019/099926 2018-08-15 2019-08-09 Odn的逻辑拓扑信息的获取方法、装置、设备和存储介质 WO2020034900A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
FIEP19849232.4T FI3826230T3 (fi) 2018-08-15 2019-08-09 Menetelmä ja laite odn:n loogisen topologiainformaation hankkimiseksi, laite ja tallennusväline
JP2021507589A JP7174832B2 (ja) 2018-08-15 2019-08-09 Odn論理トポロジ情報を取得するための方法および装置、デバイス、ならびに記憶媒体
KR1020217006521A KR102487453B1 (ko) 2018-08-15 2019-08-09 Odn의 논리 토폴로지 정보를 획득하기 위한 방법 및 장치, 디바이스, 및 저장 매체
EP19849232.4A EP3826230B1 (en) 2018-08-15 2019-08-09 Method and apparatus for obtaining logical topology information of odn, device, and storage medium
US17/172,382 US11405103B2 (en) 2018-08-15 2021-02-10 Method and apparatus for obtaining ODN logical topology information, device, and storage medium
US17/859,029 US11722217B2 (en) 2018-08-15 2022-07-07 Method and apparatus for obtaining ODN logical topology information, device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810931334.9A CN110838928B (zh) 2018-08-15 2018-08-15 Odn的逻辑拓扑信息的获取方法、装置、设备和存储介质
CN201810931334.9 2018-08-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/172,382 Continuation US11405103B2 (en) 2018-08-15 2021-02-10 Method and apparatus for obtaining ODN logical topology information, device, and storage medium

Publications (1)

Publication Number Publication Date
WO2020034900A1 true WO2020034900A1 (zh) 2020-02-20

Family

ID=69525163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099926 WO2020034900A1 (zh) 2018-08-15 2019-08-09 Odn的逻辑拓扑信息的获取方法、装置、设备和存储介质

Country Status (7)

Country Link
US (2) US11405103B2 (zh)
EP (1) EP3826230B1 (zh)
JP (1) JP7174832B2 (zh)
KR (1) KR102487453B1 (zh)
CN (2) CN113099326A (zh)
FI (1) FI3826230T3 (zh)
WO (1) WO2020034900A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285754A (zh) * 2021-12-27 2022-04-05 中国联合网络通信集团有限公司 一种网络拓扑的生成方法、装置、设备及存储介质
CN115278407A (zh) * 2021-04-30 2022-11-01 中国移动通信集团山西有限公司 无源光网络的拓扑结构的确定方法及装置
CN115396320A (zh) * 2022-08-10 2022-11-25 中国联合网络通信集团有限公司 端口连接关系的确定方法、装置、设备及存储介质

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113099326A (zh) * 2018-08-15 2021-07-09 华为技术有限公司 Odn的逻辑拓扑信息的获取方法、装置、设备和存储介质
CN113382321B (zh) * 2020-03-10 2022-06-07 中国电信股份有限公司 一种判断odn(光分配网)网络中是否存在第三级分光的系统及其方法
CN111615021B (zh) * 2020-05-07 2022-05-13 杭州东方通信软件技术有限公司 一种odn的逻辑拓扑信息的获取方法、设备和存储介质
CN111884832B (zh) * 2020-06-29 2022-06-14 华为技术有限公司 一种获取无源网络拓扑信息的方法及相关设备
CN114679640A (zh) * 2020-12-24 2022-06-28 中国电信股份有限公司 光网络的资源管理系统中异常端口用户的检测方法及装置
CN113365164B (zh) * 2021-05-26 2023-02-10 中盈优创资讯科技有限公司 一种基于大数据分析的主动识别二级分光断方法及装置
KR102312621B1 (ko) * 2021-06-18 2021-10-13 최민영 학내망 네트워크 시스템
CN113568898B (zh) * 2021-07-30 2024-07-09 浙江华云信息科技有限公司 电力数据漏点补全方法、装置、设备及可读存储介质
CN113630670B (zh) * 2021-08-05 2023-07-18 烽火通信科技股份有限公司 一种pon链路弱光故障定界方法、系统及装置
CN113891190B (zh) * 2021-09-10 2024-05-31 广州咨元信息科技有限公司 一种基于批量告警还原二级分光器拓扑的算法
CN113891191B (zh) * 2021-09-24 2023-08-15 中移(杭州)信息技术有限公司 光路拓扑还原方法、装置、设备及计算机可读存储介质
CN116267030A (zh) * 2021-10-18 2023-06-20 北京小米移动软件有限公司 测距能力开放的方法、装置、通信设备及存储介质
CN114204989B (zh) * 2021-12-10 2023-06-16 中国电信股份有限公司 分光器数据的评估方法及装置、存储介质、电子设备
US12088472B2 (en) * 2022-04-18 2024-09-10 Ust Global (Singapore) Pte. Limited System and method of managing events of temporal data
CN114979843B (zh) * 2022-06-30 2024-05-24 中国电信股份有限公司 拓扑信息更新方法、装置、电子设备及非易失性存储介质
CN115334381B (zh) * 2022-10-17 2023-01-31 成都同步新创科技股份有限公司 一种光网络无源分光器线路分析管理方法及系统
CN116094588B (zh) * 2023-01-04 2024-11-01 中国联合网络通信集团有限公司 光衰管理方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102204127A (zh) * 2011-05-11 2011-09-28 华为技术有限公司 检测网络设备类型的方法、装置和系统
CN103905111A (zh) * 2012-12-28 2014-07-02 深圳市华为安捷信电气有限公司 光链路检测方法、装置及系统
CN104038375A (zh) * 2014-06-30 2014-09-10 成都广达电子股份有限公司 一种广电接入网络告警处理分析系统及其分析方法
WO2016039670A2 (en) * 2014-09-08 2016-03-17 Telefonaktiebolaget L M Ericsson (Publ) A passive optical networks structure and a remote node in a backhaul communication network
CN106301830A (zh) * 2015-05-21 2017-01-04 中兴通讯股份有限公司 光网络拓扑图的部署方法及装置
CN107465966A (zh) * 2017-08-31 2017-12-12 中国科学院计算技术研究所 一种用于光网络的拓扑重构控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080292312A1 (en) * 2007-05-21 2008-11-27 Tellabs Petaluma, Inc. Method and apparatus for determining optical path attenuation between passive optical network nodes
CN101431372B (zh) * 2007-11-07 2011-11-16 华为技术有限公司 获取光功率的方法、装置和光线路终端
EP2141832B1 (en) * 2008-07-03 2013-09-18 Nokia Siemens Networks OY Automatic topology discovery for passive optical networks
US8873960B2 (en) * 2008-12-30 2014-10-28 Broadcom Corporation Techniques for detecting optical faults in passive optical networks
JP5033856B2 (ja) * 2009-10-20 2012-09-26 株式会社日立製作所 ネットワーク構成の想定のための装置、システム
WO2013035286A1 (ja) * 2011-09-09 2013-03-14 日本電気株式会社 グループ毎同報配信経路設定方法および通信装置
CN103249056A (zh) * 2012-02-09 2013-08-14 迈普通信技术股份有限公司 一种无线传感网络的拓扑变化模拟方法及装置
WO2013125002A1 (ja) * 2012-02-23 2013-08-29 三菱電機株式会社 ネットワークシステム及びトポロジーマップ生成方法
US9525542B2 (en) * 2013-07-02 2016-12-20 Viavi Solutions Deutschland Synchronization to upstream bursts
EP2903182B1 (en) * 2014-01-30 2018-08-08 Alcatel Lucent Diagnosing faults in optical networks
CN103916188B (zh) * 2014-03-24 2016-11-23 华为技术有限公司 确定端子与pon口的对应关系的方法、装置和系统
CN113099326A (zh) * 2018-08-15 2021-07-09 华为技术有限公司 Odn的逻辑拓扑信息的获取方法、装置、设备和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102204127A (zh) * 2011-05-11 2011-09-28 华为技术有限公司 检测网络设备类型的方法、装置和系统
CN103905111A (zh) * 2012-12-28 2014-07-02 深圳市华为安捷信电气有限公司 光链路检测方法、装置及系统
CN104038375A (zh) * 2014-06-30 2014-09-10 成都广达电子股份有限公司 一种广电接入网络告警处理分析系统及其分析方法
WO2016039670A2 (en) * 2014-09-08 2016-03-17 Telefonaktiebolaget L M Ericsson (Publ) A passive optical networks structure and a remote node in a backhaul communication network
CN106301830A (zh) * 2015-05-21 2017-01-04 中兴通讯股份有限公司 光网络拓扑图的部署方法及装置
CN107465966A (zh) * 2017-08-31 2017-12-12 中国科学院计算技术研究所 一种用于光网络的拓扑重构控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115278407A (zh) * 2021-04-30 2022-11-01 中国移动通信集团山西有限公司 无源光网络的拓扑结构的确定方法及装置
CN114285754A (zh) * 2021-12-27 2022-04-05 中国联合网络通信集团有限公司 一种网络拓扑的生成方法、装置、设备及存储介质
CN114285754B (zh) * 2021-12-27 2023-05-12 中国联合网络通信集团有限公司 一种网络拓扑的生成方法、装置、设备及存储介质
CN115396320A (zh) * 2022-08-10 2022-11-25 中国联合网络通信集团有限公司 端口连接关系的确定方法、装置、设备及存储介质
CN115396320B (zh) * 2022-08-10 2023-07-28 中国联合网络通信集团有限公司 端口连接关系的确定方法、装置、设备及存储介质

Also Published As

Publication number Publication date
KR20210030481A (ko) 2021-03-17
JP2021536170A (ja) 2021-12-23
JP7174832B2 (ja) 2022-11-17
US11722217B2 (en) 2023-08-08
EP3826230A1 (en) 2021-05-26
EP3826230B1 (en) 2023-06-21
EP3826230A4 (en) 2021-09-15
CN110838928A (zh) 2020-02-25
US20210167852A1 (en) 2021-06-03
CN110838928B (zh) 2021-03-30
KR102487453B1 (ko) 2023-01-12
US20220345218A1 (en) 2022-10-27
CN113099326A (zh) 2021-07-09
US11405103B2 (en) 2022-08-02
FI3826230T3 (fi) 2023-09-11

Similar Documents

Publication Publication Date Title
WO2020034900A1 (zh) Odn的逻辑拓扑信息的获取方法、装置、设备和存储介质
US11996974B2 (en) Alarm analysis method and related device
CN110147387B (zh) 一种根因分析方法、装置、设备及存储介质
CN111884832B (zh) 一种获取无源网络拓扑信息的方法及相关设备
US20140215612A1 (en) Method and system for detecting anomaly of user behavior in a network
CN103716187B (zh) 网络拓扑结构确定方法和系统
CN109981326B (zh) 家庭宽带感知故障定位的方法及装置
CN112769605A (zh) 一种异构多云的运维管理方法及混合云平台
CN114465874A (zh) 故障预测方法、装置、电子设备与存储介质
CN111162945B (zh) 一种告警关联关系的确定方法、装置、设备及存储介质
CN118214649B (zh) 一种基于网络拓扑结构的运维故障快速定位方法
CN112751710A (zh) 一种宽带用户质差定因方法及系统
CN110582091B (zh) 定位无线质量问题的方法和装置
CN116170281A (zh) 告警关联规则生成方法、装置、电子设备和存储介质
CN109495178B (zh) 一种FTTx网络拓扑链路的构建方法及装置
CN111654327A (zh) 一种面向光缆纤芯远程管理控制的业务特征提取方法
CN113891190B (zh) 一种基于批量告警还原二级分光器拓扑的算法
CN114219231B (zh) 电力系统的性能评估方法、电子设备和存储介质
CN118509745B (zh) 一种基于分布式系统olt设备的线卡管理方法及系统
CN118827343A (zh) 家宽上网故障定位定界方法及系统
Zhang et al. Cognitive network management based on cross-layer AI interaction in ONOS-enabled self-optimizing optical networks
CN118802499A (zh) 故障定位方法、装置、电子设备、程序产品和存储介质
CN115022916A (zh) 一种基于状态检测的5g通信异常预警方法及系统
CN115776454A (zh) 一种面向家宽上网不可用网元定界的方法
CN118646666A (zh) 一种物联网设备的后台管理方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507589

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019849232

Country of ref document: EP

Effective date: 20210216

ENP Entry into the national phase

Ref document number: 20217006521

Country of ref document: KR

Kind code of ref document: A