WO2020034846A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2020034846A1
WO2020034846A1 PCT/CN2019/098839 CN2019098839W WO2020034846A1 WO 2020034846 A1 WO2020034846 A1 WO 2020034846A1 CN 2019098839 W CN2019098839 W CN 2019098839W WO 2020034846 A1 WO2020034846 A1 WO 2020034846A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
type
frequency
wireless signal
measurement
Prior art date
Application number
PCT/CN2019/098839
Other languages
English (en)
French (fr)
Inventor
刘铮
张晓博
杨林
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2020034846A1 publication Critical patent/WO2020034846A1/zh
Priority to US16/835,341 priority Critical patent/US11395170B2/en
Priority to US17/837,064 priority patent/US11696166B2/en
Priority to US18/196,444 priority patent/US20230284067A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and in particular, to a measurement scheme and device in wireless communication.
  • the 3rd Generation Partnership Project (3GPP) Radio Access Network (RAN) # 72 plenary session decided on the new air interface technology (NR , New Radio (or Fifth Generation, 5G) to conduct research, passed the NR's WI (Work Item) at the 3GPP RAN # 75 plenary meeting, and began to standardize the NR.
  • 3GPP 3rd Generation Partnership Project
  • NR New Radio
  • 5G Fifth Generation
  • V2X Vehicle-to-Everything
  • 3GPP has also started the work of standard formulation and research under the NR framework.
  • 3GPP has completed the requirements for 5G V2X services, and has written them into the standard TS22.886.
  • 3GPP has identified and defined 4 major use case groups for 5G V2X services, including: Vehicles Platnooning, Support for Extended Sensors, Semi / Fully Driving (Advanced Driving) and Remote Driving (Remote Driving).
  • SI Study Item
  • 5G NR Compared with existing LTE systems, 5G NR has a significant feature in that it can support more flexible mathematical structures (Numerology), including subcarrier spacing (SCS), cyclic prefix (CP, Cyclic Prefix) length, and support. More flexible frame structure, including mini-slot, sub-slot and multiple slot aggregation. This flexible mathematical structure and flexible frame structure can better meet a variety of new business requirements, especially the very diverse business needs of vertical industries. Tighter load balancing control is an important feature of the Internet of Vehicles compared with traditional cellular networks. Effective load control can reduce the probability of business conflicts and improve transmission reliability. These are particularly critical for the Internet of Vehicles business.
  • the designed load control measurement mechanism is based on a single mathematical structure (15kHz SCS, normal CP length, 1 millisecond subframe length), which cannot meet the demand for a more flexible mathematical structure in 5G NR V2X .
  • This application discloses a method used in a first type of communication node for wireless communication, which is characterized in that it includes:
  • the X first-type measurement values are used for the first measurement, and the second-type measurement values obtained by performing the first measurement are used for determining the MCS and the
  • the at least one of time-frequency resources occupied by the first wireless signal; the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units and the number of sub-carriers occupied by the first wireless signal Subcarrier spacing is related.
  • the method in this application sets the size of the time-frequency resources occupied by the time-frequency units in the X time-frequency units and the sub-carrier interval (SCS) of the sub-carriers occupied by the first wireless signal.
  • the correlation can make the measurement granularity of the first type of measurement value change with the SCS used for transmission, improve the measurement accuracy, and make the measurement result more reflect the needs of actual transmission and actual scheduling.
  • the above method further includes:
  • X1 first-type measurement values are all larger than a target threshold, and the second-type measurement value obtained by performing the first measurement is equal to the ratio of the X1 and the X,
  • the X1 is a non-negative integer not larger than the X, and the first information is used to determine the target threshold.
  • the above method is characterized in that the characteristic measurement value is a first type measurement value among the X first type measurement values, and the X measurement values are used to obtain the characteristic measurement value.
  • the measurement of the value is performed in a characteristic time-frequency unit, which is one of the X time-frequency units, and the characteristic time-frequency unit includes X2 multi-carrier symbols in the time domain,
  • the characteristic measurement value is an average value of the sum of the received powers in each of the X2 multi-carrier symbols in the frequency-domain resources of the characteristic time-frequency unit.
  • the above method further includes:
  • the first signaling is used to indicate ⁇ the MCS used by the first wireless signal, the time-frequency resources occupied by the first wireless signal, and the subcarriers occupied by the first wireless signal.
  • Carrier interval ⁇ the first signaling is transmitted over the air interface; the X time-frequency units belong to the first time window in the time domain, and the first measurement is performed in the second time window, so The end time of the first time window is not later than the start time of the second time window, and the end time of the second time window is not later than the transmission start time of the first wireless signal.
  • the above method further includes:
  • the second type of measurement value obtained by performing the first measurement belongs to a target interval.
  • the target interval is one of P candidate intervals, and any one of the P candidate intervals is one.
  • Positive rational number intervals the P candidate intervals correspond to the P candidate MCS set one-to-one, the P candidate intervals correspond to the P candidate resource quantity value set one-to-one, and P is greater than A positive integer of 1;
  • the candidate MCS set in the P candidate MCS sets corresponding to the target interval is the first MCS set, and the backup in the P candidate resource quantity value set corresponding to the target interval Selecting the resource quantity value set as a first resource quantity value set;
  • the second information is used to determine at least one of an MCS used by the first wireless signal and a time-frequency resource occupied by the first wireless signal,
  • the MCS used by the first wireless signal is an MCS in the first MCS set, and the number of time-frequency resources occupied by the first wireless signal is equal to the number of resources in the first resource quantity value set. value.
  • the above method further includes:
  • the third information is used to determine a subcarrier interval of a subcarrier occupied by the first wireless signal.
  • the above method further includes:
  • Y measurements in a third time window the Y measurements being used to obtain Y third measurement values, respectively, where Y is a positive integer
  • the second type of measurement value obtained by performing the first measurement is used to determine a first upper limit, and the sum of the Y third type of measurement values is not greater than the first upper limit, and the third time window
  • the time domain position is related to the time-frequency resources occupied by the first wireless signal, and the Y third measurement values are related to the wireless signal sent by the sender of the first wireless signal in the third time window.
  • the amount of time-frequency resources occupied is related.
  • the above method is further characterized in that it further comprises
  • the subcarrier interval of the subcarriers occupied by the first wireless signal is a target subcarrier interval, and the target subcarrier interval is one candidate subcarrier interval among the Q candidate subcarrier intervals, where Q is A positive integer greater than 1; the X time-frequency units belong to the target time-frequency unit set, and the Q candidate subcarrier intervals correspond to the Q candidate time-frequency unit set one-to-one.
  • the above method is characterized in that the X measurements belong to a group of measurements in a group Q measurement, and each of the group Q measurements is directed to the set of Q candidate time-frequency units one by one, Q group measurements are used to obtain Q group first type measurement values, the X first type measurement values belong to a group of first type measurement values in the Q group first type measurement values, and the target subcarrier interval Is used to determine a set of first-type measurement values to which the X first-type measurement values belong in the Q-group first-type measurement values.
  • the time limit requirement for the scheduling decision of the first wireless signal can be relaxed, so that load control can also be performed for burst services using different mathematical structures.
  • This application discloses a method used in a second type of communication node for wireless communication, which is characterized in that it includes:
  • the X measurements performed in the X time-frequency units are respectively used to obtain X first-type measurement values, where X is a positive integer; the X first-type measurement values are used in the first measurement.
  • the first measurement is used to obtain a second type of measurement value, and the second type of measurement value obtained by performing the first measurement is used to determine an MCS used by the first wireless signal and the first wireless signal.
  • At least one of the occupied time-frequency resources; the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal;
  • the X1 first-type measurement values among the X first-type measurement values are all greater than the target threshold.
  • the second-type measurement value obtained by performing the first measurement is equal to the ratio of the X1 and the X, and the X1 Is a non-negative integer not greater than the X, and the first information is used to determine the target threshold.
  • the above method is characterized in that the characteristic measurement value is a first type measurement value among the X first type measurement values, and the X measurement values are used to obtain the characteristic measurement value.
  • the measurement of the value is performed in a characteristic time-frequency unit, which is one of the X time-frequency units, and the characteristic time-frequency unit includes X2 multi-carrier symbols in the time domain,
  • the characteristic measurement value is an average value of the sum of the received powers in each of the X2 multi-carrier symbols in the frequency-domain resources of the characteristic time-frequency unit.
  • the above method is characterized in that the X time-frequency units belong to a first time window in a time domain, the first measurement is performed in a second time window, and the The end time is no later than the start time of the second time window, and the end time of the second time window is no later than the start time of the first wireless signal transmission.
  • the above method further includes:
  • the second type of measurement value obtained by performing the first measurement belongs to a target interval.
  • the target interval is one of P candidate intervals, and any one of the P candidate intervals is one.
  • Positive rational number intervals the P candidate intervals correspond to the P candidate MCS set one-to-one, the P candidate intervals correspond to the P candidate resource quantity value set one-to-one, and P is greater than A positive integer of 1;
  • the candidate MCS set in the P candidate MCS sets corresponding to the target interval is the first MCS set, and the backup in the P candidate resource quantity value set corresponding to the target interval Selecting the resource quantity value set as a first resource quantity value set;
  • the second information is used to determine at least one of an MCS used by the first wireless signal and a time-frequency resource occupied by the first wireless signal,
  • the MCS used by the first wireless signal is an MCS in the first MCS set, and the number of time-frequency resources occupied by the first wireless signal is equal to the number of resources in the first resource quantity value set. value.
  • the above method further includes:
  • the third information is used for a subcarrier interval of a subcarrier occupied by the first wireless signal.
  • the present application discloses a first type of communication node device used for wireless communication, which is characterized in that it includes:
  • a first measurer for performing X measurements in X time-frequency units each of which is used to obtain X first type measurement values, where X is a positive integer;
  • a second measurer performing a first measurement, the first measurement being used to obtain a second type of measurement value
  • a first transceiver that sends a first wireless signal
  • the X first-type measurement values are used for the first measurement, and the second-type measurement values obtained by performing the first measurement are used for determining the MCS and the
  • the at least one of time-frequency resources occupied by the first wireless signal; the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units and the number of sub-carriers occupied by the first wireless signal Subcarrier spacing is related.
  • This application discloses a second type of communication node device used for wireless communication, which is characterized in that it includes:
  • a first transmitter sending first information
  • the X measurements performed in the X time-frequency units are respectively used to obtain X first-type measurement values, where X is a positive integer; the X first-type measurement values are used in the first measurement.
  • the first measurement is used to obtain a second type of measurement value, and the second type of measurement value obtained by performing the first measurement is used to determine an MCS used by the first wireless signal and the first wireless signal.
  • At least one of the occupied time-frequency resources; the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal;
  • the X1 first-type measurement values among the X first-type measurement values are all greater than the target threshold.
  • the second-type measurement value obtained by performing the first measurement is equal to the ratio of the X1 and the X, and the X1 Is a non-negative integer not greater than the X, and the first information is used to determine the target threshold.
  • this application compared with the existing method in LTE V2X, this application has the following advantages:
  • the method in this application can make the granularity of the measurement for the load condition change with the SCS used for transmission, improve the accuracy of the measurement, and make the measurement results more reflect the needs of actual transmission and actual scheduling.
  • the method in this application can relax the time limit requirements for the scheduling decision of transmission, so that load control can also be performed for burst services using different mathematical structures.
  • the method in this application can effectively support the load control of transmission of multiple mathematical structures, and thus can support more diverse service transmission.
  • FIG. 1 shows a flowchart of X measurements, a first measurement, and a transmission of a first wireless signal according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 illustrates a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first type communication node device and a second type communication node device according to an embodiment of the present application
  • FIG. 5 shows a schematic diagram of two first-type communication node devices according to an embodiment of the present application
  • FIG. 6 shows a flowchart of wireless signal transmission according to an embodiment of the present application
  • FIG. 7 shows a flowchart of wireless signal transmission according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram illustrating a relationship between X time-frequency units and a first wireless signal according to an embodiment of the present application
  • FIG. 9 is a schematic diagram showing a relationship between a characteristic time-frequency unit and X2 multi-carrier symbols according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram showing a relationship between a first time window and a second time window according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram showing a relationship between P candidate intervals, P candidate MCS sets, and P candidate resource quantity value sets according to an embodiment of the present application.
  • FIG. 12 shows a schematic diagram of Y measurements according to an embodiment of the present application
  • FIG. 13 is a schematic diagram showing a relationship between Q candidate subcarrier intervals and Q candidate time-frequency unit sets according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram showing a relationship between a target subcarrier interval and a group of first-type measurement values to which X first-type measurement values belong according to an embodiment of the present application;
  • FIG. 15 shows a structural block diagram of a processing apparatus in a first type of communication node device according to an embodiment of the present application
  • FIG. 16 shows a structural block diagram of a processing apparatus in a second type of communication node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of X measurements, a first measurement, and a transmission of a first wireless signal according to an embodiment of the present application, as shown in FIG. 1.
  • each block represents a step.
  • the first type of communication node in the present application performs X measurements in X time-frequency units in step 101, and the X measurements are used to obtain X first type measurement values, respectively.
  • the X is a positive integer; a first measurement is performed in step 102, the first measurement is used to obtain a second type of measurement value; a first wireless signal is transmitted in step 103; wherein the X first type measurements Value is used for the first measurement, and the second type of measurement value obtained by performing the first measurement is used to determine the MCS used by the first wireless signal and the time-frequency occupied by the first wireless signal At least one of the resources; the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to a subcarrier interval of a subcarrier occupied by the first wireless signal.
  • any one of the X measurements is a measurement of power.
  • any one of the X measurements is a measurement of the average power on a given time-frequency resource.
  • any one of the X measurements is a measurement of energy.
  • any one of the X measurements is a RSSI (Received Signal Strength Indicator) measurement.
  • any one of the X measurements is a S-RSSI (Sidelink Received Signal Strength Indicator) measurement along with the received signal strength of the link.
  • S-RSSI Segment Received Signal Strength Indicator
  • any one of the X measurements is a measurement of power.
  • the measured power includes signals in the measured channel, and signals leaked by adjacent channels into the measured channel. , Measured power of interference, thermal noise, etc. in the channel.
  • any one of the X measurements is a measurement of energy
  • the measured energy includes the signal in the measured channel, and the adjacent channel leaks the signal in the measured channel.
  • Measured energy of interference, thermal noise, etc. in the channel is a measurement of energy
  • any one of the X measurements is a measurement of power
  • the measured power includes the power of a CP (Cyclic Prefix, cyclic prefix).
  • any one of the X measurements is a measurement of energy (Measurement), and the measured energy includes CP (Cyclic Prefix, cyclic prefix) energy.
  • any one of the X measurements includes filtering in the frequency domain.
  • any one of the X measurements includes frequency-domain filtering in a frequency domain range of time-frequency units in the X time-frequency units in which the measurement is performed.
  • any one of the X measurements includes filtering by a high-level filter.
  • any one of the X measurements includes filtering by a high-level alpha filter.
  • all time-frequency resources in the X time-frequency units are used for at least one measurement among the X measurements.
  • a time-frequency resource included in one of the X time-frequency units is not used for any one of the X times of measurements.
  • the time-frequency resources included in one of the X time-frequency units are used for measurements other than the X measurements.
  • any one of the X first-type measurement values is an RSSI value.
  • any one of the X first-type measurement values is an S-RSSI value.
  • any one of the X first-type measurement values is a power value.
  • any one of the X first-type measurement values is an energy value.
  • a unit of any one of the X first-type measurement values is a watt (W).
  • a unit of any one of the X first-type measurement values is a milliwatt (mW).
  • a unit of any one of the X first-type measurement values is dBm.
  • a unit of any one of the X first type measurement values is a Joule.
  • any one of the X first type measurement values is being executed. All measured multi-carrier symbols (OFDM (Orthogonal Frequency Division Multiplexing) or orthogonal frequency division multiplexing (OFDM) symbols or SC-FDMA (Single Carrier Frequency Division Multiplex Access), single carrier, within the frequency range of the corresponding measured time-frequency unit
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiplex Access
  • any one of the X first type measurement values is being executed. All measured multi-carrier symbols (OFDM (Orthogonal Frequency Division Multiplexing) or orthogonal frequency division multiplexing (OFDM) symbols or SC-FDMA (Single Carrier Frequency Division Multiplex Access), single carrier, within the frequency range of the corresponding measured time-frequency unit.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiplex Access
  • any one of the X first type measurement values is being executed.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiplexing Access
  • any one of the X first type measurement values is being executed.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiplexing Access
  • DFT-s-OFDM Frequency Division Multiplexing Access
  • DFT-s-OFDM Discrete, Transform, Orthogonal, Frequency, Division, Multiplexing, Discrete Fourier Transform
  • the quantity of time-frequency resources included in any two of the X time-frequency units is equal, and X is greater than 1.
  • the number of time-frequency resources included in two time-frequency units is different, and X is greater than 1.
  • any one of the X time-frequency units occupies a subchannel in the frequency domain. (Sub-channel), which occupies a slot in the time domain.
  • any one of the X time-frequency units occupies a positive integer in the frequency domain.
  • Consecutive PRBs Physical Resource Blocks
  • any one of the X time-frequency units occupies a subchannel in the frequency domain. (Sub-channel), which occupies one Subframe in the time domain.
  • any one of the X time-frequency units occupies a positive integer in the frequency domain.
  • Consecutive PRBs Physical Resource Block
  • any one of the X time-frequency units occupies a subchannel in the frequency domain. (Sub-channel), occupying a positive integer number of consecutive multi-carrier symbols in the time domain.
  • any one of the X time-frequency units occupies a positive integer in the frequency domain.
  • Consecutive PRBs Physical Resource Blocks
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units refers to an absolute number of frequency-domain resources included in the time-frequency unit.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units refers to a frequency interval length of a frequency domain resource included in the time-frequency unit.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units refers to the number of PRBs included in the frequency domain in the time-frequency unit.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units refers to the number of sub-channels (Sub-channels) included in the frequency domain in the time-frequency unit.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units refers to a frequency domain resource included in the frequency domain in the time-frequency unit corresponding to a sub-carrier of a 15 kHz subcarrier.
  • the number of carriers refers to a frequency domain resource included in the frequency domain in the time-frequency unit corresponding to a sub-carrier of a 15 kHz subcarrier.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units refers to a frequency domain resource included in the frequency domain in the time-frequency unit corresponding to a sub-carrier of a 60 kHz subcarrier.
  • the number of carriers refers to a frequency domain resource included in the frequency domain in the time-frequency unit corresponding to a sub-carrier of a 60 kHz subcarrier.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units refers to an absolute number of time-domain resources included in the time-frequency unit.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units refers to a time interval length of time-domain resources included in the time-frequency unit.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units refers to the number of time slots (Slots) included in the time domain in the time-frequency unit.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units refers to the number of multi-carrier symbols included in the time domain in the time-frequency unit.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units refers to the fact that the time-domain resources included in the time domain in the time-frequency unit correspond to more than 60 kHz subcarriers.
  • the number of carrier symbols refers to the fact that the time-domain resources included in the time domain in the time-frequency unit correspond to more than 60 kHz subcarriers. The number of carrier symbols.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units refers to a time-domain resource included in the time-domain in the time-frequency unit corresponding to more than 240 kHz subcarriers.
  • the number of carrier symbols refers to a time-domain resource included in the time-domain in the time-frequency unit corresponding to more than 240 kHz subcarriers.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units It refers to the number of REs (Resource Elements) included in the time-frequency unit.
  • One RE occupies one multi-carrier symbol in the time domain and one carrier in the frequency domain.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units refers to the number of basic time-frequency resource particles included in the time-frequency unit, and one basic time-frequency resource particle. It occupies fixed-length continuous time-domain resources in the time domain and occupies fixed-length continuous frequency resources in the frequency domain.
  • the time-frequency resources occupied by one of the X time-frequency units The number refers to the number of basic time-frequency resource particles included in the time-frequency unit.
  • a basic time-frequency resource particle occupies a multiplier corresponding to a positive integer number of consecutive 60 kHz subcarriers in the time domain and occupies An integer number of consecutive 15KHz subcarriers.
  • the time-frequency resources occupied by one of the X time-frequency units The number refers to the number of basic time-frequency resource particles included in the time-frequency unit.
  • a basic time-frequency resource particle occupies a positive integer in the time domain and corresponds to a multi-carrier symbol corresponding to a continuous 240 kHz subcarrier. An integer number of consecutive 60KHz subcarriers.
  • the time-frequency resources occupied by one of the X time-frequency units The number refers to the number of basic time-frequency resource particles included in the time-frequency unit.
  • a basic time-frequency resource particle occupies a positive integer in the time domain and corresponds to a multi-carrier symbol corresponding to consecutive 480 kHz subcarriers. An integer number of consecutive 60KHz subcarriers.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units refers to the number of absolute time-frequency resources included in the time-frequency unit.
  • the X time-frequency units belong to the fourth time window in the time domain
  • the first measurement is performed in the fifth time window
  • the end time of the fourth time window is no later than the first time window.
  • the start time of the five time window, and the end time of the fifth time window is no later than the start time of sending the first wireless signal.
  • the first measurement and any one of the X measurements belong to two different types of measurements.
  • the first measurement is a measurement of a CBR (Channel Busy Ratio).
  • the first measurement is a measurement of CBQ (Channel Busy Quantity).
  • the first measurement is used to determine a channel occupation state of the measured channel.
  • the first measurement is used to determine a channel occupancy state in a measured frequency range.
  • a second type of measurement value is a CBR (Channel Busy Ratio) value.
  • a second type of measurement value is a CBQ (Channel Busy Quantity) value.
  • X1 first type measurement values are all greater than a threshold, and the second type measurement value obtained by performing the first measurement is equal to the X1 and the X X1 is a non-negative integer not greater than X; for a given subcarrier interval (SCS), the threshold is configurable, or the threshold is fixed.
  • SCS subcarrier interval
  • X1 first type measurement values are all greater than a threshold, and the second type measurement value obtained by performing the first measurement is equal to the X1, and the X1 Is a non-negative integer not greater than the X, and for a given subcarrier interval (SCS), the threshold is configurable, or the threshold is fixed.
  • SCS subcarrier interval
  • the first wireless signal is transmitted through a side link.
  • the first wireless signal is sent through a PC5 interface.
  • the first wireless signal is unicast.
  • the first wireless signal is multicast.
  • the first wireless signal is broadcast.
  • the first wireless signal carries a transport block (TB, Transport Block).
  • TB transport block
  • the first wireless signal is transmitted through a data channel.
  • the first wireless signal is transmitted through a control channel.
  • the first wireless signal includes both a data signal and a control channel.
  • the first wireless signal is transmitted through a SL-SCH (Sidelink Shared Channel).
  • SL-SCH Servicelink Shared Channel
  • the first wireless signal is transmitted through a PSSCH (Physical Sidelink Shared Channel).
  • PSSCH Physical Sidelink Shared Channel
  • the first wireless signal is transmitted through a PSCCH (Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel
  • the first wireless signal carries a SCI (Sidelink Control Information) accompanied by link control information.
  • SCI Segment Control Information
  • the first wireless signal carries both SCI and TB.
  • the first wireless signal carries SA (Scheduling Assignment) information.
  • the first wireless signal includes an initial transmission of a TB (Transport Block).
  • TB Transport Block
  • the first wireless signal includes a retransmission of a TB (Transport Block).
  • TB Transport Block
  • a transport block (TB, Transport Block) is sequentially subjected to CRC addition (CRC), channel coding (Channel Coding), rate matching (Rate, Matching), scrambling, modulation, and layer mapping. (Layer Mapping), Precoding, Mapping to Resource Elements, OFDM Baseband Signal Generation, Modulation Upconversion and Modulation Upconversion to obtain the first wireless signal.
  • CRC CRC addition
  • Channel Coding Channel Coding
  • Rate matching Rate matching
  • scrambling modulation
  • layer mapping Layer mapping
  • Precoding Mapping to Resource Elements
  • OFDM Baseband Signal Generation OFDM Baseband Signal Generation
  • Modulation Upconversion Modulation Upconversion
  • a transport block (TB, Transport Block) is sequentially subjected to CRC addition (CRC), channel coding (Channel Coding), rate matching (Rate, Matching), scrambling, modulation, and layer mapping. (Layer Mapping), Precoding, Mapping to Virtual Resource Blocks, Mapping from Virtual Resource Blocks to Physical Resource Blocks, and OFDM Baseband Signal Generation (OFDM Baseband) Signal Generation) to obtain the first wireless signal after Modulation and Upconversion.
  • a transport block (TB, Transport Block) is subjected to CRC addition (CRC), segmentation, segmentation (CRC) insertion, channel coding (Channel Coding), and rate matching (Rate). Matching), Concatenation, Scrambling, Modulation, Layer Mapping, Precoding, Mapping to Resource Elements, OFDM Baseband Signal Generation (OFDM Baseband) Signal Generation) to obtain the first wireless signal after Modulation and Upconversion.
  • CRC CRC addition
  • CRC CRC
  • CRC channel coding
  • Rate rate matching
  • Concatenation Concatenation
  • Scrambling Modulation
  • Layer Mapping Precoding
  • Mapping to Resource Elements OFDM Baseband Signal Generation (OFDM Baseband) Signal Generation)
  • a transport block (TB, Transport Block) is subjected to CRC addition (CRC), segmentation, segmentation (CRC) insertion, channel coding (Channel Coding), and rate matching (Rate). Matching, Concatenation, Scrambling, Modulation, Layer Mapping, Precoding, Mapping to Virtual Resource Blocks, Mapping from Virtual Resource Blocks
  • CRC addition CRC
  • CRC CRC addition
  • CRC segmentation
  • CRC channel coding
  • Rate rate matching
  • Matching Concatenation, Scrambling, Modulation, Layer Mapping, Precoding, Mapping to Virtual Resource Blocks, Mapping from Virtual Resource Blocks
  • the first wireless signal is obtained after mapping to physical resource blocks (Physical Resource Blocks), OFDM baseband signal generation (OFDM), Modulation and Upconversion.
  • a transport block (TB, Transport Block) is sequentially subjected to CRC addition (CRC), channel coding (Channel Coding), rate matching (Rate, Matching), scrambling, modulation, and layer mapping. (Layer Mapping), Transform Precoding, Precoding, Mapping to Resource Elements, OFDM Baseband Signal Generation, OFDM Baseband Signal Generation, Modulation and Upconversion Obtaining the first wireless signal.
  • a transport block (TB, Transport Block) is sequentially subjected to CRC addition (CRC), channel coding (Channel Coding), rate matching (Rate, Matching), scrambling, modulation, and layer mapping. (Layer Mapping), Transform Precoding, Precoding, Mapping to Virtual Resource Blocks, Mapping from Virtual Resource Blocks to Physical Resource Blocks , OFDM baseband signal generation (OFDM, Baseband, Signal Generation), modulation and up conversion (Modulation and Upconversion) to obtain the first wireless signal.
  • CRC addition CRC addition
  • Channel Coding Channel Coding
  • Rate matching Rate matching
  • scrambling modulation
  • layer mapping Layer mapping
  • Transform Precoding Precoding
  • Mapping to Virtual Resource Blocks Mapping from Virtual Resource Blocks to Physical Resource Blocks
  • OFDM baseband signal generation OFDM, Baseband, Signal Generation
  • Modulation and Upconversion Modulation and Upconversion
  • a transport block undergoes CRC addition (CRC), segmentation, segmentation (CRC) insertion, channel coding (Channel Coding), and rate matching. Matching, Concatenation, Scrambling, Modulation, Layer Mapping, Transform Precoding, Precoding, Mapping to Resource Elements , OFDM baseband signal generation (OFDM, Baseband, Signal Generation), modulation and up conversion (Modulation and Upconversion) to obtain the first wireless signal.
  • CRC CRC addition
  • CRC CRC
  • CRC channel coding
  • Matching Concatenation, Scrambling, Modulation, Layer Mapping, Transform Precoding, Precoding, Mapping to Resource Elements , OFDM baseband signal generation (OFDM, Baseband, Signal Generation), modulation and up conversion (Modulation and Upconversion) to obtain the first wireless signal.
  • OFDM OFDM baseband signal generation
  • Modulation and Upconversion Modulation and Upconversion
  • a transport block (TB, Transport Block) is subjected to CRC addition (CRC), segmentation, segmentation (CRC) insertion, channel coding (Channel Coding), and rate matching (Rate). Matching, Concatenation, Scrambling, Modulation, Layer Mapping, Transform Precoding, Precoding, Mapping to Virtual Resource Blocks), mapping from virtual resource blocks to physical resource blocks, mapping from OFDM to physical resource blocks, OFDM baseband signal generation, OFDM baseband signal generation, and modulation and upconversion to obtain the first wireless signal.
  • CRC addition CRC
  • CRC channel coding
  • Rate rate matching
  • Matching Concatenation, Scrambling, Modulation, Layer Mapping, Transform Precoding, Precoding, Mapping to Virtual Resource Blocks
  • mapping from virtual resource blocks to physical resource blocks mapping from OFDM to physical resource blocks, OFDM baseband signal generation, OFDM baseband signal generation, and modulation and upconversion to obtain the first wireless signal.
  • a SCI Servicelink Control Information
  • CRC CRC Insertion
  • channel coding Channel Coding
  • Rate matching Rate matching
  • scrambling modulation
  • Mapping to physical resources Mapping to Physical Resources
  • OFDM OFDM baseband signal generation
  • Modulation and Upconversion Modulation and Upconversion
  • a SCI Servicelink Control Information
  • CRC CRC Insertion
  • channel coding Channel Coding
  • Rate matching Rate matching
  • scrambling modulation
  • Transform precoding Transform Precoding
  • mapping to physical resources Mapping to Physical Resources
  • OFDM baseband signal generation OFDM Baseband Signal Generation
  • modulation and up conversion Modulation and Upconversion
  • the fact that the X first measurement values are used for the first measurement means that the X first measurement values are used in performing the first measurement.
  • the fact that the X first measurement values are used for the first measurement means that the X first measurement values are used as an input for the first measurement.
  • the use of the X first type measurement values for the first measurement means that the first measurement is related to the X first type measurement values.
  • the first type of measurement value obtained by performing the first measurement is used to determine an MCS (Modulation Coding Scheme) used by the first wireless signal and the first wireless signal location.
  • At least one of the occupied time-frequency resources includes: a first type of measurement value obtained by performing the first measurement is used to determine an MCS used by the first wireless signal and a time occupied by the first wireless signal Frequency resources.
  • a first-type measurement value obtained by performing the first measurement is used to determine at least one of an MCS used by the first wireless signal and a time-frequency resource occupied by the first wireless signal.
  • the method includes: a first-type measurement value obtained by performing the first measurement is used to determine an MCS used by the first wireless signal.
  • a first-type measurement value obtained by performing the first measurement is used to determine at least one of an MCS used by the first wireless signal and a time-frequency resource occupied by the first wireless signal.
  • the method includes: first-type measurement values obtained by performing the first measurement are used to determine time-frequency resources occupied by the first wireless signal.
  • a first-type measurement value obtained by performing the first measurement is used to determine at least one of an MCS used by the first wireless signal and a time-frequency resource occupied by the first wireless signal. It refers to: the first type of measurement value obtained by performing the first measurement is used to determine the MCS used by the first wireless signal and the time-frequency resource occupied by the first wireless signal based on a given mapping relationship At least one of them.
  • a first-type measurement value obtained by performing the first measurement is used to determine at least one of an MCS used by the first wireless signal and a time-frequency resource occupied by the first wireless signal. It refers to: the first type of measurement value obtained by performing the first measurement is used to determine the MCS used by the first wireless signal and the time-frequency resource occupied by the first wireless signal based on a given functional relationship At least one of them.
  • a first-type measurement value obtained by performing the first measurement is used to determine at least one of an MCS used by the first wireless signal and a time-frequency resource occupied by the first wireless signal. It means: the first type of measurement value obtained by performing the first measurement is used to determine the MCS used by the first wireless signal and the time-frequency resource occupied by the first wireless signal based on a given table relationship At least one of them.
  • a first-type measurement value obtained by performing the first measurement is used to determine at least one of an MCS used by the first wireless signal and a time-frequency resource occupied by the first wireless signal. It means: the first type of measurement value obtained by performing the first measurement is used to determine the MCS used by the first wireless signal and the time-frequency resource occupied by the first wireless signal based on a given correspondence relationship At least one of them.
  • the MCS used by the first wireless signal is one of ⁇ BPSK, Pi / 2BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM ⁇ .
  • the time-frequency resources occupied by the first wireless signal include time-domain resources occupied by the first wireless signal.
  • the time-frequency resources occupied by the first wireless signal include: frequency-domain resources occupied by the first wireless signal.
  • the time-frequency resources occupied by the first wireless signal include time-domain resources and frequency-domain resources occupied by the first wireless signal.
  • the time-frequency resources occupied by the first wireless signal include: Occupied RE.
  • the time-frequency resources occupied by the first wireless signal include: the absolute number of time-frequency resources occupied by the first wireless signal.
  • the time-frequency resources occupied by the first wireless signal include: Number of occupied REs.
  • the time-frequency resources occupied by the first wireless signal include: The number of occupied sub-channels.
  • the time-frequency resources occupied by the first wireless signal include: Number of occupied PRBs.
  • the subcarrier interval of the subcarriers occupied by the first wireless signal is one of ⁇ 15kHz, 30kHz, 60kHz, 120kHz, 240kHz, 480kHz, 960kHz ⁇ .
  • the subcarrier interval of the subcarriers occupied by the first wireless signal is equal to a non-negative integer power multiple of 2 at 15kHz.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal.
  • the number of time-frequency resources occupied by one time-frequency unit in the time-frequency unit is related to the subcarrier interval of the subcarriers occupied by the first wireless signal.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal means:
  • the subcarrier interval of the subcarriers occupied by the wireless signal is used to determine the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal.
  • the number of time-frequency resources occupied by one time-frequency unit in the time-frequency units is linearly related to the subcarrier interval of the subcarriers occupied by the first wireless signal.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal.
  • An absolute number of frequency domain resources occupied by one time-frequency unit in the time-frequency unit is related to a subcarrier interval of a subcarrier occupied by the first wireless signal.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal.
  • An absolute number of frequency-domain resources occupied by one time-frequency unit in the time-frequency unit is equal to an absolute number of frequency-domain resources occupied by a positive integer number of subcarriers occupied by the first wireless signal.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal.
  • a frequency interval length of a frequency domain resource occupied by one time-frequency unit in the time-frequency unit is related to a subcarrier interval of a subcarrier occupied by the first wireless signal.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal.
  • An absolute number of time domain resources occupied by one time-frequency unit in the time-frequency unit is related to a sub-carrier interval of a sub-carrier occupied by the first wireless signal.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal.
  • the absolute number of time-domain resources occupied by one time-frequency unit in the time-frequency unit is equal to the absolute number of time-domain resources occupied by multicarrier symbols corresponding to the subcarriers occupied by the first wireless signal.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal.
  • a time interval length of a time domain resource occupied by one time frequency unit in the time frequency unit is related to a subcarrier interval of a subcarrier occupied by the first wireless signal.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal means:
  • the subcarrier interval of the subcarriers occupied by the wireless signal belongs to one subcarrier interval group of the M subcarrier interval groups, and the M subcarrier interval groups correspond to the number of M candidate time-frequency resources one by one, and the X
  • the number of time-frequency resources occupied by one time-frequency unit in the time-frequency unit is one of the M candidate time-frequency resources.
  • the subcarrier interval of the subcarrier occupied by the first wireless signal belongs to
  • the number of candidate time-frequency resources corresponding to the sub-carrier interval groups in the M sub-carrier interval groups is the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units, where M is greater than 1 Positive integer.
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal means:
  • the frequency range (Frequency Range) of the carrier to which the wireless signal belongs in the frequency domain is used to determine the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units, and the first wireless signal occupies
  • the subcarrier interval of the subcarrier belongs to one subcarrier interval group among the M subcarrier interval groups, and the frequency range to which the carrier to which the first wireless signal belongs in the frequency domain belongs is also used in the M subcarrier interval groups. Determining a candidate subcarrier interval group to which a subcarrier interval of a subcarrier occupied by the first wireless signal belongs, the M positive integers greater than 1, and the M subcarrier interval groups are predefined.
  • the quantity of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal means that: if the first A wireless signal belongs to a frequency range (Frequency Range) of a carrier to which the frequency domain belongs is less than 6 GHz (FR1, Frequency Range 1). The time occupied by one of the X time-frequency units is occupied by a time-frequency unit.
  • FR1 Frequency Range
  • the number of frequency resources is equal to the first number, and the subcarrier interval of the subcarriers occupied by the first wireless signal belongs to one of ⁇ 15kHz, 30kHz, 60kHz ⁇ ; if the first wireless signal belongs to the carrier to which the frequency domain belongs,
  • the frequency range (Range) is higher than 6 GHz (FR2, Frequency, Range 2).
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is equal to the second number.
  • the subcarrier interval of the subcarriers occupied by the first wireless signal is equal to one of ⁇ 60kHz, 120kHz, 240kHz ⁇ ; the first number and the second number are not equal.
  • the quantity of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal means that: if the first A wireless signal belongs to a frequency range (Frequency Range) of a carrier to which the frequency domain belongs is less than 6 GHz (FR1, Frequency Range 1). The time occupied by one of the X time-frequency units is occupied by a time-frequency unit.
  • FR1 Frequency Range
  • the number of frequency resources is equal to the first number, and the subcarrier interval of the subcarriers occupied by the first wireless signal belongs to one of ⁇ 15kHz, 30kHz, 60kHz ⁇ ; if the first wireless signal belongs to the carrier to which the frequency domain belongs,
  • the frequency range (Range) is higher than 6 GHz (FR2, Frequency, Range 2).
  • the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is equal to the second number.
  • the subcarrier interval of the subcarriers occupied by the first wireless signal is equal to one of ⁇ 60kHz, 120kHz, 240kHz, 480kHz, 960kHz ⁇ ; the first number and the second number are not equal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 is a diagram illustrating a network architecture 200 of an NR 5G, Long-Term Evolution (LTE), and LTE-A (Long-Term Evolution Advanced) system.
  • the NR 5G or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System, evolved packet system) 200.
  • EPS Evolved Packet System, evolved packet system
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core) / 5G-CN (5G-Core Network) 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • EPS can be interconnected with other access networks, but these entities / interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services, however, those skilled in the art will readily understand that the various concepts presented throughout this application can be extended to networks providing circuit switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 may be connected to other gNB204 via an Xn interface (eg, backhaul).
  • gNB203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmitting and receiving node), or some other suitable term, in
  • gNB203 can be a base station, a ground base station via a satellite relay, or a roadside unit (RSU).
  • gNB203 provides UE201 with an access point to EPC / 5G-CN210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (E.g. MP3 player), camera, game console, drone, aircraft, narrowband IoT device, machine type communication device, land vehicle, car, communication unit in a car, wearable device, or any other similar function Device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios global positioning systems
  • multimedia devices video devices
  • digital audio players E.g. MP3 player
  • camera game console
  • drone aircraft
  • narrowband IoT device machine type communication device
  • machine type communication device land vehicle, car
  • communication unit in a car wearable device, or any other similar function Device.
  • UE201 may also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, car terminal, connected vehicle device or some other suitable term.
  • gNB203 is connected to EPC / 5G-CN210 through S1 / NG interface.
  • EPC / 5G-CN210 includes MME / AMF / UPF 211, other MME / AMF / UPF214, S-GW (Service Gateway) 212, and P-GW (Packet Data Network Gateway) 213.
  • MME / AMF / UPF211 is a control node that processes signaling between UE201 and EPC / 5G-CN210.
  • MME / AMF / UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW213 is connected to Internet service 230.
  • the Internet service 230 includes an operator's corresponding Internet protocol service. Specifically, the Internet service 230 may include the Internet, an intranet, an IMS (IP Multimedia Subsystem) and a PS (Packet Switching, packet switching) streaming service.
  • IMS IP Multimedia Subsystem
  • PS Packet Switching, packet switching
  • the UE 201 corresponds to the first type of communication node device in this application.
  • the UE 201 supports transmission in an accompanying link.
  • the UE 201 supports a PC5 interface.
  • the UE 201 supports Internet of Vehicles.
  • the UE 201 supports V2X services.
  • the gNB203 corresponds to the second-type communication node device in this application.
  • the gNB203 supports Internet of Vehicles.
  • the gNB203 supports V2X services.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane.
  • FIG. 3 shows three layers for a first type communication node device (UE) and a second type communication node device (gNB, eNB). Or RSU in V2X), or the radio protocol architecture between two first-type communication node devices (UEs): layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first type communication node device and the second type communication node device and the two first type communication node devices (UE) through the PHY301.
  • the L2 layer 305 includes a MAC (Medium Access Control, Media Access Control) sublayer 302, a RLC (Radio Link Control, Radio Link Control Protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol) (Aggregation protocol) sublayers 304, which are terminated at the second type of communication node device on the network side.
  • MAC Medium Access Control, Media Access Control
  • RLC Radio Link Control, Radio Link Control Protocol
  • PDCP Packet Data Convergence Protocol
  • Aggregation protocol Aggregation protocol
  • the first type of communication node device may have several upper layers above the L2 layer 305, including the network layer (e.g., the IP layer) terminated at the P-GW on the network side and the connection terminated Application layer at the other end (eg, remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting the data packets, and provides the second type of communication node devices to the first type of communication node devices. Cross-region mobile support.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell between the first type of communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architectures for the first type communication node device and the second type communication node device are substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer).
  • RRC Radio Resource Control
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and using RRC signaling between the second type communication node device and the first type communication node device to configure the lower layer.
  • the wireless protocol architecture in FIG. 3 is applicable to the first type of communication node device in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second type of communication node device in this application.
  • the X first type measurement values in the present application are obtained from the RRC 306.
  • the X first type measurement values in the present application are obtained from the MAC 302.
  • the X first type measurement values in the present application are obtained from the PHY301.
  • the second-type measurement value in the present application is obtained from the RRC306.
  • the second-type measurement value in this application is obtained from the MAC 302.
  • the second-type measurement value in this application is obtained from the PHY301.
  • the first wireless signal in the present application is generated in the RRC306.
  • the first wireless signal in the present application is generated in the MAC 302.
  • the first wireless signal in the present application is generated in the PHY301.
  • the Y third type measurement values in this application are obtained from the RRC306.
  • the Y third type measurement values in this application are obtained from the MAC 302.
  • the Y third type measurement values in this application are obtained from the PHY301.
  • the first information in this application is generated in the RRC306.
  • the first information in this application is generated in the MAC 302.
  • the first information in this application is generated from the PHY301
  • the second information in this application is generated in the RRC306.
  • the second information in this application is generated from the MAC 302.
  • the second information in this application is generated in the PHY301.
  • the third information in this application is generated from the RRC306.
  • the third information in this application is generated from the MAC 302.
  • the third information in this application is generated from the PHY301
  • the first signaling in this application is generated from the RRC306.
  • the first signaling in this application is generated from the PHY301.
  • Embodiment 4 shows a schematic diagram of a first-type communication node device and a second-type communication node device according to the present application, as shown in FIG. 4.
  • the first type of communication node device (450) includes a controller / processor 490, a memory 480, a receiving processor 452, a transmitter / receiver 456, a transmitting processor 455, and a data source 467.
  • the transmitter / receiver 456 includes Antenna 460.
  • Data source 467 provides upper layer packets to the controller / processor 490.
  • the controller / processor 490 provides header compression and decompression, encryption and decryption, packet segmentation connection and reordering, and multiplexing and demultiplexing between logic and transmission channels. It is used to implement the L2 layer protocol for the user plane and control plane.
  • the upper layer packet may include data or control information, such as DL-SCH or UL-SCH or SL-SCH.
  • the transmit processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control / allocation, precoding, and physical layer control signaling generation and the like.
  • the receiving processor 452 implements various signal reception processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, de-precoding, physical layer control signaling extraction, and the like.
  • the transmitter 456 is configured to convert the baseband signal provided by the transmission processor 455 into a radio frequency signal and transmit it through the antenna 460
  • the receiver 456 is configured to convert the radio frequency signal received through the antenna 460 into a baseband signal and provide it to the reception processor 452.
  • the second type communication node device (410) may include a controller / processor 440, a memory 430, a receiving processor 412, a transmitter / receiver 416, and a transmitting processor 415.
  • the transmitter / receiver 416 includes an antenna 420.
  • the upper layer packet arrives at the controller / processor 440.
  • the controller / processor 440 provides header compression, decompression, encryption and decryption, packet segmentation connection and reordering, and multiplexing and demultiplexing between logic and transmission channels.
  • the upper layer packet may include data or control information, such as DL-SCH or UL-SCH.
  • the transmit processor 415 implements various signal transmission processing functions for the L1 layer (i.e., the physical layer) including encoding, interleaving, scrambling, modulation, power control / allocation, precoding, and physical layer signaling (including synchronization signals and reference Signal, etc.) generation.
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, de-precoding, physical layer signaling extraction, and the like.
  • the transmitter 416 is configured to convert the baseband signal provided by the transmitting processor 415 into a radio frequency signal and transmit the radio frequency signal through the antenna 420.
  • the receiver 416 is configured to convert the radio frequency signal received through the antenna 420 into a baseband signal and provide it to the receiving processor 412.
  • upper-layer packets (such as the first information, the second information, and the third information in this application) are provided to the controller / processor 440.
  • the controller / processor 440 implements the functions of the L2 layer.
  • the controller / processor 440 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transport channels, and the first type of communication node device 450 based on various priority metrics. Radio resource allocation.
  • the controller / processor 440 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the first type of communication node device 450, such as the first information, the second information, and the third information in this application are in the controller / Processor 440.
  • the transmit processor 415 implements various signal processing functions for the L1 layer (ie, the physical layer), including encoding, interleaving, scrambling, modulation, power control / allocation, precoding, and physical layer control signaling generation, etc.
  • This application The generation of the physical layer signals of the first information, the second information and the third information are all completed in the transmit processor 415.
  • the modulation symbols are divided into parallel streams and each stream is mapped to a corresponding multi-carrier subcarrier and / or multi-carrier symbol. , And then is transmitted by the transmitting processor 415 to the antenna 420 through the transmitter 416 and transmitted in the form of a radio frequency signal.
  • Corresponding channels of the first information, the second information, and the third information in the present application at the physical layer are mapped to the target air interface resources by the transmission processor 415 and mapped to the antenna 420 via the transmitter 416 and transmitted in the form of radio frequency signals.
  • each receiver 456 receives a radio frequency signal through its corresponding antenna 460, and each receiver 456 recovers the baseband information modulated onto the radio frequency carrier and provides the baseband information to the receiving processor 452.
  • the receiving processor 452 implements various signal receiving processing functions of the L1 layer.
  • the signal reception processing function includes the reception of the physical layer signals of the first information, the second information, and the third information in the present application, etc., based on various modulation schemes (for example, binary Phase shift keying (BPSK), quadrature phase shift keying (QPSK)) demodulation, then descrambling, decoding and deinterleaving to recover the data or control transmitted by the second type of communication node device 410 on the physical channel, and then Data and control signals are provided to the controller / processor 490.
  • the controller / processor 490 implements the L2 layer, and the controller / processor 490 interprets the first information, the second information, and the third information in this application.
  • the controller / processor may be associated with a memory 480 that stores program code and data.
  • the memory 480 may be referred to as a computer-readable medium.
  • the first-type communication node device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Used with the at least one processor, the first-type communication node device 450 device performs at least X measurements in X time-frequency units, respectively, and the X measurements are used to obtain X first type A measurement value, where X is a positive integer; performing a first measurement, the first measurement being used to obtain a second type of measurement value; sending a first wireless signal; wherein the X first type measurement values are used for all The first measurement, and the second type of measurement value obtained by performing the first measurement is used to determine at least one of an MCS used by the first wireless signal and a time-frequency resource occupied by the first wireless signal A quantity of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to a subcarrier interval of a subcarrier occupied by the first wireless signal.
  • the first type of communication node device 450 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: Perform X measurements in X time-frequency units, each of which is used to obtain X first type measurements, where X is a positive integer; perform a first measurement, which is used for Obtain a second type of measurement value; send a first wireless signal; wherein the X first type of measurement values are used for the first measurement, and the second type of measurement values obtained by performing the first measurement are used for Determining at least one of the MCS used by the first wireless signal and the time-frequency resource occupied by the first wireless signal; the number of time-frequency resources occupied by one of the X time-frequency units It is related to a subcarrier interval of a subcarrier occupied by the first wireless signal.
  • the second-type communication node device 410 apparatus includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Used with the at least one processor.
  • the device of the second type communication node device 410 at least: sends the first information; wherein the X measurements performed in the X time-frequency units are respectively used to obtain X first type measurement values, where X is positive An integer; the X first measurement values of the first type are used for the first measurement, the first measurement is used for obtaining the second type of measurement values, and the second measurement values obtained by performing the first measurement are used for Determine at least one of the MCS used by the first wireless signal and the time-frequency resources occupied by the first wireless signal; the number and time-frequency resources occupied by one time-frequency unit among the X time-frequency units The subcarrier spacing of the subcarriers occupied by the first wireless signal is related; the X1 first type measurement values among the X first type measurement values are all greater than the target threshold
  • the second-type communication node device 410 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: Sending first information; wherein X measurements performed in X time-frequency units are used to obtain X first type measurement values, where X is a positive integer; the X first type measurement values are For the first measurement, the first measurement is used to obtain a second type of measurement value, and the second type of measurement value obtained by performing the first measurement is used to determine an MCS used by the first wireless signal and the At least one of the time-frequency resources occupied by the first wireless signal; the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units and the number of sub-carriers occupied by the first wireless signal
  • the carrier interval is related; among the X first type measurement values, the X1 first type measurement values are all larger than the target threshold, and the second type measurement value obtained by performing the first measurement is equal to the X1 and the
  • a receiver 456 (including an antenna 460), a receiving processor 452, and a controller / processor 490 are used to receive the first information in this application.
  • a receiver 456 (including an antenna 460), a receiving processor 452, and a controller / processor 490 are used to receive the second information in this application.
  • a receiver 456 (including an antenna 460), a receiving processor 452, and a controller / processor 490 are used to receive the third information in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller / processor 440 are used to send the first information in the present application.
  • the transmitter 416 (including the antenna 420), the transmit processor 415, and the controller / processor 440 are used to send the second information in the present application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller / processor 440 are used to send the third information in the present application.
  • Embodiment 5 shows a schematic diagram of two first-type communication node devices according to an embodiment of the present application, as shown in FIG. 5.
  • a first type communication node device (550) includes a controller / processor 590, a memory 580, a receiving processor 552, a transmitter / receiver 556, a transmitting processor 555 and a data source 567, and a transmitter / receiver 556 Includes antenna 560.
  • Data source 567 provides upper layer packets to the controller / processor 590.
  • the controller / processor 590 provides header compression and decompression, encryption and decryption, packet segmentation connection and reordering, and multiplexing and demultiplexing between logic and transmission channels. It is used to implement the L2 layer protocol.
  • the upper layer packet can include data or control information, such as SL-SCH.
  • the transmit processor 555 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control / allocation, precoding, and physical layer control signaling generation, and the like.
  • the reception processor 552 implements various signal reception processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, de-precoding, physical layer control signaling extraction, and the like.
  • the transmitter 556 is configured to convert the baseband signal provided by the transmission processor 555 into a radio frequency signal and transmit it through the antenna 560.
  • the receiver 556 is configured to convert the radio frequency signal received through the antenna 560 into a baseband signal and provide it to the reception processor 552.
  • the composition in another first-type communication node device (500) is the same as that in the first-type communication node device 550.
  • an upper layer packet (such as the first wireless signal in this application) is provided to the controller / processor 540, and the controller / processor 540 implements the functions of the L2 layer.
  • the controller / processor 540 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels.
  • the controller / processor 540 is also responsible for HARQ operations (if supported), repeated transmissions, and signaling to the first type of communication node device 550.
  • the transmit processor 515 implements various signal processing functions for the L1 layer (ie, the physical layer), including encoding, interleaving, scrambling, modulation, power control / allocation, precoding, and physical layer control signaling generation, etc.
  • each receiver 556 receives a radio frequency signal through its corresponding antenna 560, and each receiver 556 recovers the baseband information modulated onto the radio frequency carrier and provides the baseband information to the receiving processor 552.
  • the receiving processor 552 implements various signal receiving processing functions of the L1 layer.
  • the signal reception processing function includes the reception of the first signaling and the physical layer signal of the first wireless signal in the present application.
  • the multi-carrier symbols in the multi-carrier symbol stream are used to perform various modulation schemes (e.g., binary phase shift). Keying (BPSK), quadrature phase shift keying (QPSK)) demodulation, followed by descrambling, decoding, and deinterleaving to recover the data or control transmitted by the first type communication node device 500 on the physical channel, and then the data And control signals are provided to the controller / processor 590.
  • the controller / processor 590 implements the L2 layer, and the controller / processor 590 interprets the first wireless signal in this application.
  • the controller / processor may be associated with a memory 580 that stores program code and data.
  • the memory 580 may be referred to as a computer-readable medium.
  • the radio frequency signals measured X times in this application are received by the receiver 516, and then the signals are processed and measured by the receiving processor 512, and then these information are provided to the controller / Processor 540 performs filtering.
  • the controller / processor 540 performs the first measurement in the present application based on the results of the X measurements.
  • the Y measurements in this application are made in the controller / processor 540.
  • the first-type communication node device (500) apparatus includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are Configured to be used with the at least one processor, the first type of communication node device (500) device at least: performing X measurements in X time-frequency units, each of which is used to obtain X X first type measurement values, the X is a positive integer; performing a first measurement, the first measurement is used to obtain a second type measurement value; sending a first wireless signal; wherein the X first type measurement values Is used for the first measurement, and a second type of measurement value obtained by performing the first measurement is used to determine an MCS used by the first wireless signal and a time-frequency resource occupied by the first wireless signal At least one of: the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to a subcarrier interval of a subcarrier occupied by the first wireless signal.
  • the first-type communication node device (500) apparatus includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor.
  • the actions include: performing X measurements in X time-frequency units, each of which is used to obtain X first type measurement values, where X is a positive integer; performing a first measurement, the first measurement Is used to obtain a second type of measurement value; sends a first wireless signal; wherein the X first type of measurement values are used for the first measurement, and the second type of measurement values obtained by performing the first measurement Is used to determine at least one of the MCS used by the first wireless signal and the time-frequency resource occupied by the first wireless signal; the time-frequency occupied by one time-frequency unit of the X time-frequency units
  • the number of resources is related to the subcarrier interval of the subcarriers occupied by the first wireless signal.
  • a receiver 556 (including an antenna 560), a receiving processor 552, and a controller / processor 590 are used to receive the first wireless signal in this application.
  • a receiver 556 (including an antenna 560), a receiving processor 552, and a controller / processor 590 are used to receive the first signaling in this application.
  • the transmitter 516 (including the antenna 520), the transmission processor 515, and the controller / processor 540 are used to transmit the first wireless signal in the present application.
  • the transmitter 516 (including the antenna 520), the transmission processor 515, and the controller / processor 540 are used to send the first signaling in the present application.
  • the receiver 516 (including the antenna 520), the receiving processor 512 and the controller / processor 540 are used to perform the X measurements in this application.
  • controller / processor 540 is used to perform the first measurement in the present application.
  • controller / processor 540 is used to perform the Y measurements in this application.
  • the controller / processor 540 is used to determine a target time-frequency unit set from the Q candidate time-frequency unit sets.
  • Embodiment 6 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 6.
  • the communication node N1 of the second type is a maintenance base station of the serving cell of the communication node U2 of the first type.
  • step S21 For the first type communication node U2, received in step S21 the first information, third information received in step S22, step unit of a collection unit set the target frequency is determined in S23 when the frequency from the Q Alternatively, in step S24, Perform X measurements in X time-frequency units respectively, perform the first measurement in step S25, perform Y measurements in the third time window in step S26, receive the second information in step S27, and in step S28
  • the first signaling is transmitted during transmission, and the first wireless signal is transmitted in step S29.
  • the X measurements are used to obtain X first-type measurements, where X is a positive integer; the first measurement is used to obtain second-type measurements; the Xth A type of measurement value is used for the first measurement, and a second type of measurement value obtained by performing the first measurement is used to determine an MCS used by the first wireless signal and occupied by the first wireless signal.
  • At least one of the time-frequency resources; the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal;
  • the X1 first-type measurement values among the X first-type measurement values are all larger than the target threshold.
  • the second-type measurement value obtained by performing the first measurement is equal to the ratio of the X1 and the X, and the X1 is A non-negative integer not greater than X, the first information is used to determine the target threshold; the first signaling is used to indicate ⁇ MCS used by the first wireless signal, the first Time-frequency resources occupied by a wireless signal, sub-carriers of a sub-carrier occupied by the first wireless signal Interval ⁇ , the first signaling is transmitted over the air interface; the X time-frequency units belong to the first time window in the time domain, and the first measurement is performed in the second time window, the The end time of the first time window is not later than the start time of the second time window, and the end time of the second time window is not later than the start time of sending the first wireless signal; The second type of measurement value obtained by the measurement belongs to the target interval, the target interval is one of the P candidate intervals, and any one of the P candidate intervals is a positive rational number interval.
  • P candidate intervals correspond one-to-one with P candidate MCS sets, the P candidate intervals correspond one-to-one with P candidate resource quantity value sets, and P is a positive integer greater than 1;
  • the candidate MCS set in the P candidate MCS sets corresponding to the target interval is the first MCS set, and the candidate resource quantity value set in the P candidate resource quantity value sets corresponding to the target interval is the first A resource quantity value set;
  • the second information is used to determine the At least one of the MCS used by the first wireless signal and the time-frequency resource occupied by the first wireless signal, the MCS used by the first wireless signal is an MCS in the first MCS set, the The number of time-frequency resources occupied by the first wireless signal is equal to one resource quantity value in the first resource quantity value set;
  • the third information is used to determine a sub-carrier of a subcarrier occupied by the first wireless signal.
  • the second type of measurement value obtained by performing the first measurement is used to determine a first upper limit, and the sum of the Y third type of measurement values is not greater than the first upper limit, and the third time window
  • the position in the time domain is related to the time-frequency resources occupied by the first wireless signal, and the Y third measurement values are related to the wireless signals sent by the sender of the first wireless signal in the third time window.
  • the amount of time-frequency resources occupied by the signal is related; the subcarrier interval of the subcarriers occupied by the first wireless signal is a target subcarrier interval, and the target subcarrier interval is one of the Q candidate subcarrier intervals. Selecting a subcarrier interval, said Q Is a positive integer greater than 1; the X time-frequency units belong to the target time-frequency unit set, and the Q candidate subcarrier intervals correspond to the Q candidate time-frequency unit set one-to-one.
  • the characteristic measurement value is a first-type measurement value among the X first-type measurement values, and the measurement used to obtain the characteristic measurement value in the X measurements is in a characteristic time-frequency unit.
  • the characteristic time-frequency unit is one of the X time-frequency units.
  • the characteristic time-frequency unit includes X2 multi-carrier symbols in the time domain.
  • the characteristic measurement value is The average value of the sum of the received powers in each of the X2 multicarrier symbols in the frequency domain resources of the characteristic time-frequency unit.
  • the X measurements belong to a group of measurements in the Q group of measurements, and the Q group of measurements are directed to the Q candidate time-frequency unit set one by one, and the Q group of measurements are used to obtain Group of first-type measurement values, the X first-type measurement values belong to a group of first-type measurement values in the Q-group first-type measurement value, and the target subcarrier interval is used in the Q-group
  • the first type of measurement value determines a set of first type measurement values to which the X first type measurement values belong.
  • the first information is a higher layer (Higher Layer) information.
  • the first information is physical layer information.
  • the first information is transmitted through a physical layer signaling.
  • the first information is transmitted through a high-level signaling.
  • the first information includes all or part of high-level information.
  • the first information includes all or part of one physical layer information.
  • the first information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the first information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first information includes one or more fields in a SIB (System Information Block).
  • SIB System Information Block
  • the first information includes one or more fields (Remaining System Information) in the RMSI (Remaining System Information).
  • the first information includes all or part of an RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first information includes all or part of an RRC (Radio Resource Control) layer information.
  • RRC Radio Resource Control
  • the first information includes all or part of a field (Field) in an IE (Information Element) of an RRC (Radio Resource Control) layer information.
  • Field Information Element
  • RRC Radio Resource Control
  • the first information is broadcast.
  • the first information is unicast.
  • the first information is cell-specific.
  • the first information is user-specific.
  • the first information is transmitted through a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the first information includes all or part of a DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the use of the first information to determine the target threshold means that the first information is used by the first type of communication node to determine the target threshold.
  • the use of the first information to determine the target threshold means that the first information directly indicates the target threshold.
  • the use of the first information to determine the target threshold refers to: the first information indirectly indicates the target threshold.
  • the use of the first information to determine the target threshold means that the first information explicitly indicates the target threshold.
  • the use of the first information to determine the target threshold refers to: the first information implicitly indicates the target threshold.
  • the first information adopts the same design as "threshS-RSSI-CBR-r14" in IE (Information Element, Information Element) "SL-CommResourcePool” in 3GPP TS36.331 (v15.2.0) .
  • the first information is transmitted through an air interface.
  • the first information is transmitted through a Uu interface.
  • the first information is transmitted through a wireless signal.
  • the first information is transmitted from the second-type communication node to the first-type communication node in the present application.
  • the first information is transmitted from a higher layer of the first-type communication node to a physical layer of the first-type communication node.
  • the first information is transmitted inside the first type of communication node.
  • the first information used to determine the target threshold refers to: the target threshold is equal to a threshold in a first threshold set, and the first threshold set includes a positive integer number of thresholds, and the first The thresholds in a threshold set are predefined, and the first information is used to determine the target threshold in the first threshold set.
  • the first information used to determine the target threshold refers to: the target threshold is equal to a threshold in a first threshold set, and the first threshold set includes a positive integer number of thresholds, and the first A threshold in a threshold set is related to a subcarrier interval of a subcarrier occupied by the first wireless signal, and the first information is used to determine the target threshold in the first threshold set.
  • the target threshold is a non-negative rational number not greater than 1.
  • the second information is transmitted through an air interface.
  • the second information is transmitted through a Uu interface.
  • the second information is transmitted through a wireless signal.
  • the second information is transmitted from the second type communication node to the first type communication node in the present application.
  • the second information is transmitted from a higher layer of the first type communication node to a physical layer of the first type communication node.
  • the second information is passed inside the first type of communication node.
  • the second information is a higher layer (Higher Layer) information.
  • the second information is physical layer information.
  • the second information is transmitted through a physical layer signaling.
  • the second information is transmitted through a high-level signaling.
  • the second information includes all or part of high-level information.
  • the second information includes all or part of one physical layer information.
  • the second information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the second information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the second information includes one or more fields in a SIB (System Information Block).
  • SIB System Information Block
  • the second information includes one or more fields in a RMSI (Remaining System Information).
  • RMSI Remaining System Information
  • the second information includes all or part of an RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the second information includes all or part of an RRC (Radio Resource Control) layer information.
  • RRC Radio Resource Control
  • the second information includes all or part of a field (Field) in an IE (Information Element, information element) in an RRC (Radio Resource Control) layer information.
  • Field Information Element, information element
  • RRC Radio Resource Control
  • the second information is broadcast.
  • the second information is unicast.
  • the second information is cell-specific.
  • the second information is user-specific.
  • the second information is transmitted through a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the second information includes all or part of a DCI (Downlink Control Information) signaling field.
  • DCI Downlink Control Information
  • the second information is used to determine at least one of the MCS adopted by the first wireless signal and the time-frequency resource occupied by the first wireless signal means that the second information is
  • the first type of communication node is configured to determine at least one of an MCS used by the first wireless signal and a time-frequency resource occupied by the first wireless signal.
  • the second information is used to determine at least one of the MCS adopted by the first wireless signal and the time-frequency resource occupied by the first wireless signal means that the second information is And configured to directly indicate at least one of an MCS used by the first wireless signal and a time-frequency resource occupied by the first wireless signal.
  • the second information is used to determine at least one of the MCS adopted by the first wireless signal and the time-frequency resource occupied by the first wireless signal means that the second information is And configured to indirectly indicate at least one of the MCS adopted by the first wireless signal and the time-frequency resource occupied by the first wireless signal.
  • the second information is used to determine at least one of the MCS adopted by the first wireless signal and the time-frequency resource occupied by the first wireless signal means that the second information is And configured to explicitly indicate at least one of an MCS adopted by the first wireless signal and a time-frequency resource occupied by the first wireless signal.
  • the second information is used to determine at least one of the MCS adopted by the first wireless signal and the time-frequency resource occupied by the first wireless signal means that the second information is And configured to implicitly indicate at least one of an MCS adopted by the first wireless signal and a time-frequency resource occupied by the first wireless signal.
  • the second information is used to determine at least one of an MCS used by the first wireless signal and a time-frequency resource occupied by the first wireless signal includes: the second information is used To determine the MCS used by the first wireless signal and the time-frequency resources occupied by the first wireless signal.
  • the second information is used to determine at least one of an MCS used by the first wireless signal and a time-frequency resource occupied by the first wireless signal includes: the second information is used For determining the MCS used by the first wireless signal.
  • the second information is used to determine at least one of an MCS used by the first wireless signal and a time-frequency resource occupied by the first wireless signal includes: the second information is used For determining time-frequency resources occupied by the first wireless signal.
  • the third information is transmitted through an air interface.
  • the third information is transmitted through a Uu interface.
  • the third information is transmitted through a wireless signal.
  • the third information is transmitted from the second type communication node to the first type communication node in the present application.
  • the third information is transmitted from a higher layer of the first-type communication node to a physical layer of the first-type communication node.
  • the third information is transmitted inside the first type of communication node.
  • the third information is a higher layer (Higher Layer) information.
  • the third information is physical layer information.
  • the third information is transmitted through a physical layer signaling.
  • the third information is transmitted through a high-level signaling.
  • the third information includes all or part of high-level information.
  • the third information includes all or part of one physical layer information.
  • the third information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the third information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the third information includes one or more fields in a SIB (System Information Block).
  • SIB System Information Block
  • the third information includes one or more fields in a RMSI (Remaining System Information).
  • RMSI Remaining System Information
  • the third information includes all or part of an RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the third information includes all or part of an RRC (Radio Resource Control) layer information.
  • RRC Radio Resource Control
  • the third information includes all or part of a field (Field) in an IE (Information Element) of an RRC (Radio Resource Control) layer information.
  • Field Information Element
  • RRC Radio Resource Control
  • the third information is broadcast.
  • the third information is unicast.
  • the third information is cell-specific.
  • the third information is UE-specific.
  • the third information is transmitted through a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the third information includes all or part of a DCI (Downlink Control Information) signaling field.
  • DCI Downlink Control Information
  • the use of the third information to determine a subcarrier interval of a subcarrier occupied by the first wireless signal means that the third information is used by the first type of communication node to determine the subcarrier The subcarrier interval of the subcarriers occupied by the first wireless signal.
  • the use of the third information to determine a subcarrier interval of a subcarrier occupied by the first wireless signal means that the third information is used to directly indicate that the first wireless signal is occupied The subcarrier interval of the subcarriers.
  • the use of the third information to determine a subcarrier interval of a subcarrier occupied by the first wireless signal means that the third information is used to indirectly indicate that the first wireless signal is occupied The subcarrier interval of the subcarriers.
  • the use of the third information to determine a subcarrier interval of a subcarrier occupied by the first wireless signal means that the third information is used to explicitly indicate the first wireless signal The subcarrier interval of the occupied subcarriers.
  • the use of the third information to determine a subcarrier interval of a subcarrier occupied by the first wireless signal means that the third information is used to implicitly indicate the first wireless signal The subcarrier interval of the occupied subcarriers.
  • the third information and the second information in this application are two different IEs (Information Element) in the same RRC (Radio Resource Control) information.
  • the third information and the second information in this application are two of the same IE (Information Element) in the same RRC (Radio Resource Control) information. Different fields.
  • the third information and the second information in the present application are two IEs (Information Element) in two different RRC (Radio Resource Control) information.
  • the third information and the second information in this application are two different fields in the same DCI (Downlink Control Information).
  • the third information and the second information in this application are two fields in two different DCI (Downlink Control Information).
  • Embodiment 7 illustrates a wireless signal transmission flowchart according to another embodiment of the present application, as shown in FIG. 7.
  • a first-type communication node N3 communicates with another first-type communication node U4, and the first-type communication node N3 is out of coverage of a cell.
  • step S31 receives the first information, third information received in step S32, in step unit of a collection unit set the target frequency is determined in S33 when the frequency from the Q Alternatively, at step In S34, X measurements are performed in X time-frequency units, the first measurement is performed in step S35, the Y measurement is performed in the third time window in step S36, and the second information is received in step S37. The first signaling is sent in S38, and the first wireless signal is sent in step S39.
  • the first communication node to the other U4 received first signaling in step S41, the first radio signal received in step S42.
  • the X measurements are used to obtain X first-type measurements, where X is a positive integer; the first measurement is used to obtain second-type measurements; the Xth A type of measurement value is used for the first measurement, and a second type of measurement value obtained by performing the first measurement is used to determine an MCS used by the first wireless signal and occupied by the first wireless signal.
  • At least one of the time-frequency resources; the number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal;
  • the X1 first-type measurement values among the X first-type measurement values are all larger than the target threshold.
  • the second-type measurement value obtained by performing the first measurement is equal to the ratio of the X1 and the X, and the X1 is A non-negative integer not greater than X, the first information is used to determine the target threshold; the first signaling is used to indicate ⁇ MCS used by the first wireless signal, the first Time-frequency resources occupied by a wireless signal, sub-carriers of a sub-carrier occupied by the first wireless signal Interval ⁇ , the first signaling is transmitted over the air interface; the X time-frequency units belong to the first time window in the time domain, and the first measurement is performed in the second time window, the The end time of the first time window is not later than the start time of the second time window, and the end time of the second time window is not later than the start time of sending the first wireless signal; The second type of measurement value obtained by the measurement belongs to the target interval, the target interval is one of the P candidate intervals, and any one of the P candidate intervals is a positive rational number interval.
  • P candidate intervals correspond one-to-one with P candidate MCS sets, the P candidate intervals correspond one-to-one with P candidate resource quantity value sets, and P is a positive integer greater than 1;
  • the candidate MCS set in the P candidate MCS sets corresponding to the target interval is the first MCS set, and the candidate resource quantity value set in the P candidate resource quantity value sets corresponding to the target interval is the first A resource quantity value set;
  • the second information is used to determine the At least one of the MCS used by a wireless signal and the time-frequency resource occupied by the first wireless signal, the MCS used by the first wireless signal is an MCS in the first MCS set, and the first The number of time-frequency resources occupied by a wireless signal is equal to a resource quantity value in the first resource quantity value set;
  • the third information is used to determine a subcarrier of a subcarrier occupied by the first wireless signal Interval;
  • the second type of measurement value obtained by performing the first measurement is used to determine the first upper limit, and the sum of the Y
  • the amount of time-frequency resources occupied is related; the subcarrier interval of the subcarriers occupied by the first wireless signal is the target subcarrier interval, and the target subcarrier interval is one of the Q candidate subcarrier intervals.
  • the characteristic measurement value is a first-type measurement value among the X first-type measurement values, and the measurement used to obtain the characteristic measurement value in the X measurements is in a characteristic time-frequency unit.
  • the characteristic time-frequency unit is one of the X time-frequency units.
  • the characteristic time-frequency unit includes X2 multi-carrier symbols in the time domain.
  • the characteristic measurement value is The average value of the sum of the received powers in each of the X2 multicarrier symbols in the frequency domain resources of the characteristic time-frequency unit.
  • the X measurements belong to a group of measurements in the Q group of measurements, and the Q group of measurements are directed to the Q candidate time-frequency unit set one by one, and the Q group of measurements are used to obtain Q Group of first-type measurement values, the X first-type measurement values belong to a group of first-type measurement values in the Q-group first-type measurement value, and the target subcarrier interval is used in the Q-group
  • the first type of measurement value determines a set of first type measurement values to which the X first type measurement values belong.
  • the air interface is wireless.
  • the air interface includes a wireless channel.
  • the air interface includes a side link.
  • the air interface is a PC5 interface.
  • the first signaling includes physical layer information.
  • the first signaling is a physical layer signaling transmission.
  • the first signaling includes all or part of a piece of physical layer information.
  • the first signaling is broadcast.
  • the first signaling is multicast.
  • the first signaling is unicast.
  • the first signaling is cell-specific.
  • the first signaling is user-specific.
  • the first signaling is transmitted through a PSCCH (Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel
  • the first signaling includes all or part of a SCI (Sidelink Control Information) accompanying field control (Field).
  • SCI Segment Control Information
  • Field Field
  • the first signaling includes an SA (Scheduling Assignment) of the first wireless signal.
  • the first signaling is used to indicate ⁇ MCS used by the first wireless signal, time-frequency resources occupied by the first wireless signal, and sub-bands occupied by the first wireless signal.
  • At least one of the subcarrier intervals of the carrier ⁇ means: the first signaling is used to directly indicate ⁇ the MCS used by the first wireless signal, the time-frequency resources occupied by the first wireless signal, Said at least one of the subcarrier spacing of the subcarriers occupied by the first wireless signal ⁇ .
  • the first signaling is used to indicate ⁇ MCS used by the first wireless signal, time-frequency resources occupied by the first wireless signal, and sub-bands occupied by the first wireless signal.
  • At least one of the subcarrier intervals of the carrier ⁇ means: the first signaling is used to indirectly indicate ⁇ the MCS used by the first wireless signal, the time-frequency resource occupied by the first wireless signal, Said at least one of the subcarrier spacing of the subcarriers occupied by the first wireless signal ⁇ .
  • the first signaling is used to indicate ⁇ MCS used by the first wireless signal, time-frequency resources occupied by the first wireless signal, and sub-bands occupied by the first wireless signal.
  • At least one of the subcarrier intervals of the carrier ⁇ means: the first signaling is used to explicitly indicate ⁇ the MCS used by the first wireless signal, and the time-frequency resources occupied by the first wireless signal , At least one of a subcarrier interval ⁇ of the subcarriers occupied by the first wireless signal.
  • the first signaling is used to indicate ⁇ MCS used by the first wireless signal, time-frequency resources occupied by the first wireless signal, and sub-bands occupied by the first wireless signal.
  • At least one of the subcarrier intervals of the carrier ⁇ means: the first signaling is used to implicitly indicate ⁇ the MCS used by the first wireless signal, and the time-frequency resources occupied by the first wireless signal , At least one of a subcarrier interval ⁇ of the subcarriers occupied by the first wireless signal.
  • Embodiment 8 illustrates a relationship between X time-frequency units and a first wireless signal according to an embodiment of the present application, as shown in FIG. 8.
  • the horizontal axis represents time
  • the vertical axis represents frequency.
  • Each rectangle without a solid line represents one of the X time-frequency units, and each rectangle with no dashed lines represents X time-frequency units
  • the rectangle filled with diagonal lines represents the first wireless signal.
  • the first type communication node in the present application performs X measurements in X time-frequency units, and the X measurements are used to obtain X first type measurement values, respectively.
  • X is a positive integer; then a first measurement is performed, said first measurement is used to obtain a second type of measurement value; then a first wireless signal is sent; wherein said X first type of measurement values are used for said first Measurement, and a second type of measurement value obtained by performing the first measurement is used to determine at least one of an MCS used by the first wireless signal and a time-frequency resource occupied by the first wireless signal; the The number of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal.
  • Embodiment 9 illustrates a relationship between a characteristic time-frequency unit and X2 multi-carrier symbols according to an embodiment of the present application, as shown in FIG. 9.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • a rectangle filled with each diagonal line represents one of the X2 multi-carrier symbols
  • a thick-line rectangle represents a characteristic time-frequency unit.
  • the characteristic measurement value is one of the X first type measurement values, and the first measurement value among the X measurements in the present application is used to obtain the characteristic measurement value.
  • a characteristic time-frequency unit which is one time-frequency unit among the X time-frequency units in the application, and the characteristic time-frequency unit includes X2 multi-carrier symbols in the time domain .
  • the characteristic measurement value is an average value of the sum of the received powers in each of the X2 multi-carrier symbols in the frequency-domain resources of the characteristic time-frequency unit.
  • the characteristic measurement value may be any one of the X first type measurement values of the first type measurement value.
  • each of the X time-frequency units includes a positive integer number of multi-carrier symbols in the time domain.
  • each of the X time-frequency units includes X2 multi-carrier symbols in a time domain that can be used for one measurement among the X measurements.
  • the characteristic time-frequency unit includes only the X2 multi-carrier symbols in a time domain.
  • the characteristic time-frequency unit further includes a multi-carrier symbol other than the X2 multi-carrier symbols in a time domain.
  • the time-domain position of the X2 multi-carrier symbols in the characteristic time-frequency unit is predefined.
  • the time-domain position of the X2 multi-carrier symbols in the characteristic time-frequency unit is fixed.
  • the time-domain position of the X2 multi-carrier symbols in the characteristic time-frequency unit is configurable.
  • the time-domain position of the X2 multicarrier symbols in the characteristic time-frequency unit is related to a subcarrier interval of a subcarrier occupied by the first wireless signal.
  • any one of the X measurements is performed within a frequency domain resource occupied by a time-frequency unit of the X time-frequency units performing the measurement.
  • the characteristic measurement value is an average value of the sum of the received powers in each of the X2 multi-carrier symbols in the frequency-domain resources of the characteristic time-frequency unit means: Within the occupied frequency domain resources of the characteristic time-frequency unit, measurements in the X measurements of the X2 multi-carrier symbols are respectively obtained X2 power values, and the characteristic measurement values are equal to the X2 The sum of the power values is divided by X2.
  • Embodiment 10 is a schematic diagram showing a relationship between a first time window and a second time window according to an embodiment of the present application, as shown in FIG. 10.
  • the horizontal axis represents time.
  • the X time-frequency units in the present application belong to the first time window in the time domain.
  • the first measurement in the present application is performed in the second time window.
  • the first time window The end time of is not later than the start time of the second time window, and the end time of the second time window is not later than the start time of sending the first wireless signal of the present application.
  • only the time domain resources in the X time-frequency units are included in the first time window.
  • the first time window further includes time domain resources other than time domain resources in the X time frequency units.
  • the first time window is used to determine the X time-frequency units.
  • the X time-frequency units are all in the carrier (Carrier) to which the frequency domain resource of the first wireless signal belongs, which can be used for S-RSSI measurement in the first time window.
  • Time-frequency unit is the carrier (Carrier) to which the frequency domain resource of the first wireless signal belongs, which can be used for S-RSSI measurement in the first time window.
  • the time length of the first time window is fixed.
  • the time length of the first time window is 100 milliseconds.
  • the time length of the first time window is pre-configured.
  • the time length of the first time window is Pre-defined.
  • the time length of the first time window is configurable.
  • a time length of the first time window is related to a subcarrier interval of a subcarrier occupied by the first wireless signal.
  • the end time of the first time window is the start time of the second time window.
  • the end time of the first time window is earlier than the start time of the second time window.
  • the time length of the second time window is fixed.
  • the time length of the second time window is pre-configured.
  • the time length of the second time window is 1 millisecond.
  • the time length of the second time window is pre-defined.
  • the time length of the second time window is configurable.
  • a time length of the second time window is related to a subcarrier interval of a subcarrier occupied by the first wireless signal.
  • an end time of the second time window is a transmission start time of the first wireless signal.
  • an end time of the second time window is earlier than a transmission start time of the first wireless signal.
  • performing the first measurement takes all the time in the second time window.
  • performing the first measurement occupies part of the time in the second time window.
  • Embodiment 11 illustrates a schematic diagram of the relationship among P candidate intervals, P candidate MCS sets, and P candidate resource quantity value sets according to an embodiment of the present application, as shown in FIG. 11.
  • the second column on the left represents P candidate intervals
  • the third column on the left represents P candidate MCS sets, where each value represents an MCS index value
  • the fourth column on the left represents the number of P candidate resources.
  • the value set in bold font, respectively represents the target interval, the first MCS set, and the first candidate resource number set.
  • the second type of measurement value obtained by performing the first measurement belongs to a target interval, and the target interval is one of P candidate intervals, and any one of the P candidate intervals is prepared.
  • the selection interval is a positive rational number interval.
  • the P candidate intervals correspond to the P candidate MCS set one-to-one, and the P candidate intervals correspond to the P candidate resource quantity value set.
  • the candidate MCS set in the P candidate MCS sets corresponding to the target interval is the first MCS set, and the number of P candidate resources corresponding to the target interval is
  • the set of candidate resource quantity values in the set is a first resource quantity value set;
  • the MCS used by the first wireless signal is an MCS in the first MCS set, and the time-frequency occupied by the first wireless signal
  • the number of resources is equal to one resource quantity value in the first resource quantity value set.
  • the interval lengths of any two candidate intervals among the P candidate intervals are equal.
  • the interval lengths of two candidate intervals in the P candidate intervals are not equal.
  • any two candidate intervals among the P candidate intervals are orthogonal.
  • any two candidate intervals among the P candidate intervals are disjoint.
  • any two candidate intervals among the P candidate intervals are non-overlapping.
  • two candidate intervals among the P candidate intervals are partially intersecting.
  • two candidate intervals among the P candidate intervals are partially overlapped.
  • any one of the P candidate MCS sets includes a positive integer MCS (Modulation Coding Scheme).
  • the MCSs included in any two candidate MCS sets of the P candidate MCS sets are different.
  • the P candidate MCS sets include two candidate MCS sets including the same MCS.
  • the number of MCSs included in any two candidate MCS sets in the P candidate MCS sets is the same.
  • the number of MCSs included in the two candidate MCS sets in the P candidate MCS sets are different.
  • the P candidate MCS sets are predefined.
  • the P candidate MCS sets are pre-configured.
  • the P candidate MCS sets are configurable.
  • the one-to-one correspondence between the P candidate intervals and the P candidate MCS set is predefined.
  • the one-to-one correspondence between the P candidate intervals and the P candidate MCS set is fixed.
  • the one-to-one correspondence between the P candidate intervals and the P candidate MCS set is configurable.
  • the P candidate resource quantity value set is pre-defined.
  • the P candidate resource quantity value set is pre-configured.
  • the P candidate resource quantity value set is configurable.
  • any two resource quantity values included in any two candidate resource quantity value sets in the P candidate resource quantity value sets are not equal.
  • the existence of the two candidate resource quantity value sets in the P candidate resource quantity value sets exists and the resource quantity values respectively included in the existence of the two candidate resource quantity value sets are equal.
  • the number of resource quantity values respectively included in any two of the P candidate resource quantity value sets is equal.
  • two resource quantity values respectively included in the two candidate resource quantity value sets are not equal.
  • the one-to-one correspondence between the P candidate intervals and the P candidate resource quantity value set is pre-defined.
  • the one-to-one correspondence between the P candidate intervals and the P candidate resource quantity value set is pre-configured.
  • the one-to-one correspondence between the P candidate intervals and the P candidate resource quantity value set is fixed.
  • the one-to-one correspondence between the P candidate intervals and the P candidate resource quantity value set is configurable.
  • Embodiment 12 illustrates a schematic diagram of Y measurements according to an embodiment of the present application, as shown in FIG. 12.
  • the horizontal axis represents time
  • each rectangle represents a time-frequency resource occupied by a wireless signal sent by a sender of the first wireless signal in the third time window
  • a rectangle with a thick line frame represents For the time-frequency resource occupied by the first wireless signal, different filled rectangles are used to represent that the time-frequency resource is used for different measurements in the Y measurements.
  • the first type of communication node in the present application performs Y measurements in a third time window, and the Y measurements are used to obtain Y third type measurement values, respectively, where Y is positive An integer; the second type of measurement value obtained by performing the first measurement in this application is used to determine the first upper limit, and the sum of the Y third type of measurement values is not greater than the first upper limit,
  • the time domain positions of the three time windows are related to the time-frequency resources occupied by the first wireless signal in this application.
  • the Y third-type measurement values and the sender of the first wireless signal are in the third The amount of time-frequency resources occupied by the wireless signals sent in the time window is related.
  • any one of the Y measurements is a measurement of CR (Channel Occupancy Ratio).
  • any one of the Y measurements is a measurement of CQ (Channel Occupancy Quantity).
  • any one of the Y measurements and the first measurement in this application belong to two different types of measurements.
  • any one of the Y measurements and any one of the X measurements in this application belong to two different types of measurements.
  • any one of the Y measurements is used to determine a channel occupation state of the measured channel.
  • any one of the Y measurements is used to determine a channel occupancy state in the measured frequency range.
  • the Y measurements correspond to Y PPPP (ProSe Per-Packet Priority).
  • any one of the Y measurements is a CR (Channel Occupancy Ratio) measurement under PPPP.
  • any one of the Y third-type measurement values is a CR (Channel Occupancy Ratio) value.
  • any one of the Y third-type measurement values is a value of CQ (Channel Occupancy Quantity).
  • the Y third type of measurement values are CR (Channel Occupancy Ratio) values corresponding to Y PPPP (ProSe Per-Packet Priority).
  • the Y third-type measurement values correspond to Y PPPP (ProSe Per-Packet Priority), and the PPPP to which the data packet carried by the first wireless signal belongs is The smallest PPPP among the Y PPPPs.
  • the Y third measurement values correspond to Y levels, respectively, and the level to which the data packet carried by the first wireless signal belongs is the lowest level among the Y levels.
  • the Y third-type measurement values are corresponding to Y rank indexes, and the rank index of the rank to which the data packet carried by the first wireless signal is equal to the smallest index of the Y rank indexes. value.
  • the first signaling in this application is also used to determine the first upper limit.
  • the second type of measurement value obtained by performing the first measurement is used to determine the first upper limit means that the second type of measurement value obtained by performing the first measurement is determined by the first
  • the class communication node is configured to determine the first upper limit.
  • the second type of measurement value obtained by performing the first measurement is used to determine the first upper limit means that the second type of measurement value obtained by performing the first measurement is based on a given mapping The relationship determines the first upper limit.
  • the second type of measurement value obtained by performing the first measurement is used to determine the first upper limit means that the second type of measurement value obtained by performing the first measurement is based on a given function The relationship determines the first upper limit.
  • the use of the second type of measurement value obtained by performing the first measurement to determine the first upper limit refers to determining the second type of measurement value obtained by performing the first measurement based on the corresponding relationship.
  • the first upper limit is described, and the corresponding relationship is predefined.
  • the use of the second type of measurement value obtained by performing the first measurement to determine the first upper limit refers to determining the second type of measurement value obtained by performing the first measurement based on the corresponding relationship.
  • the corresponding relationship is configurable.
  • the second type of measurement value obtained by performing the first measurement is used to determine the first upper limit means that the P candidate intervals and P candidate upper limits in the present application are one by one.
  • the first upper limit is an alternative upper limit among the P alternative upper limits corresponding to the target upper limit in the present application, and the one-to-one correspondence between the P alternative intervals and the P alternative upper limits is stable.
  • the second type of measurement value obtained by performing the first measurement is used to determine the first upper limit means that the P candidate intervals and P candidate upper limits in the present application are one by one.
  • the first upper limit is an alternative upper limit among the P alternative upper limits corresponding to the target upper limit in the present application, and the one-to-one correspondence between the P alternative intervals and the P alternative upper limits is Configurable.
  • the time length of the third time window is pre-configured.
  • a time length of the third time window is fixed.
  • the time length of the third time window is equal to 1 second.
  • the time length of the third time window is predefined.
  • the time length of the third time window is configurable.
  • the time length of the third time window is determined by the first type of communication node.
  • the time domain position of the third time window is related to the time-frequency resource occupied by the first wireless signal means that the end time of the third time window is no later than the first wireless signal The start time of sending.
  • the fact that the time domain position of the third time window is related to the time-frequency resource occupied by the first wireless signal means that the end time of the third time window is no later than the first wireless signal.
  • the time domain position of the third time window is determined by the first type of communication node.
  • the time-domain position of the third time window is related to the time-frequency resource occupied by the first wireless signal means that the time-frequency resource occupied by the first wireless signal is used to determine the time-frequency resource occupied by the first wireless signal.
  • the time domain position of the third time window is related to the time-frequency resource occupied by the first wireless signal.
  • the fact that the time domain position of the third time window is related to the time-frequency resource occupied by the first wireless signal means that the third time window includes information occupied by the first wireless signal The time domain resources and the reserved time domain resources configured in the scheduling (Grant) of the first wireless signal.
  • the fact that the time domain position of the third time window is related to the time-frequency resource occupied by the first wireless signal means that the third time window includes information occupied by the first wireless signal The time domain resources and the reserved time domain resources configured in the scheduling (Grant) of the first wireless signal.
  • the time-domain position of the third time window is related to the time-frequency resources occupied by the first wireless signal means that the third time window does not include any scheduling of the first wireless signal. (Grant) Reserved time domain resources.
  • the time-domain position of the third time window is related to the time-frequency resources occupied by the first wireless signal means that the third time window is divided into a first sub-time window and a first Two sub-time windows, the length of time of the first sub-time window is determined by the first type of communication node, and the second sub-time window includes time domain resources occupied by the first wireless signal And the reserved time domain resources configured in the scheduling (Grant) of the first wireless signal.
  • the fact that the time domain position of the third time window is related to the time-frequency resource occupied by the first wireless signal means that the end time of the third time window is no later than the first wireless signal.
  • the time domain position of the third time window is determined by the first type of communication node itself.
  • the time-domain position of the third time window is related to the time-frequency resources occupied by the first wireless signal means that the third time window is divided into a first sub-time window and a first Two sub-time windows, the time length of the first sub-time window is determined by the first type of communication node by itself if the time length is not less than a length threshold, and the end time of the second sub-time window is no later than The latest end time of the reserved time domain resources configured in the scheduling (Grant) of the first wireless signal.
  • the relationship between the Y third measurement values and the amount of time-frequency resources occupied by the wireless signal sent by the sender of the first wireless signal in the third time window refers to:
  • the Y third-type measurement values correspond to Y levels, respectively, and the Y third-type measurement values are wireless signals of the corresponding levels sent by the sender of the first wireless signal in the third time window.
  • the amount of time-frequency resources occupied refers to:
  • the relationship between the Y third measurement values and the amount of time-frequency resources occupied by the wireless signal sent by the sender of the first wireless signal in the third time window refers to:
  • the Y third-type measurement values correspond to Y levels, respectively, and the Y third-type measurement values are wireless signals of the corresponding levels sent by the sender of the first wireless signal in the third time window.
  • Embodiment 13 illustrates a schematic diagram of a relationship between Q candidate subcarrier intervals and Q candidate time-frequency unit sets according to an embodiment of the present application, as shown in FIG. 13.
  • the horizontal axis represents time
  • the vertical axis represents frequency.
  • the Q candidate subcarrier intervals are 15KHz, 30KHz, and 60KHz, respectively.
  • Each unfilled rectangle on the solid line represents the candidate in the corresponding subcarrier interval.
  • Each dashed and unfilled rectangle represents a time-frequency unit other than the time-frequency unit set individually selected by Q.
  • the first type of communication node in the present application determines the target time-frequency unit set from the Q candidate time-frequency unit set; wherein the sub-band occupied by the first wireless signal in the present application
  • the subcarrier interval of a carrier is a target subcarrier interval
  • the target subcarrier interval is one of the candidate subcarrier intervals among the Q candidate subcarrier intervals.
  • the Q is a positive integer greater than 1.
  • the X time-frequency The unit belongs to the target time-frequency unit set, and the Q candidate subcarrier intervals correspond to the Q candidate time-frequency unit set one-to-one.
  • the set of Q candidate time-frequency units is pre-confiugred.
  • the set of Q candidate time-frequency units is Pre-defined.
  • the set of Q candidate time-frequency units is fixed.
  • the set of Q candidate time-frequency units is configurable.
  • the correspondence between the Q candidate subcarrier intervals and the Q candidate time-frequency unit set is pre-configured.
  • the correspondence between the Q candidate subcarrier intervals and the Q candidate time-frequency unit set is fixed.
  • the correspondence between the Q candidate subcarrier intervals and the Q candidate time-frequency unit set is pre-defined.
  • the correspondence between the Q candidate subcarrier intervals and the Q candidate time-frequency unit set is configurable.
  • determining the target time-frequency unit set from the Q candidate time-frequency unit sets includes: an arrangement order of the target subcarrier interval in the Q candidate sub-carrier intervals is used for The target time-frequency unit set is determined from the Q candidate time-frequency unit sets.
  • determining the target time-frequency unit set from the Q candidate time-frequency unit sets includes: an index of the target sub-carrier interval in the Q candidate sub-carrier intervals is used in The target time-frequency unit set is determined from the Q candidate time-frequency unit sets.
  • determining the target time-frequency unit set from the Q candidate time-frequency unit sets includes: the size order of the target subcarrier interval among the Q candidate sub-carrier intervals is used for The target time-frequency unit set is determined from the Q candidate time-frequency unit sets.
  • determining the target time-frequency unit set from the Q candidate time-frequency unit sets includes: a candidate corresponding to the target subcarrier interval in the Q candidate time-frequency unit sets.
  • the time-frequency unit set is the target time-frequency unit set.
  • any two candidate subcarrier intervals among the Q candidate subcarrier intervals are not equal.
  • two candidate subcarrier intervals in the Q candidate subcarrier intervals are equal.
  • At least two candidate subcarrier intervals in the Q candidate subcarrier intervals are not equal.
  • the interval of the Q candidate subcarriers is related to a frequency domain position of a frequency domain resource occupied by the first wireless signal.
  • the Q candidate subcarrier intervals are related to a carrier frequency range (Frequency Range) of a carrier to which a frequency domain resource occupied by the first wireless signal belongs.
  • the carrier frequency of the carrier to which the frequency domain resource occupied by the first wireless signal belongs is not greater than 6 GHz (Frequency Range 1)
  • the interval of the Q candidate subcarriers includes 15 kHz and 30 kHz And 60 kHz
  • the Q is not less than 3
  • the carrier frequency of the carrier to which the frequency domain resource occupied by the first wireless signal belongs is greater than 6 GHz (Frequency Range 2)
  • the Q candidate subcarrier intervals Including 120kHz and 240kHz, the Q is not less than 2.
  • the carrier frequency of the carrier to which the frequency domain resource occupied by the first wireless signal belongs is not greater than 6 GHz (Frequency Range 1)
  • the interval of the Q candidate subcarriers includes 15 kHz and 30 kHz And 60 kHz
  • the Q is not less than 3
  • the carrier frequency of the carrier to which the frequency domain resource occupied by the first wireless signal belongs is greater than 6 GHz (Frequency Range 2)
  • the Q candidate subcarrier intervals Including 60kHz, 120kHz, 240kHz, and 480kHz, the Q is not less than 4.
  • the target time-frequency unit set includes only the X time-frequency units.
  • the target time-frequency unit set further includes time-frequency resources other than the X time-frequency units.
  • the X time-frequency units are time-frequency units other than the time-frequency units in the target time-frequency unit set used for transmission by the first type of communication node.
  • the X time-frequency units are all time-frequency units in the target time-frequency unit set that can be used to obtain a first type of measurement value.
  • Embodiment 14 illustrates a relationship between a target subcarrier interval and a group of first-type measurement values to which X first-type measurement values belong according to an embodiment of the present application, as shown in FIG. 14.
  • the first column from the left represents the frequency range (FR, Frequency Range) to which the frequency domain resources of the signals sent by the first type of communication nodes in this application belong
  • the second column from the left represents the first The subcarrier spacing of the subcarriers occupied by the class communication nodes.
  • the blackened table elements represent the target subcarrier spacing and the X first A category of measurements belongs to a group of measurements of the first category.
  • the X measurements in this application belong to a group of measurements in the Q group of measurements, and each of the Q group of measurements is directed to the set of Q candidate time-frequency units in the application.
  • the Q-group measurement is used to obtain Q-group first-type measurement values.
  • the X first-type measurement values in this application belong to a group of first-group measurement values in the Q-group first-type measurement value.
  • the target subcarrier interval in the application is used to determine a set of first-type measurement values to which the X first-type measurement values belong in the Q-group first-type measurement values.
  • the first type of communication node performs all measurements in each group of measurements in the Q group of measurements.
  • the first-type communication node has each first-type measurement value in the Q-group first-type measurement value.
  • the first type of communication node performs all measurements in each group of the Q group measurements before sending the first wireless signal.
  • the first type of communication node is required to perform all measurements in each of the Q group measurements before transmitting the first wireless signal.
  • the first-type communication node stores the Q-group first-type measurement values before sending the first wireless signal.
  • the first-type communication node is required to store the Q-group first-type measurement value before transmitting the first wireless signal.
  • the target subcarrier interval is used to determine a set of first-type measurement values to which the X first-type measurement values belong in the Q-group first-type measurement values: the target The subcarrier interval is used to determine a set of first-type measurement values to which the X first-type measurement values belong in the Q-group first-type measurement values based on the correspondence relationship.
  • the target subcarrier interval is used to determine a set of first-type measurement values to which the X first-type measurement values belong in the Q-group first-type measurement values: the target The arrangement order of the subcarrier intervals in the Q candidate subcarrier intervals is used to determine a set of first-type measurement values to which the X first-type measurement values belong in the Q-group first-type measurement values. .
  • the target subcarrier interval is used to determine a set of first-type measurement values to which the X first-type measurement values belong in the Q-group first-type measurement values: the target The order of the size of the subcarrier interval in the Q candidate subcarrier intervals is used to determine a set of first-type measurement values to which the X first-type measurement values belong in the Q-group first-type measurement values. .
  • the target subcarrier interval is used to determine a set of first-type measurement values to which the X first-type measurement values belong in the Q-group first-type measurement values: the target An index of a subcarrier interval in the Q candidate subcarrier intervals is used to determine a set of first-type measurement values to which the X first-type measurement values belong in the Q-group first-type measurement values.
  • the target subcarrier interval is used to determine a set of first-type measurement values to which the X first-type measurement values belong in the Q-group first-type measurement values: the target The set of first-type measurement values corresponding to the sub-carrier interval in the Q-type first-type measurement value is a set of first-type measurement values to which the X first-type measurement values belong.
  • the target subcarrier interval is used to determine a set of first-type measurement values to which the X first-type measurement values belong in the Q-group first-type measurement values: the Q A group of the first type of measurement values in the first group of Q group measurement values obtained for the target time-frequency unit set in the group measurement is a group of the first type described in the X first type measurement values. Measurements.
  • Embodiment 15 illustrates a structural block diagram of a processing apparatus in a first type of communication node device according to an embodiment, as shown in FIG. 15.
  • the first-type communication node device processing apparatus 1500 includes a first measuring device 1501, a second measuring device 1502, and a first transceiver 1503.
  • the first measuring device 1501 includes the receiver 456 (including the antenna 460), the receiving processor 452 and the controller / processor 490 in FIG. 4 of the present application, or the first measuring device 1501 includes the receiver in FIG. 5 of the present application. 516 (including antenna 520), receiving processor 512 and controller / processor 540;
  • the second measuring device 1502 includes the controller / processor 490 in FIG. 4 of the present application, or includes the controller in FIG.
  • the first transceiver 1503 includes the receiver / transmitter 456 (including the antenna 460), the receiving processor 452, the transmitting processor 455, and the controller / processor 490 in FIG. 4 of the present application, or the first The transceiver 1503 includes a receiver / transmitter 516 (including an antenna 460), a receiving processor 512, a transmitting processor 515, and a controller / processor 540 in FIG. 5 of the present application.
  • the first measurer 1501 performs X measurements in X time-frequency units, and the X measurements are used to obtain X first type measurement values, where X is a positive integer;
  • the second The measurer 1502 performs a first measurement, the first measurement is used to obtain a second type of measurement value;
  • the first transceiver 1503 sends a first wireless signal; wherein the X first type measurement values are used for the A first measurement, and a second type of measurement value obtained by performing the first measurement is used to determine at least one of an MCS adopted by the first wireless signal and a time-frequency resource occupied by the first wireless signal;
  • a quantity of time-frequency resources occupied by one time-frequency unit among the X time-frequency units is related to a subcarrier interval of a subcarrier occupied by the first wireless signal.
  • the first transceiver 1503 further receives the first information; wherein, among the X first type measurement values, X1 first type measurement values are all larger than a target threshold, and the result obtained by performing the first measurement is The second type of measurement value is equal to the ratio of X1 to X.
  • X1 is a non-negative integer not greater than X.
  • the first information is used to determine the target threshold.
  • the characteristic measurement value is a first-type measurement value among the X first-type measurement values, and the measurement used to obtain the characteristic measurement value in the X measurements is in a characteristic time-frequency unit.
  • the characteristic time-frequency unit is one of the X time-frequency units.
  • the characteristic time-frequency unit includes X2 multi-carrier symbols in the time domain.
  • the characteristic measurement value is The average value of the sum of the received powers in each of the X2 multicarrier symbols in the frequency domain resources of the characteristic time-frequency unit.
  • the first transceiver 1503 further sends first signaling; wherein the first signaling is used to indicate ⁇ MCS used by the first wireless signal, and Time-frequency resources, at least one of the subcarrier spacing of the subcarriers occupied by the first wireless signal ⁇ , the first signaling is transmitted through an air interface; and the X time-frequency units belong to the first time in the time domain Window, the first measurement is performed in a second time window, the end time of the first time window is not later than the start time of the second time window, and the end time of the second time window is not later than At the transmission start time of the first wireless signal.
  • the first transceiver 1503 further receives second information; wherein the second type of measurement value obtained by performing the first measurement belongs to a target interval, and the target interval is one of P candidate intervals, Any one of the P candidate intervals is a positive rational number interval, the P candidate intervals correspond to the P candidate MCS set one-to-one, and the P candidate intervals are respectively P One candidate resource quantity value set corresponds one-to-one, and P is a positive integer greater than 1; the candidate MCS set in the P candidate MCS sets corresponding to the target interval is the first MCS set, and The candidate resource quantity value set in the P candidate resource quantity value sets corresponding to the target interval is the first resource quantity value set; the second information is used to determine the MCS and the MCS used by the first wireless signal.
  • the at least one of time-frequency resources occupied by the first wireless signal, the MCS used by the first wireless signal is an MCS in the first MCS set, and the time-frequency resources occupied by the first wireless signal
  • the quantity is equal to the first resource quantity value set The number one resource value.
  • the first transceiver 1503 further receives third information; wherein the third information is used to determine a subcarrier interval of a subcarrier occupied by the first wireless signal.
  • the second measurer 1502 also performs Y measurements in the third time window, and the Y measurements are used to obtain Y third types of measurement values, respectively, where Y is a positive integer;
  • the second type of measurement value obtained by the first measurement is used to determine a first upper limit, the sum of the Y third type of measurement values is not greater than the first upper limit, and the time domain position of the third time window sums
  • the time-frequency resource occupied by the first wireless signal is related to the Y third measurement values and the time occupied by the wireless signal sent by the sender of the first wireless signal in the third time window.
  • the amount of frequency resources is related.
  • the first transceiver 1503 further determines a target time-frequency unit set from the Q candidate time-frequency unit sets; wherein the subcarrier interval of the subcarriers occupied by the first wireless signal is the target subcarrier interval
  • the target subcarrier interval is one candidate subcarrier interval among the Q candidate subcarrier intervals, and the Q is a positive integer greater than 1; the X time-frequency units belong to the target time-frequency unit set,
  • the Q candidate subcarrier intervals correspond to the Q candidate time-frequency unit set one-to-one.
  • the first transceiver 1503 further determines a target time-frequency unit set from the Q candidate time-frequency unit sets; wherein the subcarrier interval of the subcarriers occupied by the first wireless signal is the target subcarrier interval
  • the target subcarrier interval is one candidate subcarrier interval among the Q candidate subcarrier intervals, and the Q is a positive integer greater than 1;
  • the X time-frequency units belong to the target time-frequency unit set,
  • the Q candidate subcarrier intervals correspond to the Q candidate time-frequency unit set one-to-one;
  • the X measurements belong to a group of measurements in the Q group of measurements, and the Q group of measurements are directed to the one by one A set of Q candidate time-frequency units, the Q group measurements are used to obtain Q group first type measurement values, and the X first type measurement values belong to a group of the Q group first type measurement values
  • the target subcarrier interval is used to determine a set of first-type measurement values to which the X first-type measurement values belong in the Q-
  • Embodiment 16 illustrates a structural block diagram of a processing apparatus in a second type of communication node device according to an embodiment, as shown in FIG. 16.
  • the second-type communication node device processing apparatus 1600 includes a first transmitter 1601.
  • the first transmitter 1601 includes a transmitter / receiver 416 (including an antenna 420), a transmission processor 415, and a controller / processor 440 in FIG. 4 of the present application.
  • the first transmitter 1601 sends the first information; wherein the X measurements performed in the X time-frequency units are respectively used to obtain X first type measurement values, where X is a positive integer
  • the X first measurement values of the first type are used for the first measurement
  • the first measurement is used for obtaining the second type of measurement values
  • the measurement value is equal to the ratio of the X1 to the X, the X1 is a non-negative integer not greater than the X, and the first information is used to determine the target
  • the characteristic measurement value is a first-type measurement value among the X first-type measurement values, and the measurement used to obtain the characteristic measurement value in the X measurements is in a characteristic time-frequency unit.
  • the characteristic time-frequency unit is one of the X time-frequency units.
  • the characteristic time-frequency unit includes X2 multi-carrier symbols in the time domain.
  • the characteristic measurement value is The average value of the sum of the received powers in each of the X2 multicarrier symbols in the frequency domain resources of the characteristic time-frequency unit.
  • the X time-frequency units belong to the first time window in the time domain, the first measurement is performed in the second time window, and the end time of the first time window is no later than the first time window.
  • the start time of the two time windows, and the end time of the second time window is not later than the start time of sending the first wireless signal.
  • the first transmitter 1601 further sends second information; wherein the second type of measurement value obtained by performing the first measurement belongs to a target interval, and the target interval is one of P candidate intervals, Any one of the P candidate intervals is a positive rational number interval, the P candidate intervals correspond to the P candidate MCS set one-to-one, and the P candidate intervals are respectively P One candidate resource quantity value set corresponds one-to-one, and P is a positive integer greater than 1; the candidate MCS set in the P candidate MCS sets corresponding to the target interval is the first MCS set, and The candidate resource quantity value set in the P candidate resource quantity value sets corresponding to the target interval is the first resource quantity value set; the second information is used to determine the MCS and the MCS used by the first wireless signal.
  • the at least one of time-frequency resources occupied by the first wireless signal, the MCS used by the first wireless signal is an MCS in the first MCS set, and the time-frequency resources occupied by the first wireless signal
  • the quantity is equal to the first resource quantity value set The number one resource value.
  • the first transmitter 1601 further sends third information; wherein the third information is used for a subcarrier interval of a subcarrier occupied by the first wireless signal.
  • the first type of communication node device or UE or terminal in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, and aircraft. Man-machine, remote control aircraft and other wireless communication equipment.
  • the second type of communication node equipment or base station or network side equipment in this application includes, but is not limited to, macro cell base stations, micro cell base stations, home base stations, relay base stations, eNBs, gNB, transmitting and receiving nodes TRP, relay satellites, and satellite base stations , Air base station and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于无线通信的通信节点中的方法和装置。通信节点首先在X个时频单元中分别执行X次测量,所述X次测量分别被用于得到X个第一类测量值,所述X是正整数;接着执行第一测量,所述第一测量被用于得到第二类测量值;然后发送第一无线信号;其中,所述X个第一类测量值被用于所述第一测量,执行所述第一测量所得到的第二类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关。本申请提高测量准确性。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中的测量的方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
针对迅猛发展的车联网(Vehicle-to-Everything,V2X)业务,3GPP也开始启动了在NR框架下的标准制定和研究工作。目前3GPP已经完成了面向5G V2X业务的需求制定工作,并写入标准TS22.886中。3GPP为5G V2X业务识别和定义了4大用例组(Use Case Group),包括:自动排队驾驶(Vehicles Platnooning),支持扩展传感(Extended Sensors),半/全自动驾驶(Advanced Driving)和远程驾驶(Remote Driving)。在3GPP RAN#80次全会上通过了NR V2X的技术研究工作项目(SI,Study Item)。
发明内容
5G NR和现有的LTE系统相比,一个显著的特征在于可以支持更加灵活的数理结构(Numerology),包括子载波间隔(SCS,Subcarrier Spacing),循环前缀(CP,Cyclic Prefix)长度,以及支持更加灵活的帧结构,包括对微时隙(Mini-slot),小时隙(Sub-slot)和多个时隙聚合(Slot Aggregation)。这种灵活的数理结构和灵活的帧结构可以更好地满足多种新的业务需求,尤其是垂直行业的非常多样性的业务需求。更加严格的负载均衡控制是车联网和传统的蜂窝网络相比的一个重要的特点,有效的负载控制可以降低业务冲突的概率,提高传输可靠性,这些对于车联网业务尤为关键。在LTE V2X系统中,设计的负载控制的测量机制是基于单一的数理结构(15kHz SCS,正常CP长度,1毫秒子帧长度)的,这无法满足5G NR V2X中对于更加灵活的数理结构的需求。
针对NR V2X中的测量的问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一类通信节点中的方法,其特征在于,包括:
在X个时频单元中分别执行X次测量,所述X次测量分别被用于得到X个第一类测量值,所述X是正整数;
执行第一测量,所述第一测量被用于得到第二类测量值;
发送第一无线信号;
其中,所述X个第一类测量值被用于所述第一测量,执行所述第一测量所得到的第二类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,本申请中的方法将所述X个时频单元中的时频单元所占用的时频资源的大小和所述第一无线信号所占用的子载波的子载波间隔(SCS)关联起来,从而可以使得针对第一类测量值的测量的颗粒度随着传输所采用的SCS而变化,提高测量的准确性,以及使得测量结果能够更加反应实际传输和实际调度的需求。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第一信息;
其中,所述X个第一类测量值中的X1个第一类测量值均大于目标阈值,执行所述第一测量所得到的第二类测量值等于所述X1和所述X的比值,所述X1是不大于所述X的非负整数,所述第一信息被用于确定所述目标阈值。
根据本申请的一个方面,上述方法的特征在于,特征测量值是所述X个第一类测量值中的一个第一类测量值,所述X次测量中的被用于得到所述特征测量值的测量在特征时频单元中被执行,所述特征时频单元为所述X个时频单元中的一个时频单元,所述特征时频单元中在时域包括X2个多载波符号,所述特征测量值为在所述特征时频单元的频域资源内的所述X2个多载波符号中的每个多载波符号中的接收功率的和的平均值。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第一信令;
其中,所述第一信令被用于指示{所述第一无线信号所采用的MCS,所述第一无线信号所占用的时频资源,所述第一无线信号所占用的子载波的子载波间隔}中至少之一,所述第一信令通过空中接口传输;所述X个时频单元在时域属于第一时间窗,所述第一测量在第二时间窗中被执行,所述第一时间窗的结束时刻不晚于所述第二时间窗的起始时刻,所述第二时间窗的结束时刻不晚于所述第一无线信号的发送起始时刻。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第二信息;
其中,执行所述第一测量所得到的第二类测量值属于目标区间,所述目标区间是P个备选区间中之一,所述P个备选区间中的任意一个备选区间为一个正的有理数区间,所述P个备选区间分别和P个备选MCS集合一一对应,所述P个备选区间分别和P个备选资源数量值集合一一对应,所述P是大于1的正整数;所述目标区间所对应的所述P个备选MCS集合中的备选MCS集合为第一MCS集合,所述目标区间所对应的P个备选资源数量值集合中的备选资源数量值集合为第一资源数量值集合;所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一,所述第一无线信号所采用的MCS是所述第一MCS集合中的一个MCS,所述第一无线信号所占用的时频资源的数量等于所述第一资源数量值集合中的一个资源数量值。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第三信息;
其中,所述第三信息被用于确定所述第一无线信号所占用的子载波的子载波间隔。
根据本申请的一个方面,上述方法的特征在于,还包括:
在第三时间窗中执行Y次测量,所述Y次测量被用于分别得到Y个第三类测量值,所述Y是正整数;
其中,执行所述第一测量所得到的第二类测量值被用于确定第一上限,所述Y个第三类测量值的和不大于所述第一上限,所述第三时间窗的时域位置和所述第一无线信号所占用的时频资源有关,所述Y个第三类测量值和所述第一无线信号的发送者在所述第三时间窗中所发送的无线信号所占用的时频资源的数量有关。
根据本申请的一个方面,上述方法的特征在于,还包括
从Q个备选时频单元集合中确定目标时频单元集合;
其中,所述第一无线信号所占用的子载波的子载波间隔为目标子载波间隔,所述目标子载波间隔是Q个备选子载波间隔中的一个备选子载波间隔,所述Q是大于1的正整数;所述X个时频单元属于所述目标时频单元集合,所述Q个备选子载波间隔和所述Q个备选时频单元集合一一对应。
根据本申请的一个方面,上述方法的特征在于,所述X次测量属于Q组测量中的一组测量,所述Q组测量分别一一针对所述Q个备选时频单元集合,所述Q组测量被用于得到Q组 第一类测量值,所述X个第一类测量值属于所述Q组第一类测量值中的一组第一类测量值,所述目标子载波间隔被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值。
作为一个实施例,所述第一类通信节点执行所述Q组测量,可以放宽所述第一无线信号的调度判决的时限要求,从而为采用不同的数理结构的突发业务也可以进行负载控制。
本申请公开了一种被用于无线通信的第二类通信节点中的方法,其特征在于,包括:
发送第一信息;
其中,在X个时频单元中分别被执行的X次测量被分别用于得到X个第一类测量值,所述X是正整数;所述X个第一类测量值被用于第一测量,所述第一测量被用于得到第二类测量值,执行所述第一测量所得到的第二类测量值被用于确定第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关;所述X个第一类测量值中的X1个第一类测量值均大于目标阈值,执行所述第一测量所得到的第二类测量值等于所述X1和所述X的比值,所述X1是不大于所述X的非负整数,所述第一信息被用于确定所述目标阈值。
根据本申请的一个方面,上述方法的特征在于,特征测量值是所述X个第一类测量值中的一个第一类测量值,所述X次测量中的被用于得到所述特征测量值的测量在特征时频单元中被执行,所述特征时频单元为所述X个时频单元中的一个时频单元,所述特征时频单元中在时域包括X2个多载波符号,所述特征测量值为在所述特征时频单元的频域资源内的所述X2个多载波符号中的每个多载波符号中的接收功率的和的平均值。
根据本申请的一个方面,上述方法的特征在于,所述X个时频单元在时域属于第一时间窗,所述第一测量在第二时间窗中被执行,所述第一时间窗的结束时刻不晚于所述第二时间窗的起始时刻,所述第二时间窗的结束时刻不晚于所述第一无线信号的发送起始时刻。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第二信息;
其中,执行所述第一测量所得到的第二类测量值属于目标区间,所述目标区间是P个备选区间中之一,所述P个备选区间中的任意一个备选区间为一个正的有理数区间,所述P个备选区间分别和P个备选MCS集合一一对应,所述P个备选区间分别和P个备选资源数量值集合一一对应,所述P是大于1的正整数;所述目标区间所对应的所述P个备选MCS集合中的备选MCS集合为第一MCS集合,所述目标区间所对应的P个备选资源数量值集合中的备选资源数量值集合为第一资源数量值集合;所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一,所述第一无线信号所采用的MCS是所述第一MCS集合中的一个MCS,所述第一无线信号所占用的时频资源的数量等于所述第一资源数量值集合中的一个资源数量值。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第三信息;
其中,所述第三信息被用于所述第一无线信号所占用的子载波的子载波间隔。
本申请公开了一种被用于无线通信的第一类通信节点设备,其特征在于,包括:
第一测量器,在X个时频单元中分别执行X次测量,所述X次测量分别被用于得到X个第一类测量值,所述X是正整数;
第二测量器,执行第一测量,所述第一测量被用于得到第二类测量值;
第一收发机,发送第一无线信号;
其中,所述X个第一类测量值被用于所述第一测量,执行所述第一测量所得到的第二类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中 至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关。
本申请公开了一种被用于无线通信的第二类通信节点设备,其特征在于,包括:
第一发射机,发送第一信息;
其中,在X个时频单元中分别被执行的X次测量被分别用于得到X个第一类测量值,所述X是正整数;所述X个第一类测量值被用于第一测量,所述第一测量被用于得到第二类测量值,执行所述第一测量所得到的第二类测量值被用于确定第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关;所述X个第一类测量值中的X1个第一类测量值均大于目标阈值,执行所述第一测量所得到的第二类测量值等于所述X1和所述X的比值,所述X1是不大于所述X的非负整数,所述第一信息被用于确定所述目标阈值。
作为一个实施例,和现有的LTE V2X中的方法相比,本申请具备如下优势:
-本申请中的方法可以使得针对负载状况的测量的颗粒度随着传输所采用的SCS而变化,提高测量的准确性,以及使得测量结果能够更加反应实际传输和实际调度的需求。
-本申请中的方法可以放宽对传输的调度判决的时限要求,从而为采用不同的数理结构的突发业务也可以进行负载控制。
-本申请中的方法可以有效地支持多种数理结构的传输的负载控制,从而能够支持更多样化的业务传输。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的X次测量,第一测量和发送第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一类通信节点设备和第二类通信节点设备的示意图;
图5示出了根据本申请的一个实施例的两个第一类通信节点设备的示意图;
图6示出了根据本申请的一个实施例的无线信号传输流程图;
图7示出了根据本申请的另一个实施例的无线信号传输流程图;
图8示出了根据本申请的一个实施例的X个时频单元和第一无线信号的关系的示意图;
图9示出了根据本申请的一个实施例的特征时频单元和X2个多载波符号的关系的示意图;
图10示出了根据本申请的一个实施例的第一时间窗和第二时间窗的关系的示意图;
图11示出了根据本申请的一个实施例的P个备选区间,P个备选MCS集合和P个备选资源数量值集合之间的关系的示意图;
图12示出了根据本申请的一个实施例的Y次测量的示意图;
图13示出了根据本申请的一个实施例的Q个备选子载波间隔和Q个备选时频单元集合的关系的示意图;
图14示出了根据本申请的一个实施例的目标子载波间隔和X个第一类测量值所属的一组第一类测量值的关系的示意图;
图15示出了根据本申请的一个实施例的第一类通信节点设备中的处理装置的结构框图;
图16示出了根据本申请的一个实施例的第二类通信节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的X次测量,第一测量和发送第一无线信号的流程图,如附图1所示。附图1中,每个方框代表一个步骤。在实施例1中,本申请中的第一类通信节点在步骤101中在X个时频单元中分别执行X次测量,所述X次测量分别被用于得到X个第一类测量值,所述X是正整数;在步骤102中执行第一测量,所述第一测量被用于得到第二类测量值;在步骤103中发送第一无线信号;其中,所述X个第一类测量值被用于所述第一测量,执行所述第一测量所得到的第二类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述X次测量中的任意一次测量是一次对功率的测量(Measurement)。
作为一个实施例,所述X次测量中的任意一次测量是一次对给定的时频资源上的平均功率的测量(Measurement)。
作为一个实施例,所述X次测量中的任意一次测量是一次对能量的测量(Measurement)。
作为一个实施例,所述X次测量中的任意一次测量是一次RSSI(Received Signal Strength Indicator,接收信号强度指示)的测量。
作为一个实施例,所述X次测量中的任意一次测量是一次S-RSSI(Sidelink Received Signal Strength Indicator,伴随链路接收信号强度指示)的测量。
作为一个实施例,所述X次测量中的任意一次测量是一次对功率的测量(Measurement),所测量的功率包括所测量的信道内的信号,相邻信道泄露到所测量的信道内的信号,所测量的信道内的干扰,热噪声等的功率。
作为一个实施例,所述X次测量中的任意一次测量是一次对能量的测量(Measurement),所测量的能量包括所测量的信道内的信号,相邻信道泄露到所测量的信道内的信号,所测量的信道内的干扰,热噪声等的能量。
作为一个实施例,所述X次测量中的任意一次测量是一次对功率的测量(Measurement),所测量的功率包括了CP(Cyclic Prefix,循环前缀)的功率。
作为一个实施例,所述X次测量中的任意一次测量是一次对能量的测量(Measurement),所测量的能量包括了CP(Cyclic Prefix,循环前缀)的能量。
作为一个实施例,所述X次测量中的任意一次测量包括频域的滤波。
作为一个实施例,所述X次测量中的任意一次测量包括在执行该次测量的所述X个时频单元中的时频单元的频域范围内的频域滤波。
作为一个实施例,所述X次测量中的任意一次测量包括高层的滤波器(Filter)的滤波。
作为一个实施例,所述X次测量中的任意一次测量包括高层的α滤波器(Filter)的滤波。
作为一个实施例,所述X个时频单元中的所有的时频资源都被用于所述X次测量中的至少一次测量。
作为一个实施例,所述X个时频单元中存在一个所包括的时频资源不被用于所述X次测量中的任意一次测量。
作为一个实施例,所述X个时频单元中存在一个所包括的时频资源被用于所述X次测量之外的测量。
作为一个实施例,所述X个第一类测量值中的任意一个第一类测量值是一个RSSI值。
作为一个实施例,所述X个第一类测量值中的任意一个第一类测量值是一个S-RSSI值。
作为一个实施例,所述X个第一类测量值中的任意一个第一类测量值是一个功率值。
作为一个实施例,所述X个第一类测量值中的任意一个第一类测量值是一个能量值。
作为一个实施例,所述X个第一类测量值中的任意一个第一类测量值的单位是瓦特(W)。
作为一个实施例,所述X个第一类测量值中的任意一个第一类测量值的单位是毫瓦特(mW)。
作为一个实施例,所述X个第一类测量值中的任意一个第一类测量值的单位是dBm。
作为一个实施例,所述X个第一类测量值中的任意一个第一类测量值的单位是焦耳。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述X个第一类测量值中的任意一个第一类测量值是在执行所对应的测量的时频单元的频率范围内的所包括的全部多载波符号(OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号或者SC-FDMA(Single Carrier Frequency Division Multiplexing Access,单载波频分复用接入)符号或者DFT-s-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩展正交频分复用)符号)中的接收功率的和的平均值。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述X个第一类测量值中的任意一个第一类测量值是在执行所对应的测量的时频单元的频率范围内的所包括的全部多载波符号(OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号或者SC-FDMA(Single Carrier Frequency Division Multiplexing Access,单载波频分复用接入)符号或者DFT-s-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩展正交频分复用)符号)中的接收能量的和的平均值。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述X个第一类测量值中的任意一个第一类测量值是在执行所对应的测量的时频单元的频率范围内的所包括的部分多载波符号(OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号或者SC-FDMA(Single Carrier Frequency Division Multiplexing Access,单载波频分复用接入)符号或者DFT-s-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩展正交频分复用)符号)中的接收功率的和的平均值。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述X个第一类测量值中的任意一个第一类测量值是在执行所对应的测量的时频单元的频率范围内的所包括的部分多载波符号(OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号或者SC-FDMA(Single Carrier Frequency Division Multiplexing Access,单载波频分复用接入)符号或者DFT-s-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩展正交频分复用)符号)中的接收能量的和的平均值。
作为一个实施例,所述X个时频单元中的任意两个时频单元中所包括的时频资源的数量相等,所述X大于1。
作为一个实施例,所述X个时频单元中的存在两个时频单元中所包括的时频资源的数量不等,所述X大于1。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述X个时频单元中的任意一个时频单元在频域占用一个子信道(Sub-channel),在时域占用一个时隙(Slot)。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述X个时频单元中的任意一个时频单元在频域占用正整数个连续的PRB(Physical Resource Block,物理资源块),在时域占用一个时隙(Slot)。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述X个时频单元中的任意一个时频单元在频域占用一个子信道(Sub-channel),在时域占用一个子帧(Subframe)。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述X个时频单元中的任意一个时频单元在频域占用正整数个连续的PRB(Physical Resource Block,物理资源块),在时域占用一个子帧(Subframe)。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述X个时频单元中的任意一个时频单元在频域占用一个子信道(Sub-channel),在时域占用正整数个连续的多载波符号。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述X个时频单元中的任意一个时频单元在频域占用正整数个连续的PRB(Physical Resource Block,物理资源块),在时域占用正整数个连续的多载波符号。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中所包括的频域资源的绝对数量。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中所包括的频域资源的频率间隔长度。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中在频域所包括的PRB的数量。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中在频域所包括的子信道(Sub-channel)的数量。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中在频域所包括的频域资源对应到15kHz的子载波的子载波的数量。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中在频域所包括的频域资源对应到60kHz的子载波的子载波的数量。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中所包括的时域资源的绝对数量。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中所包括的时域资源的时间间隔长度。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中在时域所包括的时隙(Slot)的数量。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中在时域所包括的多载波符号的数量。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中在时域所包括的时域资源对应到60kHz的子载波的多载波符号的数量。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中在时域所包括的时域资源对应到240kHz的子载波的多载波符号的数量。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中所包括的RE(Resource Element,资源元素)的数量,一个RE在时域占用一个多载波符号,在频域占用一个载波。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中所包括的基本时频资源粒子的数量,一个基本时频资源粒子在时域占用固定长度的连续的时域资源,在频域占用固定长度的连续的频率资源。
作为一个实施例,当所述第一无线信号所占用的频域资源属于FR1(Frequency Range 1,频率范围1)时,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频 单元中所包括的基本时频资源粒子的数量,一个基本时频资源粒子在时域占用正整数个连续的60kHz子载波所对应的多载波符号,在频域占用正整数个连续的15KHz的子载波。
作为一个实施例,当所述第一无线信号所占用的频域资源属于FR2(Frequency Range 2,频率范围2)时,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中所包括的基本时频资源粒子的数量,一个基本时频资源粒子在时域占用正整数个连续的240kHz子载波所对应的多载波符号,在频域占用正整数个连续的60KHz的子载波。
作为一个实施例,当所述第一无线信号所占用的频域资源属于FR2(Frequency Range 2,频率范围2)时,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中所包括的基本时频资源粒子的数量,一个基本时频资源粒子在时域占用正整数个连续的480kHz子载波所对应的多载波符号,在频域占用正整数个连续的60KHz的子载波。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量是指该时频单元中所包括的绝对的时频资源的数量。
作为一个实施例,所述X个时频单元在时域属于第四时间窗,所述第一测量在第五时间窗中被执行,所述第四时间窗的结束时刻不晚于所述第五时间窗的起始时刻,所述第五时间窗的结束时刻不晚于所述第一无线信号的发送起始时刻。
作为一个实施例,所述第一测量和所述X次测量中的任意一次测量属于两类不同的测量(Measurement)。
作为一个实施例,所述第一测量是一次对CBR(Channel Busy Ratio,信道忙碌比率)的测量。
作为一个实施例,所述第一测量是一次对CBQ(Channel Busy Quantity,信道忙碌数量)的测量。
作为一个实施例,所述第一测量被用于确定所测量的信道的信道占用状态。
作为一个实施例,所述第一测量被用于确定所测量的频率范围内的信道占用状态。
作为一个实施例,一个第二类测量值是一个CBR(Channel Busy Ratio,信道忙碌比率)值。
作为一个实施例,一个第二类测量值是一个CBQ(Channel Busy Quantity,信道忙碌数量)值。
作为一个实施例,所述X个第一类测量值中的X1个第一类测量值均大于一个阈值,执行所述第一测量所得到的第二类测量值等于所述X1和所述X的比值,所述X1是不大于所述X的非负整数;对于一个给定的子载波间隔(SCS),所述阈值是可配置的,或者所述阈值是固定的。
作为一个实施例,所述X个第一类测量值中的X1个第一类测量值均大于一个阈值,执行所述第一测量所得到的第二类测量值等于所述X1,所述X1是不大于所述X的非负整数,对于一个给定的子载波间隔(SCS),所述阈值是可配置的,或者所述阈值是固定的。
作为一个实施例,所述第一无线信号通过伴随链路(Sidelink)传输的。
作为一个实施例,所述第一无线信号通过PC5接口发送。
作为一个实施例,所述第一无线信号是单播的。
作为一个实施例,所述第一无线信号是组播的。
作为一个实施例,所述第一无线信号是广播的。
作为一个实施例,所述第一无线信号携带一个传输块(TB,Transport Block)。
作为一个实施例,所述第一无线信号通过数据信道传输的。
作为一个实施例,所述第一无线信号通过控制信道传输的。
作为一个实施例,所述第一无线信号既包括数据信号也包括控制信道。
作为一个实施例,所述第一无线信号通过SL-SCH(Sidelink Shared Channel,伴随链路共享信道)传输。
作为一个实施例,所述第一无线信号通过PSSCH(Physical Sidelink Shared Channel,物 理伴随链路共享信道)传输。
作为一个实施例,所述第一无线信号通过PSCCH(Physical Sidelink Control Channel,物理伴随链路控制信道)传输。
作为一个实施例,所述第一无线信号携带SCI(Sidelink Control Information,伴随链路控制信息)。
作为一个实施例,所述第一无线信号既携带SCI也携带TB。
作为一个实施例,所述第一无线信号携带SA(Scheduling Assignment,调度分配)信息。
作为一个实施例,所述第一无线信号包括一个TB(Transport Block,传输块)的初传。
作为一个实施例,所述第一无线信号包括一个TB(Transport Block,传输块)的重传。
作为一个实施例,一个传输块(TB,Transport Block)依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号。
作为一个实施例,一个传输块(TB,Transport Block)依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号。
作为一个实施例,一个传输块(TB,Transport Block)依次经过CRC添加(CRC Insertion),分段(Segmentation),编码块级CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号。
作为一个实施例,一个传输块(TB,Transport Block)依次经过CRC添加(CRC Insertion),分段(Segmentation),编码块级CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号。
作为一个实施例,一个传输块(TB,Transport Block)依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),变换预编码(Transform Precoding),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号。
作为一个实施例,一个传输块(TB,Transport Block)依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),变换预编码(Transform Precoding),预编码(Precoding),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号。
作为一个实施例,一个传输块(TB,Transport Block)依次经过CRC添加(CRC Insertion),分段(Segmentation),编码块级CRC添加(CRC Insertion),信道编码(Channel Coding), 速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),变换预编码(Transform Precoding),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号。
作为一个实施例,一个传输块(TB,Transport Block)依次经过CRC添加(CRC Insertion),分段(Segmentation),编码块级CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),变换预编码(Transform Precoding),预编码(Precoding),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号。
作为一个实施例,一个SCI(Sidelink Control Information,伴随链路控制信息)依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),映射到物理资源(Mapping to Physical Resources),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号。
作为一个实施例,一个SCI(Sidelink Control Information,伴随链路控制信息)依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),变换预编码(Transform Precoding),映射到物理资源(Mapping to Physical Resources),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号。
作为一个实施例,所述X个第一类测量值被用于所述第一测量是指:所述X个第一类测量值在执行所述第一测量过程中被用到。
作为一个实施例,所述X个第一类测量值被用于所述第一测量是指:所述X个第一类测量值被用作所述第一测量的输入。
作为一个实施例,所述X个第一类测量值被用于所述第一测量是指:所述第一测量和所述X个第一类测量值有关。
作为一个实施例,执行所述第一测量所得到的第一类测量值被用于确定所述第一无线信号所采用的MCS(Modulation Coding Scheme,调制编码方式)和所述第一无线信号所占用的时频资源中至少之一包括:执行所述第一测量所得到的第一类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源。
作为一个实施例,执行所述第一测量所得到的第一类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一包括:执行所述第一测量所得到的第一类测量值被用于确定所述第一无线信号所采用的MCS。
作为一个实施例,执行所述第一测量所得到的第一类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一包括:执行所述第一测量所得到的第一类测量值被用于确定所述第一无线信号所占用的时频资源。
作为一个实施例,执行所述第一测量所得到的第一类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一是指:执行所述第一测量所得到的第一类测量值基于给定的映射关系被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一。
作为一个实施例,执行所述第一测量所得到的第一类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一是指:执行所述第一测量所得到的第一类测量值基于给定的函数关系被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一。
作为一个实施例,执行所述第一测量所得到的第一类测量值被用于确定所述第一无线信 号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一是指:执行所述第一测量所得到的第一类测量值基于给定的表格关系被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一。
作为一个实施例,执行所述第一测量所得到的第一类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一是指:执行所述第一测量所得到的第一类测量值基于给定的对应关系被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一。
作为一个实施例,所述第一无线信号所采用的MCS是{BPSK,Pi/2BPSK,QPSK,16QAM,64QAM,256QAM,1024QAM}中之一。
作为一个实施例,所述第一无线信号所占用的时频资源包括:所述第一无线信号所占用的时域资源。
作为一个实施例,所述第一无线信号所占用的时频资源包括:所述第一无线信号所占用的频域资源。
作为一个实施例,所述第一无线信号所占用的时频资源包括:所述第一无线信号所占用的时域资源和频域资源。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述第一无线信号所占用的时频资源包括:所述第一无线信号所占用的RE。
作为一个实施例,所述第一无线信号所占用的时频资源包括:所述第一无线信号所占用的时频资源的绝对数量。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述第一无线信号所占用的时频资源包括:所述第一无线信号所占用的RE的数量。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述第一无线信号所占用的时频资源包括:所述第一无线信号所占用的sub-channel的数量。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing)和循环前缀(CP,Cyclic Prefix)长度,所述第一无线信号所占用的时频资源包括:所述第一无线信号所占用的PRB的数量。
作为一个实施例,所述第一无线信号所占用的子载波的子载波间隔是{15kHz,30kHz,60kHz,120kHz,240kHz,480kHz,960kHz}中之一。
作为一个实施例,所述第一无线信号所占用的子载波的子载波间隔等于15kHz的2的非负整数次幂倍。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关是指:所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔都有关。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关是指:所述第一无线信号所占用的子载波的子载波间隔被用于确定所述X个时频单元中的一个时频单元所占用的时频资源的数量。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关是指:所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔线性相关。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关是指:所述X个时频单元中的一个时频单元所占用的频域资源的绝对数量和所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关是指:所述X个时频单元中的一个时频单元 所占用的频域资源的绝对数量等于正整数个所述第一无线信号所占用的子载波所占用的频域资源的绝对数量。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关是指:所述X个时频单元中的一个时频单元所占用的频域资源的频率间隔长度和所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关是指:所述X个时频单元中的一个时频单元所占用的时域资源的绝对数量和所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关是指:所述X个时频单元中的一个时频单元所占用的时域资源的绝对数量等于正整数所述第一无线信号所占用的子载波所对应的多载波符号所占用的时域资源的绝对数量。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关是指:所述X个时频单元中的一个时频单元所占用的时域资源的时间间隔长度和所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关是指:所述第一无线信号所占用的子载波的子载波间隔属于M个子载波间隔组中的一个子载波间隔组,所述M个子载波间隔组分别和M个备选时频资源数量一一对应,所述X个时频单元中的一个时频单元所占用的时频资源的数量是所述M个备选时频资源数量中之一,所述第一无线信号所占用的子载波的子载波间隔所属的所述M个子载波间隔组中的子载波间隔组所对应的备选时频资源数量就是所述X个时频单元中的一个时频单元所占用的时频资源的数量,所述M是大于1的正整数。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关是指:所述第一无线信号在频域所属的载波所属的频率范围(Frequency Range)被用于确定所述X个时频单元中的一个时频单元所占用的时频资源的数量,所述第一无线信号所占用的子载波的子载波间隔属于M个子载波间隔组中的一个子载波间隔组,所述第一无线信号在频域所属的载波所属的频率范围也被用于在所述M个子载波间隔组中确定所述第一无线信号所占用的子载波的子载波间隔所属的备选子载波间隔组,所述M个大于1的正整数,所述M个子载波间隔组是预定义的。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关是指:如果所述第一无线信号在频域所属的载波所属的频率范围(Frequency Range)是低于6GHz(FR1,Frequency Range 1,频率范围1),所述X个时频单元中的一个时频单元所占用的时频资源的数量等于第一数量,所述第一无线信号所占用的子载波的子载波间隔属于{15kHz,30kHz,60kHz}中之一;如果所述第一无线信号在频域所属的载波所属的频率范围(Frequency Range)是高于6GHz(FR2,Frequency Range 2,频率范围2),所述X个时频单元中的一个时频单元所占用的时频资源的数量等于第二数量,所述第一无线信号所占用的子载波的子载波间隔等于{60kHz,120kHz,240kHz}中之一;所述第一数量和所述第二数量不相等。
作为一个实施例,所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关是指:如果所述第一无线信号在频域所属的载波所属的频率范围(Frequency Range)是低于6GHz(FR1,Frequency Range 1,频率范围1),所述X个时频单元中的一个时频单元所占用的时频资源的数量等于第一数量,所述第一无线信号所占用的子载波的子载波间隔属于{15kHz,30kHz,60kHz}中之一;如果所述第一无线信号在频域所属的载波所属的频率范围(Frequency Range)是高于6GHz(FR2,Frequency Range 2,频率范围2),所述X个时频单元中的一个时频单元所占用的时频资源的数量等于第二数量,所述第一无线信号所占用的子载波的子载波间隔等于{60kHz,120kHz,240kHz, 480kHz,960kHz}中之一;所述第一数量和所述第二数量不相等。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可以包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语,在V2X网络中,gNB203可以是基站,通过卫星中继的地面基站或者路边单元(RSU,Road Side Unit)等。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、汽车中的通信单元,可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端、汽车终端,车联网设备或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS(Packet Switching,包交换)串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一类通信节点设备。
作为一个实施例,所述UE201支持在伴随链路中的传输。
作为一个实施例,所述UE201支持PC5接口。
作为一个实施例,所述UE201支持车联网。
作为一个实施例,所述UE201支持V2X业务。
作为一个实施例,所述gNB203对应本申请中的所述第二类通信节点设备。
作为一个实施例,所述gNB203支持车联网。
作为一个实施例,所述gNB203支持V2X业务。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于第一类通信节点设备(UE)和第二类通信节点设备(gNB,eNB或V2X中的RSU),或者两个第一类通信节点设备(UE)之间的无线电协议架构:层1、层2和 层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一类通信节点设备与第二类通信节点设备以及两个第一类通信节点设备(UE)之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的第二类通信节点设备处。虽然未图示,但第一类通信节点设备可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供第二类通信节点设备之间的对第一类通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在第一类通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于第一类通信节点设备和第二类通信节点设备的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用第二类通信节点设备与第一类通信节点设备之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一类通信节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二类通信节点设备。
作为一个实施例,本申请中的所述X个第一类测量值获得于所述RRC306。
作为一个实施例,本申请中的所述X个第一类测量值获得于所述MAC302。
作为一个实施例,本申请中的所述X个第一类测量值获得于所述PHY301。
作为一个实施例,本申请中的所述第二类测量值获得于所述RRC306。
作为一个实施例,本申请中的所述第二类测量值获得于所述MAC302。
作为一个实施例,本申请中的所述第二类测量值获得于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一无线信号生成于所述MAC302。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述Y个第三类测量值获得于所述RRC306。
作为一个实施例,本申请中的所述Y个第三类测量值获得于所述MAC302。
作为一个实施例,本申请中的所述Y个第三类测量值获得于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述RRC306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC302。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301
作为一个实施例,本申请中的所述第二信息生成于所述RRC306。
作为一个实施例,本申请中的所述第二信息生成于所述MAC302。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301。
作为一个实施例,本申请中的所述第三信息生成于所述RRC306。
作为一个实施例,本申请中的所述第三信息生成于所述MAC302。
作为一个实施例,本申请中的所述第三信息生成于所述PHY301
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
实施例4
实施例4示出了根据本申请的一个第一类通信节点设备和第二类通信节点设备的示意图, 如附图4所示。
在第一类通信节点设备(450)中包括控制器/处理器490,存储器480,接收处理器452,发射器/接收器456,发射处理器455和数据源467,发射器/接收器456包括天线460。数据源467提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议,上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH或SL-SCH。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等。接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器456用于将发射处理器455提供的基带信号转换成射频信号并经由天线460发射出去,接收器456用于通过天线460接收的射频信号转换成基带信号提供给接收处理器452。
在第二类通信节点设备(410)中可以包括控制器/处理器440,存储器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。上层包到达控制器/处理器440,控制器/处理器440提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议。上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器415实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层信令(包括同步信号和参考信号等)生成等。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层信令提取等。发射器416用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去,接收器416用于通过天线420接收的射频信号转换成基带信号提供给接收处理器412。
在DL(Downlink,下行)中,上层包(比如本申请中的第一信息,第二信息和第三信息)提供到控制器/处理器440。控制器/处理器440实施L2层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对第一类通信节点设备450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到第一类通信节点设备450的信令,比如本申请中的第一信息,第二信息和第三信息均在控制器/处理器440中生成。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等,本申请中的第一信息,第二信息和第三信息的物理层信号的生成都在发射处理器415完成,调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。本申请中的第一信息,第二信息和第三信息在物理层的对应信道由发射处理器415映射到目标空口资源上并经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括在本申请中的第一信息,第二信息和第三信息的物理层信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解扰,解码和解交织以恢复在物理信道上由第二类通信节点设备410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490实施L2层,控制器/处理器490对本申请中的第一信息,第二信息和第三信息进行解读。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
作为一个实施例,所述第一类通信节点设备450装置包括:至少一个处理器以及至少一 个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一类通信节点设备450装置至少:在X个时频单元中分别执行X次测量,所述X次测量分别被用于得到X个第一类测量值,所述X是正整数;执行第一测量,所述第一测量被用于得到第二类测量值;发送第一无线信号;其中,所述X个第一类测量值被用于所述第一测量,执行所述第一测量所得到的第二类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述第一类通信节点设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在X个时频单元中分别执行X次测量,所述X次测量分别被用于得到X个第一类测量值,所述X是正整数;执行第一测量,所述第一测量被用于得到第二类测量值;发送第一无线信号;其中,所述X个第一类测量值被用于所述第一测量,执行所述第一测量所得到的第二类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述第二类通信节点设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二类通信节点设备410装置至少:发送第一信息;其中,在X个时频单元中分别被执行的X次测量被分别用于得到X个第一类测量值,所述X是正整数;所述X个第一类测量值被用于第一测量,所述第一测量被用于得到第二类测量值,执行所述第一测量所得到的第二类测量值被用于确定第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关;所述X个第一类测量值中的X1个第一类测量值均大于目标阈值,执行所述第一测量所得到的第二类测量值等于所述X1和所述X的比值,所述X1是不大于所述X的非负整数,所述第一信息被用于确定所述目标阈值。
作为一个实施例,所述第二类通信节点设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息;其中,在X个时频单元中分别被执行的X次测量被分别用于得到X个第一类测量值,所述X是正整数;所述X个第一类测量值被用于第一测量,所述第一测量被用于得到第二类测量值,执行所述第一测量所得到的第二类测量值被用于确定第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关;所述X个第一类测量值中的X1个第一类测量值均大于目标阈值,执行所述第一测量所得到的第二类测量值等于所述X1和所述X的比值,所述X1是不大于所述X的非负整数,所述第一信息被用于确定所述目标阈值。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二信息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第三信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440 被用于发送本申请中的所述第二信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第三信息。
实施例5
实施例5示出了根据本申请的一个实施例的两个第一类通信节点设备的示意图,如附图5所示。
在一个第一类通信节点设备(550)中包括控制器/处理器590,存储器580,接收处理器552,发射器/接收器556,发射处理器555和数据源567,发射器/接收器556包括天线560。数据源567提供上层包到控制器/处理器590,控制器/处理器590提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施L2层协议,上层包中可以包括数据或者控制信息,例如SL-SCH。发射处理器555实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等。接收处理器552实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器556用于将发射处理器555提供的基带信号转换成射频信号并经由天线560发射出去,接收器556用于通过天线560接收的射频信号转换成基带信号提供给接收处理器552。在另一个第一类通信节点设备(500)中的组成和第一类通信节点设备550中的对应相同。
在伴随链路(Sidelink)传输中,上层包(比如本申请中的第一无线信号)提供到控制器/处理器540,控制器/处理器540实施L2层的功能。在伴随链路传输中,控制器/处理器540提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用。控制器/处理器540还负责HARQ操作(如果支持的话)、重复发射,和到第一类通信节点设备550的信令。发射处理器515实施用于L1层(即,物理层)的各种信号处理功能,包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等,本申请中的第一信令的物理层信号的生成都在发射处理器515完成,调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器515经由发射器516映射到天线520以射频信号的形式发射出去。在接收端,每一接收器556通过其相应天线560接收射频信号,每一接收器556恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器552。接收处理器552实施L1层的各种信号接收处理功能。信号接收处理功能包括在本申请中的第一信令和第一无线信号的物理层信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解扰,解码和解交织以恢复在物理信道上由第一类通信节点设备500发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器590。控制器/处理器590实施L2层,控制器/处理器590对本申请中的第一无线信号进行解读。控制器/处理器可与存储程序代码和数据的存储器580相关联。存储器580可称为计算机可读媒体。特别的,在第一类通信节点设备500中,本申请中的X次测量的射频信号通过接收器516接收,然后通过接收处理器512对信号进行处理和测量,随后将这些信息提供到控制器/处理器540进行滤波。在控制器/处理器540依据X次测量的结果执行本申请中的第一测量。本申请中的Y次测量在控制器/处理器540中进行。
作为一个实施例,所述第一类通信节点设备(500)装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一类通信节点设备(500)装置至少:在X个时频单元中分别执行X次测量,所述X次测量分别被用于得到X个第一类测量值,所述X是正整数;执行第一测量,所述第一测量被用于得到第二类测量值;发送第一无线信号;其中,所述X个第一类测量值被用于所述第一测量,执行所述第一测量所得到的第二类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信 号所占用的子载波的子载波间隔有关。
作为一个实施例,所述第一类通信节点设备(500)装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在X个时频单元中分别执行X次测量,所述X次测量分别被用于得到X个第一类测量值,所述X是正整数;执行第一测量,所述第一测量被用于得到第二类测量值;发送第一无线信号;其中,所述X个第一类测量值被用于所述第一测量,执行所述第一测量所得到的第二类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,接收器556(包括天线560),接收处理器552和控制器/处理器590被用于本申请中接收所述第一无线信号。
作为一个实施例,接收器556(包括天线560),接收处理器552和控制器/处理器590被用于本申请中接收所述第一信令。
作为一个实施例,发射器516(包括天线520),发射处理器515和控制器/处理器540被用于发送本申请中的所述第一无线信号。
作为一个实施例,发射器516(包括天线520),发射处理器515和控制器/处理器540被用于发送本申请中的所述第一信令。
作为一个实施例,接收器516(包括天线520),接收处理器512和控制器/处理器540被用于执行本申请中的所述X次测量。
作为一个实施例,控制器/处理器540被用于执行本申请中的所述第一测量。
作为一个实施例,控制器/处理器540被用于执行本申请中的所述Y次测量。
作为一个实施例,控制器/处理器540被用于从Q个备选时频单元集合中确定目标时频单元集合。
实施例6
实施例6示例了根据本申请的一个实施例的无线信号传输流程图,如附图6所示。在附图6中,第二类通信节点N1是第一类通信节点U2的服务小区的维持基站。
对于 第二类通信节点N1,在步骤S11中发送第一信息,在步骤S12中发送第二信息,在步骤S13中发送第三信息。
对于 第一类通信节点U2,在步骤S21中接收第一信息,在步骤S22中接收第三信息,在步骤S23中从Q个备选时频单元集合中确定目标时频单元集合,在步骤S24中在X个时频单元中分别执行X次测量,在步骤S25中执行第一测量,在步骤S26中在第三时间窗中执行Y次测量,在步骤S27中接收第二信息,在步骤S28中发送第一信令,在步骤S29中发送第一无线信号。
在实施例6中,所述X次测量分别被用于得到X个第一类测量值,所述X是正整数;所述第一测量被用于得到第二类测量值;所述X个第一类测量值被用于所述第一测量,执行所述第一测量所得到的第二类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关;所述X个第一类测量值中的X1个第一类测量值均大于目标阈值,执行所述第一测量所得到的第二类测量值等于所述X1和所述X的比值,所述X1是不大于所述X的非负整数,所述第一信息被用于确定所述目标阈值;所述第一信令被用于指示{所述第一无线信号所采用的MCS,所述第一无线信号所占用的时频资源,所述第一无线信号所占用的子载波的子载波间隔}中至少之一,所述第一信令通过空中接口传输;所述X个时频单元在时域属于第一时间窗,所述第一测量在第二时间窗中被执行,所述第一时间窗的结束时刻不晚于所述第二时间窗的起始时刻,所述第二时间窗的结束时刻不晚于所述第一无线信号的发送起始时刻;执行所述第一测量所得到的第二类测量值属于目标区间,所述目标区间是P个备选区间中之一,所述P个备选区间中的任意一个 备选区间为一个正的有理数区间,所述P个备选区间分别和P个备选MCS集合一一对应,所述P个备选区间分别和P个备选资源数量值集合一一对应,所述P是大于1的正整数;所述目标区间所对应的所述P个备选MCS集合中的备选MCS集合为第一MCS集合,所述目标区间所对应的P个备选资源数量值集合中的备选资源数量值集合为第一资源数量值集合;所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一,所述第一无线信号所采用的MCS是所述第一MCS集合中的一个MCS,所述第一无线信号所占用的时频资源的数量等于所述第一资源数量值集合中的一个资源数量值;所述第三信息被用于确定所述第一无线信号所占用的子载波的子载波间隔;执行所述第一测量所得到的第二类测量值被用于确定第一上限,所述Y个第三类测量值的和不大于所述第一上限,所述第三时间窗的时域位置和所述第一无线信号所占用的时频资源有关,所述Y个第三类测量值和所述第一无线信号的发送者在所述第三时间窗中所发送的无线信号所占用的时频资源的数量有关;所述第一无线信号所占用的子载波的子载波间隔为目标子载波间隔,所述目标子载波间隔是Q个备选子载波间隔中的一个备选子载波间隔,所述Q是大于1的正整数;所述X个时频单元属于所述目标时频单元集合,所述Q个备选子载波间隔和所述Q个备选时频单元集合一一对应。
作为一个实施例,特征测量值是所述X个第一类测量值中的一个第一类测量值,所述X次测量中的被用于得到所述特征测量值的测量在特征时频单元中被执行,所述特征时频单元为所述X个时频单元中的一个时频单元,所述特征时频单元中在时域包括X2个多载波符号,所述特征测量值为在所述特征时频单元的频域资源内的所述X2个多载波符号中的每个多载波符号中的接收功率的和的平均值。
作为一个实施例,所述X次测量属于Q组测量中的一组测量,所述Q组测量分别一一针对所述Q个备选时频单元集合,所述Q组测量被用于得到Q组第一类测量值,所述X个第一类测量值属于所述Q组第一类测量值中的一组第一类测量值,所述目标子载波间隔被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值。
作为一个实施例,所述第一信息是一个高层(Higher Layer)信息。
作为一个实施例,所述第一信息是一个物理层信息。
作为一个实施例,所述第一信息通过一个物理层信令传输。
作为一个实施例,所述第一信息通过一个高层信令传输。
作为一个实施例,所述第一信息包括了一个高层信息中的全部或部分。
作为一个实施例,所述第一信息包括了一个物理层信息中的全部或部分。
作为一个实施例,所述第一信息通过DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第一信息通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第一信息包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第一信息包括RMSI(Remaining System Information,余下系统信息)中的一个或多个域(Field)。
作为一个实施例,所述第一信息包括一个RRC(Radio Resource Control,无线资源控制)信令的全部或部分。
作为一个实施例,所述第一信息包括一个RRC(Radio Resource Control,无线资源控制)层信息中的全部或部分。
作为一个实施例,所述第一信息包括一个RRC(Radio Resource Control,无线资源控制)层信息中一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第一信息是广播的。
作为一个实施例,所述第一信息是单播的。
作为一个实施例,所述第一信息是小区特定的(Cell Specific)。
作为一个实施例,所述第一信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第一信息通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第一信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第一信息被用于确定所述目标阈值是指:所述第一信息被所述第一类通信节点用于确定所述目标阈值。
作为一个实施例,所述第一信息被用于确定所述目标阈值是指:所述第一信息直接指示所述目标阈值。
作为一个实施例,所述第一信息被用于确定所述目标阈值是指:所述第一信息间接指示所述目标阈值。
作为一个实施例,所述第一信息被用于确定所述目标阈值是指:所述第一信息显式地指示所述目标阈值。
作为一个实施例,所述第一信息被用于确定所述目标阈值是指:所述第一信息隐式地指示所述目标阈值。
作为一个实施例,所述第一信息采用和3GPP TS36.331(v15.2.0)中的IE(Information Element,信息单元)“SL-CommResourcePool”中的“threshS-RSSI-CBR-r14”相同的设计。
作为一个实施例,所述第一信息是通过空中接口(Air Interface)传输的。
作为一个实施例,所述第一信息是通过Uu接口传输的。
作为一个实施例,所述第一信息是通过无线信号传输的。
作为一个实施例,所述第一信息是从本申请中的所述第二类通信节点传输到所述第一类通信节点的。
作为一个实施例,所述第一信息是从所述第一类通信节点的高层传递到所述第一类通信节点的物理层的。
作为一个实施例,所述第一信息是在所述第一类通信节点内部传递的。
作为一个实施例,所述第一信息被用于确定所述目标阈值是指:所述目标阈值等于第一阈值集合中的一个阈值,所述第一阈值集合包括正整数个阈值,所述第一阈值集合中的阈值是预定义的,所述第一信息被用于在所述第一阈值集合中确定所述目标阈值。
作为一个实施例,所述第一信息被用于确定所述目标阈值是指:所述目标阈值等于第一阈值集合中的一个阈值,所述第一阈值集合包括正整数个阈值,所述第一阈值集合中的阈值和所述第一无线信号所占用的子载波的子载波间隔有关,所述第一信息被用于在所述第一阈值集合中确定所述目标阈值。
作为一个实施例,所述目标阈值是一个不大于1的非负有理数。
作为一个实施例,所述第二信息是通过空中接口(Air Interface)传输的。
作为一个实施例,所述第二信息是通过Uu接口传输的。
作为一个实施例,所述第二信息是通过无线信号传输的。
作为一个实施例,所述第二信息是从本申请中的所述第二类通信节点传输到所述第一类通信节点的。
作为一个实施例,所述第二信息是从所述第一类通信节点的高层传递到所述第一类通信节点的物理层的。
作为一个实施例,所述第二信息是在所述第一类通信节点内部传递的。
作为一个实施例,所述第二信息是一个高层(Higher Layer)信息。
作为一个实施例,所述第二信息是一个物理层信息。
作为一个实施例,所述第二信息通过一个物理层信令传输。
作为一个实施例,所述第二信息通过一个高层信令传输。
作为一个实施例,所述第二信息包括了一个高层信息中的全部或部分。
作为一个实施例,所述第二信息包括了一个物理层信息中的全部或部分。
作为一个实施例,所述第二信息通过DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第二信息通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第二信息包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第二信息包括RMSI(Remaining System Information,余下系统信息)中的一个或多个域(Field)。
作为一个实施例,所述第二信息包括一个RRC(Radio Resource Control,无线资源控制)信令的全部或部分。
作为一个实施例,所述第二信息包括一个RRC(Radio Resource Control,无线资源控制)层信息中的全部或部分。
作为一个实施例,所述第二信息包括一个RRC(Radio Resource Control,无线资源控制)层信息中一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第二信息是广播的。
作为一个实施例,所述第二信息是单播的。
作为一个实施例,所述第二信息是小区特定的(Cell Specific)。
作为一个实施例,所述第二信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第二信息通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第二信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一是指:所述第二信息被所述第一类通信节点用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一。
作为一个实施例,所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一是指:所述第二信息被用于直接指示所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一。
作为一个实施例,所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一是指:所述第二信息被用于间接指示所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一。
作为一个实施例,所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一是指:所述第二信息被用于显式地指示所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一。
作为一个实施例,所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一是指:所述第二信息被用于隐式地指示所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一。
作为一个实施例,所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一包括:所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源。
作为一个实施例,所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一包括:所述第二信息被用于确定所述第一无线信号所采用的MCS。
作为一个实施例,所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一 无线信号所占用的时频资源中至少之一包括:所述第二信息被用于确定所述第一无线信号所占用的时频资源。
作为一个实施例,所述第三信息是通过空中接口(Air Interface)传输的。
作为一个实施例,所述第三信息是通过Uu接口传输的。
作为一个实施例,所述第三信息是通过无线信号传输的。
作为一个实施例,所述第三信息是从本申请中的所述第二类通信节点传输到所述第一类通信节点的。
作为一个实施例,所述第三信息是从所述第一类通信节点的高层传递到所述第一类通信节点的物理层的。
作为一个实施例,所述第三信息是在所述第一类通信节点内部传递的。
作为一个实施例,所述第三信息是一个高层(Higher Layer)信息。
作为一个实施例,所述第三信息是一个物理层信息。
作为一个实施例,所述第三信息通过一个物理层信令传输。
作为一个实施例,所述第三信息通过一个高层信令传输。
作为一个实施例,所述第三信息包括了一个高层信息中的全部或部分。
作为一个实施例,所述第三信息包括了一个物理层信息中的全部或部分。
作为一个实施例,所述第三信息通过DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第三信息通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第三信息包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第三信息包括RMSI(Remaining System Information,余下系统信息)中的一个或多个域(Field)。
作为一个实施例,所述第三信息包括一个RRC(Radio Resource Control,无线资源控制)信令的全部或部分。
作为一个实施例,所述第三信息包括一个RRC(Radio Resource Control,无线资源控制)层信息中的全部或部分。
作为一个实施例,所述第三信息包括一个RRC(Radio Resource Control,无线资源控制)层信息中一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第三信息是广播的。
作为一个实施例,所述第三信息是单播的。
作为一个实施例,所述第三信息是小区特定的(Cell Specific)。
作为一个实施例,所述第三信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第三信息通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第三信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第三信息被用于确定所述第一无线信号所占用的子载波的子载波间隔是指:所述第三信息被所述第一类通信节点用于确定所述第一无线信号所占用的子载波的子载波间隔。
作为一个实施例,所述第三信息被用于确定所述第一无线信号所占用的子载波的子载波间隔是指:所述第三信息被用于直接指示所述第一无线信号所占用的子载波的子载波间隔。
作为一个实施例,所述第三信息被用于确定所述第一无线信号所占用的子载波的子载波间隔是指:所述第三信息被用于间接指示所述第一无线信号所占用的子载波的子载波间隔。
作为一个实施例,所述第三信息被用于确定所述第一无线信号所占用的子载波的子载波 间隔是指:所述第三信息被用于显式地指示所述第一无线信号所占用的子载波的子载波间隔。
作为一个实施例,所述第三信息被用于确定所述第一无线信号所占用的子载波的子载波间隔是指:所述第三信息被用于隐式地指示所述第一无线信号所占用的子载波的子载波间隔。
作为一个实施例,所述第三信息和本申请中的所述第二信息是同一个RRC(Radio Resource Control,无线资源控制)信息中的两个不同的IE(Information Element,信息单元)。
作为一个实施例,所述第三信息和本申请中的所述第二信息是同一个RRC(Radio Resource Control,无线资源控制)信息中的同一个IE(Information Element,信息单元)中的两个不同的域(Field)。
作为一个实施例,所述第三信息和本申请中的所述第二信息是两个不同的RRC(Radio Resource Control,无线资源控制)信息中的两个IE(Information Element,信息单元)。
作为一个实施例,所述第三信息和本申请中的所述第二信息是同一个DCI(Downlink Control Information,下行控制信息)中的两个不同的域(Field)。
作为一个实施例,所述第三信息和本申请中的所述第二信息是两个不同的DCI(Downlink Control Information,下行控制信息)中的两个域(Field)。
实施例7
实施例7示例了根据本申请的另一个实施例的无线信号传输流程图,如附图7所示。在附图7中,一个第一类通信节点N3和另一个第一类通信节点U4进行通信,第一类通信节点N3在蜂窝小区的覆盖之外(Out of Coverage)。
对于一个 第一类通信节点N3,在步骤S31中接收第一信息,在步骤S32中接收第三信息,在步骤S33中从Q个备选时频单元集合中确定目标时频单元集合,在步骤S34中在X个时频单元中分别执行X次测量,在步骤S35中执行第一测量,在步骤S36中在第三时间窗中执行Y次测量,在步骤S37中接收第二信息,在步骤S38中发送第一信令,在步骤S39中发送第一无线信号。
对于另一个 第一类通信节点U4,在步骤S41中接收第一信令,在步骤S42中接收第一无线信号。
在实施例7中,所述X次测量分别被用于得到X个第一类测量值,所述X是正整数;所述第一测量被用于得到第二类测量值;所述X个第一类测量值被用于所述第一测量,执行所述第一测量所得到的第二类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关;所述X个第一类测量值中的X1个第一类测量值均大于目标阈值,执行所述第一测量所得到的第二类测量值等于所述X1和所述X的比值,所述X1是不大于所述X的非负整数,所述第一信息被用于确定所述目标阈值;所述第一信令被用于指示{所述第一无线信号所采用的MCS,所述第一无线信号所占用的时频资源,所述第一无线信号所占用的子载波的子载波间隔}中至少之一,所述第一信令通过空中接口传输;所述X个时频单元在时域属于第一时间窗,所述第一测量在第二时间窗中被执行,所述第一时间窗的结束时刻不晚于所述第二时间窗的起始时刻,所述第二时间窗的结束时刻不晚于所述第一无线信号的发送起始时刻;执行所述第一测量所得到的第二类测量值属于目标区间,所述目标区间是P个备选区间中之一,所述P个备选区间中的任意一个备选区间为一个正的有理数区间,所述P个备选区间分别和P个备选MCS集合一一对应,所述P个备选区间分别和P个备选资源数量值集合一一对应,所述P是大于1的正整数;所述目标区间所对应的所述P个备选MCS集合中的备选MCS集合为第一MCS集合,所述目标区间所对应的P个备选资源数量值集合中的备选资源数量值集合为第一资源数量值集合;所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一,所述第一无线信号所采用的MCS是所述第一MCS集合中的一个MCS,所述第一无线信号所占用的时频资源的数量等于所述第一资源数量值集合中的一个资源数量值;所述第 三信息被用于确定所述第一无线信号所占用的子载波的子载波间隔;执行所述第一测量所得到的第二类测量值被用于确定第一上限,所述Y个第三类测量值的和不大于所述第一上限,所述第三时间窗的时域位置和所述第一无线信号所占用的时频资源有关,所述Y个第三类测量值和所述第一无线信号的发送者在所述第三时间窗中所发送的无线信号所占用的时频资源的数量有关;所述第一无线信号所占用的子载波的子载波间隔为目标子载波间隔,所述目标子载波间隔是Q个备选子载波间隔中的一个备选子载波间隔,所述Q是大于1的正整数;所述X个时频单元属于所述目标时频单元集合,所述Q个备选子载波间隔和所述Q个备选时频单元集合一一对应。
作为一个实施例,特征测量值是所述X个第一类测量值中的一个第一类测量值,所述X次测量中的被用于得到所述特征测量值的测量在特征时频单元中被执行,所述特征时频单元为所述X个时频单元中的一个时频单元,所述特征时频单元中在时域包括X2个多载波符号,所述特征测量值为在所述特征时频单元的频域资源内的所述X2个多载波符号中的每个多载波符号中的接收功率的和的平均值。
作为一个实施例,所述X次测量属于Q组测量中的一组测量,所述Q组测量分别一一针对所述Q个备选时频单元集合,所述Q组测量被用于得到Q组第一类测量值,所述X个第一类测量值属于所述Q组第一类测量值中的一组第一类测量值,所述目标子载波间隔被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值。
作为一个实施例,所述空中接口(Air Interface)是无线的。
作为一个实施例,所述空中接口(Air Interface)包括无线信道。
作为一个实施例,所述空中接口(Air Interface)包括伴随链路(Sidelink)。
作为一个实施例,所述空中接口(Air Interface)是PC5接口。
作为一个实施例,所述第一信令包括物理层信息。
作为一个实施例,所述第一信令是一个物理层信令传输。
作为一个实施例,所述第一信令包括了一个物理层信息中的全部或部分。
作为一个实施例,所述第一信令是广播的。
作为一个实施例,所述第一信令是组播的。
作为一个实施例,所述第一信令是单播的。
作为一个实施例,所述第一信令是小区特定的(Cell Specific)。
作为一个实施例,所述第一信令是用户设备特定的(UE-specific)。
作为一个实施例,所述第一信令通过PSCCH(Physical Sidelink Control Channel,物理伴随链路控制信道)传输。
作为一个实施例,所述第一信令包括一个SCI(Sidelink Control Information,伴随链路控制信息)信令的全部或部分域(Field)。
作为一个实施例,所述第一信令包括所述第一无线信号的SA(Scheduling Assignment,调度分配)。
作为一个实施例,所述第一信令被用于指示{所述第一无线信号所采用的MCS,所述第一无线信号所占用的时频资源,所述第一无线信号所占用的子载波的子载波间隔}中至少之一是指:所述第一信令被用于直接指示{所述第一无线信号所采用的MCS,所述第一无线信号所占用的时频资源,所述第一无线信号所占用的子载波的子载波间隔}中至少之一。
作为一个实施例,所述第一信令被用于指示{所述第一无线信号所采用的MCS,所述第一无线信号所占用的时频资源,所述第一无线信号所占用的子载波的子载波间隔}中至少之一是指:所述第一信令被用于间接指示{所述第一无线信号所采用的MCS,所述第一无线信号所占用的时频资源,所述第一无线信号所占用的子载波的子载波间隔}中至少之一。
作为一个实施例,所述第一信令被用于指示{所述第一无线信号所采用的MCS,所述第一无线信号所占用的时频资源,所述第一无线信号所占用的子载波的子载波间隔}中至少之一是指:所述第一信令被用于显式地指示{所述第一无线信号所采用的MCS,所述第一无线信 号所占用的时频资源,所述第一无线信号所占用的子载波的子载波间隔}中至少之一。
作为一个实施例,所述第一信令被用于指示{所述第一无线信号所采用的MCS,所述第一无线信号所占用的时频资源,所述第一无线信号所占用的子载波的子载波间隔}中至少之一是指:所述第一信令被用于隐式地指示{所述第一无线信号所采用的MCS,所述第一无线信号所占用的时频资源,所述第一无线信号所占用的子载波的子载波间隔}中至少之一。
实施例8
实施例8示例了根据本申请的一个实施例的X个时频单元和第一无线信号的关系的示意图,如附图8所示。在附图8中,横轴代表时间,纵轴代表频率,每个实线无填充的矩形代表X个时频单元中的一个时频单元,每个虚线无填充的矩形代表X个时频单元之外的一个时频单元,斜线填充的矩形代表第一无线信号。
在实施例8中,本申请中的所述第一类通信节点在X个时频单元中分别执行X次测量,所述X次测量分别被用于得到X个第一类测量值,所述X是正整数;接着执行第一测量,所述第一测量被用于得到第二类测量值;然后发送第一无线信号;其中,所述X个第一类测量值被用于所述第一测量,执行所述第一测量所得到的第二类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关。
实施例9
实施例9示例了根据本申请的一个实施例的特征时频单元和X2个多载波符号的关系的示意图,如附图9所示。在附图9中,横轴代表时间,纵轴代表频率,每个斜线填充的矩形代表X2个多载波符号中的一个多载波符号,粗线框矩形代表特征时频单元。
在实施例9中,特征测量值是所述X个第一类测量值中的一个第一类测量值,本申请中的所述X次测量中的被用于得到所述特征测量值的测量在特征时频单元中被执行,所述特征时频单元为本申请中的所述X个时频单元中的一个时频单元,所述特征时频单元中在时域包括X2个多载波符号,所述特征测量值为在所述特征时频单元的频域资源内的所述X2个多载波符号中的每个多载波符号中的接收功率的和的平均值。
作为一个实施例,所述特征测量值可以是所述X个第一类测量值中的任意一个第一类测量值。
作为一个实施例,所述X个时频单元中每个时频单元中在时域都包括正整数个多载波符号。
作为一个实施例,所述X个时频单元中每个时频单元中在时域都包括X2个可被用于所述X次测量中的一次测量的多载波符号。
作为一个实施例,所述特征时频单元中在时域只包括所述X2个多载波符号。
作为一个实施例,所述特征时频单元中在时域还包括所述X2个多载波符号之外的多载波符号。
作为一个实施例,所述X2个多载波符号在所述特征时频单元中的时域位置是预定义。
作为一个实施例,所述X2个多载波符号在所述特征时频单元中的时域位置是固定的。
作为一个实施例,所述X2个多载波符号在所述特征时频单元中的时域位置是可配置的。
作为一个实施例,所述X2个多载波符号在所述特征时频单元中的时域位置和所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述X次测量中的任意一次测量都在执行该次测量的所述X个时频单元中的时频单元所占用的频域资源内被执行。
作为一个实施例,所述特征测量值为在所述特征时频单元的频域资源内的所述X2个多载波符号中的每个多载波符号中的接收功率的和的平均值是指:在所述特征时频单元的所占用的频域资源内,针对所述X2个多载波符号的所述X次测量中的测量分别得到X2个功率值,所述特征测量值等于所述X2个功率值的和除以X2。
实施例10
实施例10示出了根据本申请的一个实施例的第一时间窗和第二时间窗的关系的示意图,如附图10所示。在附图10中,横轴代表时间。在实施例10中,本申请中的所述X个时频单元在时域属于第一时间窗,本申请中的所述第一测量在第二时间窗中被执行,所述第一时间窗的结束时刻不晚于所述第二时间窗的起始时刻,所述第二时间窗的结束时刻不晚于本申请的所述第一无线信号的发送起始时刻。
作为一个实施例,在所述第一时间窗内只包括所述X个时频单元中的时域资源。
作为一个实施例,在所述第一时间窗内还包括所述X个时频单元中的时域资源之外的时域资源。
作为一个实施例,所述第一时间窗被用于确定所述X个时频单元。
作为一个实施例,所述X个时频单元是在所述第一无线信号的频域资源所属的载波(Carrier)内的在所述第一时间窗内的所有可被用于S-RSSI测量的时频单元。
作为一个实施例,所述第一时间窗的时间长度是固定的。
作为一个实施例,所述第一时间窗的时间长度为100毫秒。
作为一个实施例,所述第一时间窗的时间长度是预配置(Pre-configured)的。
作为一个实施例,所述第一时间窗的时间长度是预定义(Pre-defined)的。
作为一个实施例,所述第一时间窗的时间长度是可配置(Configured)的。
作为一个实施例,所述第一时间窗的时间长度和所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述第一时间窗的结束时刻就是所述第二时间窗的起始时刻。
作为一个实施例,所述第一时间窗的结束时刻早于所述第二时间窗的起始时刻。
作为一个实施例,所述第二时间窗的时间长度是固定的。
作为一个实施例,所述第二时间窗的时间长度是预配置(Pre-configured)的。
作为一个实施例,所述第二时间窗的时间长度为1毫秒。
作为一个实施例,所述第二时间窗的时间长度是预定义(Pre-defined)的。
作为一个实施例,所述第二时间窗的时间长度是可配置(Configured)的。
作为一个实施例,所述第二时间窗的时间长度和所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述第二时间窗的结束时刻就是所述第一无线信号的发送起始时刻。
作为一个实施例,所述第二时间窗的结束时刻早于所述第一无线信号的发送起始时刻。
作为一个实施例,执行所述第一测量占用所述第二时间窗中的全部时间。
作为一个实施例,执行所述第一测量占用所述第二时间窗中的部分时间。
实施例11
实施例11示例了根据本申请的一个实施例的P个备选区间,P个备选MCS集合和P个备选资源数量值集合之间的关系的示意图,如附图11所示。在附图11中,左边第二列代表P个备选区间,左边第三列代表P个备选MCS集合,其中每个数值代表一个MCS索引值,左边第四列代表P个备选资源数量值集合,加黑字体分别代表目标区间,第一MCS集合和第一备选资源数量集合。
在实施例11中,执行所述第一测量所得到的第二类测量值属于目标区间,所述目标区间是P个备选区间中之一,所述P个备选区间中的任意一个备选区间为一个正的有理数区间,所述P个备选区间分别和P个备选MCS集合一一对应,所述P个备选区间分别和P个备选资源数量值集合一一对应,所述P是大于1的正整数;所述目标区间所对应的所述P个备选MCS集合中的备选MCS集合为第一MCS集合,所述目标区间所对应的P个备选资源数量值集合中的备选资源数量值集合为第一资源数量值集合;所述第一无线信号所采用的MCS是所述第一MCS集合中的一个MCS,所述第一无线信号所占用的时频资源的数量等于所述第一资源数量值集合中的一个资源数量值。
作为一个实施例,所述P个备选区间中任意两个备选区间的区间长度相等。
作为一个实施例,所述P个备选区间中存在两个备选区间的区间长度不相等。
作为一个实施例,所述P个备选区间中任意两个备选区间是正交的。
作为一个实施例,所述P个备选区间中任意两个备选区间是不相交的。
作为一个实施例,所述P个备选区间中任意两个备选区间是不重叠的。
作为一个实施例,所述P个备选区间中存在两个备选区间是部分相交的。
作为一个实施例,所述P个备选区间中存在两个备选区间是部分重叠的。
作为一个实施例,所述P个备选MCS集合中的任意一个备选MCS集合中包括正整数个MCS(Modulation Coding Scheme,调制编码方式)。
作为一个实施例,所述P个备选MCS集合中任意两个备选MCS集合中所包括的MCS都不同。
作为一个实施例,所述P个备选MCS集合中包括两个备选MCS集合中包括一个相同的MCS。
作为一个实施例,所述P个备选MCS集合中任意两个备选MCS集合中所包括的MCS的数量相同。
作为一个实施例,所述P个备选MCS集合中存在两个备选MCS集合中所包括的MCS的数量不相同。
作为一个实施例,所述P个备选MCS集合是预定义的。
作为一个实施例,所述P个备选MCS集合是预配置的。
作为一个实施例,所述P个备选MCS集合是可配置的。
作为一个实施例,所述P个备选区间和所述P个备选MCS集合的一一对应关系是预定义的。
作为一个实施例,所述P个备选区间和所述P个备选MCS集合的一一对应关系是固定的。
作为一个实施例,所述P个备选区间和所述P个备选MCS集合的一一对应关系是可配置的。
作为一个实施例,所述P个备选资源数量值集合是预定义(Pre-defined)的。
作为一个实施例,所述P个备选资源数量值集合是预配置(Pre-configured)的。
作为一个实施例,所述P个备选资源数量值集合是可配置(Configured)的。
作为一个实施例,所述P个备选资源数量值集合中的任意两个备选资源数量值集合中所分别包括的任意两个资源数量值是不相等。
作为一个实施例,所述P个备选资源数量值集合中的存在两个备选资源数量值集合中存在所分别包括的资源数量值相等。
作为一个实施例,所述P个备选资源数量值集合中的任意两个备选资源数量值集合中所分别包括的资源数量值的个数相等。
作为一个实施例,所述P个备选资源数量值集合中的存在两个备选资源数量值集合中所分别包括的资源数量值的个数不相等。
作为一个实施例,所述P个备选区间和所述P个备选资源数量值集合的一一对应关系是预定义(Pre-defined)的。
作为一个实施例,所述P个备选区间和所述P个备选资源数量值集合的一一对应关系是预配置(Pre-configured)的。
作为一个实施例,所述P个备选区间和所述P个备选资源数量值集合的一一对应关系是固定的。
作为一个实施例,所述P个备选区间和所述P个备选资源数量值集合的一一对应关系是可配置的。
实施例12
实施例12示例了根据本申请的一个实施例的Y次测量的示意图,如附图12所示。在附图12中,横轴代表时间,每个矩形代表所述第一无线信号的发送者在所述第三时间窗中所发送的无线信号所占用的时频资源,粗线框的矩形代表所述第一无线信号所占用的时频资源,采用不同的填充的矩形代表该时频资源被用于Y次测量中的不同测量。
在实施例12中,本申请中的所述第一类通信节点在第三时间窗中执行Y次测量,所述Y次测量被用于分别得到Y个第三类测量值,所述Y是正整数;执行本申请中的所述第一测量所得到的第二类测量值被用于确定第一上限,所述Y个第三类测量值的和不大于所述第一上限,所述第三时间窗的时域位置和本申请中的所述第一无线信号所占用的时频资源有关,所述Y个第三类测量值和所述第一无线信号的发送者在所述第三时间窗中所发送的无线信号所占用的时频资源的数量有关。
作为一个实施例,所述Y次测量中的任意一次测量是一次对CR(Channel occupancy Ratio,信道占用比例)的测量。
作为一个实施例,所述Y次测量中的任意一次测量是一次对CQ(Channel occupancy Quantity,信道占用数量)的测量。
作为一个实施例,所述Y次测量中的任意一次测量和本申请中的所述第一测量属于两类不同的测量(Measurement)。
作为一个实施例,所述Y次测量中的任意一次测量和本申请中的所述X次测量中的任意一次测量属于两类不同的测量(Measurement)。
作为一个实施例,所述Y次测量中的任意一次测量是被用于确定所测量的信道的信道占用状态。
作为一个实施例,所述Y次测量中的任意一次测量是被用于确定所测量的频率范围内的信道占用状态。
作为一个实施例,所述Y次测量分别对应Y个PPPP(ProSe Per-Packet Priority,邻近安全每数据包等级)。
作为一个实施例,所述Y次测量中的任意一次测量是一个PPPP下的CR(Channel occupancy Ratio,信道占用比例)的测量。
作为一个实施例,所述Y个第三类测量值中的任意一个测量值是一个CR(Channel occupancy Ratio,信道占用比例)的值。
作为一个实施例,所述Y个第三类测量值中的任意一个测量值是一个CQ(Channel occupancy Quantity,信道占用数量)的值。
作为一个实施例,所述Y个第三类测量值是分别对应Y个PPPP(ProSe Per-Packet Priority,邻近安全每数据包等级)的CR(Channel occupancy Ratio,信道占用比例)的值。
作为一个实施例,所述Y个第三类测量值是分别对应Y个PPPP(ProSe Per-Packet Priority,邻近安全每数据包等级),所述第一无线信号所携带的数据包所属的PPPP是所述Y个PPPP中的最小的PPPP。
作为一个实施例,所述Y个第三类测量值是分别对应Y个等级,所述第一无线信号所携带的数据包所属的等级是所述Y个等级中的最低的等级。
作为一个实施例,所述Y个第三类测量值是分别对应Y个等级索引,所述第一无线信号所携带的数据包所属的等级的等级索引等于所述Y个等级索引的最小的索引值。
作为一个实施例,本申请中的所述第一信令也被用于确定所述第一上限。
作为一个实施例,执行所述第一测量所得到的第二类测量值被用于确定所述第一上限是指:执行所述第一测量所得到的第二类测量值被所述第一类通信节点用于确定所述第一上限。
作为一个实施例,执行所述第一测量所得到的第二类测量值被用于确定所述第一上限是指:执行所述第一测量所得到的第二类测量值基于给定的映射关系确定所述第一上限。
作为一个实施例,执行所述第一测量所得到的第二类测量值被用于确定所述第一上限是 指:执行所述第一测量所得到的第二类测量值基于给定的函数关系确定所述第一上限。
作为一个实施例,执行所述第一测量所得到的第二类测量值被用于确定所述第一上限是指:执行所述第一测量所得到的第二类测量值基于对应关系确定所述第一上限,所述对应关系是预定义的。
作为一个实施例,执行所述第一测量所得到的第二类测量值被用于确定所述第一上限是指:执行所述第一测量所得到的第二类测量值基于对应关系确定所述第一上限,所述对应关系是可配置的。
作为一个实施例,执行所述第一测量所得到的第二类测量值被用于确定所述第一上限是指:本申请中的所述P个备选区间和P个备选上限一一对应,所述第一上限是本申请中的所述目标上限所对应的所述P个备选上限中的备选上限,所述P个备选区间和P个备选上限一一对应关系是固定的。
作为一个实施例,执行所述第一测量所得到的第二类测量值被用于确定所述第一上限是指:本申请中的所述P个备选区间和P个备选上限一一对应,所述第一上限是本申请中的所述目标上限所对应的所述P个备选上限中的备选上限,所述P个备选区间和P个备选上限一一对应关系是可配置的。
作为一个实施例,所述第三时间窗的时间长度是预配置(Pre-configured)的。
作为一个实施例,所述第三时间窗的时间长度是固定的。
作为一个实施例,所述第三时间窗的时间长度等于1秒。
作为一个实施例,所述第三时间窗的时间长度是预定义的。
作为一个实施例,所述第三时间窗的时间长度是可配置的。
作为一个实施例,所述第三时间窗的时间长度是所述第一类通信节点自行决定的。
作为一个实施例,所述第三时间窗的时域位置和所述第一无线信号所占用的时频资源有关是指:所述第三时间窗的结束时刻不晚于所述第一无线信号的发送起始时刻。
作为一个实施例,所述第三时间窗的时域位置和所述第一无线信号所占用的时频资源有关是指:在所述第三时间窗的结束时刻不晚于所述第一无线信号的发送起始时刻的情况下,所述第三时间窗的时域位置是由所述第一类通信节点自行确定。
作为一个实施例,所述第三时间窗的时域位置和所述第一无线信号所占用的时频资源有关是指:所述第一无线信号所占用的时频资源被用于确定所述第三时间窗的时域位置。
作为一个实施例,所述第三时间窗的时域位置和所述第一无线信号所占用的时频资源有关是指:所述第三时间窗中包括了所述第一无线信号所占用的时域资源和所述第一无线信号的调度(Grant)中配置的预留的时域资源。
作为一个实施例,所述第三时间窗的时域位置和所述第一无线信号所占用的时频资源有关是指:所述第三时间窗中包括了所述第一无线信号所占用的时域资源和所述第一无线信号的调度(Grant)中配置的预留的部分时域资源。
作为一个实施例,所述第三时间窗的时域位置和所述第一无线信号所占用的时频资源有关是指:所述第三时间窗中不包括任何所述第一无线信号的调度(Grant)中配置的预留的时域资源。
作为一个实施例,所述第三时间窗的时域位置和所述第一无线信号所占用的时频资源有关是指:所述第三时间窗按照时间顺序被分成第一子时间窗和第二子时间窗,所述第一子时间窗的时间长度是由所述第一类通信节点自行确定的,所述第二子时间窗中包括了所述第一无线信号所占用的时域资源和所述第一无线信号的调度(Grant)中配置的预留的时域资源。
作为一个实施例,所述第三时间窗的时域位置和所述第一无线信号所占用的时频资源有关是指:在所述第三时间窗的结束时刻不晚于所述第一无线信号的调度(Grant)中配置的预留的时域资源的最晚结束时刻的情况下,所述第三时间窗的时域位置是由所述第一类通信节点自行确定的。
作为一个实施例,所述第三时间窗的时域位置和所述第一无线信号所占用的时频资源有 关是指:所述第三时间窗按照时间顺序被分成第一子时间窗和第二子时间窗,所述第一子时间窗的时间长度在不小于一个长度阈值的情况下是由所述第一类通信节点自行确定的,所述第二子时间窗的结束时刻不晚于所述第一无线信号的调度(Grant)中配置的预留的时域资源的最晚结束时刻。
作为一个实施例,所述Y个第三类测量值和所述第一无线信号的发送者在所述第三时间窗中所发送的无线信号所占用的时频资源的数量有关是指:所述Y个第三类测量值分别对应Y个等级,所述Y个第三类测量值分别为所述第一无线信号的发送者在所述第三时间窗中所发送的对应等级的无线信号所占用的时频资源的数量。
作为一个实施例,所述Y个第三类测量值和所述第一无线信号的发送者在所述第三时间窗中所发送的无线信号所占用的时频资源的数量有关是指:所述Y个第三类测量值分别对应Y个等级,所述Y个第三类测量值分别为所述第一无线信号的发送者在所述第三时间窗中所发送的对应等级的无线信号所占用的时频资源的数量与在所述第三时间窗对应等级的总的时频资源的数量的比值。
实施例13
实施例13示例了根据本申请的一个实施例Q个备选子载波间隔和Q个备选时频单元集合的关系的示意图,如附图13所示。在附图13中,横轴代表时间,纵轴代表频率,Q个备选子载波间隔分别为15KHz,30KHz和60KHz,每个实线无填充的矩形代表所对应的子载波间隔中的备选时频单元集合中的一个时频单元,每个虚线无填充的矩形代表Q个别选时频单元集合之外的一个时频单元。
在实施例13中,本申请中的所述第一类通信节点从Q个备选时频单元集合中确定目标时频单元集合;其中,本申请中的所述第一无线信号所占用的子载波的子载波间隔为目标子载波间隔,所述目标子载波间隔是Q个备选子载波间隔中的一个备选子载波间隔,所述Q是大于1的正整数;所述X个时频单元属于所述目标时频单元集合,所述Q个备选子载波间隔和所述Q个备选时频单元集合一一对应。
作为一个实施例,所述Q个备选时频单元集合是预配置的(Pre-confiugred)。
作为一个实施例,所述Q个备选时频单元集合是预定义的(Pre-defined)。
作为一个实施例,所述Q个备选时频单元集合是固定的。
作为一个实施例,所述Q个备选时频单元集合是可配置(configured)的。
作为一个实施例,所述Q个备选子载波间隔和所述Q个备选时频单元集合的对应关系是预配置(Pre-configured)的。
作为一个实施例,所述Q个备选子载波间隔和所述Q个备选时频单元集合的对应关系是固定的。
作为一个实施例,所述Q个备选子载波间隔和所述Q个备选时频单元集合的对应关系是预定义(Pre-defined)的。
作为一个实施例,所述Q个备选子载波间隔和所述Q个备选时频单元集合的对应关系是可配置(configured)的。
作为一个实施例,从所述Q个备选时频单元集合中确定所述目标时频单元集合包括:所述目标子载波间隔在所述Q个备选子载波间隔中的排列顺序被用于在所述Q个备选时频单元集合中确定所述目标时频单元集合。
作为一个实施例,从所述Q个备选时频单元集合中确定所述目标时频单元集合包括:所述目标子载波间隔在所述Q个备选子载波间隔中的索引被用于在所述Q个备选时频单元集合中确定所述目标时频单元集合。
作为一个实施例,从所述Q个备选时频单元集合中确定所述目标时频单元集合包括:所述目标子载波间隔在所述Q个备选子载波间隔中的大小顺序被用于在所述Q个备选时频单元集合中确定所述目标时频单元集合。
作为一个实施例,从所述Q个备选时频单元集合中确定所述目标时频单元集合包括:所 述目标子载波间隔在所述Q个备选时频单元集合中所对应的备选时频单元集合就是所述目标时频单元集合。
作为一个实施例,所述Q个备选子载波间隔中的任意两个备选子载波间隔都不相等。
作为一个实施例,所述Q个备选子载波间隔中存在两个备选子载波间隔相等。
作为一个实施例,所述Q个备选子载波间隔中至少存在两个备选子载波间隔不相等。
作为一个实施例,所述Q个备选子载波间隔和所述第一无线信号所占用的频域资源的频域位置有关。
作为一个实施例,所述Q个备选子载波间隔和所述第一无线信号所占用的频域资源所属的载波的载波频率范围(Frequency Range)有关。
作为一个实施例,如果所述第一无线信号所占用的频域资源所属的载波的载波频率不大于6GHz(Frequency Range 1,频率范围1),所述Q个备选子载波间隔包括15kHz,30kHz和60kHz,所述Q不小于3;如果所述第一无线信号所占用的频域资源所属的载波的载波频率大于6GHz(Frequency Range 2,频率范围2),所述Q个备选子载波间隔包括120kHz和240kHz,所述Q不小于2。
作为一个实施例,如果所述第一无线信号所占用的频域资源所属的载波的载波频率不大于6GHz(Frequency Range 1,频率范围1),所述Q个备选子载波间隔包括15kHz,30kHz和60kHz,所述Q不小于3;如果所述第一无线信号所占用的频域资源所属的载波的载波频率大于6GHz(Frequency Range 2,频率范围2),所述Q个备选子载波间隔包括60kHz,120kHz,240kHz和480kHz,所述Q不小于4。
作为一个实施例,所述目标时频单元集合只包括所述X个时频单元。
作为一个实施例,所述目标时频单元集合中还包括所述X个时频单元之外的时频资源。
作为一个实施例,所述X个时频单元为所述目标时频单元集合中的用于所述第一类通信节点发送的时频单元之外的时频单元。
作为一个实施例,所述X个时频单元为所述目标时频单元集合中的能被用于获得第一类测量值的所有的时频单元。
实施例14
实施例14示例了根据本申请的一个实施例的目标子载波间隔和X个第一类测量值所属的一组第一类测量值的关系的示意图,如附图14所示。在附图14中,左数第一列代表本申请中的所述第一类通信节点发送信号的频域资源所属的频率范围(FR,Frequency Range),左数第二列代表所述第一类通信节点发送信号所占用的子载波的子载波间隔,左数第三列代表Q组第一类测量值(Q=5),加黑的表格元素分别代表目标子载波间隔和X个第一类测量值所属的一组第一类测量值。
在实施例14中,本申请中的所述X次测量属于Q组测量中的一组测量,所述Q组测量分别一一针对本申请中的所述Q个备选时频单元集合,所述Q组测量被用于得到Q组第一类测量值,本申请中的所述X个第一类测量值属于所述Q组第一类测量值中的一组第一类测量值,本申请中的所述目标子载波间隔被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值。
作为一个实施例,所述第一类通信节点执行所述Q组测量中的每一组测量中的所有测量。
作为一个实施例,所述第一类通信节点存在所述Q组第一类测量值中的每一个第一类测量值。
作为一个实施例,所述第一类通信节点在发送所述第一无线信号之前执行完成所述Q组测量中的每一组测量中的所有测量。
作为一个实施例,所述第一类通信节点被要求在发送所述第一无线信号之前执行完成所述Q组测量中的每一组测量中的所有测量。
作为一个实施例,所述第一类通信节点在发送所述第一无线信号之前存储所述Q组第一类测量值。
作为一个实施例,所述第一类通信节点被要求在发送所述第一无线信号之前存储所述Q组第一类测量值。
作为一个实施例,所述目标子载波间隔被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值是指:所述目标子载波间隔基于对应关系被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值。
作为一个实施例,所述目标子载波间隔被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值是指:所述目标子载波间隔在所述Q个备选子载波间隔中的排列顺序被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值。
作为一个实施例,所述目标子载波间隔被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值是指:所述目标子载波间隔在所述Q个备选子载波间隔中的大小顺序被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值。
作为一个实施例,所述目标子载波间隔被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值是指:所述目标子载波间隔在所述Q个备选子载波间隔中的索引被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值。
作为一个实施例,所述目标子载波间隔被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值是指:所述目标子载波间隔在所述Q组第一类测量值中所对应的一组第一类测量值就是所述X个第一类测量值所属的一组第一类测量值。
作为一个实施例,所述目标子载波间隔被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值是指:所述Q组测量中针对所述目标时频单元集合所得到的所述Q组第一类测量值中的一组第一类测量值就是所述X个第一类测量值所述的一组第一类测量值。
实施例15
实施例15示例了一个实施例的第一类通信节点设备中的处理装置的结构框图,如附图15所示。附图15中,第一类通信节点设备处理装置1500包括第一测量器1501,第二测量器1502和第一收发机1503。第一测量器1501包括本申请附图4中的接收器456(包括天线460),接收处理器452和控制器/处理器490,或者第一测量器1501包括本申请附图5中的接收器516(包括天线520),接收处理器512和控制器/处理器540;第二测量器1502包括本申请附图4中的控制器/处理器490,或者包括本申请附图5中的控制器/处理器540;第一收发机1503包括本申请附图4中的接收器/发射器456(包括天线460),接收处理器452,发射处理器455和控制器/处理器490,或者第一收发机1503包括本申请附图5中的中的接收器/发射器516(包括天线460),接收处理器512,发射处理器515和控制器/处理器540。
在实施例15中,第一测量器1501在X个时频单元中分别执行X次测量,所述X次测量分别被用于得到X个第一类测量值,所述X是正整数;第二测量器1502执行第一测量,所述第一测量被用于得到第二类测量值;第一收发机1503发送第一无线信号;其中,所述X个第一类测量值被用于所述第一测量,执行所述第一测量所得到的第二类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,第一收发机1503还接收第一信息;其中,所述X个第一类测量值中的X1个第一类测量值均大于目标阈值,执行所述第一测量所得到的第二类测量值等于所述X1和所述X的比值,所述X1是不大于所述X的非负整数,所述第一信息被用于确定所述目标阈值。
作为一个实施例,特征测量值是所述X个第一类测量值中的一个第一类测量值,所述X次测量中的被用于得到所述特征测量值的测量在特征时频单元中被执行,所述特征时频单元为所述X个时频单元中的一个时频单元,所述特征时频单元中在时域包括X2个多载波符号,所述特征测量值为在所述特征时频单元的频域资源内的所述X2个多载波符号中的每个多载波符号中的接收功率的和的平均值。
作为一个实施例,第一收发机1503还发送第一信令;其中,所述第一信令被用于指示{所述第一无线信号所采用的MCS,所述第一无线信号所占用的时频资源,所述第一无线信号所占用的子载波的子载波间隔}中至少之一,所述第一信令通过空中接口传输;所述X个时频单元在时域属于第一时间窗,所述第一测量在第二时间窗中被执行,所述第一时间窗的结束时刻不晚于所述第二时间窗的起始时刻,所述第二时间窗的结束时刻不晚于所述第一无线信号的发送起始时刻。
作为一个实施例,第一收发机1503还接收第二信息;其中,执行所述第一测量所得到的第二类测量值属于目标区间,所述目标区间是P个备选区间中之一,所述P个备选区间中的任意一个备选区间为一个正的有理数区间,所述P个备选区间分别和P个备选MCS集合一一对应,所述P个备选区间分别和P个备选资源数量值集合一一对应,所述P是大于1的正整数;所述目标区间所对应的所述P个备选MCS集合中的备选MCS集合为第一MCS集合,所述目标区间所对应的P个备选资源数量值集合中的备选资源数量值集合为第一资源数量值集合;所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一,所述第一无线信号所采用的MCS是所述第一MCS集合中的一个MCS,所述第一无线信号所占用的时频资源的数量等于所述第一资源数量值集合中的一个资源数量值。
作为一个实施例,第一收发机1503还接收第三信息;其中,所述第三信息被用于确定所述第一无线信号所占用的子载波的子载波间隔。
作为一个实施例,第二测量器1502还在第三时间窗中执行Y次测量,所述Y次测量被用于分别得到Y个第三类测量值,所述Y是正整数;其中,执行所述第一测量所得到的第二类测量值被用于确定第一上限,所述Y个第三类测量值的和不大于所述第一上限,所述第三时间窗的时域位置和所述第一无线信号所占用的时频资源有关,所述Y个第三类测量值和所述第一无线信号的发送者在所述第三时间窗中所发送的无线信号所占用的时频资源的数量有关。
作为一个实施例,第一收发机1503还从Q个备选时频单元集合中确定目标时频单元集合;其中,所述第一无线信号所占用的子载波的子载波间隔为目标子载波间隔,所述目标子载波间隔是Q个备选子载波间隔中的一个备选子载波间隔,所述Q是大于1的正整数;所述X个时频单元属于所述目标时频单元集合,所述Q个备选子载波间隔和所述Q个备选时频单元集合一一对应。
作为一个实施例,第一收发机1503还从Q个备选时频单元集合中确定目标时频单元集合;其中,所述第一无线信号所占用的子载波的子载波间隔为目标子载波间隔,所述目标子载波间隔是Q个备选子载波间隔中的一个备选子载波间隔,所述Q是大于1的正整数;所述X个时频单元属于所述目标时频单元集合,所述Q个备选子载波间隔和所述Q个备选时频单元集合一一对应;所述X次测量属于Q组测量中的一组测量,所述Q组测量分别一一针对所述Q个备选时频单元集合,所述Q组测量被用于得到Q组第一类测量值,所述X个第一类测量值属于所述Q组第一类测量值中的一组第一类测量值,所述目标子载波间隔被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值。
实施例16
实施例16示例了一个实施例的第二类通信节点设备中的处理装置的结构框图,如附图16所示。在附图16中,第二类通信节点设备处理装置1600包括第一发射机1601。 第一发射机1601包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415和控制器/处理器440。
在实施例16中,第一发射机1601发送第一信息;其中,在X个时频单元中分别被执行的X次测量被分别用于得到X个第一类测量值,所述X是正整数;所述X个第一类测量值被用于第一测量,所述第一测量被用于得到第二类测量值,执行所述第一测量所得到的第二类测量值被用于确定第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关;所述X个第一类测量值中的X1个第一类测量值均大于目标阈值,执行所述第一测量所得到的第二类测量值等于所述X1和所述X的比值,所述X1是不大于所述X的非负整数,所述第一信息被用于确定所述目标阈值。
作为一个实施例,特征测量值是所述X个第一类测量值中的一个第一类测量值,所述X次测量中的被用于得到所述特征测量值的测量在特征时频单元中被执行,所述特征时频单元为所述X个时频单元中的一个时频单元,所述特征时频单元中在时域包括X2个多载波符号,所述特征测量值为在所述特征时频单元的频域资源内的所述X2个多载波符号中的每个多载波符号中的接收功率的和的平均值。
作为一个实施例,所述X个时频单元在时域属于第一时间窗,所述第一测量在第二时间窗中被执行,所述第一时间窗的结束时刻不晚于所述第二时间窗的起始时刻,所述第二时间窗的结束时刻不晚于所述第一无线信号的发送起始时刻。
作为一个实施例,第一发射机1601还发送第二信息;其中,执行所述第一测量所得到的第二类测量值属于目标区间,所述目标区间是P个备选区间中之一,所述P个备选区间中的任意一个备选区间为一个正的有理数区间,所述P个备选区间分别和P个备选MCS集合一一对应,所述P个备选区间分别和P个备选资源数量值集合一一对应,所述P是大于1的正整数;所述目标区间所对应的所述P个备选MCS集合中的备选MCS集合为第一MCS集合,所述目标区间所对应的P个备选资源数量值集合中的备选资源数量值集合为第一资源数量值集合;所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一,所述第一无线信号所采用的MCS是所述第一MCS集合中的一个MCS,所述第一无线信号所占用的时频资源的数量等于所述第一资源数量值集合中的一个资源数量值。
作为一个实施例,第一发射机1601还发送第三信息;其中,所述第三信息被用于所述第一无线信号所占用的子载波的子载波间隔。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一类通信节点设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二类通信节点设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种被用于无线通信的第一类通信节点中的方法,其特征在于,包括:
    在X个时频单元中分别执行X次测量,所述X次测量分别被用于得到X个第一类测量值,所述X是正整数;
    执行第一测量,所述第一测量被用于得到第二类测量值;
    发送第一无线信号;
    其中,所述X个第一类测量值被用于所述第一测量,执行所述第一测量所得到的第二类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    接收第一信息;
    其中,所述X个第一类测量值中的X1个第一类测量值均大于目标阈值,执行所述第一测量所得到的第二类测量值等于所述X1和所述X的比值,所述X1是不大于所述X的非负整数,所述第一信息被用于确定所述目标阈值。
  3. 根据权利要求1所述的方法,其特征在于,特征测量值是所述X个第一类测量值中的一个第一类测量值,所述X次测量中的被用于得到所述特征测量值的测量在特征时频单元中被执行,所述特征时频单元为所述X个时频单元中的一个时频单元,所述特征时频单元中在时域包括X2个多载波符号,所述特征测量值为在所述特征时频单元的频域资源内的所述X2个多载波符号中的每个多载波符号中的接收功率的和的平均值。
  4. 根据权利要求1所述的方法,其特征在于,还包括:
    发送第一信令;
    其中,所述第一信令被用于指示所述第一无线信号所采用的MCS,所述第一无线信号所占用的时频资源,或者所述第一无线信号所占用的子载波的子载波间隔中至少之一,所述第一信令通过空中接口传输;所述X个时频单元在时域属于第一时间窗,所述第一测量在第二时间窗中被执行,所述第一时间窗的结束时刻不晚于所述第二时间窗的起始时刻,所述第二时间窗的结束时刻不晚于所述第一无线信号的发送起始时刻。
  5. 根据权利要求1所述的方法,其特征在于,还包括:
    接收第二信息;
    其中,执行所述第一测量所得到的第二类测量值属于目标区间,所述目标区间是P个备选区间中之一,所述P个备选区间中的任意一个备选区间为一个正的有理数区间,所述P个备选区间分别和P个备选MCS集合一一对应,所述P个备选区间分别和P个备选资源数量值集合一一对应,所述P是大于1的正整数;所述目标区间所对应的所述P个备选MCS集合中的备选MCS集合为第一MCS集合,所述目标区间所对应的P个备选资源数量值集合中的备选资源数量值集合为第一资源数量值集合;所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一,所述第一无线信号所采用的MCS是所述第一MCS集合中的一个MCS,所述第一无线信号所占用的时频资源的数量等于所述第一资源数量值集合中的一个资源数量值。
  6. 根据权利要求1所述的方法,其特征在于,还包括:
    接收第三信息;
    其中,所述第三信息被用于确定所述第一无线信号所占用的子载波的子载波间隔。
  7. 根据权利要求1所述的方法,其特征在于,还包括:
    在第三时间窗中执行Y次测量,所述Y次测量被用于分别得到Y个第三类测量值,所述Y是正整数;
    其中,执行所述第一测量所得到的第二类测量值被用于确定第一上限,所述Y个第三类测量值的和不大于所述第一上限,所述第三时间窗的时域位置和所述第一无线信号所占用的时频资源有关,所述Y个第三类测量值和所述第一无线信号的发送者在所述第三时间窗中所 发送的无线信号所占用的时频资源的数量有关。
  8. 根据权利要求1所述的方法,其特征在于,还包括
    从Q个备选时频单元集合中确定目标时频单元集合;
    其中,所述第一无线信号所占用的子载波的子载波间隔为目标子载波间隔,所述目标子载波间隔是Q个备选子载波间隔中的一个备选子载波间隔,所述Q是大于1的正整数;所述X个时频单元属于所述目标时频单元集合,所述Q个备选子载波间隔和所述Q个备选时频单元集合一一对应。
  9. 根据权利要求8所述的方法,其特征在于,所述X次测量属于Q组测量中的一组测量,所述Q组测量分别一一针对所述Q个备选时频单元集合,所述Q组测量被用于得到Q组第一类测量值,所述X个第一类测量值属于所述Q组第一类测量值中的一组第一类测量值,所述目标子载波间隔被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值。
  10. 一种被用于无线通信的第二类通信节点中的方法,其特征在于,包括:
    发送第一信息;
    其中,在X个时频单元中分别被执行的X次测量被分别用于得到X个第一类测量值,所述X是正整数;所述X个第一类测量值被用于第一测量,所述第一测量被用于得到第二类测量值,执行所述第一测量所得到的第二类测量值被用于确定第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关;所述X个第一类测量值中的X1个第一类测量值均大于目标阈值,执行所述第一测量所得到的第二类测量值等于所述X1和所述X的比值,所述X1是不大于所述X的非负整数,所述第一信息被用于确定所述目标阈值。
  11. 一种被用于无线通信的第一类通信节点设备,其特征在于,包括:
    第一测量器,在X个时频单元中分别执行X次测量,所述X次测量分别被用于得到X个第一类测量值,所述X是正整数;
    第二测量器,执行第一测量,所述第一测量被用于得到第二类测量值;
    第一收发机,发送第一无线信号;
    其中,所述X个第一类测量值被用于所述第一测量,执行所述第一测量所得到的第二类测量值被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关。
  12. 根据权利要求11所述的第一类通信节点设备,其特征在于,所述第一收发机接收第一信息;其中,所述X个第一类测量值中的X1个第一类测量值均大于目标阈值,执行所述第一测量所得到的第二类测量值等于所述X1和所述X的比值,所述X1是不大于所述X的非负整数,所述第一信息被用于确定所述目标阈值。
  13. 根据权利要求11所述的第一类通信节点设备,其特征在于,特征测量值是所述X个第一类测量值中的一个第一类测量值,所述X次测量中的被用于得到所述特征测量值的测量在特征时频单元中被执行,所述特征时频单元为所述X个时频单元中的一个时频单元,所述特征时频单元中在时域包括X2个多载波符号,所述特征测量值为在所述特征时频单元的频域资源内的所述X2个多载波符号中的每个多载波符号中的接收功率的和的平均值。
  14. 根据权利要求11所述的第一类通信节点设备,其特征在于,所述第一收发机发送第一信令;其中,所述第一信令被用于指示所述第一无线信号所采用的MCS,所述第一无线信号所占用的时频资源,或者所述第一无线信号所占用的子载波的子载波间隔中至少之一,所述第一信令通过空中接口传输;所述X个时频单元在时域属于第一时间窗,所述第一测量在第二时间窗中被执行,所述第一时间窗的结束时刻不晚于所述第二时间窗的起始时刻,所述第二时间窗的结束时刻不晚于所述第一无线信号的发送起始时刻。
  15. 根据权利要求11所述的第一类通信节点设备,其特征在于,所述第一收发机接收第二信息;其中,执行所述第一测量所得到的第二类测量值属于目标区间,所述目标区间是P个备选区间中之一,所述P个备选区间中的任意一个备选区间为一个正的有理数区间,所述P个备选区间分别和P个备选MCS集合一一对应,所述P个备选区间分别和P个备选资源数量值集合一一对应,所述P是大于1的正整数;所述目标区间所对应的所述P个备选MCS集合中的备选MCS集合为第一MCS集合,所述目标区间所对应的P个备选资源数量值集合中的备选资源数量值集合为第一资源数量值集合;所述第二信息被用于确定所述第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一,所述第一无线信号所采用的MCS是所述第一MCS集合中的一个MCS,所述第一无线信号所占用的时频资源的数量等于所述第一资源数量值集合中的一个资源数量值。
  16. 根据权利要求11所述的第一类通信节点设备,其特征在于,所述第一收发机接收第三信息;其中,所述第三信息被用于确定所述第一无线信号所占用的子载波的子载波间隔。
  17. 根据权利要求11所述的第一类通信节点设备,其特征在于,所述第二测量器在第三时间窗中执行Y次测量,所述Y次测量被用于分别得到Y个第三类测量值,所述Y是正整数;其中,执行所述第一测量所得到的第二类测量值被用于确定第一上限,所述Y个第三类测量值的和不大于所述第一上限,所述第三时间窗的时域位置和所述第一无线信号所占用的时频资源有关,所述Y个第三类测量值和所述第一无线信号的发送者在所述第三时间窗中所发送的无线信号所占用的时频资源的数量有关。
  18. 根据权利要求11所述的第一类通信节点设备,其特征在于,所述第一收发机从Q个备选时频单元集合中确定目标时频单元集合;其中,所述第一无线信号所占用的子载波的子载波间隔为目标子载波间隔,所述目标子载波间隔是Q个备选子载波间隔中的一个备选子载波间隔,所述Q是大于1的正整数;所述X个时频单元属于所述目标时频单元集合,所述Q个备选子载波间隔和所述Q个备选时频单元集合一一对应。
  19. 根据权利要求18所述的第一类通信节点设备,其特征在于,所述第一收发机从Q个备选时频单元集合中确定目标时频单元集合;其中,所述第一无线信号所占用的子载波的子载波间隔为目标子载波间隔,所述目标子载波间隔是Q个备选子载波间隔中的一个备选子载波间隔,所述Q是大于1的正整数;所述X个时频单元属于所述目标时频单元集合,所述Q个备选子载波间隔和所述Q个备选时频单元集合一一对应;所述X次测量属于Q组测量中的一组测量,所述Q组测量分别一一针对所述Q个备选时频单元集合,所述Q组测量被用于得到Q组第一类测量值,所述X个第一类测量值属于所述Q组第一类测量值中的一组第一类测量值,所述目标子载波间隔被用于在所述Q组第一类测量值中确定所述X个第一类测量值所属的一组第一类测量值。
  20. 一种被用于无线通信的第二类通信节点设备,其特征在于,包括:
    第一发射机,发送第一信息;
    其中,在X个时频单元中分别被执行的X次测量被分别用于得到X个第一类测量值,所述X是正整数;所述X个第一类测量值被用于第一测量,所述第一测量被用于得到第二类测量值,执行所述第一测量所得到的第二类测量值被用于确定第一无线信号所采用的MCS和所述第一无线信号所占用的时频资源中至少之一;所述X个时频单元中的一个时频单元所占用的时频资源的数量和所述第一无线信号所占用的子载波的子载波间隔有关;所述X个第一类测量值中的X1个第一类测量值均大于目标阈值,执行所述第一测量所得到的第二类测量值等于所述X1和所述X的比值,所述X1是不大于所述X的非负整数,所述第一信息被用于确定所述目标阈值。
PCT/CN2019/098839 2018-08-13 2019-08-01 一种被用于无线通信的节点中的方法和装置 WO2020034846A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/835,341 US11395170B2 (en) 2018-08-13 2020-03-31 Method and device in a node used for wireless communication
US17/837,064 US11696166B2 (en) 2018-08-13 2022-06-10 Method and device in a node used for wireless communication
US18/196,444 US20230284067A1 (en) 2018-08-13 2023-05-12 Method and device in a node used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810916445.2 2018-08-13
CN201810916445.2A CN110831193B (zh) 2018-08-13 2018-08-13 一种被用于无线通信的节点中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/835,341 Continuation US11395170B2 (en) 2018-08-13 2020-03-31 Method and device in a node used for wireless communication

Publications (1)

Publication Number Publication Date
WO2020034846A1 true WO2020034846A1 (zh) 2020-02-20

Family

ID=69525152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098839 WO2020034846A1 (zh) 2018-08-13 2019-08-01 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (3) US11395170B2 (zh)
CN (2) CN110831193B (zh)
WO (1) WO2020034846A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110167186B (zh) * 2018-02-13 2020-06-30 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN110831193B (zh) * 2018-08-13 2021-12-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115209372A (zh) 2018-09-04 2022-10-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113573274A (zh) * 2020-04-28 2021-10-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889158A (zh) * 2016-09-29 2018-04-06 北京三星通信技术研究有限公司 传输控制和数据的方法及设备
WO2018084599A1 (en) * 2016-11-03 2018-05-11 Samsung Electronics Co., Ltd. Method and apparatus for supporting vehicle to everything service
CN108307409A (zh) * 2017-01-13 2018-07-20 中兴通讯股份有限公司 一种实现cbr测量的方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1021136B1 (nl) 2013-03-12 2016-02-22 Cnh Industrial Belgium Nv Maaidorser met verstelbare reinigingsschoenopstelling
US20160295624A1 (en) * 2015-04-02 2016-10-06 Samsung Electronics Co., Ltd Methods and apparatus for resource pool design for vehicular communications
CN107105000B (zh) * 2016-02-23 2021-07-30 中兴通讯股份有限公司 V2x通信方法及装置
CN109804569B (zh) * 2016-05-11 2021-12-07 索尼公司 无线系统中的分布式控制
CN107371258B (zh) * 2016-05-13 2023-09-05 北京三星通信技术研究有限公司 传输数据的方法及设备
CN107645735B (zh) * 2016-07-21 2020-10-30 普天信息技术有限公司 一种V2X网络中sidelink的资源负载测量方法以及装置
JP6233994B1 (ja) 2016-11-21 2017-11-22 中村 正一 鼻当てパッド及びこれを備える眼鏡
BR112020014199A2 (pt) * 2018-01-10 2020-12-01 Idac Holdings, Inc. método para uso em uma unidade de transmissão/recepção sem fio, unidade de transmissão/recepção sem fio, e, gnb
CN116017722A (zh) * 2018-05-16 2023-04-25 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
US11924868B2 (en) * 2018-08-03 2024-03-05 Lg Electronics Inc. Method and apparatus for performing carrier (re)selection in NR V2X
WO2020032658A1 (ko) * 2018-08-08 2020-02-13 엘지전자 주식회사 사이드링크를 지원하는 무선통신시스템에서 단말이 사이드링크 신호를 전송하는 방법 및 이를 위한 장치
WO2020032687A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 Nr v2x에서 혼잡 제어를 수행하는 방법 및 장치
US11849435B2 (en) * 2018-08-09 2023-12-19 Lg Electronics Inc. Communication method and device considering flexible slot format in NR V2X
WO2020032700A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020032766A1 (ko) * 2018-08-10 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 비주기적 신호를 전송하는 방법 및 단말
CN110831193B (zh) * 2018-08-13 2021-12-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20210185721A1 (en) * 2018-08-23 2021-06-17 Telefonaktiebolaget Lm Ericsson (Publ) Methods to Transmit Multiple Transport Blocks for Unlicensed Wideband Radio Systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889158A (zh) * 2016-09-29 2018-04-06 北京三星通信技术研究有限公司 传输控制和数据的方法及设备
WO2018084599A1 (en) * 2016-11-03 2018-05-11 Samsung Electronics Co., Ltd. Method and apparatus for supporting vehicle to everything service
CN108307409A (zh) * 2017-01-13 2018-07-20 中兴通讯股份有限公司 一种实现cbr测量的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Dicussion On SSB SCS and minimum channel bandwidth", 3GPP TSG-RAN WG4 MEETING RAN4#84BIS R4-1711033, vol. RAN WG4, 8 October 2017 (2017-10-08), XP051345799 *

Also Published As

Publication number Publication date
US20220303816A1 (en) 2022-09-22
CN114071385A (zh) 2022-02-18
CN110831193B (zh) 2021-12-24
US11395170B2 (en) 2022-07-19
US11696166B2 (en) 2023-07-04
US20200229018A1 (en) 2020-07-16
CN110831193A (zh) 2020-02-21
US20230284067A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
WO2021204156A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN110876128B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034846A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021147892A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019006592A1 (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
WO2020199976A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN110896322B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031899A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020042862A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021155816A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020024782A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN111147216B (zh) 一种被用于无线通信的节点中的方法和装置
CN117915479A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023005781A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032479A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023179470A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023077757A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023185523A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2023284598A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2023103924A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2023169324A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2021160007A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN116266912A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19850660

Country of ref document: EP

Kind code of ref document: A1