WO2020034831A1 - 数据传输方法、终端及网络设备 - Google Patents

数据传输方法、终端及网络设备 Download PDF

Info

Publication number
WO2020034831A1
WO2020034831A1 PCT/CN2019/098112 CN2019098112W WO2020034831A1 WO 2020034831 A1 WO2020034831 A1 WO 2020034831A1 CN 2019098112 W CN2019098112 W CN 2019098112W WO 2020034831 A1 WO2020034831 A1 WO 2020034831A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
terminal
signal resource
pusch
antenna panels
Prior art date
Application number
PCT/CN2019/098112
Other languages
English (en)
French (fr)
Inventor
苏昕
陈润华
高秋彬
黄秋萍
缪德山
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to US17/267,092 priority Critical patent/US11985654B2/en
Priority to EP19849442.9A priority patent/EP3826198A4/en
Priority to KR1020217007818A priority patent/KR20210046030A/ko
Priority to JP2021507629A priority patent/JP7258123B2/ja
Publication of WO2020034831A1 publication Critical patent/WO2020034831A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0682Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using phase diversity (e.g. phase sweeping)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06966Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using beam correspondence; using channel reciprocity, e.g. downlink beam training based on uplink sounding reference signal [SRS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present disclosure relates to the technical field of communication applications, and in particular, to a data transmission method, a terminal, and a network device.
  • a user equipment or a terminal (User Equipment) (UE) equipped with multiple transmitting antennas in the related art can perform uplink beamforming.
  • a UE in a radio resource control connected (RRC_CONNECTED) state may be semi-statically configured with multiple UE-specific uplink sounding reference signal (SRS) resources.
  • SRS uplink sounding reference signal
  • the SRS signals transmitted on each SRS resource are beamformed using a specific beamforming matrix.
  • the UE sends these SRS resources in the uplink.
  • Transmission and reception points (TRP) measure the signal quality of different SRS resources and select the optimal SRS resource.
  • the TRP sends an index (SRS resource indicator (SRS) resource indicator (SRI)) of the selected SRS resource to the UE via Downlink Control Information (DCI).
  • SRS resource indicator SRS resource indicator
  • SRI resource indicator
  • DCI Downlink Control Information
  • the UE can infer from the SRI which uplink beamforming matrix (eg, SRS resources) is recommended by the TRP for future uplink transmissions.
  • the UE may then use the uplink beamforming matrix indicated by the SRI for future uplink transmissions.
  • the UE may have multiple antenna panels for uplink transmission.
  • Each antenna panel consists of a group of antenna elements.
  • the exact number of antenna panels, the number of antenna units, and the arrangement of antenna units within each panel are determined according to specific implementations, and different UEs may have different implementations.
  • the UE can send one data layer from one panel at a time.
  • the UE may also send a data layer from a subset of antenna panels (including more than one antenna panel) at the same time.
  • the description here is also applicable to SRS resources (transmission of SRS signals).
  • the specifications in the related technology cannot support a joint transmission method in which a physical uplink shared channel (PUSCH) is simultaneously transmitted from a multi-antenna panel panel, resulting in a lower transmission rate.
  • PUSCH physical uplink shared channel
  • An object of the present disclosure is to provide a data transmission method, a terminal, and a network device to solve a problem that specifications in related technologies cannot support simultaneous transmission of PUSCH from a multi-antenna panel.
  • the present disclosure provides a data transmission method applied to a terminal configured with at least two antenna panels for uplink transmission, including:
  • PUSCH scheduling information sent by a network device, where the PUSCH scheduling information includes first indication information and second indication information, the first indication information is used to indicate a data layer included in the PUSCH, and the second indication information Used to indicate a precoding matrix;
  • the method Before receiving the physical uplink shared channel PUSCH scheduling information sent by the network device, the method further includes:
  • each target antenna panel uses an uplink signal resource for acquiring channel state information CSI using a target transmission beam corresponding to the target antenna panel, and the PUSCH scheduling information is obtained by a network device according to the uplink signal resource.
  • the uplink signal resource is an uplink signal resource including K ports, K is a sum of the number of digital channels of the at least two target antenna panels, K ports are mapped to at least two of the target antenna panels, K Is a positive integer, and K is greater than or equal to L, and L is the number of data layers included in the PUSCH.
  • sending, on each target antenna panel, an uplink signal resource for acquiring channel state information CSI using a target transmission beam corresponding to the target antenna panel includes:
  • the mapping the data layer included in the PUSCH to at least two target antenna panels for transmission according to the precoding matrix indicated by the second instruction information includes:
  • Sending a beam training signal resource by using an analog beam on the at least two target antenna panels includes:
  • a target beam training signal resource set corresponding to a third target antenna panel is selected, and each of the beam training signal resource sets includes at least one beam training signal.
  • the third target antenna panel is any one of the at least two target antenna panels;
  • an embodiment of the present disclosure further provides a data transmission method, which is applied to a network device and includes:
  • the PUSCH scheduling information includes first indication information and second indication information
  • the first indication information is used to indicate data included in the PUSCH Layer
  • the second indication information is used to indicate a precoding matrix
  • the method before obtaining the uplink channel state information CSI according to the uplink signal resources sent by the terminal, the method further includes:
  • the uplink signal resource is an uplink signal resource including K ports, K is a sum of the number of digital channels of at least two target antenna panels of the terminal, K ports are mapped to at least two of the target antenna panels, K Is a positive integer, and K is greater than or equal to L, and L is the number of data layers included in the PUSCH.
  • the method before obtaining the uplink channel state information CSI according to the uplink signal resources sent by the terminal, the method further includes:
  • the correspondence between the port and the target transmission beam is indicated to the terminal.
  • Indicating the correspondence between the port and the target transmission beam to the terminal includes:
  • the corresponding relationship between the port group and the target transmission beam is indicated to the terminal, where the K ports are divided into D port groups, and at least one target port group exists in the D port groups, and the target port A group is a port group including at least two ports, and D is a positive integer greater than 1.
  • an embodiment of the present disclosure further provides a terminal configured with at least two antenna panels for uplink transmission.
  • the terminal includes: a transceiver, a memory, a processor, and a memory stored in the memory. And a program that can be run on a processor that implements the following steps when the processor executes the program:
  • the PUSCH scheduling information includes first indication information and second indication information, where the first indication information is used to indicate a data layer included in the PUSCH, and the first Two indication information are used to indicate a precoding matrix;
  • each target antenna panel uses an uplink signal resource for acquiring channel state information CSI using a target transmission beam corresponding to the target antenna panel, and the PUSCH scheduling information is obtained by a network device according to the uplink signal resource.
  • the uplink signal resource is an uplink signal resource including K ports, K is a sum of the number of digital channels of the at least two target antenna panels, K ports are mapped to at least two of the target antenna panels, K Is a positive integer, and K is greater than or equal to L, and L is the number of data layers included in the PUSCH.
  • a target beam training signal resource set corresponding to a third target antenna panel is selected, and each of the beam training signal resource sets includes at least one beam training signal.
  • the third target antenna panel is any one of the at least two target antenna panels;
  • an embodiment of the present disclosure further provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the data transmission method described above are implemented.
  • an embodiment of the present disclosure further provides a network device, including a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor.
  • a network device including a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor.
  • the PUSCH scheduling information includes first indication information and second indication information
  • the first indication information is used to indicate data included in the PUSCH Layer
  • the second indication information is used to indicate a precoding matrix
  • the terminal Before acquiring the uplink channel state information CSI according to the uplink signal resources sent by the terminal, obtain the beam training signal resources sent by the terminal using the analog beam on at least two target antenna panels;
  • the uplink signal resource is an uplink signal resource including K ports, K is a sum of the number of digital channels of at least two target antenna panels of the terminal, K ports are mapped to at least two of the target antenna panels, K Is a positive integer, and K is greater than or equal to L, and L is the number of data layers included in the PUSCH.
  • the terminal Before acquiring the uplink channel state information CSI according to the uplink signal resource sent by the terminal, indicate the correspondence between the port and the target transmission beam to the terminal.
  • the corresponding relationship between the port group and the target transmission beam is indicated to the terminal, where the K ports are divided into D port groups, and at least one target port group exists in the D port groups, and the target port A group is a port group including at least two ports, and D is a positive integer greater than 1.
  • an embodiment of the present disclosure further provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the data transmission method described above are implemented.
  • an embodiment of the present disclosure further provides a terminal configured with at least two antenna panels for uplink transmission, including:
  • a receiving module configured to receive physical uplink shared channel PUSCH scheduling information sent by a network device, where the PUSCH scheduling information includes first indication information and second indication information, and the first indication information is used to indicate a data layer included in the PUSCH;
  • the second indication information is used to indicate a precoding matrix;
  • a first sending module configured to map the data layer included in the PUSCH to at least two target antenna panels for transmission according to a precoding matrix indicated by the second instruction information, where the target antenna panel is at least two of the terminal An antenna panel for transmitting PUSCH among two antenna panels.
  • a second sending module configured to send a beam training signal resource using an analog beam on the at least two target antenna panels
  • a first acquisition module configured to acquire a target transmission beam corresponding to each of the target antenna panels indicated by a network device, where the target transmission beam is obtained by a network device according to the beam training signal resource;
  • a third sending module configured to send, on each target antenna panel, an uplink signal resource used to obtain channel state information CSI using a target transmission beam corresponding to the target antenna panel, and the PUSCH scheduling information is a network device according to the uplink Signal resources are obtained.
  • the uplink signal resource is an uplink signal resource including K ports, K is a sum of the number of digital channels of the at least two target antenna panels, K ports are mapped to at least two of the target antenna panels, K Is a positive integer, and K is greater than or equal to L, and L is the number of data layers included in the PUSCH.
  • an embodiment of the present disclosure further provides a network device, including:
  • a second acquisition module configured to acquire uplink channel state information CSI according to an uplink signal resource sent by the terminal
  • a fourth sending module configured to obtain physical uplink shared channel PUSCH scheduling information according to the channel state information CSI and send the PUSCH scheduling information to the terminal, where the PUSCH scheduling information includes first indication information and second indication information, and the first indication information It is used to indicate a data layer included in the PUSCH, and the second indication information is used to indicate a precoding matrix.
  • a third acquisition module configured to acquire a beam training signal resource sent by the terminal using at least two target antenna panels using an analog beam
  • a determining module is configured to perform beam scanning processing on the beam training signal resource, determine a target transmission beam corresponding to each of the target antenna panels, and instruct the terminal.
  • the uplink signal resource is an uplink signal resource including K ports, K is a sum of the number of digital channels of at least two target antenna panels of the terminal, K ports are mapped to at least two of the target antenna panels, K Is a positive integer, and K is greater than or equal to L, and L is the number of data layers included in the PUSCH.
  • the foregoing technical solution in the embodiment of the present disclosure receives physical uplink shared channel PUSCH scheduling information sent by a network device, where the PUSCH scheduling information includes first indication information and second indication information; and a precoding matrix indicated by the second indication information , Mapping the data layer included in the PUSCH to at least two target antenna panels for transmission, thereby achieving the purpose of simultaneously transmitting the data layer of the PUSCH from multiple antenna panels.
  • FIG. 1 is a schematic diagram of weighting forming an intermediate frequency signal in analog beamforming in the related art
  • FIG. 2 is a schematic diagram of weighted shaping of a radio frequency signal in analog beamforming in the related art
  • FIG. 3 is a schematic diagram of digital-analog mixed beamforming in related technologies
  • FIG. 5 is a schematic diagram of PUSCH transmission in an embodiment of the present disclosure.
  • FIG. 6 is a second schematic flowchart of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 7 is a structural block diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic block diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a structural block diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic block diagram of a network device according to an embodiment of the present disclosure.
  • MIMO Multiple-Input Multiple-Output
  • LTE Long-Term Evolution
  • LTE-Advanced, LTE- A Enhanced Long-Term Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • Rel-8 In LTE Rel-8, it can support up to 4 layers of MIMO transmission. Rel-9 focuses on enhancements to Multi-User Multiple Input Multiple Output (MU-MIMO) technology. Transmission Mode (TM) -8 MU-MIMO transmission can support up to 4 downlink data layers. .
  • TM Multi-User Multiple Input Multiple Output
  • MU-MIMO Transmission Mode
  • Rel-10 introduced support for 8 antenna ports to further improve the spatial resolution of channel state information, and further extended the single-user multiple-input multiple-output (Single-User MIMO (SU-MIMO)) transmission capacity to a maximum of eight data layers.
  • Rel-13 and Rel-14 introduced FD-MIMO technology to support 32 ports to achieve full-dimensional and vertical beamforming.
  • a large-scale antenna technology is introduced in a mobile communication system.
  • a fully digital large-scale antenna can have up to 128/256/512 antenna elements and up to 128/256/512 transceivers, each antenna element being connected to a transceiver.
  • pilot signals of up to 128/256/512 antenna ports
  • the terminal measures channel state information and feeds it back.
  • an antenna array with up to 32/64 antenna elements can also be configured.
  • a huge beamforming gain is obtained to compensate for signal attenuation caused by path loss.
  • the path loss makes the coverage of wireless signals extremely limited.
  • the coverage of wireless signals can be extended to a practical range.
  • each antenna element has an independent transceiver, which will greatly increase the size, cost and power consumption of the device.
  • ADC analog-to-digital converter
  • DAC digital-to-analog converter
  • the reduction of power consumption and performance improvement are relatively limited.
  • a technical solution based on analog beamforming is proposed. As shown in Figure 1 and Figure 2.
  • the main feature of analog beamforming is the weighted shaping of intermediate frequency (Figure 1) or radio frequency signals ( Figure 2) by phase shifters.
  • FIG. 3 a digital-analog hybrid beamforming transceiver architecture solution is proposed, as shown in FIG. 3.
  • the sender and receiver have with Transceivers, number of transmitting antennas Number of receiving antennas
  • the maximum number of parallel transport streams supported by beamforming is .
  • the hybrid beamforming structure in Figure 3 balances the flexibility of digital beamforming with the low complexity of analog beamforming.
  • Both analog beamforming and digital-analog mixed beamforming need to adjust the analog beamforming weights at the transmitting and receiving ends so that the beams formed by them can be aligned with the opposite end of the communication.
  • the beamforming weights sent by the base station and the beamforming weights received by the terminal need to be adjusted, while for uplink transmissions, the beamforming weights sent by the terminal and received by the base station need to be adjusted.
  • Beamforming weights are usually obtained by sending training signals.
  • the base station sends a downlink beam training signal
  • the terminal measures the downlink beam training signal, selects the best base station to transmit the beam, and feeds back the beam-related information to the base station. At the same time, it selects the corresponding best receiving beam and stores it locally.
  • the UE may have multiple antenna panels for uplink transmission.
  • the single antenna panel transmission and the multiple antenna panel transmission are described below.
  • a single panel UE can be configured with an SRS resource set for transmit beam scanning.
  • Each SRS resource set includes multiple SRS resources, and different SRS resources can be shaped using different beams. Since each panel can only form one analog beam at the same time, different SRS resources (corresponding to different beams) in an SRS resource set are transmitted at different times.
  • the gNB determines the optimal transmission beam (that is, the SRS resource with the best reception quality) by receiving the SRS resource set, and instructs the UE.
  • the GNB can then configure a second SRS resource set for CSI acquisition, which contains multiple SRS resources, and can use the same or different analog beams (based on previous beam scans).
  • the gNB sends an SRI indication in the PUSCH scheduling grant to the second SRS resource set (the SRS resource set used for CSI acquisition) according to the channel estimation situation.
  • the UE performs PUSCH transmission according to the beam indicated by the SRI.
  • multiple SRS resource sets can be configured for the simulated beam training, where each SRS set corresponds to one panel.
  • Different SRS resources of the same SRS resource set (corresponding to a panel) are transmitted at different times.
  • SRS resources of different SRS resource sets can be sent at the same or different times.
  • the SRS overhead varies linearly with the number of antenna panels. For terminals with a large number of antenna panels (such as vehicles, balloons, and other aircraft with less power and size restrictions), the amount of SRS overhead may be very large.
  • an embodiment of the present disclosure provides a data transmission method applied to a terminal configured with At least two antenna panels for uplink transmission, as shown in FIG. 4, the data transmission method includes:
  • Step 401 Receive physical uplink shared channel PUSCH scheduling information sent by a network device.
  • the PUSCH scheduling information includes first indication information and second indication information.
  • the first indication information is used to indicate a data layer included in the PUSCH.
  • the two indication information are used to indicate a precoding matrix.
  • the PUSCH scheduling information is carried in a PUSCH scheduling grant.
  • the first indication information is a transmission rank index (TRI)
  • the second indication information is a transmission precoding matrix index (TPMI).
  • the precoding is described above.
  • the matrix refers to a precoding matrix of K ⁇ L, where K is the sum of the number of digital channels of at least two target antenna panels used to transmit the PUSCH, and L is the number of data layers included in the PUSCH.
  • Step 402 Map all data layers of the PUSCH to at least two target antenna panels for transmission according to the precoding matrix indicated by the second instruction information, where the target antenna panels are at least two antenna panels of the terminal. Antenna panel for transmitting PUSCH.
  • the terminal performs digital precoding processing based on the foregoing precoding matrix, obtains K data layer transmission signal vectors, and maps the transmission signal vectors to at least two target antenna panels for transmission.
  • the data transmission method in the embodiment of the present disclosure receives physical uplink shared channel PUSCH scheduling information sent by a network device, where the PUSCH scheduling information includes first indication information and second indication information; and a precoding matrix indicated by the second indication information , Mapping the data layer included in the PUSCH to at least two target antenna panels for transmission, thereby achieving the purpose of simultaneously transmitting the data layer of the PUSCH from multiple antenna panels.
  • the method further includes:
  • Step 4021 Send beam training signal resources using the analog beams on the at least two target antenna panels.
  • the beam training signal resource here may specifically be a sounding reference signal SRS resource.
  • a target beam training signal resource set corresponding to a third target antenna panel is selected, and each of the beam training signal resource sets includes at least one beam training signal.
  • the third target antenna panel is any one of the at least two target antenna panels; each of the target beam training signal resource sets is sent on the third target antenna panel using a different analog beam Beam training signal resources, where the beam training signal resources carry beam training signals.
  • the base station gNB configures two SRS resource sets for simulated beam training, where each SRS resource set is mapped to an antenna panel panel.
  • the specific mapping of the SRS resource set to the panel depends on the implementation of the UE. For example, the UE may map the first SRS resource set used for simulation beam training to panel 1 and the second SRS resource set used for simulation beam training to panel 2; or 2, the first SRS resource set used for simulated beam training An SRS resource set is mapped to panel 2 and a second SRS resource set used for simulated beam training is mapped to panel 1.
  • the mapping order may be transparent to the gNB.
  • Each SRS resource set includes a set of SRS resources, and they can use different time-frequency resources. For each SRS resource set, the UE uses a different analog beam to send each SRS resource on the corresponding panel.
  • Step 4022 Obtain a target transmission beam corresponding to each of the target antenna panels indicated by the network device, where the target transmission beam is obtained by the network device according to the beam training signal.
  • the gNB determines the best receiving beam through beam scanning.
  • the gNB can select the optimal receiving beam for each panel based on the single-panel transmission assumption. Alternatively, it can also be assumed that all panels are jointly transmitted, and then an optimal receiving beam is obtained.
  • the gNB may control the time-frequency resource configuration (such as orthogonal time-frequency resources or the same resource) of the two SRS resource sets.
  • gNB can also obtain the optimal transmission beam for each panel (denoted as [BM opt, 1 , BM opt, 2 ]), which respectively corresponds to the optimal SRS resource in the respective SRS resource set (denoted as [SRS opt, 1 , SRS opt, 2 ]).
  • the UE can learn [SRS opt, 1 , SRS opt, 2 ], so as to obtain the recommended SRS resources on each panel, and determine the optimal SRS resources on each antenna panel based on the recommended SRS resources on each antenna panel.
  • Optimal transmit beam [BM opt, 1 , BM opt, 2 ]).
  • the optimal transmission beam may specifically be a transmission beam corresponding to the SRS resource with the best reception quality, such as a transmission beam corresponding to the SRS resource with the strongest received signal power.
  • Step 4023 Use each target antenna panel corresponding to the target antenna panel to send an uplink signal resource for acquiring channel state information CSI, and the PUSCH scheduling information is obtained by the network device according to the uplink signal resource.
  • the uplink signal resource used to obtain the channel state information CSI is an SRS resource.
  • the terminal can enable the network device to estimate the uplink CSI, and perform link adaptation and PUSCH scheduling.
  • the uplink signal resource is an uplink signal resource including K ports, K is a sum of the number of digital channels of the at least two target antenna panels, K ports are mapped to at least two of the target antenna panels, and K is A positive integer, and K is greater than or equal to L, where L is the number of data layers included in the PUSCH.
  • the network device After the network device determines the best transmission beam on each antenna panel through beam scanning, it further configures the terminal with SRS resources for CSI acquisition. As shown in FIG. 5, it is assumed that multiple data layers of the PUSCH are distributed and transmitted on two target antenna panels, where PUSCH layer 1 to layer A are mapped to the antenna panel 1 for transmission, and A + 1 to L layers are mapped to the antenna. Panel 2 sends, A is a positive integer greater than 1 and less than L.
  • the base station gNB configures two SRS resource sets for CSI acquisition, where each SRS resource set is mapped to an antenna panel panel, for example, a third SRS resource set used for CSI acquisition is mapped to antenna panel 1 and will be used for CSI The obtained fourth SRS resource set is mapped on the antenna panel 2.
  • the gNB configures an SRS resource containing K ports.
  • the SRS resource can be configured to be transmitted periodically, semi-periodically, or non-periodically.
  • sending the uplink signal resource used to obtain the channel state information CSI on each target antenna panel by using the target transmission beam corresponding to the target antenna panel includes:
  • the beams used by the SRS resources used for CSI measurement sent on each panel are obtained through [SRS opt, 1 , SRS opt, 2 ].
  • the SRS port numbers of the antenna panel 1 and the antenna panel 2 are respectively denoted as [p1, p2, ... p N1 ] and [q1, q2, ... q N2 ].
  • the ports [p1, p2, ... p N1 ] are mapped to the antenna panel 1, and BM opt, 1 is used as its analog beam. Therefore, the gNB instructs the UE to use the same analog beam as SRS opt, 1 in [p1, p2, ... p N1 ].
  • the antenna ports [q1, q2, ... q N2 ] are mapped to panel 2 and BM opt, 2 is used as its analog beam. Therefore, the gNB instructs the UE to use the same analog beam as SRS opt, 2 in [q1, q2, ... q N2 ].
  • the correspondence between the port and the target transmission beam may be indicated to the terminal in the following two ways:
  • each port can use the same or different uplink transmit beams.
  • the K ports are divided into D port groups, and at least one target port group exists in the D port groups, and the target port group is A port group including at least two ports, D is a positive integer greater than 1.
  • the above-mentioned correspondence relationship may be indicated by the configuration of the spatial relation information (SpatialRelationInfo) in the high-level information domain.
  • Configuration instructions For example, in the second manner, multiple "SpatialRelationInfo" values are provided for the UE, and the port group corresponding to each value is notified to the UE.
  • gNB may be Configure two "SpatialRelationInfo" parameters.
  • the first "SpatialRelationInfo” corresponds to SRS opt, 1 , which is port [1, 2, ..., N1]; the second "SpatialRelationInfo” corresponds to SRS opt, 2 , that is, port [N1 + 1, ..., N1 + N2].
  • the grouping of SRS ports in the SRS resource can be semi-static or dynamic. If the semi-static method is adopted, the number of port groups of the SRS resources and the port numbers in each group are semi-statically configured. If the dynamic mode is adopted, the number of port groups and the port numbers in each group are notified through L1 dynamic signaling (for example, together with the SRS departure permission). If the grouping is performed in a dynamic manner, the grouping information (that is, the number of groups and the port number in each group) can be jointly or independently indicated with uplink transmission beam information (such as "SpatialRelationInfo").
  • uplink transmission beam information such as "SpatialRelationInfo"
  • the number of SRS port groups is configured semi-statically, the number of SRS ports in each group can be dynamically indicated.
  • mapping the data layer included in the PUSCH to at least two target antenna panels for transmission includes:
  • the target data layer is any one of the L data layers of the PUSCH.
  • the base station after receiving the uplink signal resources used for CSI acquisition, the base station estimates uplink CSI and performs link adaptation and PUSCH scheduling.
  • the scheduling permission may include: TRI (transmission rank indicator) to indicate the number of data layers L included in the PUSCH; TPMI (transmit precoding matrix indicator) to indicate the (N1 + N2) ⁇ L precoding matrix W .
  • the UE performs digital precoding based on the foregoing information to form a transmission signal vector of length (N1 + N2).
  • the N1 data layers corresponding to the port [p1, p2, ... p N1 ] are sent through panel 1, and the beam corresponding to the "SpatialRelationInfo" parameter given by SRS opt, 1 is used; and the port [q1, q2, ...
  • the corresponding N2 data layers are sent through panel 2, and the beam corresponding to the "SpatialRelationInfo" parameter given by SRS opt, 2 is used.
  • the data transmission method in the embodiment of the present disclosure receives physical uplink shared channel PUSCH scheduling information sent by a network device, where the PUSCH scheduling information includes first indication information and second indication information; and a precoding matrix indicated by the second indication information , Mapping the data layer included in the PUSCH to at least two target antenna panels for transmission, thereby achieving the purpose of simultaneously transmitting the data layer of the PUSCH from multiple antenna panels.
  • an embodiment of the present disclosure further provides a data transmission method, which is applied to a network device.
  • the network device may be specifically a base station.
  • the data transmission method includes steps 601 and 602.
  • Step 601 Obtain uplink channel state information CSI according to an uplink signal resource sent by the terminal.
  • the uplink signal resource is specifically an SRS resource configured by the base station for the terminal to obtain CSI.
  • the network device first determines the optimal transmission beam on each antenna panel according to the beam training signal resource sent by the terminal, and then configures the terminal with the SRS resource for CSI acquisition. As shown in FIG. 5, it is assumed that multiple data layers of the PUSCH are distributed and transmitted on two target antenna panels, where PUSCH layer 1 to layer A are mapped to the antenna panel 1 for transmission, and A + 1 to L layers are mapped to the antenna. Panel 2 sends, A is a positive integer greater than 1 and less than L.
  • the base station gNB configures two SRS resource sets for CSI acquisition, where each SRS resource set is mapped to an antenna panel panel, for example, a third SRS resource set used for CSI acquisition is mapped to antenna panel 1 and will be used for CSI The obtained fourth SRS resource set is mapped on the antenna panel 2.
  • Step 602 Get physical uplink shared channel PUSCH scheduling information according to the channel state information CSI and send the PUSCH scheduling information to the terminal.
  • the PUSCH scheduling information includes first indication information and second indication information, and the first indication information is used to indicate the PUSCH.
  • the included data layer, and the second indication information is used to indicate a precoding matrix.
  • the PUSCH scheduling information is carried in a PUSCH scheduling grant.
  • the base station After the base station receives the uplink signal resources used for CSI acquisition, it estimates the uplink CSI, and performs link adaptation and PUSCH scheduling.
  • the scheduling permission may include: TRI (transmission, rank, indicator), which is used to indicate the number L of data layers contained in the PUSCH, and TPMI (transmit, precoding, matrix, indicator), which is used to indicate the K ⁇ L precoding matrix W.
  • the terminal after sending the PUSCH scheduling information to the terminal, the terminal performs digital precoding processing on the PUSCH based on the precoding matrix to obtain K data layer transmission signal vectors, and maps the transmission signal vectors to at least two target antenna panels. Send on.
  • the method further includes:
  • the beam training signal resource herein may specifically be a sounding reference signal SRS resource.
  • the base station gNB configures two SRS resource sets for simulated beam training, where each SRS resource set is mapped to an antenna panel panel.
  • the specific mapping of the SRS resource set to the panel depends on the implementation of the UE. For example, the UE may map the first SRS resource set used for simulation beam training to panel 1 and the second SRS resource set used for simulation beam training to panel 2; or 2, the first SRS resource set used for simulated beam training An SRS resource set is mapped to panel 2 and a second SRS resource set used for simulated beam training is mapped to panel 1.
  • Each SRS resource set includes a set of SRS resources, and they can use different time-frequency resources.
  • the UE uses a different analog beam to send each SRS resource on the corresponding panel.
  • the gNB determines the best receiving beam through beam scanning.
  • the gNB can select the optimal receiving beam for each panel based on the single-panel transmission assumption. Alternatively, it can also be assumed that all panels are jointly transmitted, and then an optimal receiving beam is obtained.
  • the gNB may control the time-frequency resource configuration (such as orthogonal time-frequency resources or the same resource) of the two SRS resource sets.
  • gNB can also obtain the optimal transmission beam for each panel (denoted as [BM opt, 1 , BM opt, 2 ]), which respectively corresponds to the optimal SRS resource in the respective SRS resource set (denoted as [SRS opt, 1 , SRS opt, 2 ]).
  • the UE can learn [SRS opt, 1 , SRS opt, 2 ], so as to obtain the recommended SRS resources on each panel, and determine the optimal SRS resources on each antenna panel based on the recommended SRS resources on each antenna panel.
  • Optimal transmit beam [BM opt, 1 , BM opt, 2 ]).
  • the optimal transmission beam may specifically be a transmission beam corresponding to the SRS resource with the best reception quality, such as a transmission beam corresponding to the SRS resource with the strongest received signal power.
  • the uplink signal resource is an uplink signal resource including K ports, K is a sum of the number of digital channels of the at least two target antenna panels of the terminal, and K ports are mapped to at least two of the target antenna panels K is a positive integer, K is greater than or equal to L, and L is the number of data layers included in the PUSCH.
  • the method before acquiring uplink channel state information CSI according to an uplink signal resource sent by the terminal, the method further includes:
  • the correspondence between the port and the target transmission beam is indicated to the terminal.
  • the corresponding relationship between the port group and the target transmission beam is indicated to the terminal, and the port group includes at least two ports.
  • the correspondence between the port and the target transmission beam may be indicated to the terminal in the following two ways:
  • each port can use the same or different uplink transmit beams.
  • the K ports are divided into D port groups, and at least one target port group exists in the D port groups, and the target port group is A port group including at least two ports, D is a positive integer greater than 1.
  • the above-mentioned correspondence relationship may be indicated by the configuration of the spatial relation information (SpatialRelationInfo) of the high-level information domain.
  • the spatial relation information may also be used to perform Configuration instructions.
  • multiple "SpatialRelationInfo" values are provided for the UE, and the port group corresponding to each value is notified to the UE.
  • gNB can be configured with two "SpatialRelationInfo" parameters.
  • the first "SpatialRelationInfo” corresponds to SRS opt, 1 , which is the port [1, 2, ..., N1]; the second "SpatialRelationInfo” corresponds to SRS opt, 2 , which is the port [N1 + 1, ..., N1 + N2].
  • the grouping of SRS ports in the SRS resource can be semi-static or dynamic. If the semi-static method is adopted, the number of port groups of the SRS resources and the port numbers in each group are semi-statically configured. If the dynamic mode is adopted, the number of port groups and the port numbers in each group are notified through L1 dynamic signaling (for example, together with the SRS departure permission). If the grouping is performed in a dynamic manner, the grouping information (that is, the number of groups and the port number in each group) can be jointly or independently indicated with uplink transmission beam information (such as "SpatialRelationInfo").
  • uplink transmission beam information such as "SpatialRelationInfo"
  • the number of SRS port groups is configured semi-statically, the number of SRS ports in each group can be dynamically indicated.
  • the data transmission method in the embodiment of the present disclosure obtains uplink channel state information CSI according to an uplink signal resource sent by a terminal; according to the channel state information CSI, obtains physical uplink shared channel PUSCH scheduling information and sends it to the terminal so that The terminal maps the data layer included in the PUSCH to at least two target antenna panels and sends the data layer included in the PUSCH according to the precoding matrix indicated by the second instruction information, thereby achieving the purpose of transmitting the data layer of the PUSCH from multiple antenna panels simultaneously.
  • an embodiment of the present disclosure further provides a terminal configured with at least two antenna panels for uplink transmission, including: a transceiver 710, a memory 720, a processor 700, and a storage device.
  • PUSCH scheduling information sent by a network device, where the PUSCH scheduling information includes first indication information and second indication information, the first indication information is used to indicate a data layer included in the PUSCH, and the second indication information Used to indicate a precoding matrix;
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 700 and various circuits of the memory represented by the memory 720 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 710 may be multiple elements, including a transmitter and a transceiver, providing a unit for communicating with various other devices over a transmission medium.
  • the user interface 730 may also be an interface capable of externally connecting and connecting the required devices.
  • the connected devices include, but are not limited to, a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 720 may store data used by the processor 700 when performing operations.
  • the processor 700 is further configured to read a program in the memory 720 and execute the following steps:
  • each target antenna panel uses an uplink signal resource for acquiring channel state information CSI using a target transmission beam corresponding to the target antenna panel, and the PUSCH scheduling information is obtained by a network device according to the uplink signal resource.
  • the uplink signal resource is an uplink signal resource including K ports, K is a sum of the number of digital channels of the at least two target antenna panels, and K ports are mapped to at least two of the target antenna panels K is a positive integer, K is greater than or equal to L, and L is the number of data layers included in the PUSCH.
  • the processor 700 is further configured to read a program in the memory 720 and execute the following steps:
  • the processor 700 is further configured to read a program in the memory 720 and execute the following steps:
  • the processor 700 is further configured to read a program in the memory 720 and execute the following steps:
  • a target beam training signal resource set corresponding to a third target antenna panel is selected, and each of the beam training signal resource sets includes at least one beam training signal.
  • the third target antenna panel is any one of the at least two target antenna panels;
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the following steps are implemented:
  • PUSCH scheduling information sent by a network device, where the PUSCH scheduling information includes first indication information and second indication information, the first indication information is used to indicate a data layer included in the PUSCH, and the second indication information Used to indicate a precoding matrix;
  • an embodiment of the present disclosure further provides a terminal configured with at least two antenna panels for uplink transmission, including:
  • the receiving module 801 is configured to receive physical uplink shared channel PUSCH scheduling information sent by a network device.
  • the PUSCH scheduling information includes first indication information and second indication information, and the first indication information is used to indicate a data layer included in the PUSCH.
  • the second indication information is used to indicate a precoding matrix;
  • a first sending module 802 configured to map the data layer included in the PUSCH to at least two target antenna panels for transmission according to a precoding matrix indicated by the second instruction information, where the target antenna panels are An antenna panel for transmitting PUSCH among at least two antenna panels.
  • a second sending module configured to send a beam training signal resource using an analog beam on the at least two target antenna panels
  • a first acquisition module configured to acquire a target transmission beam corresponding to each of the target antenna panels indicated by a network device, where the target transmission beam is obtained by a network device according to the beam training signal resource;
  • a third sending module configured to send, on each target antenna panel, an uplink signal resource used to obtain channel state information CSI using a target transmission beam corresponding to the target antenna panel, and the PUSCH scheduling information is a network device according to the uplink Signal resources are obtained.
  • the uplink signal resource is an uplink signal resource including K ports, K is a sum of the number of digital channels of the at least two target antenna panels, and K ports are mapped to at least two of the targets On the antenna panel, K is a positive integer, K is greater than or equal to L, and L is the number of data layers included in the PUSCH.
  • the third sending module includes:
  • a determining submodule configured to determine a first target transmission beam corresponding to the first target port according to the correspondence between the port and the target transmission beam indicated by the network device;
  • a first sending submodule is configured to send an uplink signal resource of the first target port on a first target antenna panel corresponding to the first target transmit beam.
  • the first sending module includes:
  • a first acquisition submodule configured to perform precoding processing on the L data layers of the PUSCH according to a precoding matrix indicated by the second indication information, to obtain a transmission signal vector including K data layers, where the Each data layer of the transmitted signal vector corresponds to one said port;
  • a second acquisition submodule configured to acquire a second target port corresponding to the target data layer of the sent signal vector
  • a second sending submodule configured to send a target data layer of the sending signal vector on a second target antenna panel by using a second target transmitting beam corresponding to the second target port, where the second target antenna panel is The second target port has an antenna panel in a mapping relationship.
  • the second sending module includes:
  • a third sending submodule is configured to send each beam training signal resource in the target beam training signal resource set on the third target antenna panel using a different analog beam.
  • the terminal in the embodiment of the present disclosure receives physical uplink shared channel PUSCH scheduling information sent by a network device, where the PUSCH scheduling information includes first indication information and second indication information; and according to a precoding matrix indicated by the second indication information,
  • the data layer included in the PUSCH is mapped to at least two target antenna panels for transmission, thereby achieving the purpose of simultaneously transmitting the data layer of the PUSCH from multiple antenna panels.
  • an embodiment of the present disclosure further provides a network device.
  • the network device is specifically a base station, and includes a memory 920, a processor 900, a transceiver 910, a bus interface, and a memory stored in the memory 920 and may be processed.
  • a computer program running on the processor 900, the processor 900 is configured to read the program in the memory 920, and execute the following processes:
  • the PUSCH scheduling information includes first indication information and second indication information
  • the first indication information is used to indicate data included in the PUSCH Layer
  • the second indication information is used to indicate a precoding matrix
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 900 and various circuits of the memory represented by the memory 920 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 910 may be multiple elements, including a transmitter and a transceiver, providing a unit for communicating with various other devices over a transmission medium.
  • the processor 900 is responsible for managing the bus architecture and general processing, and the memory 920 may store data used by the processor 900 when performing operations.
  • processor 900 executes the computer program, the following steps may also be implemented:
  • the uplink signal resource is an uplink signal resource including K ports, K is a sum of the number of digital channels of at least two target antenna panels of the terminal, and K ports are mapped to at least two of the target antenna panels K is a positive integer, K is greater than or equal to L, and L is the number of data layers included in the PUSCH.
  • processor 900 executes the computer program, the following steps may also be implemented:
  • the correspondence between the port and the target transmission beam is indicated to the terminal.
  • processor 900 executes the computer program, the following steps may also be implemented:
  • the corresponding relationship between the port group and the target transmission beam is indicated to the terminal, where the K ports are divided into D port groups, and at least one target port group exists in the D port groups, and the target port A group is a port group including at least two ports, and D is a positive integer greater than 1.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the following steps are implemented:
  • the PUSCH scheduling information includes first indication information and second indication information
  • the first indication information is used to indicate data included in the PUSCH Layer
  • the second indication information is used to indicate a precoding matrix
  • an embodiment of the present disclosure further provides a network device, including:
  • a second obtaining module 1001 configured to obtain uplink channel state information CSI according to an uplink signal resource sent by the terminal;
  • a fourth sending module 1002 is configured to obtain physical uplink shared channel PUSCH scheduling information according to the channel state information CSI and send the PUSCH scheduling information to the terminal, where the PUSCH scheduling information includes first indication information and second indication information, and the first indication The information is used to indicate a data layer included in the PUSCH, and the second indication information is used to indicate a precoding matrix.
  • a third acquisition module configured to acquire a beam training signal resource sent by the terminal using at least two target antenna panels using an analog beam
  • a determining module is configured to perform beam scanning processing on the beam training signal resource, determine a target transmission beam corresponding to each of the target antenna panels, and instruct the terminal.
  • the uplink signal resource is an uplink signal resource including K ports, K is a sum of the number of digital channels of at least two target antenna panels of the terminal, and K ports are mapped to at least two of the On the target antenna panel, K is a positive integer, K is greater than or equal to L, and L is the number of data layers included in the PUSCH.
  • An instruction module is used for the second acquisition module to indicate the correspondence between the port and the target transmission beam to the terminal before acquiring the uplink channel state information CSI according to the uplink signal resource sent by the terminal.
  • the instruction module is configured to indicate a correspondence between each of the ports and a target transmission beam to a terminal;
  • the K ports are divided into D port groups, and at least one target port group exists in the D port groups.
  • the target port group is a port group including at least two ports, and D is a positive integer greater than 1.
  • the network device obtains uplink channel state information CSI according to an uplink signal resource sent by a terminal; according to the channel state information CSI, obtains physical uplink shared channel PUSCH scheduling information and sends it to the terminal, so that the terminal According to the precoding matrix indicated by the second indication information, the data layer included in the PUSCH is mapped to at least two target antenna panels for transmission, thereby achieving the purpose of transmitting the data layer of the PUSCH from multiple antenna panels simultaneously.
  • An embodiment of the present disclosure further provides a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.
  • the electronic hardware may include, but is not limited to, electronic circuits, Application Specific Integrated Circuits (ASICs), programmable logic devices, programmable processors, and the like.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

提供了一种数据传输方法、终端及网络设备。本公开的传输方法包括:接收网络设备发送的物理上行共享信道PUSCH调度信息,PUSCH调度信息包括第一指示信息和第二指示信息,第一指示信息用于指示PUSCH包括的数据层,第二指示信息用于指示预编码矩阵;根据第二指示信息指示的预编码矩阵,将PUSCH包括的数据层映射到至少两个目标天线面板上发送,目标天线面板为所述终端的至少两个天线面板中用于传输PUSCH的天线面板。

Description

数据传输方法、终端及网络设备
相关申请的交叉引用
本申请主张在2018年8月17日在中国提交的中国专利申请号No.201810942311.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信应用的技术领域,尤其涉及一种数据传输方法、终端及网络设备。
背景技术
相关技术中配备有多个发射天线的用户设备或者终端(User Equipment,UE)能够执行上行波束赋形。为了确定上行UL波束赋形矩阵,处于无线资源控制连接(RRC_CONNECTED)状态的UE可以被半静态地配置有多个UE专属上行链路探测参考信号(Sounding Reference Signal,SRS)资源。每个SRS资源上传输的SRS信号都用特定的波束赋形矩阵进行波束赋形。UE在上行链路中发送这些SRS资源。发送接收点(transmission and reception point,TRP)测量不同SRS资源的信号质量,并选择优选的SRS资源。TRP经由下行控制信息(Downlink Control Information,DCI)将所选SRS资源的索引(SRS资源指示符(SRS resource indicator,SRI))发送给UE。UE从SRI能够推断TRP推荐哪个上行波束赋形矩阵(例如SRS资源)用于将来的上行链路传输。UE然后可以使用由SRI指示的上行链路波束赋形矩阵用于将来的上行链路传输。
UE可以具有多个用于上行链路传输的天线面板。每个天线面板由一组天线单元组成。天线面板的确切数量,天线单元的数量以及每个面板内的天线单元的布置根据具体实现方式确定,并且不同的UE可以有不同的实现方式。UE可以一次从一个面板发送一个数据层。UE也可以同时从天线面板的子集(包括多于一个天线面板)发送一个数据层,这里的描述同样适用于SRS资源(SRS信号的传输)。但相关技术中的规范不能支持物理上行共享信道 (Physical Uplink Shared Channel,PUSCH)从多天线面板panel同时发送的联合传输方式,造成传输速率较低。
发明内容
本公开的目的在于提供一种数据传输方法、终端及网络设备,用以解决相关技术中的规范不能支持PUSCH从多天线面板同时发送的问题。
为了实现上述目的,本公开提供了一种数据传输方法,应用于终端,所述终端配置有至少两个用于上行链路传输的天线面板,包括:
接收网络设备发送的物理上行共享信道PUSCH调度信息,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵;
根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,所述目标天线面板为所述终端的至少两个天线面板中用于传输PUSCH的天线面板。
其中,所述接收网络设备发送的物理上行共享信道PUSCH调度信息之前,还包括:
在所述至少两个目标天线面板上使用模拟波束发送波束训练信号资源;
获取网络设备指示的每个所述目标天线面板对应的目标发送波束,所述目标发送波束是网络设备根据所述波束训练信号资源得到的;
在每个目标天线面板上使用所述目标天线面板对应的目标发送波束发送用于获取信道状态信息CSI的上行信号资源,所述PUSCH调度信息为网络设备根据所述上行信号资源得到的。
其中,所述上行信号资源为包括K个端口的上行信号资源,K为所述至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
其中,所述在每个目标天线面板上使用所述目标天线面板对应的目标发送波束发送用于获取信道状态信息CSI的上行信号资源,包括:
根据网络设备指示的端口与目标发送波束的对应关系,确定第一目标端 口对应的第一目标发送波束;
在与所述第一目标发送波束对应的第一目标天线面板上,发送所述第一目标端口的上行信号资源。
其中,所述根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,包括:
根据所述第二指示信息指示的预编码矩阵,对所述PUSCH的L个数据层进行预编码处理,得到包括K个数据层的发送信号向量,其中,所述发送信号向量的每个数据层与一个所述端口对应;
获取所述发送信号向量的目标数据层对应的第二目标端口;
在第二目标天线面板上,使用所述第二目标端口对应的第二目标发送波束发送所述发送信号向量的目标数据层,所述第二目标天线面板为与所述第二目标端口具有映射关系的天线面板。
其中,在所述至少两个目标天线面板上使用模拟波束发送波束训练信号资源,包括:
在网络设备为每个所述目标天线面板配置的波束训练信号资源集合中,选取第三目标天线面板对应的目标波束训练信号资源集合,每个所述波束训练信号资源集合包括至少一个波束训练信号资源,所述第三目标天线面板为所述至少两个目标天线面板中的任意一个;
在所述第三目标天线面板上使用不同的模拟波束发送所述目标波束训练信号资源集合中的每个波束训练信号资源。
为了实现上述目的,本公开实施例还提供了一种数据传输方法,应用于网络设备,包括:
根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI;
根据所述信道状态信息CSI,得到物理上行共享信道PUSCH调度信息并发送给终端,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵。
其中,根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI之前,还包括:
获取终端在至少两个目标天线面板上使用模拟波束发送的波束训练信号资源;
对所述波束训练信号资源进行波束扫描处理,确定每个所述目标天线面板对应的目标发送波束并指示给终端。
其中,所述上行信号资源为包括K个端口的上行信号资源,K为终端的至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
其中,根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI之前,还包括:
将所述端口与目标发送波束的对应关系指示给终端。
其中,将所述端口与目标发送波束的对应关系指示给终端,包括:
将每个所述端口与目标发送波束的对应关系指示给终端;
或者,将端口组与目标发送波束的对应关系指示给终端,其中,所述K个端口被划分成D个端口组,且所述D个端口组中存在至少一个目标端口组,所述目标端口组为包括至少两个端口的端口组,D为大于1的正整数。
为了实现上述目的,本公开实施例还提供了一种终端,所述终端配置有至少两个用于上行链路传输的天线面板,所述终端包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现以下步骤:
通过收发机接收网络设备发送的物理上行共享信道PUSCH调度信息,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵;
根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,所述目标天线面板为所述终端的至少两个天线面板中用于传输PUSCH的天线面板。
其中,所述处理器执行所述程序时还实现以下步骤:
在接收网络设备发送的物理上行共享信道PUSCH调度信息之前,在所述至少两个目标天线面板上使用模拟波束发送波束训练信号资源;
获取网络设备指示的每个所述目标天线面板对应的目标发送波束,所述目标发送波束是网络设备根据所述波束训练信号资源得到的;
在每个目标天线面板上使用所述目标天线面板对应的目标发送波束发送用于获取信道状态信息CSI的上行信号资源,所述PUSCH调度信息为网络设备根据所述上行信号资源得到的。
其中,所述上行信号资源为包括K个端口的上行信号资源,K为所述至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
其中,所述处理器执行所述程序时还实现以下步骤:
根据网络设备指示的端口与目标发送波束的对应关系,确定第一目标端口对应的第一目标发送波束;
在与所述第一目标发送波束对应的第一目标天线面板上,发送所述第一目标端口的上行信号资源。
其中,所述处理器执行所述程序时还实现以下步骤:
根据所述第二指示信息指示的预编码矩阵,对所述PUSCH的L个数据层进行预编码处理,得到包括K个数据层的发送信号向量,其中,所述发送信号向量的每个数据层与一个所述端口对应;
获取所述发送信号向量的目标数据层对应的第二目标端口;
在第二目标天线面板上,使用所述第二目标端口对应的第二目标发送波束发送所述发送信号向量的目标数据层,所述第二目标天线面板为与所述第二目标端口具有映射关系的天线面板。
其中,所述处理器执行所述程序时还实现以下步骤:
在网络设备为每个所述目标天线面板配置的波束训练信号资源集合中,选取第三目标天线面板对应的目标波束训练信号资源集合,每个所述波束训练信号资源集合包括至少一个波束训练信号资源,所述第三目标天线面板为所述至少两个目标天线面板中的任意一个;
在所述第三目标天线面板上使用不同的模拟波束发送所述目标波束训练信号资源集合中的每个波束训练信号资源。
为了实现上述目的,本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上所述数据传输方法的步骤。
为了实现上述目的,本公开实施例还提供了一种网络设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现以下步骤:
根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI;
根据所述信道状态信息CSI,得到物理上行共享信道PUSCH调度信息并发送给终端,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵。
其中,所述处理器执行所述程序时还实现以下步骤:
在根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI之前,获取终端在至少两个目标天线面板上使用模拟波束发送的波束训练信号资源;
对所述波束训练信号资源进行波束扫描处理,确定每个所述目标天线面板对应的目标发送波束并指示给终端。
其中,所述上行信号资源为包括K个端口的上行信号资源,K为终端的至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
其中,所述处理器执行所述程序时还实现以下步骤:
在根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI之前,将所述端口与目标发送波束的对应关系指示给终端。
其中,所述处理器执行所述程序时还实现以下步骤:
将每个所述端口与目标发送波束的对应关系指示给终端;
或者,将端口组与目标发送波束的对应关系指示给终端,其中,所述K个端口被划分成D个端口组,且所述D个端口组中存在至少一个目标端口组,所述目标端口组为包括至少两个端口的端口组,D为大于1的正整数。
为了实现上述目的,本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上所述数据传输方法的步骤。
为了实现上述目的,本公开实施例还提供了一种终端,所述终端配置有至少两个用于上行链路传输的天线面板,包括:
接收模块,用于接收网络设备发送的物理上行共享信道PUSCH调度信息,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵;
第一发送模块,用于根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,所述目标天线面板为所述终端的至少两个天线面板中用于传输PUSCH的天线面板。
本公开实施例的终端,还包括:
第二发送模块,用于在所述至少两个目标天线面板上使用模拟波束发送波束训练信号资源;
第一获取模块,用于获取网络设备指示的每个所述目标天线面板对应的目标发送波束,所述目标发送波束是网络设备根据所述波束训练信号资源得到的;
第三发送模块,用于在每个目标天线面板上使用所述目标天线面板对应的目标发送波束发送用于获取信道状态信息CSI的上行信号资源,所述PUSCH调度信息为网络设备根据所述上行信号资源得到的。
其中,所述上行信号资源为包括K个端口的上行信号资源,K为所述至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
为了实现上述目的,本公开实施例还提供了一种网络设备,包括:
第二获取模块,用于根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI;
第四发送模块,用于根据所述信道状态信息CSI,得到物理上行共享信 道PUSCH调度信息并发送给终端,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵。
本公开实施例的网络设备,还包括:
第三获取模块,用于获取终端在至少两个目标天线面板上使用模拟波束发送的波束训练信号资源;
确定模块,用于对所述波束训练信号资源进行波束扫描处理,确定每个所述目标天线面板对应的目标发送波束并指示给终端。
其中,所述上行信号资源为包括K个端口的上行信号资源,K为终端的至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
本公开实施例具有以下有益效果:
本公开实施例的上述技术方案,接收网络设备发送的物理上行共享信道PUSCH调度信息,所述PUSCH调度信息包括第一指示信息和第二指示信息;根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,从而实现PUSCH的数据层从多个天线面板同时传输的目的。
附图说明
图1为相关技术中的模拟波束赋形中对中频信号进行加权赋形的示意图;
图2为相关技术中的模拟波束赋形中对射频信号进行加权赋形的示意图;
图3为相关技术中的数模混合波束赋形示意图;
图4为本公开实施例的数据传输方法的流程示意图之一;
图5为本公开实施例中PUSCH的传输示意图;
图6为本公开实施例的数据传输方法的流程示意图之二;
图7为本公开实施例的终端的结构框图;
图8为本公开实施例的终端的模块示意图;
图9为本公开实施例的网络设备的结构框图;
图10为本公开实施例的网络设备的模块示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例及附图进行详细描述。
为使本领域技术人员能够更好地理解本公开实施例的技术方案,先进行如下说明。
鉴于多输入多输出(Multiple-Input Multiple-Output,MIMO)技术对于提高峰值速率与系统频谱利用率的重要作用,长期演进(Long Term Evolution,LTE)或增强型长期演进(LTE-Advanced,LTE-A)等无线接入技术标准都是以MIMO+正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术为基础构建起来的。MIMO技术的性能增益来自于多天线系统所能获得的空间自由度,因此MIMO技术在标准化发展过程中的一个最重要的演进方向便是维度的扩展。
在LTE Rel-8中,最多可以支持4层的MIMO传输。Rel-9重点对多用户多输入多输出(Multi-User MIMO,MU-MIMO)技术进行了增强,传输模式(Transmission Mode,TM)-8的MU-MIMO传输中最多可以支持4个下行数据层。Rel-10则引入支持8天线端口进一步提高了信道状态信息的空间分辨率,并进一步将单用户多输入多输出(Single-User MIMO,SU-MIMO)的传输能力扩展至最多8个数据层。Rel-13和Rel-14引入了FD-MIMO技术支持到32端口,实现全维度以及垂直方向的波束赋形。
为了进一步提升MIMO技术,移动通信系统中引入大规模天线技术。对于基站,全数字化的大规模天线可以有高达128/256/512个天线振子,以及高达128/256/512个收发信机,每个天线振子连接一个收发信机。通过发送高达128/256/512个天线端口的导频信号,使得终端测量信道状态信息并反馈。对于终端,也可以配置高达32/64个天线振子的天线阵列。通过基站和终端两侧的波束赋形,获得巨大的波束赋形增益,以弥补路径损耗带来的信号衰减。尤其是在高频段通信,例如30GHz频点上,路径损耗使得无线信号的覆盖范围极其有限。通过大规模天线技术,可以将无线信号的覆盖范围扩大到可以 实用的范围内。
全数字天线阵列,每个天线振子都有独立的收发信机,将会使得设备的尺寸、成本和功耗大幅度上升。特别是对于收发信机的模数转换器(Analog-to-Digital Converter,ADC)和数模转换器(Digital-to-Analog Converter,DAC),功耗降低和性能提升都比较有限。为了降低设备的尺寸、成本和功耗,基于模拟波束赋形的技术方案被提出。如图1和图2所示。模拟波束赋形的主要特点是通过移相器对中频(图1)或射频信号(图2)进行加权赋形。
为了进一步提升模拟波束赋形性能,一种数字模拟混合波束赋形收发架构方案被提出,如图3所示。在图3中,发送端和接收端分别有
Figure PCTCN2019098112-appb-000001
Figure PCTCN2019098112-appb-000002
个收发信机,发送端天线振子数
Figure PCTCN2019098112-appb-000003
接收端天线振子数
Figure PCTCN2019098112-appb-000004
波束赋形支持的最大并行传输流数量为
Figure PCTCN2019098112-appb-000005
。图3的混合波束赋形结构在数字波束赋形灵活性和模拟波束赋形的低复杂度间做了平衡。
模拟波束赋形和数模混合波束赋形都需要调整收发两端的模拟波束赋形权值,以使其所形成的波束能对准通信的对端。对于下行传输,需要调整基站侧发送的波束赋形权值和终端侧接收的波束赋形权值,而对于上行传输,需要调整终端侧发送的和基站侧接收的波束赋形权值。波束赋形的权值通常通过发送训练信号获得。下行方向,基站发送下行波束训练信号,终端测量下行波束训练信号,选择出最佳的基站发送波束,并将波束相关的信息反馈给基站,同时选择出对应的最佳接收波束,保存在本地。
UE可以具有多个用于上行链路传输的天线面板,下面分别对单天线面板传输和多天线面板传输进行说明。
(1)单天线面板panel传输
一个单panel UE可以被配置一个SRS资源集用于发射波束扫描。每个SRS资源集合包含多个SRS资源,不同的SRS资源可以使用不同的波束进行赋形。由于每个panel同时只能形成一个模拟波束,一个SRS资源集合中的不同SRS资源(对应于不同的波束)在不同时刻发送。gNB通过对SRS资源集合的接收确定最优的发射波束(即接收质量最好的SRS资源),并向UE进行指示。
随后gNB可以配置第二个SRS资源集用于CSI获取,其中包含多个SRS资源,并可以使用相同或不同的模拟波束(基于之前的波束扫描)。gNB根据信道估计情况,在PUSCH的调度许可中发送一个指向第二SRS资源集合(用于CSI获取的SRS资源集合)的SRI指示。UE根据SRI指示的波束进行PUSCH传输。
(2)多天线面板panel传输
与之类似,如果UE有多个panel,可以为其配置多个SRS资源集用于模拟波束训练,其中每个SRS集合对应于一个panel。同一个SRS资源集合(对应于一个panel)的不同SRS资源在不同的时刻发送。因为不同的SRS资源集合被映射到不同的panel,因此不同SRS资源集合的SRS资源可以在相同或不同的时刻发送。这种情况下,SRS的开销随天线panel数量线性变化。对于配置了大量天线panel的终端(如功率和尺寸限制较少的车辆、气球及其他飞行器等),SRS开销量可能会非常大。
但相关技术中的规范不能支持PUSCH从多天线面板panel同时发送的联合传输方式,造成传输速率较低,基于此,本公开实施例提供了一种数据传输方法,应用于终端,该终端配置有至少两个用于上行链路传输的天线面板,如图4所示,该数据传输方法,包括:
步骤401:接收网络设备发送的物理上行共享信道PUSCH调度信息,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵。
该PUSCH调度信息携带在PUSCH调度许可中,上述第一指示信息为发送秩索引(transmission rank indicator,TRI),第二指示信息为发送预编码矩阵索引(transmit precoding matrix indicator,TPMI),上述预编码矩阵是指K×L的预编码矩阵,其中,K为用于传输PUSCH的至少两个目标天线面板的数字通道数之和,L为PUSCH包括的数据层的个数。
步骤402:根据所述第二指示信息指示的预编码矩阵,将所述PUSCH的所有数据层映射到至少两个目标天线面板上发送,所述目标天线面板为所述终端的至少两个天线面板中用于传输PUSCH的天线面板。
具体的,终端基于上述预编码矩阵进行数字预编码处理,得到包括K个 数据层发送信号向量,并将该发送信号向量映射至至少两个目标天线面板上发送。
本公开实施例的数据传输方法,接收网络设备发送的物理上行共享信道PUSCH调度信息,所述PUSCH调度信息包括第一指示信息和第二指示信息;根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,从而实现PUSCH的数据层从多个天线面板同时传输的目的。
进一步地,上述步骤402接收网络设备发送的物理上行共享信道PUSCH调度信息之前,所述方法还包括:
步骤4021:在所述至少两个目标天线面板上使用模拟波束发送波束训练信号资源。
这里的波束训练信号资源可具体为探测参考信号SRS资源。
在网络设备为每个所述目标天线面板配置的波束训练信号资源集合中,选取第三目标天线面板对应的目标波束训练信号资源集合,每个所述波束训练信号资源集合包括至少一个波束训练信号资源,所述第三目标天线面板为所述至少两个目标天线面板中的任意一个;在所述第三目标天线面板上使用不同的模拟波束发送所述目标波束训练信号资源集合中的每个波束训练信号资源,所述波束训练信号资源上承载有波束训练信号。
假定PUSCH的多个数据层被分散到2个目标天线面板上发送,首先基站gNB配置2个SRS资源集合用于模拟波束训练,其中每个SRS资源集合被映射到一个天线面板panel。SRS资源集合到panel的具体映射方式取决于UE的实现。例如,UE可以将用于模拟波束训练的第一SRS资源集合映射到panel 1,并将用于模拟波束训练的第二SRS资源集合映射到panel 2;或者2,将用于模拟波束训练的第一SRS资源集合映射到panel 2,并将用于模拟波束训练的第二SRS资源集合映射到panel 1。该映射顺序对gNB而言,可以是透明的。每个SRS资源集合包含一组SRS资源,它们可以使用不同的时频资源。对于每个SRS资源集合,UE在与之对应的panel上分别使用不同的模拟波束发送各SRS资源。
步骤4022:获取网络设备指示的每个所述目标天线面板对应的目标发送 波束,所述目标发送波束是网络设备根据所述波束训练信号得到的。
gNB通过波束扫描确定最佳的接收波束。gNB可以基于单panel传输假设,分别为每个panel选择最优接收波束。或者,也可以假设所有panel联合传输,然后得出一个最优接收波束。在这一过程中,gNB可以通过对两个SRS资源集合的时频资源配置(如正交的时频资源,还是相同的资源)来进行控制。同时,gNB还可以为每个panel获得最优的发送波束(记为[BM opt,1,BM opt,2]),分别对应于各自的SRS资源集合中的最优SRS资源(记为[SRS opt,1,SRS opt,2])。通过控制信令,UE可以获知[SRS opt,1,SRS opt,2],从而得到每个panel上推荐的SRS资源,并根据每个天线面板上推荐的SRS资源,确定每个天线面板上最优的发送波束([BM opt,1,BM opt,2])。
需要说明的是,上述描述并未排除gNB为每个panel推荐多个上行发送波束的情况。具体地,gNB不仅可以为每个panel推荐最优波束,还可以为每个panel推荐排列在最优波束之后的其他波束。这一点可以直接从上述方案中扩展得到,上述最优发送波束(目标发送波束)可具体为接收质量最好的SRS资源对应的发送波束,如接收信号功率最强的SRS资源对应的发送波束。
步骤4023:在每个目标天线面板上使用所述目标天线面板对应的目标发送波束发送用于获取信道状态信息CSI的上行信号资源,所述PUSCH调度信息为网络设备根据所述上行信号资源得到的。
这里,用于获取信道状态信息CSI的上行信号资源为SRS资源。
终端通过发送该上行信号资源,能够使网络设备对上行链路的CSI进行估计,并进行链路自适应及PUSCH调度。
进一步地,上行信号资源为包括K个端口的上行信号资源,K为所述至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
网络设备通过波束扫描确定出每个天线面板上的最佳发送波束后,进一步为终端配置用于CSI获取的SRS资源。如图5所示,假定PUSCH的多个数据层被分散到2个目标天线面板上发送,其中,PUSCH的1层至A层映射至天线面板1上发送,A+1至L层映射至天线面板2发送,A为大于1且小 于L的正整数。基站gNB配置2个SRS资源集合用于CSI获取,其中每个SRS资源集合被映射到一个天线面板panel,例如,将用于CSI获取的第三SRS资源集合映射到天线面板1,将用于CSI获取的第四SRS资源集合映射到天线面板2上。
其中,两个天线面板的数字通道数分别记为N1与N2,总的数字通道数为K=N1+N2。gNB配置一个包含K个端口的SRS资源。在时域,该SRS资源可配置为周期、半周期或非周期发送。
基于此,上述在每个目标天线面板上使用所述目标天线面板对应的目标发送波束发送用于获取信道状态信息CSI的上行信号资源,包括:
根据网络设备指示的端口与目标发送波束的对应关系,确定第一目标端口对应的第一目标发送波束;在与所述第一目标发送波束对应的第一目标天线面板上,发送所述第一目标端口的上行信号资源。
每个panel上发送的用于CSI测量的SRS资源使用的波束通过[SRS opt,1,SRS opt,2]获得。此处天线面板1与天线面板2的SRS端口编号分别记为[p1,p2,…p N1]与[q1,q2,…q N2]。其中,端口[p1,p2,…p N1]被映射到天线面板1,并使用BM opt,1作为其模拟波束。因此,gNB指示UE在[p1,p2,…p N1]使用与SRS opt,1相同的模拟波束。与之类似,天线端口[q1,q2,…q N2]被映射到panel 2,并且使用BM opt,2作为其模拟波束。因此,gNB指示UE在[q1,q2,…q N2]使用与SRS opt,2相同的模拟波束。
本公开实施例中,端口与目标发送波束的对应关系可通过以下两种方式指示给终端:
方式一:通过端口专属的指示方式
将每个所述端口与目标发送波束的对应关系指示给终端。
这里,每个端口可以使用相同或不同的上行发送波束。
方式二:通过端口组专属的指示方式
将端口组与目标发送波束的对应关系指示给终端,其中,所述K个端口被划分成D个端口组,且所述D个端口组中存在至少一个目标端口组,所述目标端口组为包括至少两个端口的端口组,D为大于1的正整数。
本公开实施例中,无论采用上述哪一种指示方式,上述对应关系可通过 对高层信息域进行空间关系信息(SpatialRelationInfo)的配置进行指示,当然,除空间关系信息之前,也可采用其他信息进行配置指示。例如,上述方式二中,为UE提供多个“SpatialRelationInfo”取值,并将每个取值对应的端口组通知给UE。
如果端口组中的端口编号总是顺序的,使用端口组专属的发送波束指示方式是更为合适的。例如,当[p1,p2,…,p N1]=[1,2,…,N1]且[q1,q2,…,q N2]=[N1+1,…,N1+N2]时,gNB可配置两个“SpatialRelationInfo”参数。其中第一个“SpatialRelationInfo”对应于SRS opt,1,即端口[1,2,…,N1];第二个“SpatialRelationInfo”对应于SRS opt,2,即端口[N1+1,…,N1+N2]。由此,可以占用更低的RRC开销。尤其是端口分组是半静态配置时候的情况。
如果端口组中的端口编号不是顺序的(不连续),可以采用上述任意一种方式。
另外,对SRS资源中SRS端口的分组可以是半静态或是动态的。如果采用半静态的方式,对于SRS资源,其端口组的数量以及每个组中的端口编号半静态配置。如果采用动态方式,其端口组的数量以及每个组中的端口编号都是通过L1动态信令通知(例如与SRS出发许可一起通知)。如果分组采用动态方式,分组信息(即组的数量以及每个组中的端口编号)可以与上行传输波束信息(如“SpatialRelationInfo”)联合或独立指示。
如果SRS端口组的数量半静态配置,每组中SRS端口的编号可动态指示。
进一步地,上述步骤402根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,包括:
根据所述第二指示信息指示的预编码矩阵,对所述PUSCH的L个数据层进行预编码处理,得到包括K个数据层的发送信号向量,其中,所述发送信号向量的每个数据层与一个所述端口对应;
获取所述发送信号向量的目标数据层对应的第二目标端口;
在第二目标天线面板上,使用所述第二目标端口对应的第二目标发送波束发送所述发送信号向量的目标数据层,所述第二目标天线面板为与所述第二目标端口具有映射关系的天线面板。
上述目标数据层为PUSCH的L个数据层中的任意一个数据层。
这里,基站收到用于CSI获取的上行信号资源之后,对上行链路的CSI进行估计,并进行链路自适应及PUSCH调度。调度许可中可以包含:TRI(transmission rank indicator),用以指示PUSCH的包含的数据层的个数L;TPMI(transmit precoding matrix indicator),用以指示(N1+N2)×L的预编码矩阵W。UE基于上述信息进行数字预编码,形成长度为(N1+N2)的发送信号向量。与端口[p1,p2,…p N1]对应的N1个数据层通过panel 1发送,并使用SRS opt,1给出的“SpatialRelationInfo”参数所对应的波束;与端口[q1,q2,…q N2]对应的N2个数据层通过panel 2发送,并使用SRS opt,2给出的“SpatialRelationInfo”参数所对应的波束。总之,对于PUSCH中与SRS端口S对应的数据层,在同一个天线面板上使用与SRS端口s对应的上行发送波束进行传输,S为大于1的正整数,且S=N1+N2。
本公开实施例的数据传输方法,接收网络设备发送的物理上行共享信道PUSCH调度信息,所述PUSCH调度信息包括第一指示信息和第二指示信息;根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,从而实现PUSCH的数据层从多个天线面板同时传输的目的。
如图6所示,本公开的实施例还提供了一种数据传输方法,应用于网络设备,该网络设备可具体为基站,该数据传输方法,包括:步骤601和步骤602。
步骤601:根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI。
该上行信号资源具体为基站为终端配置的用于获取CSI的SRS资源。
网络设备先根据终端发送的波束训练信号资源确定每个天线面板上的最佳发送波束,然后为终端配置用于CSI获取的SRS资源。如图5所示,假定PUSCH的多个数据层被分散到2个目标天线面板上发送,其中,PUSCH的1层至A层映射至天线面板1上发送,A+1至L层映射至天线面板2发送,A为大于1且小于L的正整数。基站gNB配置2个SRS资源集合用于CSI获取,其中每个SRS资源集合被映射到一个天线面板panel,例如,将用于CSI获取的第三SRS资源集合映射到天线面板1,将用于CSI获取的第四SRS资 源集合映射到天线面板2上。
步骤602:根据所述信道状态信息CSI,得到物理上行共享信道PUSCH调度信息并发送给终端,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵。
这里,该PUSCH调度信息携带在PUSCH调度许可中,基站收到用于CSI获取的上行信号资源之后,对上行链路的CSI进行估计,并进行链路自适应及PUSCH调度。调度许可中可以包含:TRI(transmission rank indicator),用以指示PUSCH的包含的数据层的个数L;TPMI(transmit precoding matrix indicator),用以指示K×L的预编码矩阵W。
这里,将上述PUSCH调度信息发送给终端后,终端基于上述预编码矩阵对PUSCH进行数字预编码处理,得到包括K个数据层发送信号向量,并将该发送信号向量映射至至少两个目标天线面板上发送。
进一步地,上述步骤601根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI之前,所述方法还包括:
获取终端在至少两个目标天线面板上使用模拟波束发送的波束训练信号资源;对所述波束训练信号资源进行波束扫描处理,确定每个所述目标天线面板对应的目标发送波束并指示给终端。
本公开实施例中,这里的波束训练信号资源可具体为探测参考信号SRS资源。假定PUSCH的多个数据层被分散到2个目标天线面板上发送,首先基站gNB配置2个SRS资源集合用于模拟波束训练,其中每个SRS资源集合被映射到一个天线面板panel。SRS资源集合到panel的具体映射方式取决于UE的实现。例如,UE可以将用于模拟波束训练的第一SRS资源集合映射到panel 1,并将用于模拟波束训练的第二SRS资源集合映射到panel 2;或者2,将用于模拟波束训练的第一SRS资源集合映射到panel 2,并将用于模拟波束训练的第二SRS资源集合映射到panel 1。该映射顺序对gNB而言,可以是透明的。每个SRS资源集合包含一组SRS资源,它们可以使用不同的时频资源。对于每个SRS资源集合,UE在与之对应的panel上分别使用不同的模拟波束发送各SRS资源。
gNB通过波束扫描确定最佳的接收波束。gNB可以基于单panel传输假设,分别为每个panel选择最优接收波束。或者,也可以假设所有panel联合传输,然后得出一个最优接收波束。在这一过程中,gNB可以通过对两个SRS资源集合的时频资源配置(如正交的时频资源,还是相同的资源)来进行控制。同时,gNB还可以为每个panel获得最优的发送波束(记为[BM opt,1,BM opt,2]),分别对应于各自的SRS资源集合中的最优SRS资源(记为[SRS opt,1,SRS opt,2])。通过控制信令,UE可以获知[SRS opt,1,SRS opt,2],从而得到每个panel上推荐的SRS资源,并根据每个天线面板上推荐的SRS资源,确定每个天线面板上最优的发送波束([BM opt,1,BM opt,2])。
需要说明的是,上述描述并未排除gNB为每个panel推荐多个上行发送波束的情况。具体地,gNB不仅可以为每个panel推荐最优波束,还可以为每个panel推荐排列在最优波束之后的其他波束。这一点可以直接从上述方案中扩展得到,上述最优发送波束(目标发送波束)可具体为接收质量最好的SRS资源对应的发送波束,如接收信号功率最强的SRS资源对应的发送波束。
进一步地,所述上行信号资源为包括K个端口的上行信号资源,K为终端的所述至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
进一步地,根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI之前,所述方法还包括:
将所述端口与目标发送波束的对应关系指示给终端。
具体的,将每个所述端口与目标发送波束的对应关系指示给终端;
或者,将端口组与目标发送波束的对应关系指示给终端,所述端口组包括至少两个端口。
本公开实施例中,端口与目标发送波束的对应关系可通过以下两种方式指示给终端:
方式一:通过端口专属的指示方式
将每个所述端口与目标发送波束的对应关系指示给终端。
这里,每个端口可以使用相同或不同的上行发送波束。
方式二:通过端口组专属的指示方式
将端口组与目标发送波束的对应关系指示给终端,其中,所述K个端口被划分成D个端口组,且所述D个端口组中存在至少一个目标端口组,所述目标端口组为包括至少两个端口的端口组,D为大于1的正整数。
本公开实施例中,无论采用上述哪一种指示方式,上述对应关系可通过对高层信息域进行空间关系信息(SpatialRelationInfo)的配置进行指示,当然,除空间关系信息之前,也可采用其他信息进行配置指示。例如,上述方式二中,为UE提供多个“SpatialRelationInfo”取值,并将每个取值对应的端口组通知给UE。
如果端口组中的端口编号总是顺序的,使用端口组专属的发送波束指示方式是更为合适的。例如,当[p1,p2,…p N1]=[1,2,…,N1]且[q1,q2,…q N2]=[N1+1,…,N1+N2]时,gNB可配置两个“SpatialRelationInfo”参数。其中第一个“SpatialRelationInfo”对应于SRS opt,1,即端口[1,2,…,N1];第二个“SpatialRelationInfo”对应于SRS opt,2,即端口[N1+1,…,N1+N2]。由此,可以占用更低的RRC开销。尤其是端口分组是半静态配置时候的情况。
如果端口组中的端口编号不是顺序的(不连续),可以采用上述任意一种方式。
另外,对SRS资源中SRS端口的分组可以是半静态或是动态的。如果采用半静态的方式,对于SRS资源,其端口组的数量以及每个组中的端口编号半静态配置。如果采用动态方式,其端口组的数量以及每个组中的端口编号都是通过L1动态信令通知(例如与SRS出发许可一起通知)。如果分组采用动态方式,分组信息(即组的数量以及每个组中的端口编号)可以与上行传输波束信息(如“SpatialRelationInfo”)联合或独立指示。
如果SRS端口组的数量半静态配置,每组中SRS端口的编号可动态指示。
本公开实施例的数据传输方法,根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI;根据所述信道状态信息CSI,得到物理上行共享信道PUSCH调度信息并发送给终端,以使终端根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,从而实现PUSCH的数据层从多个天线面板同时传输的目的。
如图7所示,本公开的实施例还提供了一种终端,所述终端配置有至少两个用于上行链路传输的天线面板,包括:收发机710、存储器720、处理器700及存储在存储器720上并可在处理器700上运行的计算机程序,所述处理器700执行所述计算机程序时实现以下步骤:
接收网络设备发送的物理上行共享信道PUSCH调度信息,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵;
根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,所述目标天线面板为所述终端的至少两个天线面板中用于传输PUSCH的天线面板。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机710可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口730还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器700负责管理总线架构和通常的处理,存储器720可以存储处理器700在执行操作时所使用的数据。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
在所述至少两个目标天线面板上使用模拟波束发送波束训练信号资源;
获取网络设备指示的每个所述目标天线面板对应的目标发送波束,所述目标发送波束是网络设备根据所述波束训练信号资源得到的;
在每个目标天线面板上使用所述目标天线面板对应的目标发送波束发送用于获取信道状态信息CSI的上行信号资源,所述PUSCH调度信息为网络设备根据所述上行信号资源得到的。
可选的,所述上行信号资源为包括K个端口的上行信号资源,K为所述至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目 标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
根据网络设备指示的端口与目标发送波束的对应关系,确定第一目标端口对应的第一目标发送波束;
在与所述第一目标发送波束对应的第一目标天线面板上,发送所述第一目标端口的上行信号资源。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
根据所述第二指示信息指示的预编码矩阵,对所述PUSCH的L个数据层进行预编码处理,得到包括K个数据层的发送信号向量,其中,所述发送信号向量的每个数据层与一个所述端口对应;
获取所述发送信号向量的目标数据层对应的第二目标端口;
在第二目标天线面板上,使用所述第二目标端口对应的第二目标发送波束发送所述发送信号向量的目标数据层,所述第二目标天线面板为与所述第二目标端口具有映射关系的天线面板。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
在网络设备为每个所述目标天线面板配置的波束训练信号资源集合中,选取第三目标天线面板对应的目标波束训练信号资源集合,每个所述波束训练信号资源集合包括至少一个波束训练信号资源,所述第三目标天线面板为所述至少两个目标天线面板中的任意一个;
在所述第三目标天线面板上使用不同的模拟波束发送所述目标波束训练信号资源集合中的每个波束训练信号资源。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
接收网络设备发送的物理上行共享信道PUSCH调度信息,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵;
根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,所述目标天线面板为所述终端的至 少两个天线面板中用于传输PUSCH的天线面板。
该程序被处理器执行时能实现上述应用于终端侧的数据传输方法实施例中的所有实现方式,为避免重复,此处不再赘述。
如图8所示,本公开的实施例还提供了一种终端,所述终端配置有至少两个用于上行链路传输的天线面板,包括:
接收模块801,用于接收网络设备发送的物理上行共享信道PUSCH调度信息,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵;
第一发送模块802,用于根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,所述目标天线面板为所述终端的至少两个天线面板中用于传输PUSCH的天线面板。
本公开实施例的终端,还包括:
第二发送模块,用于在所述至少两个目标天线面板上使用模拟波束发送波束训练信号资源;
第一获取模块,用于获取网络设备指示的每个所述目标天线面板对应的目标发送波束,所述目标发送波束是网络设备根据所述波束训练信号资源得到的;
第三发送模块,用于在每个目标天线面板上使用所述目标天线面板对应的目标发送波束发送用于获取信道状态信息CSI的上行信号资源,所述PUSCH调度信息为网络设备根据所述上行信号资源得到的。
本公开实施例的终端,所述上行信号资源为包括K个端口的上行信号资源,K为所述至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
本公开实施例的终端,所述第三发送模块包括:
确定子模块,用于根据网络设备指示的端口与目标发送波束的对应关系,确定第一目标端口对应的第一目标发送波束;
第一发送子模块,用于在与所述第一目标发送波束对应的第一目标天线 面板上,发送所述第一目标端口的上行信号资源。
本公开实施例的终端,所述第一发送模块包括:
第一获取子模块,用于根据所述第二指示信息指示的预编码矩阵,对所述PUSCH的L个数据层进行预编码处理,得到包括K个数据层的发送信号向量,其中,所述发送信号向量的每个数据层与一个所述端口对应;
第二获取子模块,用于获取所述发送信号向量的目标数据层对应的第二目标端口;
第二发送子模块,用于在第二目标天线面板上,使用所述第二目标端口对应的第二目标发送波束发送所述发送信号向量的目标数据层,所述第二目标天线面板为与所述第二目标端口具有映射关系的天线面板。
本公开实施例的终端,所述第二发送模块包括:
选取子模块,用于在网络设备为每个所述目标天线面板配置的波束训练信号资源集合中,选取第三目标天线面板对应的目标波束训练信号资源集合,每个所述波束训练信号资源集合包括至少一个波束训练信号资源,所述第三目标天线面板为所述至少两个目标天线面板中的任意一个;
第三发送子模块,用于在所述第三目标天线面板上使用不同的模拟波束发送所述目标波束训练信号资源集合中的每个波束训练信号资源。
本公开实施例的终端,接收网络设备发送的物理上行共享信道PUSCH调度信息,所述PUSCH调度信息包括第一指示信息和第二指示信息;根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,从而实现PUSCH的数据层从多个天线面板同时传输的目的。
如图9所示,本公开的实施例还提供了一种网络设备,该网络设备具体为基站,包括存储器920、处理器900、收发机910、总线接口及存储在存储器920上并可在处理器900上运行的计算机程序,所述处理器900用于读取存储器920中的程序,执行下列过程:
根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI;
根据所述信道状态信息CSI,得到物理上行共享信道PUSCH调度信息并发送给终端,所述PUSCH调度信息包括第一指示信息和第二指示信息,所 述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器900代表的一个或多个处理器和存储器920代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机910可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器900负责管理总线架构和通常的处理,存储器920可以存储处理器900在执行操作时所使用的数据。
可选的,所述处理器900执行所述计算机程序时还可实现以下步骤:
获取终端在至少两个目标天线面板上使用模拟波束发送的波束训练信号资源;
对所述波束训练信号资源进行波束扫描处理,确定每个所述目标天线面板对应的目标发送波束并指示给终端。
可选的,所述上行信号资源为包括K个端口的上行信号资源,K为终端的至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
可选的,所述处理器900执行所述计算机程序时还可实现以下步骤:
将所述端口与目标发送波束的对应关系指示给终端。
可选的,所述处理器900执行所述计算机程序时还可实现以下步骤:
将每个所述端口与目标发送波束的对应关系指示给终端;
或者,将端口组与目标发送波束的对应关系指示给终端,其中,所述K个端口被划分成D个端口组,且所述D个端口组中存在至少一个目标端口组,所述目标端口组为包括至少两个端口的端口组,D为大于1的正整数。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI;
根据所述信道状态信息CSI,得到物理上行共享信道PUSCH调度信息并发送给终端,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵。
该程序被处理器执行时能实现上述应用于网络设备侧的方法实施例中的所有实现方式,为避免重复,此处不再赘述。
如图10所示,本公开的实施例还提供了一种网络设备,包括:
第二获取模块1001,用于根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI;
第四发送模块1002,用于根据所述信道状态信息CSI,得到物理上行共享信道PUSCH调度信息并发送给终端,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵。
本公开实施例的网络设备,还包括:
第三获取模块,用于获取终端在至少两个目标天线面板上使用模拟波束发送的波束训练信号资源;
确定模块,用于对所述波束训练信号资源进行波束扫描处理,确定每个所述目标天线面板对应的目标发送波束并指示给终端。
本公开实施例的网络设备,所述上行信号资源为包括K个端口的上行信号资源,K为终端的至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
本公开实施例的网络设备,还包括:
指示模块,用于第二获取模块根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI之前,将所述端口与目标发送波束的对应关系指示给终端。
本公开实施例的网络设备,所述指示模块用于将每个所述端口与目标发送波束的对应关系指示给终端;
或者,用于将端口组与目标发送波束的对应关系指示给终端,其中,所 述K个端口被划分成D个端口组,且所述D个端口组中存在至少一个目标端口组,所述目标端口组为包括至少两个端口的端口组,D为大于1的正整数。
本公开实施例的网络设备,根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI;根据所述信道状态信息CSI,得到物理上行共享信道PUSCH调度信息并发送给终端,以使终端根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,从而实现PUSCH的数据层从多个天线面板同时传输的目的。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上所述的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。电子硬件可以包括但不限于电子电路、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程的逻辑器件、可编程的处理器等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在本公开的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (30)

  1. 一种数据传输方法,应用于终端,所述终端配置有至少两个用于上行链路传输的天线面板,包括:
    接收网络设备发送的物理上行共享信道PUSCH调度信息,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵;
    根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,所述目标天线面板为所述终端的至少两个天线面板中用于传输PUSCH的天线面板。
  2. 根据权利要求1所述的数据传输方法,其中,所述接收网络设备发送的物理上行共享信道PUSCH调度信息之前,还包括:
    在所述至少两个目标天线面板上使用模拟波束发送波束训练信号资源;
    获取网络设备指示的每个所述目标天线面板对应的目标发送波束,所述目标发送波束是网络设备根据所述波束训练信号资源得到的;
    在每个目标天线面板上使用所述目标天线面板对应的目标发送波束发送用于获取信道状态信息CSI的上行信号资源,所述PUSCH调度信息为网络设备根据所述上行信号资源得到的。
  3. 根据权利要求2所述的数据传输方法,其中,所述上行信号资源为包括K个端口的上行信号资源,K为所述至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
  4. 根据权利要求3所述的数据传输方法,其中,所述在每个目标天线面板上使用所述目标天线面板对应的目标发送波束发送用于获取信道状态信息CSI的上行信号资源,包括:
    根据网络设备指示的端口与目标发送波束的对应关系,确定第一目标端口对应的第一目标发送波束;
    在与所述第一目标发送波束对应的第一目标天线面板上,发送所述第一目标端口的上行信号资源。
  5. 根据权利要求3所述的数据传输方法,其中,所述根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,包括:
    根据所述第二指示信息指示的预编码矩阵,对所述PUSCH的L个数据层进行预编码处理,得到包括K个数据层的发送信号向量,其中,所述发送信号向量的每个数据层与一个所述端口对应;
    获取所述发送信号向量的目标数据层对应的第二目标端口;
    在第二目标天线面板上,使用所述第二目标端口对应的第二目标发送波束发送所述发送信号向量的目标数据层,所述第二目标天线面板为与所述第二目标端口具有映射关系的天线面板。
  6. 根据权利要求2所述的数据传输方法,其中,在所述至少两个目标天线面板上使用模拟波束发送波束训练信号资源,包括:
    在网络设备为每个所述目标天线面板配置的波束训练信号资源集合中,选取第三目标天线面板对应的目标波束训练信号资源集合,每个所述波束训练信号资源集合包括至少一个波束训练信号资源,所述第三目标天线面板为所述至少两个目标天线面板中的任意一个;
    在所述第三目标天线面板上使用不同的模拟波束发送所述目标波束训练信号资源集合中的每个波束训练信号资源。
  7. 一种数据传输方法,应用于网络设备,包括:
    根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI;
    根据所述信道状态信息CSI,得到物理上行共享信道PUSCH调度信息并发送给终端,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵。
  8. 根据权利要求7所述的数据传输方法,其中,根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI之前,还包括:
    获取终端在至少两个目标天线面板上使用模拟波束发送的波束训练信号资源;
    对所述波束训练信号资源进行波束扫描处理,确定每个所述目标天线面 板对应的目标发送波束并指示给终端。
  9. 根据权利要求7所述的数据传输方法,其中,所述上行信号资源为包括K个端口的上行信号资源,K为终端的至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
  10. 根据权利要求9所述的数据传输方法,其中,根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI之前,还包括:
    将所述端口与目标发送波束的对应关系指示给终端。
  11. 根据权利要求10所述的数据传输方法,其中,将所述端口与目标发送波束的对应关系指示给终端,包括:
    将每个所述端口与目标发送波束的对应关系指示给终端;
    或者,将端口组与目标发送波束的对应关系指示给终端,其中,所述K个端口被划分成D个端口组,且所述D个端口组中存在至少一个目标端口组,所述目标端口组为包括至少两个端口的端口组,D为大于1的正整数。
  12. 一种终端,所述终端配置有至少两个用于上行链路传输的天线面板,所述终端包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,其中,所述处理器执行所述程序时实现以下步骤:
    通过收发机接收网络设备发送的物理上行共享信道PUSCH调度信息,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵;
    根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,所述目标天线面板为所述终端的至少两个天线面板中用于传输PUSCH的天线面板。
  13. 根据权利要求12所述的终端,其中,所述处理器执行所述程序时还实现以下步骤:
    在接收网络设备发送的物理上行共享信道PUSCH调度信息之前,在所述至少两个目标天线面板上使用模拟波束发送波束训练信号资源;
    获取网络设备指示的每个所述目标天线面板对应的目标发送波束,所述目标发送波束是网络设备根据所述波束训练信号资源得到的;
    在每个目标天线面板上使用所述目标天线面板对应的目标发送波束发送用于获取信道状态信息CSI的上行信号资源,所述PUSCH调度信息为网络设备根据所述上行信号资源得到的。
  14. 根据权利要求13所述的终端,其中,所述上行信号资源为包括K个端口的上行信号资源,K为所述至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
  15. 根据权利要求14所述的终端,其中,所述处理器执行所述程序时还实现以下步骤:
    根据网络设备指示的端口与目标发送波束的对应关系,确定第一目标端口对应的第一目标发送波束;
    在与所述第一目标发送波束对应的第一目标天线面板上,发送所述第一目标端口的上行信号资源。
  16. 根据权利要求14所述的终端,其中,所述处理器执行所述程序时还实现以下步骤:
    根据所述第二指示信息指示的预编码矩阵,对所述PUSCH的L个数据层进行预编码处理,得到包括K个数据层的发送信号向量,其中,所述发送信号向量的每个数据层与一个所述端口对应;
    获取所述发送信号向量的目标数据层对应的第二目标端口;
    在第二目标天线面板上,使用所述第二目标端口对应的第二目标发送波束发送所述发送信号向量的目标数据层,所述第二目标天线面板为与所述第二目标端口具有映射关系的天线面板。
  17. 根据权利要求13所述的终端,其中,所述处理器执行所述程序时还实现以下步骤:
    在网络设备为每个所述目标天线面板配置的波束训练信号资源集合中,选取第三目标天线面板对应的目标波束训练信号资源集合,每个所述波束训练信号资源集合包括至少一个波束训练信号资源,所述第三目标天线面板为所述至少两个目标天线面板中的任意一个;
    在所述第三目标天线面板上使用不同的模拟波束发送所述目标波束训练 信号资源集合中的每个波束训练信号资源。
  18. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如权利要求1至6中任一项所述数据传输方法的步骤。
  19. 一种网络设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,其中,所述处理器执行所述程序时实现以下步骤:
    根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI;
    根据所述信道状态信息CSI,得到物理上行共享信道PUSCH调度信息并发送给终端,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵。
  20. 根据权利要求19所述的网络设备,其中,所述处理器执行所述程序时还实现以下步骤:
    在根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI之前,获取终端在至少两个目标天线面板上使用模拟波束发送的波束训练信号资源;
    对所述波束训练信号资源进行波束扫描处理,确定每个所述目标天线面板对应的目标发送波束并指示给终端。
  21. 根据权利要求19所述的网络设备,其中,所述上行信号资源为包括K个端口的上行信号资源,K为终端的至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
  22. 根据权利要求21所述的网络设备,其中,所述处理器执行所述程序时还实现以下步骤:
    在根据终端发送的上行信号资源,获取上行链路的信道状态信息CSI之前,将所述端口与目标发送波束的对应关系指示给终端。
  23. 根据权利要求22所述的网络设备,其中,所述处理器执行所述程序时还实现以下步骤:
    将每个所述端口与目标发送波束的对应关系指示给终端;
    或者,将端口组与目标发送波束的对应关系指示给终端,其中,所述K个端口被划分成D个端口组,且所述D个端口组中存在至少一个目标端口组,所述目标端口组为包括至少两个端口的端口组,D为大于1的正整数。
  24. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如权利要求7至11中任一项所述数据传输方法的步骤。
  25. 一种终端,所述终端配置有至少两个用于上行链路传输的天线面板,包括:
    接收模块,用于接收网络设备发送的物理上行共享信道PUSCH调度信息,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵;
    第一发送模块,用于根据所述第二指示信息指示的预编码矩阵,将所述PUSCH包括的数据层映射到至少两个目标天线面板上发送,所述目标天线面板为所述终端的至少两个天线面板中用于传输PUSCH的天线面板。
  26. 根据权利要求25所述的终端,还包括:
    第二发送模块,用于在所述至少两个目标天线面板上使用模拟波束发送波束训练信号资源;
    第一获取模块,用于获取网络设备指示的每个所述目标天线面板对应的目标发送波束,所述目标发送波束是网络设备根据所述波束训练信号资源得到的;
    第三发送模块,用于在每个目标天线面板上使用所述目标天线面板对应的目标发送波束发送用于获取信道状态信息CSI的上行信号资源,所述PUSCH调度信息为网络设备根据所述上行信号资源得到的。
  27. 根据权利要求26所述的终端,其中,所述上行信号资源为包括K个端口的上行信号资源,K为所述至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
  28. 一种网络设备,包括:
    第二获取模块,用于根据终端发送的上行信号资源,获取上行链路的信 道状态信息CSI;
    第四发送模块,用于根据所述信道状态信息CSI,得到物理上行共享信道PUSCH调度信息并发送给终端,所述PUSCH调度信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示PUSCH包括的数据层,所述第二指示信息用于指示预编码矩阵。
  29. 根据权利要求28所述的网络设备,还包括:
    第三获取模块,用于获取终端在至少两个目标天线面板上使用模拟波束发送的波束训练信号资源;
    确定模块,用于对所述波束训练信号资源进行波束扫描处理,确定每个所述目标天线面板对应的目标发送波束并指示给终端。
  30. 根据权利要求28所述的网络设备,其中,所述上行信号资源为包括K个端口的上行信号资源,K为终端的至少两个目标天线面板的数字通道数之和,K个端口映射到至少两个所述目标天线面板上,K为正整数,且K大于或等于L,L为PUSCH包括的数据层的个数。
PCT/CN2019/098112 2018-08-17 2019-07-29 数据传输方法、终端及网络设备 WO2020034831A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/267,092 US11985654B2 (en) 2018-08-17 2019-07-29 Data transmission method, terminal, and network device
EP19849442.9A EP3826198A4 (en) 2018-08-17 2019-07-29 DATA TRANSFER PROCEDURE, TERMINAL DEVICE AND NETWORK DEVICE
KR1020217007818A KR20210046030A (ko) 2018-08-17 2019-07-29 데이터 전송 방법, 단말 및 네트워크 기기
JP2021507629A JP7258123B2 (ja) 2018-08-17 2019-07-29 データ伝送方法、端末及びネットワーク機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810942311.8 2018-08-17
CN201810942311.8A CN110838856B (zh) 2018-08-17 2018-08-17 一种数据传输方法、终端及网络设备

Publications (1)

Publication Number Publication Date
WO2020034831A1 true WO2020034831A1 (zh) 2020-02-20

Family

ID=69525142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098112 WO2020034831A1 (zh) 2018-08-17 2019-07-29 数据传输方法、终端及网络设备

Country Status (7)

Country Link
US (1) US11985654B2 (zh)
EP (1) EP3826198A4 (zh)
JP (1) JP7258123B2 (zh)
KR (1) KR20210046030A (zh)
CN (1) CN110838856B (zh)
TW (1) TWI711334B (zh)
WO (1) WO2020034831A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230155650A1 (en) * 2021-11-15 2023-05-18 Qualcomm Incorporated Heterogenous beamforming capability with mixed beamforming architecture

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11558840B2 (en) * 2018-12-17 2023-01-17 Qualcomm Incorporated Timing advances for uplink transmissions
WO2021184327A1 (en) * 2020-03-20 2021-09-23 Qualcomm Incorporated Association of transmission layers and codewords to enable uplink transmission with multiple codewords
WO2021185089A1 (en) * 2020-03-19 2021-09-23 Qualcomm Incorporated Configuration and indication for enabling uplink transmission with multiple codewords
CN113498182B (zh) * 2020-04-03 2024-04-23 大唐移动通信设备有限公司 一种信号传输方法和设备
CN116210189A (zh) * 2020-08-07 2023-06-02 Oppo广东移动通信有限公司 确定传输使用的天线面板的方法和终端设备
US11825499B2 (en) * 2020-09-04 2023-11-21 Qualcomm Incorporated CSI report and DL grant
CN114651510B (zh) * 2020-10-19 2023-10-31 北京小米移动软件有限公司 Pusch指示方法和装置、pusch发送方法和装置
CN114696879B (zh) * 2020-12-31 2023-08-04 大唐移动通信设备有限公司 信号传输方法及装置、终端、接入网设备
CN115333584B (zh) * 2021-05-10 2024-02-20 维沃移动通信有限公司 预编码矩阵的指示方法、终端及网络侧设备
WO2023272514A1 (zh) * 2021-06-29 2023-01-05 北京小米移动软件有限公司 上行传输方法、装置、设备及可读存储介质
CN114071550B (zh) * 2021-11-24 2024-05-24 中国电信股份有限公司 终端与接入点的连接检测方法、检测装置、终端和系统
CN116614162A (zh) * 2022-02-09 2023-08-18 维沃移动通信有限公司 预编码指示方法、装置、通信设备、系统及存储介质
CN116781218A (zh) * 2022-03-07 2023-09-19 维沃移动通信有限公司 物理上行共享信道pusch同时发送的方法、装置和终端
WO2024031455A1 (zh) * 2022-08-10 2024-02-15 北京小米移动软件有限公司 一种预编码指示方法、装置及存储介质
CN117641396A (zh) * 2022-08-31 2024-03-01 华为技术有限公司 Srs传输方法和装置
CN118120320A (zh) * 2022-09-26 2024-05-31 北京小米移动软件有限公司 Pusch的传输方法、装置、介质及产品
CN116468256B (zh) * 2023-06-19 2023-09-29 青岛创新奇智科技集团股份有限公司 多生产线的管理方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021865A1 (ko) * 2016-07-29 2018-02-01 엘지전자 주식회사 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 지원하는 장치
US20180062724A1 (en) * 2016-09-01 2018-03-01 Samsung Electronics Co., Ltd. Method and apparatus for downlink and uplink csi acquisition
WO2018117738A1 (en) * 2016-12-22 2018-06-28 Samsung Electronics Co., Ltd. Uplink mimo codebook for advanced wireless communication systems
CN108288983A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 信道状态信息的反馈、确定方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110103510A1 (en) 2009-04-23 2011-05-05 Qualcomm Incorporated Rank and precoding indication for mimo operation
KR102373467B1 (ko) * 2014-11-17 2022-03-14 삼성전자주식회사 다중입력 다중출력 무선 통신 시스템을 위한 채널 정보 피드백 방법 및 장치
US10455514B2 (en) * 2015-07-17 2019-10-22 Samsung Electronics Co., Ltd. Method and device for transmitting signal in wireless communication system
WO2017014611A1 (ko) 2015-07-23 2017-01-26 엘지전자(주) 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치
WO2017136749A1 (en) * 2016-02-03 2017-08-10 Docomo Innovations, Inc. User equipment and method for wireless communication
WO2018084898A1 (en) * 2016-11-02 2018-05-11 Intel Corporation Evolved node-b (enb), user equipment (ue) and methods for codebook generation for multi-panel antenna arrangements
CN108288984B (zh) * 2017-01-09 2022-05-10 华为技术有限公司 一种参数指示及确定方法和接收端设备及发射端设备
CN113726492A (zh) * 2017-02-04 2021-11-30 华为技术有限公司 终端、网络设备和通信方法
JP6804649B2 (ja) 2017-02-06 2020-12-23 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて端末の無線リンクモニタリングを行う方法及びそれをサポートする装置
CN108111271B (zh) * 2017-06-16 2023-09-19 中兴通讯股份有限公司 参考信号的信令指示、参考信号的发送方法及装置
CN115720103A (zh) 2017-06-16 2023-02-28 瑞典爱立信有限公司 多资源上行链路探测和天线子集传输
CN109600208B (zh) 2017-09-30 2021-06-04 电信科学技术研究院 一种上行传输、配置方法、终端及基站
WO2019069236A1 (en) 2017-10-02 2019-04-11 Telefonaktiebolaget Lm Ericsson (Publ) EFFICIENT METHODS OF SRS SIGNAL RESOURCE INDICATION
WO2019118250A1 (en) * 2017-12-15 2019-06-20 Telefonaktiebolaget L M Ericsson (Publ) Non-constant modulus codebook design
US10594382B2 (en) * 2018-01-02 2020-03-17 Apple Inc. Phase tracking reference signal (PT-RS) power boosting
WO2019216733A1 (ko) * 2018-05-11 2019-11-14 엘지전자 주식회사 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2020031352A1 (ja) * 2018-08-09 2020-02-13 株式会社Nttドコモ ユーザ端末及び無線通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021865A1 (ko) * 2016-07-29 2018-02-01 엘지전자 주식회사 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 지원하는 장치
US20180062724A1 (en) * 2016-09-01 2018-03-01 Samsung Electronics Co., Ltd. Method and apparatus for downlink and uplink csi acquisition
WO2018117738A1 (en) * 2016-12-22 2018-06-28 Samsung Electronics Co., Ltd. Uplink mimo codebook for advanced wireless communication systems
CN108288983A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 信道状态信息的反馈、确定方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Codebook Based Transmission for UL MIMO", 3GPP TSG RAN WGI NR AD HOC MEETING R1-1710447, vol. RAN WG1, 26 June 2017 (2017-06-26), XP051299658 *
INTEL CORPORATION: "Remaining Issues on CSI Reporting", 3GPP TSG RAN WG1 NR AD-HOC#3 R1-1716293, vol. RAN WG1, 17 September 2017 (2017-09-17), XP051339749 *
See also references of EP3826198A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230155650A1 (en) * 2021-11-15 2023-05-18 Qualcomm Incorporated Heterogenous beamforming capability with mixed beamforming architecture

Also Published As

Publication number Publication date
EP3826198A4 (en) 2021-09-01
US11985654B2 (en) 2024-05-14
TW202010355A (zh) 2020-03-01
CN110838856B (zh) 2021-11-26
US20210168839A1 (en) 2021-06-03
JP2021533701A (ja) 2021-12-02
CN110838856A (zh) 2020-02-25
TWI711334B (zh) 2020-11-21
EP3826198A1 (en) 2021-05-26
JP7258123B2 (ja) 2023-04-14
KR20210046030A (ko) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2020034831A1 (zh) 数据传输方法、终端及网络设备
TWI732261B (zh) 資料傳輸方法、終端及網路設備
TWI673964B (zh) 一種波束處理方法、基地台及移動終端
US11510203B2 (en) Method and apparatus for determining uplink transmission beam
CN110838860B (zh) 一种信号传输方法、装置、终端及网络侧设备
CN110838862B (zh) 一种波束处理方法、装置、终端及网络侧设备
US20200067735A1 (en) Methods for indicating and determination large-scale channel parameter, base station and terminal device
TWI679857B (zh) 一種波束訓練方法、終端及基地台
CN114598365B (zh) 传输方法、装置、设备及可读存储介质
CN115941011A (zh) 一种波束控制方法和装置
CN107888258B (zh) 一种波束扫描与跟踪方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507629

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019849442

Country of ref document: EP

Effective date: 20210216

ENP Entry into the national phase

Ref document number: 20217007818

Country of ref document: KR

Kind code of ref document: A