WO2020034816A1 - 一种端面齿摆线针轮副和章动减速装置 - Google Patents

一种端面齿摆线针轮副和章动减速装置 Download PDF

Info

Publication number
WO2020034816A1
WO2020034816A1 PCT/CN2019/097517 CN2019097517W WO2020034816A1 WO 2020034816 A1 WO2020034816 A1 WO 2020034816A1 CN 2019097517 W CN2019097517 W CN 2019097517W WO 2020034816 A1 WO2020034816 A1 WO 2020034816A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
nutation
nutating
cycloid
reduction device
Prior art date
Application number
PCT/CN2019/097517
Other languages
English (en)
French (fr)
Inventor
帅梅
王小椿
李瑜
Original Assignee
北京智能大艾机器人科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910591871.8A external-priority patent/CN110836246B/zh
Application filed by 北京智能大艾机器人科技有限公司 filed Critical 北京智能大艾机器人科技有限公司
Priority to DE112019004147.9T priority Critical patent/DE112019004147T5/de
Priority to US17/266,862 priority patent/US11841072B2/en
Priority to JP2021507965A priority patent/JP7162729B2/ja
Publication of WO2020034816A1 publication Critical patent/WO2020034816A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly

Definitions

  • the present invention relates to a reduction gear, and in particular, the present invention relates to an end-tooth cycloid pin gear pair for a nutating reduction gear and a nutation reduction gear using the same.
  • Nutation reduction gear is a kind of reduction gear using nutation drive.
  • gear pairs used in nutation reduction gears mostly use involute tooth or cycloid gear transmission, but the involute tooth profile transmission efficiency is low, and tooth profile overlap interference is easy to occur in the nutation structure.
  • Radial interference and other problems; cycloid tooth profile is prone to problems such as overcutting of the tooth profile and needle-tooth contact; planetary reducers with large speed ratios have complex structures, are difficult to manufacture and install, and have heavy weight.
  • the conventional tooth profile design of the gear pair makes only a small part of the teeth mesh with each other at any time during the nutation drive. For example, for a gear with 45 teeth, at any time during the nutation drive, Only 1-2 teeth mesh with each other to participate in the nutation drive. Therefore, the traditional nutation reduction gear has the disadvantages of small load carrying capacity and unstable transmission.
  • Chinese invention patent application CN106246812A discloses a double-sided double-stage internal meshing double-arc bevel gear nutating reduction device, which uses two double-arc bevel gears connected to the input shaft through a nutating sleeve and The transmission of the other two double-arc bevel gears is engaged to reduce the rotation of the input shaft.
  • the two-stage gear is arranged so that at any time during the nutation transmission, the teeth engaged in the one-stage gear and the teeth engaged in the other-stage gear are opposed to each other.
  • This solution doubles the number of teeth that mesh with each other at any time during the nutation transmission process by using double-stage gears, and at the same time increases the stability of the transmission by configuring the double-stage gears so that the teeth in the double-stage gears face each other. .
  • the above scheme only doubles the number of teeth meshed during nutation transmission, which may be far from sufficient for improving load carrying capacity and smoothness of transmission.
  • the double-stage gear still uses the internal bevel gear.
  • the internal bevel gear is difficult to achieve in traditional machining, and it is expensive to use CNC machine tools.
  • the manufacturing method is simple, but the accuracy is low. These defects have become the main factors restricting the development of nutation reduction gears.
  • the purpose of the present invention is to solve the above-mentioned shortcomings of a nutating reduction gear, and provide a new type of nutating reduction gear.
  • the reduction gear has a small nutating angle, a large transmission ratio, a stable transmission, a large bearing capacity, and also solves the toothing problem. Contour interference problem, and has the characteristics of compact structure, convenient manufacturing and installation.
  • a cycloidal pin gear pair of end teeth for a nutation reduction device including: a cycloid gear, the cycloid gear has a cycloid tooth surface, and the cycloid
  • the indexing surface of the spur gear and the axis of the cycloidal gear form a first angle
  • a needle gear, the needle gear and the cycloidal gear mesh in a nutating transmission manner, and the needle gear has a needle gear tooth surface
  • the indexing plane of the needle gear and the axis of the needle gear form a second included angle; wherein the first included angle and the second included angle are both between 88 ° and 91 °, and the The sum of the first included angle and the second included angle is less than 180 °
  • the portions where the pinion tooth surface and the cycloid tooth surface mesh with each other are the pinion working tooth surface and the cycloid gear working tooth surface ;
  • the end tooth cycloid needle wheel pair wherein the working tooth surface of the needle wheel is a conical surface, and the cone top of the working tooth surface of the needle wheel is located on the tooth surface of the needle wheel.
  • a center point of the indexing surface, and an axis of the working tooth surface of the pin wheel is on the indexing surface of the tooth surface of the pin wheel.
  • the end-tooth cycloidal pin gear pair wherein the working tooth surface of the cycloid gear is an envelope of the working tooth surface of the pin gear.
  • the end-tooth cycloidal pin gear pair wherein the tooth gear tooth surface further comprises a needle gear non-working tooth surface, the needle wheel non-working tooth surface is composed of a flat surface and a conical surface,
  • the non-working tooth surface of the pin gear is tangent to the working tooth surface of the pin gear; and / or the cycloid tooth surface further includes a non-working tooth surface of the cycloid gear, and the non-working tooth surface of the cycloid gear consists of a plane and A conical surface is formed, and the non-working tooth surface of the cycloid gear is tangent to the working tooth surface of the cycloid gear.
  • a nutating reduction device which includes a housing; an end-toothed cycloidal pin gear pair is provided in the housing, and the end-toothed cycloidal pin gear pair is implemented according to the description herein.
  • the nutation reduction device wherein the input mechanism drives a nutation gear in the end-face tooth cycloidal pin gear pair, and a rotation axis of the input mechanism and the nutation gear An angle is formed between the axes; the torque transmitting member is connected between the nutating gear and the housing to restrain the nutating gear from rotating around its own axis; and the output mechanism and the Non nutating gear connection.
  • a nutating reduction device which includes a housing; an end-toothed cycloidal pin gear pair is provided in the housing, and the end-toothed cycloidal pin gear pair is implemented in accordance with the description herein.
  • the nutation reduction device wherein the input mechanism drives a nutation gear in the end-face tooth cycloidal pin gear pair, and a rotation axis of the input mechanism and the nutation gear An included angle is formed between the axes; the non- nutating gear in the end-face tooth cycloid pin gear pair is fixed to the housing; and the output mechanism is connected to the nutating gear through the torque transmitting member.
  • the nutation reduction gear according to one or more embodiments of the present invention, further comprising: a second end-toothed cycloidal pin gear pair, which is disposed in the housing, and is disposed to face away from the end-toothed cycloidal pin gear pair
  • the second end-face tooth cycloid pin wheel pair is the end-face tooth cycloid pin wheel pair according to any one of claims 1-4; wherein the input mechanism drives the second end-face tooth cycloid pin wheel pair
  • the angle between the rotation axis of the input mechanism and the axis of the nutation gear in the second end-face tooth cycloid needle wheel pair is the angle;
  • the second end-face tooth swing A non- nutating gear in the needle wheel pair is fixed to the housing; and the output mechanism is connected to the nutating gear of the second end-toothed cycloid needle wheel pair through the torque transmitting member.
  • the input mechanism has a nutation step formed by recessing a side wall of the input mechanism, wherein the nutation step is located on the input shaft through A bearing is connected to the nutating gear, and an included angle is formed between a stepped surface of the nutating step and the rotation axis of the input mechanism.
  • a side wall of an input shaft of the input mechanism is provided with a flange extending radially outward, and the flange is provided on the input mechanism.
  • the nutation reduction device according to one or more embodiments of the present invention, wherein the torque transmitting member is a flexible member or a constant speed transmission member.
  • a joint for a robot comprising: a joint shell for defining a joint cavity; a nutation reduction device accommodated in the joint shell, the nutation reduction device according to claims 5-12
  • the nutating reduction gear according to any one; an output shaft, the output shaft being connected to an output mechanism of the nutating reduction gear; and a motor, the motor being housed in the joint housing and connected with the nutating
  • the input mechanism of the reduction gear is connected.
  • the joint according to one or more embodiments of the present invention further includes a half-moon bearing disposed between the motor and the joint housing, and between the nutation reduction gear and the joint housing.
  • This document also provides a double-swing angle milling head for a machine tool, including: a first housing having a first motor disposed in the first housing; a second housing having a second casing A second motor in the body; a first nutation reduction gear, the first nutation reduction gear is disposed in the first housing, and an input mechanism of the first nutation reduction gear is connected to the first motor, The output mechanism of the one nutation reduction gear is connected to the second casing to drive the second case to rotate about the first axis; the second nutation reduction gear is provided on the second nutation reduction gear.
  • the input mechanism of the second nutating reduction gear is connected to the second motor; and a milling head, the output mechanism of the second nutating reduction gear is connected to the milling head to drive the The milling head rotates around a second axis; wherein the first and second nutation reduction devices are the nutation reduction devices according to any one of claims 5-12, and the first axis is perpendicular to the first axis Two axes.
  • This document also provides a double-swing angle table for a machine tool, including: a base; a turntable housing disposed on and supported by the base, wherein the turntable housing is connected to a first motor, so The first motor drives the turntable housing to rotate around the first axis; at least one worktable is provided in the turntable housing; at least one nutation reduction device is provided in the turntable housing, and the at least one
  • the nutation reduction device is a nutation reduction device according to any one of claims 5 to 12, wherein an input mechanism of each of the at least one nutation reduction device is connected to a corresponding second motor, the at least one nutation
  • the output mechanism of each of the speed reduction devices is connected to a corresponding work table to drive the work belt to rotate about a second axis, wherein the first axis is different from the second axis.
  • This article also provides an indexing turntable for a numerically controlled machine tool, comprising: a turntable body, wherein the turntable body is provided with a plurality of chucks, and a plurality of operating arms are provided along the outer periphery of the turntable body; and A nutation reduction device, the input mechanism of the first nutation reduction device is connected to a first motor, and the output mechanism is connected to the turntable body to drive the turntable body to rotate about a first axis; wherein the plurality of operations
  • Each of the arms includes a pillar, an operating head, and a cross arm for connecting the pillar and the operating head, wherein a top of the pillar is connected to one end of the cross arm through a second nutation reduction device, The operating head is connected to the other end of the cross arm through a third nutation reduction device, and the input mechanisms of the second and third nutation reduction devices are respectively connected to a motor, and the second and third chapters
  • the output mechanism of the speed reduction device is respectively connected to the cross arm and the operation
  • a numerically controlled machine tool including: a base; a translation device provided on the base configured to move in a plane; a workbench provided on the translation device, wherein the workbench is The double swing angle table according to claim 15; a lifting device provided on the base configured to move in a direction perpendicular to the plane; and a milling head provided on the lifting device, The milling head is a double swing angle milling head according to claim 14.
  • This document also provides a traction machine comprising: a frame; a nutation reduction device supported by the frame, wherein the nutation reduction device is a nutation reduction according to any one of claims 5-12.
  • the motor is supported by the frame, the motor is connected to the input mechanism of the nutation reduction gear; the traction wheel is supported by the frame, the output mechanism of the nutation reduction gear and the traction Pulleys are adjacent to drive the traction sheave; and a traction rope is wound around the traction sheave.
  • the traction machine according to one or more embodiments of the present invention, wherein the frame segmented casing, the motor, the nutating reduction gear, and the traction wheel are accommodated in respective regions of the segmented casing Within the segment, and wherein the motor, the nutating reduction gear and the traction sheave are respectively fixed to the segmented housing through bearings.
  • This document also provides a windlass for ships, including: a base; a nutation reduction device supported by the base, wherein the nutation reduction device is the nutation according to any one of claims 5-12.
  • a reduction gear ; a motor supported by the base, the motor connected to an input mechanism of the nutating reduction gear;
  • An output plate is supported by the base, and an output mechanism of the nutating reduction gear is adjacent to the output plate to drive the output plate to rotate.
  • This document also provides a revolving door for a public place, including: a revolving door, the revolving door including a column, and a plurality of door bodies extending radially outward from the column; and a rotating mechanism provided on the On the top of the revolving door, the rotation mechanism includes: a housing; a nutating reduction device provided in the housing, wherein the nutating reduction device is a nutating reduction according to any one of claims 5-12. Device; a motor provided in the housing, the motor being connected to the input mechanism of the nutation reduction device; wherein the output mechanism of the nutation reduction device is connected to the top of the column to drive the rotation The door rotates around the upright.
  • This document also provides a solar energy conversion device, including: a base; a support rod provided on the base; a nutation reduction device provided between the base and the support rod, wherein the nutation
  • the speed reduction device is a nutation reduction device according to any one of claims 5 to 12, wherein the input mechanism of the nutation reduction device is connected to a motor, and the output mechanism of the nutation reduction device is connected to the bottom of the support rod. Connected to drive the support rod to rotate; and a collecting device is swingably arranged on the top of the support rod.
  • the solar energy conversion device further includes a second nutation reduction device provided between the support rod and the collecting device, the second nutation reduction device is according to the claims
  • the nutation reduction device according to any one of 5-12, wherein the input mechanism of the second nutation reduction device is connected to a second motor, and the output mechanism of the nutation reduction device is connected to the acquisition device to Drive the collection device to swing.
  • a material conveying device including: a bracket; a plurality of rollers provided on the bracket; a conveyor belt provided on the plurality of rollers; and at least one nutation reduction device, the nutation reduction device
  • the nutation reduction device according to any one of claims 5 to 12, wherein an input structure of the at least one nutation reduction device is commonly connected to a motor, and an output mechanism of each of the at least one nutation reduction device Connected to respective rollers of the plurality of rollers.
  • the common involute tooth profile easily overcomes various interferences during transmission (including involute interference, node-to-surface tooth top interference, tooth profile overlap interference, and radial interference). Etc.).
  • the angles between the cycloidal gear and the axis of the corresponding gear are between 88 ° and 91 ° and the sum of the two angles is less than 180 °.
  • the above characteristics of the indexing surface make the indexing surface of the cycloid gear and the pin wheel approximately flat, instead of the inner bevel gear whose indexing surface is usually an inner cone surface, so that the end-toothed cycloidal pin wheel mechanism provided by the present invention Simple processing and low manufacturing cost.
  • the indexing plane of the cycloid gear and the pin gear By forcing the indexing plane of the cycloid gear and the pin gear to be approximately flat, the number of teeth that mesh with the cycloid pin gear pair on the end face at any moment of nutation transmission is 4-5 times that of the traditional gear pair, and even It is 8-10 times, which significantly improves the carrying capacity and transmission stability.
  • the angle between the working tooth surfaces of the cycloid gear and the pin gear meshing with each other is configured to satisfy the above-mentioned relationship, so that the nutation drive of the cycloid pin gear pair of the end tooth has higher transmission efficiency.
  • FIG. 1 is a schematic perspective view of a cycloidal pin wheel pair according to an embodiment of the present invention
  • Figure 2 is a side view of the pin wheel of the cycloid pin wheel pair shown in Figure 1;
  • 3A-3E are schematic diagrams of a cycloidal pin wheel pair according to a preferred embodiment of the present invention.
  • FIG. 4 is a partially enlarged view of the cycloidal pin wheel pair shown in FIG. 1;
  • 5A and 5B are schematic diagrams showing the meshing relationship of gears in a cycloidal pin wheel pair according to an embodiment of the present invention
  • 6A and 6B show schematic diagrams of a nutating reduction gear according to an embodiment of the present invention
  • FIGS. 7A and 7B show a schematic diagram of a nutating reduction gear according to another embodiment of the present invention
  • FIGS. 8A and 8B show a schematic diagram of a nutating reduction gear according to another embodiment of the present invention
  • FIGS. 9A and 9B show A schematic diagram of a nutating reduction gear according to another embodiment of the present invention
  • Fig. 10 shows a schematic diagram of a nutating reduction gear according to another embodiment of the present invention.
  • FIG. 11 shows a structural schematic diagram of a joint for a robot according to an embodiment herein.
  • FIG. 12 shows a schematic structural diagram of a double swing angle table for a machine tool according to an embodiment herein.
  • FIG. 13 shows a schematic structural diagram of a double swing angle milling head for a machine tool according to an embodiment herein.
  • FIG. 14 shows a schematic structural diagram of an indexing turntable for a numerically controlled machine tool according to an embodiment herein.
  • FIG. 15 shows a schematic structural diagram of a numerically controlled machine tool according to an embodiment herein.
  • FIG. 16 shows a schematic structural diagram of a traction machine according to an embodiment herein.
  • FIG. 17 shows a schematic structural diagram of a marine windlass according to an embodiment herein.
  • FIG. 18 shows a schematic structural diagram of a swing door according to an embodiment herein.
  • FIG. 19 shows a schematic structural diagram of a solar energy conversion device according to an embodiment herein.
  • FIG. 20 shows a schematic structural diagram of a material transfer device according to an embodiment herein.
  • FIG. 1 illustrates a schematic perspective view of a cycloid needle wheel pair 100 according to an embodiment of the present invention.
  • the cycloid pin gear pair 100 includes two gears 110 and 120 facing each other, one of the two gears is called a cycloid gear, and the other is called a needle gear.
  • the cycloidal pin gear pair 100 will be described using the gear 110 as the cycloid gear and the gear 120 as the pin wheel.
  • the cycloid gear and the pin gear are interchangeable.
  • the gear 110 may be used as the pin gear and the gear 120 may be used as the cycloid gear.
  • the cycloid needle wheel pair 100 is an end-face cycloid needle wheel pair. That is, the cycloid gear 110 in the cycloid pin gear pair 100 is a face gear, that is, the cycloid tooth surface 130 of the cycloid gear 110 is formed on one end face that is substantially perpendicular to the axis OO ′ of the cycloid gear 110, Instead of being formed on the outer circumference or the inner circumference of the cycloid gear 110.
  • the force received by the gear with the tooth surface on one side during operation is distributed in the entire thickness direction of the gear, because the gear has a better thickness direction The rigidity, so the gear with tooth surface formed on one side can effectively prevent deformation caused during work.
  • the pinion gear 120 has a pinion tooth surface 140 on one end surface thereof.
  • the pinion tooth surface 140 and the cycloid tooth surface 130 face each other and mesh with each other in a nutating manner during operation. Since the cycloid pin gear pair 100 is generally the same as the nutation reduction gear, the number of teeth formed on the cycloid tooth surface 130 and the number of teeth formed on the pin gear tooth surface 140 are usually one tooth different.
  • the cycloidal tooth surface 130 may be one tooth less than the pinion tooth surface 140, or the cycloidal tooth surface 130 may be one tooth more than the pinion tooth surface 140.
  • the teeth formed on the cycloidal tooth surface 130 have a cycloidal tooth profile. Since the present invention uses a cycloidal tooth profile instead of an involute tooth profile used in a conventional nutation gear reducer, this avoids When using involute tooth transmission, various interferences (including involute interference, node-to-surface tooth top interference, tooth profile overlap interference, radial interference, etc.) are easy to occur.
  • FIG. 2 illustrates a side view of the needle wheel 120 in the cycloid needle wheel pair 100.
  • a straight line OP extending toward the center O of the pin wheel 120 is provided between the tooth root and the tip of each tooth in the tooth surface 140 of the pin gear.
  • the surface formed by rotating the pinion tooth surface 140 in the circumferential direction is referred to as the indexing surface of the pinwheel 120, where the center O is the center point of the indexing surface.
  • Any of the generatrixes (for example, the straight line PO in FIG. 3) on the index plane of the pin wheel 120 and the central axis OO 'of the pin wheel 120 have an angle ⁇ POO'.
  • any of the generatrixes on the graduation plane of the cycloid gear 110 also have an angle with its axis.
  • the angle between the indexing surface of the gear and the axis depends on the number of teeth formed on the tooth surface. For example, for a gear with 45 teeth, the angle between the index plane and the axis is either greater than 90 ° or smaller than 90 °.
  • the indexing surface is formed as an inner conical surface where the center of the indexing surface is concave toward the gear or a convex conical surface which is convex outward.
  • the included angle between the indexing surface and the axis becomes closer and closer to 90 °, that is, as the number of teeth of the gear increases, the indexing surface becomes closer and closer to the plane.
  • the inventors have found that forcing the indexing planes of the two gears in the gear pair to be approximately flat, regardless of the number of teeth of the gears, this can significantly increase the number of teeth that mesh with each other during nutation.
  • the angle between the graduation plane and the respective axis of the cycloid gear 110 and the pin gear 120 is between 88 ° and 91 °, and specifically between 88 ° and 90 °. between.
  • the sum of the angles between the respective graduation surfaces of the cycloid gear 110 and the needle gear 120 and the respective axes is less than 180 °.
  • the indexing plane of one of the gears of the cycloid gear 110 and the pinion gear 120 is a plane (that is, the included angle is 90 °), while the indexing plane of the other gear is a slightly convex convex cone (that is, the angle is greater than 88 ° and less than 90 °), or both the cycloid gear 110 and the needle gear 120 are slightly convex convex cones.
  • the inventor has found that, for the cycloid pin gear pair 100 composed of the cycloid gear 110 and the needle gear 120 having the above-mentioned graduation plane, the cycloid gear 110 and the needle There will be more teeth between the gears 120 meshing with each other.
  • the cycloid gear 110 and the pin gear 120 have an index surface formed as a substantially flat surface or a slightly convex or concave conical surface, instead of the internal bevel gear used in a conventional nutating gear reduction device, Compared with the conventional nutating gear used for nutating a reduction gear, the cycloidal pin wheel pair provided by the present invention has simple machining and low manufacturing cost.
  • Table 1 shows the preferred embodiments of the cycloidal pin wheel pairs with different numbers of teeth.
  • the number of teeth of the middle pinion gear of the cycloid pin wheel pair is 45, 60, 90, 75, 120 teeth
  • the number of teeth of the cycloid gear is one tooth less than that of the corresponding pin gear. They are 44, 59, 89, 74 and 119 teeth, respectively. It can be seen from Table 1 that the indexing angles of the needle gears shown (that is, the angle between the indexing plane of the needle gear and the axis) are all 90 °, that is, the indexing planes of the needle gear are flat.
  • the indexing angle of the cycloidal gear (that is, the angle between the indexing surface of the cycloidal gear and the axis) is approximately between 88 ° and 90 °, and specifically between 88 ° and 89.5 °, that is,
  • the indexing surface of the cycloidal gear is preferably formed as a slightly conical convex surface.
  • the angle between the axes in Table 1 is the angle between the axis of the cycloid gear and the corresponding pin gear (that is, the sum of the angle of the index angle of the pin gear and the index angle of the cycloid gear).
  • FIGS. 3A-3E the schematic diagrams of the cycloid needle wheel sets T45, T60, T90, M75 and M120 in Table 1 are shown respectively.
  • point P ' is the center of the indexing plane of the cycloidal gears of each cycloid pin wheel pair
  • FIG. 4 illustrates an enlarged schematic view of a part of the cycloid needle wheel pair 100 surrounded by a dotted line A in FIG. 1.
  • FIG. 2 when the cycloid tooth surface 130 and the pinion tooth surface 140 are partially engaged, a part 131 of the tooth of the cycloid tooth surface 130 and a part 141 of the tooth of the pinion tooth surface 140 are in contact with each other, and the cycloid tooth surface The other part 132 of the tooth 130 and the other part 142 of the tooth of the pinion tooth surface 140 are separated from each other.
  • the portions 131 and 141 are referred to as the cycloid gear working tooth surface 121 and the pin gear working tooth surface 141, and the portions 132 and 142 are respectively referred to as the cycloid gear non-working tooth surface 132 and the pin gear non-working tooth. ⁇ 142. Surface 142.
  • the cycloidal pin gear pair 100 for nutating the reduction gear can perform nutating motion during operation, and the nutating motion of the cycloid gear 110 and the cycloid tooth surface 130 and the pin gear during operation. Under the effect of the partial meshing of the tooth surface 140, the cycloid gear 110 and the needle gear 120 can rotate relative to each other.
  • the contact state of the cycloid tooth surface 130 and the pinion tooth surface 140 when the cycloid gear 110 performs a nutation motion is described below with reference to FIG. 5A.
  • the leftmost end of the section 131 of the cycloid tooth surface 130 and the section 141 of the pinion tooth surface 140 are in contact with each other.
  • the cycloid gear 110 proceeds along the X direction to interact with the needle gear 120 so that the section 141 of the pinion tooth surface 140 follows the section of the cycloid tooth surface 130 131 slides from the leftmost end to the rightmost end (ie, stage (B) in FIG. 5A).
  • the needle gear 120 While the section 141 slides from the leftmost end to the rightmost end of the section 131, the needle gear 120 is pushed by the cycloid gear 110 that performs a nutating motion in the X direction, so that the needle gear 120 moves along the cycloid gear 110 Travel in the Y direction, rotating around its own axis.
  • the segment 141 slides from the leftmost end to the rightmost end of the segment 131 during a nutation motion of the cycloid gear 110, the segment 131 surrounded by a large rectangular frame in the cycloid tooth surface 130 is called The cycloid gear working tooth surface 131, and the section 141 surrounded by the small rectangular frame in the pinion tooth surface 140 is referred to as a pin gear working tooth surface 141.
  • the section 132 outside the large rectangular frame in the cycloid tooth surface 130 for example, the tooth root and the tip of each tooth on the cycloid tooth surface 130 in FIG.
  • the non-working tooth surface of the cycloid gear 132 is called the non-working tooth surface of the cycloid gear 132, and the section 142 outside the small rectangular frame in the pinion tooth surface 140 (for example, the tooth tip and most side walls of each tooth on the pinion tooth surface 140 in FIG. 5A) is called the pinion non-working tooth surface 142.
  • the cycloid gear 110 and the cycloid gear working tooth surface 131 and the pin wheel working tooth surface 141 that are in contact with each other slide in contact with each other once each nutating cycle. Therefore, the cycloid gear 110 only pushes the needle every nutating cycle.
  • the gear 120 rotates through a small angle, thereby achieving a larger transmission ratio between the cycloid gear 110 and the needle gear 120. In the case where the cycloid gear 110 differs from the needle gear 120 by one tooth, the cycloid gear 110 rotates one tooth every time a nutation is performed.
  • FIG. 5B shows that the cycloidal tooth surface 130 and the pinion tooth surface 140 are in contact with each other at the point P and perform meshing transmission.
  • line PM shows the normal direction of the pinion tooth surface 140 at the point P
  • line PN shows the cycloid tooth surface 130 at the point P when the needle gear 120 is in contact with Direction of movement at point P. Since the cycloid gear 110 performs a nutating motion, the cycloid tooth surface 130 pushes the needle gear tooth surface 140 at the point P so that the needle gear 120 rotates in the Y direction, so the line PN is parallel to the Y direction.
  • the angle ⁇ formed between the lines PM and PN is the pressure angle when the cycloid tooth surface 130 and the pinion tooth surface 140 are in contact.
  • the magnitude of the pressure angle indicates the work efficiency (ie, transmission efficiency) of the cycloid tooth surface 130 on the pin gear tooth surface 140 when the cycloid tooth surface 130 and the pin gear tooth surface 140 are in contact.
  • the inventors have discovered that when the tooth warp structure of the cycloid gear 110 and the needle gear 120 makes the above pressure angle an appropriate angle, the cycloid pin gear pair 100 composed of the cycloid gear 110 and the needle gear 120 has the optimal transmission effectiveness.
  • the pressure angle when the cycloid tooth surface 130 and the pinion tooth surface 140 contact satisfies the relationship 45 ° - ⁇ -5 ° ⁇ 45 ° - ⁇ + 5 °, and the cycloid needle
  • the wheel set 100 may have optimal transmission efficiency.
  • indicates a pressure angle when the cycloid tooth surface 130 and the pinion tooth surface 140 are in contact
  • indicates a friction angle between the cycloid tooth surface 130 and the pinion tooth surface 140
  • the friction angle is the cycloid tooth
  • the inherent properties of the surface 130 and the pinion tooth surface 140 depend on the materials used to make the cycloid gear 110 and the pinion gear 120 and the lubricant used, which are generally between 3 ° -5 °.
  • the pressure angle when the cycloid tooth surface 130 and the pinion tooth surface 140 are in contact is preferably between 37 ° and 47 °
  • the pressure angle when the cycloid tooth surface 130 and the pinion tooth surface 140 are in contact is preferably between 35 ° and 45
  • the pin wheel working tooth surface 141 may be formed as a conical surface tapered toward the vertex of the indexing cone of the pin gear 110 (for example, point O in FIG. 2), so that the pin wheel works.
  • the cone top of the cone where the tooth surface 141 is located overlaps the apex of the distribution cone of the needle gear 110, and the axis of the cone where the needle tooth working tooth surface 141 is located on the indexing plane of the needle gear 110, that is, the needle tooth working tooth surface 141
  • the axis of the cone is one of the generatrixes of the indexing plane of the pinion gear 110.
  • the shape of the cycloid gear working tooth surface 131 depends on the shape of the pin gear working tooth surface 141, and the cycloid gear working tooth surface 131 is the envelope of the pin gear working tooth surface 141.
  • the cycloid gear non-working tooth surface 132 is composed of a flat surface and a conical surface, and the cycloid gear working tooth surface 131 may be tangent to the cycloid gear non-working tooth surface 132.
  • the pinion non-working tooth surface 142 is composed of a flat surface and a conical surface, and the pinion non-working tooth surface 141 may be tangent to the pinion non-working tooth surface 142.
  • FIG. 6A illustrates a cross-sectional view of a nutating reduction gear 200 according to an embodiment of the present invention
  • FIG. 6B illustrates an exploded view of the nutating reduction gear 200.
  • the nutation reduction device 200 includes a housing 220, and an input mechanism 210 (eg, an input shaft) is passed through the housing 220.
  • an input mechanism 210 eg, an input shaft
  • the input shaft 210 is connected to an output member of a motor to drive the input mechanism 210 to rotate around its own axis by the motor.
  • a cycloid needle wheel pair 240 as described above is provided in the housing 220, wherein the cycloid needle wheel pair 240 has a cycloid gear and a needle gear.
  • the cycloidal gear can perform nutational motion, and the needle gear can rotate relative to the cycloidal gear under the action of the nutational motion.
  • the pinion gear can perform nutation movement, and the cycloid gear can rotate relative to the pinion gear under the action of the nutation movement.
  • the nutation gear (one of the cycloid gear and the needle gear) in the cycloid pin gear pair 240 is referred to as a nutation gear, and the gear that does not nutate (cycloid gear) And the other pin gear) are called non- nutated gears.
  • the input mechanism 11 is connected to the cycloid pin wheel pair 240 through the bearing group 230, and the output mechanism 250 (such as the ring-shaped output member shown in FIGS. 6A and 6B) is also connected to the cycloid pin wheel pair 240.
  • the cycloid needle wheel pair 240 is configured so that the cycloid gear 241 can perform nutating motion under the driving of the input rotation.
  • the cycloid pin gear pair 240 decelerates the input rotation to the output rotation. Then, the output member 250 connected to the cycloid pin wheel pair 240 rotates the output to the outside.
  • the input shaft 210 is sleeved in the center opening of the nutating gear 241 through the bearing group 230. With the help of the bearing group 230, the rotation of the input shaft 210 to which the input rotation is applied does not cause the nutation gear 241 to rotate about its own axis.
  • the nutation gear 241 is disposed obliquely with respect to the input shaft 210.
  • the input shaft 210 has a nutation step 212 at a position where it is connected to the nutation gear 241 through a bearing group 230, and the nutation step 212 is recessed into a side wall of the input shaft 210. And formed.
  • the step surface 213 of the nutation step 212 is inclined with respect to the rotation axis 211 of the input shaft 210 (for example, the inclination angle ⁇ ).
  • the nutation gear 241 is connected to the input shaft 210 through the bearing 230 at the nutation step 212, and the inner circumference of the bearing 230 is closely attached to the step surface 213, and the outer circumference is closely attached to the inner side of the nutation gear 241. Since the center axis 243 of the nutation gear 241 and the rotation axis 211 of the input shaft 210 also have an angle ⁇ (ie, the nutation angle). Therefore, when the input shaft 210 is rotated, although the nutation gear 241 does not rotate with the input shaft 210, it will perform nutation motion in the housing 220 by the included angle ⁇ .
  • the non- nutated gear 242 is connected to the housing 220 through a bearing 270 and is connected to the input shaft 210 through a bearing 260.
  • the outer circumference of the non- nutated gear 242 is sleeved on the inner circumference of the bearing 270
  • the outer circumference of the bearing 270 is fixed to the housing 220
  • the input shaft 11 is sleeved on the non- nutated gear 242 through the bearing 260.
  • the non- nutated gear 242 can be positioned inside the housing 220 in a rotatable manner between the housing 220 and the input shaft 210.
  • the non-nutated gear 242 is connected to the output member 250.
  • the output member 250 may be a ring-shaped member and have substantially the same inner diameter and outer diameter as the non- nutated gear 242, so that one side of the output member 250 can be attached to the non-nutred gear 242 without A plurality of screw holes are formed on one side of the toothed surface, for example, the side without the toothed surface of the non-nutated gear 242, so the output member 250 can be attached to the non-nutated gear 242 by a plurality of screws. In this way, the output member 250 can be rotated together with the non- nutated gear 242 as a combined body.
  • the non- nutating gear 242 is driven around its own axis at a decelerated output rotation by virtue of the meshing transmission relationship between the nutating gear 241 and the non- nutating gear 242.
  • the rotation causes the non- nutated gear 242 to transmit the output rotation to the output member 250.
  • the nutating gear 241 and the non- nutating gear 242 may be configured so that the output member 250 and the input shaft 210 rotate in the same direction or opposite directions.
  • the output member 250 and the input shaft 210 rotate in the same direction or opposite directions.
  • the nutating gear 241 has one tooth less than the non- nutating gear 242
  • the input shaft 210 and the output member 250 rotate in the same direction.
  • the nutating gear 110 has one tooth more than the non-nutating gear 242
  • input The shaft 210 and the output member 250 rotate in opposite directions.
  • the nutation reduction gear 200 further includes a torque transmission member 280. One end of the torque transmission member 280 is connected to the nutation gear 241 and the other end is connected to the housing 220.
  • the rotating torque of the nutating gear 241 is transmitted to the housing 220, so the freedom of rotation of the nutating gear 241 about its own axis is restricted by the torque transmitting member 280, so that the nutating gear 241 is relatively
  • the housing 220 is fixed and performs nutation movement only under the driving of the input shaft 210. That is to say, in the nutation reduction gear 200, the nutation gear 241 only performs nutation motion, but not the nutation gear 242 rotates under the action of the nutation motion of the nutation gear 241, and transmits the decelerated output rotation Give the attached output part 250.
  • the torque transmitting component 280 may be a ball cage or a Hooke hinge.
  • the torque transmission member 280 is preferably a flexible member made of an elastic element such as a bellows, a bellows, a spring diaphragm, and the like, and a ball cage or a Hook hinge used in a conventional nutation reduction gear.
  • the flexible part using the elastic element has a smaller volume, and the vibration between the nutating gear and the other part due to the nutating motion of the nutating gear 241 is absorbed by the flexible part 280, thereby increasing Transmission stability.
  • FIG. 7A illustrates a cross-sectional view of a nutating reduction device 300 according to another embodiment of the present invention
  • FIG. 7B illustrates an exploded view of the nutating reduction device 300.
  • the input shaft 310 is connected to the nutation gear 341 through a bearing group 330.
  • the nutating gear 341 has a nutating step at a position where the nutating gear 341 is connected to the nutating gear 341 through a bearing group 330, so that the center axis of the nutating gear 341 is relative to the input shaft.
  • the axis of 310 is arranged obliquely, so that the nutation gear 341 performs nutation movement under the driving of the input shaft 310.
  • the non- nutating gear 342 and the nutating gear 341 are in contact with each other and partially meshed, and are connected to the output shaft 350 through a bearing 360, while the non- nutating gear 342 is rigidly connected to the housing 320. Due to the presence of a bearing 360 between the non- nutating gear 342 and the output shaft 350 in the nutating reduction gear 300, the output shaft 350 can rotate independently of the non-nutating gear 342.
  • One end of the torque transmitting member 380 is connected to the nutating gear 341 and the other end is connected to the output shaft 350. Therefore, the torque of the nutating gear 341 can be transmitted to the output shaft 350 through the torque transmitting member 380.
  • the non- nutating gear 342 passes the chapter of the nutating gear 341. It rotates with respect to the nutation gear 341 by a dynamic movement.
  • the non-nutating gear 342 is rigidly connected to the housing 320 and cannot be rotated. Therefore, while the nutating gear 341 is nutating, it will also be lower than the input shaft 310 around its axis The output of the rotation speed is rotated. Since the nutation gear 341 transmits its own torque to the output shaft 350 through the torque transmission member 380, the output shaft 350 also rotates following the nutation gear 341, thereby transmitting the decelerated output rotation to the output shaft 355.
  • the torque transmitting member 380 may be an elastic element made of a bellows, a bellows, a spring diaphragm, and the like, and a torque transmitting member such as a ball cage or a Hooker hinge used in a conventional nutation reduction device.
  • the flexible member using the elastic element has a smaller volume, and the vibration between the nutation gear and the other member due to the nutation movement of the nutation gear 341 and its own rotation can be absorbed by the flexible member, thereby increasing Transmission stability.
  • FIG. 8A illustrates a cross-sectional view of a nutating reduction device 400 according to another embodiment of the present invention
  • FIG. 8B illustrates an exploded view of the nutating reduction device 400.
  • the nutation reduction gear 400 is similar to the nutation reduction gear 300 shown in FIGS. 7A and 7B, in which the nutation gear 441 is connected to the output shafts 451 and 452 through a torque transmitting member 480 to transmit the torque of the nutation gear 441 to the output shaft. .
  • the inner circumference of the non- nutated gear 442 is connected to the output shaft through a bearing 460, so that the output shaft can rotate independently of the non- nutated gear 442, and the outer circumference of the non- nutated gear 442 is fixed to the housing 420. Therefore, the nutating gear 441 performs both nutating motion and rotation with the output rotation with respect to the non- nutating gear 442, and transmits the output rotation to the output shafts 451 and 452 through the torque transmitting member 480.
  • the input shaft 410 in the nutation reduction gear 400 further has a flange 411 extending radially outward from the outer circumference of the input shaft 410, the flange 411 has a first thickness and a second thickness smaller than the first thickness, and the flange 411 The thickness of R is reduced from the first thickness to the second thickness along the circumferential direction of the input shaft 410, and then increased from the second thickness to the first thickness.
  • the flange 411 has a first thickness at a position of 0 ° of the input shaft 410, and the thickness of the flange 411 is reduced from the first thickness to the second thickness between 0 ° and 180 °, and then at Between 180 ° and 360 ° (that is, 0 °), the thickness is increased from the second thickness to the first thickness.
  • the flange 411 abuts against the housing 420 through the thrust needle bearing 413 on the side away from the nutating gear 441, and abuts against the nutation in the nutating gear 441 on the side close to the nutating gear 441 through the thrust needle bearing 412.
  • the outer circumference of the input shaft 410 is connected to the inner circumference of the housing 420 and the nutation gear 441 through needle bearings 431 and 432, respectively. Through the thrust needle bearings 412 and 413 and the needle bearings 431 and 432, the input shaft 410 can rotate independently of the housing 420 and the nutating gear 441.
  • the nutation reduction device 400 has a baffle 414 that is fixed to the input shaft 410 (eg, by screws), and the baffle 414 abuts against the toothed side of the nutation gear 441 through a thrust needle bearing 415,
  • the nutating gear 441 is sandwiched between the flange 411 and the baffle plate 414 through thrust needle bearings 415 and 412. As shown in FIG. 8A, the thrust pin bearings 415 and 412 make the nutating gear 441 always abut against one side of the flange 411.
  • the central axis of the moving gear 441 is arranged obliquely with respect to the axis of the input shaft 410, so that the nutating gear 441 can perform nutating motion under the driving of the input shaft 410.
  • the nutation reduction device 400 may also have a baffle 421 attached to the housing 420 through a needle bearing 422 and fixed to a side of the input shaft 420 remote from the nutation gear 441 (for example, by Screws) so that the baffle 421 can limit the input shaft within the housing 420.
  • the seal ring 423 seals the outer periphery of the baffle 421 and the case 420.
  • FIG. 9A illustrates a cross-sectional view of a nutating reduction device 500 according to another embodiment of the present invention
  • FIG. 9B illustrates an exploded view of the nutating reduction device 500.
  • the nutation reduction gear 500 is similar to the nutation reduction gear 400 shown in FIGS. 8A and 8B, and only the differences between the two will be described.
  • the nutation reduction gear 500 has tapered roller bearings 531 and 532.
  • the tapered roller bearings are structured so that the inner circumference and the sides of the tapered roller bearing can be fitted together to move independently of the outer circumference.
  • the baffle plate 521 and the input shaft 510 are connected by threads.
  • the inner circumference of the tapered roller bearing 531 is attached to the input shaft 510, the outer circumference is attached to the housing 520, and the side is attached to the baffle. 521.
  • the tapered roller bearing 531 With the tapered roller bearing 531, the input shaft 510 and the baffle plate 521 can be rotated relative to the housing 520 without being affected by the housing 520. Therefore, the tapered roller bearing 531 can simultaneously perform the nutation of FIGS. 8A and 8B. The role of the needle bearings 422 and 431 in the reduction gear 400. Similarly, in FIG. 8, the input shaft 510 and the baffle 514 are connected by threads. The inner circumference of the tapered roller bearing 532 is attached to the input shaft 510, and the outer circumference is attached to the inner circumference of the nutating gear 541. Connected to the bezel 514.
  • the tapered roller bearing 532 Through the tapered roller bearing 532, the input shaft 510 and the baffle plate 514 can be rotated relative to the nutating gear 541 without affecting the movement of the nutating gear 541. Therefore, the tapered roller bearing 532 can simultaneously function as shown in FIGS. 8A and 8B.
  • tapered roller bearings with flanges may be used in place of the tapered roller bearings 531 and 532 in the nutating reduction gear 500.
  • the other components of the nutation reduction device 500 are the same as those of the nutation reduction device 400, and are not repeated here.
  • FIG. 10 illustrates a cross-sectional view of a nutating reducer 600 according to another embodiment of the present invention.
  • the nutating reducer 600 is similar to the nutating reducer 300 of FIG. 7A and the nutating reducer 400 of FIG. 8A, and only the differences will be described below.
  • the nutating reducer 600 differs in that the nutating reducer 600 has two cycloidal pin wheel sets 640 and 640 'according to the embodiments described herein.
  • the cycloid pin gear pair 640 is constituted by a nutating gear 641 and a non- nutating gear 642, and the cycloid pin gear pair 640 'is constituted by a nutating gear 643 and a non- nutating gear 644.
  • a motor 630 provided in the housing 620 is connected to an input shaft 610 also provided in the housing 620 to drive the input shaft 610 to rotate, and the two sides of the input shaft 610 facing away from each other are formed symmetrically.
  • the inclined planes are arranged, and these two inclined planes respectively abut the side of the nutation gears 641 and 643 which are not formed with a tooth surface through a ball thrust bearing 612, so that the nutation gears 641 and 643 and the input shaft 610 (and the following The axis of rotation of the output shaft 650) will be described at a certain angle.
  • the output shaft 650 is formed in the housing 620 and is sleeved in an opening formed in the center of the input shaft 610.
  • a bearing assembly 611 is provided between the output shaft 650 and the input shaft 610, so that the output shaft [u1] 650 and the input shaft 610 can each other Spin independently.
  • the non- nutated gears 642 and 644 are fixed to the housing 620 by a fixing mechanism such as a screw.
  • the non- nutated gears 642 and 644 are fixed to the housing 620, when the non- nutated gear 642 and the nutated gear 641 and the non- nutated gear 644 and the nutated gear 643 are meshed and driven, the non- nutated gears 642 and 644 do not Rotate, so the nutation gears 641 and 643 are driven to rotate slowly at a reduced speed.
  • the nutation gears 641 and 643 are connected to the output shaft 650 through the torque transmitting member 680, so that both the nutation gears 641 and 643 jointly drive the output shaft 650 to rotate.
  • the output shaft 650 and the non- nutated gears 642 and 644 are further provided with a bearing assembly 660.
  • the stationary non- nutated gears 642 and 644 do not affect the rotation of the output shaft 650.
  • the transmission efficiency of the nutating reducer can be improved and the energy loss can be reduced.
  • two or more cycloidal pin gear pairs can be further provided in the nutating reducer, as long as these cycloidal pin gear pairs have the same tooth surface design , So that the input rotation can be decelerated at the same ratio under the same driving input.
  • a nutating reducer with a cycloid pin wheel pair described herein can be used in a variety of applications.
  • FIG. 11 shows a schematic structural diagram of a joint 1000 for a robot according to one embodiment herein.
  • the joint 1000 can be used in various types of robots, such as a serial robot, a parallel robot, a planar robot, and the like.
  • the joint 1000 includes a housing 1001, and a nutating reducer 1003, a servo motor 1002, and an output mechanism 1004 provided in the housing 1001.
  • the nutation reducer 1003 may be any one of the nutation reducers 200, 300, 400, 500, and 600 described above.
  • the input shaft of the nutating reducer 1003 is connected to the servo motor 1002, and the output shaft of the nutating reducer 1003 is connected to the output mechanism 1004.
  • the rotor of the motor is decelerated by the nutating reducer 1003, and output is performed with an increased torque.
  • FIG. 12 shows a schematic structural diagram of a double swing angle table 2000 for a machine tool according to an embodiment herein.
  • the double-swing angle table 2000 can be a turning and milling compound double-swing angle table.
  • the double swing angle table 2000 includes a base 2001, and columns 2006 are formed on both sides of the base 2001.
  • the turntable housing 2007 is erected on two uprights 2006.
  • the double swing angle table 2000 includes a motor 2002 (worm gear motor), and the turntable housing 2007 rotates around the first axis 2008 via the motor 2002, thereby swinging on the first degree of freedom.
  • the turntable housing 2007 is formed with at least one opening, and at least one table 2004 is provided in the turntable housing 2007 through the opening.
  • Turntable housing 2007 includes a table corresponding to each table 2004
  • Nutation reducer 2004 may be any one of the nutation reducers 200, 300, 400, 500, and 600 described above.
  • the input shaft of the nutating reducer 2004 is connected to a motor (such as a servo motor) (for illustration), and the output shaft of the nutating reducer 2004 is connected to a table 2004 to drive the table 2004 around the first axis perpendicular to the first axis 2008.
  • the two axis 2009 rotates, swinging in the second degree of freedom.
  • the outer periphery of the table 2004 is fixed to the opening of the turntable housing 2007 through a bearing 2003.
  • the nutating gear reducer 2004 equipment provides deceleration and torque increasing output, which can be applied to the processing of multiple faces of complex and high-precision parts that are processed in large quantities at the same time.
  • FIG. 13 shows a schematic structural diagram of a double swing angle milling head 3000 for a machine tool according to an embodiment herein.
  • Double swing angle milling head 3000 is available with CNC machine tools.
  • the double swing angle milling head 3000 includes housings 3001 and 3003 which are rotatably connected to each other.
  • a nutating reducer 3002-1 is provided in the housing 3001, the input shaft of the nutating reducer 3002-1 is connected to a motor (such as a servo motor) (for illustration), and the output shaft of the nutating reducer 3002-1 is connected To the housing 3003, thereby driving the housing 3003 to rotate around the first axis 3005 at a reduced speed and an increased torque, thereby realizing a swing in the first degree of freedom.
  • a milling head 3004 is provided in the housing 3003, and the milling head 3004 protrudes from an opening formed on the side of the housing 3003 for a milling operation.
  • the housing 3003 is provided with a nutating reducer 3002-2, the input shaft of the nutating reducer 3002-2 is connected to a motor (such as a servo motor) (for illustration), and the output shaft of the nutating reducer 3002-2 To the milling head 3004, so as to drive the milling head 3004 around a second axis 3006 different from the first axis 3005 to rotate at a reduced speed and increased torque, thereby realizing a swing in the second degree of freedom.
  • the first axis 3005 may be perpendicular to the second axis 3006.
  • the nutation reducer 3002-1 and 3002-2 may be any one of the nutation reducers 200, 300, 400, 500, and 600 described above.
  • FIG. 14 shows a schematic structural diagram of an indexing turntable 4000 for a numerically controlled machine tool according to an embodiment herein.
  • the indexing turntable 4000 includes a turntable main body 4005 and a plurality of operation arms 4001 provided along the outer periphery of the turntable main body 4005.
  • a nutating reducer 4002-1 is formed in the turntable main body 4005.
  • the input shaft of the nutating reducer 4002-1 is connected to a motor (such as a servo motor) (for illustration), and the output shaft of the nutating reducer 4002-1 is The turntable body, thereby driving the turntable body 4005 to rotate around the axis 4009 at a reduced speed and increased torque.
  • the operation arm 4001 includes a column 4006, a cross arm 4007, and an operation head 4008.
  • the cross arm 4007 is disposed between the column 4006 and the operation head 4008, and is used to connect the column 4006 and the operation head 4008.
  • a nutation gear 4002-2 is provided in the top of the column 4006.
  • the input shaft of the nutation gear 4002-2 is connected to a motor (such as a servo motor) (shown), and the output shaft of the nutation gear 4002-2 is connected.
  • a motor such as a servo motor
  • the operation head 4008 is also provided with a nutating reducer 4002-3, the input shaft of the nutating reducer 4002-3 is connected to a motor (such as a servo motor) (for illustration), and the output shaft of the nutating reducer 4002-3 is connected To the operation head 4008, thereby driving the operation head 4008 to rotate around the axis parallel to the axis 4009 at a reduced speed and an increased torque.
  • the nutation reducer 4002-1, 4002-2, and 4002-3 may be any one of the nutation reducers 200, 300, 400, 500, and 600 described above. As a result, it is possible to realize the coordinated processing of multiple parts in a complex process that requires processing accuracy.
  • FIG. 15 shows a schematic structural diagram of a numerically controlled machine tool 5000 according to an embodiment herein.
  • the numerical control machine tool 5000 includes a base 5001, and a translation device 5009 is formed on the base 5001.
  • the translation device 5009 has been configured to move on the XY plane.
  • a translation table 5002 is provided on the translation device 5009.
  • the translation table 5002 may be a double-swing angle table 2000 in FIG. 14 and has a nutating speed reducer 5003-1.
  • the base 5001 is further provided with a lifting device 5005 configured to move in the Z-axis direction.
  • the lifting device 5005 is provided with a milling head 5004, and the milling head 5004 may be a double-swing angle milling head 3000 in FIG. 13, which has a nutating reducer 5003-2.
  • the nutation reducers 5003-1 and 5003-2 may be any of the nutation reducers 200, 300, 400, 500, and 600 described above. Therefore, the table 5002 and the milling head 5004 can swing in two degrees of freedom, the translation device 5009 can move in the XY plane, and the lifting device 5005 can move in the Z axis direction. Therefore, the CNC machine tool 5000 can have at least five axes Linking function. The CNC machine tool 5000 may also have a tool magazine system 5006.
  • FIG. 16 shows a schematic structural diagram of a traction machine 6000 according to an embodiment herein.
  • Traction machine 6000 is used in elevators and escalators.
  • the traction machine 6000 includes a frame 6001.
  • the rack 6001 supports a nutating reducer 6003, a motor 6002, and a traction wheel 6004.
  • the frame 6001 includes a segmented housing 6009 having a plurality of sections.
  • Each of the nutating reducer 6003, the motor 6002, and the traction wheel 6004 is disposed on a corresponding section and passes a bearing.
  • the module 6005 is fixed to the segmented housing 6009.
  • the motor 6002 may be a servo motor.
  • the nutation reducer 6003 may be any one of the nutation reducers 200, 300, 400, 500, and 600 described above.
  • the input shaft of the nutation reducer 6003 is connected to the motor 6002, and the output shaft of the nutation reducer 6003 is connected to the traction sheave 6004 to drive the traction sheave 6004 to rotate at a reduced speed and increased torque.
  • the traction sheave 6004 is provided with a traction rope 6006 for traction of personnel and materials.
  • FIG. 17 shows a schematic structural diagram of a marine windlass 7000 according to an embodiment herein.
  • FIG. 17 shows the left and right ship windlasses 7000.
  • the windlass 7000 includes a base 7001.
  • An output plate 7002 and a nutating reducer 7004 are supported on the base 7001.
  • the nutation reducer 7004 may be any one of the nutation reducers 200, 300, 400, 500, and 600 described above.
  • the input shaft of the nutating reducer 7004 is connected to a motor (such as a servo motor) (not shown).
  • the output shaft of the nutation reducer 7004 is connected to the output disk 7002 to drive the output disk 7002 to rotate at a reduced speed and increased torque, thereby being used to tow a ship.
  • the output plate 7002, the nutating reducer 7004 is fixed to the base 7001 through a bearing 7004.
  • FIG. 18 shows a schematic structural diagram of a swing door 8000 according to an embodiment herein.
  • the swing door 8000 can be used in public places and installed on the wall 8001.
  • the revolving door 8000 includes a revolving door 8002.
  • the revolving door 8002 includes a column 8005 and a plurality of door bodies 8006 extending radially outward from the column 8005.
  • a rotating mechanism is disposed on the top of the revolving door 8002 to drive the revolving door 8002 to rotate.
  • the rotating mechanism includes a housing 8007 and a nutating reducer 8003 provided in the housing 8007.
  • the nutation reducer 8003 may be any one of the nutation reducers 200, 300, 400, 500, and 600 described above.
  • the input shaft of the nutating reducer 8003 is connected to a motor 8004 (for example, a servo motor).
  • the output shaft of the nutating reducer 8003 is connected to the column 8005 to drive the revolving door 8002 to rotate at a reduced speed and an increased torque.
  • FIG. 19 shows a schematic structural diagram of a solar energy conversion device 9000 according to an embodiment herein.
  • the solar energy conversion device 9000 includes a base 9001.
  • a support rod 9004 is supported on the base 9001.
  • the support rod 9004 is supported on the base 9001 by a nutation reducer 9002.
  • the nutation reducer 9002 may be any one of the nutation reducers 200, 300, 400, 500, and 600 described above.
  • the input shaft of the nutating reducer 9002 is connected to a motor (such as a servo motor) (not shown).
  • the output shaft of the nutation reducer 9002 is connected to the support rod 9004 to drive the support rod 9004 to rotate around the central axis of the support rod 9004 at a reduced speed and increased torque.
  • the collecting device 9003 is used for collecting thermal energy from the sun.
  • the collecting device 9003 is connected to the top of the support rod 9004 through a swing motor 9005, so that the collecting device 9003 is driven to swing and pitch by the swing motor 9005.
  • any of the nutating reducers 200, 300, 400, 500, and 600 described in the article may be provided in the swing motor 9005 to drive the collecting device 9003 with an increased torque. Sway pitch.
  • the base 9001 is provided with a thermal energy conversion device 9006 connected to the collection device 9003 and an energy storage device 9007 connected to the thermal energy conversion device 9006.
  • FIG. 20 shows a schematic structural diagram of a material transfer device 10000 according to an embodiment herein.
  • the material transfer device 10000 includes a support 10001. A plurality of rollers 10004 and 10005 are provided on the bracket 10001. The conveyor belt 10003 is provided above the rollers 10004 and 10005, so that the rotation of the rollers 10004 and 10005 drives the conveyor belt 10003 to transport goods placed on the conveyor belt 10003.
  • FIG. 20 shows only two rollers located on both sides of the bracket 10001, more rollers may be provided, for example, at positions between the rollers 10004 and 10005.
  • the material conveying device 10000 further includes a nutation reduction device 10002.
  • the nutation reduction device 10002 may be any of the nutation reduction devices 200, 300, 400, 500, and 600 described above.
  • the input shaft of the nutating reducer 10002 is connected to a motor (such as a servo motor) (not shown).
  • the output shaft of the nutating reducer 10002 is connected to the roller 10004 to drive the roller 10004 to rotate around the central axis of the roller 10004 at a reduced speed and increased torque, thereby driving the conveyor belt 10003 to travel.
  • each roller may be provided with a respective nutating reducer.
  • the input shafts of these nutating reducers are connected to the motor in common, and the output shafts are connected to the respective rollers, thereby performing synchronous operations to further increase The torque transmitted to the conveyor belt 10003 to realize the transportation of heavy goods.
  • nutation reducer with the cycloid pin wheel set described in this article can be used in other applications, such as searchlights, laser transmitter artillery, missile launchers, some special vehicle slewing and pitching devices, and can also be used in bombs, The submarine's steering gear and the aircraft's yaw mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

一种端面齿摆线针轮副和章动减速装置,端面齿摆线针轮副包括具有摆线齿面的摆线齿轮和具有针轮齿面的针齿轮,针齿轮与摆线齿轮以章动传动方式啮合,针齿轮与摆线齿轮的分度面与相应的轴线之间的夹角均介于88°至91°之间且两夹角的和小于180°,其中针轮齿面与摆线齿面相互啮合的部分分别为针轮工作齿面和摆线齿轮工作齿面,并且针轮工作齿面和摆线齿轮工作齿面在啮合时的压力角满足45°-β-5°≤α≤45°-β+5°,其中α为压力角且β为针轮工作齿面和摆线齿轮工作齿面之间的摩擦角。

Description

一种端面齿摆线针轮副和章动减速装置 技术领域
本发明涉及减速装置,具体而言,本发明涉及一种用于章动减速装置的端面齿摆线针轮副和使用该端面齿摆线针轮副的章动减速装置。
背景技术
章动减速装置是一种运用章动传动的减速装置。一般来说,用于章动减速装置中的齿轮副多采用渐开线齿形或摆线齿形传动,但渐开线齿廓传动效率低,同时在章动结构中容易出现齿廓重叠干涉、径向干涉等问题;摆线齿形易出现齿廓过切、针齿相碰等问题;具有较大速比的行星减速器结构复杂、制造和安装难度较大、质量较重。然而,齿轮副的常规齿形设计使得在章动传动过程中的任意时刻仅有很小一部分的齿彼此啮合,例如,对于有45齿的齿轮而言,在章动传动过程中的任意时刻,仅有1-2齿彼此啮合以参与章动传动。因此,传统的章动减速装置具有承载能力小,传动不平稳的缺点。
为了解决上述问题,中国发明专利申请CN106246812A公开了一种双侧双级内啮合双圆弧锥齿轮章动减速装置,其使用了通过章动套与输入轴相连的两个双圆弧锥齿轮与另外两个双圆弧锥齿轮的传动啮合来实现将输入轴的转动减速。其中双级齿轮经布置使得在章动传动过程中的任意时刻,其中一级齿轮中啮合的齿与另一级齿轮中啮合的齿彼此相对。该方案通过使用双级齿轮使得在章动传动过程中的任意时刻相互啮合的齿数增加了一倍,同时通过将双级齿轮配置成使得双级齿轮中啮合的齿彼此相对来增加传动的稳定性。
然而,上述方案只是将章动传动过程中啮合的齿数仅仅增加了一倍,这对于改善承载能力,传动平稳性而言可能是远远不够的。同时,在上述方案中,双级齿轮仍然采用了内锥齿轮,然而,内锥齿轮在传统的机械加工中很难实现,采用数控机床加工,成本高。而采用替代齿形的方法加工,生产工艺虽然简单,但精度低。这些缺陷成为了制约章动减速装置发展的主要因素。
因此,需要一种具有传动比大、传动平稳、承载能力大的特点,又能够解决齿廓干涉问题的改良的齿轮副以及使用该齿轮副的章动减速装置。
发明内容
本发明的目的在于解决章动减速装置存在的上述缺陷,并提供了一种新型的章动减速装置,该减速装置章动角小、传动比大、传动平稳、承载能力大,又解决了齿廓干涉的问题,并具有结构紧凑、制造安装方便等特点。
为了实现上述目的,根据本发明的一个方面,提供一种用于章动减速装置的端面齿摆线针轮副,包括:摆线齿轮,所述摆线齿轮具有摆线齿面,所述摆线齿轮的分度面和所述摆线齿轮的轴线呈第一夹角;和针齿轮,所述针齿轮与所述摆线齿轮以章动传动方式啮合,所述针齿轮具有针轮齿面,所述针齿轮的分度面和所述针齿轮的轴线呈第二夹角;其中所述第一夹角和所述第二夹角均介于88°至91°之间,且所述第一夹角和所述第二夹角的和小于180°;并且其中所述针轮齿面与所述摆线齿面相互啮合的部分分别为针轮工作齿面和摆线齿轮工作齿面;所述针轮工作齿面和所述摆线齿轮工作齿面在啮合时的压力角满足以下关系式:45°-β-5°≤α≤45°-β+5°,其中α为所述压力角且β为所述针轮工作齿面和所述摆线齿轮工作齿面之间的摩擦角。
根据本发明的一个或多个实施方式的端面齿摆线针轮副,其中所述针轮工作齿面为圆锥面,且所述针轮工作齿面的锥顶位于所述针轮齿面的所述分度面的中心点,并且所述针轮工作齿面的轴线在所述针轮齿面的所述分度面上。
根据本发明的一个或多个实施方式的端面齿摆线针轮副,其中所述摆线齿轮工作齿面是所述针轮工作齿面的包络。
根据本发明的一个或多个实施方式的端面齿摆线针轮副,其中所述针轮齿面进一步包含针轮非工作齿面,所述针轮非工作齿面由平面和圆锥面构成,并且所述针轮非工作齿面与所述针轮工作齿面相切;和/或所述摆线齿面进一步包含摆线齿轮非工作齿面,所述摆线齿轮非工作齿面由平面和圆锥面构成,并且所述摆线齿轮非工作齿面与所述摆线齿轮工作齿面相切。
根据本发明的另一个方面,提供一种章动减速装置,包括壳体;端面齿摆线针轮副,设置在所述壳体内,所述端面齿摆线针轮副是根据本文所述实施方式的端面齿摆线针轮副;输入机构,其用于驱动所述端面齿摆线针轮副以使所述端面齿摆线针轮副进行章动运动;输出机构,所述输出机构与所述端面齿摆线针轮副相连;和扭矩传递部件,所述扭矩传递部件用于将所述端面齿摆线针 轮副的扭矩传递至所述壳体。
根据本发明的一个或多个实施方式的章动减速装置,其中所述输入机构驱动所述端面齿摆线针轮副中的章动齿轮,所述输入机构的旋转轴线与所述章动齿轮的轴线之间呈一夹角;所述扭矩传递部件连接在所述章动齿轮与所述壳体之间,以约束所述章动齿轮围绕自身的轴线旋转;并且所述输出机构与所述非章动齿轮连接。
根据本发明的又一个方面,提供一种章动减速装置,包括壳体;端面齿摆线针轮副,设置在所述壳体内,所述端面齿摆线针轮副是根据本文所述实施方式的端面齿摆线针轮副;输入机构,其用于驱动所述端面齿摆线针轮副以使所述端面齿摆线针轮副进行章动运动;输出机构,所述输出机构与所述端面齿摆线针轮副相连;和扭矩传递部件,所述扭矩传递部件用于将所述端面齿摆线针轮副的扭矩传递至所述输出机构。
根据本发明的一个或多个实施方式的章动减速装置,其中所述输入机构驱动所述端面齿摆线针轮副中的章动齿轮,所述输入机构的旋转轴线与所述章动齿轮的轴线之间呈一夹角;所述端面齿摆线针轮副中的非章动齿轮固定至所述壳体;并且所述输出机构通过所述扭矩传递部件连接至所述章动齿轮。
根据本发明的一个或多个实施方式的章动减速装置,进一步包括:第二端面齿摆线针轮副,设置在所述壳体内,并与所述端面齿摆线针轮副背向设置,所述第二端面齿摆线针轮副是根据权利要求1-4任一项所述的端面齿摆线针轮副;其中所述输入机构驱动所述第二端面齿摆线针轮副中的章动齿轮,所述输入机构的旋转轴线与所述第二端面齿摆线针轮副中的的所述章动齿轮的轴线之间呈所述夹角;所述第二端面齿摆线针轮副中的非章动齿轮固定至所述壳体;并且所述输出机构通过所述扭矩传递部件连接至所述第二端面齿摆线针轮副的所述章动齿轮。
根据本发明的一个或多个实施方式的章动减速装置,其中所述输入机构具有凹入所述输入机构的侧壁而形成的章动台阶,其中所述章动台阶位于所述输入轴通过轴承与所述章动齿轮连接的位置处,并且所述章动台阶的台阶面与所述输入机构的所述旋转轴线之间呈所述夹角。
根据本发明的一个或多个实施方式的章动减速装置,其中所述输入机构的输入轴的侧壁设有径向向外延伸的凸缘,所述凸缘在所述输入机构的所述旋转 轴线的方向上具有厚度;其中所述厚度沿着所述输入轴的圆周方向在0°到180°之间从第一厚度线性减小至小于所述第一厚度的第二厚度;并且所述厚度沿着所述输入轴的所述圆周方向在180°到360°之间从所述第二厚度线性增加至所述第一厚度;并且所述章动齿轮的、远离齿面的一侧抵靠在所述凸缘的端面上。
根据本发明的一个或多个实施方式的章动减速装置,其中所述的扭矩传递部件是柔性部件或等速传动部件。
本文还提供了一种用于机器人的关节,包括:关节外壳,用于限定一关节腔;章动减速装置,容纳在所述关节外壳内,所述章动减速装置是根据权利要求5-12任一项所述的章动减速装置;输出轴,所述输出轴与所述章动减速装置的输出机构相连;和电机,所述电机容纳在所述关节外壳内,并与所述章动减速装置的输入机构相连。
根据本发明的一个或多个实施方式的关节,进一步包括半月轴承,所述半月轴承设置在所述电机与所述关节外壳之间,以及所述章动减速装置与所述关节外壳之间。
本文还提供了一种用于机床的双摆角铣头,包括:第一壳体,具有设置在所述第一壳体内的第一电机;第二壳体,具有设置在所述第二壳体内的第二电机;第一章动减速装置,所述第一章动减速装置设置在所述第一壳体内,并且所述第一章动减速装置的输入机构与所述第一电机相连,所述一章动减速装置的输出机构与所述第二壳体相连,以带动第二壳体围绕第一轴线旋转;第二章动减速装置,所述第二章动减速装置设置在所述第二壳体内,并且所述第二章动减速装置的输入机构与所述第二电机相连;和铣头,所述第二章动减速装置的输出机构与所述铣头相连,以带动所述铣头围绕第二轴线旋转;其中所述第一、第二章动减速装置是根据权利要求5-12任一项所述的章动减速装置,并且所述第一轴线垂直于所述第二轴线。
本文还提供了一种用于机床的双摆角工作台,包括:底座;转台壳体,设置在所述底座上并由所述底座支撑,其中所述转台壳体连接至第一电机,所述第一电机带动所述转台壳体围绕第一轴线旋转;至少一个工作台,设置在所述转台壳体中;至少一个章动减速装置,设置在所述转台壳体中,所述至少一个章动减速装置是根据权利要求5-12任一项所述的章动减速装置,所述至少一 个章动减速装置的每一个的输入机构连接至相应的第二电机,所述至少一个章动减速装置的每一个的输出机构连接至相应的工作台,以带动所述工作带围绕第二轴线旋转,其中所述第一轴线不同于所述第二轴线。
本文还提供了一种用于数控机床的分度转台,包括:转台主体,所述转台主体上设置有多个卡盘,沿着所述转台主体的外周边设置有多个操作臂;和第一章动减速装置,所述第一章动减速装置的输入机构与第一电机相连,输出机构与所述转台主体相连,以带动所述转台主体围绕第一轴线旋转;其中所述多个操作臂的每一个包括:支柱、操作头、以及用于连接所述支柱和所述操作头的横臂,其中在所述支柱的顶部通过第二章动减速装置连接至所述横臂的一端,所述操作头通过第三章动减速装置连接至所述横臂的另一端,所述第二、第三章动减速装置的输入机构分别连接至电机,所述所述第二、第三章动减速装置的输出机构分别连接至所述横臂和所述操作台,以分别带动所述横臂和所述操作台围绕第二轴线和第三轴线旋转;其中所述第一、第二和第三轴线彼此平行,所述第一、第二和第三章动减速装置是根据权利要求5-12任一项所述的章动减速装置。
本文还提供了一种数控机床,包括:基座;平移装置,设置在所述基座上,经配置以在一平面中移动;设置在所述平移装置上的工作台,其中所述工作台是根据权利要求15所述的双摆角工作台;升降装置,设置在所述基座上,经配置以在垂直于所述平面的方向上移动;和铣头,设置在所述升降装置上,其中所述铣头是根据权利要求14所述的双摆角铣头。
本文还提供了一种曳引机,包括;机架;章动减速装置,由所述机架支撑,其中所述章动减速装置是根据权利要求5-12任一项所述的章动减速装置;电机,由所述机架支撑,所述电机连接至所述章动减速装置的输入机构;曳引轮,由所述机架支撑,所述章动减速装置的输出机构与所述曳引轮相邻,以带动所述曳引轮旋转;和曳引绳,缠绕在所述曳引轮上。
根据本发明的一个或多个实施方式的曳引机,其中所述机架分段式壳体,所述电机、章动减速装置和曳引轮容纳在所述分段式壳体的相应区段内,并且其中所述电机、章动减速装置和曳引轮分别通过轴承固定至所述分段式壳体。
本文还提供了一种船舶用锚机,包括:基座;章动减速装置,由所述基座支撑,其中所述章动减速装置是根据权利要求5-12任一项所述的章动减速装 置;电机,由所述基座支撑,所述电机连接至所述章动减速装置的输入机构;
输出盘,由所述由所述基座支撑,所述章动减速装置的输出机构与所述输出盘相邻,以带动所述输出盘旋转。
本文还提供了一种用于公共场所的回转门,包括:旋转门,所述旋转门包括立柱、以及从所述立柱径向向外延伸的多个门体;和旋转机构,设置在所述旋转门的顶部,所述旋转机构包括:壳体;章动减速装置,设置在所述壳体中,其中所述章动减速装置是根据权利要求5-12任一项所述的章动减速装置;电机,设置在所述壳体中,所述电机与所述章动减速装置的输入机构相连;其中所述章动减速装置的输出机构与所述立柱的顶端相连,以带动所述旋转门围绕所述立柱进行旋转。
本文还提供了一种太阳能转换装置,包括:基座;支撑杆,设置在所述基座上;章动减速装置,设置在所述基座与所述支撑杆之间,其中所述章动减速装置是根据权利要求5-12任一项所述的章动减速装置,所述章动减速装置的输入机构与一电机相连,所述章动减速装置的输出机构与所述支撑杆的底部相连,以带动所述支撑杆旋转;和采集装置,可摆动地设置在所述支撑杆的顶部。
根据本发明的一个或多个实施方式的太阳能转换装置,进一步包括第二章动减速装置,设置在所述支撑杆与所述采集装置之间,所述第二章动减速装置是根据权利要求5-12任一项所述的章动减速装置,其中所述第二章动减速装置的输入机构与一第二电机相连,所述章动减速装置的输出机构与所述采集装置相连,以带动所述采集装置摆动。
本文还提供了一种物料传送装置,包括:支架;设置在所述支架上的多个辊;传送带,设置在所述多个辊上;和至少一个章动减速装置,所述章动减速装置是根据权利要求5-12任一项所述的章动减速装置,其中所述至少一个章动减速装置的输入结构共同连接至一电机,所述至少一个章动减速装置的每一个的输出机构连接至所述多个辊的相应辊上。
鉴于上述,本发明的有益效果在于:
通过使用具有摆线齿形的摆线齿轮,克服了常用的渐开线齿形在传动时易产生各种干涉(包括渐开线干涉、节点对面齿顶干涉、齿廓重叠干涉、径向干涉等)的问题。
通过将摆线齿轮和针轮的分度面构造为使其与相应齿轮的轴线之间的夹 角均介于88°至91°之间且两个夹角的和小于180°。分度面的上述特点使得摆线齿轮和针轮的分度面大致为平面,来代替分度面通常为内锥面的内锥齿轮,使得本发明所提供的端面齿摆线针轮副机械加工简单,制造成本低。
通过将摆线齿轮和针轮的分度面强制设定为大致为平面,使得端面齿摆线针轮副在章动传动的任意时刻相互啮合的齿数是传统齿轮副的4-5倍,甚至是8-10倍,显著改善了承载能力和传动稳定性。
通过将摆线齿轮和针轮相互啮合的工作齿面之间的夹角构造为满足上述关系式,使得端面齿摆线针轮副的章动传动具有更高的传动效率。
附图说明
图1为根据本发明的实施方式的摆线针轮副的示意立体图;
图2是图1所示的摆线针轮副的针轮的侧视图;
图3A-3E示出了根据本发明的优选实施方式的摆线针轮副的示意图;
图4是图1所示的摆线针轮副的局部放大图;
图5A和5B是示出根据本发明的实施方式的摆线针轮副中齿轮的啮合关系的示意图;
图6A和6B示出根据本发明的一个实施方式的章动减速装置的示意图;
图7A和7B示出根据本发明的另一个实施方式的章动减速装置的示意图;图8A和8B示出根据本发明的另一个实施方式的章动减速装置的示意图;图9A和9B示出根据本发明的另一个实施方式的章动减速装置的示意图;
图10示出根据本发明的另一个实施方式的章动减速装置的示意图;
图11示出了根据本文的一个实施方式的用于机器人的关节的结构示意图。
图12示出了根据本文的一个实施方式的用于机床的双摆角工作台的结构示意图。
图13示出了根据本文的一个实施方式的用于机床的双摆角铣头的结构示意图。
图14示出了根据本文的一个实施方式的用于数控机床的分度转台的结构示意图。
图15示出了根据本文的一个实施方式的数控机床的结构示意图。
图16示出了根据本文的一个实施方式的曳引机的结构示意图。
图17示出了根据本文的一个实施方式的船舶用锚机的结构示意图。
图18示出了根据本文的一个实施方式的回转门的结构示意图。
图19示出了根据本文的一个实施方式的太阳能转换装置的结构示意图。
图20示出了根据本文的一个实施方式的物料传送装置的结构示意图。
具体实施方式
为了使本发明的特征和优点更加清楚,下面将结合附图对本发明作进一步的说明,应注意,附图中所示出的实施方式是以解释本发明的方式而被提供的,且不应被视为对本发明的限制。
请参照图1,图1示出了根据本发明的实施方式的摆线针轮副100的示意立体图。
摆线针轮副100包括相互面对的两个齿轮110和120,其中这两个齿轮中的一个称为摆线齿轮,另一个称为针齿轮。下文将齿轮110作为摆线齿轮,并将齿轮120作为针轮来对摆线针轮副100进行描述。应注意,摆线齿轮和针齿轮是可以互换的,例如,在其它实施方式中,也可以将齿轮110作为针齿轮,将齿轮120作为摆线齿轮。
在本实施方式中,摆线针轮副100为端面摆线针轮副。也就是说,摆线针轮副100中的摆线齿轮110为端面齿轮,即,摆线齿轮110的摆线齿面130形成在与摆线齿轮110的轴线OO'大致垂直的一个端面上,而不是形成在摆线齿轮110的外侧圆周或内侧圆周。相较于将齿面形成在齿轮的外侧圆周或内侧圆周,在一侧形成有齿面的齿轮在工作时受到的作用力分摊在齿轮的整个厚度方向上,由于齿轮在厚度方向上具有更好的刚性,因此在一侧形成有齿面的齿轮可以有效地防止在工作时导致的变形。同样,针齿轮120在其一个端面上具有针轮齿面140。针轮齿面140与摆线齿面130相互面对并在工作时以章动传动的方式相互啮合。由于摆线针轮副100通常同于章动减速装置中,因此,形成在摆线齿面130的齿的数量与形成在针轮齿面140上的齿的数量通常相差1齿。例如,摆线齿面130可比针轮齿面140少1齿,或摆线齿面130可比针轮齿面140多1齿。
在本实施方式中,摆线齿面130上形成的齿具有摆线齿形,由于本发明使用了摆线齿形来替代在传统章动减速装置中使用的渐开线齿形,从而避免了使 用渐开线齿形传动时易产生各种干涉(包括渐开线干涉、节点对面齿顶干涉、齿廓重叠干涉、径向干涉等)的问题。
请参照图2,图2示出了摆线针轮副100中针轮120的侧视图。如图2所示,假定在针轮齿面140中的每一个齿的齿根和齿尖之间具有朝向针轮120的中心O延伸的一条直线OP,那么将这边直线OP围绕中心O沿着针轮齿面140在圆周方向上转动一周而形成的面称为针轮120的分度面,其中中心O为分度面的中心点。针轮120的分度面上的任意一条母线(例如图3中的直线PO)与针轮120的中心轴线OO’具有夹角∠POO’。虽然没有示出,与针轮120相似,摆线齿轮110的分度面上任意一条母线与其轴线也具有夹角。
在传统的齿轮设计中,齿轮的分度面和轴线之间的夹角取决于形成在齿面上的齿数。例如,对于具有45齿的齿轮,其分度面和轴线之间的夹角要么比90°大,要么比90°小。换句话说,其分度面形成为分度面的中心朝向齿轮凹入的内圆锥面或朝外凸出的凸圆锥面。随着齿轮的齿数的增加,其分度面和轴线之间的夹角越来越接近90°,也就是说,随着齿轮的齿数的增加,其分度面越来越接近平面。
在传统的齿轮副中,一般而言其中一个齿轮形成为内锥齿轮,另一个齿轮形成为外锥齿轮。然而,在齿轮制造行业中,内锥齿轮的精确机械加工是很具有挑战性的,为了能够制造精确的内锥齿轮,一般主要使用数控机床进行加工,其带来了成本的增加。同时,对于传统的齿轮副,在章动齿轮章动一周的期间,在每一个瞬时,两个齿轮之间只有很小一部分的齿彼此进行啮合传动,而绝大部分的齿并没有接触(例如图1中由虚线B所围绕的部分一样)。举例来说,对于具有45齿的章动齿轮而言,在其章动一周的期间,仅由2-3齿会相互进行啮合转动,而剩下的齿在此期间始终彼此分离。这使得传动的齿轮副存在承载力小,传动不平稳的问题。
发明人发现,将齿轮副中的两个齿轮的分度面强制设定为大致平面,而不取决于齿轮的齿数,这能够显著增加在章动期间相互啮合传动的齿数。
具体而言,在一个实施方式中,摆线齿轮110和针齿轮120各自的分度面和各自轴线之间的夹角均介于88°至91°,具体是介于88°至90°之间。并且摆线齿轮110和针齿轮120各自的分度面和各自轴线之间的夹角的角度之和小于180°。例如,摆线齿轮110和针齿轮120中其中一个齿轮的分度面是平 面(即夹角为90°),而另一个齿轮的分度面是略微外凸的凸圆锥面(即夹角大于88°且小于90°),或者摆线齿轮110和针齿轮120均为略微外凸的凸圆锥面。发明人发现,对于由具有如上特点的分度面的摆线齿轮110和针齿轮120中所构成的摆线针轮副100,在摆线齿轮110章动一周的期间,摆线齿轮110和针齿轮120之间会有更多的齿彼此啮合传动。例如,对于具有45齿的摆线齿轮110而言,在其章动一周的期间,摆线齿轮110和针齿轮120之间将会有12-13齿相互啮合传动,这大大增加了摆线针轮副的承载能力和传动稳定性。
此外,由于摆线齿轮110和针齿轮120具有形成为大致平面或略微上凸或下凹的圆锥面的分度面,来替代传统的章动减速装置中所使用的内锥齿轮,因此,相较于传统的用于章动减速装置的章动齿轮,本发明所提供的摆线针轮副机械加工简单,制造成本低。
表1
Figure PCTCN2019097517-appb-000001
表1示出了具有不同齿数的摆线针轮副的优选实施方式。在表1示出的实施方式中,摆线针轮副中针齿轮的齿数分别为45、60、90、75、120齿,并且摆线齿轮的齿数比相应的针齿轮的齿数少1齿,分别为44、59、89、74和119齿。从表1可以看出,所示出的针齿轮的分度角(即针齿轮的分度面与轴线之间的夹角)均为90°,也就是说,针齿轮的分度面均为平面。同时,摆线齿轮的分度角(即摆线齿轮的分度面与轴线之间的夹角)大致为88°至90°之间,具体为88°至89.5°之间,也就是说,摆线齿轮的分度面优选形成为略微上凸的凸圆锥面。表1中的轴间角为摆线齿轮和相应针齿轮的轴线的夹角(即针齿轮的分度角与摆线齿轮的分度角的角度之和)。
同时参照图3A-3E,分别示出了表1中摆线针轮副T45、T60、T90、M75 和M120的示意图。在图3A-3E中,点P’为各个摆线针轮副中摆线齿轮的分度面的中心,点P”为各个摆线针轮副中针齿轮的分度面的中心,当各个摆线针轮副中摆线齿轮和针齿轮章动啮合时,摆线齿轮的分度面的中心P’和针齿轮的分度面的中心P”重合为点P。
如上文所述,由于摆线齿面130的齿的数量与针轮齿面140上的齿的数量不同,因此,在摆线齿轮110和针轮130相互啮合时,摆线齿面130和针轮齿面140并不是完全啮合,而是部分啮合在一起。如图1所示,在由被虚线A所包围的部分中,摆线齿轮110和针轮130的齿仅有一部分的侧壁相互接触在一起,而在有虚线B所包围的部分中,摆线齿轮110和针轮130的齿相互分离而没有接触在一起。
请参照图4,图4示出了由图1中的虚线A所包围的摆线针轮副100的部分的放大示意图。如图2所示,摆线齿面130和针轮齿面140部分啮合时,摆线齿面130的齿的一部分131与针轮齿面140的齿的一部分141相互接触,同时摆线齿面130的齿的另一部分132与针轮齿面140的齿的另一部分142相互分离。在本实施方式中,部分131和141分别称为摆线齿轮工作齿面121和针轮工作齿面141,而部分132和142分别称为摆线齿轮非工作齿面132和针轮非工作齿面142。在本实施方式中,用于章动减速装置的摆线针轮副100在工作时摆线齿轮110可进行章动运动,在摆线齿轮110的章动运动和摆线齿面130和针轮齿面140的部分啮合的作用下,摆线齿轮110和针齿轮120可彼此进行相对旋转。
应注意,虽然在图4中示出了摆线齿面130和针轮齿面140在某个时刻的部分啮合状态,然而,在摆线齿轮110进行章动运动时,摆线齿面130中的每个齿的一部分会与针齿面140的对应齿的一部分以彼此滑动的方式接触。因此,只要在摆线齿轮110的章动运动期间的任意时刻摆线齿面130的一部分和针轮齿面140的一部分进行了接触,那个摆线齿面130和针轮齿面140的这些相互接触的部分都称为工作齿面。与此相反,在摆线齿轮110的章动运动期间的任意时刻,摆线齿面130与针轮齿面140都不彼此接触的部分称为非工作齿面。
下面结合图5A描述摆线齿轮110在进行一次章动运动时摆线齿面130和针轮齿面140的接触状态。在图5A中的(A)阶段,摆线齿面130的区段131的最左端与针轮齿面140的区段141相互接触。接着,随着摆线齿轮110的章 动运动,摆线齿轮110沿着X方向进行以与针齿轮120相互作用,使得针轮齿面140的区段141沿着摆线齿面130的区段131从最左端滑动到最右端(即图5A中的(B)阶段)。在区段141从区段131的最左端滑动到最右端的同时,由于针齿轮120受到沿着X方向进行章动运动的摆线齿轮110的推动,从而针齿轮120相对于摆线齿轮110沿着Y方向行进,从而绕其自身的轴线进行旋转。
这里,由于在摆线齿轮110的一次章动运动期间,区段141从区段131的最左端滑动到最右端,因此,在摆线齿面130中由大矩形框包围的区段131称为摆线齿轮工作齿面131,而在针轮齿面140中由小矩形框包围的区段141称为针轮工作齿面141。同时,在摆线齿面130中位于大矩形框外部的区段132(例如图5A中摆线齿面130上每个齿的齿根和齿尖的部分)称为摆线齿轮非工作齿面132,并且在针轮齿面140中位于小矩形框外部的区段142(例如图5A中针轮齿面140上每个齿的齿尖和大部分侧壁)称为针轮非工作齿面142。
由此,摆线齿轮110每章动一周,相互接触的摆线齿轮工作齿面131和针轮工作齿面141彼此以滑动的方式接触一次,因此,摆线齿轮110每章动一周仅推动针齿轮120旋转很小的角度,从而实现摆线齿轮110和针齿轮120之间较大的传动比。在摆线齿轮110与针齿轮120相差1齿的情况下,摆线齿轮110每章动一周,针齿轮旋转一齿。
请参照图5B,图5B中示出了摆线齿面130和针轮齿面140在P点处互相接触并进行啮合传动。如图5B所述,线PM示出了针轮齿面140在P点处的法线方向,线PN示出了摆线齿面130在P点处与针轮齿面140接触时针齿轮120在P点的运动方向。由于摆线齿轮110进行章动运动,因此摆线齿面130在P点处推动针轮齿面140使得针齿轮120沿着Y方向转动,因此线PN平行于Y方向。线PM与PN之间所成的夹角α为摆线齿面130和针轮齿面140接触时的压力角。压力角的大小指示了摆线齿面130和针轮齿面140接触时摆线齿面130对针轮齿面140的做功效率(即,传动效率)。发明人发现,当摆线齿轮110和针齿轮120的齿形经构造使得上述压力角为合适的角度时,由摆线齿轮110和针齿轮120构成的摆线针轮副100具有最优的传动效率。
具体而言,在一个实施方式中,摆线齿面130和针轮齿面140接触时的压力角满足关系式45°-β-5°≤α≤45°-β+5°,摆线针轮副100可具有最优 的传动效率。上述关系式中,α指示摆线齿面130和针轮齿面140接触时的压力角,β指示摆线齿面130和针轮齿面140之间的摩擦角,该摩擦角为摆线齿面130和针轮齿面140的固有属性,其取决于制造摆线齿轮110和针齿轮120的材料与使用的润滑剂,其一般介于3°-5°之间。举例而言,若摆线齿面130和针轮齿面140之间的摩擦角为3°,则摆线齿面130和针轮齿面140接触时的压力角优选为介于37°至47°之间,若摆线齿面130和针轮齿面140之间的摩擦角为5°,则摆线齿面130和针轮齿面140接触时的压力角优选为介于35°至45°之间
为了实现上述压力角,在一些实施方式中,可将针轮工作齿面141形成为朝向针齿轮110的分度锥顶点(例如图2中的点O)渐缩的圆锥面,使得针轮工作齿面141所在的圆锥的锥顶与针齿轮110的分布锥顶点重叠,并且针轮工作齿面141所在的圆锥的轴线位于针齿轮110的分度面上,即针轮工作齿面141所在的圆锥的轴线是针齿轮110的分度面的其中一条母线。摆线齿轮工作齿面131的形状取决于针轮工作齿面141的形状,摆线齿轮工作齿面131是针轮工作齿面141的包络。
在一些实施方式中,摆线齿轮非工作齿面132由平面和圆锥面构成,并且摆线齿轮工作齿面131可与摆线齿轮非工作齿面132相切。
在一些实施方式中,针轮非工作齿面142由平面和圆锥面构成,并且针轮工作齿面141可与针轮非工作齿面142相切。
请参照图6A和6B,图6A示出根据本发明的一个实施方式的章动减速装置200的截面图,图6B示出了章动减速装置200的爆炸图。
章动减速装置200包括壳体220,壳体220中穿设有输入机构210(例如输入轴)。通常,输入轴210与电动机的输出部件连接,以通过电动机来带动输入机构210围绕自身的轴线进行旋转。
在壳体220中设置如上文所描述的摆线针轮副240,其中摆线针轮副240具有摆线齿轮和针齿轮。应注意,在一些实施方式中,摆线齿轮可进行章动运动,而针齿轮可在章动运动的作用下与摆线齿轮相对旋转。而在另一些实施方式中,针齿轮可进行章动运动,而摆线齿轮可在章动运动的作用下与针齿轮相对旋转。因此,在下文的描述中,将摆线针轮副240中进行章动的齿轮(摆线齿轮和针齿轮中的一个)称作为章动齿轮,而将不进行章动的齿轮(摆线齿轮 和针齿轮中的另一个)称为非章动齿轮。
输入机构11通过轴承组230与摆线针轮副240相连,输出机构250(例如图6A和6B中示出的环状输出构件)也与摆线针轮副240相连。当输入机构11被施加输入转动时,摆线针轮副240经构造使得在输入转动的驱动下摆线齿轮241可进行章动运动。在摆线齿轮241的章动运动和摆线针轮副240中章动齿轮241和非章动齿轮242的部分啮合的作用下,摆线针轮副240将输入转动减速为出输出转动。接着与摆线针轮副240相连的输出部件250将输出转动向外部输出。
在本实施方式中,输入轴210通过轴承组230而套设于章动齿轮241的中心开口中。借助轴承组230,被施加有输入转动的输入轴210的旋转并不会带动章动齿轮241围绕自身的轴线旋转。章动齿轮241相对于输入轴210倾斜设置,例如,输入轴210在其通过轴承组230与章动齿轮241连接的位置处具有章动台阶212,章动台阶212凹入输入轴210的侧壁而形成。章动台阶212的台阶面213相对于输入轴210的旋转轴线211倾斜(例如倾斜角度α)。如图6A所示,章动齿轮241在章动台阶212处通过轴承230与输入轴210连接,并且轴承230的内侧圆周紧贴在台阶面213上,并且外侧圆周紧贴章动齿轮241的内侧圆周,因此章动齿轮241的中心轴线243与输入轴210的旋转轴线211之间也具有夹角α(即章动角)。因此,当输入轴210进行旋转时,虽然章动齿轮241不会随着输入轴210进行旋转,但会通过夹角α而在壳体220内做章动运动。
在该实施方式中,非章动齿轮242通过轴承270与壳体220连接并通过轴承260与输入轴210连接。在该实施方式中,非章动齿轮242的外侧圆周套设在轴承270的内侧圆周,轴承270的外侧圆周与壳体220固定,输入轴11通过轴承260而套设于非章动齿轮242的中心开口中。这样,非章动齿轮242能够以可旋转的方式而被定位在壳体220内部并位于壳体220与输入轴210之间。非章动齿轮242与输出部件250连接。在该实施方式中,输出部件250可为圆环状部件,且具有与非章动齿轮242大致相同的内径和外径,使得输出部件250的一侧可附接至非章动齿轮242中没有齿面的一侧,例如,非章动齿轮242中没有齿面的一侧上形成有多个螺孔,因此输出部件250可通过多个螺钉与非章动齿轮242附接。这样,输出部件250可与非章动齿轮242形成为组 合体而一起旋转。从而,当章动齿轮241进行章动运动时,借助于章动齿轮241和非章动齿轮242之间的啮合传动关系而带动非章动齿轮242绕其自身的轴线以减速后的输出转动进行旋转,从而非章动齿轮242将输出转动传递给输出部件250。
章动齿轮241和非章动齿轮242可经构造以使得输出部件250与输入轴210朝向相同的方向或相反的方向旋转。例如,在章动齿轮241比非章动齿轮242少一齿的情况下,输入轴210与输出部件250转动方向相同,在章动齿轮110比非章动齿轮242多一齿的情况下,输入轴210与输出部件250转动方向相反。
如上所述,当章动齿轮241进行章动运动时,非章动齿轮242在章动齿轮241的章动运动的作用下而与章动齿轮241进行相对旋转。然而,由于章动齿轮241和非章动齿轮242之间的旋转是相对的,因此在非章动齿轮242旋转的同时,章动齿轮241也会有朝向与非章动齿轮242的旋转方向相反的方向进行旋转的趋势。在本实施方式中,章动减速装置200还具有扭矩传递部件280,扭矩传递部件280的一端与章动齿轮241连接,另一端与壳体220连接。通过扭矩传递部件280,章动齿轮241的旋转的扭矩被传递到壳体220上,从而章动齿轮241围绕自身轴线旋转的自由度受到了扭矩传递部件280的约束,使得章动齿轮241相对于壳体220固定而只在输入轴210的驱动下做章动运动。也就是说,在章动减速装置200中,章动齿轮241仅做章动运动,而非章动齿轮242在章动齿轮241章动运动的作用下进行旋转,并将减速后的输出转动传递给与附接的输出部件250。
在一些实施方式中,扭矩传递部件280可以是球笼或虎克铰。在另一些实施方式中,扭矩传递部件280优选为由诸如波纹管、波纹膜、弹簧膜片等弹性元件制成的柔性部件,与传统章动减速装置中所使用的诸如球笼或虎克铰的扭矩传递部件相比,使用弹性元件的柔性部件具有更小的体积,并且由于章动齿轮241的章动运动而导致的其与另外部件之间的震动而被柔性部件280吸收,从而增加了传动稳定性。
请参阅图7A和图7B,图7A示出了根据本发明的另一实施方式的章动减速装置300的截面图,图7B示出了章动减速装置300的爆炸图。
下面将主要描述章动减速装置300与章动减速装置200的不同。在章动减 速装置300中,输入轴310通过轴承组330与章动齿轮341连接。与图6A和6B中的章动减速装置200相同,章动齿轮341在其通过轴承组330与章动齿轮341连接的位置处具有章动台阶,使得章动齿轮341的中心轴线相对于输入轴310的轴线倾斜布置,从而章动齿轮341在输入轴310的驱动下做章动运动。非章动齿轮342与章动齿轮341相互接触并部分啮合,并通过轴承360与输出轴350连接,同时非章动齿轮342与壳体320刚性连接。由于在章动减速装置300中非章动齿轮342和输出轴350之间存在轴承360,使得输出轴350可独立于非章动齿轮342独自转动。扭矩传递部件380的一端连接至章动齿轮341,另一端连接至输出轴350。因此,通过扭矩传递部件380,章动齿轮341的扭矩可被传递至输出轴350。
如图7A和7B所述,由于章动齿轮341和非章动齿轮342之间的啮合传动作用,当章动齿轮341进行章动运动时,非章动齿轮342会通过章动齿轮341的章动运动而相对于章动齿轮341进行旋转。然而,在章动减速装置300中,非章动齿轮342被刚性连接至壳体320而无法旋转,故,章动齿轮341在章动运动的同时,还会围绕自身轴线以低于输入轴310的转速的输出转动进行旋转。由于章动齿轮341通过扭矩传递部件380而将其自身的扭矩传递给了输出轴350,使得输出轴350也跟随章动齿轮341进行旋转,从而将经减速的输出转动传递给输出轴355。
在该实施方式中,扭矩传递部件380可以是由波纹管、波纹膜、弹簧膜片等制成的弹性元件,与传统章动减速装置中所使用的诸如球笼或虎克铰的扭矩传递部件相比,使用弹性元件的柔性部件具有更小的体积,并且由于章动齿轮341的章动运动和其自身的旋转而导致的其与另外部件之间的震动可被柔性部件吸收,从而增加了传动稳定性。
请参阅图8A和图8B,图8A示出了根据本发明的另一实施方式的章动减速装置400的截面图,图8B示出了章动减速装置400的爆炸图。
在章动减速装置400与图7A和7B所示的章动减速装置300相似,其中章动齿轮441通过扭矩传递部件480与输出轴451和452相连以将章动齿轮441的扭矩传递给输出轴。非章动齿轮442的内侧圆周通过轴承460与输出轴连接,使得输出轴可独立于非章动齿轮442旋转,非章动齿轮442的外侧圆周固定至壳体420。因此,章动齿轮441既进行章动运动,又相对于非章动齿轮 442以输出转动进行旋转,并通过扭矩传递部件480将输出转动传递至输出轴451和452。
章动减速装置400中的输入轴410进一步具有从输入轴410的外侧圆周径向向外延伸的凸缘411,凸缘411具有第一厚度和小于第一厚度的第二厚度,且凸缘411的厚度沿着输入轴410的圆周方向从第一厚度减小至第二厚度,并接着从第二厚度增加至第一厚度。举例而言,凸缘411在输入轴410的0°的位置处具有第一厚度,并且凸缘411的厚度在0°~180°之间从第一厚度减小至第二厚度,并接着在180°~360°(即0°)之间从第二厚度增加至第一厚度。
凸缘411在远离章动齿轮441的侧面通过推力滚针轴承413而抵靠至壳体420,并在靠近章动齿轮441的侧面通过推力滚针轴承412而抵靠至章动齿轮441中未形成有齿面的一侧。输入轴410的外侧圆周分别通过滚针轴承431和432而与壳体420和章动齿轮441的内侧圆周相连。通过推力滚针轴承412、413和滚针轴承431、432,输入轴410可独立于壳体420和章动齿轮441进行旋转。
章动减速装置400具有挡板414,挡板414固定至输入轴410(例如通过螺钉),并且挡板414通过推力滚针轴承415而抵靠至章动齿轮441的具有齿面的一侧,使得章动齿轮441通过推力滚针轴承415和412而被夹设在凸缘411和挡板414之间。如图8A所示,通过推力滚针轴承415和412,使得章动齿轮441始终抵靠在凸缘411的一侧,由于凸缘411具有从第一厚度渐变到第二厚度的厚度,使得章动齿轮441的中心轴线相对于输入轴410的轴线倾斜布置,从而章动齿轮441可在输入轴410的驱动下做章动运动。
替代地或额外地,章动减速装置400还可具有挡板421,挡板421通过滚针轴承422附接至壳体420并固定至输入轴420的远离章动齿轮441的一侧(例如通过螺钉),使得挡板421可将输入轴限制在壳体420之内。密封圈423将挡板421的外周与壳体420密封。
请参阅图9A和图9B,图9A示出了根据本发明的另一实施方式的章动减速装置500的截面图,图9B示出了章动减速装置500的爆炸图。
章动减速装置500与图8A和8B示出的章动减速装置400类似,将仅描述两者之间的不同。章动减速装置500具有圆锥滚子轴承531和532,圆锥滚 子轴承经构造使得圆锥滚子轴承的内侧圆周和侧边可配合在一起而独立于外侧圆周运动。例如,如图9A所示,挡板521和输入轴510通过螺纹连接,圆锥滚子轴承531的内侧圆周附接至输入轴510,外侧圆周附接至壳体520,侧边附接至挡板521。通过圆锥滚子轴承531,输入轴510和挡板521可相对于壳体520进行旋转而不会受到壳体520的影响,因此,圆锥滚子轴承531可同时起到图8A和8B的章动减速装置400中的滚针轴承422和431的作用。相似的,在图8中,输入轴510与挡板514通过螺纹连接,圆锥滚子轴承532的内侧圆周附接至输入轴510,外侧圆周附接至章动齿轮541的内侧圆周,侧边附接至挡板514。通过圆锥滚子轴承532,输入轴510和挡板514可相对于章动齿轮541进行旋转,而不会影响章动齿轮541的运动,因此圆锥滚子轴承532可同时起到图8A和8B的章动减速装置400中的滚针轴承432和415的作用。在一些实施方式中,可以使用具有凸缘的圆锥滚子轴承来替换章动减速装置500中的圆锥滚子轴承531和532。章动减速装置500的其它部件与章动减速装置400相同,于此不再赘述。
请继续参阅图10,图10示出了根据本发明的另一实施方式的章动减速器600的截面图。章动减速器600与图7A的章动减速器300和图8A的章动减速器400类似,下面仅仅描述不同之处。
章动减速器600的不同之处在于,章动减速器600具有两个根据本文实施方式所描述的摆线针轮副640和640’。摆线针轮副640由章动齿轮641和非章动齿轮642构成,摆线针轮副640’由章动齿轮643和非章动齿轮644构成。摆线针轮副640和摆线针轮副640’背对彼此而设置。在章动减速器600,设置在壳体620内的电机630连接至同样设置在壳体620内的输入轴610,以驱动输入轴610旋转,输入轴610的彼此背对的两侧面形成为对称布置的斜面,这两个斜面分别通过滚珠推力轴承612而分别抵靠至章动齿轮641和643中未形成有齿面的一侧,从而使得章动齿轮641和643与输入轴610(以及下文将描述的输出轴650)的旋转轴线呈一定夹角,由此,当输入轴610受电机630驱动而旋转时,输入轴610的侧面经由滚珠推力轴承612迫使章动齿轮641和643进行章动。输出轴650形成在壳体620中并套设在输入轴610中心形成的开口中,输出轴650和输入轴610之间设置有承组件611,使得输出轴[u1]650和输入轴610可以彼此独立地旋转。非章动齿轮642和644通过固定机构(例 如螺丝)固定至壳体620。由于非章动齿轮642和644固定至壳体620,当非章动齿轮642与章动齿轮641,以及非章动齿轮644与章动齿轮643进行啮合传动时,非章动齿轮642和644不转动,故带动章动齿轮641和643以减速后的转速进行缓慢转动。章动齿轮641和643通过扭矩传递部件680与输出轴650相连,从而章动齿轮641和643两者共同带动输出轴650旋转。输出轴650和非章动齿轮642和644进一步设置有轴承组件660。因此固定不动的非章动齿轮642和644不会影响输出轴650的转动。摆线针轮副640和640’具有相同的齿面设计以及减速比。通过将多余一个的摆线针轮副这设置在章动减速器中,可以提高章动减速器的传动效率,降低能量损耗。在可以本文的实施方式进行结合的其它实施方式中,可以在章动减速器中进一步设置两个或更多个的摆线针轮副,只需这些摆线针轮副具有相同的齿面设计,使得在受到相同驱动输入的情况下以相同的比例对输入旋转进行减速即可。
具有本文所描述的摆线针轮副的章动减速器可以用于各种应用中。
例如,图11示出了根据本文的一个实施方式的用于机器人的关节1000的结构示意图。
关节1000可以用于各种类型的机器人中,例如种串联机器人、并联机器人、平面机器人等。关节1000包括外壳1001,以及设置在外壳1001中的章动减速器1003、伺服电机1002和输出机构1004。章动减速器1003可以是上文所描述的章动减速器200、300、400、500和600中的任意一个章动减速器。章动减速器1003的输入轴与伺服电机1002相连,章动减速器1003的输出轴与输出机构1004相连。当给伺服电机1002加电时,电机的转子通过章动减速器1003进行减速,并且以增大的扭矩进行输出。
图12示出了根据本文的一个实施方式的用于机床的双摆角工作台2000的结构示意图。
双摆角工作台2000可以是车铣复合双摆角工作台。双摆角工作台2000包括底座2001,底座2001两侧形成有立柱2006。转台壳体2007架设在两个立柱2006上。双摆角工作台2000包括电机2002(蜗轮蜗杆减速电机),转台壳体2007经由电机2002而围绕第一轴线2008旋转,从而在第一个自由度上摆动。转台壳体2007形成有至少一个开口,至少一个工作台2004穿过所述开口而设置在转台壳体2007中。转台壳体2007包括对应于每一个工作台2004
[援引加入(细则20.6) 10.09.2019] 
的章动减速器2004。章动减速器2004可以是上文所描述的章动减速器200、300、400、500和600中的任意一个章动减速器。章动减速器2004的输入轴连接至电机(例如伺服电机)(为示出),章动减速器2004的输出轴连接至工作台2004,以带动工作台2004围绕与第一轴线2008垂直的第二轴线2009旋转,从而在第二个自由度上摆动。工作台2004的外周通过轴承2003固定至转台壳体2007的开口。章动减速器2004设备提供减速增矩输出,可以适用于大批量同时加工的复杂且对精度要求高的零件的多个面加工。
[援引加入(细则20.6) 10.09.2019] 
图13示出了根据本文的一个实施方式的用于机床的双摆角铣头3000的结构示意图。
[援引加入(细则20.6) 10.09.2019] 
双摆角铣头3000可用与数控机床。双摆角铣头3000包括相互可旋转地连接的壳体3001和3003。壳体3001内设置有章动减速器3002-1,章动减速器3002-1的输入轴连接至至电机(例如伺服电机)(为示出),章动减速器3002-1的输出轴连接至壳体3003,从而带动壳体3003围绕第一轴线3005以减低的转速和增大的扭矩进行转动,从而实现在第一个自由度上的摆动。壳体3003内设置有铣头3004,铣头3004从形成在壳体3003侧面的开口中伸出,以用于铣削操作。壳体3003内设置有章动减速器3002-2,章动减速器3002-2的输入轴连接至至电机(例如伺服电机)(为示出),章动减速器3002-2的输出轴连接至铣头3004,从而带动铣头3004围绕与第一轴线3005不同的第二轴线3006以减低的转速和增大的扭矩进行转动,从而实现在第二个自由度上的摆动。第一轴线3005可以垂直于第二轴线3006。章动减速器3002-1和3002-2可以是上文所描述的章动减速器200、300、400、500和600中的任意一个章动减速器。
[援引加入(细则20.6) 10.09.2019] 
图14示出了根据本文的一个实施方式的用于数控机床的分度转台4000的结构示意图。
[援引加入(细则20.6) 10.09.2019] 
分度转台4000包括转台主体4005和沿着转台主体4005的外周而设置的多个操作臂4001。转台主体4005内形成有章动减速器4002-1,章动减速器4002-1的输入轴连接至电机(例如伺服电机)(为示出),章动减速器4002-1的输出轴连接至转台主体,从而带动转台主体4005以减低的速度和增大的扭矩围绕轴线4009旋转。操作臂4001包括立柱4006、横臂4007和操作头4008。横臂4007设置于立柱4006和操作头4008之间,以用于连接立柱4006和操作头4008。立柱4006的顶部内设置有章动减速器4002-2,章动减速器4002-2的输入轴连接至电机(例如伺服电机)(为示出),章动减速器4002-2的输出轴连接至横臂4007的一端,从而带动横臂4007以这一端为轴心,围绕与轴线4009平行的轴线以减低的速度和增大的扭矩旋转。操作头4008中还设置有章动减速器4002-3,章动减速器4002-3的输入轴连接至电机(例如伺服电机)(为示出),章动减速器4002-3的输出轴连接至操作头4008,从而带动操作头4008围绕与轴线4009平行的轴线以减低的速度和增大的扭矩旋转。章动减速器4002-1、4002-2和4002-3可以是上文所描述的章动减速器200、300、400、500和600中的任意一个章动减速器。由此,可实现复杂且对加工精度有要求的零部件在多工序的协作加工。
[援引加入(细则20.6) 10.09.2019] 
图15示出了根据本文的一个实施方式的数控机床5000的结构示意图。
[援引加入(细则20.6) 10.09.2019] 
数控机床5000包括基座5001,基座5001上形成有平移装置5009,平移装置5009经配置已在X-Y平面上移动。平移装置5009上设置有工作台5002,工作台5002可以是图14中的双摆角工作台2000,其具有章动减速器5003-1。基座5001上进一步设置有升降装置5005,经配置在Z轴方向上移动。升降装置5005上设置有铣头5004,铣头5004可以是图13中的双摆角铣头3000,其具有章动减速器5003-2。章动减速器5003-1和5003-2可以是上文所描述的章动减速器200、300、400、500和600中的任意一个章动减速器。由此,工作台5002和铣头5004均可以在两个自由度上摆动,平移装置5009可以在X-Y平面上移动,升降装置5005可以在Z轴方向上移动,故数控机床5000可以至少具有五轴连动功能。数控机床5000还可具有刀库系统5006。
[援引加入(细则20.6) 10.09.2019] 
图16示出了根据本文的一个实施方式的曳引机6000的结构示意图。
[援引加入(细则20.6) 10.09.2019] 
曳引机6000用于电梯、扶梯。曳引机6000包括机架6001。机架6001上支撑有章动减速器6003、电机6002、曳引轮6004。在一些实施方式中,机架6001包括分段式壳体6009,具有多个区段,章动减速器6003、电机6002、曳引轮6004每一者设置在相应的区段上,并通过轴承组件6005与分段式壳体6009相固定。电机6002可以是伺服电机。章动减速器6003可以是上文所描述的章动减速器200、300、400、500和600中的任意一个章动减速器。章动减速器6003的输入轴与电机6002连接,章动减速器6003的输出轴与曳引轮6004连接,以带动曳引轮6004以减低的转速和增大的扭矩旋转。曳引轮6004上设置有曳引绳6006,用于牵引人员和物资。
[援引加入(细则20.6) 10.09.2019] 
图17示出了根据本文的一个实施方式的船舶用锚机7000的结构示意图。
[援引加入(细则20.6) 10.09.2019] 
图17示出了左右两个船舶用锚机7000。锚机7000包括基座7001。在基座7001上支撑有输出盘7002、章动减速器7004。章动减速器7004可以是上文所描述的章动减速器200、300、400、500和600中的任意一个章动减速器。章动减速器7004的输入轴连接至电机(例如伺服电机)(未图示)。章动减速器7004的输出轴连接至输出盘7002,以带动输出盘7002以减低的转速和增大的扭矩旋转,从而用于牵引船只。输出盘7002、章动减速器7004通过轴承7004固定至基座7001。
[援引加入(细则20.6) 10.09.2019] 
图18示出了根据本文的一个实施方式的回转门8000的结构示意图。
[援引加入(细则20.6) 10.09.2019] 
回转门8000可用于公共场所并安装在墙壁8001上。回转门8000包括旋转门8002,旋转门8002包括立柱8005和从立柱8005径向向外延伸的多个门体8006。旋转机构设置在旋转门8002的顶部以带动旋转门8002旋转。所述旋转机构包括壳体8007,以及设置在壳体8007中的章动减速器8003。章动减速器8003可以是上文所描述的章动减速器200、300、400、500和600中的任意一个章动减速器。章动减速器8003的输入轴连接至电机8004(例如伺服电机)。章动减速器8003的输出轴连接至立柱8005,以带动旋转门8002以减低的转速和增大的扭矩旋转。
[援引加入(细则20.6) 10.09.2019] 
图19示出了根据本文的一个实施方式的太阳能转换装置9000的结构示意图。
[援引加入(细则20.6) 10.09.2019] 
如图19所示,太阳能转换装置9000包括基座9001。基座9001上支撑有支撑杆9004。支撑杆9004通过章动减速器9002而被支撑在基座9001上。章动减速器9002可以是上文所描述的章动减速器200、300、400、500和600中的任意一个章动减速器。章动减速器9002的输入轴连接至电机(例如伺服电机)(未示出)。章动减速器9002的输出轴连接至支撑杆9004,以带动支撑杆9004以减低的转速和增大的扭矩围绕支撑杆9004的中心轴线旋转。采集装置9003用于采集来自太阳的热能,采集装置9003通过摆动电机9005而连接至支撑杆9004的顶部,使得采集装置9003受到摆动电机9005的驱动而摆动俯仰。在一些实施方式中,摆动电机9005中也可以设置有文所描述的章动减速器200、300、400、500和600中的任意一个章动减速器,从而以增大的扭矩驱动采集装置9003摆动俯仰。在一些实施方式中,基座9001上设置有与采集装置9003相连的热能转换装置9006和与热能转换装置9006相连的储能装置9007,
[援引加入(细则20.6) 10.09.2019] 
图20示出了根据本文的一个实施方式的物料传送装置10000的结构示意图。
[援引加入(细则20.6) 10.09.2019] 
如图20所示,物料传送装置10000包括支架10001。支架10001上设置有多个辊10004和10005。传送带10003提供在辊10004和10005之上,从而随着辊10004、10005的转动带动传送带10003输送放置在传送带10003上的货物。虽然图20仅示出了位于支架10001两侧的两个辊,但也可以设置更多个辊,例如设置在辊10004、10005之间的位置处。物料传送装置10000进一步包括章动减速装置10002,章动减速器10002可以是上文所描述的章动减速器200、300、400、500和600中的任意一个章动减速器。章动减速器10002的输入轴连接至电机(例如伺服电机)(未示出)。章动减速器10002的输出轴连接至辊10004,以带动辊10004以减低的转速和增大的扭矩围绕辊10004的中心轴线旋转,从而带动传送带10003行进。在一些实施方式中,每一个辊都可以具备各自的章动减速器,这些章动减速器的输入轴共同连接至电机,输出轴连接至各自的辊,从而进行同步的运作,以进一步增大传递给传送带10003的扭矩,以实现大重量货物的输送。
[援引加入(细则20.6) 10.09.2019] 
具有本文所描述的摆线针轮副的章动减速器可以用于其它应用中,例如探照灯、激光发射器火炮、导弹发射架、一些特种车辆的回转及俯仰装置中,还可应用于弹、潜艇的舵机中和飞机的偏航机构中。
[援引加入(细则20.6) 10.09.2019] 
前述内容针对本公开内容的实施方式,可在不脱离其保护范围的情况下,修改本公开内容的其它和进一步的实施方式,且保护范围由随附的权利要求书所确定。

Claims (25)

  1. 一种用于章动减速装置的端面齿摆线针轮副,包括:
    摆线齿轮,所述摆线齿轮具有摆线齿面,所述摆线齿轮的分度面和所述摆线齿轮的轴线呈第一夹角;和
    针齿轮,所述针齿轮与所述摆线齿轮以章动传动方式啮合,所述针齿轮具有针轮齿面,所述针齿轮的分度面和所述针齿轮的轴线呈第二夹角;其中
    所述第一夹角和所述第二夹角均介于88°至91°之间,且所述第一夹角和所述第二夹角的和小于180°;并且
    其中所述针轮齿面与所述摆线齿面相互啮合的部分分别为针轮工作齿面和摆线齿轮工作齿面;所述针轮工作齿面和所述摆线齿轮工作齿面在啮合时的压力角满足以下关系式:
    45°-β-5°≤α≤45°-β+5°;
    其中α为所述压力角且β为所述针轮工作齿面和所述摆线齿轮工作齿面之间的摩擦角。
  2. 根据权利要求1所述的端面齿摆线针轮副,其中所述针轮工作齿面为圆锥面,且所述针轮工作齿面的锥顶位于所述针轮齿面的所述分度面的中心点,并且所述针轮工作齿面的轴线在所述针轮齿面的所述分度面上。
  3. 根据权利要求2所述的端面齿摆线针轮副,其中所述摆线齿轮工作齿面是所述针轮工作齿面的包络。
  4. 根据权利要求1所述的端面齿摆线针轮副,其中
    所述针轮齿面进一步包含针轮非工作齿面,所述针轮非工作齿面由平面和圆锥面构成,并且所述针轮非工作齿面与所述针轮工作齿面相切;和/或
    所述摆线齿面进一步包含摆线齿轮非工作齿面,所述摆线齿轮非工作齿面由平面和圆锥面构成,并且所述摆线齿轮非工作齿面与所述摆线齿轮工作齿面相切。
  5. 一种章动减速装置,包括
    壳体;
    端面齿摆线针轮副,设置在所述壳体内,所述端面齿摆线针轮副是根据权利要求1-4任一项所述的端面齿摆线针轮副;
    输入机构,其用于驱动所述端面齿摆线针轮副以使所述端面齿摆线针轮副进行章动运动;
    输出机构,所述输出机构与所述端面齿摆线针轮副相连;和
    扭矩传递部件,所述扭矩传递部件用于将所述端面齿摆线针轮副的扭矩传递至所述壳体。
  6. 根据权利要求5所述的章动减速装置,其中
    所述输入机构驱动所述端面齿摆线针轮副中的章动齿轮,所述输入机构的旋转轴线与所述章动齿轮的轴线之间呈一夹角;所述扭矩传递部件连接在所述章动齿轮与所述壳体之间,以约束所述章动齿轮围绕自身的轴线旋转;并且所述输出机构与所述非章动齿轮连接。
  7. 一种章动减速装置,包括
    壳体;
    端面齿摆线针轮副,设置在所述壳体内,所述端面齿摆线针轮副是根据权利要求1-4任一项所述的端面齿摆线针轮副;
    输入机构,其用于驱动所述端面齿摆线针轮副以使所述端面齿摆线针轮副进行章动运动;
    输出机构,所述输出机构与所述端面齿摆线针轮副相连;和
    扭矩传递部件,所述扭矩传递部件用于将所述端面齿摆线针轮副的扭矩传递至所述输出机构。
  8. 根据权利要求7所述的章动减速装置,其中
    所述输入机构驱动所述端面齿摆线针轮副中的章动齿轮,所述输入机构的旋转轴线与所述章动齿轮的轴线之间呈一夹角;
    所述端面齿摆线针轮副中的非章动齿轮固定至所述壳体;并且
    所述输出机构通过所述扭矩传递部件连接至所述章动齿轮。
  9. 根据权利要求8所述的章动减速装置,进一步包括:
    第二端面齿摆线针轮副,设置在所述壳体内,并与所述端面齿摆线针轮副背向设置,所述第二端面齿摆线针轮副是根据权利要求1-4任一项所述的端面齿摆线针轮副;其中
    所述输入机构驱动所述第二端面齿摆线针轮副中的章动齿轮,所述输入机构的旋转轴线与所述第二端面齿摆线针轮副中的的所述章动齿轮的轴线之间呈所述夹角;
    所述第二端面齿摆线针轮副中的非章动齿轮固定至所述壳体;并且
    所述输出机构通过所述扭矩传递部件连接至所述第二端面齿摆线针轮副的所述章动齿轮。
  10. 根据权利要求6或8所述的章动减速装置,其中所述输入机构具有凹入所述输入机构的侧壁而形成的章动台阶,其中
    所述章动台阶位于所述输入轴通过轴承与所述章动齿轮连接的位置处,并且
    所述章动台阶的台阶面与所述输入机构的所述旋转轴线之间呈所述夹角。
  11. 根据权利要求6或8所述的章动减速装置,其中所述输入机构的输入轴的侧壁设有径向向外延伸的凸缘,所述凸缘在所述输入机构的所述旋转轴线的方向上具有厚度;其中
    所述厚度沿着所述输入轴的圆周方向在0°到180°之间从第一厚度线性减小至小于所述第一厚度的第二厚度;并且所述厚度沿着所述输入轴的所述圆周方向在180°到360°之间从所述第二厚度线性增加至所述第一厚度;并且
    所述章动齿轮的、远离齿面的一侧抵靠在所述凸缘的端面上。
  12. 根据权利要求5或7所述的章动减速装置,其中所述的扭矩传递部件是柔性部件或等速传动部件。
  13. 一种用于机器人的关节,包括:
    关节外壳,用于限定一关节腔;
    章动减速装置,容纳在所述关节外壳内,所述章动减速装置是根据权利要求5-12任一项所述的章动减速装置;
    输出轴,所述输出轴与所述章动减速装置的输出机构相连;和
    电机,所述电机容纳在所述关节外壳内,并与所述章动减速装置的输入机构相连。
  14. 根据权利要求13所述的关节,进一步包括半月轴承,所述半月轴承设置在所述电机与所述关节外壳之间,以及所述章动减速装置与所述关节外壳之间。
  15. 一种用于机床的双摆角铣头,包括:
    第一壳体,具有设置在所述第一壳体内的第一电机;
    第二壳体,具有设置在所述第二壳体内的第二电机;
    第一章动减速装置,所述第一章动减速装置设置在所述第一壳体内,并且所述第一章动减速装置的输入机构与所述第一电机相连,所述一章动减速装置的输出机构与所述第二壳体相连,以带动第二壳体围绕第一轴线旋转;
    第二章动减速装置,所述第二章动减速装置设置在所述第二壳体内,并且所述第二章动减速装置的输入机构与所述第二电机相连;和
    铣头,所述第二章动减速装置的输出机构与所述铣头相连,以带动所述铣头围绕第二轴线旋转;
    其中所述第一、第二章动减速装置是根据权利要求5-12任一项所述的章动减速装置,并且所述第一轴线垂直于所述第二轴线。
  16. 一种用于机床的双摆角工作台,包括:
    底座;
    转台壳体,设置在所述底座上并由所述底座支撑,其中所述转台壳体连接至第一电机,所述第一电机带动所述转台壳体围绕第一轴线旋转;
    至少一个工作台,设置在所述转台壳体中;
    至少一个章动减速装置,设置在所述转台壳体中,所述至少一个章动减速装置是根据权利要求5-12任一项所述的章动减速装置,所述至少一个章动减速装置的每一个的输入机构连接至相应的第二电机,所述至少一个章动减速装置的每一个的输出机构连接至相应的工作台,以带动所述工作带围绕第二轴线旋转,其中所述第一轴线不同于所述第二轴线。
  17. 一种用于数控机床的分度转台,包括:
    转台主体,所述转台主体上设置有多个卡盘,沿着所述转台主体的外周边设置有多个操作臂;和
    第一章动减速装置,所述第一章动减速装置的输入机构与第一电机相连,输出机构与所述转台主体相连,以带动所述转台主体围绕第一轴线旋转;
    其中所述多个操作臂的每一个包括:
    支柱、操作头、以及用于连接所述支柱和所述操作头的横臂,其中在所述支柱的顶部通过第二章动减速装置连接至所述横臂的一端,所述操作头通过第三章动减速装置连接至所述横臂的另一端,所述第二、第三章动减速装置的输入机构分别连接至电机,所述所述第二、第三章动减速装置的输出机构分别连接至所述横臂和所述操作台,以分别带动所述横臂和所述操作台围绕第二轴线和第三轴线旋转;
    其中所述第一、第二和第三轴线彼此平行,所述第一、第二和第三章动减速装置是根据权利要求5-12任一项所述的章动减速装置。
  18. 一种数控机床,包括:
    基座;
    平移装置,设置在所述基座上,经配置以在一平面中移动;
    设置在所述平移装置上的工作台,其中所述工作台是根据权利要求15所述的双摆角工作台;
    升降装置,设置在所述基座上,经配置以在垂直于所述平面的方向上移动;和
    铣头,设置在所述升降装置上,其中所述铣头是根据权利要求14所述的双摆角铣头。
  19. 一种曳引机,包括;
    机架;
    章动减速装置,由所述机架支撑,其中所述章动减速装置是根据权利要求5-12任一项所述的章动减速装置;
    电机,由所述机架支撑,所述电机连接至所述章动减速装置的输入机构;
    曳引轮,由所述机架支撑,所述章动减速装置的输出机构与所述曳引轮相邻,以带动所述曳引轮旋转;和
    曳引绳,缠绕在所述曳引轮上。
  20. 根据权利要求19所述的曳引机,其中所述机架分段式壳体,所述电机、章动减速装置和曳引轮容纳在所述分段式壳体的相应区段内,并且其中所述电机、章动减速装置和曳引轮分别通过轴承固定至所述分段式壳体。
  21. 一种船舶用锚机,包括:
    基座;
    章动减速装置,由所述基座支撑,其中所述章动减速装置是根据权利要求5-12任一项所述的章动减速装置;
    电机,由所述基座支撑,所述电机连接至所述章动减速装置的输入机构;
    输出盘,由所述由所述基座支撑,所述章动减速装置的输出机构与所述输出盘相邻,以带动所述输出盘旋转。
  22. 一种用于公共场所的回转门,包括:
    旋转门,所述旋转门包括立柱、以及从所述立柱径向向外延伸的多个门体;和
    旋转机构,设置在所述旋转门的顶部,所述旋转机构包括:
    壳体;
    章动减速装置,设置在所述壳体中,其中所述章动减速装置是根据权利要求5-12任一项所述的章动减速装置;
    电机,设置在所述壳体中,所述电机与所述章动减速装置的输入机构相 连;
    其中所述章动减速装置的输出机构与所述立柱的顶端相连,以带动所述旋转门围绕所述立柱进行旋转。
  23. 一种太阳能转换装置,包括:
    基座;
    支撑杆,设置在所述基座上;
    章动减速装置,设置在所述基座与所述支撑杆之间,其中所述章动减速装置是根据权利要求5-12任一项所述的章动减速装置,所述章动减速装置的输入机构与一电机相连,所述章动减速装置的输出机构与所述支撑杆的底部相连,以带动所述支撑杆旋转;和
    采集装置,可摆动地设置在所述支撑杆的顶部。
  24. 根据权利要求23所述的太阳能转换装置,进一步包括第二章动减速装置,设置在所述支撑杆与所述采集装置之间,所述第二章动减速装置是根据权利要求5-12任一项所述的章动减速装置,其中所述第二章动减速装置的输入机构与一第二电机相连,所述章动减速装置的输出机构与所述采集装置相连,以带动所述采集装置摆动。
  25. 一种物料传送装置,包括:
    支架;
    设置在所述支架上的多个辊;
    传送带,设置在所述多个辊上;和
    至少一个章动减速装置,所述章动减速装置是根据权利要求5-12任一项所述的章动减速装置,其中所述至少一个章动减速装置的输入结构共同连接至一电机,所述至少一个章动减速装置的每一个的输出机构连接至所述多个辊的相应辊上。
PCT/CN2019/097517 2018-08-17 2019-07-24 一种端面齿摆线针轮副和章动减速装置 WO2020034816A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019004147.9T DE112019004147T5 (de) 2018-08-17 2019-07-24 Stirnseite-verzahntes Zykloiden-Nadelradpaar und Nutationsreduziergetriebe
US17/266,862 US11841072B2 (en) 2018-08-17 2019-07-24 Transverse cycloidal-pin gear pair and nutation deceleration device
JP2021507965A JP7162729B2 (ja) 2018-08-17 2019-07-24 正面歯サイクロイドピンホイールペア及び章動減速機

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810942688.3 2018-08-17
CN201810942688 2018-08-17
CN201910591871.8A CN110836246B (zh) 2018-08-17 2019-07-01 一种端面齿摆线针轮副和章动减速装置
CN201910591871.8 2019-07-01

Publications (1)

Publication Number Publication Date
WO2020034816A1 true WO2020034816A1 (zh) 2020-02-20

Family

ID=69525125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097517 WO2020034816A1 (zh) 2018-08-17 2019-07-24 一种端面齿摆线针轮副和章动减速装置

Country Status (1)

Country Link
WO (1) WO2020034816A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021779A1 (ja) * 2021-08-18 2023-02-23 グローブライド株式会社 電動巻き上げ装置
EP4273420A4 (en) * 2021-12-22 2024-07-10 Jiang Hong PAIR OF GEARS AND NUTATION SPEED REDUCER

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2485669A1 (fr) * 1980-06-25 1981-12-31 Jouvenel & Cordier Reducteur cycloidal a train conique
US20150024896A1 (en) * 2012-11-13 2015-01-22 National University Corporation Fukushima University Crown gear deceleration mechanism
CN105889446A (zh) * 2014-09-24 2016-08-24 隆礼湘 车床进给和光学元件位置的粗微调机构
CN106246812A (zh) * 2016-09-19 2016-12-21 福州大学 双侧双级内啮合双圆弧锥齿轮章动减速器及工作方法
CN106545622A (zh) * 2016-12-09 2017-03-29 深圳市荣德机器人科技有限公司 摆线针轮减速器
CN208982611U (zh) * 2018-08-17 2019-06-14 北京智能大艾机器人科技有限公司 一种端面齿摆线针轮副和章动减速装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2485669A1 (fr) * 1980-06-25 1981-12-31 Jouvenel & Cordier Reducteur cycloidal a train conique
US20150024896A1 (en) * 2012-11-13 2015-01-22 National University Corporation Fukushima University Crown gear deceleration mechanism
CN105889446A (zh) * 2014-09-24 2016-08-24 隆礼湘 车床进给和光学元件位置的粗微调机构
CN106246812A (zh) * 2016-09-19 2016-12-21 福州大学 双侧双级内啮合双圆弧锥齿轮章动减速器及工作方法
CN106545622A (zh) * 2016-12-09 2017-03-29 深圳市荣德机器人科技有限公司 摆线针轮减速器
CN208982611U (zh) * 2018-08-17 2019-06-14 北京智能大艾机器人科技有限公司 一种端面齿摆线针轮副和章动减速装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021779A1 (ja) * 2021-08-18 2023-02-23 グローブライド株式会社 電動巻き上げ装置
EP4273420A4 (en) * 2021-12-22 2024-07-10 Jiang Hong PAIR OF GEARS AND NUTATION SPEED REDUCER

Similar Documents

Publication Publication Date Title
US5135442A (en) Gear arrangement for transmitting torque through an angle
WO2019114033A1 (zh) 一种变厚机器人关节传动结构
CN110836246B (zh) 一种端面齿摆线针轮副和章动减速装置
CN110425255B (zh) 正弦平面二级活齿减速器
JPH0510399A (ja) 遊星歯車装置
WO2020034816A1 (zh) 一种端面齿摆线针轮副和章动减速装置
CN109899478B (zh) 一种高精度行星少齿差双差速减速机构
WO2017152430A1 (zh) 一种二级串联摆线钢球减速器
KR20110068500A (ko) 다축 싸이클로이드 감속기
CN208982611U (zh) 一种端面齿摆线针轮副和章动减速装置
CN106863347B (zh) 一种模块化两自由度机器人关节
JP2009121494A (ja) 複段減速装置
CN206802206U (zh) 一种多功能行星减速器
CN107989976A (zh) 一种具有换向功能的rv减速器
WO2019200898A1 (zh) 改进的行星减速器
US20210010565A1 (en) Planetary gearbox and associated robot joint and robot
TWI742725B (zh) 關節模組及減速機
CN111043275B (zh) 一种小型双级锤形滚柱活齿减速器
JP5292108B2 (ja) 減速装置とそれを利用する追尾式太陽光発電装置
CN104154185A (zh) 一种内置行星传动高刚度少齿差齿轮传动装置
CN210128044U (zh) 一种机器人行星减速器
WO2019200899A1 (zh) 新型行星减速器
CN109139812A (zh) 一种新型摆线行星减速装置
TWM579232U (zh) 複差動減速器
KR200429619Y1 (ko) 헤리컬 유성감속기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850332

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507965

Country of ref document: JP

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.09.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19850332

Country of ref document: EP

Kind code of ref document: A1