WO2020034783A1 - 一种滚轴式人体全向运动平台及其速度合成方法 - Google Patents

一种滚轴式人体全向运动平台及其速度合成方法 Download PDF

Info

Publication number
WO2020034783A1
WO2020034783A1 PCT/CN2019/094968 CN2019094968W WO2020034783A1 WO 2020034783 A1 WO2020034783 A1 WO 2020034783A1 CN 2019094968 W CN2019094968 W CN 2019094968W WO 2020034783 A1 WO2020034783 A1 WO 2020034783A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
spiral roller
spiral
counterclockwise
gear
Prior art date
Application number
PCT/CN2019/094968
Other languages
English (en)
French (fr)
Inventor
王子峣
魏海坤
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/258,710 priority Critical patent/US11173364B2/en
Publication of WO2020034783A1 publication Critical patent/WO2020034783A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0028Training appliances or apparatus for special sports for running, jogging or speed-walking
    • A63B69/0035Training appliances or apparatus for special sports for running, jogging or speed-walking on the spot
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B22/0235Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B26/00Exercising apparatus not covered by groups A63B1/00 - A63B25/00
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0075Means for generating exercise programs or schemes, e.g. computerized virtual trainer, e.g. using expert databases
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B2022/0271Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills omnidirectional

Definitions

  • the invention relates to the technical field of human body motion equipment, in particular to a roller-type human body omnidirectional motion platform and a speed synthesizing method thereof.
  • a universal running stepping device (201320425296.2)
  • a housing includes an upper cover, The upper cover is provided with a hole, and the treadmill body is disposed in the housing and below the position of the hole.
  • the sensor transmits the force information of the person's running to the main control system, and the main control system controls the adjustment. Running direction of the treadmill body.
  • Object of the invention In order to overcome the shortcomings in the prior art, to provide a roller-type omnidirectional human motion platform with better experience, lighter, more active, easy to maintain, and low noise.
  • the present invention provides a roller-type omnidirectional motion platform for the human body, which includes a casing, a plurality of sets of alternately arranged spiral rollers arranged in the casing, and a motor for driving the spiral rollers.
  • the spiral roller is used to provide a reverse movement speed to the human body moving on the platform surface, so as to realize the human body's moving experience without leaving the surface area of the body.
  • the active movement structure is adopted to eliminate the influence of the human body from the restraint from the waist. Can provide a more realistic mobile experience.
  • the housing includes a base and a body cover, and both sides of the base are provided with a support bearing groove for mounting a spiral roller and a gear groove for gear transmission.
  • the body cover is basically symmetrical with the base, and the difference lies in the body Cover without bottom.
  • one end of the base is provided with two motor mounting slots for fixing and assembling the motor, and the two motor mounting slots are respectively used for fixing the two motors.
  • a support bearing and a gear are provided at both ends of the spiral roller, the support bearing and the gear are respectively fitted on the support bearing groove and the gear groove, and the two gears on the spiral roller are driving gears respectively
  • driven gear the driving gear is fixed on the helical roller and is driven by the motor to drive the helical roller to rotate
  • the driven gear is movably assembled on the helical roller and can freely rotate around the helical roller
  • the spiral Both ends of the roller are provided with a support bearing fixing area for mounting a support bearing, and a driving gear fixing area and a driven gear fixing area are respectively provided, and the driving gear is fixed on the spiral roller through the driving gear fixing area.
  • the driven gear is assembled on the driven gear fixed area of the helical roller through a bearing.
  • the helical roller is divided into a counterclockwise helical roller and a clockwise helical roller, and the shaft bodies of the counterclockwise helical roller and the clockwise helical roller are obliquely embedded in a rotatable direction in a counterclockwise direction and a clockwise direction, respectively.
  • Wheels, the counterclockwise helical roller and the clockwise helical roller are assembled in a staggered space in the base, wherein the driven gear of the counterclockwise helical roller and the drive gear of the clockwise helical roller mesh in a gear slot, counterclockwise
  • the driving gear of the helical roller and the driven gear of the clockwise helical roller mesh in another gear slot.
  • Two motors are used to drive the two rows of gears, so that the two motors can drive all the counterclockwise spiral rollers. Shaft and clockwise spiral roller.
  • the embedded angles of the wheels on the shafts of the counterclockwise spiral roller and the clockwise spiral roller are obliquely 45 degrees counterclockwise and obliquely 45 degrees clockwise, respectively.
  • a method for synthesizing the speed of a roller-type omnidirectional motion platform of a human body which adjusts the speeds of two motors respectively according to the required output closing speed, that is, the speed of the human body in the opposite direction, and drives the counterclockwise spiral roller and the clockwise spiral roller to rotate, specifically for:
  • the axis of the counterclockwise spiral roller is rotated counterclockwise by 45 degrees as the y direction.
  • Rotating 45 degrees is the x direction, that is, the axis of the wheel on the clockwise spiral roller is the x direction. From this, a coordinate system is constructed.
  • the present invention has the following advantages:
  • Adopting an active movement structure which eliminates the influence of the human body from the restraint from the waist, can provide a more realistic feeling of movement, effectively solve the problem of virtual space movement restricted by the real space, and improve the experience effect;
  • FIG. 1 is an overall schematic diagram of a base of the present invention
  • FIG. 2 to FIG. 5 are partial schematic diagrams of the base of the present invention.
  • FIG. 6 is a schematic diagram of a body cover of the present invention.
  • FIG. 7 is a schematic diagram of a motor of the present invention.
  • FIG. 9 is a schematic diagram of a driving gear according to the present invention.
  • FIG. 10 is a schematic diagram of wheels and axles used in the present invention.
  • FIG. 11 is an overall schematic view of a counterclockwise spiral roller in the present invention.
  • 16 is an overall schematic view of a clockwise spiral roller in the present invention.
  • Figure 20 is a schematic diagram of the complete assembly of the present invention.
  • the invention provides a roller-type omnidirectional motion platform of a human body, which comprises a casing, a plurality of sets of alternately arranged spiral rollers arranged in the casing, and two motors 200 for driving the spiral rollers.
  • the casing includes a base 100 and a body cover. 105.
  • the base 100 of the motion platform in this embodiment is shown in FIG. 1, and details of parts 100 a, 100 b, 100 d, and 100 c circled in FIG. 1 are shown in FIG. 2, FIG. 3, FIG. 4, and FIG. 5, respectively.
  • the side connecting the lines 100a and 100b and the side connecting the lines 100d and 100c each have a support bearing groove 101 for mounting a spiral roller and a gear groove 102 for gear transmission.
  • On one side of the line connected to 100d there are two motor mounting slots, namely right motor mounting slot 103 and left motor mounting slot 104, and two motors 200 are respectively fixed and assembled in right motor mounting slot 103 and left motor mounting slot 104.
  • the body cover 105 and the base 100 are basically symmetrical. The difference is that the body cover 105 is bottomless. After the screw roller and the motor 200 are assembled on the base 100, the body cover 105 and the base 100 can be assembled. Complete the fixing of the entire fuselage.
  • the motor 200 includes a rotating shaft 201 and a gear fixing area 202, wherein the gear fixing area 202 is fixedly matched with the driving gear 400 for transmission.
  • the bearing fixing hole 301 in the center of the driven gear 300 can be matched with the bearing 705, so that the driven gear 300 can be wound around the driven gear fixing area 703 on the helical roller.
  • the spiral roller rotates freely.
  • the center of the driving gear 400 is a polygonal fixing hole 401, which can cooperate with the gear fixing area 202 on the motor 200, so that the motor can drive the gear, and can also cooperate with the driving gear fixing area 706 on the spiral roller. This allows the gear to drive the helical shaft.
  • the wheel 501 is provided with an axle 502, and the wheel 501 can only rotate around the axle 502. For any speed or force at a certain angle with the direction of the axle 502, friction occurs with the wheel 501 and only occurs without sliding. In the case of rotation, the speed or force in the direction of the wheel axis 502 will be canceled, and only the speed or force in the direction of the wheel rotation will be decomposed and retained.
  • FIG. 11 the details of 700a circled on the counterclockwise helical roller 700 are shown in FIGS. 12 and 13, and the details of 700b are shown in FIGS. 14 and 15.
  • the shaft body is inserted into the rotatable wheel 501 at an oblique angle of 45 degrees counterclockwise. Both ends of the roller are provided with a support bearing 704 and a gear at the support bearing fixing area 702. Referring to FIGS. 14 and 15, the end gear The anti-clockwise helical roller 700 is fixed by a driving gear fixing area 706, so the gear can drive the anti-clockwise helical roller 700 to rotate, which is called a driving gear 400.
  • a driving gear 400 Referring to FIGS.
  • the end gear is assembled using a bearing 705
  • the gear can freely rotate around the roller, which is called the driven gear 300.
  • the counterclockwise helical roller 700 only supports the driven gear 300 effect.
  • the clockwise spiral roller 800 and the counterclockwise spiral roller 700 are mirror-symmetrical, that is, the direction of the embedded wheel 501 is 45 degrees clockwise, and the structure of the two ends of the clockwise spiral roller 800 and counterclockwise
  • the spiral roller 700 is the same, both of which have a driving gear 400 fixed at one end and a driven gear 300 assembled at the other end.
  • the clockwise spiral roller 800 and the counterclockwise spiral roller 700 it only needs to ensure that the direction of the wheel 501 embedded by the two has a certain angle, and the wheel direction is not parallel to the axis of the roller.
  • the synthesis rule of plane vectors is to be able to synthesize a resultant vector in any direction on the entire plane.
  • the embedded wheels 501 are inclined at an angle of 45 degrees clockwise and at an angle of 45 degrees counterclockwise, respectively.
  • the counterclockwise helical roller 700 and the clockwise helical roller 800 are staggered and assembled in the base 100 through a support bearing 704.
  • the support bearing 704 is placed in the support bearing groove 101.
  • the moving gear 300 meshes with the driving gear 400 of the clockwise helical roller 800 in the same gear groove 102, and the driving gear 400 of the counterclockwise helical roller 700 and the driven gear 300 of the clockwise helical roller 800 are in another gear groove 102.
  • Middle meshing is
  • a plurality of counterclockwise helical rollers 700 and clockwise helical rollers 800 are alternately assembled in the base 100 through the support bearing 704 at intervals, wherein the counterclockwise spiral roller
  • One end of the 700 equipped with the driven gear 300 and one end of the clockwise helical roller 800 equipped with the driving gear 400 are arranged on a surface, which is driven by a motor 200 through the driving gear 400, that is, the motor 200 on this surface will drive all Clockwise helical roller 800, on the other side
  • one end of the counterclockwise helical roller 700 with the driving gear 400 and one end of the clockwise helical roller 800 with the driven gear 300 are arranged on one side, and this side is controlled by another motor 200 drive, that is, the motor 200 can drive all the counterclockwise spiral rollers 700.
  • the helical roller in a certain direction is driven by the driving gear 400 driven by the same motor 200.
  • the transmission method is not limited to the use of driven gears 300 to drive between the driving gears 400.
  • the use of a chain to drive the driving gears 400 on the same side or placing a motor for each driving gear 400 is feasible and is in noise.
  • the driven gear 300 is used for transmission between the driving gears 400 here.
  • the body cover 105 and the base 100 are assembled, and then the entire fuselage can be fixed.
  • the invention is used to provide a reverse moving speed for the human body moving on the surface of the body, so as to realize the moving experience of the human body without leaving the surface area of the body.
  • the speed adjusts the speed of the two motors respectively, and drives the counterclockwise spiral roller 700 and the clockwise spiral roller 800 to rotate, specifically:
  • the axis of the counterclockwise spiral roller is rotated counterclockwise by 45 degrees as the y direction.
  • Rotating 45 degrees is the x direction, that is, the axis of the wheel on the clockwise spiral roller is the x direction. From this, a coordinate system is constructed.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Transmission Devices (AREA)
  • Rehabilitation Tools (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

本发明公开了一种滚轴式人体全向运动平台,主要包括外壳、置于外壳内部的若干组交替放置的螺旋滚轴和用于驱动螺旋滚轴的电机,所述螺旋滚轴分为顺时针螺旋滚轴和逆时针螺旋滚轴,其中顺时针螺旋滚轴轴身上按一定角度斜向嵌入可转动的轮子,滚轴两端装有齿轮和起支撑作用的轴承,逆时针螺旋滚轴与顺时针螺旋滚轴成镜像对称。本发明呈现出了一种主动式的人体全向运动平台,与被动式的全向运动平台相比,人体不需要被束缚,可提供更加真实的移动感受,有效的解决了虚拟空间移动受现实空间限制的问题,并且具有低噪声,机身轻薄等特点。

Description

一种滚轴式人体全向运动平台及其速度合成方法 技术领域
本发明涉及人体运动设备技术领域,具体涉及一种滚轴式人体全向运动平台及其速度合成方法。
背景技术
在计算机网络技术迅猛发展的现代社会,网络技术不仅带来科技经济的发展,也带了休闲娱乐功能的革新,由此虚拟现实环境的终端模拟器类型多样,但大多的终端模拟器中,都需要大面积的场地进行运动,灵敏度不够,对于跳跃下蹲转向等运动无法自如实现,感受逼真度低,且由于人体移动时,没有防护措施容易造成伤害,这些都极大地制约了现有人体万向移动平台的发展。
为了解决现有技术存在的问题,人们进行了长期的探索,提出了各式各样的解决方案。例如“一种万向跑步踩踏装置(201320425296.2)”,包括壳体、跑步机本体、主控制系统和传感器,所述传感器和跑步机本体均与主控制系统电连接所述壳体包括上盖,所述上盖上设置有一洞口,所述跑步机本体设置于壳体内、洞口所在位置的下方所述传感器传递其感应到的人跑步的受力信息到主控制系统,所述主控制系统控制调节跑步机本体运行方向。
又如“虚拟现实人体全向移动输入平台(201510333880.9)”解决了防护效果差,人体运动时安全性低的问题。但其仍属于被动式的跑步机,造成人体需要受到来自腰部的束缚,在倒退行走时极不自然。
在“一种基于速度分解与合成的全向运动输入平台(201611214960.3)”中,其有效的解决了行走不自然的问题,且结构简单。但由于使用链条式的方法,存在链条传动固有的缺点,即容易出现跳齿,脱节等现象,且维护成本较高,此外由于链条与其他部件的摩擦,所产生的噪音问题也难以解决。
发明内容
发明目的:为了克服现有技术中存在的不足,提供一种体验效果更佳、更加轻薄、主动式、易于维护、低噪音的滚轴式人体全向运动平台。
技术方案:为实现上述目的,本发明提供一种滚轴式人体全向运动平台,包括外壳、设置在外壳内的若干组交替放置的螺旋滚轴以及用于驱动螺旋滚轴的电机,所述螺旋滚轴用于给平台表面上运动的人体提供一个反向的移动速度,从而实现人体不离开机体表面区域的移动体验,采用主动式的运动结构,消除了人体受到来自腰部的束缚的影响, 可提供更加真实的移动感受。
进一步地,所述外壳包括底座和机体盖,所述底座的两侧边均设置有用于安装螺旋滚轴的支撑轴承槽以及用于齿轮传动的齿轮槽,机体盖与底座基本对称,区别在于机体盖无底。
进一步地,所述底座的一侧端设置有两个用于固定和装配电机的电机安装槽,两个电机安装槽分别用于固定两个电机。
进一步地,所述螺旋滚轴的两端均设置有支撑轴承和齿轮,所述支撑轴承和齿轮分别配合在支撑轴承槽和齿轮槽上,所述螺旋滚轴上的两个齿轮分别为主动齿轮和从动齿轮,所述主动齿轮固定在螺旋滚轴上在电机作用下用于驱动螺旋滚轴转动,所述从动齿轮活动装配在螺旋滚轴上可绕螺旋滚轴自由转动,所述螺旋滚轴的两端均设置有用于安装支撑轴承的支撑轴承固定区并且分别设置有主动齿轮固定区和从动齿轮固定区,所述主动齿轮通过主动齿轮固定区固定在螺旋滚轴上,所述从动齿轮通过轴承装配在螺旋滚轴的从动齿轮固定区上。
进一步地,所述螺旋滚轴分为逆时针螺旋滚轴和顺时针螺旋滚轴,所述逆时针螺旋滚轴和顺时针螺旋滚轴的轴身上分别按照逆时针方向和顺时针方向斜向嵌入可转动的轮子,所述逆时针螺旋滚轴和顺时针螺旋滚轴间隔交错装配在底座中,其中,逆时针螺旋滚轴的从动齿轮与顺时针螺旋滚轴的主动齿轮在一个齿轮槽中啮合,逆时针螺旋滚轴的主动齿轮与顺时针螺旋滚轴的从动齿轮在另一个齿轮槽中啮合,两个电机分别用于驱动这两排齿轮,这样两个电机便能够分别驱动所有的逆时针螺旋滚轴和顺时针螺旋滚轴。
进一步地,所述逆时针螺旋滚轴和顺时针螺旋滚轴的轴身上轮子的嵌入角度分别为逆时针斜向45度和顺时针斜向45度。
一种滚轴式人体全向运动平台的速度合成方法,根据需要的输出合速度,即人体运动反方向速度分别调节两个电机的速度,驱动逆时针螺旋滚轴和顺时针螺旋滚轴转动,具体为:
在机体平面上,以逆时针螺旋滚轴轴向,逆时针转动45度为y方向,即以逆时针螺旋滚轴上轮子的轴向为y方向,以顺时针螺旋滚轴轴向,顺时针转动45度为x方向,即以顺时针螺旋滚轴上轮子的轴向为x方向。由此构建坐标系,当平台表面需要大小为V w、角度为w的输出合速度时,逆时针螺旋滚轴的转动线速度大小需要为V 1=V w*sin(w)/sin(pi/4),顺时针螺旋滚轴的转动线速度大小需要为V 2=V w*cos(w)/sin(pi/4),因此驱动逆时针螺旋滚轴的电机转速为W 1=a*V 1,驱动逆时针螺旋滚轴的电机转速为W 2=a*V 2,其中a与齿轮半径,传动比有关,为一常数。
有益效果:本发明与现有技术相比,具备如下优点:
1、采用主动式的运动结构,消除了人体受到来自腰部的束缚的影响,可提供更加真实的移动感受,有效的解决了虚拟空间移动受现实空间限制的问题,提升了体验效果;
2、由于利用螺旋滚轴转动的方式代替了原先的使用链条式的方法,解决了原先容易出现跳齿,脱节等现象带来的维护困难且维护成本高的问题,不但降低了维护难度,而且维护成本也明显降低;
3、由于利用螺旋滚轴转动的方式代替了原先的使用链条式的方法,解决了原先链条与其他部件的摩擦所产生的噪音问题,实现了低噪音性能,优化了体验效果。
附图说明
图1为本发明底座整体示意图;
图2~图5分别为本发明底座局部细节示意图;
图6为本发明机体盖示意图;
图7为本发明电机示意图;
图8为本发明从动齿轮示意图;
图9为本发明主动齿轮示意图;
图10为本发明所用轮子及轮轴示意图;
图11为本发明中逆时针螺旋滚轴整体示意图;
图12~15分别为本发明中螺旋滚轴局部细节示意图;
图16为本发明中顺时针螺旋滚轴整体示意图;
图17~19为本发明部分装配示意图;
图20为本发明完整装配示意图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。
本发明提供一种滚轴式人体全向运动平台,包括外壳、设置在外壳内的若干组交替放置的螺旋滚轴以及用于驱动螺旋滚轴的两个电机200,外壳包括底座100和机体盖105。
如图1所示,为本实施例中的运动平台的底座100,其中,图1中圈出的100a,100b,100d,100c部分的细节分别由图2、图3、图4、图5所显示,根据图1~图5可知,100a与100b连线的一边和100d与100c连线的一边均具有用于安装螺旋滚轴的支撑轴承槽101和用于齿轮传动的齿轮槽102,在100a与100d连线的一边,有两个电机安装槽分别为右电机安装槽103和左电机安装槽104,两个电机200分别固定和装配在右电机安装槽103和左电机安装槽104内。
如图6所示,机体盖105与底座100基本对称,区别在于机体盖105无底,在螺旋滚轴和电机200等在底座100上装配完成后,机体盖105与底座100进行装配,即可完成对整个机身的固定。
如图7所示,电机200包括转轴201和齿轮固定区202,其中齿轮固定区202与主动齿轮400固定配合,用于进行传动。
如图8和图13所示,从动齿轮300中心的轴承固定孔301可与轴承705配合,进而使得从动齿轮300在于螺旋滚轴上的从动齿轮固定区703配合后,使得其可绕螺旋滚轴自由转动。
如图9所示,主动齿轮400中心为多边形固定孔401,可与电机200上的齿轮固定区202配合,使得电机可驱动该齿轮,也可以与螺旋滚轴上的主动齿轮固定区706配合,使得该齿轮可驱动该螺旋转轴。
如图10所示,轮子501上设置有轮轴502,轮子501仅能绕轮轴502转动,对于任意一个与轮轴502方向成一定角度的速度或力,在与轮子501摩擦,在不产生滑动仅产生转动的情况,沿轮轴502方向的速度或力会被抵消掉,仅分解保留沿轮子转动方向的速度或力。
如图11所示,在逆时针螺旋滚轴700上圈出的700a的细节部分由图12和图13所展示,700b的细节部分由图14和图15所展示,逆时针螺旋滚轴700的轴身上按逆时针斜向45度嵌入可转动的轮子501,滚轴两端都在支撑轴承固定区702处安装有起支撑作用的支撑轴承704和齿轮,参照图14和图15,该端齿轮与该逆时针螺旋滚轴700通过主动齿轮固定区706固定,因此该齿轮可驱动该逆时针螺旋滚轴700转动,称为主动齿轮400,参照图12和图13,该端齿轮使用轴承705装配在该逆时针螺旋滚轴700的从动齿轮固定区703,因此该齿轮可绕滚轴自由转动,称为从动齿轮300,该逆时针螺旋滚轴700对从动齿轮300仅起到支撑的作用。
如图16所示,顺时针螺旋滚轴800和逆时针螺旋滚轴700成镜像对称,即所嵌入的轮子501方向为顺时针斜向45度,顺时针螺旋滚轴800两端的结构和逆时针螺旋滚轴700相同,皆为一端固定有主动齿轮400,另一端装配有从动齿轮300。这里应当指出,对于顺时针螺旋滚轴800和逆时针螺旋滚轴700,其只要保证两者所嵌入的轮子501方向具有一定的夹角,且轮子方向与滚轴轴向不平行即可,根据平面矢量的合成法则,即能够合成整个平面上任意方向的合矢量。在本实施例,所嵌入轮子501分别为顺时针斜向45度和逆时针斜向45度。
如图17所示,逆时针螺旋滚轴700和顺时针螺旋滚轴800通过支撑轴承704间隔交错装配在底座100中,其中支撑轴承704置于支撑轴承槽101中,逆时针螺旋滚轴 700的从动齿轮300与顺时针螺旋滚轴800的主动齿轮400在同一齿轮槽102中啮合,逆时针螺旋滚轴700的主动齿轮400与顺时针螺旋滚轴800的从动齿轮300在另一齿轮槽102中啮合。
依据上述图17中的连接方式,如图18和19所示,将若干个逆时针螺旋滚轴700和顺时针螺旋滚轴800通过支撑轴承704间隔交错装配在底座100中,其中逆时针螺旋滚轴700装有从动齿轮300的一端与顺时针螺旋滚轴800装有主动齿轮400的一端排列在一个面,此面由一个电机200通过主动齿轮400驱动,即此面的电机200将驱动所有的顺时针螺旋滚轴800,在另一边,逆时针螺旋滚轴700装有主动齿轮400的一端与顺时针螺旋滚轴800装有从动齿轮300的一端排列在一个面,此面由另一个电机200驱动,即该电机200可以驱动所有的逆时针螺旋滚轴700。本实施例中某一方向的螺旋滚轴是由同一电机200带动主动齿轮400进行的驱动的,在每两个主动齿轮400间存在一个从动齿轮300,用于转动的传动,在这里应当指出的是,该传动方式不限于使用从动齿轮300进行主动齿轮400间的传动,使用链条驱动同一侧的主动齿轮400或对每个主动齿轮400放置一个电机等方法,都是可行的,处于噪声,可靠性等考虑,这里使用从动齿轮300进行主动齿轮400间的传动。
如图20所示,待上述所有装配操作在底座100上完成后,将机体盖105与底座100进行装配,即可完成对整个机身的固定。
本发明用于为在机体表面上运动的人体提供一个反向的移动速度,从而实现人体不离开机体表面区域的移动体验,如图18所示为根据需要的输出合速度,即人体运动反方向速度分别调节两个电机的速度,驱动逆时针螺旋滚轴700和顺时针螺旋滚轴800进行转动,具体为:
在机体平面上,以逆时针螺旋滚轴轴向,逆时针转动45度为y方向,即以逆时针螺旋滚轴上轮子的轴向为y方向,以顺时针螺旋滚轴轴向,顺时针转动45度为x方向,即以顺时针螺旋滚轴上轮子的轴向为x方向。由此构建坐标系,当平台表面需要大小为V w、角度为w的输出合速度时,逆时针螺旋滚轴的转动线速度大小需要为V 1=V w*sin(w)/sin(pi/4),顺时针螺旋滚轴的转动线速度大小需要为V 2=V w*cos(w)/sin(pi/4),因此驱动逆时针螺旋滚轴的电机转速为W 1=a*V 1,驱动逆时针螺旋滚轴的电机转速为W 2=a*V 2,其中a与齿轮半径,传动比有关,为一常数。

Claims (10)

  1. 一种滚轴式人体全向运动平台,其特征在于:包括外壳、设置在外壳内的若干组交替放置的螺旋滚轴以及用于驱动螺旋滚轴的电机,所述螺旋滚轴用于给平台表面上运动的人体提供一个反向的移动速度。
  2. 根据权利要求1所述的一种滚轴式人体全向运动平台,其特征在于:所述外壳包括底座和机体盖,所述底座的两侧边均设置有用于安装螺旋滚轴的支撑轴承槽以及用于齿轮传动的齿轮槽。
  3. 根据权利要求1或2所述的一种滚轴式人体全向运动平台,其特征在于:所述底座的一侧端设置有两个用于固定和装配电机的电机安装槽。
  4. 根据权利要求2所述的一种滚轴式人体全向运动平台,其特征在于:所述螺旋滚轴的两端均设置有支撑轴承和齿轮,所述支撑轴承和齿轮分别配合在支撑轴承槽和齿轮槽上。
  5. 根据权利要求4所述的一种滚轴式人体全向运动平台,其特征在于:所述螺旋滚轴上的两个齿轮分别为主动齿轮和从动齿轮,所述主动齿轮固定在螺旋滚轴上在电机作用下用于驱动螺旋滚轴转动,所述从动齿轮活动装配在螺旋滚轴上可绕螺旋滚轴自由转动。
  6. 根据权利要求5所述的一种滚轴式人体全向运动平台,其特征在于:所述螺旋滚轴的两端均设置有用于安装支撑轴承的支撑轴承固定区并且分别设置有主动齿轮固定区和从动齿轮固定区,所述主动齿轮通过主动齿轮固定区固定在螺旋滚轴上,所述从动齿轮通过轴承装配在螺旋滚轴的从动齿轮固定区上。
  7. 根据权利要求5所述的一种滚轴式人体全向运动平台,其特征在于:所述螺旋滚轴分为逆时针螺旋滚轴和顺时针螺旋滚轴,所述逆时针螺旋滚轴和顺时针螺旋滚轴的轴身上分别按照逆时针方向和顺时针方向斜向嵌入可转动的轮子。
  8. 根据权利要求7所述的一种滚轴式人体全向运动平台,其特征在于:所述逆时针螺旋滚轴和顺时针螺旋滚轴间隔交错装配在底座中,其中,逆时针螺旋滚轴的从动齿轮与顺时针螺旋滚轴的主动齿轮在一个齿轮槽中啮合,逆时针螺旋滚轴的主动齿轮与顺时针螺旋滚轴的从动齿轮在另一个齿轮槽中啮合,两个电机分别用于驱动这两排齿轮。
  9. 根据权利要求7所述的一种滚轴式人体全向运动平台,其特征在于:所述逆时针螺旋滚轴和顺时针螺旋滚轴的轴身上轮子的嵌入角度分别为逆时针斜向45度和顺时针斜向45度。
  10. 一种根据权利要求9所述的一种滚轴式人体全向运动平台的速度合成方法,其特征在于:
    根据需要的输出合速度,即人体运动反方向速度分别调节两个电机的速度,驱动逆 时针螺旋滚轴和顺时针螺旋滚轴,具体为:
    在机体平面上,以逆时针螺旋滚轴轴向,逆时针转动45度为y方向,即以逆时针螺旋滚轴上轮子的轴向为y方向,以顺时针螺旋滚轴轴向,顺时针转动45度为x方向,即以顺时针螺旋滚轴上轮子的轴向为x方向。由此构建坐标系,当平台表面需要大小为Vw、角度为w的输出合速度时,逆时针螺旋滚轴的转动线速度大小需要为V 1=Vw*sin(w)/sin(pi/4),顺时针螺旋滚轴的转动线速度大小需要为V 2=Vw*cos(w)/sin(pi/4),因此驱动逆时针螺旋滚轴的电机转速为W 1=a*V 1,驱动逆时针螺旋滚轴的电机转速为W 2=a*V 2,其中a与齿轮半径,传动比有关,为一常数。
PCT/CN2019/094968 2018-08-14 2019-07-08 一种滚轴式人体全向运动平台及其速度合成方法 WO2020034783A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/258,710 US11173364B2 (en) 2018-08-14 2019-07-08 Roller-type omnidirectional physical exercise platform and speed synthesis method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810922105.0 2018-08-14
CN201810922105.0A CN109248415B (zh) 2018-08-14 2018-08-14 一种滚轴式人体全向运动平台及其速度合成方法

Publications (1)

Publication Number Publication Date
WO2020034783A1 true WO2020034783A1 (zh) 2020-02-20

Family

ID=65049332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094968 WO2020034783A1 (zh) 2018-08-14 2019-07-08 一种滚轴式人体全向运动平台及其速度合成方法

Country Status (3)

Country Link
US (1) US11173364B2 (zh)
CN (1) CN109248415B (zh)
WO (1) WO2020034783A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109248415B (zh) 2018-08-14 2020-09-11 东南大学 一种滚轴式人体全向运动平台及其速度合成方法
EP3860727A4 (en) * 2018-10-02 2022-07-06 OmniPad, Inc. OMNIDIRECTIONAL MOVABLE SURFACE INCLUDING MOTOR DRIVE
CN110013644A (zh) * 2019-04-26 2019-07-16 赵思俨 一种拼接地板式全向跑步机底盘
CN114348528A (zh) * 2022-01-26 2022-04-15 北京国承万通信息科技有限公司 皮带滚轴组合输送平台及其应用方法
CN114394363B (zh) * 2022-01-26 2024-04-19 北京国承万通信息科技有限公司 滚轴装置、滚轴设备以及滚轴装置的应用方法
CN114522395B (zh) * 2022-02-18 2023-02-28 东南大学 一种模块化全向运动平台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2391668A1 (es) * 2010-10-18 2012-11-28 Aritex Cading, S.A. Plataforma de transporte o vehículo similar con movimiento omnidireccional para traslado de cargas voluminosas.
CN102896971A (zh) * 2012-09-12 2013-01-30 凯迈(洛阳)测控有限公司 一种全方位轮及使用该全方位轮的全向移动平台
CN203681148U (zh) * 2013-11-01 2014-07-02 库卡罗伯特有限公司 万向轮以及具有这种万向轮的全向运动车辆
CN204587079U (zh) * 2015-04-27 2015-08-26 中国科学院沈阳自动化研究所 移动平台
CN106693311A (zh) * 2016-12-26 2017-05-24 王子峣 一种基于速度分解与合成的全向运动输入平台
CN109248415A (zh) * 2018-08-14 2019-01-22 东南大学 一种滚轴式人体全向运动平台及其速度合成方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2842365A (en) * 1956-02-07 1958-07-08 Thomas F Kelley Physical exerciser
US4274625A (en) * 1978-12-26 1981-06-23 Salvatore Gaetano Exercising apparatus
US5562572A (en) * 1995-03-10 1996-10-08 Carmein; David E. E. Omni-directional treadmill
US6152854A (en) * 1996-08-27 2000-11-28 Carmein; David E. E. Omni-directional treadmill
US7399258B1 (en) * 2001-11-20 2008-07-15 Sugar Thomas G Omni-directional treadmill
US6758323B2 (en) * 2002-05-30 2004-07-06 The Laitram Corporation Singulating conveyor
ITBO20030171A1 (it) * 2003-03-28 2004-09-29 Meccanica Diesse S R L Attrezzo ginnico per esercizi di deambulazione e corsa.
US20090111670A1 (en) * 2003-05-29 2009-04-30 Julian D Williams Walk simulation apparatus for exercise and virtual reality
US7470218B2 (en) * 2003-05-29 2008-12-30 Julian David Williams Walk simulation apparatus for exercise and virtual reality
US7780573B1 (en) * 2006-01-31 2010-08-24 Carmein David E E Omni-directional treadmill with applications
US7682291B2 (en) * 2006-05-22 2010-03-23 Reel Efx, Inc. Omni-directional treadmill
DE102006040485A1 (de) * 2006-08-30 2008-03-20 Technische Universität München Vorrichtung mit einer in zwei Raumrichtungen bewegbaren Oberfläche
KR100867171B1 (ko) * 2007-07-11 2008-11-06 정상수 무빙머신
US7878284B1 (en) * 2007-11-29 2011-02-01 Shultz Jonathan D Omni-directional tread and contiguous moving surface
DE102008058020A1 (de) * 2008-11-19 2010-05-20 Zebris Medical Gmbh Anordnung zum Training des Ganges
US8790222B2 (en) * 2010-07-29 2014-07-29 George Burger Single belt omni directional treadmill
EP2522403B1 (en) * 2011-05-10 2018-03-14 MSE Omnifinity AB A device for allowing a user to walk or run on the spot in an arbitrary direction and control method therefor
US20130087430A1 (en) * 2011-10-05 2013-04-11 Kirk-Rudy, Inc. Material handling station
RU2643667C2 (ru) * 2012-10-24 2018-02-02 Ян ГЕТГЕЛУК Локомоционная система и устройство
CN203447687U (zh) 2013-07-17 2014-02-26 苏州奥奇信息技术有限公司 万向跑步踩踏装置
US20180036880A1 (en) * 2014-05-06 2018-02-08 Kenneth Dean Stephens, Jr. Environment Replicator for Proxy Robot Handlers
KR101670718B1 (ko) * 2015-05-29 2016-10-31 경상대학교산학협력단 전 방향 트레드밀 장치
CN104971469B (zh) 2015-06-16 2017-09-15 杭州虚现科技有限公司 虚拟现实人体全向移动输入平台
CN106110573B (zh) * 2016-07-28 2019-05-14 京东方科技集团股份有限公司 全向移动平台及其控制方法、跑步机
EP3509712B1 (en) * 2016-09-06 2021-04-21 Sony Corporation Apparatus for omnidirectional locomotion
KR20180038629A (ko) * 2016-10-07 2018-04-17 최해용 무동력 전 방향 걷기 시스템 장치
TR201614631A1 (tr) * 2016-10-18 2018-04-24 Tugra Sahiner Bi̇r sanal gerçekli̇k hareket platformu
US10259653B2 (en) * 2016-12-15 2019-04-16 Feedback, LLC Platforms for omnidirectional movement
KR102542293B1 (ko) * 2016-12-27 2023-06-12 엘마 루델스토퍼 전방향성 트레드밀
US10416754B2 (en) * 2017-01-30 2019-09-17 Disney Enterprises, Inc. Floor system providing omnidirectional movement of a person walking in a virtual reality environment
FR3066397A1 (fr) * 2017-05-22 2018-11-23 Assistance Publique Hopitaux De Paris Dispositif d'entrainement a la marche
CN207001531U (zh) * 2017-06-29 2018-02-13 上海芝柯智能科技有限公司 一种全向轮传送带
CN107137875B (zh) * 2017-06-30 2019-03-12 李琦锋 一种用于虚拟现实的全向跑步装置
CN207270647U (zh) * 2017-09-14 2018-04-27 李志远 摩擦轮可转向式全向运动平台
CN108313664A (zh) * 2018-01-21 2018-07-24 新昌县城关新胜轴承厂 一种煤矿皮带机机尾刮煤渣杂质的自动清洁装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2391668A1 (es) * 2010-10-18 2012-11-28 Aritex Cading, S.A. Plataforma de transporte o vehículo similar con movimiento omnidireccional para traslado de cargas voluminosas.
CN102896971A (zh) * 2012-09-12 2013-01-30 凯迈(洛阳)测控有限公司 一种全方位轮及使用该全方位轮的全向移动平台
CN203681148U (zh) * 2013-11-01 2014-07-02 库卡罗伯特有限公司 万向轮以及具有这种万向轮的全向运动车辆
CN204587079U (zh) * 2015-04-27 2015-08-26 中国科学院沈阳自动化研究所 移动平台
CN106693311A (zh) * 2016-12-26 2017-05-24 王子峣 一种基于速度分解与合成的全向运动输入平台
CN109248415A (zh) * 2018-08-14 2019-01-22 东南大学 一种滚轴式人体全向运动平台及其速度合成方法

Also Published As

Publication number Publication date
CN109248415A (zh) 2019-01-22
CN109248415B (zh) 2020-09-11
US11173364B2 (en) 2021-11-16
US20210245025A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
WO2020034783A1 (zh) 一种滚轴式人体全向运动平台及其速度合成方法
US20230364778A1 (en) Drive Unit for Robotic Manipulators
US20200327824A1 (en) Modular Electro-Mechanical Agent
US20110056321A1 (en) Robot joint driving method, computer-readable medium, device assembly and robot having the same
US7670230B2 (en) Transmission mechanism for balance training apparatus
US20070021695A1 (en) Push kneading device of massager
US10603539B2 (en) Omnidirectional treadmill apparatus
CN102821918A (zh) 机器人手和机器人装置
CN108942907B (zh) 基于并联机构的模块化蛇形机器人
CN109126024B (zh) 一种内收式人体全向运动平台
CN1333439A (zh) 行星齿轮变速装置
CN106693311B (zh) 一种基于速度分解与合成的全向运动输入平台
KR102530259B1 (ko) 측면 기어벨트를 구비한 2차원 트레드밀
Specian et al. Quori: A community-informed design of a socially interactive humanoid robot
US20190151701A1 (en) Interacting Exercise Device
JP2000237985A (ja) 関節機構とロボット
Wu et al. Design and analysis of a novel multi-legged horse-riding simulation vehicle for equine-assisted therapy
KR101848427B1 (ko) 사이클 거치형 무동력 시뮬레이션 장치
JP6845600B1 (ja) トビムシの運動メカニズムに基づく複合運動ロボット
US20170234406A1 (en) Self-pivoting drive for spherical-form motion simulators
KR100558904B1 (ko) 걸어다니는 교육용 로봇
US20190201795A1 (en) Self-pivoting drive with internal gears for spherical-form motion simulators
CN107224716B (zh) 一种旋转式立体迷宫主体
JPH0325488A (ja) 多軸モーションシミュレータ
JP4756360B2 (ja) 球体輪駆動機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19850331

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.04.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19850331

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.09.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19850331

Country of ref document: EP

Kind code of ref document: A1