WO2020034781A1 - 显示组件和电子设备 - Google Patents

显示组件和电子设备 Download PDF

Info

Publication number
WO2020034781A1
WO2020034781A1 PCT/CN2019/094730 CN2019094730W WO2020034781A1 WO 2020034781 A1 WO2020034781 A1 WO 2020034781A1 CN 2019094730 W CN2019094730 W CN 2019094730W WO 2020034781 A1 WO2020034781 A1 WO 2020034781A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display screen
display
micro
layer
Prior art date
Application number
PCT/CN2019/094730
Other languages
English (en)
French (fr)
Inventor
张海平
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2020034781A1 publication Critical patent/WO2020034781A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing

Definitions

  • the present application relates to the technical field of electronic products, and in particular, to a display component and an electronic device.
  • the fingerprint module of an electronic device is usually located in a non-display area of the screen.
  • a through-hole is provided in the non-display area.
  • the fingerprint module is exposed from the through-hole for finger pressing to identify the fingerprint. This design limits the screen ratio of electronic devices.
  • An embodiment of the present application provides a display assembly including a display screen, a light-concentrating layer, and a plurality of photosensitive units that are sequentially stacked; the display screen has a plurality of pixels arranged in an array, and an interval between any two adjacent pixels, The interval includes a first interval; a plurality of micro-through holes are provided on the light-concentrating layer; at least two micro-through holes are aligned with the first interval and are aligned with the same photosensitive unit.
  • An embodiment of the present application further provides a display component.
  • the display component includes a display screen, a light-concentrating layer, and a plurality of photosensitive units.
  • the light-concentrating layer is located between the display screen and the several photosensitive units.
  • the display screen has a plurality of pixels arranged in an array, and there is a gap between any two adjacent pixels, the gap includes a first gap; a plurality of micro-through holes are provided on the light-concentrating layer, at least two The opening direction of the micro-through holes is toward the first interval, and the opening directions of at least two of the micro-through holes are toward the same photosensitive unit.
  • An embodiment of the present application further provides an electronic device including a display component.
  • the display component includes a display screen, a light collecting layer, and a plurality of photosensitive units that are sequentially stacked.
  • the display screen has a plurality of pixels arranged in an array, and any two There is a gap between adjacent pixels, and the gap includes a first gap; a plurality of micro-through holes are provided on the light-concentrating layer; at least two micro-through holes are aligned with the first interval and are aligned with the same photosensitive unit.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional structure diagram of a display module according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a distribution of pixel intervals in the display screen in FIG. 2 in a top view;
  • FIG. 4 is a schematic diagram of fingerprint identification of an object to be identified
  • FIG. 5 is a schematic diagram of another distribution of pixel intervals in the display screen in FIG. 2 in a top view;
  • FIG. 6 is another schematic cross-sectional structure diagram of a display assembly according to an embodiment of the present application.
  • FIG. 7 is another schematic cross-sectional structure diagram of a display assembly according to an embodiment of the present application.
  • FIG. 8 is another schematic cross-sectional structure diagram of a display assembly according to an embodiment of the present application.
  • FIG. 9 is another schematic cross-sectional structure diagram of a display module according to an embodiment of the present application.
  • an embodiment of the present application provides a display assembly including a display screen, a light-concentrating layer, and a plurality of photosensitive units that are sequentially stacked; the display screen has a plurality of pixels arranged in an array, and any two adjacent There is a gap between the pixels, and the gap includes a first gap; a plurality of micro-through holes are provided on the light-concentrating layer, and at least two of the micro-through holes are aligned with the first gap and aligned with the same space. Mentioned photosensitive unit.
  • the interval further includes a second interval, and at least one of the micro-vias is aligned with the second interval and is aligned with the same photosensitive unit.
  • any one of the intervals is aligned with at least two of the micro-vias, and all the micro-vias aligned with the same one of the intervals are aligned with the same location Mentioned photosensitive unit.
  • the photosensitive unit has a photosensitive surface, and an orthographic projection of the interval corresponding to the photosensitive unit on the photosensitive surface falls within the photosensitive surface.
  • a first optical layer is provided between the display screen and the plurality of photosensitive units, the first optical layer and the light-concentrating layer are stacked, and the first optical layer The layer is used to filter out invisible light in a specific band.
  • a surface of the first optical layer facing or away from the display screen is plated with a first coating film, and the first coating film includes an interval arrangement A plurality of coating units, the first coating is used to collimate light emitted through the first optical layer.
  • a second optical layer is provided between the display screen and the plurality of photosensitive units, the second optical layer and the light-concentrating layer are stacked, and the second optical layer The layer is used to collimate light emitted through the second optical layer.
  • a surface of the second optical layer facing or facing away from the display screen is plated with a second coating film, and the second coating film includes an interval arrangement A plurality of coating units, the second coating is used to collimate light emitted through the second optical layer.
  • the display screen includes a self-luminous display panel having a plurality of the pixels arranged in an array.
  • an embodiment of the present application further provides a display component, the display component includes a display screen, a light-concentrating layer, and a plurality of photosensitive units, and the light-concentrating layer is located between the display screen and the several photosensitive units
  • the display screen has a plurality of pixels arranged in an array, and there is a gap between any two adjacent pixels, the gap includes a first gap; a plurality of micro-through holes are provided on the light-concentrating layer , The opening directions of at least two of the micro-through holes face the first interval, and the opening directions of at least two of the micro-through holes face the same photosensitive unit.
  • the display screen includes a liquid crystal panel and a backlight module; the liquid crystal panel has a plurality of the pixels arranged in an array; the backlight module includes a bearing frame and optical components, The optical component is housed in the carrier frame.
  • the carrier frame is provided with a plurality of first light-transmitting holes. One of the first light-transmitting holes is aligned with one of the spaces.
  • the light-concentrating layer is provided. The side of the supporting frame body facing away from the liquid crystal panel.
  • the optical component includes a light guide plate, the light guide plate has a plurality of light transmitting regions, one of the light transmitting regions and one of the first The light-transmitting holes are aligned so that the light passing through the first light-transmitting hole penetrates the light-transmitting area and irradiates the light-concentrating layer.
  • the display component further includes an invisible light source, the invisible light source is configured to emit invisible light, and the invisible light passes through a plurality of the intervals and exits from the display screen. Shot in the setting area of.
  • the display component further includes a control circuit, the control circuit is configured to drive the display screen to display, and control the plurality of photosensitive units to sense light.
  • an embodiment of the present application further provides an electronic device.
  • the electronic device includes a display component.
  • the display component includes a display screen, a light-concentrating layer, and a plurality of photosensitive units that are sequentially stacked.
  • the display screen has an array.
  • a plurality of pixels arranged, any two adjacent said pixels have a gap, said gap includes a first gap; a plurality of micro-through holes are provided on said light-concentrating layer, and at least two of said micro-throughs The holes are aligned with the first interval and are aligned with the same photosensitive unit.
  • the photosensitive unit is configured to generate a sensing signal when sensing light, and the sensing signal carries biometric information of an object to be identified;
  • the electronic device further includes a processor, and the The processor is configured to compare the biometric information carried in the sensing signal with target feature information, and drive the display screen to display a corresponding screen when the biometric information matches the target feature information.
  • the processor when the distance between the object to be identified and the display screen in the off-screen state reaches a sensing distance, the processor is configured to control the display screen
  • the pixels in the setting area emit light to illuminate the object to be identified, so that the photosensitive unit in the setting area senses the light reflected by the object to be identified.
  • the electronic device further includes a detection module, and the detection module is configured to detect a distance between the object to be identified and the display screen, and provide the The processor sends a feedback signal indicating the distance; the processor is configured to determine whether the distance between the object to be identified and the display screen reaches the sensing distance according to the feedback signal.
  • the setting area is an entire display area of the display screen.
  • the display component further includes an invisible light source
  • the processor is further configured to control the invisible light source when the display screen is turned off. Emits invisible light when in a state, the invisible light passes through several of the intervals, and exits from a set area of the display screen; the photosensitive unit is configured to sense the invisible light to generate the sensing signal.
  • An embodiment of the present application provides an electronic device.
  • the electronic device of the present application may be any device having communication, display, and storage functions, such as a tablet computer, a mobile phone, an electronic reader, a remote control, a personal computer (PC), Laptops, car devices, network TVs, wearables and more.
  • the electronic device in the embodiment of the present application may include a display component and a housing, wherein the display component includes a display screen.
  • a display screen 12 of the electronic device 10 is mounted on the casing 11.
  • the display screen 12 may include a cover plate and a display panel which are bonded together by a lamination process, wherein the cover plate may only have a function of protecting the display panel, and the display panel has both a display function and a touch function; or the cover plate may have both Protection function and display function, while the display panel is only used for display.
  • the display panel may be a self-luminous display panel, such as an OLED (Organic Light-Emitting Diode) panel, a plasma display panel, or an electronic ink display panel; the display panel may also be a liquid crystal panel.
  • the display screen 12 may be a reinforced display panel, whose display surface has high mechanical properties (such as hardness and strength), and can withstand external impact, friction, pressing, damage, and the like.
  • FIG. 2 illustrates a display component in the electronic device 10 according to the first embodiment of the present application.
  • the display module includes a display screen 12, a light-concentrating layer 21, and a plurality of photosensitive units 22.
  • the display screen 12, a light-concentrating layer 21, and a plurality of photosensitive units 22 are sequentially stacked.
  • the display screen 12 is a self-luminous display screen 12 (that is, the display screen 12 includes a laminated cover and a self-luminous display panel, or the display screen 12 is an enhanced self-luminous display panel) as an example. Describe.
  • the display screen 12 has a plurality of pixels 121 arranged in an array, and each pixel 121 is configured to emit light under driving to cause the display screen 12 to display various pictures.
  • the pixels 121 in the display screen 12 may be arranged in a matrix, or may be arranged in a specific pattern as required. There is a space between any two adjacent pixels 121. Taking FIG. 3 as an example, the interval exists not only between any two adjacent pixels 121 in the horizontal or vertical direction, but also between any two adjacent pixels 121 in the diagonal direction.
  • a film layer having a specific function may be formed within the interval, and this film layer can transmit light ( That is, the interval can transmit light).
  • the interval may include a first interval 122, and the number of the first intervals 122 may be at least one. The design features of the first interval 122 will be described below.
  • a plurality of micro-through holes 211 are provided on the light-concentrating layer 21.
  • the number of the micro-through holes 211 is related to the collection of biometric information, and is set based on the accurate collection of biometric information.
  • the hole axis of the micro through hole 211 is a straight line, and is substantially consistent with the thickness direction of the display screen 12.
  • the pore diameter of the micro-via 211 is smaller than the size of the interval, and the pore diameter of the micro-via 211 reaches a micron level.
  • the shape of the micro through hole 211 can be designed according to requirements, including but not limited to a square hole, a round hole, and the like.
  • micro-vias 211 there are at least two such micro-vias 211 in all the micro-vias 211 on the light-concentrating layer 21: one end of the at least two micro-vias 211 is aligned with the first interval 122, and the other end is aligned with the same one Photosensitive unit 22.
  • the meaning of the opening alignment interval of the micro through hole 211 is: the orthographic projection of the opening of the micro through hole 211 on the display screen 12 falls within the interval (that is, the micro through hole 211 is on the display screen 12)
  • the orthographic projection on the photocell falls within the interval);
  • the opening of the micro through hole 211 aligned with the photosensitive unit 22 means that the orthographic projection of the opening of the micro through hole 211 on the photosensitive unit 22 falls within the photosensitive surface of the photosensitive unit 22 (That is, the orthographic projection of the micro-through hole 211 on the photosensitive unit 22 falls within the photosensitive surface of the photosensitive unit 22).
  • the light-concentrating layer 21 is located between the display screen 12 and the plurality of photosensitive units 22, and the display screen 12 has a plurality of pixels arranged in an array, and any two adjacent pixels There is a gap between 121, the gap includes a first gap 122; a plurality of micro-through holes 211 are opened on the light-concentrating layer 21, and the opening directions of at least two of the micro-through holes 211 are toward the first gap, In addition, the opening directions of at least two of the micro through holes 211 face the same photosensitive unit 22.
  • the micro through hole 211 is used for passing light.
  • the first interval 122 at least two micro-through holes 211 are aligned with the first interval 122, that is, the first interval 122 covers at least two micro-through holes 211, so light passing through the first interval 122 can pass through
  • the at least two micro through holes 211 are irradiated onto the same photosensitive unit 22.
  • Each interval on the display screen 12 may be the first interval 122, or may include other intervals other than the first interval 122.
  • the other intervals may be misaligned with the micro-through hole 211 and the photosensitive unit 22, that is, transmission within the other intervals.
  • Light can not be irradiated onto the photosensitive unit 22 through the micro-through hole 211; or the other interval can be aligned with only one micro-through hole 211 and the photosensitive unit 22, so light passing through the other interval can also pass through the micro-through hole 211 , Is irradiated onto the photosensitive unit 22.
  • the photosensitive unit 22 is configured to sense light (ie, perform photoelectric conversion) to generate a sensing signal.
  • the number of the photosensitive units 22 is related to the collection of the biometric information, and is set based on the accurate collection of the biometric information.
  • Each photosensitive unit 22 is spaced apart, and one photosensitive unit 22 is aligned with a plurality of (for example, at least one, or at least two) micro through holes 211 to receive light from the micro through holes 211.
  • Each photosensitive unit 22 can be packaged to form a relatively independent functional unit.
  • Each photosensitive unit 22 may be disposed on a substrate 23. The substrate 23 is located on a side of the light-concentrating layer 21 facing away from the display screen 12.
  • Each photosensitive unit 22 is formed on a side of the substrate 23 facing the light-concentrating layer 21.
  • the substrate 23 serves as a carrier substrate of the photosensitive units 22, and also has a conductive property, and can perform electrical signal interaction with each photosensitive unit 22.
  • it may not be limited to the design of the substrate 23, but may rely on other structures to carry and electrically connect the photosensitive units 22.
  • the light-concentrating layer 21 and the photosensitive unit 22 may be distributed in all the display areas of the display screen 12, and at this time, all the display areas of the display screen 12 may sense light; It may also be distributed only in a part of the display area of the display screen 12, at this time, only a part of the display area of the display screen 12 can sense light.
  • the electronic device 10 can use the display component to collect biometric information (including but not limited to fingerprint information, palm print information, facial characteristic information, and iris image information) of the object to be identified (object requiring identification). Etc.), identify the biometric information, and complete the identity authentication of the object to be identified.
  • biometric information including but not limited to fingerprint information, palm print information, facial characteristic information, and iris image information
  • identify the biometric information and complete the identity authentication of the object to be identified.
  • biometric information including but not limited to fingerprint information, palm print information, facial characteristic information, and iris image information
  • the display screen 12 emits light when displaying a screen.
  • the light emitted by the display screen 12 is irradiated to the finger to form reflected light.
  • the reflected light entering the first interval 122 will pass through the micro-vias 211 aligned with the first interval 122 (all micro-vias 211 aligned with the first interval 122, or all the micro-vias 211 aligned with the first interval 122).
  • a plurality of micro through holes 211) in the micro through holes 211 are irradiated onto the photosensitive unit 22.
  • the pixels 121 of the display screen 12 are spaced as a transmission medium for reflected light.
  • the design of the light-concentrating layer 21 and the photosensitive unit 22 utilizes a principle similar to "small-hole imaging" to realize reflection light imaging.
  • the micro-through hole 211 on the light-concentrating layer 21 is similar to the small hole in the principle of “small-hole imaging”
  • the photosensitive unit 22 is similar to the imaging screen in the principle of “small-hole imaging”.
  • the reflected light passes through the micro-through hole 211 and is collected on the photosensitive unit 22.
  • the photosensitive unit 22 senses the light to generate a sensing signal.
  • the sensing signal carries the fingerprint information of the finger (that is, the fingerprint image), thereby completing the collection of fingerprint information. .
  • the electronic device 10 may include a memory and a processor.
  • the memory stores target fingerprint information (original fingerprint information input by a user) in advance, and the processor is configured to process the fingerprint information carried in the sensing signal with the target fingerprint information. Compare to identify the fingerprint information. If the fingerprint information matches the target fingerprint information, the identity authentication of the object to be identified is passed. At this time, the processor can drive the display screen 12 to display the corresponding first screen (such as the unlock screen, payment success screen, etc.); if it does not match , The identity authentication of the object to be identified fails, at this time, the processor may drive the display screen 12 to display a corresponding second screen (such as an unlock failure prompt screen, a payment failure prompt screen, etc.).
  • target fingerprint information original fingerprint information input by a user
  • the processor is configured to process the fingerprint information carried in the sensing signal with the target fingerprint information. Compare to identify the fingerprint information. If the fingerprint information matches the target fingerprint information, the identity authentication of the object to be identified is passed. At this time, the processor can drive the display screen 12
  • the photosensitive unit 22 may also collect biometric information other than fingerprint information.
  • the memory may be pre-stored with target feature information other than the target fingerprint information (such as inputted original palm print information, original facial feature information, original iris image information, etc.); the processor is used to carry the sensing signal
  • the biometric information is compared with the target feature information to identify the biometric information, and when the identity authentication of the object to be identified is passed and fails, the display screen 12 is driven to display different pictures.
  • all the display areas of the display screen 12 when all the display areas of the display screen 12 can sense light (that is, the light-concentrating layer 21 and the photosensitive unit 22 are distributed in all the display areas of the display screen 12), all the display areas of the display screen 12 are It can be used as a biometric identification area, so that the object to be identified can perform biometric identification in any area of the display area; when only part of the display area of the display screen 12 can sense light (that is, the light-concentrating layer 21 and the photosensitive unit 22 are only on the display (Part of the 12 display area is distributed), only a part of the display area of the display screen 12 can be used as a biometric identification area, so the object to be identified can perform biometric identification in a part of the display area.
  • a prompt can be given to the recognition object so that it can clearly identify the biometric recognition area.
  • a reminder screen may be displayed in the display area to prompt the object to be identified for biometric identification in this area; or a specific area in the display area may be fixed as a biometric identification area (such as defining a half or One third of the display area is the biometric identification area), and the object to be identified is notified in the product description of the electronic device 10.
  • the solution of the first embodiment can also improve the moiré defects and fixed noise defects of the fingerprint image.
  • a deviation may occur in the production and assembly of the light-concentrating layer 21 and the display screen 12 (it should be understood that this assembly deviation will be controlled within a certain range), so that the light-concentrating layer 21 is separated from the first interval 122 dislocation.
  • the micro-vias 211 originally aligned with the first interval 122 there may be several micro-vias 211 no longer aligned with the first interval 122.
  • the first interval 122 covers at least two micro-vias 211, there is a possibility that at least one micro-via 211 is still aligned with the first interval 122.
  • the aperture of the micro-vias 211 is much smaller than the size of the first interval 122. Even if the light-concentrating layer 21 is misaligned with the first interval 122, the number of micro-vias 211 aligned with the first interval 122 will be large. These The micro-through holes 211 aligned with the first interval 122 are aligned with the same photosensitive unit 22, so that the photosensitive unit 22 can sense the light transmitted by the micro-through holes 211. Therefore, the photosensitive unit 22 corresponding to the first interval 122 can also normally sense light when a misalignment occurs, so that the fingerprint image obtained after processing is clear and accurate, and moiré and fixed image noise do not occur.
  • the interval is aligned with only one micro-via 211, and the micro-via 211 is aligned with a photosensitive unit 22, when the interval is misaligned with the micro-via 211, the clear imaging conditions of "pinhole imaging" cannot be satisfied, resulting in The photosensitive unit 22 cannot sense light normally, and the fingerprint image obtained after processing will appear moiré and fixed image noise.
  • the solution of the first embodiment can both use the pixel 121 area (ie, the display area) of the display screen 12 to implement biometric collection and identification, thereby integrating the biometric identification function in the display area of the electronic device 10.
  • the solution of the first embodiment can expand the display area and relatively reduce the non-display area, thereby improving the screen ratio of the electronic device 10.
  • the biometrics are collected under the display screen 12, there is no need to open a hole in the display screen 12, so the structural strength of the display screen 12 and the appearance integrity of the electronic device 10 are ensured.
  • the solution of the first embodiment can also improve or even eliminate moiré defects and fixed noise defects.
  • the interval of the pixels 121 may further include a second interval 123, and the number of the second intervals 123 is at least one.
  • the second interval 123 may be aligned with at least one micro-through hole 211, and the micro-vias 211 aligned with the second interval 123 are aligned with the same photosensitive unit 22.
  • the second interval 123 is also used to transmit the reflected light, and the photosensitive unit 22 corresponding to the second interval 123 is also used to induce the reflected light to generate a sensing signal. From the above, when the second interval 123 is aligned with only one micro-through hole 211 (as shown in FIGS.
  • the second interval 123 is at this time. Moire fringes and fixed image noise will appear in the biometric image, but the second interval 123 can still be used for imaging.
  • the biometric image formed at the first interval 122 can still ensure the quality, so the solution of the first embodiment as a whole still improves the Moire fringes and fixed noise defects.
  • the second interval 123 is aligned with at least two micro-vias 211 (as shown in FIG. 5)
  • the second interval 123 is equivalent to the first interval 122, and the second interval 123 and the first interval 122 both cover at least two ⁇ ⁇ ⁇ 211. Therefore, when the light-concentrating layer 21 and the display screen 12 are misaligned, the fingerprint images formed at the first interval 122 and the second interval 123 can both eliminate moiré defects and fixed noise defects.
  • any interval between the pixels 121 of the display screen 12 is aligned with at least two micro-vias 211, and all micro-vias 211 aligned with the same interval are aligned with each other One photosensitive unit 22. That is, all the intervals at this time are the first interval 122, and all the display areas of the display screen 12 can be used as the biometric identification area. This not only optimizes or even eliminates the moire problem and fixed noise problem, but also enables full-screen biometric recognition.
  • the photosensitive unit 22 has a photosensitive surface (ie, a surface for receiving light).
  • the orthographic projection of the interval corresponding to the photosensitive unit 22 on the photosensitive surface falls within the photosensitive surface.
  • the photosensitive unit 22 has a larger photosensitive area, and can realize biometric image acquisition with a larger field of view.
  • it is not limited to this, as long as the photosensitive unit 22 can sense the light transmitted to the sensing surface through the interval.
  • the distance between the light-concentrating layer 21 and the display screen 12 can be adjusted.
  • the internal mechanism is that adjusting the distance between the light-concentrating layer 21 and the display screen 12 is equivalent to adjusting the object distance, so the imaging field of view, imaging size, imaging clarity, etc. can be adjusted accordingly to adapt to different recognition scenarios (such as different objects to be identified). , The different lighting environments where the object to be identified is located, etc.).
  • An adjustment structure can be designed to adjust the distance from the light-concentrating layer 21 to the display screen 12.
  • the distance between the light-concentrating layer 21 and the display screen 12 may also be a fixed value.
  • the quality of the biometric image collected by the photosensitive unit 22 can be improved by further optical design.
  • a first optical layer 24 may be disposed between the display screen 12 and a plurality of photosensitive units 22, and the first optical layer 24 and the light-concentrating layer 21 are stacked.
  • the first optical layer 24 is used to filter out invisible light in a specific wavelength band, and the invisible light includes, but is not limited to, infrared light.
  • the first optical layer 24 is specifically disposed between the display screen 12 and the light-concentrating layer 21.
  • the first optical layer 24 may also be disposed between the light-concentrating layer 21 and a plurality of photosensitive units 22; or the display screen 12 and A first optical layer 24 may be provided between the light-concentrating layers 21 and between the light-concentrating layer 21 and a plurality of photosensitive units 22.
  • the first optical layer 24 may cover all the micro-vias 211 on the light-concentrating layer 21 (this covering is applicable to three situations in which the first optical layer 24 is located above, below, or above and below the light-concentrating layer 21).
  • the significance of providing the first optical layer 24 is that when the object to be identified fits the display screen 12 for biometric identification (fingerprint recognition or palm print recognition), visible light in ambient light cannot penetrate the fingers or palms of the object to be identified, but Some invisible light in a specific band can pass through the fingers or the palm of the object to be identified, pass through the gaps and through holes, and be irradiated onto the photosensitive unit 22 to be sensed.
  • the invisible light will interfere with the light emitted from the photosensitive unit 22 to the display screen 12 Induction, which in turn affects the quality of the biometric image.
  • the first optical layer 24 filters the invisible light in the ambient light, thereby eliminating the interference of the invisible light and ensuring the quality of the biometric image.
  • the surface of the first optical layer 24 facing or away from the display screen 12 may be plated with a first coating film, and the first coating film may cover the entire surface of the first optical layer 24 facing or away from the display screen 12.
  • the first coating film includes a plurality of coating units 241 arranged at intervals. The first coating film is used to collimate light emitted through the first optical layer 24. Therefore, after the collimation effect of the first coating film, the light that was originally divergent is trimmed into parallel lines, which is beneficial for the light to be focused on the photosensitive unit 22, and thus to improve the imaging quality.
  • a second optical layer 25 may be provided between the display screen 12 and a plurality of photosensitive units 22, and the second optical layer 25 and the light-concentrating layer 21 are stacked.
  • the second optical layer 25 has a function similar to that of the first plating film, and is used to collimate light emitted through the second optical layer 25.
  • the second optical layer 25 is a continuous film layer, which is made by a manufacturing process different from that of the first coating film.
  • the second optical layer 25 is specifically disposed between the display screen 12 and the light-concentrating layer 21.
  • the second optical layer 25 may also be disposed between the light-concentrating layer 21 and a plurality of photosensitive units 22.
  • the second optical layer 25 may cover all the micro-vias 211 on the light-concentrating layer 21 (this covering is applicable to the case where the second optical layer 25 is located above or below the light-concentrating layer 21). After the collimation of the second optical layer 25, the originally divergent light is trimmed into parallel lines, which is beneficial for the light to be focused on the photosensitive unit 22, thereby improving the imaging quality.
  • the surface of the second optical layer 25 facing or away from the display screen 12 may be plated with a second coating film, and the second coating film may cover the entire surface of the second optical layer 25 facing or away from the display screen 12.
  • the second coating film includes a plurality of coating units 251 arranged at intervals. The second coating film is used to collimate light emitted through the second optical layer 25. Therefore, by adding a second coating film, the effect of collimating light can be enhanced, and the light can be more concentrated on the photosensitive unit 22 to further improve the imaging quality.
  • the first optical layer 24, the first coating film, the second optical layer 25, and the second coating film described above can be combined and selected as required, as long as the combined optical components (including The optical layer and the coating film) may be located between the display screen 12 and the photosensitive unit 22, and are not limited to having the types of optical components and the relative positions between the optical components used in the first and second embodiments described above.
  • a first optical layer 24 may be provided on both sides of the light-concentrating layer 21 facing away from the display screen 12, and a second optical layer 25 may be provided between the first optical layer 24 and the display screen 12. This can both filter out harmful invisible light and collimate the light.
  • the display component may further include an invisible light source, and the invisible light source is disposed below the display screen 12.
  • the invisible light source is used to emit invisible light, which includes but is not limited to infrared light. Adding an invisible light source can achieve biometrics collection and identification in off-screen scenarios.
  • the processor is further configured to control the invisible light source to emit invisible light when the display screen 12 is in the off state, and the invisible light passes through the interval between the pixels 121 and from the setting area (setting area of the display screen 12). (I.e., the biometric identification area), the setting area may be a part of the display area of the display screen 12, or may be the entire display area. After the invisible light exits the display screen 12 and encounters the object to be identified, it is reflected.
  • the reflected light is incident on the display screen 12 and passes through the space between the pixels 121 and the micro-through hole 211 to shine on the photosensitive unit 22.
  • the light sensing unit 22 can sense invisible light to generate a sensing signal.
  • the sensing signal carries biometric information, and the processor processes the biometric information to complete the collection and identification of the biometric.
  • a prompt can be given to the recognition object so that it can clearly recognize the setting area.
  • a specific area in the display area can be used as the setting area (such as defining one-half, one-third, or all display areas as the setting area), and the object to be identified can be notified in the product description of the electronic device 10 Set the specific location of the area.
  • the first optical layer 24 may no longer be provided to avoid filtering out invisible light for imaging.
  • the processor controls the pixels 121 in the set area of the display screen 12 to emit light.
  • the photosensitive unit 22 in the set area senses the light reflected by the object to be identified.
  • a setting image (such as a pattern simulating a fingerprint) may be displayed in the setting area to prompt the object to be identified to perform biometric recognition in the setting area; when the setting area is the entire display area , The object to be identified can perform biometric identification in any area of the display area.
  • the electronic device 10 may further include a detection module for detecting the distance between the object to be identified and the display screen 12 and sending a feedback signal indicating the distance to the processor.
  • the processor determines whether the distance reaches the sensing distance according to the feedback signal. When it is determined that the distance reaches the sensing distance, the processor drives the pixels 121 in the setting area of the display screen 12 to emit light, so as to prompt the object to be identified to perform biometric recognition.
  • the display component may further include a control circuit for driving the display screen 12 to perform a display.
  • the control circuit can also control a plurality of photosensitive units 22 to sense light. Therefore, the display screen 12 and the photosensitive unit 22 can reuse the same control circuit, thereby simplifying the circuit design.
  • the display screen 12 and the photosensitive unit 22 may also have their own control circuits.
  • the display screen 12 is a self-luminous display screen 12.
  • the display screen of the display component 30 is a liquid crystal display screen, that is, the display screen includes a liquid crystal panel 31 and a backlight module 32.
  • the liquid crystal panel 31 has a plurality of pixels 311 arranged in an array, and an interval 312 is provided between adjacent pixels 311.
  • the backlight module 32 is used to provide a backlight source to the liquid crystal panel 31.
  • the backlight module 32 may include a supporting frame 322 and optical components 321.
  • the optical components 321 are housed in the supporting frame 322.
  • the optical components 321 are components related to the generation of backlight.
  • the optical components 321 include various types of optical films (such as Transparent film, filter, reflector, etc.), light guide plate, light source, etc.
  • the supporting frame 322 is made of an opaque material (such as metal and / or plastic).
  • the supporting frame 322 is provided with a plurality of first light-transmitting holes 322a.
  • One first light-transmitting hole 322a is aligned with a space 321.
  • the light-concentrating layer 21 is disposed on a side of the supporting frame 322 facing away from the liquid crystal panel 31.
  • the principle of the biometric identification of the solution of this second embodiment is basically the same as that of the first embodiment above, except that the light emitted by the display screen is reflected by the object to be identified, and the reflected light passes through the interval 312 of the pixels 311. After that, it is necessary to penetrate the optical component 321 (mainly the optical film and the light guide plate) in the backlight module 32 and the first light-transmitting hole 322a on the carrier frame 322, and then pass through the micro-through hole 211, and Finally, it is sensed by the photosensitive unit 22.
  • the optical component 321 in the backlight module 32 can be specially designed (including but not limited to the use of new materials), so that it can not only generate backlight lines, but also emit light through the display screen.
  • the light guide plate may have multiple light-transmitting regions (still filled with material, not through-holes), and one light-transmitting region is aligned with a first light-transmitting hole 322a so that light passing through the first light-transmitting hole 322a
  • the light-condensing layer 21 is irradiated through the light-transmitting region.
  • the light-transmitting region has high light-transmitting property, so that reflected light can be transmitted.
  • the light-transmitting area may be formed by a polishing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Image Input (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供了一种显示组件,包括依次层叠的显示屏、聚光层,以及若干个感光单元;所述显示屏具有阵列排布的多个像素,任意两个相邻的所述像素之间具有间隔,所述间隔包括第一间隔;所述聚光层上开设有多个微通孔;至少两个所述微通孔对准所述第一间隔且对准同一个所述感光单元。本申请还提供了一种包括所述显示组件的电子设备。本申请的方案能增大电子设备的屏占比。

Description

显示组件和电子设备 技术领域
本申请涉及电子产品技术领域,尤其涉及一种显示组件和电子设备。
背景技术
电子设备的指纹模组通常设在屏幕的非显示区,非显示区开设通孔,指纹模组从通孔中露出以供手指按压,从而识别指纹。此种设计限制了电子设备的屏占比。
申请内容
本申请实施例提供一种显示组件,包括依次层叠的显示屏、聚光层,以及若干个感光单元;显示屏具有阵列排布的多个像素,任意两个相邻的像素之间具有间隔,间隔包括第一间隔;聚光层上开设有多个微通孔;至少两个微通孔对准第一间隔且对准同一个感光单元。
本申请实施例还提供一种显示组件,所述显示组件包括显示屏、聚光层以及若干个感光单元,所述聚光层位于所述显示屏和所述若干个感光单元之间,所述显示屏具有阵列排布的多个像素,任意两个相邻的所述像素之间具有间隔,所述间隔包括第一间隔;所述聚光层上开设有多个微通孔,至少两个所述微通孔的开口方向朝向所述第一间隔,且至少两个所述微通孔的开口方向朝向同一个所述感光单元。
本申请实施例还提供一种电子设备,包括显示组件,所述显示组件包括依次层叠的显示屏、聚光层,以及若干个感光单元;显示屏具有阵列排布的多个像素,任意两个相邻的像素之间具有间隔,间隔包括第一间隔;聚光层上开设有多个微通孔;至少两个微通孔对准第一间隔且对准同一个感光单元。
附图说明
为了更清楚地说明本申请实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例的电子设备的结构示意图;
图2是本申请实施例的显示组件的一种横截面结构示意图;
图3是在俯视视角下,图2中的显示屏中的像素间隔的一种分布示意图;
图4是待识别对象进行指纹识别的原理示意图;
图5是在俯视视角下,图2中的显示屏中的像素间隔的另一种分布示意图;
图6是本申请实施例的显示组件的另一种横截面结构示意图;
图7是本申请实施例的显示组件的另一种横截面结构示意图;
图8是本申请实施例的显示组件的另一种横截面结构示意图;
图9是本申请实施例的显示组件的另一种横截面结构示意图。
具体实施方式
一方面,本申请实施例提供一种显示组件,包括依次层叠的显示屏、聚光层,以及若干个感光单元;所述显示屏具有阵列排布的多个像素,任意两个相邻的所述像素之间具有间隔,所述间隔包括第一间隔;所述聚光层上开设有多个微通孔,至少两个所述微通孔对准所述第一间隔且对准同一个所述感光单元。
在第一种可能的实现方式中,所述间隔还包括第二间隔,至少一个所述微通孔对准所述第二间隔且对准同一个所述感光单元。
在第二种可能的实现方式中,任意一个所述间隔均与至少两个所述微通孔对准,且与同一个所述间隔对准的全部所述微通孔均对准同一个所述感光单元。
在第三种可能的实现方式中,所述感光单元具有感光面,与所述感光单元对应的所述间隔在所述感光面上的正投影落在所述感光面之内。
在第四种可能的实现方式中,所述显示屏与所述若干个感光单元之间设有第一光学层,所述第一光学层与所述聚光层层叠设置,所述第一光学层用于滤除特定波段的不可见光。
结合第四种可能的实现方式,在第五种可能的实现方式中,所述第一光学层朝向或背离所述显示屏的表面镀覆有第一镀膜,所述第一镀膜包括间隔排布的多个镀膜单元,所述第一镀膜用于使透过所述第一光学层射出的光线准直。
在第六种可能的实现方式中,所述显示屏与所述若干个感光单元之间设有第二光学层,所述第二光学层与所述聚光层层叠设置,所述第二光学层用于使透过所述第二光学层射出的光线准直。
结合第六种可能的实现方式,在第七种可能的实现方式中,所述第二光学层朝向或背离所述显示屏的表面镀覆有第二镀膜,所述第二镀膜包括间隔排布的多个镀膜单元,所述第二镀膜用于使透过所述第二光学层射出的光线准直。
在第八种可能的实现方式中,所述显示屏包括自发光显示面板,所述自发光显示面板具有阵列排布的多个所述像素。
另一方面,本申请实施例还提供一种显示组件,所述显示组件包括显示屏、聚光层以及若干个感光单元,所述聚光层位于所述显示屏和所述若干个感光单元之间,所述显示屏具有阵列排布的多个像素,任意两个相邻的所述像素之间具有间隔,所述间隔包括第一间隔;所述聚光层上开设有多个微通孔,至少两个所述微通孔的开口方向朝向所述第一间隔,且至少两个所述微通孔的开口方向朝向同一个所述感光单元。
在第一种可能的实现方式中,所述显示屏包括液晶面板和背光模组;所述液晶面板具有阵列排布的多个所述像素;所述背光模组包括承载框体和光学部件,所述光学部件收容在所述承载框体内,所述承载框体上开设有多个第一透光孔,一个所述第一透光孔与一个所述间隔对准;所述聚光层设于所述承载框体背离所述液晶面板的一侧。
结合第一种可能的实现方式,在第二种可能的实现方式中,所述光学部件包括导光板,所述导光板具有多个透光区域,一个所述透光区域与一个所述第一透光孔对准,以使穿过 所述第一透光孔的光线穿透所述透光区域照射到所述聚光层中。
在第三种可能的实现方式中,所述显示组件还包括不可见光源,所述不可见光源用于发射不可见光线,所述不可见光线穿过若干所述间隔,并从所述显示屏的设定区域中射出。
在第四种可能的实现方式中,所述显示组件还包括控制电路,所述控制电路用于驱动所述显示屏进行显示,以及控制所述若干个感光单元感应光线。
又一方面,本申请实施例还提供一种电子设备,所述电子设备包括显示组件,所述显示组件包括依次层叠的显示屏、聚光层,以及若干个感光单元;所述显示屏具有阵列排布的多个像素,任意两个相邻的所述像素之间具有间隔,所述间隔包括第一间隔;所述聚光层上开设有多个微通孔,至少两个所述微通孔对准所述第一间隔且对准同一个所述感光单元。
在第一种可能的实现方式中,所述感光单元用于在感应光线时生成感测信号,所述感测信号携带有待识别对象的生物特征信息;所述电子设备还包括处理器,所述处理器用于将所述感测信号中携带的所述生物特征信息与目标特征信息进行比较,并在所述生物特征信息与所述目标特征信息匹配时驱动所述显示屏显示相应的画面。
结合第一种可能的实现方式,在第二种可能的实现方式中,在待识别对象与处于熄屏状态的所述显示屏的距离达到感应距离时,所述处理器用于控制所述显示屏的设定区域中的所述像素发光照亮待识别对象,以使所述设定区域内的所述感光单元感应经待识别对象反射回来的光线。
结合第二种可能的实现方式,在第三种可能的实现方式中,所述电子设备还包括检测模块,所述检测模块用于检测待识别对象与所述显示屏的距离,并向所述处理器发送指示所述距离的反馈信号;所述处理器用于根据所述反馈信号判断所述待识别对象与所述显示屏之间的距离是否达到所述感应距离。
结合第二种可能的实现方式,在第四种可能的实现方式中,所述设定区域为所述显示屏的全部显示区域。
结合第一种可能的实现方式,在第五种可能的实现方式中,所述显示组件还包括不可见光源,所述处理器还用于控制所述不可见光源在所述显示屏处于熄屏状态时发出不可见光线,所述不可见光线穿过若干所述间隔,并从所述显示屏的设定区域中射出;所述感光单元用于感应所述不可见光线以生成所述感测信号。
本申请实施例提供了一种电子设备,本申请电子设备可以是任何具备通信、显示和存储功能的设备,例如平板电脑、手机、电子阅读器、遥控器、个人计算机(Personal Computer,PC)、笔记本电脑、车载设备、网络电视、可穿戴设备等设备。
本申请实施例的电子设备可以包括显示组件和壳体,其中显示组件包括显示屏。如图1所示,电子设备10的显示屏12安装在壳体11上。显示屏12可以包括采用贴合工艺贴合在一起的盖板及显示面板,其中盖板可以仅具有防护显示面板的功能,显示面板兼具有显示功能和触控功能;或者盖板可以兼具防护功能与显示功能,而显示面板仅用于显示。本申请的实施例中,显示面板可以是自发光显示面板,如OLED(Organic Light-Emitting Diode, 有机发光二极管)面板、等离子显示面板,或电子墨水显示面板等;显示面板也可以是液晶面板。或者,显示屏12可以是一种加强型的显示面板,其显示面具有较高的机械性能(如硬度和强度),能够承受外界的冲击、摩擦、按压、损伤等。
图2示出了本申请第一实施例的电子设备10中的显示组件。如图2所示,显示组件包括显示屏12、聚光层21,以及若干个感光单元22,显示屏12、聚光层21,以及若干个感光单元22依次层叠。在一种实施方式中,以显示屏12为自发光显示屏12(即显示屏12包括相贴合的盖板及自发光显示面板,或者显示屏12为加强型的自发光显示面板)为例进行描述。
如图2和图3所示,在一种实施方式中,显示屏12具有阵列排布的多个像素121,每个像素121用于在驱动下发光以使显示屏12显示各种画面。显示屏12中的像素121可以呈矩阵排列,也可以根据需要排列成特定的图案。任意两个相邻的像素121之间均具有间隔。以图3为例,间隔不仅存在于的水平方向或竖直方向的任意两个相邻的像素121之间,也存在于斜对角方向上的任意两个相邻的像素121之间。在显示屏12的制程中(例如显示面板的制程),间隔内可形成具有特定功能(包括但不限于分隔不同像素121以防止像素121间串光)的膜层,此膜层能够透光(也即间隔能够透光)。如图3所示,间隔可以包括第一间隔122,第一间隔122的数目可以是至少一个,第一间隔122的设计特点将在下文继续描述。
如图2和图3所示,聚光层21上开设有多个微通孔211,微通孔211的数目与生物特征信息的采集有关,以能准确进行生物特征信息的采集为准进行设置。微通孔211的孔轴为直线,且与显示屏12的厚度方向基本一致。微通孔211的孔径小于间隔的尺寸,微通孔211的孔径数值达到微米级。微通孔211的形状可以根据需要设计,包括但不限于为方孔、圆孔等。聚光层21上的全部微通孔211中存在至少两个这样的微通孔211:该至少两个微通孔211的一端开口对准第一间隔122,相对的另一端开口对准同一个感光单元22。在一种实施方式中,微通孔211的开口对准间隔的含义为:微通孔211的开口在显示屏12上的正投影落在间隔之内(也即微通孔211在显示屏12上的正投影落在间隔之内);微通孔211的开口对准感光单元22的含义为:微通孔211的开口在感光单元22上的正投影落在感光单元22的感光面之内(也即微通孔211在感光单元22上的正投影落在感光单元22的感光面之内)。
也就是说,所述聚光层21位于所述显示屏12和所述若干个感光单元22之间,所述显示屏12具有阵列排布的多个像素,任意两个相邻的所述像素121之间具有间隔,所述间隔包括第一间隔122;所述聚光层21上开设有多个微通孔211,至少两个所述微通孔211的开口方向朝向所述第一间隔,且至少两个所述微通孔211的开口方向朝向同一个所述感光单元22。
在一种实施方式中,微通孔211用于供光线穿过。对于第一间隔122而言,至少两个微通孔211与第一间隔122对准,即第一间隔122涵盖了至少两个微通孔211,因此透过第一间隔122的光线能够穿过该至少两个微通孔211,照射到同一个感光单元22上。显示屏 12上的各个间隔可以均为第一间隔122,也可以包括除第一间隔122之外的其他间隔,该其他间隔可以不对准微通孔211与感光单元22,即该其他间隔内传输的光线无法通过微通孔211照射到感光单元22上;或者该其他间隔可以仅对准一个微通孔211与感光单元22,因此穿过该其他间隔的光线也能够穿过该微通孔211,照射到该感光单元22上。
在一种实施方式中,感光单元22用于感应光线(即进行光电转换)以生成感测信号。感光单元22的数量与生物特征信息的采集有关,以能准确进行生物特征信息的采集为准进行设置。各感光单元22间隔分布,一个感光单元22与若干个(如至少一个,或至少两个)微通孔211对准,以从微通孔211中接收光线。每个感光单元22可以进行封装,以形成一个较为独立的功能单元。各个感光单元22可以设在基板23上,基板23位于聚光层21背离显示屏12的一侧,各个感光单元22具体形成在基板23朝向聚光层21的一面。基板23作为感光单元22的承载衬底,其还具有导电性能,能够与各感光单元22进行电信号交互。当然,也可以不限于设计基板23,而是依靠其他结构承载并电连接各感光单元22。
在一种实施方式中,聚光层21与感光单元22可以分布在显示屏12的全部显示区内,此时显示屏12的全部显示区均可以感应光线;聚光层21与感光单元22可也可以仅在显示屏12的部分显示区有分布,此时显示屏12仅有部分显示区可感应光线。
在一种实施方式中,电子设备10能够利用显示组件采集待识别对象(需要进行身份识别的对象)的生物特征信息(包括但不限于为指纹信息、掌纹信息、面部特征信息、虹膜图像信息等),进行生物特征信息的识别,完成对待识别对象的身份认证。以下将以待识别对象为人,生物特征信息为指纹信息为例详细描述生物特征信息采集的过程。
如图4所示,显示屏12在显示画面时发光。当手指接近显示屏12时(可以是手指贴合显示屏12,或者手指到显示屏12的距离小于或等于感应距离),显示屏12的发光照射到手指后形成反射光,该反射光将射入显示屏12内,并进入像素121的间隔传输。其中,进入第一间隔122的反射光将穿过与第一间隔122对准的微通孔211(与第一间隔122对准的全部微通孔211,或者与第一间隔122对准的全部微通孔211中的若干微通孔211),照射到感光单元22上。
在上文的光线传输过程中,显示屏12的像素121间隔作为反射光的传输介质。聚光层21与感光单元22的设计利用了类似“小孔成像”的原理实现反射光成像。其中,聚光层21上的微通孔211类似“小孔成像”原理中的小孔,感光单元22类似“小孔成像”原理中的成像屏。反射光穿过微通孔211后被聚集到感光单元22上,感光单元22则感应光线生成感测信号,该感测信号携带了手指的指纹信息(即指纹图像),从而完成指纹信息的采集。
在一种实施方式中,电子设备10可以包括存储器和处理器,存储器预存有目标指纹信息(用户输入的原始指纹信息),处理器用于将该感测信号中携带的指纹信息与目标指纹信息进行比较以对该指纹信息进行识别。若该指纹信息与该目标指纹信息匹配时,则通过待识别对象的身份认证,此时处理器可驱动显示屏12显示相应的第一画面(如解锁画面、支付成功画面等);若不匹配,则待识别对象的身份认证失败,此时处理器可驱动显示屏 12显示相应的第二画面(如解锁失败提示画面、支付失败提示画面等)。
如上,感光单元22也可以采集除指纹信息之外的生物特征信息。相应的,存储器可预存有除目标指纹信息之外的目标特征信息(如输入的原始掌纹信息,原始面部特征信息,原始虹膜图像信息等);处理器则用于将该感测信号中携带的生物特征信息与目标特征信息进行比较,以对该生物特征信息进行识别,并在待识别对象的身份认证通过与失败时,分别驱动显示屏12显示不同的画面。
在一种实施方式中,当显示屏12的全部显示区均可以感应光线(即聚光层21与感光单元22分布在显示屏12的全部显示区内)时,显示屏12的全部显示区均可以作为生物特征识别区,由此待识别对象可以在显示区的任意区域进行生物特征识别;当显示屏12仅有部分显示区可感应光线(即聚光层21与感光单元22仅在显示屏12的部分显示区有分布)时,仅仅是显示屏12的部分显示区可以作为生物特征识别区,因此待识别对象可以在显示区的部分区域进行生物特征识别。对于后一种方案,可以对待识别对象发出提示,使其能够清楚地辨识出生物特征识别区。例如,可以在显示区内显示一提示画面,以提示待识别对象在此区域内进行生物特征识别;或者可以将显示区内的特定区域固设为生物特征识别区(如定义二分之一或三分之一的显示区为生物特征识别区),并在电子设备10的产品说明中告知待识别对象。
另外,本第一实施例的方案还能够改善指纹图像的莫尔条纹缺陷及固定噪声缺陷。具体的,参照图4所示,聚光层21与显示屏12的生产及组装均可能出现偏差(应理解,此组装偏差会控制在一定范围内),使聚光层21与第一间隔122错位。此时,原本对准第一间隔122的各个微通孔211中,可能有若干微通孔211不再对准第一间隔122。但是由于第一间隔122涵盖了至少两个微通孔211,因此存在至少一个微通孔211依然与第一间隔122对准的可能性。在实际产品中,微通孔211的孔径远小于第一间隔122的尺寸,即使聚光层21与第一间隔122错位,但与第一间隔122对准的微通孔211数目会很多,这些与第一间隔122对准的微通孔211又与同一个感光单元22对准,使该感光单元22能够感应这些微通孔211所传输的光线。由此,在出现错位时对应第一间隔122的感光单元22也能正常感应光线,使得经过处理后得到的指纹图像清晰准确,不会出现莫尔条纹和固定图像噪声。反之,若间隔仅对准一个微通孔211,且此微通孔211对准一个感光单元22,在间隔与微通孔211错位时,就无法满足“小孔成像”的清晰成像条件,导致感光单元22无法正常感应光线,经过处理后得到的指纹图像就会出现莫尔条纹和固定图像噪声。
综上,本第一实施例的方案既能够利用显示屏12的像素121区(即显示区)实现生物特征采集和识别,从而将生物特征识别功能集成在电子设备10的显示区内。相较于传统的电子设备10,本第一实施例的方案能够扩大显示区,而使非显示区相对缩小,从而提升了电子设备10的屏占比。并且,由于在显示屏12下进行生物特征采集,无需在显示屏12中开孔,因此保证了显示屏12的结构强度及电子设备10的外观完整性。另外,本第一实施例的方案还能改善甚至消除莫尔条纹缺陷及固定噪声缺陷。
如图2、图3和图5所示,在一种实施方式中,进一步的,像素121的间隔还可以包 括第二间隔123,第二间隔123的数量为至少一个。第二间隔123可与至少一个微通孔211对准,且与第二间隔123对准的微通孔211对准同一个感光单元22。第二间隔123也用于透过该反射光,与第二间隔123对应的感光单元22同样用于感应反射光生成感测信号。由上所述,当第二间隔123仅与一个微通孔211对准时(如图2与图3所示),若聚光层21与第二间隔123出现错位,此时第二间隔123处的生物特征图像会出现莫尔条纹和固定图像噪声,但是第二间隔123依然可以用于成像。第一间隔122处所形成的生物特征图像仍然能够保证质量,因此整体上本第一实施例的方案依然改善了莫尔条纹缺陷及固定噪声缺陷。当第二间隔123与至少两个微通孔211对准时(如图5所示),此时第二间隔123与第一间隔122等同,第二间隔123与第一间隔122均涵盖至少两个微通孔211。由此,在聚光层21与显示屏12错位时,第一间隔122处与第二间隔123处所形成的指纹图像均能消除莫尔条纹缺陷及固定噪声缺陷。
在一种实施方式中,进一步的,显示屏12的像素121间的任意一个间隔均与至少两个微通孔211对准,且与同一个间隔对准的全部微通孔211均对准同一个感光单元22。即此时全部间隔均为第一间隔122,且显示屏12全部显示区均可以作为生物特征识别区。由此不仅优化甚至消除了莫尔条纹问题与固定噪声问题,还能实现全屏生物特征识别。
如图2和图4所示,在一种实施方式中,感光单元22具有感光面(即用于接收光线的面)。优选的,与感光单元22对应的间隔在感光面上的正投影落在感光面之内。由此,感光单元22具有更大的感光面积,能够实现更大视野范围的生物特征图像采集。当然,也可以不限于此,只要感光单元22能感应到穿过间隔传输至感应面的光线即可。
在一种实施方式中,进一步的,聚光层21到显示屏12的距离可以调节。其内在机理为,调整聚光层21到显示屏12的距离相当于调整物距,因此成像视野、成像大小、成像清晰度等可以相应调整,从而适应不同的识别场景(如不同的待识别对象,待识别对象所处的不同光照环境等)。可以设计调节结构调整聚光层21到显示屏12的距离。当然,聚光层21到显示屏12的距离也可以为固定值。
在一种实施方式中,可以通过进一步的光学设计,提升感光单元22所采集的生物特征图像的质量。
具体的,如图6所示,在第一实施方式中,显示屏12与若干个感光单元22之间可以设置第一光学层24,第一光学层24与聚光层21层叠设置。第一光学层24用于滤除特定波段的不可见光,该不可见光包括但不限于红外光。图5中第一光学层24具体设于显示屏12与聚光层21之间,当然第一光学层24也可以设于聚光层21与若干个感光单元22之间;或者显示屏12与聚光层21之间,以及聚光层21与若干个感光单元22之间均可以设置第一光学层24。第一光学层24可以覆盖聚光层21上的全部微通孔211(此覆盖适用于第一光学层24位于聚光层21之上、之下或上下两侧三种情形)。设置第一光学层24的意义在于,当待识别对象贴合显示屏12进行生物特征识别(指纹识别或掌纹识别)时,环境光中的可见光无法穿透待识别对象的手指或手掌,但一些特定波段的不可见光却能够透过待识别对象的手指或手掌,穿过间隔和通孔,照射到感光单元22上而被感应,该不可见光会干 扰感光单元22对显示屏12的发光的感应,进而影响生物特征图像的质量。当增设第一光学层24后,第一光学层24对环境光中的不可见光进行过滤,从而排除了不可见光的干扰,确保了生物特征图像的质量。
如图6所示,进一步的,第一光学层24朝向或背离显示屏12的表面可以镀覆有第一镀膜,第一镀膜可以覆盖第一光学层24朝向或背离显示屏12的整个表面。第一镀膜包括间隔排布的多个镀膜单元241,第一镀膜用于使透过第一光学层24射出的光线准直。由此,经过第一镀膜的准直作用,原来较为发散的光线被修整成为平行线,这有利于光线聚集到感光单元22上,从而有利于提升成像质量。
如图7所示,在第二实施方式中,显示屏12与若干个感光单元22之间可以设有第二光学层25,第二光学层25与聚光层21层叠设置。第二光学层25具有与第一镀膜类似的功能,用于使透过第二光学层25射出的光线准直。但与第一镀膜不同的是,第二光学层25为连续的膜层,其采用与第一镀膜不同的制造工艺制成。图6中第二光学层25具体设于显示屏12与聚光层21之间,当然第二光学层25也可以设于聚光层21与若干个感光单元22之间。第二光学层25可以覆盖聚光层21上的全部微通孔211(此覆盖适用于第二光学层25位于聚光层21之上或者之下两种情形)。经过第二光学层25的准直作用,原来较为发散的光线被修整成为平行线,这有利于光线聚集到感光单元22上,从而有利于提升成像质量。
如图6所示,进一步的,第二光学层25朝向或背离显示屏12的表面可以镀覆有第二镀膜,第二镀膜可以覆盖第二光学层25朝向或背离显示屏12的整个表面。第二镀膜包括间隔排布的多个镀膜单元251,第二镀膜用于使透过第二光学层25射出的光线准直。由此,通过增设第二镀膜,能够强化准直光线的作用,更加有利于光线聚集到感光单元22上,进一步提升成像质量。
在本第一实施例的其他实施方式中,上述的第一光学层24、第一镀膜、第二光学层25、第二镀膜均可以根据需要进行组合选用,只要使组合选用的光学部件(包括光学层与镀膜)位于显示屏12与感光单元22之间即可,而不限于具有上述第一实施方式与第二实施方式中所用的光学部件类型及光学部件间的相对位置。例如,如图8所示,可以在聚光层21朝向与背离显示屏12的两面均设置第一光学层24,在第一光学层24与显示屏12之间设置第二光学层25,由此既能滤除有害的不可见光,又能将光线准直。
在一种实施方式中,进一步的,显示组件还可以包括不可见光源,不可见光源设在显示屏12下方。不可见光源用于发射不可见光线,该不可见光线包括但不限于为红外光线。增设不可见光源能够在熄屏场景下实现生物特征采集和识别。具体的,处理器还用于控制不可见光源在显示屏12处于熄屏状态时发出不可见光线,不可见光线穿过像素121间的间隔,并从显示屏12的设定区域(设定区域即为生物特征识别区)中射出,该设定区域可以是显示屏12的部分显示区,也可以是全部显示区。不可见光线射出显示屏12后遇到待识别对象后发生反射,反射光线又射入显示屏12,并穿过像素121间的间隔及微通孔211照射到感光单元22上。感光单元22则可以感测不可见光线以生成感测信号,该感测信号携 带了生物特征信息,处理器对该生物特征信息进行处理,从而完成生物特征的采集和识别。可以对待识别对象发出提示,使其能够清楚地辨识出设定区域。例如,可以将显示区内的特定区域作为设定区域(如定义二分之一、三分之一,或全部显示区为设定区域),并在电子设备10的产品说明中告知待识别对象设定区域的具体位置。由此,通过采用不可见光源,能够在熄屏时也能进行生物特征的采集和识别,从而扩充了电子设备10的功能,提升了电子设备10的用户体验。应理解,在利用不可见光线照亮手指时,可以不再设置第一光学层24,以避免将用于成像的不可见光滤除。
或者,为了实现熄屏场景下的生物特征采集和识别,在一种实施方式中也可以无需设置不可见光源,而是利用显示屏12本身的发光。具体的,在待识别对象与处于熄屏状态的显示屏12的距离达到感应距离(感光单元22能清晰成像的最大距离)时,处理器则控制显示屏12的设定区域中的像素121发光以照亮待识别对象,从而使设定区域内的感光单元22感应经待识别对象反射回来的光线。当设定区域为部分显示区时,设定区域可显示一提示图像(例如模拟指纹的图案),以提示待识别对象在设定区域内进行生物特征识别;当设定区域为整个显示区时,待识别对象可以在显示区的任意区域内进行生物特征识别。优选的,电子设备10还可以包括检测模块,该检测模块用于检测待识别对象与显示屏12的距离,并向处理器发送指示距离的反馈信号。处理器根据反馈信号判断该距离是否达到感应距离。在判断该距离达到感应距离时,处理器驱动显示屏12的设定区域中的像素121发光,以提示待识别对象进行生物特征识别。
在一种实施方式中,显示组件还可以包括控制电路,控制电路用于驱动显示屏12进行显示。优选的,控制电路还可以控制若干个感光单元22感应光线。由此,显示屏12与感光单元22可以复用同一个控制电路,从而可以简化电路设计。当然,显示屏12与感光单元22也可以具有各自的控制电路。
以上的第一实施例中,显示屏12为自发光显示屏12。如图9所示,在本申请的第二实施例中,与上述第一实施例不同的是,显示组件30的显示屏为液晶显示屏,即显示屏包括液晶面板31和背光模组32。其中,液晶面板31具有阵列排布的多个像素311,相邻像素311间具有间隔312。背光模组32用于向液晶面板31提供背光源。背光模组32可以包括承载框体322和光学部件321,光学部件321收容在承载框体322内,光学部件321为与产生背光线相关的部件,光学部件321包括各类光学膜片(如增透膜、滤光片、反射片等)、导光板、光源等。承载框体322采用不透光材料(例如金属和/或塑胶)制造,承载框体322上开设有多个第一透光孔322a,一个第一透光孔322a与一个间隔321对准。聚光层21设于承载框体322背离液晶面板31的一侧。
本第二实施例的方案进行生物特征识别的原理,与上述第一实施例的基本相同,区别之处在于:显示屏的发光被待识别对象反射后,反射光线在穿过像素311的间隔312后,还要穿透背光模组32中的光学部件321(主要是光学膜片及导光板)及穿过承载框体322上的第一透光孔322a,然后才能穿入微通孔211,并最终被感光单元22感应。为可更有效地传输光线,背光模组32中的光学部件321可做特殊设计(包括但不限于采用新型材料), 使其既能有利于产生背光线,又可透过显示屏的发光。例如,导光板可以具有多个透光区域(依然有材料填充,并非为通孔),一个透光区域与一个第一透光孔322a对准,以使穿过第一透光孔322a的光线穿透透光区域照射到聚光层21中。透光区域具有高透光性,因此能使反射光线透过。可以通过抛光工艺形成透光区域。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易的想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种显示组件,其特征在于,
    包括依次层叠的显示屏、聚光层,以及若干个感光单元;所述显示屏具有阵列排布的多个像素,任意两个相邻的所述像素之间具有间隔,所述间隔包括第一间隔;所述聚光层上开设有多个微通孔,至少两个所述微通孔对准所述第一间隔且对准同一个所述感光单元。
  2. 根据权利要求1所述的显示组件,其特征在于,
    所述间隔还包括第二间隔,至少一个所述微通孔对准所述第二间隔且对准同一个所述感光单元。
  3. 根据权利要求1所述的显示组件,其特征在于,
    任意一个所述间隔均与至少两个所述微通孔对准,且与同一个所述间隔对准的全部所述微通孔均对准同一个所述感光单元。
  4. 根据权利要求1-3任一项所述的显示组件,其特征在于,
    所述感光单元具有感光面,与所述感光单元对应的所述间隔在所述感光面上的正投影落在所述感光面之内。
  5. 根据权利要求1-3任一项所述的显示组件,其特征在于,
    所述显示屏与所述若干个感光单元之间设有第一光学层,所述第一光学层与所述聚光层层叠设置,所述第一光学层用于滤除特定波段的不可见光。
  6. 根据权利要求5所述的显示组件,其特征在于,
    所述第一光学层朝向或背离所述显示屏的表面镀覆有第一镀膜,所述第一镀膜包括间隔排布的多个镀膜单元,所述第一镀膜用于使透过所述第一光学层射出的光线准直。
  7. 根据权利要求1-3任一项所述的显示组件,其特征在于,
    所述显示屏与所述若干个感光单元之间设有第二光学层,所述第二光学层与所述聚光层层叠设置,所述第二光学层用于使透过所述第二光学层射出的光线准直。
  8. 根据权利要求7所述的显示组件,其特征在于,
    所述第二光学层朝向或背离所述显示屏的表面镀覆有第二镀膜,所述第二镀膜包括间隔排布的多个镀膜单元,所述第二镀膜用于使透过所述第二光学层射出的光线准直。
  9. 根据权利要求1-3任一项所述的显示组件,其特征在于,
    所述显示屏包括自发光显示面板,所述自发光显示面板具有阵列排布的多个所述像素。
  10. 一种显示组件,其特征在于,所述显示组件包括显示屏、聚光层以及若干个感光单元,所述聚光层位于所述显示屏和所述若干个感光单元之间,所述显示屏具有阵列排布的多个像素,任意两个相邻的所述像素之间具有间隔,所述间隔包括第一间隔;所述聚光层上开设有多个微通孔,至少两个所述微通孔的开口方向朝向所述第一间隔,且至少两个所述微通孔的开口方向朝向同一个所述感光单元。
  11. 根据权利要求10所述的显示组件,其特征在于,
    所述显示屏包括液晶面板和背光模组;所述液晶面板具有阵列排布的多个所述像素; 所述背光模组包括承载框体和光学部件,所述光学部件收容在所述承载框体内,所述承载框体上开设有多个第一透光孔,一个所述第一透光孔与一个所述间隔对准;所述聚光层设于所述承载框体背离所述液晶面板的一侧。
  12. 根据权利要求11所述的显示组件,其特征在于,
    所述光学部件包括导光板,所述导光板具有多个透光区域,一个所述透光区域与一个所述第一透光孔对准,以使穿过所述第一透光孔的光线穿透所述透光区域照射到所述聚光层中。
  13. 根据权利要求10所述的显示组件,其特征在于,
    所述显示组件还包括不可见光源,所述不可见光源用于发射不可见光线,所述不可见光线穿过若干所述间隔,并从所述显示屏的设定区域中射出。
  14. 根据权利要求10所述的显示组件,其特征在于,
    所述显示组件还包括控制电路,所述控制电路用于驱动所述显示屏进行显示,以及控制所述若干个感光单元感应光线。
  15. 一种电子设备,其特征在于,所述电子设备包括显示组件,所述显示组件包括依次层叠的显示屏、聚光层,以及若干个感光单元;所述显示屏具有阵列排布的多个像素,任意两个相邻的所述像素之间具有间隔,所述间隔包括第一间隔;所述聚光层上开设有多个微通孔,至少两个所述微通孔对准所述第一间隔且对准同一个所述感光单元。
  16. 根据权利要求15所述的电子设备,其特征在于,
    所述感光单元用于在感应光线时生成感测信号,所述感测信号携带有待识别对象的生物特征信息;所述电子设备还包括处理器,所述处理器用于将所述感测信号中携带的所述生物特征信息与目标特征信息进行比较,并在所述生物特征信息与所述目标特征信息匹配时驱动所述显示屏显示相应的画面。
  17. 根据权利要求16所述的电子设备,其特征在于,
    在待识别对象与处于熄屏状态的所述显示屏的距离达到感应距离时,所述处理器用于控制所述显示屏的设定区域中的所述像素发光照亮待识别对象,以使所述设定区域内的所述感光单元感应经待识别对象反射回来的光线。
  18. 根据权利要求17所述的电子设备,其特征在于,
    所述电子设备还包括检测模块,所述检测模块用于检测待识别对象与所述显示屏的距离,并向所述处理器发送指示所述距离的反馈信号;所述处理器用于根据所述反馈信号判断所述待识别对象与所述显示屏之间的距离是否达到所述感应距离。
  19. 根据权利要求17所述的电子设备,其特征在于,
    所述设定区域为所述显示屏的全部显示区域。
  20. 根据权利要求16所述的电子设备,其特征在于,
    所述显示组件还包括不可见光源,所述处理器还用于控制所述不可见光源在所述显示屏处于熄屏状态时发出不可见光线,所述不可见光线穿过若干所述间隔,并从所述显示屏的设定区域中射出;所述感光单元用于感应所述不可见光线以生成所述感测信号。
PCT/CN2019/094730 2018-08-16 2019-07-04 显示组件和电子设备 WO2020034781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810938042.8A CN109271057B (zh) 2018-08-16 2018-08-16 显示组件和电子设备
CN201810938042.8 2018-08-16

Publications (1)

Publication Number Publication Date
WO2020034781A1 true WO2020034781A1 (zh) 2020-02-20

Family

ID=65153652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094730 WO2020034781A1 (zh) 2018-08-16 2019-07-04 显示组件和电子设备

Country Status (2)

Country Link
CN (1) CN109271057B (zh)
WO (1) WO2020034781A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109271057B (zh) * 2018-08-16 2021-04-13 Oppo广东移动通信有限公司 显示组件和电子设备
US11237672B2 (en) 2019-02-01 2022-02-01 Boe Technology Group Co., Ltd. Apparatus integrated with display panel for TOF 3D spatial positioning
CN109637389B (zh) * 2019-02-01 2021-01-22 京东方科技集团股份有限公司 显示面板及其控制方法和显示装置
CN111971616B (zh) * 2019-03-01 2023-09-01 京东方科技集团股份有限公司 背光模组、显示装置及背光模组的制备方法
CN110299082B (zh) * 2019-05-27 2021-12-28 Oppo广东移动通信有限公司 显示面板、显示组件、电子设备及其控制方法
CN110286717B (zh) * 2019-06-24 2021-07-02 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法
CN110286716B (zh) * 2019-06-24 2021-03-19 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法
CN110263727B (zh) * 2019-06-24 2022-03-22 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法
CN110290241B (zh) * 2019-06-24 2021-03-02 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法
CN110278299B (zh) * 2019-06-24 2021-10-19 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法
CN112131906A (zh) * 2019-06-24 2020-12-25 Oppo广东移动通信有限公司 光学指纹传感器及具有其的电子设备
CN110321832B (zh) 2019-06-28 2021-05-18 维沃移动通信有限公司 光学模组及移动终端
CN112490266A (zh) * 2019-09-11 2021-03-12 北京小米移动软件有限公司 显示面板和终端设备
WO2023197760A1 (zh) * 2022-04-11 2023-10-19 深圳市洲明科技股份有限公司 集成模块、显示模组、感光触控交互系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205910951U (zh) * 2016-05-30 2017-01-25 深圳印象认知技术有限公司 一种显示屏
CN108229417A (zh) * 2018-01-17 2018-06-29 深圳信炜生物识别科技有限公司 显示模组及电子设备
CN109271057A (zh) * 2018-08-16 2019-01-25 Oppo广东移动通信有限公司 显示组件和电子设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107689384A (zh) * 2016-08-05 2018-02-13 上海箩箕技术有限公司 显示模组
CN108229241A (zh) * 2016-12-09 2018-06-29 上海箩箕技术有限公司 显示模组及其使用方法
CN106778183A (zh) * 2017-01-24 2017-05-31 维沃移动通信有限公司 一种终端指纹识别的方法及移动终端
CN207489034U (zh) * 2017-04-14 2018-06-12 华为技术有限公司 一种检测装置及终端设备
CN107958193B (zh) * 2017-08-17 2020-07-28 深圳信炜科技有限公司 显示模组及电子设备
CN107958248A (zh) * 2017-08-17 2018-04-24 深圳信炜科技有限公司 显示模组及电子设备
CN107958650B (zh) * 2017-08-17 2021-01-26 深圳信炜科技有限公司 生物感测模组及其驱动电路、电子设备
CN113158868A (zh) * 2017-08-17 2021-07-23 深圳信炜科技有限公司 感光模组、显示模组及电子设备
CN107946338B (zh) * 2017-08-17 2020-07-28 深圳信炜科技有限公司 显示模组及电子设备
CN207233359U (zh) * 2017-08-17 2018-04-13 深圳信炜科技有限公司 显示模组及电子设备
CN107958192A (zh) * 2017-08-17 2018-04-24 深圳信炜科技有限公司 感光模组、显示模组及电子设备
CN107957747B (zh) * 2017-08-17 2022-02-01 柳州梓博科技有限公司 电子设备
CN108064387B (zh) * 2017-08-17 2021-01-05 深圳信炜科技有限公司 显示模组及其生物特征信息感测方法、电子设备
CN107644215B (zh) * 2017-09-28 2020-07-31 维沃移动通信有限公司 一种光学指纹组件及移动终端
CN108389508B (zh) * 2018-03-05 2020-10-20 云谷(固安)科技有限公司 显示模组以及电子设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205910951U (zh) * 2016-05-30 2017-01-25 深圳印象认知技术有限公司 一种显示屏
CN108229417A (zh) * 2018-01-17 2018-06-29 深圳信炜生物识别科技有限公司 显示模组及电子设备
CN109271057A (zh) * 2018-08-16 2019-01-25 Oppo广东移动通信有限公司 显示组件和电子设备

Also Published As

Publication number Publication date
CN109271057A (zh) 2019-01-25
CN109271057B (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2020034781A1 (zh) 显示组件和电子设备
US11663846B2 (en) Fingerprint identification apparatus and electronic device
US20200134283A1 (en) Lcd fingerprint recognition system, under-screen optical fingerprint recognition apparatus and electronic apparatus
US11361583B2 (en) Fingerprint identification apparatus and electronic device
KR102455050B1 (ko) 표시 장치 및 휴대용 단말기
CN209728383U (zh) 光学检测装置、背光模组、液晶显示装置、和电子设备
WO2020082375A1 (zh) 复合透镜结构、指纹识别装置和电子设备
CN111062370A (zh) 光学检测装置
CN110673398A (zh) 光学检测装置、背光模组、显示装置、电子设备
CN110619305A (zh) 显示屏组件及电子设备
CN109271058B (zh) 显示组件和电子设备
CN210401950U (zh) 屏下检测系统、液晶显示装置和背光模组
CN209962052U (zh) 一种背光模组、显示模组及电子设备
CN210155456U (zh) 检测模组、背光模组、显示装置及电子设备
CN212160680U (zh) 光学检测装置
CN111339815A (zh) 一种光学检测装置及电子设备
CN209707880U (zh) 光学检测装置、背光模组、显示装置、和电子设备
CN210155680U (zh) 检测模组、显示装置及电子设备
CN211698976U (zh) 一种光学检测装置及电子设备
CN211698975U (zh) 一种光学检测装置及电子设备
US20210227111A1 (en) Full-screen image display and optical assembly thereof
CN209803506U (zh) 一种背光模组、显示模组及电子设备
CN209803509U (zh) 一种背光模组、显示模组及电子设备
CN210863098U (zh) 一种光学检测装置及电子设备
CN209803512U (zh) 一种背光模组、显示模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849121

Country of ref document: EP

Kind code of ref document: A1