WO2020034643A1 - 海底天然气水合物保压绳索取心钻机钻进工艺 - Google Patents
海底天然气水合物保压绳索取心钻机钻进工艺 Download PDFInfo
- Publication number
- WO2020034643A1 WO2020034643A1 PCT/CN2019/080690 CN2019080690W WO2020034643A1 WO 2020034643 A1 WO2020034643 A1 WO 2020034643A1 CN 2019080690 W CN2019080690 W CN 2019080690W WO 2020034643 A1 WO2020034643 A1 WO 2020034643A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- drilling
- core
- holding
- drill
- Prior art date
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 215
- 238000000034 method Methods 0.000 title claims abstract description 23
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title abstract description 9
- 239000003345 natural gas Substances 0.000 title abstract description 8
- -1 natural gas hydrates Chemical class 0.000 title abstract description 7
- 238000004080 punching Methods 0.000 claims abstract description 24
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 21
- 238000005086 pumping Methods 0.000 claims abstract description 11
- 238000003825 pressing Methods 0.000 claims abstract description 7
- 239000013535 sea water Substances 0.000 claims description 71
- 238000011010 flushing procedure Methods 0.000 claims description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 34
- 238000007789 sealing Methods 0.000 claims description 26
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 claims description 22
- 238000005406 washing Methods 0.000 claims description 14
- 230000001141 propulsive effect Effects 0.000 claims description 12
- 239000011435 rock Substances 0.000 claims description 9
- 239000013049 sediment Substances 0.000 claims description 9
- 239000004576 sand Substances 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 2
- 238000005755 formation reaction Methods 0.000 description 16
- 239000007789 gas Substances 0.000 description 3
- 150000004677 hydrates Chemical class 0.000 description 3
- 230000001174 ascending effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B25/00—Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B25/00—Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
- E21B25/06—Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors the core receiver having a flexible liner or inflatable retaining means
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/001—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor specially adapted for underwater drilling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/10—Valve arrangements in drilling-fluid circulation systems
- E21B21/106—Valve arrangements outside the borehole, e.g. kelly valves
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B25/00—Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
- E21B25/18—Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors the core receiver being specially adapted for operation under water
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/02—Core bits
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B19/00—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
- E21B19/14—Racks, ramps, troughs or bins, for holding the lengths of rod singly or connected; Handling between storage place and borehole
Definitions
- the invention relates to a drilling process for a submarine natural gas hydrate pressure-retaining rope core drilling rig.
- Submarine gas hydrate as a new type of subsea energy resource, has huge reserves.
- Global reserves of submarine natural gas hydrates are twice that of existing natural gas and oil reserves, and they are also abundant in the South China Sea and East China Sea, and have broad development prospects.
- China's exploration and development of submarine natural gas hydrate resources as an alternative energy source has become a major strategic decision of the country.
- the use of submarine pressure-retaining rope core rigs for pressure-maintaining coring of submarine gas hydrates is necessary to determine the morphology of submarine gas hydrate ore bodies, to understand the geological conditions of submarine gas hydrates, and to conduct economic and technical evaluation of submarine gas hydrate resources. Less technical steps and means.
- the present invention provides a submarine natural gas hydrate pressure-retaining rope core-drilling process suitable for a submarine pressure-retaining rope core rig.
- the pressure-retaining rope core-drilling process has high drilling efficiency, High heart rate, good pressure holding performance and high degree of automation.
- the technical scheme adopted by the present invention is: a drilling process for submarine natural gas hydrate pressure-retaining rope coring rigs.
- the coring equipment used includes a submarine pressure-retaining rope coring rig, multiple rope coring special drill rods, multiple A pressure-holding rope coring inner tube and a pressure-keeping rope coring outer tube drilling tool with a pressure-preserving sealing cover.
- a high-pressure seawater washing pump, a seawater suction cylinder, and a washing water exchange are installed on the subsea pressure-keeping rope coring rig.
- the seawater is connected; the top of the piston rod of the seawater suction cylinder and the bottom of the submarine pressure-holding cord core drilling rig are connected by hinges, so that the seawater suction cylinder and the submarine pressure-cord core drilling rig advance the synchronous movement of the cylinder;
- Step 1 Firstly, place a plurality of special drill rods for cord coring, and a plurality of empty pressure-retaining rope coring inner tubes with pressure-retaining sealing caps on the subsea pressure-retaining rope coring rig pipe storage rack, and place one empty
- the pressure-holding rope coring inner tube without the pressure-holding sealing cover is put into the pressure-holding rope coring outer tube drilling tool, and a pressure-holding cover is put into the pressure-holding seal cover on the subsea pressure-holding rope coring rig.
- the leveling outriggers on the submerged pressure maintaining rope coring rig are used to hold the subsea pressure Rope coring rig for leveling and support;
- Step 2 When the formation to be drilled is a soft sedimentary formation, use pure aspiration core drilling mode to drill: Use the flushing water reversing valve to draw the seamless cavity inlet of the seawater suction cylinder and the drill pipe. The holes are connected, and the drilling power head of the submarine pressure-holding core coring rig applies pressure to the ring drill at the front of the pressure-holding core coring outer tube drill through the drill rod and the pressure-holding cord core outer tube drill to make it constant. Cut into the seabed sediment at the same time, while the seawater suction cylinder draws the core sample from the drill pipe and the core sample into the inner tube of the pressure-holding rope and the core pipe is basically the same volume of seawater;
- the stratum to be drilled is a hard sedimentary stratum, sand layer, or incompletely consolidated hydrate layer
- first drill in the suction pure pressure core drilling mode When the propulsion force of the drilling power head is greater than When the propulsive force is 40% of the maximum, or the propulsive force is greater than 2 tons, and the drilling speed is less than 9mm / s, and the time exceeds 1min, the drilling mode is changed to the suction-type rotary core drilling mode.
- the rotary drive function of the drilling power head is started while pushing down at a constant speed.
- the pressure drill is used to drive the pressure-holding rope to corel the outer tube drill.
- the front ring drill bit is rotated and cut into the subsea stratum under appropriate pressure. Extraction of substantially equal volume of seawater from the drill pipe and core sample entering the inner tube of the pressure-holding rope core;
- the drilling mode is changed to the pumping positive cycle rotary core drilling mode: the flushing water reversing valve is switched to Connect the water outlet of the high-pressure seawater flushing pump with the inner hole of the drill pipe, start the high-pressure flushing water pump, and while the drill pipe drives the pressure-holding rope to corrugate the outer ring drill bit at the front of the outer pipe drill to rotate into the subsea stratum, the high-pressure seawater passes through the drill pipe and The annular gap between the pressure-holding rope core inner tube and the pressure-holding rope core outer tube drilling tool flows through the water outlet of the annular drill
- Step 3 After the completion of this round of drilling, operate the drilling power head to move upward, use the petal core ring installed in the inner tube of the pressure-holding cord to pull out the core, and then drill the power head with the drill rod, Holding rope coring outer tube drill and holding rope coring inner tube go up to the position of unloading holding rope coring inner tube;
- Step 4 Use a fishing winch to lower the salvage device to salvage the inner tube of the pressure-holding rope core with the core to the submarine pressure-holding rope core rig.
- the active drill rod of the power head is separated from the lower drill rod and lifted to In the highest position, move the inner tube with the core of the pressure-holding rope equipped with the core to the pressure-holding cap unscrewing mechanism;
- Step 5 Tighten the pressure-holding sealing cap to the pressure-holding rope coring inner tube to achieve the seal of the pressure-holding rope coring inner tube, and place the core-sealed pressure-holding rope coring inner tube to the subsea pressure-holding Rope coring rig pipe storage rack;
- Step 6 Operate the drilling power head to reconnect the active drill rod with the lower drill rod.
- Use the flushing water reversing valve to switch to the outlet of the high-pressure seawater flushing pump and communicate with the bore of the drill pipe.
- Step 7 Operate the drilling power head.
- the active drill pipe is separated from the lower drill pipe shackle and rises to the highest position. Take out an empty pressure-retaining rope and take the inner tube to the pressure-sealing cap unscrewing mechanism. Unscrew the sealing cap from the inner tube of the empty pressure-holding rope;
- Step 8 Lower the empty pressure-retaining rope core inner tube with the pressure-retaining sealing cap removed into the pressure-retaining rope core outer tube drill;
- Step 9 Add 1 drill pipe
- Step 10 Perform multiple punchings in the same manner as in Step 6.
- Step 11 Choose one or two of steps 6 and 10; determine whether the drilling centering reaches the given hole depth, if it reaches the given hole depth, proceed to the next step, if it does not reach the given hole depth, repeat step 2- Step 10, until the core is drilled to a given hole depth;
- Step 12 Recover the drill pipe and the pressure-retaining rope coring outer tube drilling tool
- Step 13 retrieve the subsea pressure-holding core coring rig.
- the pure pressing speed is 20 ⁇ 2 mm / s.
- the rotation speed of the drilling power head is 30 to 150 r / min.
- the drilling speed is 4 ⁇ 2mm / s.
- the rotational speed of the drilling power head is 30 to 150 r / min.
- the drilling speed is 3 ⁇ 2mm / s
- the pump volume of the high-pressure seawater washing pump is 50 ⁇ 100L / min.
- step 2 when drilling in a pumping positive cycle rotary core drilling mode, when the drilling speed rises above 8 mm / s and continues In 20 seconds, it returns to the suction-type rotary core drilling mode.
- step 2 when drilling in the suction-type rotary core drilling mode, if the drilling speed rises above 18 mm / s and continues for 20 Seconds, then return to the suction pure pressing core drilling mode of step 2.
- the lowering speed is 18 to 25 m / min; the fishing winch and the fishing gear are cored with the pressure-holding rope.
- the ascending speed is 30 ⁇ 40m / min.
- step 6 and step 10 when the drilling depth is less than 10m, punching is performed 2 or 3 times; when the drilling depth is 10m-30m , Punching 3 to 4 times; when the drilling depth is greater than 30m, the number of punchings is more than 5 times; when the punching is down, the pump volume of the high-pressure seawater flushing pump is 50 to 80L / min; when the punching is upward, the high-pressure seawater is flushed
- the capacity of the pump is 100-200L / min.
- the present invention can automatically switch or manually switch the suction pure pressure core drilling mode, the suction rotary core drilling mode and the pumping positive cycle rotary core according to the automatic control system of the rig.
- Drilling mode which effectively improves drilling efficiency and heart rate;
- the present invention uses a pressure-retaining seal cap unloading mechanism to screw the pressure-retaining seal cap onto the pressure-retaining rope core inner tube to achieve sealing of the pressure-retaining rope core inner tube with good pressure-retaining performance;
- the invention can realize the fully automatic remote-controlled core drilling operation of the subsea pressure-holding rope core drilling rig on the subsea, which has a high degree of automation, high drilling efficiency, and can effectively reduce operating costs.
- FIG. 1 is a schematic structural diagram of a coring device used in the present invention.
- FIG. 2 is a schematic structural view of a pressure-holding rope coring inner tube according to the present invention.
- the coring equipment used in the present invention includes a submarine pressure-retaining rope coring rig, a plurality of drill rods 14, a plurality of pressure-retaining rope coring inner tubes 18 with pressure-retaining sealing caps 15, Pressure rope coring outer pipe drilling tool 17, a high-pressure seawater flushing pump 1, a seawater suction cylinder 5, a flushing water reversing valve 2 and a pressure-retaining sealing cap unloading mechanism 16 are installed on the subsea pressure-retaining rope core rig.
- the water outlet of the high-pressure seawater flushing pump 1 and the rodless cavity inlet of the seawater suction cylinder 5 are connected to the inner hole of the active drill rod 13 of the drilling power head of the subsea pressure-holding core coring rig via the flushing water reversing valve 2 and flush.
- the water reversing valve 2 can switch the inner hole of the drill pipe to communicate with the water outlet of the high-pressure seawater washing pump 1 or the inlet of the rodless cavity of the seawater suction cylinder 5 as needed.
- the rod cavity of the seawater suction cylinder 5 communicates with the external seawater; the top of the seawater suction cylinder piston rod 51 is connected to the top of the submerged pressure rope core rig's propulsion cylinder piston rod 41 by a hinge to enable seawater suction
- the cylinder and the subsea pressure-holding rope core drilling rig advance the oil cylinder synchronously.
- the propulsion oil cylinder 4 and the seawater suction cylinder 5 are installed on the base 6, and the drilling power head slide rail frame 3 is installed on the base 6, and the vertical slide rail is provided on the upper side of the drilling power head slide rail frame 3.
- the drilling power head 11 is arranged on a vertical slide rail and can move along the vertical slide rail.
- a plurality of leveling legs 7 are provided at the bottom of the base 6.
- the upper end of the propulsion cylinder piston rod 41 of the propulsion cylinder 4 is provided with two pulleys, and the two pulleys are arranged up and down.
- the top and bottom of the drilling power head slide rail frame 3 are respectively provided with pulleys.
- One end of the upper wire rope is fixedly connected to the top of the power head slide frame 3, and the other end sequentially bypasses the upper one of the two pulleys at the upper end of the piston rod of the propelling cylinder 4 and the top of the power head slide frame 3.
- one end of the lower wire rope is fixedly connected to the bottom of the drilling power head slide frame 3, and the other end bypasses the lower one of the two pulleys on the upper end of the piston rod of the propulsion cylinder 4 and the drilling power head in order.
- a pulley at the bottom of the slide rail frame 3 is connected to the drilling power head 11.
- the drilling power head 11 is provided with an active drilling rod 13 of the drilling power head.
- the active drilling rod 13 of the drilling power head can be connected with the upper end of the drill rod 14 by a threaded fastener or the upper end of the outer tube drilling tool 15 with a pressure-holding rope.
- the threaded buckle is connected, and the threaded buckle at the lower end of the drill rod 14 can be connected with the threaded buckle of the outer tube drilling tool 15 with a pressure-holding rope.
- the drilling power head 11 is also provided with a hole that communicates with the active power rod 13 of the drilling power head.
- the active power rod 13 of the drilling power head is provided with a fishing device 12. One end of the wire rope is connected to the fishing device 12 and the other end passes through the drill.
- the hole on the feed head 11 is connected to the fishing winch.
- the invention includes the following steps:
- Step 1 Firstly, place a plurality of special drill rods for cord coring, and a plurality of empty pressure-retaining rope coring inner tubes with pressure-retaining sealing caps on the subsea pressure-retaining rope coring rig pipe storage rack, and place one empty
- the pressure-holding rope coring inner tube without the pressure-holding sealing cover is put into the pressure-holding rope coring outer tube drilling tool, and a pressure-holding cover is put into the pressure-holding seal cover on the subsea pressure-holding rope coring rig.
- the leveling outriggers on the submerged pressure maintaining rope coring rig are used to hold the subsea pressure Rope coring rig for leveling and support.
- Step 2 When the formation to be drilled is a soft sedimentary formation, use pure formation to pump pure pressure into the core drilling mode: use the flushing water reversing valve to draw the seawater suction cylinder's rodless cavity inlet and the drill pipe The holes are connected, and the drilling power head of the submarine pressure-holding core coring rig applies pressure to the ring drill at the front of the pressure-holding core coring outer tube drill through the drill rod and the pressure-holding cord core outer tube drill to make it constant.
- the seawater suction cylinder cuts into the seabed sediment at the same time, and the seawater suction cylinder extracts from the drill pipe and enters the core sample of the inner tube of the pressure-holding rope to obtain a substantially equal volume of seawater; the pure pressing speed is 20 ⁇ 2mm / s.
- the drilling pressure is very high and the drilling speed is still very slow when drilling in the suction pure pressure core drilling mode. That is, when the propulsive force of the drilling power head is 40% of its maximum propulsive force, or the propulsive force is 2 tons, and the drilling speed is less than 9mm / s, and the time exceeds 1min, it is converted to the suction rotary core drilling.
- the rotary drive function of the drilling power head is started while the drilling power head is being pushed down at a constant speed, and the pressure ring is driven by the drill rod to rotate the ring drill at the front of the outer tube drill under the appropriate pressure to cut in.
- the seawater pumping cylinder draws the same volume of seawater from the drill pipe as the core sample entering the inner tube of the pressure-holding rope core.
- the speed of the drilling power head is 30 ⁇ 150r / min, and the drilling speed is 4 ⁇ 2mm / s.
- the drilling pressure is still high and the drilling speed is still very slow when drilling in the suction rotary core drilling mode. That is, when the propulsive force of the drilling power head is greater than 50% of its maximum propulsive force, or the propulsive force is greater than 2.5 tons, and the drilling speed is less than 3mm / s, and the time exceeds 1min, it is converted to pumping positive cycle rotary core drilling.
- the flushing water reversing valve is switched to connect the outlet of the high-pressure seawater flushing pump with the inner hole of the drill pipe, start the high-pressure flushing water pump, and drive the pressure-holding rope to corrugate the outer ring of the outer tube drill to rotate into the sea floor on the drill pipe.
- high-pressure seawater flows through the annular gap between the inner pipe of the drill pipe and the pressure-holding rope core and the outer-pipe holding pressure-cord core, and flows through the ring
- the water outlet reaches the bottom of the hole, cools the ring drill at the front of the pressure-holding rope coring outer pipe drill, and carries the rock powder at the bottom of the hole back to the hole along the annular gap between the drill pipe and the hole wall.
- the speed of the drilling power head is 30 ⁇ 150r / min, the drilling speed is 3 ⁇ 2mm / s, and the pump volume of the high-pressure seawater washing pump is 50 ⁇ 100L / min.
- Step 3 After the completion of this round of drilling, operate the drilling power head to move upward, use the petal core ring installed in the inner tube of the pressure-holding cord to pull out the core, and then drill the power head with the drill rod, The holding rope coring outer tube drill and the holding rope coring inner tube go up to the position where the pressure keeping rope coring inner tube is unloaded.
- Step 4 Use the fishing winch to lower the salvage device.
- the lowering speed is 18-25m / min.
- the lifting winch and the salvage device are moving upward with the pressure-holding rope and the inner tube, the upward speed is 30 to 40 m / min.
- the active drill rod of the drilling power head is separated from the lower drill rod shackle and raised to a high position, and the mandrel is used to move the inner tube of the pressure-retaining rope core with the core to the pressure-retaining seal cap unloading mechanism.
- Step 5 Use the pressure-retaining seal cap unloading mechanism to tighten the pressure-retaining seal cap to the pressure-retaining rope core inner tube, and realize the sealing of the pressure-retaining rope core inner tube. Place the inner tube of the pressure rope coring core to the pipe storage rack of the submarine pressure maintaining rope core coring rig.
- Step 6 Operate the drilling power head to reconnect the active drill pipe with the lower drill pipe.
- Use the flushing water reversing valve to switch to the outlet of the high-pressure seawater washing pump and the inner hole of the drill pipe.
- Rotary head drilling function using high-pressure seawater washing pump to punch multiple times. Punching refers to the use of a drilling power head to drive the drill rod and the pressure-holding rope to corel the outer tube drill from 1.5m to 2.0m from the bottom of the hole and stay for 20 minutes. ⁇ 30 seconds, then descend back to the bottom of the hole.
- the pump volume of the high-pressure seawater flushing pump is 50-80L / min, and when the hole is punched upward, the pump volume of the high-pressure seawater flushing pump is 100-200L / min.
- Step 7 Operate the drilling power head.
- the active drill pipe is separated from the lower drill pipe shackle and raised to the highest position.
- the manipulator on the rig is used to remove an empty pressure-holding rope from the pipe storage rack of the drill.
- Above the seal cap unloading mechanism the pressure-retaining seal cap unscrewing mechanism is used to unscrew the pressure-retaining seal cap from the empty pressure-retaining rope core inner tube, and the pressure-retaining seal cap is temporarily stored in the pressure-retaining seal cap unloading mechanism. in.
- Step 8 With the cooperation of the manipulator, the salvage device and the fishing winch on the rig, the empty pressure-retaining rope coring inner tube with the pressure-retaining sealing cap removed is lowered into the pressure-retaining rope coring outer pipe drilling tool.
- Step 9 Add 1 drill pipe.
- Step 10 Perform punching multiple times in the same way as step 6.
- Step 11 One or two of steps 6 and 10 are performed; that is, according to actual needs, any one of steps 6 and 10 is selected for punching, or the punching operations of steps 6 and 10 are retained at the same time. Determine whether the core drilling has reached the given hole depth. If the given hole depth is reached, proceed to the next step. If the given hole depth is not reached, repeat steps 2 to 10 until the core is drilled to the given hole depth.
- Step 12 Recover the drill pipe and the pressure-holding rope to corel the outer tube drill.
- Step 13 retrieve the subsea pressure-holding core coring rig.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Earth Drilling (AREA)
Abstract
一种海底天然气水合物保压绳索取心钻机钻进工艺,包括以下步骤:1)下钻;2)软地层抽吸纯压入取心钻进,或中硬地层抽吸式回转取心钻进,或硬地层泵送正循环回转取心钻进;3)拔心;4)保压绳索取心内管(18)打捞;5)拧接保压绳索取心内管保压密封盖(15)及向钻机储管架送存;6)加钻杆(14)前冲孔;7)从钻机储管架抓取保压绳索取心内管空管并拧卸保压密封盖;8)下放保压绳索取心内管;9)加接钻杆;10)加钻杆后冲孔;11)重复步骤2)-10),直到钻进取心至给定孔深;12)回收钻杆及钻具;13)回收钻机。该钻进工艺利用海底保压绳索取心钻机对海底天然气水合物保压钻探取心,具有钻进效率高、取心率高、保压性能好、自动化程度高等优点。
Description
本发明涉及一种海底天然气水合物保压绳索取心钻机钻进工艺。
海底天然气水合物作为一种新型的海底能源资源,储量十分巨大。全球海底天然气水合物的储量是现有天然气、石油储量的两倍,在我国南海、东海蕴藏量也十分丰富,具有广阔的开发前景。我国作为一个石油资源紧缺的发展中大国,勘探开发海底天然气水合物资源作为替代能源,已成为国家的一项重大战略决策。利用海底保压绳索取心钻机对海底天然气水合物进行保压取心钻探是圈定海底天然气水合物矿体形态、摸清海底天然气水合物地质条件、进行海底天然气水合物资源经济技术评价所必不可少的一个技术步骤和手段。由于海底天然气水合物在海底的赋存常常表现为与沉积物、沙或硬岩等交错或混合分布,形成以较软的沉积物为代表的软地层,以较硬的沉积物地层、砂层或未完全固结的水合物层为代表的中硬地层,以及由坚硬的沉积物地层、完全固结的水合物层或硬岩地层为代表的硬地层,国内外均缺少利用海底保压绳索取心钻机、海底非保压绳索取心钻机和海底非保压普通钻机对海底天然气水合物进行高效、高取心率钻探取心的技术经验,同时,由于海底天然气水合物形成和存储在低温高压环境下,实现所取岩心样品的保压密封也异常关键,因此,如何利用海底保压绳索取心钻机对海底天然气水合物进行高效、高取心率取心,并实现保压密封是一个亟待解决的技术与工艺问题。
发明内容
为了解决上述技术问题,本发明提供一种适用于海底保压绳索取心钻机的海底天然气水合物保压绳索取心钻进工艺,该保压绳索取心钻进工艺具有钻进效率高、取心率高、保压性能好、自动化程度高等优点。
本发明采用的技术方案是:一种海底天然气水合物保压绳索取心钻机钻进工艺,其采用的取心设备包括海底保压绳索取心钻机、多根绳索取心专用钻杆、多根带保压密封盖的保压绳索取心内管、保压绳索取心外管钻具,所述的海底保压绳索取心钻机上安装有高压海水冲洗泵、海水抽吸缸、冲洗水换向阀和保压密封盖拧卸机构,高压海水冲洗泵的出水口和海水抽吸缸的无杆腔入口经冲洗水换向阀与海底保压绳索取心钻机的钻进动力头主动钻杆的内孔连通,冲洗水换向阀可根据需要切换钻杆内孔分别与高压海水冲洗泵的出水口或海水抽吸缸 的无杆腔入口连通,海水抽吸缸的有杆腔则与外部海水连通;海水抽吸缸活塞杆顶端与海底保压绳索取心钻机推进油缸活塞杆顶端通过绞链连接,以使海水抽吸缸与海底保压绳索取心钻机推进油缸同步动作;
包括以下步骤:
步骤1:先将多根绳索取心专用钻杆、多根空的带保压密封盖的保压绳索取心内管安放至海底保压绳索取心钻机储管架上,将1根空的不带保压密封盖的保压绳索取心内管放入保压绳索取心外管钻具内,将一个保压密封盖放入海底保压绳索取心钻机上的保压密封盖拧卸机构内,然后将海底保压绳索取心钻机吊放入水,当海底保压绳索取心钻机在海底表面着底后,通过海底保压绳索取心钻机上的调平支腿对海底保压绳索取心钻机进行调平和支撑;
步骤2:当待钻地层为较软的沉积物地层时,采用抽吸纯压入取心钻进模式钻进:利用冲洗水换向阀将海水抽吸缸的无杆腔入口与钻杆内孔连通,由海底保压绳索取心钻机的钻进动力头通过钻杆和保压绳索取心外管钻具向保压绳索取心外管钻具前部的环形钻头施加压力使其以恒定的速度切入海底沉积物中,同时海水抽吸缸从钻杆中抽取与进入保压绳索取心内管的岩心样品基本等体积的海水;
当待钻地层为较硬的沉积物地层、砂层或未完全固结的水合物层时,首先以抽吸纯压入取心钻进模式钻进,当钻进动力头的推进力大于其最大推进力的40%,或推进力大于2吨,且钻进速度小于9mm/s时间超过1min时,则变换为采用抽吸式回转取心钻进模式钻进:在保持钻进动力头以恒定的速度向下推进的同时启动钻进动力头的旋转驱动功能,通过钻杆带动保压绳索取心外管钻具前部环形钻头在合适压力下旋转切入海底地层,同时海水抽吸缸从钻杆中抽取与进入保压绳索取心内管的岩心样品基本等体积的海水;
当待钻地层为坚硬的沉积物地层、完全固结的水合物层或硬岩地层时,首先以抽吸式回转取心钻进模式钻进,当钻进动力头的推进力大于其最大推进力的50%,或推进力大于2.5吨,且钻进速度小于3mm/s时间超过1min时,则变换为采用泵送正循环回转取心钻进模式钻进:将冲洗水换向阀切换至将高压海水冲洗泵的出水口与钻杆内孔连通,启动高压冲洗水泵,在钻杆带动保压绳索取心外管钻具前部环形钻头旋转切入海底地层的同时,高压海水经钻杆和保压绳索取心内管与保压绳索取心外管钻具之间的环状间隙,流经保压绳索取心外管钻具前部环形钻头的出水口到达孔底,对保压绳索取心外管钻具前部环形钻头进行冷却,并携带孔底岩粉沿钻杆和孔壁间的环状间隙上返至孔口;
步骤3:在该回次钻进结束后,操作钻进动力头上行,利用安装在保压绳索取心内管内的带花瓣的岩心卡环拔断岩心,之后钻进动力头带着钻杆、保压绳索取心外管钻具以及保压 绳索取心内管上行至卸保压绳索取心内管位置;
步骤4:利用打捞绞车下放打捞器,将装有岩心的保压绳索取心内管打捞至海底保压绳索取心钻机上,钻进动力头主动钻杆与下部钻杆卸扣分离并上升至最高位,将装有岩心的保压绳索取心内管移动至保压密封盖拧卸机构上方;
步骤5:将保压密封盖拧紧到保压绳索取心内管上,实现对保压绳索取心内管的密封,将装有岩心的密封的保压绳索取心内管放至海底保压绳索取心钻机储管架上;
步骤6:操作钻进动力头主动钻杆与下部钻杆重新连接,利用冲洗水换向阀切换至高压海水冲洗泵的出水口与钻杆内孔连通,启动高压海水冲洗泵和钻进动力头旋转钻进,利用高压海水冲洗泵多次冲孔,冲孔是指利用钻进动力头带动钻杆及保压绳索取心外管钻具从孔底上行1.5m~2.0m后停留20~30秒,再下行回到孔底;
步骤7:操作钻进动力头主动钻杆与下部钻杆卸扣分离并上升至最高位,取出一根空的保压绳索取心内管送至保压密封盖拧卸机构上方,将保压密封盖从空的保压绳索取心内管上拧卸下来;
步骤8:将卸掉了保压密封盖的空的保压绳索取心内管下放至保压绳索取心外管钻具内;
步骤9:加接1根钻杆;
步骤10:以步骤6相同的方法进行多次冲孔;
步骤11:步骤6和步骤10择一或二进行;判断钻进取心是否至给定孔深,若达到给定孔深,进行下一步操作,若没有达到给定孔深,则重复步骤2-步骤10,直到钻进取心至给定孔深;
步骤12:回收钻杆及保压绳索取心外管钻具;
步骤13:回收海底保压绳索取心钻机。
上述的海底天然气水合物保压绳索取心钻机钻进工艺中,所述步骤2中,纯压入速度为20±2mm/s。
上述的海底天然气水合物保压绳索取心钻机钻进工艺中,所述步骤2中,以抽吸式回转取心钻进模式钻进时,钻进动力头的转速为30~150r/min,同时钻进速度为4±2mm/s。
上述的海底天然气水合物保压绳索取心钻机钻进工艺中,所述步骤2中,以泵送正循环回转取心钻进模式钻进时,钻进动力头的转速为30~150r/min,钻进速度为3±2mm/s,高压海水冲洗泵的泵量为50~100L/min。
上述的海底天然气水合物保压绳索取心钻机钻进工艺中,所述步骤2中,以泵送正循环回转取心钻进模式钻进时,当钻进速度上升至8mm/s以上并持续20秒,则恢复至抽吸式回 转取心钻进模式。
上述的海底天然气水合物保压绳索取心钻机钻进工艺中,所述步骤2中,以抽吸式回转取心钻进模式钻进时,如果钻进速度上升至18mm/s以上并持续20秒,则恢复至步骤2的抽吸纯压入取心钻进模式。
上述的海底天然气水合物保压绳索取心钻机钻进工艺中,所述步骤4中,打捞绞车下放打捞器时,下放速度为18~25m/min;打捞绞车和打捞器带保压绳索取心内管上行时,上行速度为30~40m/min。
上述的海底天然气水合物保压绳索取心钻机钻进工艺中,所述步骤6和步骤10中,当钻孔深度小于10m时,冲孔2~3次;当钻孔深度为10m~30m时,冲孔3~4次;当钻孔深度大于30m时,冲孔次数大于5次;下行冲孔时,高压海水冲洗泵的泵量为50~80L/min,上行冲孔时,高压海水冲洗泵的泵量为100~200L/min。
与现有技术相比,本发明的有益效果是:
(1)本发明可根据不同地层性质,由钻机自动控制系统自动切换或人工强制切换抽吸纯压入取心钻进模式、抽吸式回转取心钻进模式和泵送正循环回转取心钻进模式,有效提高钻进效率和取心率;
(2)本发明利用保压密封盖拧卸机构将保压密封盖拧紧到保压绳索取心内管上,实现对保压绳索取心内管的密封,保压性能好;
(3)本发明可实现海底保压绳索取心钻机在海底全自动遥控操取心钻进作业,自动化程度高、钻进效率高,可有效降低作业成本。
图1是本发明采用的取心设备的结构示意图。
图2是本发明的保压绳索取心内管的结构示意图。
图3是本发明的保压绳索取心内管与保压密封盖拧紧后的状态。
图中:1-高压海水冲洗泵,2-冲洗水换向阀,3-钻进动力头滑轨架,4-推进油缸,41-推进油缸活塞杆,5-海水抽吸缸,51-海水抽吸缸活塞杆,52-海水抽吸缸活塞,6-底座,7-调平支腿,8-水管,9-打捞钢丝绳,10-打捞绞车,11-钻进动力头,12-打捞器,13-钻进动力头主动钻杆,14-钻杆,15-保压密封盖,16-保压密封盖拧卸机构,17-保压绳索取心外管钻具,171-环形钻头,18-保压绳索取心内管,181-轴承组合,182-带花瓣的岩心卡环。
下面结合附图对本发明做进一步的说明。
如图1-图3所示,本发明采用的取心设备包括海底保压绳索取心钻机、多根钻杆14、多根带保压密封盖15的保压绳索取心内管18、保压绳索取心外管钻具17,所述的海底保压绳索取心钻机上安装有高压海水冲洗泵1、海水抽吸缸5、冲洗水换向阀2和保压密封盖拧卸机构16,高压海水冲洗泵1的出水口和海水抽吸缸5的无杆腔入口经冲洗水换向阀2与海底保压绳索取心钻机的钻进动力头主动钻杆13的内孔连通,冲洗水换向阀2可根据需要切换钻杆内孔与高压海水冲洗泵1的出水口或海水抽吸缸5的无杆腔入口连通。海水抽吸缸5的有杆腔则与外部海水连通;海水抽吸缸活塞杆51的顶端与海底保压绳索取心钻机的推进油缸活塞杆41的顶端通过绞链连接,以使海水抽吸缸与海底保压绳索取心钻机推进油缸同步动作。
推进油缸4和海水抽吸缸5安装在底座6上,底座6上安装有钻进动力头滑轨架3,钻进动力头滑轨架3上一侧设有竖直滑轨,所述的钻进动力头11设置在竖直滑轨上,能够沿着竖直滑轨移动,底座6底部设有多个调平支腿7。所述的推进油缸4的推进油缸活塞杆41上端处设有两个滑轮,两个滑轮上下设置。所述的钻进动力头滑轨架3的顶部和底部分别设有滑轮。上钢丝绳的一端与钻进动力头滑轨架3的顶部固定连接,另一端依次绕过推进油缸4活塞杆上端的两滑轮中位于上方的一个及钻进动力头滑轨架3的顶部的滑轮与钻进动力头11连接,下钢丝绳的一端与钻进动力头滑轨架3的底部固定连接,另一端依次绕过推进油缸4活塞杆上端的两滑轮中位于下方的一个及钻进动力头滑轨架3的底部的滑轮与钻进动力头11连接。钻进动力头11上设有钻进动力头主动钻杆13,钻进动力头主动钻杆13既可以与钻杆14上端丝扣连接,又可以与保压绳索取心外管钻具15上端丝扣连接,钻杆14下端丝扣可以与保压绳索取心外管钻具15上端丝扣连接。钻进动力头11上还设有连通钻进动力头主动钻杆13的孔,钻进动力头主动钻杆13内设有打捞器12,钢丝绳的一端与打捞器12连接,另一端穿过钻进动力头11上的孔与打捞绞车连接。
本发明包括以下步骤:
步骤1:先将多根绳索取心专用钻杆、多根空的带保压密封盖的保压绳索取心内管安放至海底保压绳索取心钻机储管架上,将1根空的不带保压密封盖的保压绳索取心内管放入保压绳索取心外管钻具内,将一个保压密封盖放入海底保压绳索取心钻机上的保压密封盖拧卸机构内,然后将海底保压绳索取心钻机吊放入水,当海底保压绳索取心钻机在海底表面着底后,通过海底保压绳索取心钻机上的调平支腿对海底保压绳索取心钻机进行调平和支撑。
步骤2:当待钻地层为较软的沉积物地层,则采用软地层抽吸纯压入取心钻进模式:利用冲洗水换向阀将海水抽吸缸的无杆腔入口与钻杆内孔连通,由海底保压绳索取心钻机的钻进动力头通过钻杆和保压绳索取心外管钻具向保压绳索取心外管钻具前部的环形钻头施加压 力使其以恒定的速度切入海底沉积物中,同时海水抽吸缸从钻杆中抽取与进入保压绳索取心内管的岩心样品基本等体积的海水;纯压入速度为20±2mm/s。
当待钻地层为较硬的沉积物地层、砂层或未完全固结的水合物层,以抽吸纯压入取心钻进模式钻进时钻进压力很大而钻进速度仍然很缓慢,即钻进动力头的推进力为其最大推进力的40%,或推进力为2吨,且钻进速度小于9mm/s时间超过1min时,则变换为采用抽吸式回转取心钻进模式:在保持钻进动力头以恒定的速度向下推进的同时启动钻进动力头的旋转驱动功能,通过钻杆带动保压绳索取心外管钻具前部环形钻头在合适压力下旋转切入海底地层,同时海水抽吸缸从钻杆中抽取与进入保压绳索取心内管的岩心样品基本等体积的海水。钻进动力头的转速为30~150r/min,同时钻进速度为4±2mm/s。当以抽吸式回转取心钻进模式钻进时如果钻进速度上升至18mm/s以上并持续20秒时,则恢复至抽吸纯压入取心钻进模式钻进。
当待钻地层为坚硬的沉积物地层、完全固结的水合物层或硬岩地层,以抽吸式回转取心钻进模式钻进时钻进压力仍然很大且钻进速度仍然很缓慢,即钻进动力头的推进力大于其最大推进力的50%,或推进力大于2.5吨,且钻进速度小于3mm/s时间超过1min时,则变换为采用泵送正循环回转取心钻进模式:将冲洗水换向阀切换至将高压海水冲洗泵的出水口与钻杆内孔连通,启动高压冲洗水泵,在钻杆带动保压绳索取心外管钻具前部环形钻头旋转切入海底地层的同时,高压海水经钻杆和保压绳索取心内管与保压绳索取心外管钻具之间的环状间隙,流经保压绳索取心外管钻具前部环形钻头的出水口到达孔底,对保压绳索取心外管钻具前部环形钻头进行冷却,并携带孔底岩粉沿钻杆和孔壁间的环状间隙上返至孔口。钻进动力头的转速为30~150r/min,钻进速度为3±2mm/s,高压海水冲洗泵的泵量为50~100L/min。当以泵送正循环回转取心钻进模式钻进时如果钻进速度上升至8mm/s以上并持续20秒时,则恢复至抽吸式回转取心钻进模式钻进。
步骤3:在该回次钻进结束后,操作钻进动力头上行,利用安装在保压绳索取心内管内的带花瓣的岩心卡环拔断岩心,之后钻进动力头带着钻杆、保压绳索取心外管钻具以及保压绳索取心内管上行至卸保压绳索取心内管位置。
步骤4:利用打捞绞车下放打捞器,打捞绞车下放打捞器时,下放速度为18~25m/min;将保压绳索取心外管钻具内装有岩心的保压绳索取心内管打捞至海底保压绳索取心钻机上,打捞绞车和打捞器带保压绳索取心内管上行时,上行速度为30~40m/min。钻进动力头主动钻杆与下部钻杆卸扣分离并上升至高位,利用机械手将装有岩心的保压绳索取心内管移动至保压密封盖拧卸机构上方。
步骤5:利用保压密封盖拧卸机构将保压密封盖拧紧到保压绳索取心内管上,实现对保压绳索取心内管的密封,并利用机械手将装有岩心的密封的保压绳索取心内管放至海底保压绳索取心钻机储管架。
步骤6:操作钻进动力头主动钻杆与下部钻杆重新连接,利用冲洗水换向阀切换至将高压海水冲洗泵的出水口与钻杆内孔连通,启动高压海水冲洗泵和钻进动力头旋转钻进功能,利用高压海水冲洗泵多次冲孔,冲孔是指利用钻进动力头带动钻杆及保压绳索取心外管钻具从孔底上行1.5m~2.0m后停留20~30秒,再下行回到孔底。当钻孔深度小于10m时,冲孔2~3次;当钻孔深度范围在10m~30m时,冲孔3~4次;当钻孔深度大于30m时,冲孔次数大于5次;下行冲孔时,高压海水冲洗泵的泵量为50~80L/min,上行冲孔时,高压海水冲洗泵的泵量为100~200L/min。
步骤7:操作钻进动力头主动钻杆与下部钻杆卸扣分离并上升至最高位,利用钻机上机械手从钻机储管架上取出一根空的保压绳索取心内管送至保压密封盖拧卸机构上方,利用保压密封盖拧卸机构将保压密封盖从空的保压绳索取心内管上拧卸下来,并将保压密封盖暂存在保压密封盖拧卸机构中。
步骤8:在钻机上机械手、打捞器和打捞绞车的配合下将卸掉了保压密封盖的空的保压绳索取心内管下放至保压绳索取心外管钻具内。
步骤9:加接1根钻杆。
步骤10:以步骤6相同的方法进行多次冲孔。
步骤11:步骤6和步骤10择一或二进行;即根据实际需要,选择步骤6和步骤10中的任一步骤进行冲孔,或者同时保留步骤6和步骤10的冲孔操作。判断钻进取心是否至给定孔深,若达到给定孔深,进行下一步操作,若没有达到给定孔深,则重复步骤2-步骤10,直到钻进取心至给定孔深。
步骤12:回收钻杆及保压绳索取心外管钻具。
步骤13:回收海底保压绳索取心钻机。
Claims (8)
- 一种海底天然气水合物保压绳索取心钻机钻进工艺,其采用的取心设备包括海底保压绳索取心钻机、多根绳索取心专用钻杆、多根带保压密封盖的保压绳索取心内管、保压绳索取心外管钻具,所述的海底保压绳索取心钻机上安装有高压海水冲洗泵、海水抽吸缸、冲洗水换向阀和保压密封盖拧卸机构,高压海水冲洗泵的出水口和海水抽吸缸的无杆腔入口经冲洗水换向阀与海底保压绳索取心钻机的钻进动力头主动钻杆的内孔连通,冲洗水换向阀可根据需要切换钻杆内孔分别与高压海水冲洗泵的出水口或海水抽吸缸的无杆腔入口连通,海水抽吸缸的有杆腔则与外部海水连通;海水抽吸缸活塞杆顶端与海底保压绳索取心钻机推进油缸活塞杆顶端通过绞链连接,以使海水抽吸缸与海底保压绳索取心钻机推进油缸同步动作;包括以下步骤:步骤1:先将多根绳索取心专用钻杆、多根空的带保压密封盖的保压绳索取心内管安放至海底保压绳索取心钻机储管架上,将1根空的不带保压密封盖的保压绳索取心内管放入保压绳索取心外管钻具内,将一个保压密封盖放入海底保压绳索取心钻机上的保压密封盖拧卸机构内,然后将海底保压绳索取心钻机吊放入水,当海底保压绳索取心钻机在海底表面着底后,通过海底保压绳索取心钻机上的调平支腿对海底保压绳索取心钻机进行调平和支撑;步骤2:当待钻地层为较软的沉积物地层时,采用抽吸纯压入取心钻进模式钻进:利用冲洗水换向阀将海水抽吸缸的无杆腔入口与钻杆内孔连通,由海底保压绳索取心钻机的钻进动力头通过钻杆和保压绳索取心外管钻具向保压绳索取心外管钻具前部的环形钻头施加压力使其以恒定的速度切入海底沉积物中,同时海水抽吸缸从钻杆中抽取与进入保压绳索取心内管的岩心样品基本等体积的海水;当待钻地层为较硬的沉积物地层、砂层或未完全固结的水合物层时,首先以抽吸纯压入取心钻进模式钻进,当钻进动力头的推进力大于其最大推进力的40%,或推进力大于2吨,且钻进速度小于9mm/s时间超过1min时,则变换为采用抽吸式回转取心钻进模式钻进:在保持钻进动力头以恒定的速度向下推进的同时启动钻进动力头的旋转驱动功能,通过钻杆带动保压绳索取心外管钻具前部环形钻头在合适压力下旋转切入海底地层,同时海水抽吸缸从钻杆中抽取与进入保压绳索取心内管的岩心样品等体积的海水;当待钻地层为坚硬的沉积物地层、完全固结的水合物层或硬岩地层时,首先以抽吸式回转取心钻进模式钻进,当钻进动力头的推进力大于其最大推进力的50%,或推进力大于2.5吨,且钻进速度小于3mm/s时间超过1min时,则变换为采用泵送正循环回转取心钻进模式 钻进:将冲洗水换向阀切换至将高压海水冲洗泵的出水口与钻杆内孔连通,启动高压冲洗水泵,在钻杆带动保压绳索取心外管钻具前部环形钻头旋转切入海底地层的同时,高压海水经钻杆和保压绳索取心内管与保压绳索取心外管钻具之间的环状间隙,流经保压绳索取心外管钻具前部环形钻头的出水口到达孔底,对保压绳索取心外管钻具前部环形钻头进行冷却,并携带孔底岩粉沿钻杆和孔壁间的环状间隙上返至孔口;步骤3:在该回次钻进结束后,操作钻进动力头上行,利用安装在保压绳索取心内管内的带花瓣的岩心卡环拔断岩心,之后钻进动力头带着钻杆、保压绳索取心外管钻具以及保压绳索取心内管上行至卸保压绳索取心内管位置;步骤4:利用打捞绞车下放打捞器,将装有岩心的保压绳索取心内管打捞至海底保压绳索取心钻机上,钻进动力头主动钻杆与下部钻杆卸扣分离并上升至最高位,将装有岩心的保压绳索取心内管移动至保压密封盖拧卸机构上方;步骤5:将保压密封盖拧紧到保压绳索取心内管上,实现对保压绳索取心内管的密封,将装有岩心的密封的保压绳索取心内管放至海底保压绳索取心钻机储管架上;步骤6:操作钻进动力头主动钻杆与下部钻杆重新连接,利用冲洗水换向阀切换至高压海水冲洗泵的出水口与钻杆内孔连通,启动高压海水冲洗泵和钻进动力头旋转钻进,利用高压海水冲洗泵多次冲孔,冲孔是指利用钻进动力头带动钻杆及保压绳索取心外管钻具从孔底上行1.5m~2.0m后停留20~30秒,再下行回到孔底;步骤7:操作钻进动力头主动钻杆与下部钻杆卸扣分离并上升至最高位,取出一根空的保压绳索取心内管送至保压密封盖拧卸机构上方,将保压密封盖从空的保压绳索取心内管上拧卸下来;步骤8:将卸掉了保压密封盖的空的保压绳索取心内管下放至保压绳索取心外管钻具内;步骤9:加接1根钻杆;步骤10:以步骤6相同的方法进行多次冲孔;步骤11:步骤6和步骤10择一或二进行;判断钻进取心是否至给定孔深,若达到给定孔深,进行下一步操作,若没有达到给定孔深,则重复步骤2-步骤10,直到钻进取心至给定孔深;步骤12:回收钻杆及保压绳索取心外管钻具;步骤13:回收海底保压绳索取心钻机。
- 根据权利要求1所述的海底天然气水合物保压绳索取心钻机钻进工艺,所述步骤2中,纯压入速度为20±2mm/s。
- 根据权利要求1所述的海底天然气水合物保压绳索取心钻机钻进工艺,所述步骤2中,以抽吸式回转取心钻进模式钻进时,钻进动力头的转速为30~150r/min,同时钻进速度为4±2mm/s。
- 根据权利要求1所述的海底天然气水合物保压绳索取心钻机钻进工艺,所述步骤2中,以泵送正循环回转取心钻进模式钻进时,钻进动力头的转速为30~150r/min,钻进速度为3±2mm/s,高压海水冲洗泵的泵量为50~100L/min。
- 根据权利要求1所述的海底天然气水合物保压绳索取心钻机钻进工艺,所述步骤2中,以泵送正循环回转取心钻进模式钻进时,当钻进速度上升至8mm/s以上并持续20秒,则恢复至抽吸式回转取心钻进模式。
- 根据权利要求1所述的海底天然气水合物保压绳索取心钻机钻进工艺,所述步骤2中,以抽吸式回转取心钻进模式钻进时,如果钻进速度上升至18mm/s以上并持续20秒,则恢复至步骤2的抽吸纯压入取心钻进模式。
- 根据权利要求1所述的海底天然气水合物保压绳索取心钻机钻进工艺,所述步骤4中,打捞绞车下放打捞器时,下放速度为18~25m/min;打捞绞车和打捞器带保压绳索取心内管上行时,上行速度为30~40m/min。
- 根据权利要求1所述的海底天然气水合物保压绳索取心钻机钻进工艺,所述步骤6和步骤10中,当钻孔深度小于10m时,冲孔2~3次;当钻孔深度为10m~30m时,冲孔3~4次;当钻孔深度大于30m时,冲孔次数大于5次;下行冲孔时,高压海水冲洗泵的泵量为50~80L/min,上行冲孔时,高压海水冲洗泵的泵量为100~200L/min。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19831585.5A EP3640427B1 (en) | 2018-08-13 | 2019-03-30 | Drilling process of pressure-preserving cable core drilling machine for subsea natural gas hydrates |
US16/731,068 US10704350B2 (en) | 2018-08-13 | 2019-12-31 | Process for drilling natural gas hydrates with submersible core drilling rig using pressure wireline |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810914166.2A CN108979577B (zh) | 2018-08-13 | 2018-08-13 | 海底天然气水合物保压绳索取心钻机钻进工艺 |
CN201810914166.2 | 2018-08-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/731,068 Continuation US10704350B2 (en) | 2018-08-13 | 2019-12-31 | Process for drilling natural gas hydrates with submersible core drilling rig using pressure wireline |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020034643A1 true WO2020034643A1 (zh) | 2020-02-20 |
Family
ID=64552663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/080690 WO2020034643A1 (zh) | 2018-08-13 | 2019-03-30 | 海底天然气水合物保压绳索取心钻机钻进工艺 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10704350B2 (zh) |
EP (1) | EP3640427B1 (zh) |
CN (1) | CN108979577B (zh) |
WO (1) | WO2020034643A1 (zh) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108979577B (zh) * | 2018-08-13 | 2019-09-10 | 湖南科技大学 | 海底天然气水合物保压绳索取心钻机钻进工艺 |
WO2020125986A1 (de) * | 2018-12-20 | 2020-06-25 | Bauer Maschinen Gmbh | Unterwasser-bohrvorrichtung und verfahren zum beschaffen von bohrkernen eines gewässerbodens |
CN111551406B (zh) * | 2020-05-25 | 2023-01-13 | 浙江明康工程咨询有限公司 | 一种防混隔震式建筑地基气体样本采集器 |
CN111810070B (zh) * | 2020-06-11 | 2022-03-01 | 中国地质科学院勘探技术研究所 | 一种用于气举反循环取心工艺的岩心收集方法 |
CN111577131A (zh) * | 2020-06-28 | 2020-08-25 | 北京中岩大地科技股份有限公司 | 一种高速深层搅拌钻机及其施工方法 |
CN111810071B (zh) * | 2020-07-23 | 2022-07-12 | 北京探矿工程研究所 | 一种海底钻机绳索取心装置 |
CN111894502B (zh) * | 2020-07-28 | 2023-03-10 | 四川大学 | 气体作为流体介质的坑道取芯方法 |
CN112282740B (zh) * | 2020-10-30 | 2022-10-04 | 中国地质大学(武汉) | 一种压送报信式水平定向钻进工程地质勘察连续取芯装置 |
CN112502625A (zh) * | 2020-12-18 | 2021-03-16 | 湖南科技大学 | 一种水平地质取芯钻机 |
CN112431553B (zh) * | 2020-12-18 | 2024-09-17 | 湖南科技大学 | 一种带冲击装置的水平钻机 |
CN113309479B (zh) * | 2021-07-12 | 2022-06-24 | 中国地质科学院勘探技术研究所 | 一种用于浅海礁灰岩的高效取心钻井装置及方法 |
CN113898286B (zh) * | 2021-09-13 | 2024-01-05 | 中铁第四勘察设计院集团有限公司 | 一种单动钻具及复合式取心钻具 |
CN114233176B (zh) * | 2021-12-21 | 2024-02-23 | 海南浙江大学研究院 | 一种基于深海海底钻机的回转钻进动力头 |
CN116427862B (zh) * | 2023-06-08 | 2023-09-05 | 山东省地质科学研究院 | 一种海域钻探快速换取钻探岩心管的装置及工作方法 |
CN116792047B (zh) * | 2023-08-23 | 2023-11-14 | 中国电建集团西北勘测设计研究院有限公司 | 一种深埋隧洞断裂分析的钻岩取样装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005006039A1 (de) * | 2005-02-07 | 2006-08-10 | Friedrich Abegg | Vorrichtung zur Teilprobenahme von Sedimentkernen, die sich in einem unter Druck stehenden Autoklavkolbenlot (AKL) befinden und Verfahren der Teilprobenahme bis hin zur differenzierten Bewertung der geteilten Kernproben |
CN102606074A (zh) * | 2012-04-06 | 2012-07-25 | 杭州电子科技大学 | 新型海底深孔保压取芯钻机 |
CN105239947A (zh) * | 2015-10-30 | 2016-01-13 | 湖南科技大学 | 一种适用于海底钻机的海底沉积物取芯装置 |
CN107288565A (zh) * | 2017-07-28 | 2017-10-24 | 中国地质科学院勘探技术研究所 | 一种海底天然气水合物岩心保压取心钻具 |
WO2018056274A1 (ja) * | 2016-09-23 | 2018-03-29 | 鉱研工業株式会社 | 海底地盤のコアサンプリング装置及びコアサンプリング方法 |
CN108979577A (zh) * | 2018-08-13 | 2018-12-11 | 湖南科技大学 | 海底天然气水合物保压绳索取心钻机钻进工艺 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3313357A (en) * | 1964-11-23 | 1967-04-11 | Dresser Ind | Underwater sampling apparatus |
FR1573827A (zh) * | 1967-05-08 | 1969-07-11 | ||
US3741320A (en) * | 1971-07-12 | 1973-06-26 | Atlas Copco Ab | Subsea drilling assembly |
US4422513A (en) * | 1981-07-06 | 1983-12-27 | Franklin Lindsay J | Gas hydrates drilling procedure |
AUPO857197A0 (en) * | 1997-08-15 | 1997-09-04 | Benthic Geotech Pty Ltd | Improved methods for seabed piston coring |
US6209965B1 (en) * | 1998-07-20 | 2001-04-03 | Sandia Corporation | Marine clathrate mining and sediment separation |
DE10141896A1 (de) * | 2001-08-28 | 2003-03-27 | Fraunhofer Ges Forschung | Verfahren und Vorrichtung zur Gewinnung und Förderung von Gashydraten und Gasen aus Gashydraten |
US20060016621A1 (en) * | 2004-06-09 | 2006-01-26 | Placer Dome Technical Services Limited | Method and system for deep sea drilling |
US20180355674A1 (en) * | 2015-09-10 | 2018-12-13 | Cameron International Corporation | Subsea Hydrocarbon Extraction System |
-
2018
- 2018-08-13 CN CN201810914166.2A patent/CN108979577B/zh active Active
-
2019
- 2019-03-30 WO PCT/CN2019/080690 patent/WO2020034643A1/zh unknown
- 2019-03-30 EP EP19831585.5A patent/EP3640427B1/en active Active
- 2019-12-31 US US16/731,068 patent/US10704350B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005006039A1 (de) * | 2005-02-07 | 2006-08-10 | Friedrich Abegg | Vorrichtung zur Teilprobenahme von Sedimentkernen, die sich in einem unter Druck stehenden Autoklavkolbenlot (AKL) befinden und Verfahren der Teilprobenahme bis hin zur differenzierten Bewertung der geteilten Kernproben |
CN102606074A (zh) * | 2012-04-06 | 2012-07-25 | 杭州电子科技大学 | 新型海底深孔保压取芯钻机 |
CN105239947A (zh) * | 2015-10-30 | 2016-01-13 | 湖南科技大学 | 一种适用于海底钻机的海底沉积物取芯装置 |
WO2018056274A1 (ja) * | 2016-09-23 | 2018-03-29 | 鉱研工業株式会社 | 海底地盤のコアサンプリング装置及びコアサンプリング方法 |
CN107288565A (zh) * | 2017-07-28 | 2017-10-24 | 中国地质科学院勘探技术研究所 | 一种海底天然气水合物岩心保压取心钻具 |
CN108979577A (zh) * | 2018-08-13 | 2018-12-11 | 湖南科技大学 | 海底天然气水合物保压绳索取心钻机钻进工艺 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3640427A4 * |
Also Published As
Publication number | Publication date |
---|---|
US10704350B2 (en) | 2020-07-07 |
EP3640427B1 (en) | 2021-11-24 |
CN108979577B (zh) | 2019-09-10 |
US20200131875A1 (en) | 2020-04-30 |
EP3640427A1 (en) | 2020-04-22 |
CN108979577A (zh) | 2018-12-11 |
EP3640427A4 (en) | 2021-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020034643A1 (zh) | 海底天然气水合物保压绳索取心钻机钻进工艺 | |
EP3690182B1 (en) | Sediment core-boring drilling process suitable for submarine rope core-boring drill | |
CN109267944B (zh) | 一种深水表层导管装置 | |
US10927606B2 (en) | Sediment core-drilling process for submarine wire-line coring drill rig | |
US6629565B2 (en) | Abandonment and retrieval apparatus and method | |
CN108798608B (zh) | 一种天然气水合物开采系统和方法 | |
CN108547587A (zh) | 一种基于循环钻井液的无隔水管快速取心钻进系统及方法 | |
CN113914803B (zh) | 一种海上套管浪涌补偿双驱动三层套管钻探取芯装置 | |
US11920419B2 (en) | Downhole conveyance line cutter | |
CN113914802B (zh) | 一种海上套管浪涌补偿双驱动三层套管钻探取芯方法 | |
US3252528A (en) | Method of drilling from a fully floating platform | |
CN113482561A (zh) | 一种油气井封固套管回收装置及其回收方法 | |
CN208203191U (zh) | 一种基于循环钻井液的无隔水管快速取心钻进系统 | |
CN113073644B (zh) | 一种海底自动钻进式打桩装置及方法 | |
CN205400660U (zh) | 一种油管内部堵塞器 | |
CN116838277A (zh) | 一种冲击压入式绳索取心钻探装置及工艺 | |
CN112816246A (zh) | 用于沉积物地层无干扰均速绳索钻探取样装置及取样方法 | |
CN115162992A (zh) | 小直径管柱割捞一体打捞装置及方法 | |
CN107191144A (zh) | 一种海底换钻头装置 | |
CN211648060U (zh) | 一种用于油井封隔器、桥塞的钻磨一体化打捞筒 | |
CN114382434B (zh) | 一种用于深水的表层导管自钻进固井装置及方法 | |
CN115898273A (zh) | 适用于海洋开路钻探的水下动力装置钻进方法 | |
CN116971726A (zh) | 一种深海随钻下套管成井装备体系及其作业方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019831585 Country of ref document: EP Effective date: 20200113 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |