WO2020034539A1 - 显示面板的制造方法及制造装置 - Google Patents

显示面板的制造方法及制造装置 Download PDF

Info

Publication number
WO2020034539A1
WO2020034539A1 PCT/CN2018/123179 CN2018123179W WO2020034539A1 WO 2020034539 A1 WO2020034539 A1 WO 2020034539A1 CN 2018123179 W CN2018123179 W CN 2018123179W WO 2020034539 A1 WO2020034539 A1 WO 2020034539A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
light source
substrate
reaction chamber
manufacturing
Prior art date
Application number
PCT/CN2018/123179
Other languages
English (en)
French (fr)
Inventor
黄北洲
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810936178.5A external-priority patent/CN109031720A/zh
Priority claimed from CN201810935210.8A external-priority patent/CN108873489A/zh
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Priority to US16/315,562 priority Critical patent/US10678096B1/en
Publication of WO2020034539A1 publication Critical patent/WO2020034539A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133715Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films by first depositing a monomer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers

Definitions

  • the present application relates to the field of display technology, and in particular, to a method and a device for manufacturing a display panel.
  • Liquid crystal display device (Liquid Crystal Display, LCD) is a flat panel display device that uses the characteristics of liquid crystal materials to display images. Compared with other display devices, it has the advantages of thinness, low driving voltage, and low power consumption. The mainstream product in the entire consumer market.
  • a display panel includes a first substrate and a second substrate which are oppositely disposed, and an alignment layer and a liquid crystal sandwiched between the first substrate and the second substrate.
  • the alignment layer is disposed on the first substrate and / or the second substrate, and is used to control a predetermined initial state arrangement of the liquid crystal molecules, thereby affecting the display characteristics of the liquid crystal panel.
  • PSVA display panels have the characteristics of high transmittance, high contrast, and fast response. They have a wide range of applications in electronic digital and other fields.
  • PSVA display panel which is doped with liquid crystal active monomer (Reactive monomer) (RM) in the liquid crystal, and then the liquid crystal molecules have a pretilt angle through power supply, so that the liquid crystal active monomer and the polyimide (PI ), And finally irradiate visible light to react the polymer monomer into a polymer, so that the liquid crystal molecules have a fixed pretilt angle.
  • Reactive monomer Reactive monomer
  • the traditional PSVA type liquid crystal display is a voltage applied after the liquid crystal is injected into the liquid crystal cell.
  • the monomer polymer is reacted to form a polymer layer for alignment.
  • the alignment layer may have problems such as pollution defects, insufficient alignment force, or monomer explosion polymerization reaction.
  • how to improve or eliminate these defects of the PSVA type display panel has become one of the topics that need to be studied by related technical personnel.
  • An object of the present application is to provide a method for manufacturing a display panel, including, but not limited to, solving technical problems such as pollution defects in alignment layers, insufficient alignment force, or monomer explosion polymerization reaction according to different manufacturing processes.
  • a method for manufacturing a display panel includes:
  • the liquid crystal cell is placed in a reaction chamber, and a pressurized voltage and a light source are applied to the liquid crystal cell to cause the monomer and the alignment layer to undergo a polymerization reaction, wherein the light source includes at least one wavelength ,
  • the number of times the light source is irradiated is one or more times;
  • the light source is ultraviolet light or visible light
  • the reaction between the monomer and the alignment layer is controlled, and the liquid crystal forms a pretilt angle.
  • the contrast and the gamma value of the display panel are measured.
  • the temperature of the reaction chamber is between 0 ° C and 100 ° C.
  • the temperature of the reaction chamber is 40 ° C or 50 ° C.
  • the monomer concentration before the polymerization reaction, is between 2000 ppm (parts per million) and 4000 ppm. After the polymerization reaction, the monomer concentration is less than 200ppm.
  • the wavelength of the ultraviolet light is between 1 nm and 400 nm.
  • the wavelength of the visible light is between 380 nm and 780 nm.
  • the irradiation time of the light source is between 10s and 200min.
  • the voltage is between 0V and 50V.
  • Another object of the present application is to provide a manufacturing apparatus for a display panel, which has a reaction chamber, and the reaction chamber includes:
  • a temperature control chip for controlling the temperature of the reaction chamber
  • a pressurizing chip to provide a pressurizing voltage, the pressurizing voltage being applied to the display panel;
  • the light source device has a plurality of light tubes for providing a light source, wherein the light source is irradiated to the display panel, and the light source is irradiated a number of times or intermittently a plurality of times;
  • a control chip connected to the temperature control chip, the pressurization chip, the light source device, and the measurement chip, and receiving and analyzing the feedback data;
  • the light source is ultraviolet light or visible light
  • the control chip controls the temperature control chip, the pressurization chip, the light source device, and the measurement chip to adjust the pressurized voltage, the temperature of the reaction chamber, and The wavelength and irradiation time of the light source cause the liquid crystal to form a pretilt angle.
  • the multiple lamps have different wavelengths, and light sources of different wavelengths are obtained by replacing or opening the lamps with different wavelengths.
  • the wavelength of the ultraviolet light is between 1 nm and 400 nm.
  • the wavelength of the visible light is between 380 nm and 780 nm.
  • the contrast and gamma values of the display panel are measured, and the temperature of the reaction chamber is between 0 ° C and 100 ° C.
  • the temperature of the reaction chamber is 40 ° C or 50 ° C.
  • the voltage is between 0V and 50V.
  • the measurement chip is disposed outside the reaction chamber and connected to the reaction chamber to measure related data.
  • Another object of the present application is to provide a method for manufacturing a display panel, including:
  • the liquid crystal cell is placed in a reaction chamber, and a pressurized voltage and a light source are applied to the liquid crystal cell to cause the monomer and the alignment layer to undergo a polymerization reaction, wherein the light source includes at least one wavelength
  • the number of times of irradiating the light source is one or intermittent multiple irradiations;
  • the temperature of the reaction chamber is between 0 ° C and 100 ° C;
  • the wavelength of the visible light is between 380 nm and 780 nm; when the light source is ultraviolet light, the wavelength of the ultraviolet light is between 1 nm and 400 nm;
  • the monomer concentration is between 2000 ppm and 4000 ppm; after the polymerization reaction, the monomer concentration is less than 200 ppm;
  • the reaction between the monomer and the alignment layer is controlled, and the liquid crystal forms a pretilt angle.
  • the temperature of the reaction chamber is 40 ° C or 50 ° C.
  • the voltage is between 0V and 50V.
  • the irradiation time of the light source is between 10 min and 200 min.
  • the method for manufacturing a display panel provided in the embodiments of the present application can reduce defects caused by the alignment process, and can improve the optical display characteristics of the display panel and the yield of the display panel.
  • FIG. 1 is a schematic diagram of powering on a display panel according to an embodiment of the present application
  • FIG. 2 is a flowchart of a display panel manufacturing method according to an embodiment of the present application.
  • FIG. 3 is a diagram of a display panel manufacturing apparatus according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a display panel manufacturing method according to an embodiment of the present application.
  • FIG. 5 is a data coordinate diagram of contrast, gamma value, and temperature according to an embodiment of the present application.
  • FIG. 6 is a data coordinate chart of contrast, gamma value, and ultraviolet light irradiation time according to the embodiment of the present application.
  • FIG. 1 is a schematic diagram of powering on a display panel according to an embodiment of the present application.
  • a display panel 100 includes: a first substrate 110 and a second substrate 210 disposed opposite to each other, and a switching layer 120 disposed on the first substrate 110; A resist layer 220 is disposed on the second substrate 210; an alignment layer 130 is disposed on the switching layer 120 and the color resist layer 220, respectively; and a liquid crystal 140 is disposed between the first substrate 110 and the substrate.
  • the second substrate 210 is described. During the manufacturing process of the display panel 10, the first substrate 110 and the second substrate 210 are opposed to each other, and liquid crystal is sealed therebetween to form a liquid crystal cell.
  • the alignment layer and the monomer By applying a voltage to the liquid crystal cell, and under certain conditions (such as the voltage and pressing time, light source intensity, light source irradiation time, etc.), the alignment layer and the monomer generate a polymerization reaction, so that the liquid crystal 140 forms a preliminary inclination.
  • the monomer and the alignment layer can be completely polymerized. In this process, factors such as monomer concentration and light source intensity have a significant effect on the polymerization reaction.
  • the light source is visible light or ultraviolet light.
  • the alignment layer may have problems such as pollution defects, insufficient alignment force, or monomer explosion polymerization reaction.
  • FIG. 2 is a flowchart of a display panel manufacturing method according to an embodiment of the present application. Please refer to FIG. 1 and FIG. 2 at the same time.
  • a method for manufacturing a display panel includes the following steps:
  • Step S101 Provide a first substrate 110 and a second substrate 210.
  • Step S102 An alignment layer 130 is disposed on the first substrate 110 and the second substrate 210.
  • Step S103 A liquid crystal 140 and a monomer (not shown) are disposed between the first substrate 110 and the second substrate 210 to form a liquid crystal cell.
  • Step S104 placing the liquid crystal cell in a reaction chamber, applying a pressurized voltage of 150 and irradiating visible light to the liquid crystal cell, so that the monomer and the alignment layer undergo a polymerization reaction.
  • the visible light includes at least one wavelength, and the number of times the visible light is irradiated is one or more times.
  • the reaction between the monomer and the alignment layer is controlled, and the liquid crystal forms a pretilt angle.
  • the temperature of the reaction chamber may be, for example, 40 ° C. or 50 ° C .; after the polymerization reaction, the contrast and the gamma value of the display panel are measured. At this time, the reaction chamber The temperature is between 0 ° C and 100 ° C.
  • the irradiation time of the visible light is between 10s and 200min, and the wavelength of the visible light is between 380nm and 780nm.
  • the voltage is between 0V and 50V.
  • the number of irradiations of visible light may be, for example, two irradiations, wherein the temperature of the reaction chamber for the first irradiation is 40 ° C, and the temperature of the reaction chamber for the second irradiation is 50 ° C.
  • the visible light wavelengths corresponding to different times of visible light irradiation may also be different.
  • the wavelength of ultraviolet light for the first irradiation is 470nm
  • the wavelength of ultraviolet light for the first irradiation is 530nm. This design is based on the needs of R & D personnel and manufacturing, and is not limited in this article.
  • the monomer concentration before the reaction is between 2000 ppm and 4000 ppm, and the monomer concentration after the visible light irradiation is less than 200ppm.
  • FIG. 3 is a diagram of a display panel manufacturing apparatus according to an embodiment of the present application.
  • a display panel manufacturing apparatus 300 has a reaction chamber, the reaction chamber includes: a temperature control chip 301 to control the temperature of the reaction chamber; a pressure chip 302 to provide a pressurized voltage The voltage is applied to the display panel; the light source device 303 has a plurality of visible light tubes to provide visible light, wherein the visible light is irradiated to the display panel; and a measurement chip 304 is used to measure the display panel Contrast and gamma values, and output feedback data; and a control chip 305 connected to the temperature control chip 301, the pressurization chip 302, the light source device 303, and the measurement chip 304 to receive and analyze the feedback Data; wherein, by analyzing the feedback data, the control chip 305 controls the temperature control chip 301, the pressurization chip 302, the light source device 303, and the measurement chip 304 to adjust the pressurized voltage , The temperature of the reaction chamber, and the wavelength
  • the measurement chip 304 may be disposed outside the reaction chamber and connected to the reaction chamber to measure related data.
  • the multiple visible light tubes have different wavelengths, and the visible light tubes of different wavelengths are obtained by replacing or turning on the visible light tubes of different wavelengths.
  • the wavelength of the visible light is between 380 nm and 780 nm.
  • the temperature of the reaction chamber may be, for example, 40 ° C. or 50 ° C .; after the polymerization reaction, the contrast and the gamma value of the display panel are measured.
  • the temperature is between 0 ° C and 100 ° C.
  • the voltage is between 0V and 50V.
  • a manufacturing apparatus 300 for a display panel includes a reaction chamber, and the reaction chamber includes a temperature control chip 301 for controlling The temperature of the reaction chamber; the pressurized chip 302, which provides a pressurized voltage, which is applied to the display panel; the light source device 303, which has a plurality of visible light tubes, for providing visible light, wherein the visible light is irradiated to The display panel; a measurement chip 304 for measuring the contrast and gamma values of the display panel and outputting feedback data; and a control chip 305 connected to the temperature control chip 301, the pressure chip 302, the The light source device 303 and the measurement chip 304 receive and analyze the feedback data; wherein, by analyzing the feedback data, the control chip 305 controls the temperature control chip 301, the pressure chip 302, and the light source The device 303 and the measurement chip 304 adjust the pressurized voltage, the temperature of the reaction chamber, and the wavelength and irradiation
  • the multiple visible light tubes have different wavelengths, and the visible light tubes of different wavelengths are obtained by replacing or turning on the visible light tubes of different wavelengths.
  • the wavelength of the visible light is between 380 nm and 780 nm.
  • the temperature of the reaction chamber may be, for example, 40 ° C. or 50 ° C .; after the polymerization reaction, the contrast and the gamma value of the display panel are measured. At this time, the reaction chamber The temperature is between 0 ° C and 100 ° C.
  • a method for manufacturing a display panel includes the following steps:
  • Step S201 Provide a first substrate 110 and a second substrate 210.
  • Step S202 An alignment layer 130 is disposed on the first substrate 110 and the second substrate 210.
  • Step S203 A liquid crystal 140 and a monomer (not shown) are disposed between the first substrate 110 and the second substrate 210 to form a liquid crystal cell.
  • Step S204 placing the liquid crystal cell in a reaction chamber, applying a pressurized voltage 150 and irradiating visible light to the liquid crystal cell, so that the monomer and the alignment layer undergo a polymerization reaction.
  • the visible light includes at least one wavelength, and the number of times that the visible light is irradiated is one or intermittent multiple irradiations.
  • the temperature in the reaction chamber may be, for example, 40 ° C. or 50 ° C .; after the polymerization reaction, the contrast and the gamma value of the display panel are measured. At this time, the temperature of the reaction chamber is between 0 ° C. To 100 ° C.
  • the visible light irradiation time is between 10s and 200min, or between 10min and 200min.
  • the visible light has a wavelength between 380 nm and 780 nm.
  • the voltage is between 0V and 50V.
  • FIG. 4 is a flowchart of a display panel manufacturing method according to another embodiment of the present application. Please refer to FIG. 1 and FIG. 4.
  • a method for manufacturing a display panel includes the following steps:
  • Step S201 Provide a first substrate 110 and a second substrate 210.
  • Step S202 An alignment layer 130 is disposed on the first substrate 110 and the second substrate 210.
  • Step S203 A liquid crystal 140 and a monomer (not shown) are disposed between the first substrate 110 and the second substrate 210 to form a liquid crystal cell.
  • Step S204 placing the liquid crystal cell in a reaction chamber, applying a voltage of 150 and irradiating ultraviolet light to the liquid crystal cell, so that the monomer and the alignment layer undergo a polymerization reaction.
  • the ultraviolet light includes at least one wavelength, and the number of times the ultraviolet light is irradiated is one or intermittent multiple irradiations.
  • the temperature in the reaction chamber may be, for example, 40 ° C or 50 ° C; after the polymerization reaction, the contrast and gamma of the display panel are measured. Horse value, the temperature of the reaction chamber is between 0 ° C and 100 ° C.
  • the wavelength of the ultraviolet light is between 1 nm and 400 nm.
  • the irradiation time of the ultraviolet light is between 10s and 200min.
  • the voltage is between 0V and 50V.
  • FIG. 5 is a data coordinate diagram of contrast, gamma value, and temperature according to an embodiment of the application
  • FIG. 6 is a data coordinate diagram of contrast, gamma value, and ultraviolet light irradiation time according to an embodiment of the application.
  • Contrast Ratio (CR) and Gamma values from 40 ° C to 50 ° C.
  • the contrast changes from about 6600 to about 7200, and the gamma value changes from about 2.8 to about 3.05.
  • Contrast and gamma values increase with temperature.
  • Fig. 6 As the UV irradiation time prolongs, the corresponding contrast value (from about 6800 to about 4000) decreases, and the corresponding gamma value (from about 2.8 to about 1.4) also decreases.
  • the number of irradiations of the ultraviolet light may be, for example, two irradiations, wherein the temperature of the reaction chamber for the first irradiation is 40 ° C., and the temperature of the reaction chamber for the second irradiation is 50 ° C.
  • the wavelength of the corresponding ultraviolet light may be different for different times of ultraviolet light irradiation.
  • the wavelength of the ultraviolet light for the first irradiation is 170nm
  • the wavelength of the ultraviolet light for the first irradiation is 230nm. This design depends on the needs of the R & D personnel and manufacturing, and is not limited in this article.
  • the monomer concentration before the reaction is between 2000 ppm and 4000 ppm, and the monomer after the ultraviolet light irradiation The concentration is less than 200 ppm.
  • a display panel manufacturing apparatus 300 includes a reaction chamber, and the reaction chamber includes a temperature control chip 301 for controlling The temperature of the reaction chamber; a pressurized chip 302, which provides a pressurized voltage, which is applied to the display panel; a light source device 303, which has a plurality of ultraviolet light tubes, for providing ultraviolet light, wherein the ultraviolet light Irradiating the display panel; a measurement chip 304 for measuring the contrast and gamma values of the display panel and outputting feedback data; and a control chip 305 connected to the temperature control chip 301 and the pressure chip 302, The light source device 303 and the measurement chip 304 receive and analyze the feedback data; wherein, by analyzing the feedback data, the control chip 305 controls the temperature control chip 301, the pressure chip 302, and The light source device 303 and the measurement chip 304 are used to adjust the pressurized voltage, the temperature of the reaction chamber, and the wavelength and irradiation time of the
  • the measurement chip 304 may be disposed outside the reaction chamber and connected to the reaction chamber to measure related data.
  • the plurality of ultraviolet light tubes have different wavelengths, and the ultraviolet light tubes of different wavelengths are obtained by replacing or opening the ultraviolet light tubes of different wavelengths.
  • the wavelength of the ultraviolet light is between 1 nm and 400 nm.
  • the temperature of the reaction chamber may be, for example, 40 ° C. or 50 ° C .; after the polymerization reaction, the contrast and the gamma value of the display panel are measured. At this time, the reaction chamber The temperature is between 0 ° C and 100 ° C.
  • the display panel of the present application may be, for example, a liquid crystal display panel, which may also be an MVA display panel, a PSVA display panel, a TN display panel, an STN display panel, a curved display panel, or other types of display panels.
  • a liquid crystal display panel which may also be an MVA display panel, a PSVA display panel, a TN display panel, an STN display panel, a curved display panel, or other types of display panels.
  • a method for manufacturing a display panel includes the following steps:
  • Step S201 Provide a first substrate 110 and a second substrate 210.
  • Step S202 An alignment layer 130 is disposed on the first substrate 110 and the second substrate 210.
  • Step S203 A liquid crystal 140 and a monomer (not shown) are disposed between the first substrate 110 and the second substrate 210 to form a liquid crystal cell.
  • Step S204 placing the liquid crystal cell in a reaction chamber, applying a voltage of 150 and irradiating ultraviolet light to the liquid crystal cell, so that the monomer and the alignment layer undergo a polymerization reaction.
  • the ultraviolet light includes at least one wavelength, and the number of times the ultraviolet light is irradiated is one or intermittent multiple irradiations.
  • the temperature of the reaction chamber is between 0 ° C and 100 ° C.
  • the irradiation time of the ultraviolet light is between 10 min and 200 min.
  • the wavelength of the ultraviolet light is between 1 nm and 400 nm.
  • the temperature in the reaction chamber may be, for example, 40 ° C or 50 ° C.
  • the voltage is between 0V and 50V.
  • a method for manufacturing a display panel includes the following steps:
  • Step S201 Provide a first substrate 110 and a second substrate 210.
  • Step S202 An alignment layer 130 is disposed on the first substrate 110 and the second substrate 210.
  • Step S203 A liquid crystal 140 and a monomer (not shown) are disposed between the first substrate 110 and the second substrate 210 to form a liquid crystal cell.
  • Step S204 placing the liquid crystal cell in a reaction chamber, applying a voltage of 150 and irradiating ultraviolet light to the liquid crystal cell, so that the monomer and the alignment layer undergo a polymerization reaction.
  • the ultraviolet light includes at least one wavelength, and the number of times the ultraviolet light is irradiated is one or intermittent multiple irradiations.
  • the temperature in the reaction chamber may be, for example, 40 ° C. or 50 ° C .; after the polymerization reaction, the contrast and the gamma value of the display panel are measured. At this time, the temperature of the reaction chamber is between 0 ° C. To 100 ° C.
  • the irradiation time of the ultraviolet light is between 10s and 200min.
  • the wavelength of the ultraviolet light is between 1 nm and 400 nm.
  • the voltage is between 0V and 50V.
  • the alignment process can be reduced The defects caused, and reduce the manufacturing cost of the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示面板(100)的制造方法及制造装置(300),其中,该显示面板(100)的制造方法包括:提供第一基板(110)和第二基板(210);设置配向层(130)于第一基板(110)和第二基板(210)上;设置液晶(140)和单体于第一基板(110)和第二基板(210)之间,以形成液晶盒;将液晶盒置于反应室内,施加加压电压(150)及照射光源于液晶盒,使单体与配向层(130)进行聚合反应;其中,光源包含至少一种波长,照射次数为一次或多次;光源为紫外光或可见光;通过控制配向层(130)与单体之间的反应条件,可以降低配向过程所造成的缺陷。

Description

显示面板的制造方法及制造装置
本申请要求于2018年8月16日提交中国专利局,申请号为201810935210.8,发明名称为“显示面板的制造方法及制造装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。本申请要求2018年8月16日提交中国专利局,申请号为201810936178.5,发明名称为“显示面板的制造方法及制造装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板的制造方法及制造装置。
背景技术
液晶显示装置(Liquid Crystal Display,LCD)是利用液晶材料的特性来显示图像的一种平板显示装置,其相较于其他显示装置而言具有轻薄、低驱动电压及低功耗等优点,已经成为整个消费市场上的主流产品。
显示面板作为液晶显示装置中重要的组成部件,其包括相对设置的第一基板和第二基板,以及夹设于第一基板和第二基板之间配向层及液晶。配向层设置在第一基板和/或第二基板上,用于控制液晶分子的预定的初始状态排列,从而影响液晶面板的显示特性。
聚合物稳定垂直配向(Polymer Stabilized Vertical Alignment,PSVA)显示面板其具有高穿透率、高对比度和快速响应等特点,在电子数码等领域,有着广泛的应用。PSVA显示面板,其先将液晶活性单体(Reactive Monomer,RM) 掺杂于液晶内,之后透过供电使液晶分子产生一预倾角,让液晶活性单体与配向层的聚酰亚胺(PI)链结,最后再照射可见光让聚合物单体反应成聚合物,使液晶分子具有固定的预倾角。
传统的PSVA型液晶显示器是将液晶注入液晶盒后施加电压,液晶分子排列稳定时采用光照射或加热的方式让单体聚合物反应生成聚合物层进行配向。依照制造工艺的不同,配向层可能存在污染缺陷,配向力不足或单体爆聚反应等问题。对此,如何改善或消除PSVA类型显示面板的该些缺陷成为相关技术人员需要研究的课题之一。
申请内容
本申请的一个目的在于提供一种显示面板的制造方法,包括但不限于解决依照制造工艺的不同,配向层可能存在污染缺陷,配向力不足或单体爆聚反应等技术问题。
本申请实施例采用的技术方案是:
一种显示面板的制造方法,包括:
提供第一基板和第二基板;
设置配向层于所述第一基板和所述第二基板上;
设置液晶和单体于所述第一基板和所述第二基板之间,以形成一液晶盒;
将所述液晶盒置于一反应室内,并施加一加压电压及照射光源于所述液晶盒,使所述单体与所述配向层进行聚合反应,其中,所述光源包含至少一种波长,照射光源的次数为一次或多次;
其中,所述光源为紫外光或可见光;
通过控制所述反应室的温度,所述加压电压,所述光源的波长,以控制所述单体与所述配向层的反应,并使所述液晶形成预倾角。
在一个实施例中,在所述聚合反应后,测量显示面板的对比度和伽马值,此时所述反应室的温度介于0℃到100℃之间。
在一个实施例中,在所述聚合反应时,所述反应室的温度为40℃或50℃。
在一个实施例中,在所述聚合反应前,所述单体浓度介于2000ppm(parts per million,百万分比浓度)至4000ppm之间,在所述聚合反应后,所述单体浓度小于200ppm。
在一个实施例中,所述紫外光的波长介于1nm到400nm之间。
在一个实施例中,所述可见光的波长介于380nm到780nm之间。
在一个实施例中,所述光源的照射时间介于10s到200min之间。
在一个实施例中,所述加压电压介于0V到50V之间。
本申请的另一目的在于提供一种显示面板的制造装置,具有一反应室,所述反应室包括:
温控芯片,用以控制所述反应室的温度;
加压芯片,提供加压电压,所述加压电压施加至显示面板;
光源器件,具有多根灯管,用以提供光源,其中,所述光源照射至所述显示面板,所述光源的照射次数为一次或间断的多次;
测量芯片,用以测量所述显示面板的对比度和伽马值,并输出反馈数据;以及
控制芯片,连接所述温控芯片,所述加压芯片,所述光源器件和所述测量芯片,接收并分析所述反馈数据;
其中,所述光源为紫外光或可见光;
通过分析所述反馈数据,所述控制芯片控制所述温控芯片,所述加压芯片,所述光源器件和所述测量芯片,以调整所述加压电压,所述反应室的温度,及 所述光源的波长和照射时间,使液晶形成预倾角。
在一个实施例中,所述多根灯管具有不同波长,通过更换或打开不同波长的所述灯管,以获取不同波长的光源。
在一个实施例中,所述紫外光的波长介于1nm到400nm之间。
在一个实施例中,所述可见光的波长介于380nm到780nm之间。
在一个实施例中,所述光源照射至所述显示面板完成聚合反应后,测量所述显示面板的对比度和伽马值,此时所述反应室的温度介于0℃到100℃之间。
在一个实施例中,在所述聚合反应时,所述反应室的温度为40℃或50℃。
在一个实施例中,所述加压电压介于0V到50V之间。
在一个实施例中,所述测量芯片设置于所述反应室外,并连通至所述反应室内,以测量相关的数据。
本申请的另一目的在于提供一种显示面板的制造方法,包括:
提供第一基板和第二基板;
设置配向层于所述第一基板和所述第二基板上;
设置液晶和单体于所述第一基板和所述第二基板之间,以形成一液晶盒;
将所述液晶盒置于一反应室内,并施加一加压电压及照射光源于所述液晶盒,使所述单体与所述配向层进行聚合反应,其中,所述光源包含至少一种波长,所述照射光源的次数为一次或间断的多次照射;
其中,在所述聚合反应后,测量显示面板的对比度和伽马值,此时所述反应室的温度介于0℃到100℃之间;
其中,所述光源为可见光时,所述可见光的波长介于380nm到780nm之间;所述光源为紫外光时,所述紫外光的波长介于1nm到400nm之间;
其中,在所述聚合反应前,单体浓度介于2000ppm至4000ppm之间;在 所述聚合反应后,单体浓度小于200ppm;
其中,通过控制所述反应室的温度,所述加压电压,所述光源的波长,以控制所述单体与所述配向层的反应,并使所述液晶形成预倾角。
在一个实施例中,在所述聚合反应时,所述反应室的温度为40℃或50℃。
在一个实施例中,所述加压电压介于0V到50V之间。
在一个实施例中,所述光源的照射时间介于10min到200min之间。
本申请实施例提供的显示面板的制造方法,通过控制配向层与单体之间的反应条件,可以降低配向过程所造成的缺陷,并可以提高显示面板光学显示特性及显示面板的成品率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的显示面板通电示意图;
图2是本申请实施例提供的显示面板制造方法流程图;
图3是本申请实施例提供的显示面板制造装置图;
图4是本申请实施例提供的显示面板制造方法流程图;
图5是本申请实施例的对比度、伽马值与温度的数据坐标图;
图6是本申请实施例的对比度、伽马值与紫外光照射时间的数据坐标图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅 用以解释本发明,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
图1为本申请一实施例的显示面板通电示意图。请参考图1,在本申请的一实施例中,一种显示面板100,包括:相向设置的第一基板110和第二基板210,开关层120,设置于所述第一基板110上;色阻层220,设置于所述第二基板210上;配向层130,分别设置于所述开关层120和所述色阻层220上;以及液晶140,夹设于所述第一基板110和所述第二基板210之间。在显示面板10的制造过程中,所述第一基板110和所述第二基板210对向贴合,将液晶封存于二者之间,以形成一液晶盒。通过对液晶盒施加电压,并在一定的条件(如电压的大小及加压时间,光源强度,光源照射时间等)下,配向层和单体产生聚合反应,以此使得所述液晶140形成预倾角。但由于显示面板100需经过两个阶段的光源照射,才能使得单体与配向层完全聚合反应。在此过程 中,单体浓度,光源强度等因素,对聚合反应有着不小的影响。其中,光源为可见光或紫外光。其中,依照制造工艺的不同,配向层可能存在污染缺陷,配向力不足或单体爆聚反应等问题。
图2为本申请一实施例的显示面板制造方法流程图。请同时参考图1和图2,在本申请的一实施例中,一种显示面板的制造方法,其步骤包括:
步骤S101:提供第一基板110和第二基板210。
步骤S102:设置配向层130于所述第一基板110和所述第二基板210上。
步骤S103:设置液晶140和单体(图未示)于所述第一基板110和所述第二基板210之间,以形成一液晶盒。
步骤S104:将所述液晶盒置于一反应室内,并施加一加压电压150及照射可见光于所述液晶盒,使所述单体与所述配向层进行聚合反应。
在本申请的一实施例中,所述可见光包含至少一种波长,照射可见光的次数为一次或多次。其中,通过控制所述反应室的温度,所述加压电压,所述可见光的波长,以控制所述单体与所述配向层的反应,并使所述液晶形成预倾角。
在本申请的一实施例中,在聚合反应时,所述反应室的温度可例如为40℃或50℃;在聚合反应后,测量显示面板的对比度和伽马值,此时所述反应室的温度介于0℃到100℃之间。
在本申请的一实施例中,所述可见光的照射时间介于10s到200min之间,所述可见光的波长介于380nm到780nm之间。
在本申请的一实施例中,所述加压电压介于0V到50V之间。
在本申请的一实施例中,可见光的照射次数可例如为两次照射,其中,第一次照射反应室的温度为40℃,第二次照射反应室的温度为50℃。不同次数的可见光照射,其对应的可见光波长亦可以是不同的。例如第一次照射的紫外 光波长为470nm,第一次照射的紫外光波长为530nm,此设计依据研发人员及制造生产的需求而定,本文不加以限制。
在本申请的一实施例中,通过对可见光波长,反应室温度,照射时间,加压电压等参数的调节,反应前单体的浓度2000ppm至4000ppm之间,可见光照射后单体的浓度则小于200ppm。
图3为本申请一实施例的显示面板制造装置图。在一实施例中,一种显示面板的制造装置300,具有一反应室,所述反应室包括:温控芯片301,用以控制所述反应室的温度;加压芯片302,提供加压电压,所述加压电压施加至显示面板;光源器件303,具有多根可见光灯管,用以提供可见光,其中,所述可见光照射至所述显示面板;测量芯片304,用以测量所述显示面板的对比度和伽马值,并输出反馈数据;以及控制芯片305,连接所述温控芯片301,所述加压芯片302,所述光源器件303和所述测量芯片304,接收并分析所述反馈数据;其中,通过分析所述反馈数据,所述控制芯片305控制所述温控芯片301,所述加压芯片302,所述光源器件303和所述测量芯片304,以调整所述加压电压,所述反应室的温度,及所述可见光的波长和照射时间,使液晶形成预倾角。
在本申请的一实施例中,所述测量芯片304可例如设置于所述反应室外,并连通至所述反应室内,以测量相关的数据。
在本申请的一实施例中,所述多根可见光灯管具有不同波长,通过更换或打开不同波长的可见光灯管,以获取不同波长的可见光。
在本申请的一实施例中,所述可见光的波长介于380nm到780nm之间。
在本申请的一实施例中,在聚合反应时,所述反应室的温度可例如为40℃或50℃;在聚合反应后,测量显示面板的对比度和伽马值,此时所述反应室 的温度介于0℃到100℃之间。
在本申请的一实施例中,所述加压电压介于0V到50V之间。
在一些实施例中,可见光的照射时间越长,加压电压越低,反应室的温度越高,反应后的单体残留量越低。因单体残留量低,制造所得的显示面板的透光率越高,显示效果越好。
请再参考图1,图3和图2,在本申请的又一实施例中,一种显示面板的制造装置300,具有一反应室,所述反应室包括:温控芯片301,用以控制所述反应室的温度;加压芯片302,提供加压电压,所述加压电压施加至显示面板;光源器件303,具有多根可见光灯管,用以提供可见光,其中,所述可见光照射至所述显示面板;测量芯片304,用以测量所述显示面板的对比度和伽马值,并输出反馈数据;以及控制芯片305,连接所述温控芯片301,所述加压芯片302,所述光源器件303和所述测量芯片304,接收并分析所述反馈数据;其中,通过分析所述反馈数据,所述控制芯片305控制所述温控芯片301,所述加压芯片302,所述光源器件303和所述测量芯片304,以调整所述加压电压,所述反应室的温度,及所述可见光的波长和照射时间,使液晶形成预倾角。其中,所述测量芯片304设置于所述反应室外,并连通至所述反应室内,以测量相关的数据。
在本申请的一实施例中,所述多根可见光灯管具有不同波长,通过更换或打开不同波长的可见光灯管,以获取不同波长的可见光。
在本申请的一实施例中,所述可见光的波长介于380nm至780nm之间。
在本申请的一实施例中,在聚合反应时,所述反应室的温度可例如为40℃或50℃;在聚合反应后,测量显示面板的对比度和伽马值,此时所述反应室的温度介于0℃到100℃之间。
请再参考图1和图2,在本申请的一实施例中,一种显示面板的制造方法,其步骤包括:
步骤S201:提供第一基板110和第二基板210。
步骤S202:设置配向层130于所述第一基板110和所述第二基板210上。
步骤S203:设置液晶140和单体(图未示)于所述第一基板110和所述第二基板210之间,以形成一液晶盒。
步骤S204:将所述液晶盒置于一反应室内,并施加一加压电压150及照射可见光于所述液晶盒,使所述单体与所述配向层进行聚合反应。
其中,所述可见光包含至少一种波长,照射可见光的次数为一次或间断的多次照射。通过控制所述反应室的温度,所述加压电压,所述可见光的波长,以控制所述单体与所述配向层的反应,并使所述液晶形成预倾角。
其中,在聚合反应时,在所述反应室的温度可例如为40℃或50℃;在聚合反应后,测量显示面板的对比度和伽马值,此时所述反应室的温度介于0℃到100℃之间。
其中,所述可见光的照射时间介于10s到200min之间,或,介于10min到200min之间。
其中,所述可见光的波长介于380nm到780nm之间。
其中,所述加压电压介于0V到50V之间。
图4为本申请又一实施例的显示面板制造方法流程图。请参考图1和图4,在本申请的一实施例中,一种显示面板的制造方法,其步骤包括:
步骤S201:提供第一基板110和第二基板210。
步骤S202:设置配向层130于所述第一基板110和所述第二基板210上。
步骤S203:设置液晶140和单体(图未示)于所述第一基板110和所述 第二基板210之间,以形成一液晶盒。
步骤S204:将所述液晶盒置于一反应室内,并施加一加压电压150及照射紫外光于所述液晶盒,使所述单体与所述配向层进行聚合反应。
本申请的一实施例中,所述紫外光包含至少一种波长,照射紫外光的次数为一次或间断的多次照射。通过控制所述反应室的温度,所述加压电压,所述紫外光的波长,以控制所述单体与所述配向层的反应,并使所述液晶形成预倾角。
本申请的一实施例中,在本申请的一实施例中,在聚合反应时,在所述反应室的温度可例如为40℃或50℃;在聚合反应后,测量显示面板的对比度和伽马值,此时所述反应室的温度介于0℃到100℃之间。
在本申请的一实施例中,所述紫外光的波长介于1nm到400nm之间。
在本申请的一实施例中,所述紫外光的照射时间介于10s到200min之间。
在本申请的一实施例中,所述加压电压介于0V到50V之间。
图5为本申请一实施例的对比度、伽马值与温度的数据坐标图,图6为本申请一实施例的对比度、伽马值与紫外光照射时间的数据坐标图。请参考图5,由40℃到50℃的对比度(Contrast Ratio,CR)和伽马值(Gamma)的数值变化,对比度由6600左右变化到7200左右,伽马值由2.8左右变化到3.05左右,对比度和伽马值随温度上升,而相应提高。请参考图6,紫外光照射时间的延长,相应对比度的数值(由6800左右变化到4000左右)呈下降趋势,相应伽马值的数值(由2.8左右变化到1.4左右)亦呈下降趋势。
在本申请的一实施例中,紫外光的照射次数可例如为两次照射,其中,第一次照射反应室的温度为40℃,第二次照射反应室的温度为50℃。不同次数的紫外光照射,其对应的紫外光波长亦可以是不同的。例如第一次照射的紫外 光波长为170nm,第一次照射的紫外光波长为230nm,此设计依据研发人员及制造生产的需求而定,本文不加以限制。
在本申请的一实施例中,通过对紫外光波长,反应室温度,照射时间,加压电压等参数的调节,反应前单体的浓度介于2000ppm至4000ppm之间,紫外光照射后单体的浓度则小于200ppm。
请再参考图1,图3和图4,在本申请的一实施例中,一种显示面板的制造装置300,具有一反应室,所述反应室包括:温控芯片301,用以控制所述反应室的温度;加压芯片302,提供加压电压,所述加压电压施加至显示面板;光源器件303,具有多根紫外光灯管,用以提供紫外光,其中,所述紫外光照射至所述显示面板;测量芯片304,用以测量所述显示面板的对比度和伽马值,并输出反馈数据;以及控制芯片305,连接所述温控芯片301,所述加压芯片302,所述光源器件303和所述测量芯片304,接收并分析所述反馈数据;其中,通过分析所述反馈数据,所述控制芯片305控制所述温控芯片301,所述加压芯片302,所述光源器件303和所述测量芯片304,以调整所述加压电压,所述反应室的温度,及所述紫外光的波长和照射时间,使液晶形成预倾角。
在本申请的一实施例中,所述测量芯片304可例如设置于所述反应室外,并连通至所述反应室内,以测量相关的数据。
在本申请的一实施例中,所述多根紫外光灯管具有不同波长,通过更换或打开不同波长的紫外光灯管,以获取不同波长的紫外光。
在本申请的一实施例中,所述紫外光的波长介于1nm至400nm之间。
在本申请的一实施例中,在聚合反应时,所述反应室的温度可例如为40℃或50℃;在聚合反应后,测量显示面板的对比度和伽马值,此时所述反应室的温度介于0℃到100℃之间。
在一些实施例中,本申请的显示面板可例如为液晶显示面板,其亦可为MVA显示面板,PSVA显示面板,TN显示面板,STN显示面板,曲面型显示面板或其他类型显示面板。
请再参考图1和图4,在本申请的又一实施例中,一种显示面板的制造方法,其步骤包括:
步骤S201:提供第一基板110和第二基板210。
步骤S202:设置配向层130于所述第一基板110和所述第二基板210上。
步骤S203:设置液晶140和单体(图未示)于所述第一基板110和所述第二基板210之间,以形成一液晶盒。
步骤S204:将所述液晶盒置于一反应室内,并施加一加压电压150及照射紫外光于所述液晶盒,使所述单体与所述配向层进行聚合反应。
其中,所述紫外光包含至少一种波长,照射紫外光的次数为一次或间断的多次照射。通过控制所述反应室的温度,所述加压电压,所述紫外光的波长,以控制所述单体与所述配向层的反应,并使所述液晶形成预倾角。
其中,在聚合反应后,测量显示面板的对比度和伽马值,此时所述反应室的温度介于0℃到100℃之间。
其中,所述紫外光的照射时间介于10min到200min之间。
其中,所述紫外光的波长介于1nm到400nm之间。
在本申请的一实施例中,在聚合反应时,在所述反应室的温度可例如为40℃或50℃。
在本申请的一实施例中,所述加压电压介于0V到50V之间。
请再参考图1和图4,在本申请的又一实施例中,一种显示面板的制造方法,其步骤包括:
步骤S201:提供第一基板110和第二基板210。
步骤S202:设置配向层130于所述第一基板110和所述第二基板210上。
步骤S203:设置液晶140和单体(图未示)于所述第一基板110和所述第二基板210之间,以形成一液晶盒。
步骤S204:将所述液晶盒置于一反应室内,并施加一加压电压150及照射紫外光于所述液晶盒,使所述单体与所述配向层进行聚合反应。
其中,所述紫外光包含至少一种波长,照射紫外光的次数为一次或间断的多次照射。通过控制所述反应室的温度,所述加压电压,所述紫外光的波长,以控制所述单体与所述配向层的反应,并使所述液晶形成预倾角。
其中,在聚合反应时,在所述反应室的温度可例如为40℃或50℃;在聚合反应后,测量显示面板的对比度和伽马值,此时所述反应室的温度介于0℃到100℃之间。
其中,所述紫外光的照射时间介于10s到200min之间。
其中,所述紫外光的波长介于1nm到400nm之间。
其中,所述加压电压介于0V到50V之间。
本申请通过控制所述反应室的温度,所述加压电压,所述可见光的波长,以控制所述单体与所述配向层的反应,并使所述液晶形成预倾角,可以降低配向过程所造成的缺陷,并降低显示面板的制造成本。
“在一些实施例中”及“在各种实施例中”等用语被重复地使用。所述用语通常不是指相同的实施例;但它也可以是指相同的实施例。“包含”、“具有”及“包括”等用词是同义词,除非其前后文意显示出其它意思。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内, 所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (20)

  1. 一种显示面板的制造方法,包括:
    提供第一基板和第二基板;
    设置配向层于所述第一基板和所述第二基板上;
    设置液晶和单体于所述第一基板和所述第二基板之间,以形成一液晶盒;
    将所述液晶盒置于一反应室内,并施加一加压电压及照射光源于所述液晶盒,使所述单体与所述配向层进行聚合反应,其中,所述光源包含至少一种波长,照射光源的次数为一次或多次;
    其中,所述光源为紫外光或可见光;
    通过控制所述反应室的温度,所述加压电压,所述光源的波长,以控制所述单体与所述配向层的反应,并使所述液晶形成预倾角。
  2. 根据权利要求1所述的显示面板的制造方法,其中,在所述聚合反应后,测量显示面板的对比度和伽马值,此时所述反应室的温度介于0℃到100℃之间。
  3. 根据权利要求1所述的显示面板的制造方法,其中,在所述聚合反应时,所述反应室的温度为40℃或50℃。
  4. 根据权利要求1所述的显示面板的制造方法,其中,在所述聚合反应前,所述单体浓度介于2000ppm至4000ppm之间,在所述聚合反应后,所述单体浓度小于200ppm。
  5. 根据权利要求1所述的显示面板的制造方法,其中,所述紫外光的波长介于1nm到400nm之间。
  6. 根据权利要求1所述的显示面板的制造方法,其中,所述可见光的波 长介于380nm到780nm之间。
  7. 根据权利要求1所述的显示面板的制造方法,其中,所述光源的照射时间介于10s到200min之间。
  8. 根据权利要求1所述的显示面板的制造方法,其中,所述加压电压介于0V到50V之间。
  9. 一种显示面板的制造装置,具有一反应室,所述反应室包括:
    温控芯片,用以控制所述反应室的温度;
    加压芯片,提供加压电压,所述加压电压施加至显示面板;
    光源器件,具有多根灯管,用以提供光源,其中,所述光源照射至所述显示面板,所述光源的照射次数为一次或间断的多次;
    测量芯片,用以测量所述显示面板的对比度和伽马值,并输出反馈数据;以及
    控制芯片,连接所述温控芯片,所述加压芯片,所述光源器件和所述测量芯片,接收并分析所述反馈数据;
    其中,所述光源为紫外光或可见光;
    通过分析所述反馈数据,所述控制芯片控制所述温控芯片,所述加压芯片,所述光源器件和所述测量芯片,以调整所述加压电压,所述反应室的温度,及所述光源的波长和照射时间,使液晶形成预倾角。
  10. 根据权利要求9所述的制造装置,其中,所述多根灯管具有不同波长,通过更换或打开不同波长的灯管,以获取不同波长的光源。
  11. 根据权利要求9所述的制造装置,其中,所述紫外光的波长介于1nm到400nm之间。
  12. 根据权利要求9所述的制造装置,其中,所述可见光的波长介于380nm 到780nm之间。
  13. 根据权利要求9所述的制造装置,其中,所述光源照射至所述显示面板完成聚合反应后,测量所述显示面板的对比度和伽马值,此时所述反应室的温度介于0℃到100℃之间。
  14. 根据权利要求9所述的制造装置,其中,在所述聚合反应时,所述反应室的温度为40℃或50℃。
  15. 根据权利要求9所述的制造装置,其中,所述加压电压介于0V到50V之间。
  16. 根据权利要求9所述的制造装置,其中,所述测量芯片设置于所述反应室外,并连通至所述反应室内,以测量相关的数据。
  17. 一种显示面板的制造方法,包括:
    提供第一基板和第二基板;
    设置配向层于所述第一基板和所述第二基板上;
    设置液晶和单体于所述第一基板和所述第二基板之间,以形成一液晶盒;
    将所述液晶盒置于一反应室内,并施加一加压电压及照射光源于所述液晶盒,使所述单体与所述配向层进行聚合反应,其中,所述光源包含至少一种波长,所述照射光源的次数为一次或间断的多次照射;
    其中,在所述聚合反应后,测量显示面板的对比度和伽马值,此时所述反应室的温度介于0℃到100℃之间;
    其中,所述光源为可见光时,所述可见光的波长介于380nm到780nm之间;所述光源为紫外光时,所述紫外光的波长介于1nm到400nm之间;
    在所述聚合反应前,单体浓度介于2000ppm至4000ppm之间,在所述聚合反应后,单体浓度小于200ppm;
    其中,通过控制所述反应室的温度,所述加压电压,所述光源的波长,以控制所述单体与所述配向层的反应,并使所述液晶形成预倾角。
  18. 根据权利要求17所述的制造方法,其中,在所述聚合反应时,所述反应室的温度为40℃或50℃。
  19. 根据权利要求17所述的制造方法,其中,所述加压电压介于0V到50V之间。
  20. 根据权利要求17所述的制造方法,其中,所述光源的照射时间介于10min到200min之间。
PCT/CN2018/123179 2018-08-16 2018-12-24 显示面板的制造方法及制造装置 WO2020034539A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/315,562 US10678096B1 (en) 2018-08-16 2018-12-24 Method and apparatus for fabricating display panel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810936178.5A CN109031720A (zh) 2018-08-16 2018-08-16 显示面板的制造方法及制造装置
CN201810935210.8 2018-08-16
CN201810935210.8A CN108873489A (zh) 2018-08-16 2018-08-16 显示面板的制造方法及制造装置
CN201810936178.5 2018-08-16

Publications (1)

Publication Number Publication Date
WO2020034539A1 true WO2020034539A1 (zh) 2020-02-20

Family

ID=69525058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123179 WO2020034539A1 (zh) 2018-08-16 2018-12-24 显示面板的制造方法及制造装置

Country Status (2)

Country Link
US (1) US10678096B1 (zh)
WO (1) WO2020034539A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968589A (zh) * 2010-10-20 2011-02-09 华映视讯(吴江)有限公司 液晶配向制程
US20120092602A1 (en) * 2010-10-19 2012-04-19 Seiko Epson Corporation Manufacturing method of liquid crystal display device and liquid crystal display device
CN104635383A (zh) * 2015-02-06 2015-05-20 深圳市华星光电技术有限公司 液晶面板的配向膜制作方法
CN104820316A (zh) * 2015-05-13 2015-08-05 合肥京东方光电科技有限公司 光配向装置、光配向方法和配向膜制备系统
CN107102481A (zh) * 2017-06-02 2017-08-29 合肥市惠科精密模具有限公司 一种tft‑lcd用配向膜制作方法
CN108873489A (zh) * 2018-08-16 2018-11-23 惠科股份有限公司 显示面板的制造方法及制造装置
CN109031720A (zh) * 2018-08-16 2018-12-18 惠科股份有限公司 显示面板的制造方法及制造装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI354677B (en) * 2007-01-31 2011-12-21 Au Optronics Corp Photosensitive monomer, liquid crystal material ha

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092602A1 (en) * 2010-10-19 2012-04-19 Seiko Epson Corporation Manufacturing method of liquid crystal display device and liquid crystal display device
CN101968589A (zh) * 2010-10-20 2011-02-09 华映视讯(吴江)有限公司 液晶配向制程
CN104635383A (zh) * 2015-02-06 2015-05-20 深圳市华星光电技术有限公司 液晶面板的配向膜制作方法
CN104820316A (zh) * 2015-05-13 2015-08-05 合肥京东方光电科技有限公司 光配向装置、光配向方法和配向膜制备系统
CN107102481A (zh) * 2017-06-02 2017-08-29 合肥市惠科精密模具有限公司 一种tft‑lcd用配向膜制作方法
CN108873489A (zh) * 2018-08-16 2018-11-23 惠科股份有限公司 显示面板的制造方法及制造装置
CN109031720A (zh) * 2018-08-16 2018-12-18 惠科股份有限公司 显示面板的制造方法及制造装置

Also Published As

Publication number Publication date
US10678096B1 (en) 2020-06-09
US20200174321A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
US10209552B2 (en) PDLC display panel, manufacturing method thereof, and LCD
JP4477421B2 (ja) 液晶表示装置及びその製造方法
CN105785612B (zh) Psva液晶面板的制作方法
JP2005266744A (ja) 高分子ネットワーク液晶配列方法
WO2016074351A1 (zh) 柔性液晶面板制作方法及柔性液晶面板
JP2010033093A (ja) 液晶表示装置及びその製造方法
US20060001818A1 (en) LCD panel and method of fabricating the same
US9563079B2 (en) Method for manufacturing alignment films of liquid crystal panels
US8089591B2 (en) Liquid crystal display device and method of aligning liquid crystal molecules utilized thereby
CN108873489A (zh) 显示面板的制造方法及制造装置
CN111413827B (zh) 液晶显示面板及预倾角形成方法
WO2020034539A1 (zh) 显示面板的制造方法及制造装置
JP4387931B2 (ja) ポリマーネットワーク型液晶表示装置、及び、その製造方法
US20190155108A1 (en) Optical alignment apparatus
WO2020186561A1 (zh) 液晶显示面板的制作方法
CN109031720A (zh) 显示面板的制造方法及制造装置
US8570471B2 (en) OCB liquid crystal panel and manufacturing method thereof, and OCB liquid crystal display
WO2020062465A1 (zh) 显示面板及其制作方法
CN109143688A (zh) 配向膜材料及液晶显示面板的制作方法
US11256143B2 (en) Liquid crystal display panel and manufacturing method thereof
WO2019242265A1 (zh) 显示面板及其制备方法和显示器件
EP3686663A1 (en) Liquid crystal alignment method and liquid crystal alignment system
US20130278880A1 (en) Method of Manufacturing Liquid Crystal Panel
US20160131936A1 (en) Liquid crystal display panel and method of manufaturing same
US10564481B2 (en) Method for aligning liquid crystals and liquid crystal alignment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929955

Country of ref document: EP

Kind code of ref document: A1