WO2020034389A1 - 快速充电方法、装置、设备及存储介质 - Google Patents

快速充电方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2020034389A1
WO2020034389A1 PCT/CN2018/111353 CN2018111353W WO2020034389A1 WO 2020034389 A1 WO2020034389 A1 WO 2020034389A1 CN 2018111353 W CN2018111353 W CN 2018111353W WO 2020034389 A1 WO2020034389 A1 WO 2020034389A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
charging
real
time
rechargeable battery
Prior art date
Application number
PCT/CN2018/111353
Other languages
English (en)
French (fr)
Inventor
丁柏平
杨锋
蔡增智
Original Assignee
深圳市中孚能电气设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中孚能电气设备有限公司 filed Critical 深圳市中孚能电气设备有限公司
Publication of WO2020034389A1 publication Critical patent/WO2020034389A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • H02J7/0077
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of charging technology, for example, to a fast charging method, device, device, and storage medium.
  • FIG. 1 is a schematic diagram of a battery charging process in the related art.
  • the battery charging process is composed of three phases: trickle, constant current, and constant voltage.
  • Trickle charging is a charging process only when the voltage is below a certain value. The purpose is to activate the battery with a small charging current to ensure battery life and reliability. Therefore, the parameters of the trickle charging stage cannot be adjusted.
  • Constant current and constant voltage are the stages that each battery must pass through, and it is also a key factor that determines the battery charging time.
  • the amount of battery power is related to the open-circuit voltage at both ends. When the power is 100%, the open-circuit voltage is the battery charging limit voltage, and it is also the battery full-charge voltage value.
  • the charging will change from the constant current charging mode to the constant voltage charging mode, reducing the charging current to ensure that the open circuit voltage of the battery does not exceed the full voltage.
  • the constant-current charging stage is the stage with the fastest battery charging speed, because the current is the largest in this stage.
  • the charging voltage keeps approaching the full-charge voltage, and the charging current gradually decreases.
  • the charging current reaches a certain threshold, the charging process is terminated.
  • the charging current in the constant voltage phase gradually decreases, making the charging time relatively long, which accounts for two-thirds of the entire charging time, which leads to a relatively low charging efficiency.
  • the present disclosure provides a fast charging method, device, device and storage medium, so as to increase the charging current in the constant voltage stage, reduce the charging time, and speed up the charging efficiency.
  • an embodiment of the present disclosure provides a fast charging method.
  • the method includes:
  • the real-time voltage is greater than or equal to a first set voltage, adjusting a charging voltage according to the real-time voltage, where the first set voltage value is a starting voltage in a constant voltage charging stage;
  • a charging current is determined according to the real-time voltage and the adjusted charging voltage, and the charging battery is charged using the charging current.
  • the adjusting the charging voltage according to the real-time voltage includes:
  • the method further includes:
  • the first set voltage is a digital signal
  • the determining whether the real-time voltage is greater than or equal to the first set voltage includes:
  • the method further includes:
  • the method further includes:
  • the real-time voltage is less than a second set voltage, determining that the rechargeable battery is in a trickle charging stage, and the second set voltage is less than the first set voltage;
  • the real-time voltage is greater than or equal to the second set voltage and less than the first set voltage, it is determined that the rechargeable battery is in a constant current charging stage.
  • an embodiment of the present disclosure further provides a fast charging device, including:
  • An acquisition module configured to acquire a real-time voltage of a rechargeable battery
  • An adjustment module configured to adjust a charging voltage according to the real-time voltage if the real-time voltage is greater than or equal to a first set voltage, wherein the first set voltage value is a starting voltage in a constant-voltage charging phase;
  • the charging module is configured to determine a charging current according to the real-time voltage and the adjusted charging voltage, and use the charging current to charge the rechargeable battery.
  • an embodiment of the present disclosure further provides a device, where the device includes:
  • One or more processors are One or more processors;
  • Memory set to store one or more programs
  • the voltage sampling device is set to collect the real-time voltage of the rechargeable battery
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors are caused to implement the above-mentioned fast charging method.
  • an embodiment of the present disclosure further provides a storage medium including computer-executable instructions, which are executed by a computer processor to perform the foregoing fast charging method.
  • FIG. 1 is a schematic diagram of a battery charging process in the related art
  • FIG. 2 is a flowchart of a fast charging method according to Embodiment 1 of the present disclosure
  • Embodiment 3 is a flowchart of a fast charging method provided in Embodiment 2 of the present disclosure
  • FIG. 3a is a schematic structural diagram of a fast charging circuit provided in Embodiment 2 of the present disclosure.
  • 3b is a schematic diagram of a fast charging voltage curve provided in Embodiment 2 of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a fast charging device according to a third embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a device provided by Embodiment 4 of the present disclosure.
  • FIG. 2 is a flowchart of a fast charging method provided in Embodiment 1 of the present disclosure. This embodiment is applicable to a case of charging a battery.
  • the method may be performed by a fast charging device, and the fast charging device may be implemented by software and / or hardware. This method is implemented as shown in FIG. 2.
  • the fast charging method includes:
  • Step 110 Obtain a real-time voltage of the rechargeable battery.
  • the rechargeable battery refers to a rechargeable battery with a limited number of charging cycles.
  • the rechargeable battery is a lithium battery.
  • the lithium battery may be any one of a lithium ion secondary battery, a lithium metal secondary battery, a lithium sulfur secondary battery, or a lithium air secondary battery.
  • the rechargeable battery may be a single rechargeable battery, a battery module connected in series with multiple rechargeable batteries, or a battery module connected in parallel with multiple rechargeable batteries.
  • the real-time voltage of a rechargeable battery refers to the real-time voltage between the positive and negative terminals of the rechargeable battery during the charging process.
  • Obtaining the real-time voltage of a rechargeable battery refers to obtaining the voltage between the positive and negative electrodes of the rechargeable battery in real time through a voltage sampling device. Since the equivalent circuit of a rechargeable battery is a series connection of an internal resistor and an energy storage capacitor, an energy storage capacitor refers to a device that stores the energy of the battery. During the charging process, the charging device continuously supplies current to the energy storage capacitor of the rechargeable battery. As the voltage across the energy storage capacitor continuously changes, the voltage between the positive and negative electrodes of the rechargeable battery is constantly changing. Therefore, the current charging status can be confirmed by obtaining the real-time voltage of the rechargeable battery.
  • Step 120 If the real-time voltage is greater than or equal to the first set voltage, adjust the charging voltage according to the real-time voltage, and the first set voltage is the starting voltage of the constant voltage charging stage.
  • the first set voltage is the starting voltage of the constant-voltage charging stage.
  • the constant-voltage charging stage refers to a charging stage in which the real-time voltage of the rechargeable battery approaches the full-charge voltage of the rechargeable battery, but does not reach the full-charge voltage.
  • the charging voltage refers to the voltage value output by the charging device to the rechargeable battery. When the charging device charges the rechargeable battery, the charging voltage can be obtained in real time. In one embodiment, the charging voltage is adjustable.
  • the voltage drop between the charging voltage of the charging device and the real-time voltage of the rechargeable battery decreases, which causes the charging current to gradually decrease, the charging time to be relatively long, and the charging efficiency to be relatively low. Therefore, in this embodiment, it is determined by a preset method whether the real-time voltage of the rechargeable battery is greater than the first set voltage, and if the real-time voltage is greater than or equal to the first set voltage, the charging voltage is increased according to the real-time voltage.
  • a digital signal comparison method can be used to determine whether the real-time voltage of the rechargeable battery is greater than the first set voltage
  • an analog signal comparison method can be used to determine whether the real-time voltage of the rechargeable battery is greater than the first set voltage. You can choose one of these signal comparison modes according to the needs of the user or the actual situation of the rechargeable battery.
  • the charging voltage when the charging voltage is adjusted, the charging voltage is adjusted according to the preset voltage difference and the real-time voltage, so that the charging voltage of the charging device is the sum of the real-time voltage and the preset voltage difference.
  • the preset voltage difference is greater than the voltage drop between the charging voltage before adjustment and the real-time voltage.
  • the charging voltage is for a charging device for charging a battery
  • the real-time voltage is for a battery.
  • the preset voltage difference may be determined according to a full-charge voltage of the rechargeable battery. In daily life and work, the full-charge voltage of a rechargeable battery is usually several fixed voltage values. Therefore, the preset voltage difference that can be determined according to the full-charge voltage of the rechargeable battery is usually also a few set values. Exemplarily, when the full-charge voltage of the rechargeable battery is 4.2V, the preset voltage difference is 0.7V.
  • the real-time voltage is less than the first set voltage, it is determined whether the real-time voltage is less than the constant-current charging threshold. If the real-time voltage is less than the constant-current charging threshold, it is determined that the rechargeable battery is in a trickle charging stage and the trickle charging stage The battery is activated with a small charging current. If the real-time voltage is greater than the constant-current charging threshold and less than the first set voltage, it is determined that the rechargeable battery is in the constant-current charging stage, the constant-current charging stage is the fastest charging stage of the battery, and the charging current in the constant-current charging stage is the largest. . In one embodiment, the constant current charging threshold is less than the first set voltage.
  • Step 130 Determine a charging current according to the real-time voltage and the adjusted charging voltage, and use the charging current to charge the rechargeable battery.
  • the charging current refers to the current input to the rechargeable battery for charging the rechargeable battery.
  • Charging a rechargeable battery refers to inputting a charging current into an energy storage capacitor of the rechargeable battery, so that the energy storage capacitor in the rechargeable battery stores energy.
  • the real-time voltage of the rechargeable battery is obtained. If the real-time voltage is greater than or equal to the starting voltage of the constant-voltage charging stage, the charging voltage is adjusted according to the real-time voltage, and then the charging current is determined based on the charging voltage and the real-time voltage.
  • the technical solution for charging a rechargeable battery increases the charging voltage, so that the voltage drop between the charging voltage and the real-time voltage increases. As the voltage drop increases and the equivalent resistance of the charging circuit is constant, the charging current increases. The problem that the charging current in the constant voltage stage is reduced, resulting in long charging time and relatively low charging efficiency, is achieved by increasing the charging current in the constant voltage stage, reducing the charging time, and speeding up the charging efficiency.
  • FIG. 3 is a flowchart of a fast charging method provided in Embodiment 2 of the present disclosure; this embodiment is applicable to the case of charging a battery.
  • This embodiment optimizes the fast charging method.
  • the optimized fast charging Methods including:
  • Step 210 Obtain the real-time voltage of the rechargeable battery.
  • Step 220 Determine whether the real-time voltage is greater than or equal to the first set voltage.
  • a digital signal comparison method may be used to compare whether the real-time voltage of the rechargeable battery is greater than the first set voltage, or an analog signal comparison method may be used to compare whether the real-time voltage of the rechargeable battery is greater than the first set voltage.
  • the above two types of signals can be compared according to the needs of the user or the actual situation of the rechargeable battery.
  • two methods for judging the real-time voltage and the first set voltage are provided. One is to judge the real-time voltage and the first set voltage through an analog circuit, and the other is to implement a digital circuit. Judgment of real-time voltage and first set voltage.
  • the implementation of the analog circuit includes: the first set voltage is an analog signal, and the first set voltage is output by the clamping circuit; determining whether the real-time voltage is greater than or equal to the first set voltage includes: The first set voltage is input to the voltage comparator; it is determined whether the real-time voltage is greater than or equal to the first set voltage according to the output result of the voltage comparator.
  • FIG. 3a is a schematic structural diagram of a fast charging circuit provided in Embodiment 2 of the present disclosure.
  • the core of the entire fast charging circuit is a step-down direct current-direct current (DC-DC) system with a feedback loop.
  • the system structure includes: a switching circuit 201, a clamping circuit 202, The sampling circuit 203, the voltage comparator 204, and the rechargeable battery 205.
  • the switching circuit 201 includes a Pulse Width Modulation (PWM) controller, a power transistor Q1, and an inductor L21.
  • the PWM controller is implemented using an integrated circuit (IC) 1 chip. Pins 6 and 6 of the IC1 chip are implemented. Pin 7 is the input terminal of the fast charging circuit.
  • PWM Pulse Width Modulation
  • pin 6 is connected to the mains voltage, and pin 7 is grounded.
  • Pin 9 of IC1 chip is connected to the gate of power transistor Q1.
  • Pin 8 of IC1 chip is connected to the drain of power transistor Q1 and the first end of inductor L21, and the second end of inductor L21 is connected to the positive electrode of rechargeable battery 205.
  • the clamp circuit 202 includes a resistor R2, a resistor R3, and a clamp diode Dz.
  • the output terminal of the clamp circuit 202 is connected to the inverting input terminal 3 of the voltage comparator 204. By adjusting the sizes of the resistors R2 and R3, the voltage value at the output terminal of the clamp circuit 202 can be controlled.
  • the sampling circuit 203 includes a sampling resistor R1.
  • the sampling resistor R1 is connected to the positive electrode of the rechargeable battery and the positive input terminal 1 of the voltage comparator 204.
  • the output terminal 4 of the voltage comparator 204 is connected to the pin 10 of the PWM controller.
  • Pin 2 of the comparator 204 is grounded, and pin 5 is connected to the output voltage of the inductor L21 and is set to power the comparator.
  • the principle of the charging device for charging the rechargeable battery is: the PWM controller drives the power tube Q1 on and off to generate a pulse width modulated wave, which in turn generates a charging voltage that meets the requirements of the rechargeable battery and outputs it to the inductor L21.
  • the charging voltage passes The inductor L21 is then output to the positive electrode of the rechargeable battery to charge the battery.
  • the principle of fast charging of a rechargeable battery by a charging device is: the sampling resistor R1 collects the real-time voltage Vb between the positive and negative terminals of the rechargeable battery 205, and inputs the collected real-time voltage Vb to the positive input terminal 1 of the voltage comparator 204.
  • the reverse input terminal 3 of the comparator 204 is connected to the first set voltage output from the clamp circuit 202.
  • the output terminal 4 of the voltage comparator 204 outputs a high-level signal, and The high-level signal is fed back to pin 10 of the PWM controller.
  • the PWM controller receives the high-level signal of pin 10, the duty cycle of the modulation signal of pin 9 is increased, and the power transistor Q1 is turned on. Time, thereby further increasing the voltage value output to the inductor L21.
  • the implementation of the digital circuit includes: the first set voltage is a digital signal, and determining whether the real-time voltage is greater than or equal to the first set voltage includes: performing analog-to-digital conversion on the real-time voltage to obtain the real-time digital voltage; Whether the real-time digital voltage is greater than or equal to the first set voltage.
  • the voltage sampling resistor collects the real-time voltage between the positive and negative terminals of the rechargeable battery, and inputs the real-time voltage to an analog-to-digital (AD) converter to obtain the real-time digital voltage.
  • the program determines whether the real-time digital voltage is greater than or equal to the first set voltage. When the digital voltage is greater than or equal to the first set voltage, the PWM controller is controlled to increase the duty cycle of the modulation signal and increase the conduction of the power tube. Time, thereby increasing the charging voltage of the charging device.
  • a digital judgment method is provided.
  • Vcharge is the charging voltage provided by the charging device
  • Vz is the first set voltage, that is, the starting voltage of the constant voltage charging stage
  • Vb is the real-time voltage of the rechargeable battery
  • Vm is the full-charge voltage of the rechargeable battery
  • Vc is the preset Voltage difference.
  • Step 230 If the real-time voltage is greater than or equal to the first set voltage, determine a target charging voltage according to a difference between the real-time voltage and a preset voltage.
  • the target charging voltage refers to a voltage to which the charging device is to be raised so that the rechargeable battery can be quickly charged, wherein the target charging voltage is determined by a real-time voltage and a preset voltage difference.
  • the real-time voltage and a preset voltage difference are added to obtain a target charging voltage.
  • the preset voltage difference refers to a voltage value to be maintained between the charging voltage and the real-time voltage in order to achieve fast charging.
  • the preset voltage difference is greater than the voltage drop between the charging voltage and the real-time voltage before the adjustment.
  • the preset voltage difference can be obtained according to the long-term work experience of the staff or multiple experiments, and can also be determined according to the full voltage of the rechargeable battery and the starting voltage of the constant voltage charging stage.
  • the method for obtaining the preset voltage difference value is not limited, and the user may adopt various methods for obtaining the preset voltage difference value according to the requirements.
  • Step 240 Adjust the charging voltage to a target charging voltage.
  • the charging voltage refers to the current charging voltage provided by the charging device.
  • Adjusting the charging voltage to the target charging voltage means increasing the current charging voltage provided by the charging device to the target charging voltage, including: controlling the PWM controller to increase the duty cycle of the modulation signal, increasing the on-time of the power tube, and reducing The time that the power tube is turned off, and then the charging voltage is increased to the target charging voltage.
  • Step 250 Determine a charging current according to the target charging voltage and the real-time voltage, and use the charging current to charge the rechargeable battery.
  • Step 260 If the real-time voltage reaches the charging voltage threshold, stop charging the rechargeable battery.
  • the real-time voltage of the rechargeable battery is continuously acquired to determine whether the charging of the rechargeable battery is completed according to the real-time voltage.
  • the charging voltage threshold refers to a fully charged voltage of the rechargeable battery. Stopping the charging of the rechargeable battery refers to cutting off the charging circuit between the charging device and the rechargeable battery through a preset switching device, so that the charging device no longer provides a charging current to the rechargeable battery.
  • the real-time voltage between the positive and negative terminals of the rechargeable battery reaches the full-charge voltage of the rechargeable battery, it means that the rechargeable battery is fully charged. Do not recharge, and then cut off the charging device and charging through the preset switching device. The charging circuit between the batteries makes the charging device no longer provide charging current to the rechargeable battery and stops charging the rechargeable battery.
  • a complete charging process includes a trickle charging stage, a constant current charging stage, and a constant voltage charging stage. Therefore, the real-time voltage of the rechargeable battery is obtained in real-time during the charging process to determine the current charging stage according to the real-time voltage. That is, in actual application, the real-time voltage is obtained, and according to the real-time voltage, it is first determined whether it is in the trickle charging stage. After being in the trickle charging stage, it is confirmed whether it is in the constant current charging stage based on the real-time voltage. Determine whether it is in the constant-voltage charging stage according to the real-time voltage. After being in the constant-voltage charging stage, confirm whether the charging is completed according to the real-time voltage. Since the determination conditions of the constant current charging phase have been described previously, the determination conditions of the trickle charging phase and the constant current charging phase are described below.
  • the fast charging method provided in this embodiment further includes: if the real-time voltage is less than the second set voltage, determining that the rechargeable battery is in a trickle charging stage, and the second set voltage is less than the first set voltage.
  • the second set voltage is smaller than the starting voltage in the constant voltage charging stage. In one embodiment, the second set voltage is a constant current charging threshold.
  • the trickle charging stage activates the battery with a small charging current to ensure battery life and reliability.
  • the charging parameters set in the trickle charging stage and the charging process embodiments are not limited.
  • the fast charging method provided in this embodiment further includes: if the real-time voltage is greater than or equal to the second set voltage and less than the first set voltage, determining that the rechargeable battery is in a constant current charging stage.
  • the real-time voltage between the positive and negative poles of the rechargeable battery is greater than the constant current charging threshold and less than the initial voltage of the constant voltage charging stage, it is determined that the rechargeable battery is in the constant current charging stage, and the constant current charging stage is battery charging The fastest stage, because the current is the largest during the constant current charging stage.
  • the charging parameters set in the trickle charging stage and the charging process embodiments are not limited.
  • FIG. 3b is a schematic diagram of a fast charging voltage curve provided in Embodiment 2 of the present disclosure.
  • the full-charge voltage of the rechargeable battery is 4.2V
  • the initial voltage in the constant-voltage charging stage is 4.05V
  • the constant-current charging threshold is 2.5V.
  • V1 is the charging voltage change curve of the charging device when the fast charging method is used
  • V2 is the charging voltage change curve of the charging device when the conventional charging method is used
  • V3 is the voltage change curve between the positive and negative electrodes of the rechargeable battery when the fast charging method is used
  • V4 is the conventional charging method.
  • T1 indicates the time when the constant current charging phase ends and enters the constant voltage charging phase
  • T2 indicates the time when the rechargeable battery reaches full power during fast charging
  • T3 indicates the time when the rechargeable battery reaches full power during conventional charging mode.
  • the voltage change curves between the positive and negative electrodes of the rechargeable battery are the same.
  • the charging voltage V1 using the fast charging method continues to increase, and the charging of the rechargeable battery ends at T2.
  • the conventional charging method because the charging voltage V2 continues to be the full voltage of the rechargeable battery, the voltage drop between the charging voltage V2 of the charging device and the voltage V4 between the positive and negative electrodes of the rechargeable battery becomes smaller and smaller, and the charging current gradually decreases.
  • the time T2 is much smaller than the time T3. Therefore, the fast charging technology provided in this embodiment solves the problems of reduced charging current, long charging time, and low charging efficiency in the constant voltage stage, which improves charging. effectiveness.
  • the real-time voltage of the rechargeable battery is obtained; if the real-time voltage is greater than or equal to the starting voltage of the constant-voltage charging stage, the target charging voltage is determined according to the difference between the real-time voltage and a preset voltage; and the charging voltage is adjusted to the target charging voltage, Then, the charging current is determined according to the charging voltage and the real-time voltage, and the technical solution of charging the rechargeable battery by using the charging current is used to solve the problems of reduced charging current, long charging time, and low charging efficiency in the constant voltage stage, thereby achieving an increased constant voltage.
  • the charging current in the compression stage reduces the charging time and speeds up the charging efficiency.
  • FIG. 4 is a schematic structural diagram of a fast charging device provided in Embodiment 3 of the present disclosure; this embodiment may be applicable to a case of charging a battery, where the device may be implemented by software and / or hardware.
  • the quick charging device provided by the embodiment of the present disclosure includes:
  • the obtaining module 310 is configured to obtain a real-time voltage of the rechargeable battery.
  • the adjustment module 320 is configured to adjust a charging voltage according to the real-time voltage if the real-time voltage is greater than or equal to a first set voltage, where the first set voltage value is a starting voltage in a constant-voltage charging stage.
  • the first charging module 330 is configured to determine a charging current according to the real-time voltage and the adjusted charging voltage, and use the charging current to charge the rechargeable battery.
  • the real-time voltage of the rechargeable battery is obtained. If the real-time voltage is greater than or equal to the starting voltage of the constant-voltage charging stage, the charging voltage is adjusted according to the real-time voltage, and then the charging current is determined based on the charging voltage and the real-time voltage.
  • the technical solution for charging the rechargeable battery solves the problems of reduced charging current, long charging time, and low charging efficiency in the constant voltage stage, and realizes increasing the charging current in the constant voltage stage, reducing charging time, and speeding up charging efficiency.
  • the adjustment module 320 includes:
  • a determining unit configured to determine a target charging voltage according to a difference between the real-time voltage and a preset voltage
  • the adjusting unit is configured to adjust the charging voltage to the target charging voltage.
  • the device further includes a determination module configured to determine whether the real-time voltage is greater than or equal to the first set voltage.
  • the first set voltage is a digital signal
  • the judgment module includes:
  • a conversion unit configured to perform analog-to-digital conversion on the real-time voltage to obtain a real-time digital voltage
  • the determining unit is configured to determine whether the real-time digital voltage is greater than or equal to the first set voltage.
  • the first set voltage is an analog signal
  • the judgment module includes:
  • An input unit configured to input the real-time voltage and the first set voltage output by the clamp circuit to a voltage comparator
  • the comparison unit is configured to determine, through the voltage comparator, whether the real-time voltage is greater than or equal to the first set voltage and output a comparison result.
  • the apparatus further includes:
  • the stopping module is configured to stop charging the rechargeable battery if the real-time voltage reaches a charging voltage threshold.
  • the apparatus further includes:
  • a second charging module configured to determine that the rechargeable battery is in a trickle charging stage if the real-time voltage is less than a second set voltage, and the second set voltage is less than the first set voltage;
  • the third charging module is configured to determine that the rechargeable battery is in a constant current charging stage if the real-time voltage is greater than or equal to the second set voltage and less than the first set voltage.
  • the fast charging device provided by the embodiment of the present disclosure can execute the fast charging method provided by any embodiment of the present disclosure, and has function modules and effects corresponding to the execution method.
  • the device includes a processor 410, a memory 420, an input device 430, an output device 440, and a voltage sampling device 450; a processor in the device
  • the number of 410 may be one or more, and a processor 410 is taken as an example in FIG. 5; the processor 410, the memory 420, the input device 430, the output device 440, and the voltage sampling device 450 in the device may be connected through a bus or other methods.
  • connection via a bus is taken as an example.
  • the memory 420 may be configured to store software programs, computer-executable programs, and modules, such as program instructions / modules corresponding to the fast charging method in the embodiments of the present disclosure (for example, Module 310, adjustment module 320, and first charging module 330).
  • the processor 410 executes various functional applications and data processing of the device by running software programs, instructions, and modules stored in the memory 420, that is, to implement the foregoing fast charging method.
  • the memory 420 may include a storage program area and a storage data area, where the storage program area may store an operating system and application programs required for at least one function; the storage data area may store data created according to the use of the terminal, and the like.
  • the memory 420 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage device.
  • the memory 420 may include memory remotely set relative to the processor 410, and these remote memories may be connected to the device through a network. Examples of the above network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input device 430 may be configured to receive inputted numeric or character information and generate key signal inputs related to user settings and function control of the device.
  • the output device 440 may include a display device such as a display screen.
  • the device provided by this feedback embodiment can execute the fast charging method provided by any embodiment of the present disclosure, and has corresponding function modules and effects for executing the method.
  • Embodiment 5 of the present disclosure further provides a storage medium containing computer-executable instructions, which are executed by a computer processor to perform the fast charging method as in the above implementation, and the method includes:
  • the real-time voltage is greater than or equal to a first set voltage, adjusting a charging voltage according to the real-time voltage, wherein the first set voltage is a starting voltage in a constant voltage charging stage;
  • a charging current is determined according to the real-time voltage and the adjusted charging voltage, and the charging battery is charged using the charging current.
  • a storage medium including computer-executable instructions provided in the embodiments of the present disclosure is not limited to the method operations described above, and may also execute the fast charging method provided by any embodiment of the present disclosure. Related operations.
  • the present disclosure can be implemented by software and necessary general-purpose hardware, and of course, can also be implemented by hardware, but the former is a better implementation in many cases. .
  • the technical solution of the present disclosure that is essential or contributes to related technologies can be embodied in the form of a software product, which can be stored in a computer-readable storage medium, such as a computer floppy disk, Read-only memory (ROM), random access memory (RAM), flash memory (FLASH), hard disk or optical disk, etc., including multiple instructions to make a computer device (can be a personal computer , Server, or network device, etc.) perform the method described in one or more embodiments of the present disclosure.
  • the units and modules included are only divided according to functional logic, but are not limited to the above division, as long as the corresponding functions can be realized; in addition, each The names of the functional units are only for the convenience of distinguishing each other, and are not used to limit the protection scope of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本文公开了一种快速充电方法,包括:通过获取充电电池的实时电压;若实时电压大于或等于恒压充电阶段的起始电压,则根据实时电压调整充电电压,根据实时电压和调整后的充电电压确定充电电流,并利用充电电流对充电电池进行充电。本文还公开了一种快速充电装置、设备以及存储介质。

Description

快速充电方法、装置、设备及存储介质
本申请要求在2018年8月15日提交中国专利局、申请号为201810930005.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及充电技术领域,例如涉及一种快速充电方法、装置、设备及存储介质。
背景技术
目前充电电池产品在日常生活中得到了越来越广泛的应用,电池能否快速、安全、可靠地充电至关重要。
图1为相关技术中的电池充电过程的示意图,如图1所示,电池充电过程是由涓流、恒流、恒压三个阶段组成。涓流充电是在电压低于一定值时才具有的充电过程,目的是用小的充电电流激活电池,保证电池寿命和可靠性,因此涓流充电阶段的参数不能调整。而恒流和恒压是每个电池充电必经的阶段,也是决定了电池充电时间的关键因素。电池的电量多少与其两端的开路电压相关,当电量为100%时,其开路电压为电池充电限制电压,也是电池满电电压值。因此在对电池进行充电的最后阶段,充电会由恒流充电方式变为恒压充电方式,降低充电电流保证电池开路电压不会超过满电电压。如图1所示,恒流充电阶段是电池充电速度最快的阶段,因为此阶段电流是最大的。恒压充电阶段充电电压不断接近满电电压,充电电流逐渐减小,当充电电流小到一定阈值时,充电过程终止。恒压阶段充电电流逐渐减小,使得充电时间相对较长,占了整个 充电时长的三分之二,进而导致充电效率比较低。
发明内容
本公开提供一种快速充电方法、装置、设备及存储介质,以实现增大恒压阶段的充电电流,减少充电时间,加快充电效率。
在一实施例中,本公开实施例提供了一种快速充电方法,所述方法包括:
获取充电电池的实时电压;
若所述实时电压大于或等于第一设定电压,则根据所述实时电压调整充电电压,其中,所述第一设定电压值为恒压充电阶段的起始电压;
根据所述实时电压和调整后的所述充电电压确定充电电流,并利用所述充电电流对所述充电电池进行充电。
在一实施例中,所述根据所述实时电压调整充电电压包括:
根据所述实时电压和预设电压差值确定目标充电电压;
将所述充电电压调整至所述目标充电电压。
在一实施例中,所述若所述实时电压大于或等于第一设定电压,则根据所述实时电压调整充电电压之前,还包括:
判断所述实时电压是否大于或等于所述第一设定电压。
在一实施例中,所述第一设定电压为数字信号;
所述判断所述实时电压是否大于或等于所述第一设定电压包括:
对所述实时电压进行模数转换,以得到实时数字电压;
判断所述实时数字电压是否大于或等于所述第一设定电压。
在一实施例中,所述第一设定电压为模拟信号;所述判断所述实时电压是否大于或等于所述第一设定电压包括:
将所述实时电压和由钳位电路输出的所述第一设定电压输入至电压比较器;
通过所述电压比较器判断所述实时电压是否大于或等于所述第一设定电压以及输出比较结果。
在一实施例中,所述利用所述充电电流对所述充电电池进行充电之后,还包括:
若所述实时电压达到充电电压阈值,则停止对所述充电电池进行充电。
在一实施例中,所述方法还包括:
若所述实时电压小于第二设定电压,则确定所述充电电池处于涓流充电阶段,所述第二设定电压小于所述第一设定电压;
若所述实时电压大于或等于所述第二设定电压且小于所述第一设定电压,则确定所述充电电池处于恒流充电阶段。
在一实施例中,本公开实施例还提供了一种快速充电装置,包括:
获取模块,设置为获取充电电池的实时电压;
调整模块,设置为若所述实时电压大于或等于第一设定电压,则根据所述实时电压调整充电电压,其中,所述第一设定电压值为恒压充电阶段的起始电压;
充电模块,设置为根据所述实时电压和调整后的所述充电电压确定充电电流,并利用所述充电电流对所述充电电池进行充电。
在一实施例中,本公开实施例还提供了一种设备,所述设备包括:
一个或多个处理器;
存储器,设置为存储一个或多个程序;
电压采样装置,设置为采集充电电池的实时电压;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多 个处理器实现上述的快速充电方法。
在一实施例中,本公开实施例还提供了一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行上述的快速充电方法。
附图说明
图1为相关技术中的电池充电过程的示意图;
图2为本公开实施例一提供的快速充电方法的流程图;
图3为本公开实施例二提供的快速充电方法的流程图;
图3a为本公开实施例二提供的快速充电电路的结构示意图;
图3b为本公开实施例二提供的快速充电的电压曲线示意图;
图4为本公开实施例三提供的快速充电装置的结构示意图;
图5为本公开实施例四提供的一种设备的结构示意图。
具体实施方式
下面结合附图和实施例对本公开进行说明。此处所描述的实施例仅仅用于解释本公开,而非对本公开的限定。为了便于描述,附图中仅示出了与本公开相关的部分而非全部结构。
实施例一
图2为本公开实施例一提供的快速充电方法的流程图,本实施例可适用于给电池充电的情况,该方法可以由快速充电装置来执行,该快速充电装置可以通过软件和/或硬件的方式实现,如图2所示,该快速充电方法包括:
步骤110、获取充电电池的实时电压。
在本实施例中,充电电池是指充电次数有限的可充电的电池。在一实施例中,充电电池为锂电池。例如,锂电池可以是锂离子二次电池、锂金属二次电池、锂硫二次电池或锂空气二次电池中的任意一种。在一实施例中,充电电池可以是单节充电电池,可以是多节充电电池的串联的电池模组,也可以是多节充电电池的并联的电池模组。充电电池的实时电压是指在充电过程中,充电电池正负极之间的实时电压。
获取充电电池的实时电压是指通过电压采样装置实时获取充电电池正负极之间的电压。由于充电电池的等效电路为内部电阻与储能电容器的串联,储能电容器是指存储电池能量的器件。在充电过程中,充电设备不断的提供电流至充电电池的储能电容器中,由于储能电容器两端的电压不断变化,导致充电电池正负极之间的电压在不断的变化。因此,可以通过获取充电电池的实时电压确认当前的充电情况。
步骤120、若实时电压大于或等于第一设定电压,则根据实时电压调整充电电压,第一设定电压为恒压充电阶段的起始电压。
在本实施例中,第一设定电压为恒压充电阶段的起始电压,恒压充电阶段是指充电电池的实时电压接近充电电池的满电电压,但未达到满电电压的充电阶段。当确定实时电压达到第一设定电压时,确认进入恒压充电阶段。充电电压是指充电设备输出至充电电池的电压值,当充电设备对充电电池进行充电时,可以实时获取充电电压。在一实施例中,充电电压是可调的。
在恒压充电阶段由于充电设备的充电电压和充电电池的实时电压之间的压降减小,导致充电电流逐渐减小,充电时间相对较长,充电效率比较低。因此,在本实施例中,通过预设的方法判断充电电池的实时电压是否大于第一设定电压,若实时电压大于或等于第一设定电压,则根据实时电压提高充电电压。在 一实施例中,可以采用数字信号比较的方式判断充电电池的实时电压是否大于第一设定电压,也可以采用模拟信号比较的方式判断充电电池的实时电压是否大于第一设定电压上述两种信号的比较方式可以根据用户的需求或者充电电池的实际情况任选其一。
在一实施例中,当调整充电电压时,根据预设电压差值和实时电压调整充电电压,以使得充电设备的充电电压为实时电压与预设电压差值之和。其中,预设电压差值大于调整之前的充电电压与实时电压之间的压降值。在一实施例中,充电电压是针对为电池进行充电的充电设备而言的,实时电压是针对电池而言的。在一实施例中,预设电压差值可以根据充电电池的满电电压确定。在日常生活和工作中,充电电池的满电电压通常为几个固定的电压值,因此,可以根据充电电池的满电电压确定的预设电压差值,通常也是设定的几个值。示例性的,当充电电池的满电电压为4.2V时,预设电压差值为0.7V。
在一实施例中,若实时电压小于第一设定电压,则判断实时电压是否小于恒流充电阈值,若实时电压小于恒流充电阈值,则确定充电电池处于涓流充电阶段,涓流充电阶段是用小的充电电流激活电池。若实时电压大于恒流充电阈值且小于第一设定电压,则确定充电电池处于恒流充电阶段,恒流充电阶段是电池充电速度最快的阶段,且恒流充电阶段的充电电流是最大的。在一实施例中,恒流充电阈值小于第一设定电压。
步骤130、根据实时电压和调整后的充电电压确定充电电流,并利用充电电流对充电电池进行充电。
在本实施例中,充电电流是指输入充电电池的电流,以供充电电池进行充电。对充电电池进行充电是指将充电电流输入充电电池的储能电容器中,使得充电电池中的储能电容器进行能量的存储。
本实施例通过获取充电电池的实时电压;若实时电压大于或等于恒压充电阶段的起始电压,则根据实时电压调整充电电压,然后根据充电电压和实时电压确定充电电流,并利用充电电流对充电电池进行充电的技术方案,提高了充电电压,使得充电电压和实时电压之间的压降值升高,由于压降值升高,充电电路的等效电阻恒定,那么充电电流增加。解决了恒压阶段充电电流减小,导致的充电时间长,充电效率比较低的问题,实现了增大恒压阶段的充电电流,减少充电时间,加快充电效率。
实施例二
图3为本公开实施例二提供的快速充电方法的流程图;本实施例可适用于给电池充电的情况,本实施例优化了快速充电的方法,如图3所示,优化后的快速充电的方法,包括:
步骤210、获取充电电池的实时电压。
步骤220、判断实时电压是否大于或等于第一设定电压。
在本实施例中,可以采用数字信号比较的方式比较充电电池的实时电压是否大于第一设定电压,也可以采用模拟信号比较的方式比较充电电池的实时电压是否大于第一设定电压。上述两种信号的比较方式可以根据用户的需求或者充电电池的实际情况任选其一。
在本实施例中,提供两种判断实时电压和第一设定电压大小的方法,一种是通过模拟电路来实现实时电压和第一设定电压大小的判断,一种是通过数字电路来实现实时电压和第一设定电压大小的判断。
在一实施例中,模拟电路实现方式包括:第一设定电压为模拟信号,第一设定电压由钳位电路输出;判断实时电压是否大于或等于第一设定电压包括: 将实时电压和第一设定电压输入至电压比较器;根据电压比较器的输出结果判断实时电压是否大于或等于第一设定电压。
图3a为本公开实施例二提供的快速充电电路的结构示意图。如图3a所示,整个快速充电电路的核心是带有反馈回路的降压直流-直流(direct current-direct current,DC-DC)系统,该系统结构包括:开关电路201、钳位电路202、采样电路203、电压比较器204以及充电电池205。其中,开关电路201包括脉冲宽度调整(Pulse Width Modulation,PWM)控制器、功率管Q1和电感L21,PWM控制器采用集成电路(Integrated Circuit,IC)1芯片来实现,IC1芯片的管脚6和管脚7为快速充电电路的输入端,在一实施例中,管脚6接市电电压,管脚7接地。IC1芯片的管脚9与功率管Q1的栅极连接,IC1芯片的管脚8分别与功率管Q1的漏极和电感L21的第一端连接,电感L21的第二端连接充电电池205的正极。钳位电路202包括电阻R2、电阻R3和钳位二极管Dz。钳位电路202的输出端与电压比较器204的反向输入端3连接。通过调节电阻R2和电阻R3的大小,可以控制钳位电路202输出端的电压值。采样电路203包括采样电阻R1,采样电阻R1分别与充电电池的正极和电压比较器204的正向输入端1连接,电压比较器204的输出端4与PWM控制器的管脚10连接,电压比较器204的管脚2接地,管脚5接电感L21的输出电压,设置为给比较器供电。
充电设备给充电电池进行充电的原理为:PWM控制器驱动功率管Q1的导通和关断,产生脉冲宽度调制波,进而产生符合充电电池需求的充电电压,并输出至电感L21,充电电压经过电感L21之后输出至充电电池的正极,给电池进行充电。
充电设备给充电电池快速充电的原理为:采样电阻R1采集充电电池205正负极之间的实时电压Vb,并将采集到的实时电压Vb输入至电压比较器204的 正向输入端1,电压比较器204的反向输入端3接钳位电路202输出的第一设定电压,当实时电压Vb大于第一设定电压时,电压比较器204的输出端4输出高电平信号,并将高电平信号反馈至PWM控制器的管脚10,当PWM控制器接收到管脚10的高电平信号时,增大管脚9调制信号的占空比,增大功率管Q1的导通时间,进而提高输出至电感L21的电压值。
在一实施例中,数字电路实现方式包括:第一设定电压为数字信号,判断实时电压是否大于或等于第一设定电压包括:对实时电压进行模数转换,以得到实时数字电压;判断实时数字电压是否大于或等于第一设定电压。
在一实施例中,电压采样电阻采集充电电池正负极之间的实时电压,并将实时电压输入至模数(Analog-to-Digital,AD)转换器,以得到实时数字电压;通过预设的程序判断实时数字电压是否大于或等于第一设定电压,当数字电压大于或等于第一设定电压时,则控制PWM控制器增大调制信号的占空比,增大功率管的导通时间,进而提高充电设备的充电电压。
在一实施例中,提供一种数字判断方法,
if(Vb>=Vz&&Vb<=Vm)
{Vcharge=Vb+Vc;}
其中,Vcharge为充电设备提供的充电电压,Vz为第一设定电压,即恒压充电阶段的起始电压,Vb为充电电池的实时电压,Vm为充电电池的满电电压,Vc为预设电压差值。随着充电电池的实时电压Vb的实时增加,充电设备提供的充电电压Vcharge不断增加。
步骤230、若实时电压大于或等于第一设定电压,根据实时电压和预设电压差值确定目标充电电压。
在本实施例中,目标充电电压是指充电设备要提升到,能使充电电池快速 充电的电压,其中,目标充电电压由实时电压和预设电压差值确定。
在一实施例中,实时电压和预设电压差值相加得到目标充电电压。预设电压差值是指为了实现快速充电,充电电压与实时电压之间要维持的电压值。在一实施例中,预设电压差值大于调整之前充电电压与实时电压之间的压降值。预设电压差值可以根据工作人员根据长期的工作经验或者多次实验得到,也可以根据充电电池的满电电压与恒压充电阶段的起始电压来确定。本实施例中,并不对获取预设电压差值的方法进行限定,用户可以根据需求采取多种获取预设电压差值的方法。
步骤240、将充电电压调整至目标充电电压。
在本实施例中,充电电压是指充电设备的提供的当前充电电压。
将充电电压调整至目标充电电压是指将充电设备的提供的当前充电电压提高到目标充电电压,包括:控制PWM控制器增大调制信号的占空比,增大功率管的导通时间,降低功率管关断的时间,进而将充电电压提高至目标充电电压。
步骤250、根据目标充电电压和实时电压确定充电电流,并利用充电电流对充电电池进行充电。
步骤260、若实时电压达到充电电压阈值,则停止对充电电池进行充电。
在一实施例中,进入恒压充电阶段后,继续获取充电电池的实时电压,以根据实时电压判断充电电池是否充电完成。
在本实施例中,充电电压阈值是指充电电池的满电电压。停止对充电电池进行充电是指通过预设的开关器件切断充电设备与充电电池之间的充电回路,使充电设备不再提供充电电流至充电电池。
在一实施例中,若充电电池正负极之间的实时电压到达充电电池的满电电压,则表示充电电池已经充满电,不要再进行充电,则通过预设的开关器件切 断充电设备与充电电池之间的充电回路,使充电设备不再提供充电电流至充电电池,停止对充电电池进行充电。
在一实施例中,一次完整地充电过程中,包括涓流充电阶段、恒流充电阶段以及恒压充电阶段。因此,在充电过程中实时获取充电电池的实时电压,以根据实时电压确定当前的充电阶段。即实际应用中,获取实时电压,根据实时电压先确定是否处于涓流充电阶段,在处于涓流充电阶段后,再根据实时电压确认是否处于恒流充电阶段,在处于恒流充电阶段后,再根据实时电压确定是否处于恒压充电阶段,在处于恒压充电阶段后,再根据实时电压确认是否充电完成。由于前面已经描述了恒流充电阶段的判定条件,下面描述涓流充电阶段和恒流充电阶段的判定条件。
在一实施例中,本实施例提供的快速充电方法还包括:若实时电压小于第二设定电压,则确定充电电池处于涓流充电阶段,第二设定电压小于第一设定电压。
在本实施例中,第二设定电压小于恒压充电阶段的起始电压,在一实施例中,第二设定电压为恒流充电阈值。
若充电电池正负极之间的实时电压小于恒流充电阈值,确定充电电池处于涓流充电阶段,涓流充电阶段是用小的充电电流激活电池,保证电池寿命和可靠性。其中,涓流充电阶段设定的充电参数以及充电过程实施例不作限定。
在一实施例中,本实施例提供的快速充电方法还包括:若实时电压大于或等于第二设定电压且小于第一设定电压,则确定充电电池处于恒流充电阶段。
在本实施例中,若充电电池正负极之间的实时电压大于恒流充电阈值且小于恒压充电阶段的起始电压,则确定充电电池处于恒流充电阶段,恒流充电阶段是电池充电速度最快的阶段,因为恒流充电阶段电流是最大的。其中,涓流 充电阶段设定的充电参数以及充电过程实施例不作限定。
图3b为本公开实施例二提供的快速充电的电压曲线示意图。如图3b所示,本实施例中,以充电电池满电电压为4.2V、恒压充电阶段的起始电压为4.05V和恒流充电阈值为2.5V进行说明。V1为使用快速充电方法时充电设备的充电电压变化曲线,V2为使用常规充电方法时充电设备的充电电压变化曲线,V3为快速充电时充电电池的正负极间电压变化曲线,V4为使用常规充电方法时充电电池的正负极间电压变化曲线。T1表示恒流充电阶段结束,进入恒压充电阶段的时间,T2表示快速充电时充电电池到达满电的时间,T3表示常规充电方式时充电电池到达满电的时间。
如图3b所示,常规充电方式和快速充电方式在涓流充电阶段和恒流充电阶段时,充电电池的正负极间电压变化曲线相同。进入恒压充电阶段时,随着充电电池的正负极间电压V3的增加,使用快速充电方法的充电电压V1不断升高,T2时刻充电电池充电结束。在常规充电方式中,由于充电电压V2持续保持为充电电池的满电电压,导致充电设备的充电电压V2与充电电池的正负极间电压V4的压降越来越小,充电电流逐渐减小,直至T3时刻充电电池充电结束。由图3b可知,T2时刻远远小于T3时刻,因此,本实施例提供的快速充电的技术手段,解决了恒压阶段充电电流减小,充电时间长,充电效率比较低的问题,提高了充电效率。
本实施例通过获取充电电池的实时电压;若实时电压大于或等于恒压充电阶段的起始电压,则根据实时电压和预设电压差值确定目标充电电压;将充电电压调整至目标充电电压,然后根据充电电压和实时电压确定充电电流,并利用充电电流对充电电池进行充电的技术方案,解决了恒压阶段充电电流减小,充电时间长,充电效率比较低的问题,实现了增大恒压阶段的充电电流,减少 充电时间,加快充电效率。
实施例三
图4为本公开实施例三提供的快速充电装置的结构示意图;本实施例可适用于给电池充电的情况,其中该装置可由软件和/或硬件实现。如图4所示,本公开实施例提供的快速充电装置包括:
获取模块310,设置为获取充电电池的实时电压。
调整模块320,设置为若所述实时电压大于或等于第一设定电压,则根据所述实时电压调整充电电压,其中,所述第一设定电压值为恒压充电阶段的起始电压。
第一充电模块330,设置为根据所述实时电压和调整后的所述充电电压确定充电电流,并利用所述充电电流对所述充电电池进行充电。
本实施例通过获取充电电池的实时电压;若实时电压大于或等于恒压充电阶段的起始电压,则根据实时电压调整充电电压,然后根据充电电压和实时电压确定充电电流,并利用充电电流对充电电池进行充电的技术方案,解决了恒压阶段充电电流减小,充电时间长,充电效率比较低的问题,实现了增大恒压阶段的充电电流,减少充电时间,加快充电效率。
在一实施例中,所述调整模块320包括:
确定单元,设置为根据所述实时电压和预设电压差值确定目标充电电压;
调整单元,设置为将所述充电电压调整至所述目标充电电压。
在一实施例中,所述装置还包括:判断模块,设置为判断所述实时电压是否大于或等于所述第一设定电压。
在一实施例中,所述第一设定电压为数字信号;
所述判断模块包括:
转换单元,设置为对所述实时电压进行模数转换,以得到实时数字电压;
判断单元,设置为判断所述实时数字电压是否大于或等于所述第一设定电压。
在一实施例中,所述第一设定电压为模拟信号;
所述判断模块包括:
输入单元,设置为将所述实时电压和由钳位电路输出的所述第一设定电压输入至电压比较器;
比较单元,设置为通过所述电压比较器判断所述实时电压是否大于或等于所述第一设定电压以及输出比较结果。
在一实施例中,所述装置还包括:
停止模块,设置为若所述实时电压达到充电电压阈值,则停止对所述充电电池进行充电。
在一实施例中,所述装置还包括:
第二充电模块,设置为若所述实时电压小于第二设定电压,则确定所述充电电池处于涓流充电阶段,所述第二设定电压小于所述第一设定电压;
第三充电模块,设置为若所述实时电压大于或等于所述第二设定电压且小于所述第一设定电压,则确定所述充电电池处于恒流充电阶段。
本公开实施例所提供的快速充电装置可执行本公开任意实施例所提供的快速充电方法,具备执行方法相应的功能模块和效果。
实施例四
图5为本公开实施例四提供的一种设备的结构示意图,如图5所示,该设 备包括处理器410、存储器420、输入装置430、输出装置440和电压采样装置450;设备中处理器410的数量可以是一个或多个,图5中以一个处理器410为例;设备中的处理器410、存储器420、输入装置430、输出装置440和电压采样装置450可以通过总线或其他方式连接,图5中以通过总线连接为例。
存储器420作为一种计算机可读存储介质,可以设置为存储软件程序、计算机可执行程序以及模块,如本公开实施例中的快速充电方法对应的程序指令/模块(例如,快速充电装置中的获取模块310、调整模块320和第一充电模块330)。处理器410通过运行存储在存储器420中的软件程序、指令以及模块,从而执行设备的多种功能应用以及数据处理,即实现上述的快速充电方法。
存储器420可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器420可以包括相对于处理器410远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置430可以设置为接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置440可包括显示屏等显示设备。
本反馈实施例所提供的设备可执行本公开任意实施例所提供的快速充电方法,具备执行方法相应的功能模块和效果。
实施例五
本公开实施例五还提供一种包含计算机可执行指令的存储介质,所述计算 机可执行指令在由计算机处理器执行时用于执行如上述实施中的快速充电方法,该方法包括:
获取充电电池的实时电压;
若所述实时电压大于或等于第一设定电压,则根据所述实时电压调整充电电压,其中,所述第一设定电压为恒压充电阶段的起始电压;
根据所述实时电压和调整后的所述充电电压确定充电电流,并利用所述充电电流对所述充电电池进行充电。
当然,本公开实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本公开任意实施例所提供的快速充电方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本公开可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开一个或多个实施例所述的方法。
在一实施例中,上述快速充电装置的实施例中,所包括的单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,每个功能单元的名称也只是为了便于相互区分,并不用于限制本公开的保护范围。

Claims (10)

  1. 一种快速充电方法,包括:
    获取充电电池的实时电压;
    若所述实时电压大于或等于第一设定电压,则根据所述实时电压调整充电电压,其中,所述第一设定电压为恒压充电阶段的起始电压;
    根据所述实时电压和调整后的所述充电电压确定充电电流,并利用所述充电电流对所述充电电池进行充电。
  2. 根据权利要求1所述的方法,其中,所述根据所述实时电压调整充电电压包括:
    根据所述实时电压和预设电压差值确定目标充电电压;
    将所述充电电压调整至所述目标充电电压。
  3. 根据权利要求1或2所述的方法,其中,在所述若所述实时电压大于或等于第一设定电压,则根据所述实时电压调整充电电压之前,还包括:
    判断所述实时电压是否大于或等于所述第一设定电压。
  4. 根据权利要求3所述的方法,其中,所述第一设定电压为数字信号;
    所述判断所述实时电压是否大于或等于所述第一设定电压包括:
    对所述实时电压进行模数转换,以得到实时数字电压;
    判断所述实时数字电压是否大于或等于所述第一设定电压。
  5. 根据权利要求3所述的方法,其中,所述第一设定电压为模拟信号;
    所述判断所述实时电压是否大于或等于所述第一设定电压包括:
    将所述实时电压和由钳位电路输出的所述第一设定电压输入至电压比较器;
    通过所述电压比较器判断所述实时电压是否大于或等于所述第一设定电压以及输出比较结果。
  6. 根据权利要求1所述的方法,在所述利用所述充电电流对所述充电电池 进行充电之后,还包括:
    若所述实时电压达到充电电压阈值,则停止对所述充电电池进行充电。
  7. 根据权利要求1所述的方法,还包括:
    若所述实时电压小于第二设定电压,则确定所述充电电池处于涓流充电阶段,其中,所述第二设定电压小于所述第一设定电压;
    若所述实时电压大于或等于所述第二设定电压且小于所述第一设定电压,则确定所述充电电池处于恒流充电阶段。
  8. 一种快速充电装置,包括:
    获取模块,设置为获取充电电池的实时电压;
    调整模块,设置为若所述实时电压大于或等于第一设定电压,则根据所述实时电压调整充电电压,其中,所述第一设定电压值为恒压充电阶段的起始电压;
    充电模块,设置为根据所述实时电压和调整后的所述充电电压确定充电电流,并利用所述充电电流对所述充电电池进行充电。
  9. 一种设备,包括:
    一个或多个处理器;
    存储器,设置为存储一个或多个程序;
    电压采样装置,设置为采集充电电池的实时电压;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7中任一项所述的快速充电方法。
  10. 一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如权利要求1-7中任一项所述的快速充电方法。
PCT/CN2018/111353 2018-08-15 2018-10-23 快速充电方法、装置、设备及存储介质 WO2020034389A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810930005.2 2018-08-15
CN201810930005.2A CN109546244B (zh) 2018-08-15 2018-08-15 快速充电方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2020034389A1 true WO2020034389A1 (zh) 2020-02-20

Family

ID=65841144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111353 WO2020034389A1 (zh) 2018-08-15 2018-10-23 快速充电方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN109546244B (zh)
WO (1) WO2020034389A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156957A (zh) * 2020-09-07 2022-03-08 北京小米移动软件有限公司 电池充电方法、装置及存储介质
CN112332484B (zh) * 2020-10-28 2022-03-29 合肥联宝信息技术有限公司 电池的充电控制方法、装置、存储介质及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201628305A (zh) * 2015-01-23 2016-08-01 華碩電腦股份有限公司 充電方法及應用其之可攜式電子裝置
CN106299512A (zh) * 2016-08-29 2017-01-04 北京小米移动软件有限公司 充电方法及装置
CN106549465A (zh) * 2017-01-13 2017-03-29 广东欧珀移动通信有限公司 充电控制方法、装置、系统和终端
CN106655396A (zh) * 2017-01-13 2017-05-10 广东欧珀移动通信有限公司 充电控制方法、装置及终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104967201B (zh) * 2015-08-05 2018-10-02 青岛海信移动通信技术股份有限公司 快速充电方法、移动终端及可直充电源适配器
CN105071486B (zh) * 2015-08-26 2017-08-15 广东欧珀移动通信有限公司 一种充电提示方法和装置
CN107195997B (zh) * 2017-06-19 2019-06-04 厦门美图移动科技有限公司 一种充电方法、装置及移动终端
CN107370219A (zh) * 2017-09-14 2017-11-21 合肥联宝信息技术有限公司 一种充电控制方法和电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201628305A (zh) * 2015-01-23 2016-08-01 華碩電腦股份有限公司 充電方法及應用其之可攜式電子裝置
CN106299512A (zh) * 2016-08-29 2017-01-04 北京小米移动软件有限公司 充电方法及装置
CN106549465A (zh) * 2017-01-13 2017-03-29 广东欧珀移动通信有限公司 充电控制方法、装置、系统和终端
CN106655396A (zh) * 2017-01-13 2017-05-10 广东欧珀移动通信有限公司 充电控制方法、装置及终端

Also Published As

Publication number Publication date
CN109546244B (zh) 2021-08-06
CN109546244A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
US9502917B2 (en) Charging method of electronic cigarettes and electronic cigarette box
CN102946131B (zh) 自适应输入电源的充电器及控制充电器的输入电流的方法
TWI492483B (zh) Step - up battery charge management system and its control method
CN103580000B (zh) 开关电源输出过压保护方法及电路及带该电路的开关电源
EP3007306A1 (en) Electronic cigarette charging method and electronic cigarette case
JP3213401B2 (ja) 非水系二次電池の充電方法
CN105915036A (zh) 用于确定适配器电流限值的系统和方法
CN109888897B (zh) 充电控制方法、充电控制装置及电源适配器
CN105762892A (zh) 一种锂电池降压输出及充放电保护系统
US9876384B2 (en) Charging device and charging method
US20150084581A1 (en) Charging device configured to reduce power consumption during non-charging period
EP2590307A2 (en) Power supply device and method for regulating dead time
WO2020034389A1 (zh) 快速充电方法、装置、设备及存储介质
CN203398994U (zh) 一种开关电源驱动芯片及开关电源驱动装置
TW201440376A (zh) 電子裝置中的電路、電子裝置及供電方法
US20160218531A1 (en) Charging method and portable electronic device using the same
WO2017157113A1 (zh) Dc-dc调节器及其软启动的控制方法、控制器
WO2022217857A1 (zh) 充电控制方法和系统
WO2013174081A1 (zh) 充电电路及其控制方法
CN209748236U (zh) 一种分立式电源充电电路
JP2006121797A (ja) 充電器
CN110838747B (zh) 移动电源的供电控制方法、移动电源
CN111384733B (zh) 一种充电电流可调的充电装置
CN111149275B (zh) 蓄电装置
RU133985U1 (ru) Зарядное устройство для аккумуляторных батарей

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930255

Country of ref document: EP

Kind code of ref document: A1