WO2020034253A1 - 一种基于激光诱导的可交互体三维显示装置及其控制方法 - Google Patents

一种基于激光诱导的可交互体三维显示装置及其控制方法 Download PDF

Info

Publication number
WO2020034253A1
WO2020034253A1 PCT/CN2018/102651 CN2018102651W WO2020034253A1 WO 2020034253 A1 WO2020034253 A1 WO 2020034253A1 CN 2018102651 W CN2018102651 W CN 2018102651W WO 2020034253 A1 WO2020034253 A1 WO 2020034253A1
Authority
WO
WIPO (PCT)
Prior art keywords
interactive
laser
host computer
dimensional display
display device
Prior art date
Application number
PCT/CN2018/102651
Other languages
English (en)
French (fr)
Inventor
范超
韩东成
Original Assignee
上海先研光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海先研光电科技有限公司 filed Critical 上海先研光电科技有限公司
Publication of WO2020034253A1 publication Critical patent/WO2020034253A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures

Definitions

  • Volume three-dimensional display technology can realize the reproduction of image information in three-dimensional space, and it can realize that any number of observers can directly observe three-dimensional objects from any angle without using any auxiliary equipment.
  • the existing three-dimensional volume display technology in free space can be divided into the following types: laser-induced plasma display, stereoscopic display based on photophoretic capture, improved air display, and acoustic suspension display.
  • the stereoscopic display technology based on photo swimming capture uses a light beam to capture particles to move in free space, so it is highly sensitive to airflow and has limited application scenarios.
  • the display effect of the improved air display and sound suspension display is too rough.
  • the present invention provides a laser-induced interactive three-dimensional display device and a control method thereof, so as to realize three-dimensional display and interaction in a free space and improve the three-dimensional display effect.
  • the technical solution of the present invention is:
  • the light modulation device includes a lens system and a light modulation device, and the lens system is used for expanding, collimating, and modulating the diameter of a light beam, and the light modulation device includes a digital micromirror array, spatial light Modulator, anamorphic mirror or phase plate.
  • the interaction system includes a laser receiving and analyzing device and a somatosensory interaction device, and the interaction system has three working modes: a touch mode, a somatosensory mode, and a touch + somatosensory mode.
  • the interactive three-dimensional display device further includes a detection device, and the detection device includes an image acquisition device, a temperature measurement device, and analysis software, and the image acquisition device, the temperature measurement device, and the analysis software are respectively associated with The input terminal of the upper computer is connected.
  • the interactive three-dimensional display device further includes a cooling system, the cooling system includes a water cooling module and an air cooling module, and the cooling system is connected to an output end of the upper computer.
  • the interactive three-dimensional display device further includes an aerosol generator and a transparent casing, the aerosol generator and the transparent casing are disposed around the three-dimensional display area, and the aerosol generator and the transparent casing The output end of the host computer is connected.
  • the present invention provides a method for controlling an interactive three-dimensional display device based on a laser, including the following steps:
  • the user inputs the image to be displayed to the host computer, and processes and analyzes the input image through the host computer to determine the working parameters of the pulse laser, the modulation method of the light modulation device, the scanning path and scanning speed of the 3D dynamic focusing system. ;
  • the user controls the zoom lens for scanning in the Z direction and the scanning system for scanning in the XY direction through the host computer.
  • the focus is quickly scanned in the display area.
  • the air at the focal point is ionized, and the light spot formed by the ionized air constitutes the image to be displayed;
  • the user can recognize the position information of the human body through the interactive system, and pass the instructions to the upper computer according to the recognition result.
  • the upper computer controls the display by controlling the light modulation device and the 3D dynamic focusing system.
  • the image quality is adjusted to achieve the best viewing experience; at the same time, the host computer determines the working mode of the interactive system according to the working parameters of the pulse laser, and then the interactive system recognizes and analyzes the collected touch and / or somatosensory instructions, and The result is sent to the host computer, and the user controls the light modulation device and 3D dynamic focusing system to adjust the display information through the host computer and respond to the interactive instructions.
  • step S4 the host computer determines the working mode of the interactive system according to the working parameters of the pulse laser. If the pulse width of the pulse laser is on the order of nanoseconds, the energy of the ionized air plasma is too high. , The damage to the human body is too great, so touch operation cannot be performed, only somatosensory interaction can be performed; if the pulse width is femtosecond or less, the human body can directly contact the ionized air plasma, and you can touch at this time Operation, can also perform somatosensory operation.
  • the control method further includes step S5: while the image is displayed in the display area, the user may collect the displayed image through the detection device. And analysis, and then send the analysis result to the host computer, the host computer adjusts the pulse laser, light modulation device, 3D dynamic focusing system according to the analysis result, thereby optimizing the display quality.
  • the pulsed laser in the air in the present invention when the peak light intensity of the focus exceeds the ionized plasma threshold, the air at the focus is ionized to emit light, thereby enabling observation; when the 3D dynamic focusing system makes When the focus of the beam is rapidly scanned in the three-dimensional space, a three-dimensional image can be observed in space according to the visual residual effect; the light modulation device in the present invention can rapidly modulate the beam emitted by the pulsed laser, so that the beam is focused after There will be multiple focal points, and the relative position between the focal points can be controlled by a light modulator.
  • the 3D dynamic focusing system includes a zoom lens, a scanning system, and a field lens / objective lens.
  • a zoom lens, a scanning system, and a field lens are used, a larger range of scanning in a three-dimensional space can be realized.
  • a zoom lens, a scanning system, and an objective lens Can achieve small-scale, high-speed, high-resolution scanning in three-dimensional space, When selecting the objective lens to increase the scanning range, you need to choose a large-aperture objective lens.
  • the 3D dynamic focusing system in the present invention can also select the components of the scanning system and field lens / objective lens according to the actual needs; the present invention can also be used in the display area.
  • An aerosol generator is set around to spray aerosol particles into the display area. When there are aerosol particles in the display area, the ionization plasma threshold of air will be significantly reduced, and the power of the laser required for ionization will be reduced. Under the conditions, more focus can be generated by the light modulation device for ionization and higher resolution can be obtained; if a transparent shell is set around the display area, the display area can be protected.
  • the transparent casing in the present invention can be filled with a special mixed gas, and different gases are ionized by a plurality of lasers with different wavelengths, thereby emitting different colors to realize color imaging.
  • the interactive three-dimensional display device of the present invention may further include a detection device that collects and analyzes the temperature and image of the display area, and then adjusts the system according to the analysis result by a host computer to achieve the best display effect.
  • the interactive system detects the position of the human body and adjusts the direction, brightness, and resolution of the displayed image through the host computer to achieve the best viewing experience.
  • the host computer determines the working mode of the interactive system according to the working parameters of the system, and then the interactive system recognizes and analyzes the collected touch and somatosensory instructions, and sends the results to the host computer, which controls the light modulation device and 3D dynamic focusing.
  • the system etc. adjusts the display information and responds to interactive instructions.
  • FIG. 1 is a schematic structural diagram of an interactive three-dimensional display device according to the present invention.
  • FIG. 2 is a schematic diagram of another structure of the interactive three-dimensional display device of the present invention.
  • a specific embodiment of the present invention discloses a laser-induced interactive three-dimensional display device, including a host computer 2, a pulse laser 3, a light modulation device 4, a 3D dynamic focusing system 5, a cooling system 14, Interactive system 12 and detection device 13.
  • Input 1 in FIG. 1 is the three-dimensional image or video file that the user controls the computer to input into the upper computer.
  • the pulse laser 3 is a femtosecond laser with adjustable pulse width, repetition frequency, and power, and its pulse width is less than 100 ns.
  • the light modulation device 4 includes a lens system and a light modulation device for expanding, collimating, and modulating the diameter of a light beam.
  • the light modulation device includes a digital micromirror array (DMD), a space Light modulator (SLM), anamorphic mirror or phase plate.
  • the optical modulation device described in this embodiment is a DMD.
  • the lens system before the DMD is used to expand and collimate the beam emitted by the pulsed laser. After the DMD modulates the beam, the beam can be focused to generate multiple focal points.
  • the lens after the DMD The system is used to adjust the size of the beam to fit the requirements of the 3D scanning system.
  • the input terminal of the host computer 2 is connected to the interaction system 12 and the detection device 13; the output terminal of the host computer 2 is respectively connected to the cooling system 14, the pulse laser / 3, and the light modulation device. 4.
  • the zoom lens 6 is connected to the scanning system 7.
  • the interaction system 12 includes a laser receiving and analyzing device and a somatosensory interaction device.
  • the interaction system has three working modes: a touch mode, a somatosensory mode, and a touch + somatosensory mode.
  • the interaction system 12 is used for identifying the position and motion information of the human body, and transmitting instructions to the host computer 2 according to the recognition result.
  • the host computer 2 transmits the pulse laser 3 and the light modulation device 4 Make adjustments with the 3D dynamic focusing system 5 to optimize the viewing angle and interact.
  • the pulse laser is a femtosecond laser, and the interactive system can work in a touch + somatosensory mode.
  • the detection device 13 includes an image acquisition device, a temperature measurement device, and analysis software.
  • the image acquisition device, the temperature measurement device, and the analysis software are respectively connected to the input end of the host computer.
  • the cooling system 14 includes a water cooling module and an air cooling module.
  • the cooling system 14 is connected to the output end of the upper computer 2. It is used for cooling the pulse laser 3, the light modulation device 4, the 3D dynamic focusing system 5 and the display area 9.
  • the interactive three-dimensional display device may further include an aerosol generator 10 and a transparent casing 11, and the aerosol generator 10 and the transparent casing 11 are disposed around the three-dimensional display area 9.
  • the aerosol generator 10 is connected to the output terminal of the upper computer 2. as shown in picture 2.
  • This embodiment provides a method for controlling an interactive three-dimensional display device based on a laser, including the following steps:
  • the user inputs the image to be displayed to the host computer.
  • the host computer processes and analyzes the input image to determine the working parameters of the pulse laser, the modulation method of the light modulation device, and the 3D dynamic focusing system. Scan path and scan speed;
  • the user controls the pulse laser to emit pulse laser through the host computer, and controls the light modulation device to modulate the light beam. After the modulated light beam passes through the 3D dynamic focusing system, multiple focus is generated. At the same time, the user controls the light modulation device to adjust the focus between Relative position
  • the light beam enters the 3D dynamic focusing system after passing through the light modulation device.
  • the user controls the zoom lens to scan in the Z direction and the scanning system to scan in the XY direction through the host computer. After the beam passes through the F-Theta lens, the focus is performed in the display area. Scan quickly, and the air at the focal point is ionized, and the light spots formed by the ionized air constitute the image to be displayed;
  • both touch operations and somatosensory operations can be performed; the interactive system then recognizes and analyzes the collected touch and / or somatosensory instructions. The results are sent to the host computer, and the user controls the light modulation device, 3D dynamic focusing system, etc. to adjust the display information through the host computer and respond to the interactive instructions;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种基于激光诱导的可交互体三维显示装置及其控制方法,装置包括上位机(1)、脉冲激光器(3)、光调制装置(4)、3D动态聚焦系统(5)和交互系统(12);3D动态聚焦系统(5)包括变焦镜头(6)、扫描系统(7)和场镜/物镜(8);上位机(2)的输入端与交互系统(12)连接;上位机的输出端分别与脉冲激光器(3)、光调制装置(4)、变焦镜头(6)和扫描系统(7)连接;交互系统(12)用于对人体的位置、动作信息进行识别,并根据识别结果将指令传递给上位机(2),上位机(2)通过对脉冲激光器(3)、光调制装置(4)和3D动态聚焦系统(5)进行调整,进而优化观看角度并进行交互。这种装置能够实现自由空间的三维显示与交互,提升三维显示效果,并且系统安全性和成本更具优势。

Description

一种基于激光诱导的可交互体三维显示装置及其控制方法 技术领域
本发明涉及真三维显示技术、激光光束调制技术、投影技术和自动控制技术领域,具体涉及一种基于激光诱导的可交互体三维显示装置及其控制方法。
背景技术
现有的三维显示技术一般可分为体视感技术、自动立体三维显示技术、全息显示技术、体三维显示技术。而体视感技术和自动立体三维显示技术需要借助特殊的设备,并且观察的范围有限,只能提供心理景深,无法提供物理景深。全息显示技术由于空间光调制器件的限制,目前计算全息显示技术的显示质量和视场角受到很大的限制。
体三维显示技术能够在三维空间中实现图像信息的再现,可以实现任意多个观察者从任意角度不借助任何辅助设备的条件下直接对三维物体进行观察。现有的自由空间中的体三维显示技术可分为以下几种:激光诱导等离子体显示、基于光泳捕获的立体显示、改良的空气显示、声悬浮显示等。其中基于光泳捕获的立体显示技术由于使用光束捕获微粒在自由空间中运动,因此对气流的敏感性很高,应用场景受到限制。而改良的空气显示和声悬浮显示的显示效果过于粗糙。
激光诱导等离子体显示技术已经比较成熟,日本的实验室中已经出现相关的设备。国内目前也已有成像、触控以及应用相关的专利(激光激发空气电离的立体显示成像装置及其方法、激光电离空气成像的可触控系统及触控探测方法、一种形成激光电离空气型保护屏障的装置)。但由于脉冲激光器重复频率和功率的限制,激光诱导等离子体显示技术的显示分辨率较低、显示区域较小。
发明内容
针对现有技术存在的问题,本发明提供一种基于激光诱导的可交互体三维显示装置及其控制方法,以实现自由空间中的三维显示与交互,提升三维显示效果。本发明的技术方案为:
第一个方面,本发明提供一种基于激光诱导的可交互体三维显示装置,包括上位机、脉冲激光器、光调制装置、3D动态聚焦系统和交互系统;所述3D动态聚焦系统包括变焦镜头、扫描系统和场镜/物镜;所述上位机的输入端与所述交互系统连接;所述上位机的输出端分别与所述脉冲激光器、所述光调制装置、所述变焦镜头和所述扫描系统连接;所述交互系统用于对人体的位置、动作信息进行识别,并根据识别结果将指令传递给所述上位机,所述上位机通过对所述脉冲激光器、所述光调制装置和所述3D动态聚焦系统进行调整,进而优化观看角度并进行交互。
进一步地,所述脉冲激光器的脉冲宽度小于100ns。
进一步地,所述光调制装置包括透镜系统和光调制器件,所述透镜系统用于对光束进行扩束、准直以及对光束的直径进行调制,所述光调制器件包括数字微镜阵列、空间光调制器、变形镜或者相位板。
进一步地,所述扫描系统包括两个振镜或者一个透镜+两个振镜或者一个双轴镜,所述扫描系统用于控制光束进行XY平面的扫描。
进一步地,所述交互系统包括激光接收与分析装置、体感交互装置,所述交互系统的工作模式为以下三种:触摸模式、体感模式、触摸+体感模式。
进一步地,所述可交互体三维显示装置还包括检测装置,所述检测装置包括图像采集装置、温度测量装置、分析软件,所述图像采集装置、所述温度测量装置、所述分析软件分别与所述上位机的输入端连接。
进一步地,所述可交互体三维显示装置还包括冷却系统,所述冷却系统包括水冷模块和气冷模块,所述冷却系统与所述上位机的输出端连接。
进一步地,所述可交互体三维显示装置还包括气溶胶发生器和透明壳体,所述气溶胶发生器和所述透明壳体设置在所述三维显示区域周围,所述气溶胶发生器与所述上位机的输出端连接。
第二个方面,本发明提供一种基于激光诱导的可交互体三维显示装置的控制方法,包括以下步骤:
S1、用户将所要显示的图像输入至上位机,并通过上位机对输入的图像进行处理和分析,确定脉冲激光器的工作参数、光调制装置的调制方法、3D动态聚焦系统的扫描路径和扫描速度;
S2、用户通过上位机控制脉冲激光器发出脉冲激光,控制光调制装置对光束进行调制,调制后的光束经过3D动态聚焦系统后产生多个焦点,同时用户通过上位机控制光调制装置调整焦点之间的相对位置;
S3、光束进入3D动态聚焦系统后,用户通过上位机控制变焦镜头进行Z方向的扫描以及控制扫描系统进行XY方向的扫描,光束经过场镜/物镜聚焦后,焦点在显示区域中进行快速扫描,并且焦点处的空气发生电离,电离空气形成的光点即组成所需要显示的图像;
S4、在图像显示在显示区域的过程中,用户可以通过交互系统对人体的位置信息进行识别,并根据识别结果将指令传递给上位机,上位机通过控制光调制装置和3D动态聚焦系统对显示图像的质量进行调整,实现最佳的观看体验;同时,上位机根据脉冲激光器的工作参数确定交互系统的工作模式,随后交互系统对采集到的触摸和/或体感指令进行识别和分析,并将结果发送给上位机,用户通过上位机控制光调制装置、3D动态聚焦系统对显示信息进行 调整,响应交互指令。
进一步地,所述步骤S4中上位机根据脉冲激光器的工作参数确定交互系统的工作模式的具体过程为:若脉冲激光器的脉冲宽度为纳秒量级,则所电离的空气等离子体的能量过高,对人体的伤害过大,因此不能进行触摸操作,只能进行体感交互;若脉冲宽度为飞秒或小于飞秒量级,则人体可以直接接触所电离的空气等离子体,此时可以进行触摸操作,也可以进行体感操作。
进一步地,当所述可交互体三维显示装置还包括检测装置时,所述控制方法还包括步骤S5:在图像显示在显示区域的过程中,用户还可以通过检测装置进行对显示的图像进行采集和分析,随后将分析结果发送给上位机,上位机根据分析结果对脉冲激光器、光调制装置、3D动态聚焦系统进行调整,从而对显示质量进行优化。
由以上技术方案可知,本发明通过将脉冲激光在空气中聚焦,当焦点的峰值光强超过电离等离子体阈值时,焦点处的空气会被电离发光,从而能够进行观察;当3D动态聚焦系统使光束的焦点在三维空间中进行快速扫描时,根据视觉残留效应,可以在空间中观察到立体的图像;本发明中的光调制装置可以对脉冲激光器发出的光束进行快速调制,使得光束经过聚焦后会有多个焦点,并且焦点之间的相对位置可以通过光调制器进行控制,此时显示系统工作的过程中可以利用多个焦点进行扫描,从而大大增加了图像的分辨率;本发明中的3D动态聚焦系统包括变焦镜头、扫描系统、场镜/物镜,当使用变焦镜头、扫描系统和场镜时,可以实现三维空间中较大范围的扫描,当使用变焦镜头、扫描系统和物镜时,可以实现三维空间中小范围、高速、高分辨的扫描,若选取物镜时需要增大扫描范围,则需要选取大口径的物镜;本发明中的3D动态聚焦系统也可根据实际需要选择扫描系统、场镜/物镜中的组件构成;本发明还可在显示区域周围设置气溶胶发生器,向显示区域中喷入气溶胶微粒,当显示区域中存在气溶胶微粒时,空气的电离等离子体阈值会明显降低,电离所需的激光器的功率也会降低,在同等条件下,可以使用光调制装置生成更多的焦点进行电离,获得更高的分辨率;如果在显示区域周围设置透明壳体则可以对显示区域进行保护,当所使用的脉冲激光器的脉宽较大时(纳秒量级),等离子体对人体的危害较大,因此不能直接触摸,需要对显示区域进行保护,防止误触。当所使用的脉冲激光器的脉宽较小时(飞秒量级或小于飞秒量级),等离子体对人体的危害很小,因此可以进行触摸,此时可以不使用透明壳体进行保护;此外,本发明中的透明壳体可以充入特殊混合的气体,通过多个不同波长的激光电离不同的气体,从而发出不同的颜色实现彩色成像。本发明的可交互体三维显示装置还可包括检测装置,其对显示区域的温度和图像进行采集和分析,随后通过上位机根据分析结果对系统调整,实现最佳的显示效果;本发明中的交互系统在显示的过程中,对人体的位置进行探测,通过上位 机对显示图像的方向、亮度、分辨率等进行调整,实现最佳的观看体验。同时,上位机根据系统的工作参数确定交互系统的工作方式,随后交互系统对采集到的触摸、体感指令进行识别和分析,并将结果发送给上位机,上位机控制光调制装置、3D动态聚焦系统等对显示信息进行调整,响应交互指令。
附图说明
图1是本发明的可交互体三维显示装置的一种结构示意图;
图2是本发明的可交互体三维显示装置的另一种结构示意图;
图1和2中,1-输入,2-上位机,3-脉冲激光器,4-光调制装置,5-3D动态聚焦系统,6-变焦镜头,7-扫描系统,8-场镜/物镜,9-显示区域,10-气溶胶发生器,11-透明壳体,12-交互系统,13-检测装置。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
如图1所示,本发明具体实施例公开了一种基于激光诱导的可交互体三维显示装置,包括上位机2、脉冲激光器3、光调制装置4、3D动态聚焦系统5、冷却系统14、交互系统12和检测装置13。图1中的输入1即用户控制计算机输入到上位机中的三维图像或视频文件。
在本实施例中,所述脉冲激光器3为脉宽、重复频率和功率可调的飞秒激光器,并且其脉冲宽度小于100ns。
所述光调制装置4包括透镜系统和光调制器件,所述透镜系统用于对光束进行扩束、准直以及对光束的直径进行调制,所述光调制器件包括数字微镜阵列(DMD)、空间光调制器(SLM)、变形镜或者相位板。本实施例中所述光调制器件为DMD,DMD之前的透镜系统用于对脉冲激光器发出的光束进行扩束和准直,DMD对光束进行调制后光束能够聚焦产生多个焦点,DMD之后的透镜系统用于对光束的尺寸进行调整,使之适配3D扫描系统的要求。
所述3D动态聚焦系统5用于控制光束的焦点在空间中进行快速的扫描,在扫描的同时,DMD也根据所显示的图像对光束的焦点之间的相对位置进行快速的调制,使得所显示图像的分辨率大大增加。所述3D动态聚焦系统5包括变焦镜头6、扫描系统7和场镜/物镜8。所述3D动态聚焦系统5布置在光调制装置4后方,光束由光调制装置4调制后,进入到3D动态聚焦系统5中。所述变焦镜头6可以实现Z方向的扫描。所述扫描系统7包括两个振镜或者一个透镜+两个振镜或者一个双轴镜,本实施例中的扫描系统7包括两个振镜,所述扫描系统 用于控制光束进行XY平面的扫描。所述场镜/物镜8采用F-Theta透镜,扫描系统7结合F-Theta透镜8控制光束焦点在XY平面上进行扫描。
所述上位机2的输入端与所述交互系统12以及所述检测装置13连接;所述上位机2的输出端分别与所述冷却系统14、所述脉冲激光/3、所述光调制装置4、所述变焦镜头6和所述扫描系统7连接。
所述交互系统12包括激光接收与分析装置、体感交互装置,所述交互系统的工作模式为以下三种:触摸模式、体感模式、触摸+体感模式。所述交互系统12用于对人体的位置、动作信息进行识别,并根据识别结果将指令传递给所述上位机2,所述上位机2通过对所述脉冲激光器3、所述光调制装置4和所述3D动态聚焦系统5进行调整,进而优化观看角度并进行交互。在本实施例中,脉冲激光器为飞秒激光器,交互系统可在触摸+体感模式下工作。
所述检测装置13包括图像采集装置、温度测量装置、分析软件,所述图像采集装置、所述温度测量装置、所述分析软件分别与所述上位机的输入端连接。
所述冷却系统14摆阔水冷模块和气冷模块,冷却系统14与上位机2的输出端连接。用于对脉冲激光器3、光调制装置4、3D动态聚焦系统5和显示区域9进行冷却。
所述可交互体三维显示装置还可以包括气溶胶发生器10和透明壳体11,所述气溶胶发生器10和所述透明壳体11设置在三维显示区域9周围,所述气溶胶发生器10与所述上位机2的输出端连接。如图2所示。
实施例1
本实施例提供一种基于激光诱导的可交互体三维显示装置的控制方法,包括如下步骤:
S1、用户将所要显示的图像输入至上位机,以立体人物肖像为例,上位机对输入的图像进行处理和分析,确定脉冲激光器的工作参数、光调制装置的调制方法、3D动态聚焦系统的扫描路径和扫描速度;
S2、用户通过上位机控制脉冲激光器发出脉冲激光,控制光调制装置对光束进行调制,调制后的光束经过3D动态聚焦系统后产生多个焦点,同时用户通过上位机控制光调制装置调整焦点之间的相对位置;
S3、光束经过光调制装置后进入3D动态聚焦系统,用户通过上位机控制变焦镜头进行Z方向的扫描以及控制扫描系统进行XY方向的扫描,光束经过F-Theta透镜后,焦点在显示区域中进行快速扫描,并且焦点处的空气发生电离,电离空气形成的光点即组成所需要显示的图像;
S4、在图像显示在显示区域的过程中,用户可以通过交互系统对人体的位置信息进行识别,并根据识别结果将指令传递给上位机,上位机通过控制光调制装置和3D动态聚焦系统 对显示图像的方向、亮度、分辨率等进行调整,实现最佳的观看体验;同时,上位机根据脉冲激光器的工作参数确定交互系统的工作模式,本实施例的脉冲激光器为飞秒激光器,其脉冲宽度为飞秒量级,则人体可以直接接触所电离的空气等离子体,此时既可以进行触摸操作,也可以进行体感操作;随后交互系统对采集到的触摸和/或体感指令进行识别和分析,并将结果发送给上位机,用户通过上位机控制光调制装置、3D动态聚焦系统等对显示信息进行调整,响应交互指令;
S5、在图像显示在显示区域的过程中,用户还可以通过检测装置进行对显示的图像进行采集和分析,随后将分析结果发送给上位机,上位机根据分析结果对脉冲激光器、光调制装置、3D动态聚焦系统和气溶胶发生器进行调整,从而对显示的亮度、分辨率等进行优化。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种基于激光诱导的可交互体三维显示装置,其特征在于,包括上位机、脉冲激光器、光调制装置、3D动态聚焦系统和交互系统;所述3D动态聚焦系统包括变焦镜头、扫描系统和场镜/物镜;所述上位机的输入端与所述交互系统连接;所述上位机的输出端分别与所述脉冲激光器、所述光调制装置、所述变焦镜头和所述扫描系统连接;所述交互系统用于对人体的位置、动作信息进行识别,并根据识别结果将指令传递给所述上位机,所述上位机通过对所述脉冲激光器、所述光调制装置和所述3D动态聚焦系统进行调整,进而优化观看角度并进行交互。
  2. 根据权利要求1所述的一种基于激光诱导的可交互体三维显示装置,其特征在于,所述光调制装置包括透镜系统和光调制器件,所述透镜系统用于对光束进行扩束、准直以及对光束的直径进行调制,所述光调制器件包括数字微镜阵列、空间光调制器、变形镜或者相位板。
  3. 根据权利要求1所述的一种基于激光诱导的可交互体三维显示装置,其特征在于,所述扫描系统包括两个振镜或者一个透镜+两个振镜或者一个双轴镜,所述扫描系统用于控制光束进行XY平面的扫描。
  4. 根据权利要求1所述的一种基于激光诱导的可交互体三维显示装置,其特征在于,所述交互系统包括激光接收与分析装置、体感交互装置,所述交互系统的工作模式为以下三种:触摸模式、体感模式、触摸+体感模式。
  5. 根据权利要求1所述的一种基于激光诱导的可交互体三维显示装置,其特征在于,所述可交互体三维显示装置还包括检测装置,所述检测装置包括图像采集装置、温度测量装置、分析软件,所述图像采集装置、所述温度测量装置、所述分析软件分别与所述上位机的输入端连接。
  6. 根据权利要求1或5所述的一种基于激光诱导的可交互体三维显示装置,其特征在于,所述可交互体三维显示装置还包括冷却系统,所述冷却系统包括水冷模块和气冷模块,所述冷却系统与所述上位机的输出端连接。
  7. 根据权利要求1所述的一种基于激光诱导的可交互体三维显示装置,其特征在于,所述可交互体三维显示装置还包括气溶胶发生器和透明壳体,所述气溶胶发生器和所述透明壳体设置在所述三维显示区域周围,所述气溶胶发生器与所述上位机的输出端连接。
  8. 权利要求1所述的一种基于激光诱导的可交互体三维显示装置的控制方法,其特征在于,包括以下步骤:
    S1、用户将所要显示的图像输入至上位机,并通过上位机对输入的图像进行处理和分析,确定脉冲激光器的工作参数、光调制装置的调制方法、3D动态聚焦系统的扫描路径和扫描速 度;
    S2、用户通过上位机控制脉冲激光器发出脉冲激光,控制光调制装置对光束进行调制,调制后的光束经过3D动态聚焦系统后产生多个焦点,同时用户通过上位机控制光调制装置调整焦点之间的相对位置;
    S3、光束进入3D动态聚焦系统后,用户通过上位机控制变焦镜头进行Z方向的扫描以及控制扫描系统进行XY方向的扫描,光束经过场镜/物镜聚焦后,焦点在显示区域中进行快速扫描,并且焦点处的空气发生电离,电离空气形成的光点即组成所需要显示的图像;
    S4、在图像显示在显示区域的过程中,用户可以通过交互系统对人体的位置信息进行识别,并根据识别结果将指令传递给上位机,上位机通过控制光调制装置和3D动态聚焦系统对显示图像的质量进行调整,实现最佳的观看体验;同时,上位机根据脉冲激光器的工作参数确定交互系统的工作模式,随后交互系统对采集到的触摸和/或体感指令进行识别和分析,并将结果发送给上位机,用户通过上位机控制光调制装置、3D动态聚焦系统对显示信息进行调整,响应交互指令。
  9. 根据权利要求8所述的一种基于激光诱导的可交互体三维显示装置的控制方法,其特征在于,所述步骤S4中上位机根据脉冲激光器的工作参数确定交互系统的工作模式的具体过程为:若脉冲激光器的脉冲宽度为纳秒量级,则所电离的空气等离子体的能量过高,对人体的伤害过大,只能进行体感交互;若脉冲宽度为飞秒或小于飞秒量级,则人体可以直接接触所电离的空气等离子体,此时既可以进行触摸操作,也可以进行体感操作。
  10. 根据权利要求8所述的一种基于激光诱导的可交互体三维显示装置的控制方法,其特征在于,当所述可交互体三维显示装置还包括检测装置时,所述控制方法还包括步骤S5:在图像显示在显示区域的过程中,用户还可以通过检测装置进行对显示的图像进行采集和分析,随后将分析结果发送给上位机,上位机根据分析结果对脉冲激光器、光调制装置、3D动态聚焦系统进行调整,从而对显示质量进行优化。
PCT/CN2018/102651 2018-08-17 2018-08-28 一种基于激光诱导的可交互体三维显示装置及其控制方法 WO2020034253A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810937962.8A CN110865467B (zh) 2018-08-17 2018-08-17 一种基于激光诱导的可交互体三维显示装置及其控制方法
CN201810937962.8 2018-08-17

Publications (1)

Publication Number Publication Date
WO2020034253A1 true WO2020034253A1 (zh) 2020-02-20

Family

ID=69524940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102651 WO2020034253A1 (zh) 2018-08-17 2018-08-28 一种基于激光诱导的可交互体三维显示装置及其控制方法

Country Status (2)

Country Link
CN (1) CN110865467B (zh)
WO (1) WO2020034253A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113504660A (zh) * 2021-07-07 2021-10-15 安徽省东超科技有限公司 三维显示装置及其控制方法
CN113655628B (zh) * 2021-08-17 2022-06-28 东南大学 一种利用激波效应实现在空气中成像的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782592A (zh) * 2011-09-14 2014-05-07 英特尔公司 全息显示系统、方法和装置
CN103905808A (zh) * 2012-12-27 2014-07-02 北京三星通信技术研究有限公司 用于三维显示和交互的设备和方法
CN104849868A (zh) * 2015-05-28 2015-08-19 苏州德龙激光股份有限公司 激光激发空气电离的立体显示成像装置及其方法
WO2017053336A1 (en) * 2015-09-21 2017-03-30 University Of Rochester Methods and systems for controlling angular intensity patterns in a real space 3d image
CN107277494A (zh) * 2017-08-11 2017-10-20 北京铂石空间科技有限公司 立体显示系统及方法
CN107747887A (zh) * 2017-09-30 2018-03-02 上海理工大学 一种形成激光电离空气型保护屏障的装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102348068B (zh) * 2011-08-03 2014-11-26 东北大学 一种基于头部姿态控制的随动远程视觉系统
JP6689203B2 (ja) * 2014-03-19 2020-04-28 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 立体ビューワのための視線追跡を統合する医療システム
CN204595346U (zh) * 2015-05-28 2015-08-26 苏州德龙激光股份有限公司 激光激发空气电离的立体显示成像装置
US10099066B2 (en) * 2015-10-27 2018-10-16 In Cync Sports Clinic Inc. Laser ionization therapy assembly
CN108345108A (zh) * 2017-01-25 2018-07-31 北京三星通信技术研究有限公司 头戴式显示设备、三维图像信息的生成方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782592A (zh) * 2011-09-14 2014-05-07 英特尔公司 全息显示系统、方法和装置
CN103905808A (zh) * 2012-12-27 2014-07-02 北京三星通信技术研究有限公司 用于三维显示和交互的设备和方法
CN104849868A (zh) * 2015-05-28 2015-08-19 苏州德龙激光股份有限公司 激光激发空气电离的立体显示成像装置及其方法
WO2017053336A1 (en) * 2015-09-21 2017-03-30 University Of Rochester Methods and systems for controlling angular intensity patterns in a real space 3d image
CN107277494A (zh) * 2017-08-11 2017-10-20 北京铂石空间科技有限公司 立体显示系统及方法
CN107747887A (zh) * 2017-09-30 2018-03-02 上海理工大学 一种形成激光电离空气型保护屏障的装置

Also Published As

Publication number Publication date
CN110865467A (zh) 2020-03-06
CN110865467B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
JP6784295B2 (ja) 距離測定システム、距離測定方法およびプログラム
US9557630B1 (en) Projection system with refractive beam steering
CN104849868A (zh) 激光激发空气电离的立体显示成像装置及其方法
WO2020034253A1 (zh) 一种基于激光诱导的可交互体三维显示装置及其控制方法
KR102361669B1 (ko) 플라잉 오버 빔 패턴 스캐닝 홀로그램 현미경 장치
CN103576428A (zh) 具有安全保护机制的激光投影系统
WO2012014690A1 (ja) プロジェクタ
TWI787963B (zh) 利用動態視覺感測器之基於視覺的光達系統
TWI757446B (zh) 用於euv光源的系統及方法
JP2017009986A (ja) 画像投影装置
US20100195058A1 (en) Laser scanning projection device
CN107824968A (zh) Ccd视觉定位的激光焊接装置
JP2024519298A (ja) 空気イオン化表示装置及びその制御方法
US20220137400A1 (en) Compact optical module
CN204595346U (zh) 激光激发空气电离的立体显示成像装置
CN110891169B (zh) 一种基于光泳捕获的可交互体三维显示装置及其控制方法
EP2874004B1 (en) Image projection apparatus
CN104035198A (zh) 视场显示器的投影面、视场显示器和运行投影面的方法
US10365476B2 (en) Method for operating a laser projector to have a uniform scan pattern
WO2014016994A1 (ja) インターフェース装置、プログラム、及び制御方法
JP2022068641A (ja) 粒子測定装置、粒子測定方法およびプログラム
IT201700021559A1 (it) Procedimento per il controllo di raggi laser, dispositivo, apparecchiatura e prodotto informatico corrispondenti
CN111352252A (zh) 一种空气成像机构、实像装置和交互系统
KR20210046580A (ko) 넓은 시야 이미징을 위한 회절 광학 요소들
Benton Temporal and spectral dispersion of an optical source using a micromirror array-based streak camera

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930180

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18930180

Country of ref document: EP

Kind code of ref document: A1