WO2020034213A1 - 光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器 - Google Patents

光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器 Download PDF

Info

Publication number
WO2020034213A1
WO2020034213A1 PCT/CN2018/101158 CN2018101158W WO2020034213A1 WO 2020034213 A1 WO2020034213 A1 WO 2020034213A1 CN 2018101158 W CN2018101158 W CN 2018101158W WO 2020034213 A1 WO2020034213 A1 WO 2020034213A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
optical
optical glass
content
present
Prior art date
Application number
PCT/CN2018/101158
Other languages
English (en)
French (fr)
Inventor
孙伟
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Priority to JP2021507811A priority Critical patent/JP7165810B2/ja
Priority to PCT/CN2018/101158 priority patent/WO2020034213A1/zh
Priority to US17/267,046 priority patent/US11952311B2/en
Publication of WO2020034213A1 publication Critical patent/WO2020034213A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to the technical field of optical glass, and in particular, to an optical glass, a glass prefabricated part or optical element prepared therefrom, and an optical instrument.
  • the development of digital camera equipment, camera equipment, and projection equipment requires higher optical components, which requires the development and production of higher-performance optical glass.
  • the combination of a lens formed of high refractive index and low dispersion optical glass and a lens formed of high refractive index and high dispersion optical glass can correct chromatic aberration and miniaturize the optical system, especially the refractive index nd is greater than 1.87, and the Abbe number vd is greater than
  • the market demand for 38.0 high refractive index and low dispersion optical glass is increasing.
  • the basic system of the formula is B-La-Zr-Ta, which is easy to produce glass and is conducive to production.
  • high-refractive low-dispersion glass formula systems need to introduce more rare earth oxides to increase the refractive index of the glass, but in different formula systems, the more lanthanum oxides are introduced, it will affect the glassiness. The higher content will make the glass easier to crystallize, and the upper temperature limit of crystallization will be higher, which will make it difficult for mass production process manufacturing.
  • the invention aims to provide an optical glass, a glass pre-form or an optical element and an optical instrument prepared by the optical glass. After research by the inventor, it is found that by controlling La 2 O 3 in a B-La-Zr-Ta formula system The content of Gd 2 O 3 and Ta 2 O 5 can solve the technical problem that the high-refractive and low-dispersion optical glass in the prior art is difficult to devitrify and mass-produce.
  • an optical glass is provided.
  • the optical glass with respect to the total mass of the glass in terms of oxide conversion, in terms of mass percentage includes: B 2 O 3 : 5 to 25%, SiO 2 : 0.5 to 15%, and ZrO 2 : 1 to 15%, TiO 2 : 0-10%, Ta 2 O 5 : 0.5-10%, and La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and Yb 2 O 3 in a total amount of 50-75%, and does not contain Nb 2 O 5, La 2 O 3 and Gd 2 O 3 weight ratio of La 2 O 3 / Gd 2 O 3 is 1.28 ⁇ 1.625.
  • the optical glass further includes one or more selected from the group consisting of ZnO, BaO, CaO, SrO, MgO, WO 3 , Sb 2 O 3 , Li 2 O, Na 2 O, and K 2 O, and content as follows: ZnO: 0 ⁇ 15%, BaO: 0 ⁇ 10%; CaO: 0 ⁇ 10%; SrO: 0 ⁇ 10%; MgO: 0 ⁇ 10%; WO 3: 0 ⁇ 10%; Sb 2 O 3 : 0 to 1%, and the total amount of Li 2 O, Na 2 O, and K 2 O is 0 to 10%.
  • the optical glass is composed of B 2 O 3 : 5 to 25%, SiO 2 : 0.5 to 15%, and ZrO 2 : 1 to 15 with respect to the total mass of the glass in terms of oxide-based composition.
  • the optical glass includes: B 2 O 3 : 8 to 22%, SiO 2 : 3 to 10%, and ZrO 2 : 3 to 12%, TiO 2 : 0.5 to 7%, and / or La 2 O 3 , Gd 2 O 3 , Y 2 O 3, and Yb 2 O 3 in a total amount of 55 to 70%.
  • La 2 O 3 / Gd 2 O 3 is 1.3 to 1.6.
  • La 2 O 3 / Gd 2 O 3 is 1.4 to 1.5.
  • the content of Y 2 O 3 of the optical glass is 0.1-8%.
  • the content of WO 3 in the optical glass is 0.1 to 5%; further, the upper crystallization temperature of the optical glass is lower than 1350 ° C, and preferably lower than 1300 ° C.
  • the refractive index of the optical glass is nd> 1.87, preferably nd> 1.88; Abbe number vd> 38.0, preferably vd> 39.0.
  • the optical glass has a water resistance stability Dw of 3 or more, preferably 2 or more, and more preferably 1; acid resistance stability D A is 3 or more, preferably 2 or more, and more preferably 1 or more.
  • the fringes of the optical glass are C grade or higher, preferably B grade or higher, and more preferably A grade; and the degree of air bubbles is A grade or higher, preferably A 0 grade or higher, and more preferably A 00 grade.
  • a glass preform or optical element is provided.
  • the glass preform or optical element is prepared from any one of the foregoing optical glasses.
  • an optical instrument is provided.
  • the optical instrument includes an optical element, and the optical element is any one of the foregoing optical elements.
  • the optical glass of the present invention can obtain a high-refractive low-dispersion optical glass with devitrification resistance and excellent performance. Moreover, the optical glass of the present invention is easy to mass produce.
  • each component is expressed in terms of mass% relative to the total mass of the glass having a composition in terms of oxides.
  • composition in terms of oxides means that assuming that all the raw materials which are glass constituents of the present invention are decomposed and converted into oxides during melting, the total mass of the generated oxides is 100% by mass. Shows the composition of each component contained in the glass.
  • the glass component B 2 O 3 is a skeleton component of glass, and has the effects of improving glass meltability, devitrification resistance, and reducing glass dispersion in the present invention. However, when the amount is more than 25%, the stability of the glass will decrease, and the refractive index will decrease. When the amount is less than 5%, the melting of the glass will decrease, and the optical constant required by the present invention will not be achieved. Therefore, the B 2 O 3 content of the present invention is 5 to 25%, and the B 2 O 3 content is preferably 8 to 22%.
  • Nb 2 O 5 is a component that increases the refractive index and dispersion, and also has the effect of improving the crystallization resistance and chemical stability of glass, but the price is high, which leads to an increase in glass production costs. Therefore, the present invention is preferably free of Nb 2 O 5 .
  • SiO 2 is a component constituting a glass skeleton, and has the effects of improving devitrification resistance and increasing the operating temperature range. In addition, SiO 2 also has the effects of improving the chemical stability of glass and the thermal stability of glass. If the content exceeds 15%, the meltability of the glass is reduced, and the refractive index required by the present invention cannot be obtained. In the present invention, the SiO 2 content is 0.5 to 15%, and the SiO 2 content is preferably 3 to 10%.
  • ZrO 2 is a component that improves the refractive index and stability. Since glass is formed as an intermediate oxide, it also has the effect of improving devitrification resistance and chemical stability. When the content of ZrO 2 is less than 1%, the above-mentioned expected effect cannot be achieved, and when the content of ZrO 2 exceeds 15%, the devitrification tendency tends to be strong, and vitrification tends to become difficult. In the present invention, the ZrO 2 content is 1 to 15%, and the ZrO 2 content is preferably 3 to 12%.
  • TiO 2 also has the effect of increasing the refractive index of glass, and can participate in the formation of glass networks. A proper amount of TiO 2 can make the glass more stable. However, if it is contained excessively, the glass dispersion will increase significantly, and at the same time, the transmittance of the short wave portion of the visible light region of the glass will decrease, and the tendency of glass coloring will increase.
  • the TiO 2 content is 0 to 10%, and preferably 0.5 to 7%.
  • Ta 2 O 5 is a component that increases the refractive index and devitrification resistance of the glass.
  • the content of Ta 2 O 5 is 0.5 to 10%. In addition to reducing the cost of the glass, it can effectively reduce the upper crystallization temperature of the glass and stabilize the glass. Production and achieve the desired optical constants. Therefore, the content of Ta 2 O 5 in the present invention is 0.5 to 10%, preferably 3 to 8%.
  • La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and Yb 2 O 3 are all main components for increasing the refractive index of glass, and can increase the refractive index without significantly increasing dispersion. Adding a certain amount of the above-mentioned rare earth oxide in this application can reduce the upper limit of crystallization, improve the devitrification resistance of the glass, improve the chemical stability, and it is not easy to generate glass bubbles during the melting process. Therefore, the high refractive index is low in the present invention.
  • the total content of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and Yb 2 O 3 in the dispersion glass formula system is not less than 50% and not more than 75%, so as to ensure the realization of the above technical effects and achieve the purpose of the invention; the preferred range It is 55 to 70%, and more preferably 60 to 67%.
  • more lanthanide-based oxides will also affect the glass formation. If the content is large, the glass will be easily crystallized, and the upper crystallization temperature will be higher, which will cause difficulties in mass production process manufacturing.
  • the content of lanthanide oxide with high refractive index and low dispersion performance is usually less than 60% to ensure that the glass is not easy to crystallize.
  • the weight of lanthanide oxides La 2 O 3 and Gd 2 O 3 is controlled.
  • the ratio and content of La 2 O 3 / Gd 2 O 3 are 1.28 to 1.625, which can ensure that the maximum crystallization temperature of the glass does not increase when the lanthanum oxide content is below 60% and exceeds 60%.
  • the upper crystallization temperature is lower than 1350 ° C, preferably lower than 1300 ° C, and more preferably lower than 1280 ° C.
  • La 2 O 3 / Gd 2 O 3 is preferably 1.3 to 1.6; more preferably, La 2 O 3 / Gd 2 O 3 is 1.4 to 1.5.
  • the ZnO can adjust the refractive index and dispersion of glass.
  • a proper amount of ZnO can play a role in improving the stability or melting of glass and improving the press-moldability.
  • the content is too high, the refractive index decreases, and the invention cannot reach the present invention.
  • the devitrification resistance of the glass is reduced, and the crystallization upper limit temperature is increased. Therefore, the ZnO content of the present invention is 0 to 15%, preferably 0 to 10%, and more preferably 0 to 5%.
  • Alkaline earth metal oxides such as BaO, CaO, SrO, and MgO can reduce the chemical stability of the glass and increase the crystallization upper limit temperature, but when the respective content exceeds 10%, the devitrification resistance of the glass is reduced. Therefore, the present invention BaO is 0-10%; CaO content is 0-10%; SrO content is 0-10%, and MgO content is 0-10%.
  • Li 2 O, Na 2 O, and K 2 O are components for suppressing phase separation and improving glass stability.
  • the content exceeds 10%, there is a tendency that the chemical stability is significantly reduced or the refractive index is decreased. It is preferable that the total amount of Li 2 O, Na 2 O, and K 2 O is 0 to 10%.
  • an optical glass is provided.
  • the optical glass with respect to the total mass of the glass in terms of oxide conversion, in terms of mass percentage includes: B 2 O 3 : 5 to 25%, SiO 2 : 0.5 to 15%, and ZrO 2 : 1 to 15%, TiO 2 : 0-10%, Ta 2 O 5 : 0.5-10%, and La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and Yb 2 O 3 in a total amount of 50-75%, and does not contain Nb 2 O 5, La 2 O 3 and Gd 2 O 3 weight ratio of La 2 O 3 / Gd 2 O 3 is 1.28 ⁇ 1.625.
  • the optical glass of the present invention has excellent devitrification resistance and optical properties, and is easy to mass produce.
  • the optical glass further includes a member selected from the group consisting of ZnO, BaO, CaO, SrO, MgO, WO 3 , Sb 2 O 3 , Li 2 O, Na 2 O, and K 2 O.
  • a member selected from the group consisting of ZnO, BaO, CaO, SrO, MgO, WO 3 , Sb 2 O 3 , Li 2 O, Na 2 O, and K 2 O One or more, and the contents are as follows: ZnO: 0-15%, BaO: 0-10%; CaO: 0-10%; SrO: 0-10%; MgO: 0-10%; WO 3 : 0- 10%; Sb 2 O 3 : 0 to 1%, and the total amount of Li 2 O, Na 2 O, and K 2 O is 0 to 10%.
  • the optical glass is composed of B 2 O 3 : 5 to 25% and SiO 2 : 0.5 to 15% in terms of mass percentage relative to the total mass of the glass in terms of oxide conversion.
  • ZrO 2 1-15%
  • TiO 2 0-10%
  • BaO: 0-10% CaO: 0-10%
  • SrO: 0-10% MgO: 0-10 %
  • WO 3 0 to 10%
  • Ta 2 O 5 0.5 to 10%, the total amount of Li 2 O, Na 2 O and K 2 O, 0 to 10%, Sb 2 O 3 : 0 to 1%, and / or a total amount of 50 to 75% of La 2 O 3, Gd 2 O 3, Y 2 O 3 and Yb 2 O 3, where, La 2 O 3 by weight of Gd 2 O 3 ratio of La 2 O 3 / Gd 2 O 3 is 1.28 to 1.625.
  • the optical glass includes: B 2 O 3 : 8 to 22%, SiO, relative to the total mass of the glass in terms of oxide composition, in terms of mass percentage.
  • 2 3 to 10%
  • ZrO 2 3 to 12%
  • TiO 2 0.5 to 7%
  • La 2 O 3 and Gd 2 O 3 weight ratio of La 2 O 3 / Gd 2 O 3 is 1.28 ⁇ 1.625.
  • Y 2 O 3 can improve the melting property and devitrification resistance of the glass, and at the same time reduce the upper crystallization temperature of the glass. However, if the content exceeds a certain amount, the stability and devitrification resistance of the glass will decrease. Therefore, the content of Y 2 O 3 is 0 to 10%, and the content is preferably 0.1 to 8%.
  • WO 3 plays a role in increasing the refractive index, but when the content of WO 3 exceeds 10%, there is a tendency that devitrification tends to increase, vitrification becomes difficult, dispersion increases significantly, and transmittance on the short wavelength side of the visible region of the glass decreases. Since the tendency of coloring is increased, the content of WO 3 in the present invention is preferably 0 to 10%, and the content is preferably 0.1 to 5%.
  • the present invention uses Y 2 O 3 , Ta 2 O 5 , WO 3 and other components to increase the refractive index synergy, controls the amount of Ta 2 O 5 introduced, and introduces an appropriate amount of Y 2 O 3 and WO 3 to obtain the optical properties required by the present invention. At the same time, it improves the melting performance of glass, improves the bubble level, and reaches above A level.
  • the clarification effect of the glass can be improved, but when the content of Sb 2 O 3 exceeds 1%, the glass has a tendency to reduce the clarification performance, and at the same time, its strong oxidation promotes Deterioration of the molding die, therefore, in the present invention, the addition amount of Sb 2 O 3 is preferably 0 to 1%, and more preferably 0 to 0.5%.
  • SnO 2 can also be added as a fining agent, but when its content exceeds 1%, the glass will be colored, or when the glass is heated, softened and re-molded, such as compression molding, Sn will become the starting point of crystal nuclei and cause loss. Penetrating tendency.
  • the content of SnO 2 in the present invention is preferably 0 to 1%, more preferably 0 to 0.5%, and even more preferably not added.
  • the effect of CeO 2 and the proportion of the amount of addition are the same as those of SnO 2.
  • the content of CeO 2 is preferably 0 to 1%, more preferably 0 to 0.5%, and still more preferably not added.
  • the optical glass of the present invention is a high refractive index and low dispersion glass. Most lenses made of high refractive index and low dispersion glass are combined with lenses made of high refractive index and high dispersion glass for chromatic aberration correction, and the optical glass is used as a lens. In this case, as the refractive index is increased, the lens can be thinner, which is advantageous for miniaturization of the optical device.
  • the refractive index of the optical glass of the present invention is nd> 1.87, preferably nd> 1.88, Abbe number vd> 38.0, preferably vd> 39.0 .
  • the upper crystallization temperature of the optical glass is lower than 1350 ° C, preferably lower than 1300 ° C, and more preferably lower than 1280 ° C.
  • the chemical stability of optical glass which mainly depends on the chemical composition of the glass.
  • the water resistance stability Dw is 3 or more, preferably 2 levels or more, and more preferably 1 level;
  • the acid resistance stability D A is 3 or more, preferably 2 or more, and more preferably 1 level.
  • the fringe degree is a fringe meter composed of a point light source and a lens. From the direction in which the fringe is most easily seen, it is compared with the standard sample for inspection. It is divided into 4 levels, which are A, B, C, and D. Under specified detection conditions, level A is no streaks visible to the naked eye under specified detection conditions, level B is fine and scattered streaks under specified detection conditions, level C is no slight parallel streaks under specified detection conditions, and level D is specified There are rough streaks under the detection conditions. Since such products in the prior art do not use precious oxides such as Ta 2 O 5 , they have poor resistance to crystallization. When products with a thickness of more than 20 mm are produced, crystallization stripes are likely to occur. The thick specification products are the necessary specifications for making large diameter (greater than 60mm) lenses. At present, due to the development of optical technology, more and more large-aperture lenses are required, and manufacturers are required to provide rough products with a thickness of more than 20mm.
  • the optical glass bubble quality is measured according to the test method specified in GB / T 7962.8-2010.
  • Bubble degree is the level of allowable bubble content in glass. Bubbles not only affect the appearance quality of glass products, but also affect the optical properties, transparency, and mechanical strength of the glass. They have many adverse effects on the glass. Therefore, it is very important to control the bubble degree of glass.
  • the degree is at least A level, preferably at least A 0 level, and more preferably at A 00 level.
  • a glass preform or optical element is provided.
  • the glass preform or optical element is prepared from any one of the foregoing optical glasses.
  • the optical preform of the present invention has high refractive index and low dispersion characteristics; the optical element of the present invention has high refractive index and low dispersion characteristics, and can provide various optical elements such as lenses and prisms with excellent optical performance.
  • the lens include various lenses such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a plano-convex lens, and a plano-concave lens whose lens surfaces are spherical or aspherical.
  • This lens can be used as a lens for correcting chromatic aberration by combining with a lens made of high refractive index and high dispersion glass to correct chromatic aberration. It is also an effective lens for reducing the size of an optical system.
  • a prism has a high refractive index, a compact and wide-angle optical system can be realized by combining it in an imaging optical system and bending an optical path to a desired direction.
  • an optical instrument includes an optical element, and the optical element is any one of the foregoing optical elements.
  • the optical instrument of the present invention may be a digital camera, a video camera, or the like.
  • Ladder furnace method was used to determine the crystallization performance of the glass.
  • the glass was made into a sample of 180 * 10 * 10mm, polished on the side, and placed in a furnace with a temperature gradient (5 ° C / cm) and heated to 1400 ° C for 4 hours. Take out the natural cooling to room temperature, observe the crystallization of the glass under a microscope, the highest temperature corresponding to the crystals of the glass is the upper limit of the crystallization of the glass.
  • the refractive index and dispersion coefficient are tested in accordance with the method specified in GB / T7962.1-2010.
  • Optical glass bubble quality is measured according to the test method specified in GB / T7962.8-2010.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 B 2 O 3 twenty one 21.6 19.1 15.7 18.6 16.6 15.6 SiO 2 6.6 5.8 6.1 5.7 6.2 5.9 5.7 ZrO 2 6 6.1 6.2 6.4 5.9 5.8 5.6
  • La 2 O 3 38.2 38.5 38.8 39 37 34 35 Gd 2 O 3 25.4 twenty four 26 27.8 25.8 26
  • 26 Y 2 O 3 0 0 0 0 0 0 0 0 Yb 2 O 3 0 1.7 0 0 0 0 0 Ta 2 O 5 1 1 2 3.5 5 6.1 7 ZnO 0 0 0 0 0 0 0 0 BaO 0 1.3 0 0 0 0 0 0 CaO 0 0 0 0 0 0 0 2.6 0 SrO 0 0 0 0 0 0 Zh 0
  • Example 36 Example 37
  • Example 38 Example 39
  • Example 40 Example 41
  • Example 42 B 2 O 3 16.8 7.8 8.5 21.2 8.5 22.2 16.5 SiO 2 5 2 1 8.5 1.8 5.9 5.8 ZrO 2 6.5 8.7 7.2 1.5 0.5 5.8 6.1 TiO 2 2 3.5 5 6.4 8 1.5 1.9 La 2 O 3 30 32.4 43 34.3 41 34 38.5 Gd 2 O 3 twenty two 20 30 twenty four 26 26 twenty four Y 2 O 3 4.2 3.6 2 0.1 6 1 0 Yb 2 O 3 8 0 0 0 0.5 0 Ta 2 O 5 5.5 6 3.3 4 8.2 0.5 3.6 ZnO 0 2 0 0 0 0 0 0 1.3 CaO 0 5 0 0 0 0 0 0 SrO 0 8 0 0 0 0 0 MgO 0 0 0 0 0 2.6 2.3 WO 3 0 0 0 0 0 0 0 0 0 0
  • the optical glass obtained in Example 1 in Table 1 was cut into a predetermined size, and a release agent composed of boron nitride powder was evenly coated on the surface, and then it was heated, softened, and pressed to form a concave Meniscus lenses, convex meniscus lenses, biconvex lenses, biconcave lenses, plano-convex lenses, plano-concave lenses, and other prefabricated prisms.
  • the preforms obtained in the foregoing embodiments of the optical preforms are annealed, and fine adjustment is performed while reducing the deformation inside the glass, so that the optical properties such as the refractive index reach the desired value.
  • each preform is ground and ground to produce various lenses and prisms such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a plano-convex lens, and a plano-concave lens.
  • An anti-reflection film may be coated on the surface of the obtained optical element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

一种光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器。该光学玻璃相对于以氧化物换算的组成的玻璃总质量,按质量百分含量计,光学玻璃包括:B 2O 3:5~25%,SiO 2:0.5~15%,ZrO 2:1~15%,TiO 2:0~10%,Ta 2O 5:0.5~10%,以及合计量为50~75%的La 2O 3、Gd 2O 3、Y 2O 3和Yb 2O 3,且不含Nb 2O 5,La 2O 3与Gd 2O 3的重量比La 2O 3/Gd 2O 3为1.28~1.625。通过严格控制光学玻璃的组分、含量及特定组分之间的用量比例,使得光学玻璃具有优异的性能。

Description

光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器 技术领域
本发明涉及光学玻璃技术领域,具体而言,涉及一种光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器。
背景技术
目前,数码照相设备、摄像设备以及投影设备等的发展,对光学元件的要求要来越高,这就需要更高性能的光学玻璃的研发与生产。其中,高折射率低色散光学玻璃形成的透镜与由高折射率高色散光学玻璃形成的透镜进行组合,能够修正色差,使光学系统小型化,特别是折射率nd大于1.87、阿贝数vd大于38.0的高折射率低色散光学玻璃,市场需求日益增大。
为了满足上述光性指标的配方基本体系是B-La-Zr-Ta比较好,易成玻璃利于生产。另外,通常情况下,高折射低色散玻璃配方系统中需要引入较多的稀土氧化物以提高玻璃折射率,但在不同的配方体系里,越多引入镧系氧化物会影响成玻璃性,如果含量较多,会使玻璃易析晶,析晶上限温度较高,给量产工艺制造带来难度。
发明内容
本发明旨在提供一种光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器,经发明人研究发现,通过控制B-La-Zr-Ta配方体系中的La 2O 3/Gd 2O 3及Ta 2O 5的含量,可以解决现有技术中高折射低色散光学玻璃易失透量产难度高的技术问题。
为了实现上述目的,根据本发明的一个方面,提供了一种光学玻璃。该光学玻璃相对于以氧化物换算的组成的玻璃总质量,按质量百分含量计,光学玻璃包括:B 2O 3:5~25%,SiO 2:0.5~15%,ZrO 2:1~15%,TiO 2:0~10%,Ta 2O 5:0.5~10%,以及合计量为50~75%的La 2O 3、Gd 2O 3、Y 2O 3和Yb 2O 3,且不含Nb 2O 5,La 2O 3与Gd 2O 3的重量比La 2O 3/Gd 2O 3为1.28~1.625。
进一步地,光学玻璃还包括选自由ZnO、BaO、CaO、SrO、MgO、WO 3、Sb 2O 3、Li 2O、Na 2O和K 2O组成的组中的一种或多种,且含量如下:ZnO:0~15%,BaO:0~10%;CaO:0~10%;SrO:0~10%;MgO:0~10%;WO 3:0~10%;Sb 2O 3:0~1%,Li 2O、Na 2O和K 2O的合计量为0~10%。
进一步地,相对于以氧化物换算的组成的玻璃总质量,按质量百分含量计,光学玻璃由B 2O 3:5~25%,SiO 2:0.5~15%,ZrO 2:1~15%,TiO 2:0~10%,ZnO:0~15%,BaO:0~10%,CaO:0~10%,SrO:0~10%,MgO:0~10%,WO 3:0~10%,Ta 2O 5:0.5~10%,合计量为0~10%的Li 2O、Na 2O和K 2O,Sb 2O 3:0~1%,以及合计量为50~75%的La 2O 3、Gd 2O 3、Y 2O 3和Yb 2O 3组成,其中,La 2O 3与Gd 2O 3的重量比La 2O 3/Gd 2O 3为1.28~1.625。
进一步地,相对于以氧化物换算的组成的玻璃总质量,按质量百分含量计,光学玻璃包括:B 2O 3:8~22%,SiO 2:3~10%,ZrO 2:3~12%,TiO 2:0.5~7%,和/或合计量为55~70%的La 2O 3、Gd 2O 3、Y 2O 3和Yb 2O 3
进一步地,La 2O 3/Gd 2O 3为1.3~1.6。
进一步地,La 2O 3/Gd 2O 3为1.4~1.5。
进一步地,所述光学玻璃Y 2O 3含量为0.1-8%。
进一步地,所述光学玻璃WO 3含量为0.1~5%;进一步地,光学玻璃的析晶上限温度低于1350℃,优选低于1300℃。
进一步地,光学玻璃的折射率nd>1.87,优选nd>1.88;阿贝数vd>38.0,优选vd>39.0。
进一步地,光学玻璃的耐水作用稳定性Dw在3级以上,优选2级以上,更优选1级;耐酸作用稳定性D A在3级以上,优选2级以上,更优选1级。
进一步地,光学玻璃的条纹为C级以上,优选B级以上,更优选A级;气泡度为A级以上,优选A 0级以上,更优选A 00级。
根据本发明的另一方面,提供了一种玻璃预制件或光学元件。该玻璃预制件或光学元件由上述任一种光学玻璃制备而成。
根据本发明的再一方面,提供了一种光学仪器,该光学仪器包括光学元件,光学元件为上述任一种光学元件。
应用本发明的技术方案,通过严格控制光学玻璃的组分、含量及特定组分之间的用量比例,使得本发明的光学玻璃能获得具有耐失透且性能优异的高折射低色散光学玻璃,而且本发明的光学玻璃易于量产。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
在本说明书中,在没有特别说明的情况下,各成分的含量全部用相对于以氧化物换算的组成的玻璃总质量的质量%来表示。其中,“以氧化物换算的组成”是指在假设作为本发明的玻璃构成成分的原料在熔融时全部分解转化为氧化物的情况下,以该生成的氧化物的总质量为100质量%来表示的玻璃中所含有的各成分时的组成。
下面将描述各组分在光学玻璃中起到的基本作用,但并不对组分之间由于特定含量的配比带来的协同作用或意想不到的效果造成不当限定。
玻璃成分B 2O 3为玻璃的骨架成分,在本发明中具有提高玻璃可熔融性、耐失透性和降低 玻璃色散的作用。但当其引入量超过25%时,玻璃稳定性会下降,并且折射率下降,当其引入量不足5%时,玻璃熔融性降低,达不到本发明所需的光学常数。因此,本发明的B 2O 3的含量为5~25%,优选B 2O 3含量为8~22%。
Nb 2O 5为提高折射率和色散的成分,也具有提高玻璃的抗析晶性与化学稳定性的作用,但是价格高,导致玻璃生产成本上升。因此本发明优选不含Nb 2O 5
SiO 2为构成玻璃骨架的成分,其具有提高耐失透性、增大操作温度范围的作用,另外,还具有提高玻璃的化学稳定性、改善玻璃的热稳定性等作用。若其含量超过15%,则玻璃可熔融性能降低,且无法获得本发明所需要的折射率。在本发明中SiO 2含量为0.5~15%,优选SiO 2含量为3~10%。
ZrO 2为提高折射率和稳定性的成分。由于作为中间氧化物形成玻璃,所以还具有提高耐失透性和化学稳定性的作用。ZrO 2的含量不足1%时,无法达到上述预期效果,当ZrO 2的含量超过15%时,存在失透倾向变强、玻璃化变得困难的倾向。在本发明中ZrO 2含量为1~15%,优选ZrO 2含量为3~12%。
TiO 2也具有提高玻璃折射率的作用,并且能参与玻璃网络形成,适量引入使玻璃更稳定。但若过量含有时,玻璃色散会显著增加,同时玻璃可见光区域的短波部分的透射率降低,玻璃着色的倾向增加。在本发明中TiO 2含量为0~10%,优选为0.5~7%。
Ta 2O 5是提高玻璃折射率、耐失透性的成分,使Ta 2O 5的含量在0.5~10%,除降低玻璃成本外,能有效降低玻璃的析晶上限温度,使玻璃能够稳定生产,并达到所期望的光学常数。因此本发明 Ta 2O 5 的含量为0.5~10%,优选3~8%。
La 2O 3、Gd 2O 3、Y 2O 3和Yb 2O 3均是提高玻璃的折射率的主要成分、可以提高折射率但不会明显增大色散。本申请中加入一定量的上述稀土氧化物可以降低析晶上限温度,提高玻璃的耐失透性能,改善化学稳定性,在熔制过程不易产生玻璃气泡等作用,因此在本发明的高折射低色散玻璃配方体系中La 2O 3、Gd 2O 3、Y 2O 3和Yb 2O 3合计含量不低于50%,不超过75%,以保证实现上述技术效果,达到发明目的;优选范围为55~70%,更优选60~67%。但通常情况下,越多引入镧系氧化物也会影响成玻璃性,如果含量较多,则使玻璃易析晶,析晶上限温度较高,给量产工艺制造带来难度;因此一般具有高折射低色散性能的镧系氧化物含量通常在60%以下才能保证玻璃不易析晶,而本发明的高折射低色散玻璃中通过控制镧系氧化物La 2O 3与Gd 2O 3的重量比La 2O 3/Gd 2O 3为1.28~1.625的成分及含量,可以使得镧系氧化物的含量在60%以下及超过60%时,仍然能保证玻璃的析晶上限温度不升高,析晶上限温度低于1350℃,优选低于1300℃,更优选低于1280℃,能确保组分的成玻璃性更好,在熔制过程不易产生玻璃气泡,并且还保证良好的光学性能和成型性能等,优选的,La 2O 3/Gd 2O 3为1.3~1.6;更优选的,La 2O 3/Gd 2O 3为1.4~1.5。
ZnO可以调整玻璃的折射率和色散,适量的ZnO可以起到改善玻璃的稳定性或熔融性、改善加压成型性的作用,但当其含量过高时,折射率降低,达不到本发明的要求,同时玻璃 的耐失透性降低,析晶上限温度上升。因此本发明的ZnO含量为0~15%,优选0~10%,更优选0~5%。
BaO、CaO、SrO和MgO这类的碱土金属氧化物,能够使玻璃的化学稳定性降低和析晶上限温度上升,但当其各自含量超过10%时,玻璃耐失透性降低,因此本发明的BaO为0~10%;CaO含量为0~10%;SrO含量为0~10%、MgO含量为0~10%。
Li 2O、Na 2O和K 2O为用于抑制分相、提高玻璃稳定性的成分。当其含量超过10%时,存在化学稳定性显著降低或折射率降低的倾向,优选的,Li 2O、Na 2O和K 2O的合计量为0~10%。
根据本发明一种典型的实施方式,提供了一种光学玻璃。该光学玻璃相对于以氧化物换算的组成的玻璃总质量,按质量百分含量计,光学玻璃包括:B 2O 3:5~25%,SiO 2:0.5~15%,ZrO 2:1~15%,TiO 2:0~10%,Ta 2O 5:0.5~10%,以及合计量为50~75%的La 2O 3、Gd 2O 3、Y 2O 3和Yb 2O 3,且不含Nb 2O 5,La 2O 3与Gd 2O 3的重量比La 2O 3/Gd 2O 3为1.28~1.625。
应用本发明的技术方案,通过严格控制光学玻璃的组分、含量及特定组分之间的用量比例,使得本发明的光学玻璃具有优良的耐失透性和光学性能,易于量产。
根据本发明一种典型的实施方式,光学玻璃还包括选自由ZnO、BaO、CaO、SrO、MgO、WO 3、Sb 2O 3、Li 2O、Na 2O和K 2O组成的组中的一种或多种,且含量如下:ZnO:0~15%,BaO:0~10%;CaO:0~10%;SrO:0~10%;MgO:0~10%;WO 3:0~10%;Sb 2O 3:0~1%,Li 2O、Na 2O和K 2O的合计量为0~10%。
根据本发明一种典型的实施方式,相对于以氧化物换算的组成的玻璃总质量,按质量百分含量计,光学玻璃由B 2O 3:5~25%,SiO 2:0.5~15%,ZrO 2:1~15%,TiO 2:0~10%,ZnO:0~15%,BaO:0~10%,CaO:0~10%,SrO:0~10%,MgO:0~10%,WO 3:0~10%,Ta 2O 5:0.5~10%,合计量为0~10%的Li 2O、Na 2O和K 2O,Sb 2O 3:0~1%,和/或合计量为50~75%的La 2O 3、Gd 2O 3、Y 2O 3和Yb 2O 3组成,其中,La 2O 3与Gd 2O 3的重量比La 2O 3/Gd 2O 3为1.28~1.625。严格控制光学玻璃的组分、含量及特定组分之间的用量比例,使得本发明的光学玻璃具有较好的耐失透性和优良的光学性能,易于量产。
优选的,根据本发明一种典型的实施方式,相对于以氧化物换算的组成的玻璃总质量,按质量百分含量计,所述光学玻璃包括:B 2O 3:8~22%,SiO 2:3~10%,ZrO 2:3~12%,TiO 2:0.5~7%,以及合计量为55~70%的La 2O 3、Gd 2O 3、Y 2O 3和Yb 2O 3,La 2O 3与Gd 2O 3的重量比La 2O 3/Gd 2O 3为1.28~1.625。本发明中,Y 2O 3可改善玻璃的熔融性、耐失透性,同时还可降低玻璃析晶上限温度,但若其含量超过一定量,则玻璃的稳定性、耐失透性下降。因此,Y 2O 3的含量为0~10%,优选含量为0.1~8%。
WO 3起到提高折射率的作用,但当WO 3含量超过10%时,存在失透倾向增强、玻璃化变得困难的倾向,色散提高显著,并且玻璃可见光区域的短波长侧的透射率降低,着色的倾向增加,因此本发明优选WO 3的含量为0~10%,优选含量为0.1~5%。
本发明通过Y 2O 3、Ta 2O 5、WO 3等提高折射率成分的协同作用,控制Ta 2O 5的引入量,引入适量的Y 2O 3、WO 3,得到本发明所需光学常数的同时,提高了玻璃的熔融性能,改善气泡等级,达到A级以上。
通过少量添加Sb 2O 3、SnO 2、CeO 2组分可以提高玻璃的澄清效果,但当Sb 2O 3含量超过1%时,玻璃有澄清性能降低的倾向,同时由于其强氧化作用促进了成型模具的恶化,因此本发明优选Sb 2O 3的添加量为0~1%,更优选为0~0.5%。SnO 2也可以作为澄清剂来添加,但当其含量超过1%时,则玻璃会着色,或者当加热、软化玻璃并进行模压成形等再次成形时,Sn会成为晶核生成的起点,产生失透的倾向。因此本发明的SnO 2的含量优选为0~1%,更优选为0~0.5%,进一步优选不添加。CeO 2的作用及添加量比例与SnO 2一致,其含量优选为0~1%,更优选为0~0.5%,进一步优选不添加。
在不影响本发明光学玻璃的性能的前提下,可适当引入一定量的P 2O 5、Al 2O 3、Bi 2O 3、GeO 2、Lu 2O 3和F等成分。
本发明的光学玻璃是高折射率低色散玻璃,高折射率低色散玻璃制成的透镜多与高折射率高色散玻璃制成的透镜相组合,用于色差校正,且光学玻璃作为透镜使用的情况下,越提高折射率则透镜越能够变薄,对于光学设备的小型化有利,本发明的光学玻璃的折射率nd>1.87,优选nd>1.88,阿贝数vd>38.0,优选vd>39.0。
采用梯温炉法测定玻璃的析晶性能,将玻璃制成180*10*10mm的样品,侧面抛光,放入带有温度梯度(5℃/cm)的炉内升温至1400℃保温4小时后取出自然冷却到室温,在显微镜下观察玻璃析晶情况,玻璃出现晶体对应的最高温度即为玻璃的析晶上限温度。玻璃的析晶上限温度越低,则玻璃在高温时稳定性越强,生产的工艺性能越好。则玻璃在高温时稳定性越强,生产的工艺性能越好。根据本发明一种典型的实施方式,优选的,光学玻璃的析晶上限温度低于1350℃,优选低于1300℃,更优选低于1280℃。
光学玻璃元件在制造和使用过程中,其抛光表面抵抗水、酸等各种侵蚀介质作用的能力称为光学玻璃的化学稳定性,其主要取决于玻璃的化学组分,本发明的光学玻璃的耐水作用稳定性Dw(粉末法)在3级以上,优选2级以上,更优选1级;耐酸作用稳定性D A(粉末法)在3级以上,优选2级以上,更优选1级。
条纹度是用点光源和透镜组成的条纹仪,从最容易看见条纹的方向上,与标准试样比较检查,共分为4级,分别为A、B、C、D级,A级为在规定检测条件下,A级为规定检测条件下无肉眼可见的条纹,B级为规定检测条件下有细而分散的条纹,C级为规定检测条件下无有轻微的平行条纹,D级为规定检测条件下有粗略的条纹。由于以往技术中该类产品在不使用贵重氧化物如Ta 2O 5的条件下,抗析晶能力较差,生产20mm以上厚度的产品,容易产生析晶条纹。而厚规格产品又是制作大口径(大于60mm)镜片的必须规格。而目前由于光学技术的发展,需要大口径镜片越来越多,进而要求生产厂商提供20mm厚度以上的毛坯产品。
光学玻璃气泡质量按GB/T 7962.8-2010规定的测试方法进行测量。气泡度是玻璃中允许 气泡含量的等级,气泡不仅会影响玻璃制品的外观质量,更会影响玻璃的光学性能、透明度、机械强度等,对玻璃造成很多不良影响,因此控制玻璃的气泡度非常重要,本发明通过控制稀土氧化物La 2O 3、Gd 2O 3、Y 2O 3和Yb 2O 3的合计含量或者La 2O 3与Gd 2O 3的含量比值关系还能进一步实现玻璃气泡度在A级以上,优选A 0级以上,更优选A 00级。
根据本发明的另一方面,提供了一种玻璃预制件或光学元件。该玻璃预制件或光学元件由上述任一种光学玻璃制备而成。本发明的光学预制件具有高折射率低色散特性;本发明的光学元件具有高折射率低色散特性,能够提供光学性能优异的各种透镜、棱镜等光学元件。作为透镜的例子,可举出透镜面为球面或非球面的凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜。这种透镜通过与高折射率高色散玻璃制成的透镜组合,可校正色差,适合作为色差校正用的透镜。另外,对于光学体系的紧凑化也是有效的透镜。另外,对于棱镜来说,由于折射率高,因此通过组合在摄像光学体系中,通过弯曲光路,朝向所需的方向,即可实现紧凑、广角的光学体系。
根据本发明的再一方面,提供了一种光学仪器,该光学仪器包括光学元件,光学元件为上述任一种光学元件。本发明的光学仪器可以是数码照相机、摄像机等。
下面将结合实施例进一步说明本发明的有益效果。
实施例
光学玻璃实施例
为了得到具有表1~表6所示的组成的玻璃,使用碳酸盐、硝酸盐、氢氧化物、氧化物、硼酸等作为原料,将光学玻璃成分所对应的原料按比例称量各原料,充分混合后成为调合原料,将该调合原料放入到铂制坩埚内,加热至1200~1450℃,经熔化、搅拌、澄清后形成均匀的熔融玻璃,再将该熔融玻璃适度降温后浇注到预热的模具中并在650~700℃保持2~4小时之后进行缓冷,得到光学玻璃。另外,通过以下所示的方法测定各玻璃的特性,并将测定结果表示在表1~表6中。
(1)析晶上限温度
采用梯温炉法测定玻璃的析晶性能,将玻璃制成180*10*10mm的样品,侧面抛光,放入带有温度梯度(5℃/cm)的炉内升温至1400℃保温4小时后取出自然冷却到室温,在显微镜下观察玻璃析晶情况,玻璃出现晶体对应的最高温度即为玻璃的析晶上限温度。
(2)折射率nd和阿贝数vd
折射率与色散系数按照GB/T7962.1-2010规定的方法进行测试。
(3)化稳性按GB/T 17129的测试方法测试耐水作用稳定性Dw和耐酸作用稳定性D A
(4)气泡度
光学玻璃气泡质量按GB/T7962.8-2010规定的测试方法进行测量。
表1
组分% 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7
B 2O 3 21 21.6 19.1 15.7 18.6 16.6 15.6
SiO 2 6.6 5.8 6.1 5.7 6.2 5.9 5.7
ZrO 2 6 6.1 6.2 6.4 5.9 5.8 5.6
TiO 2 1.8 0 1.8 1.9 1.5 3 3
La 2O 3 38.2 38.5 38.8 39 37 34 35
Gd 2O 3 25.4 24 26 27.8 25.8 26 26
Y 2O 3 0 0 0 0 0 0 0
Yb 2O 3 0 1.7 0 0 0 0 0
Ta 2O 5 1 1 2 3.5 5 6.1 7
ZnO 0 0 0 0 0 0 0
BaO 0 1.3 0 0 0 0 0
CaO 0 0 0 0 0 2.6 0
SrO 0 0 0 0 0   0
MgO 0 0 0 0 0 0 0
WO 3 0 0 0 0 0 0 0
Sb 2O 3 0 0 0 0 0 0 0
Li 2O 0 0 0 0 0 0 0
Na 2O 0 0 0 0 0 0 0
K 2O 0 0 0 0 0 0 2.1
La 2O 3/Gd 2O 3 1.503937 1.604167 1.492308 1.402878 1.434109 1.307692 1.346154
La 2O 3+Gd 2O 3+Y 2O 3+Yb 2O 3 63.6 64.2 64.8 66.8 62.8 60 61
Li 2O+Na 2O+K 2O 0 0 0 0 0 0 2.1
总量 100 100 100 100 100 100 100
析晶上限温度℃ 1280 1290 1275 1280 1280 1300 1300
折射率nd 1.884 1.885 1.887 1.888 1.889 1.89 1.889
阿贝数vd 39.08 39.17 39.12 39.24 39.23 39.25 39.25
耐水作用稳定性Dw 1 1 1 1 1 2 2
耐酸作用稳定性D A 1 1 1 1 1 2 2
气泡度 A 00 A 00 A 00 A 00 A 00 A 00 A 00
表2
Figure PCTCN2018101158-appb-000001
Figure PCTCN2018101158-appb-000002
表3
Figure PCTCN2018101158-appb-000003
Figure PCTCN2018101158-appb-000004
表4
Figure PCTCN2018101158-appb-000005
Figure PCTCN2018101158-appb-000006
表5
Figure PCTCN2018101158-appb-000007
Figure PCTCN2018101158-appb-000008
表6
组分% 实施例36 实施例37 实施例38 实施例39 实施例40 实施例41 实施例42
B 2O 3 16.8 7.8 8.5 21.2 8.5 22.2 16.5
SiO 2 5 2 1 8.5 1.8 5.9 5.8
ZrO 2 6.5 8.7 7.2 1.5 0.5 5.8 6.1
TiO 2 2 3.5 5 6.4 8 1.5 1.9
La 2O 3 30 32.4 43 34.3 41 34 38.5
Gd 2O 3 22 20 30 24 26 26 24
Y 2O 3 4.2 3.6 2 0.1 6 1 0
Yb 2O 3 8 0 0 0 0 0.5 0
Ta 2O 5 5.5 6 3.3 4 8.2 0.5 3.6
ZnO 0 2 0 0 0 0  
BaO 0 1 0 0 0 0 1.3
CaO 0 5 0 0 0 0 0
SrO 0 8 0 0 0 0 0
MgO 0 0 0 0 0 2.6 2.3
WO 3 0 0 0 0 0 0 0
Sb 2O 3 0 0 0 0 0 0 0
Li 2O 0 0 0 0 0 0 0
Na 2O 0 0 0 0 0 0 0
K 2O 0 0 0 0 0 0 0
La 2O 3/Gd 2O 3 1.363636 1.62 1.433333 1.429167 1.576923 1.307692 1.604167
La 2O 3+Gd 2O 3+Y 2O 3+Yb 2O 3 64.2 56 75 58.4 73 61.5 62.5
Li 2O+Na 2O+K 2O 0 0 0 0 0 0 0
总量 100 100 100 100 100 100 100
析晶上限温度℃ 1290 1340 1285 1280 1310 1290 1300
折射率nd 1.885 1.883 1.884 1.885 1.891 1.879 1.882
阿贝数vd 39.25 39.12 39.25 39.2 38.77 39.19 39.26
耐水作用稳定性Dw 1 3 2 1 2 1 1
耐酸作用稳定性D A 1 3 2 1 2 1 1
气泡度 A 0 A A 0 A 00 A 0 A 0 A 0
光学预制件实施例
将表1中实施例1所得到的光学玻璃切割成预定大小,再在表面上均匀地涂布由氮化硼粉末构成的脱模剂,然后将其加热、软化,进行加压成型,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜的预制件。
光学元件实施例
将上述光学预制件实施例所得到的这些预制件退火,在降低玻璃内部的变形的同时进行微调,使得折射率等光学特性达到所需值。
接着,对各预制件进行磨削、研磨,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜。所得光学元件的表面上还可涂布防反射膜。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种光学玻璃,其特征在于,相对于以氧化物换算的组成的玻璃总质量,按质量百分含量计,所述光学玻璃包括:B 2O 3:5~25%,SiO 2:0.5~15%,ZrO 2:1~15%,TiO 2:0~10%,Ta 2O 5:0.5~10%,以及合计量为50~75%的La 2O 3、Gd 2O 3、Y 2O 3和Yb 2O 3,且不含Nb 2O 5,La 2O 3与Gd 2O 3的重量比La 2O 3/Gd 2O 3为1.28~1.625。
  2. 根据权利要求1所述的光学玻璃,其特征在于,所述光学玻璃还包括选自由ZnO、BaO、CaO、SrO、MgO、WO 3、Sb 2O 3、Li 2O、Na 2O和K 2O组成的组中的一种或多种,且含量如下:ZnO:0~15%,BaO:0~10%;CaO:0~10%;SrO:0~10%;MgO:0~10%;WO 3:0~10%;Sb 2O 3:0~1%,Li 2O、Na 2O和K 2O的合计量为0~10%。
  3. 根据权利要求1所述的光学玻璃,其特征在于,相对于以氧化物换算的组成的玻璃总质量,按质量百分含量计,所述光学玻璃由B 2O 3:5~25%,SiO 2:0.5~15%,ZrO 2:1~15%,TiO 2:0~10%,ZnO:0~15%,BaO:0~10%,CaO:0~10%,SrO:0~10%,MgO:0~10%,WO 3:0~10%,Ta 2O 5:0.5~10%,合计量为0~10%的Li 2O、Na 2O和K 2O,Sb 2O 3:0~1%,以及合计量为50~75%的La 2O 3、Gd 2O 3、Y 2O 3和Yb 2O 3组成,其中,La 2O 3与Gd 2O 3的重量比La 2O 3/Gd 2O 3为1.28~1.625。
  4. 根据权利要求1至3中任一项所述的光学玻璃,其特征在于,相对于以氧化物换算的组成的玻璃总质量,按质量百分含量计,所述光学玻璃包括:B 2O 3:8~22%,SiO 2:3~10%,ZrO 2:3~12%,TiO 2:0.5~7%,和/或合计量为55~70%的La 2O 3、Gd 2O 3、Y 2O 3和Yb 2O 3
  5. 根据权利要求1至3中任一项所述的光学玻璃,其特征在于,所述La 2O 3/Gd 2O 3为1.3~1.6;优选为1.4~1.5。
  6. 根据权利要求1或2所述的光学玻璃,其特征在于,所述光学玻璃Y 2O 3含量为0~10%,优选为0.1~8%。
  7. 根据权利要求1或2所述的光学玻璃,其特征在于,所述光学玻璃WO 3含量为0.1~5%。
  8. 根据权利要求1至3中任一项所述的光学玻璃,其特征在于,所述光学玻璃的析晶上限温度低于1350℃,优选低于1300℃。
  9. 根据权利要求1至3中任一项所述的光学玻璃,其特征在于,所述光学玻璃的折射率nd>1.87,优选nd>1.88;阿贝数vd>38.0,优选vd>39.0。
  10. 根据权利要求1至3中任一项所述的光学玻璃,其特征在于,所述光学玻璃的耐水作用稳定性Dw在3级以上,优选2级以上,更优选1级;耐酸作用稳定性D A在3级以上,优选2级以上,更优选1级。
  11. 根据权利要求1至3中任一项所述的光学玻璃,其特征在于,所述光学玻璃的条纹为C级以上,优选B级以上,更优选A级;气泡度为A级以上,优选A 0级以上,更优选A 00级。
  12. 一种玻璃预制件或光学元件,其特征在于,由权利要求1至11中任一项所述的光学玻璃制备而成。
  13. 一种光学仪器,包括光学元件,其特征在于,所述光学元件为如权利要求12所述的光学元件。
PCT/CN2018/101158 2018-08-17 2018-08-17 光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器 WO2020034213A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021507811A JP7165810B2 (ja) 2018-08-17 2018-08-17 光学ガラス、光学ガラスで製造されるガラスプリフォーム又は光学素子及び光学機器
PCT/CN2018/101158 WO2020034213A1 (zh) 2018-08-17 2018-08-17 光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器
US17/267,046 US11952311B2 (en) 2018-08-17 2018-08-17 Optical glass, glass prefabricated member or optical element prepared therefrom, and optical instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/101158 WO2020034213A1 (zh) 2018-08-17 2018-08-17 光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器

Publications (1)

Publication Number Publication Date
WO2020034213A1 true WO2020034213A1 (zh) 2020-02-20

Family

ID=69524609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101158 WO2020034213A1 (zh) 2018-08-17 2018-08-17 光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器

Country Status (3)

Country Link
US (1) US11952311B2 (zh)
JP (1) JP7165810B2 (zh)
WO (1) WO2020034213A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7171734B2 (ja) * 2018-08-17 2022-11-15 シーディージーエム グラス カンパニー リミテッド 光学ガラス、ガラスプリフォーム、光学素子及びこれを有する光学機器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201142A (ja) * 2001-10-22 2003-07-15 Sumita Optical Glass Inc 精密プレス成形用光学ガラス
CN1532160A (zh) * 2003-03-24 2004-09-29 上海新沪玻璃厂 高折射率镧系光学玻璃LaSF015
CN1729147A (zh) * 2002-12-17 2006-02-01 株式会社小原 光学玻璃
JP2008214135A (ja) * 2007-03-05 2008-09-18 Sumita Optical Glass Inc 精密プレス成形用光学ガラス
CN102295409A (zh) * 2011-03-11 2011-12-28 成都光明光电股份有限公司 一种光学玻璃及光学元件
CN106495465A (zh) * 2016-10-27 2017-03-15 成都光明光电股份有限公司 光学玻璃

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6076594B2 (ja) 2010-12-13 2017-02-08 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2012166962A (ja) * 2011-02-09 2012-09-06 Ohara Inc 光学ガラス、プリフォーム材及び光学素子
JP6722071B2 (ja) 2016-09-20 2020-07-15 光ガラス株式会社 光学ガラス、光学ガラスを用いた光学素子、光学装置
JP7171734B2 (ja) * 2018-08-17 2022-11-15 シーディージーエム グラス カンパニー リミテッド 光学ガラス、ガラスプリフォーム、光学素子及びこれを有する光学機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201142A (ja) * 2001-10-22 2003-07-15 Sumita Optical Glass Inc 精密プレス成形用光学ガラス
CN1729147A (zh) * 2002-12-17 2006-02-01 株式会社小原 光学玻璃
CN1532160A (zh) * 2003-03-24 2004-09-29 上海新沪玻璃厂 高折射率镧系光学玻璃LaSF015
JP2008214135A (ja) * 2007-03-05 2008-09-18 Sumita Optical Glass Inc 精密プレス成形用光学ガラス
CN102295409A (zh) * 2011-03-11 2011-12-28 成都光明光电股份有限公司 一种光学玻璃及光学元件
CN106495465A (zh) * 2016-10-27 2017-03-15 成都光明光电股份有限公司 光学玻璃

Also Published As

Publication number Publication date
US11952311B2 (en) 2024-04-09
JP2021534063A (ja) 2021-12-09
JP7165810B2 (ja) 2022-11-04
US20210309560A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
TWI610899B (zh) 光學玻璃、玻璃預製件、光學元件
TWI779744B (zh) 光學玻璃、玻璃預製件及光學元件
US20180086659A1 (en) Optical glass, glass preform and optical element
WO2017152657A1 (zh) 光学玻璃及光学元件
TWI610898B (zh) 光學玻璃、玻璃預製件及光學元件
TW202012330A (zh) 光學玻璃、其預製件、光學元件和光學儀器
TWI726386B (zh) 光學玻璃、由其製備而成的玻璃預製件或光學元件及光學儀器
WO2019223041A1 (zh) 光学玻璃
JP7171734B2 (ja) 光学ガラス、ガラスプリフォーム、光学素子及びこれを有する光学機器
WO2017152656A1 (zh) 光学玻璃及光学元件
US11958769B2 (en) Optical glass, glass preform or optical element made therefrom, and optical instrument
WO2020062009A1 (zh) 光学玻璃、其预制件、光学元件和光学仪器
CN110835229B (zh) 光学玻璃、玻璃预制件、光学元件和具有其的光学仪器
CN109179985B (zh) 光学玻璃及光学元件
TWI728429B (zh) 光學玻璃、由其製備而成的玻璃預製件或光學元件及光學儀器
WO2020034213A1 (zh) 光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器
CN109250903B (zh) 光学玻璃、玻璃预制件、光学元件和具有其的光学仪器
CN109650716B (zh) 一种无色光学玻璃及其玻璃预制件、元件和仪器
CN110835227A (zh) 光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器
CN108975683A (zh) 光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器
CN110835230A (zh) 光学玻璃、玻璃预制件、光学元件和具有其的光学仪器
CN110835231B (zh) 光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器
CN110835232B (zh) 光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器
CN109250902B (zh) 光学玻璃、玻璃预制件、光学元件和具有其的光学仪器
WO2024041276A1 (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507811

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930278

Country of ref document: EP

Kind code of ref document: A1