WO2020031674A1 - Multiple optical axis photoelectric sensor unit - Google Patents

Multiple optical axis photoelectric sensor unit Download PDF

Info

Publication number
WO2020031674A1
WO2020031674A1 PCT/JP2019/028673 JP2019028673W WO2020031674A1 WO 2020031674 A1 WO2020031674 A1 WO 2020031674A1 JP 2019028673 W JP2019028673 W JP 2019028673W WO 2020031674 A1 WO2020031674 A1 WO 2020031674A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
mirror
mirror structure
optical axis
unit
Prior art date
Application number
PCT/JP2019/028673
Other languages
French (fr)
Japanese (ja)
Inventor
智 西内
菅 孝博
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2020031674A1 publication Critical patent/WO2020031674A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • G01V8/14Detecting, e.g. by using light barriers using one transmitter and one receiver using reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/20Detecting, e.g. by using light barriers using multiple transmitters or receivers
    • G01V8/22Detecting, e.g. by using light barriers using multiple transmitters or receivers using reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition

Definitions

  • the present invention relates to a multi-optical axis photoelectric sensor unit including a light emitting and receiving unit including a light emitting element and a light receiving element, and a mirror unit for reflecting light from the light emitting element toward the light receiving element.
  • a light emitting and receiving unit in which a plurality of light emitting elements and a plurality of light receiving elements are arranged, and a mirror unit for reflecting light from the plurality of light emitting elements toward the light receiving elements What is provided is known.
  • Patent Document 1 discloses a multi-optical axis photoelectric sensor having a mirror unit having two reflection structures.
  • a V-shaped mirror structure is used as a reflection structure of the two reflection structures to which light from the light emitting element is irradiated.
  • An object of one embodiment of the present invention is to realize a multi-optical axis photoelectric sensor unit capable of increasing a distance between a light emitting / receiving unit and a mirror unit.
  • a multi-optical axis photoelectric sensor unit includes a light emitting and receiving unit including a light emitting element and a light receiving element, and a first mirror that reflects light from the light emitting element. And a mirror unit having a second mirror structure for reflecting light reflected by the first mirror structure toward the light receiving element, wherein the first mirror structure includes a first reflection surface and the first reflection surface. It has a structure in which a plurality of V-shaped mirror portions each including a second reflection surface provided perpendicular to the reflection surface are arranged in parallel.
  • the distance between the light emitting / receiving unit and the mirror unit can be increased.
  • FIG. 3 is a side view of a mirror unit provided in the multi-optical axis photoelectric sensor unit.
  • FIG. 3 is an exploded perspective view of the mirror unit.
  • 3A and 3B show a configuration of a first mirror structure provided in the multi-optical axis photoelectric sensor unit.
  • FIG. 4A is a perspective view of the first mirror structure, and
  • FIG. 4B is a side view of the first mirror structure. It is.
  • FIG. 4 is a perspective view illustrating a configuration of a first mirror structure provided in the multi-optical axis photoelectric sensor unit.
  • FIG. 3A and 3B show a configuration of a second mirror structure provided in the multi-optical axis photoelectric sensor unit, wherein FIG. 4A is a perspective view of the second mirror structure, and FIG. 4B is a side view of the second mirror structure.
  • FIG. 4A is a view for explaining a light irradiation area in a light receiving element provided in the multi-optical axis photoelectric sensor unit
  • FIG. 4A illustrates a conventional multi-optical axis sensor in which a first mirror structure includes one V-shaped mirror portion.
  • FIG. 3B is a diagram illustrating a light beam area in a light receiving element in the unit, and FIG.
  • FIG. 2B is a diagram illustrating a light beam area in the light receiving element in the multi-optical axis photoelectric sensor unit according to the first embodiment.
  • FIG. 7 is a diagram illustrating a light beam area in a light receiving element when a third reflecting surface of the second mirror structure is a flat surface. It is the schematic which shows the structure of the multi-optical axis photoelectric sensor unit as a modification of the said multi-optical axis photoelectric sensor unit. It is a side view of a mirror unit as a modification of the above-mentioned mirror unit.
  • FIG. 1 is a schematic diagram showing the configuration of the multi-optical axis photoelectric sensor unit 1A in the present embodiment.
  • 4A and 4B show the configuration of the first mirror structure 21.
  • FIG. 4A is a perspective view of the first mirror structure 21, and
  • FIG. 4B is a side view of the first mirror structure 21.
  • FIGS. 6A and 6B illustrate a light irradiation area of the light receiving element 12 included in the multi-optical axis photoelectric sensor unit 1A according to one embodiment of the present invention.
  • the multi-optical axis photoelectric sensor unit 1A includes a light emitting / receiving unit 10 and a mirror unit 20.
  • the light emitting and receiving unit 10 includes a light emitting element 11, a light receiving element 12, and a first housing 13.
  • the mirror unit 20 includes a first mirror structure 21, a second mirror structure 22, and a second housing 23.
  • the first mirror structure 21 reflects the light emitted from the light emitting element 11 of the light emitting and receiving unit 10 and applied to the second housing 23 via the cover 24 and reflects the light toward the second mirror structure 22 described later.
  • the first mirror structure 21 is a structure in which a plurality of V-shaped mirror units 30 are arranged in parallel.
  • a straight line L in each V-shaped mirror unit 30 is emitted from the light projecting element 11, is reflected by the first mirror structure 21, and is parallel to a plane including an optical path reaching the second mirror structure 22.
  • the second mirror structure 22 is a member that reflects the light projected from the light emitting element 11 of the light emitting and receiving unit 10 and reflected by the first mirror structure 21 toward the light receiving element 12 of the light emitting and receiving unit 10.
  • the light from the plurality of V-shaped mirror units 30 arranged in parallel is condensed by the first mirror structure 21 and applied to the light receiving element 12.
  • the amount of light received by the light receiving element 12 can be increased. Therefore, the distance between the light emitting / receiving unit 10 and the mirror unit 20 can be increased.
  • the multi-optical axis photoelectric sensor unit 1A by arranging a plurality of V-shaped mirror units 30 in parallel, as shown in FIG. 6B, the ratio of the shadowed area in the luminous flux area of the reflected light is reduced. Can be reduced. As a result, the light use efficiency can be increased, and the distance between the light emitting / receiving unit 10 and the mirror unit 20 can be further increased.
  • FIG. 1 is a schematic diagram showing the configuration of the multi-optical axis photoelectric sensor unit 1A in the present embodiment.
  • the multi-optical axis photoelectric sensor unit 1 ⁇ / b> A includes a light emitting / receiving unit 10 and a mirror unit 20.
  • the light emitting and receiving unit 10 includes a light emitting element 11, a light receiving element 12, and a first housing 13.
  • the light emitting and receiving unit 10 is a connector (not shown) for supplying power to the light emitting element 11 and the light receiving element 12, controlling the light emitting element 11 and the light receiving element 12, and taking out signals from the light receiving element 12. (Shown).
  • the light projecting element 11 is an element that emits light toward the mirror unit 20.
  • the light receiving element 12 is an element that receives light emitted from the light emitting element 11 and reflected by the mirror unit 20.
  • the first housing 13 is a housing that houses the light emitting element 11 and the light receiving element 12 therein.
  • the first housing 13 has a substantially rectangular parallelepiped shape.
  • the mirror unit 20 is a unit for returning light emitted from the light emitting and receiving unit 10 (more specifically, the light emitting element 11) to the light emitting and receiving unit 10 (more specifically, the light receiving element 12). .
  • the mirror unit 20 does not require wiring such as a cable. Therefore, as compared with a multi-optical axis photoelectric sensor unit having a configuration in which a light-emitting unit having a light-emitting element and a light-receiving unit having a light-receiving element are separated, the degree of freedom of installation of the multi-optical axis photoelectric sensor unit 1A is reduced. Can be improved.
  • FIG. 2 is a side view of the mirror unit 20.
  • FIG. 3 is an exploded perspective view of the mirror unit 20.
  • the mirror unit 20 includes a first mirror structure 21, a second mirror structure 22, a second housing 23, and a cover 24.
  • the first housing 13 and the second housing 23 have substantially the same size, and the first housing 13 and the second housing 23 have respective long sides. It is installed so that the directions are parallel.
  • the light emitting element 11 emits light in a direction perpendicular to a facing surface of the first housing 13 facing the second housing 23.
  • a translucent cover is disposed on the facing surface of the first housing 13 so that light projected from the light projecting element 11 can be emitted toward the mirror unit 20. It has become.
  • a light-transmitting cover 24 is provided on a surface of the second housing 23 facing the first housing 13, and light projected from the light emitting element 11 It can be transmitted inside.
  • the first mirror structure 21 reflects the light emitted from the light emitting element 11 of the light emitting and receiving unit 10 and applied to the second housing 23 via the cover 24 and reflects the light toward the second mirror structure 22 described later. It is a member for performing.
  • FIG. 4 shows the configuration of the first mirror structure 21.
  • FIG. 4 (a) is a perspective view of the first mirror structure 21, and
  • FIG. 4 (b) is a side view of the first mirror structure 21.
  • the first mirror structure 21 has a structure in which a plurality of V-shaped mirror units 30 are arranged in parallel.
  • the V-shaped mirror unit 30 includes a first reflecting surface 31 and a second reflecting surface 32.
  • the first reflection surface 31 and the second reflection surface 32 are formed so as to be perpendicular to each other (that is, to have a V-shape with a included angle of 90 °).
  • the straight line L formed by joining the first reflecting surface 31 and the second reflecting surface 32 (that is, the straight line L formed by the V-shaped valley in the V-shape) is formed by the light emitting element 11 of the light emitting and receiving unit 10. And is reflected by the first mirror structure 21 and is parallel to a plane (a plane parallel to the paper surface in FIG. 1) including an optical path to a second mirror structure 22 described later.
  • the first mirror structure 21 is installed such that the straight line L is inclined 45 ° with respect to the direction in which the light emitted from the light projecting element 11 travels on a plane parallel to the plane of FIG. Thereby, the light emitted from the light projecting element 11 and reflected by the first mirror structure 21 is reflected in a direction parallel to the longitudinal direction of the second housing 23.
  • the first mirror structure 21 is formed such that the first reflection surface 31 and the second reflection surface 32 are perpendicular to each other. Therefore, even if the angle of the light applied to the first mirror structure 21 is slightly shifted due to the recursive reflection, the reflection direction of the light applied from the light emitting element 11 can be made constant. Thus, the allowable range of the installation error in the first mirror structure 21 in the second housing 23 can be increased, so that the ease of assembly of the mirror unit 20 at the time of manufacturing can be further improved. In addition, a margin can be provided for an error in the arrangement position between the light emitting / receiving unit 10 and the mirror unit 20.
  • the first mirror structure 21 has a structure in which a plurality of V-shaped mirror portions 30 are arranged in parallel.
  • the light reflected by the plurality of V-shaped mirror units 30 is collected in one direction on a plane perpendicular to the straight line L. Will go on. Therefore, the light emitted from the light emitting element 11 can be used efficiently.
  • the second mirror structure 22 is a member that reflects the light projected from the light emitting element 11 of the light emitting and receiving unit 10 and reflected by the first mirror structure 21 toward the light receiving element 12 of the light emitting and receiving unit 10.
  • FIG. 5 shows the configuration of the second mirror structure 22.
  • FIG. 5A is a perspective view of the second mirror structure 22, and
  • FIG. 5B is a side view of the second mirror structure 22.
  • the second mirror structure 22 includes a third reflection surface 22A that reflects the light reflected by the first mirror structure 21.
  • the third reflecting surface 22A is parallel to a direction perpendicular to both the direction in which the straight line L extends and the direction in which the first mirror structure 21 and the second mirror structure 22 are arranged, and in the direction in which the straight line L extends. It has a convex shape in a parallel section.
  • the third reflecting surface 22A is parallel to a direction perpendicular to both the direction in which the straight line L extends and the direction in which the first mirror structure 21 and the second mirror structure 22 are arranged, and the straight line L extends.
  • the shape of the cross section parallel to the direction is the same at an arbitrary position in the direction perpendicular to the straight line L.
  • the second mirror structure 22 emits light from the light emitting element 11 of the light emitting and receiving unit 10 in the long axis direction of the third reflection surface 22A (the direction perpendicular to the paper surface in FIG. 5B).
  • the multi-optical axis photoelectric sensor unit 1A detects that an object (for example, a person) exists between the light emitting / receiving unit 10 and the mirror unit 20.
  • the first mirror structure 21 has a structure in which a plurality of V-shaped mirror units 30 are arranged in parallel.
  • a straight line L in each V-shaped mirror unit 30 is emitted from the light projecting element 11, is reflected by the first mirror structure 21, and is parallel to a plane including an optical path reaching the second mirror structure 22.
  • the light from the plurality of V-shaped mirror portions 30 arranged in parallel is converged by the first mirror structure 21 and irradiated to the light receiving element 12.
  • the amount of light received by the light receiving element 12 can be increased. Therefore, the distance between the light emitting / receiving unit 10 and the mirror unit 20 can be increased.
  • FIG. 6A and 6B illustrate a light irradiation area of the light receiving element 12 of the multi-optical axis photoelectric sensor unit 1A.
  • FIG. 6A illustrates a first mirror structure including a single V-shaped mirror unit 30. It is a figure which shows the light beam area
  • the V-shaped mirror unit 30 becomes large, so that the luminous flux area of the reflected light is increased. In the corners, there is a shadowed area. Therefore, the light irradiation area on the light receiving element 12 is reduced. As a result, the assemblability at the time of manufacturing the multi-optical axis photoelectric sensor is reduced, and it is difficult to install and adjust the light emitting / receiving unit and the mirror unit.
  • the multi-optical axis photoelectric sensor unit 1A by arranging a plurality of V-shaped mirror units 30 in parallel, as shown in FIG. Can be reduced. As a result, the light use efficiency can be increased, and the distance between the light emitting / receiving unit 10 and the mirror unit 20 can be further increased.
  • the second mirror structure 22 is perpendicular to both the direction in which the straight line L extends and the direction in which the first mirror structure 21 and the second mirror structure 22 are arranged. It has a convex shape in a section parallel to the direction and parallel to the direction in which the straight line L extends.
  • a structure that emits a light beam in a direction perpendicular to the direction in which the first mirror structure 21 and the second mirror structure 22 are arranged can be obtained. Therefore, the irradiation area of the light on the light receiving element 12 can be expanded, and it is possible to allow a certain amount of deviation in the arrangement direction of the second mirror structure 22. Therefore, assemblability during manufacture of the mirror unit 20 is improved, and installation and adjustment of the light emitting / receiving unit 10 and the mirror unit 20 can be facilitated.
  • the second mirror structure 22 is parallel to a direction perpendicular to both the direction in which the straight line L extends and the direction in which the first mirror structure 21 and the second mirror structure 22 are arranged, and the straight line L extends.
  • the shape of the cross section parallel to the direction is the same at an arbitrary position in the direction perpendicular to the straight line L.
  • the first reflection surface 31 and the second reflection surface 32 are manufactured by depositing a metal on the surface of a base material such as a resin, thereby imparting light reflectivity.
  • the first mirror structure 21 has a structure in which a plurality of V-shaped mirror portions 30 are arranged in parallel. For this reason, if the distance between the adjacent V-shaped mirror portions 30 (in other words, the distance between the straight lines L adjacent to each other) is too small, vapor deposition on the deeper (deeper) region in the V-shape will occur. It will be difficult. Therefore, the distance between the adjacent V-shaped mirror portions 30 (in other words, the distance between the straight lines L adjacent to each other) is preferably 0.5 mm or more.
  • V-shaped mirror section 30 is too large, a shadowed area in the light flux area of the reflected light becomes large, so that the distance between the adjacent V-shaped mirror sections 30 is 5.0 mm or less. Is preferable.
  • the first mirror structure 21 of one embodiment of the present invention may have a configuration in which the vertices on the mountain side of each V-shape are flat, that is, the cross-section perpendicular to the straight line L is trapezoidal.
  • the third reflecting surface 22A has a convex shape in a cross section including a direction perpendicular to the straight line L.
  • the multi-optical axis photoelectric sensor unit of the present invention has Not limited.
  • the third reflection surface 22A may be a flat surface.
  • FIG. 7 is a diagram showing a light beam area in the light receiving element when the third reflection surface 22A is a plane. As shown in FIG. 7, when the third reflection surface 22A is a flat surface, the width in the left-right direction is smaller than that in FIG. 6B. In this configuration, the light emitted from the light projecting element 11 is condensed in a slender manner, so that the amount of light emitted can be increased. As a result, the distance between the light emitting / receiving unit 10 and the mirror unit 20 can be made longer than in the multi-optical axis photoelectric sensor unit 1A.
  • the third reflecting surface 22A has a convex shape in a cross section including a direction perpendicular to the straight line L, and has the same shape in a direction parallel to the straight line L.
  • the second mirror structure 22 of the present invention is not limited to this.
  • the third reflecting surface 22A has a convex shape in a cross section including a direction perpendicular to the straight line L, and also has a convex shape in a cross section including a direction parallel to the straight line L. (In other words, a toric shape or an annular shape).
  • the above configuration it is possible to have a structure (light divergence structure) that emits a light beam in a direction perpendicular to the straight line L and in a direction parallel to the straight line L. Therefore, since the light irradiation area on the light receiving element 12 can be further expanded, the allowable range of the displacement in the arrangement direction of the second mirror structure 22 can be increased. Thereby, assemblability at the time of manufacturing the mirror unit 20 can be further improved, and installation and adjustment of the light emitting / receiving unit 10 and the mirror unit 20 can be further facilitated.
  • FIG. 8 is a schematic diagram showing a configuration of a multi-optical axis photoelectric sensor unit 1B in this modification.
  • the multi-optical axis photoelectric sensor unit 1B includes a light emitting / receiving unit 10A and a mirror unit 20A.
  • the light emitting and receiving unit 10A has the same configuration as that of the light emitting and receiving unit 10 in the first embodiment except that two light emitting elements 11 and two light receiving elements 12 are provided.
  • the mirror unit 20A has the same configuration as the mirror unit 20 in the first embodiment, except that the mirror unit 20A includes two first mirror structures 21 and two second mirror structures 22.
  • the multi-optical axis photoelectric sensor unit of the present invention includes two light emitting / receiving sets each including a light emitting element 11, a first mirror structure 21, a second mirror structure 22, and a light receiving element 12, as illustrated in FIG.
  • the configuration is not limited.
  • three or more of the light emitting and receiving sets may be provided.
  • the multi-optical axis photoelectric sensor unit 1B may have a configuration in which a plurality of light emitting / receiving sets each including the light emitting element 11, the first mirror structure 21, the second mirror structure 22, and the light receiving element 12 are provided.
  • four or more optical paths can be provided between the light emitting / receiving unit 10A and the mirror unit 20A, so that the present invention can be applied to a detection object having a larger size.
  • the second mirror structure 22 is formed so as to have a convex shape in a cross section including the direction perpendicular to the straight line L, so that the light flux is diverged in the direction perpendicular to the straight line L.
  • the multi-optical axis photoelectric sensor unit of the present invention is not limited to this.
  • FIG. 9 is a side view of a mirror unit 20B according to this modification.
  • the mirror unit 20B includes a second mirror structure 40 instead of the second mirror structure 22 in the first embodiment.
  • the mirror unit 20B includes a cylindrical lens 41 (light diverging structure) in addition to the configuration of the second mirror structure 22 in the first embodiment.
  • the second mirror structure 40 has a reflecting surface that reflects the light reflected by the first mirror structure 21.
  • the reflection surface is a flat surface.
  • the cylindrical lens 41 is disposed between the second mirror structure 40 and the light emitting / receiving unit 10.
  • the cylindrical lens 41 has a convex shape in a cross section including a direction perpendicular to the straight line L. Note that the cylindrical lens 41 may be installed inside the second housing 23 or may be installed outside the second housing 23.
  • the light reflected by the second mirror structure 40 can be diverged by the cylindrical lens 41 in a direction perpendicular to the straight line L.
  • a toric lens may be used as a light diverging structure instead of the cylindrical lens 41.
  • the luminous flux can be diverged in a direction perpendicular to the straight line L and in a direction parallel to the straight line L.
  • a multi-optical axis photoelectric sensor unit includes a light emitting and receiving unit including a light emitting element and a light receiving element, a first mirror structure for reflecting light from the light emitting element, and the first mirror structure.
  • a mirror unit including a second mirror structure for reflecting the light reflected by the light-receiving element toward the light-receiving element, wherein the first mirror structure has a first reflection surface and a second reflection surface provided perpendicular to the first reflection surface. It has a structure in which a plurality of V-shaped mirror portions each including a reflection surface are arranged in parallel.
  • the light from the plurality of V-shaped mirror portions arranged in parallel is collected and irradiated to the light receiving element, so that the amount of light received by the light receiving element can be increased. Therefore, it is possible to increase the distance between the light emitting and receiving unit and the mirror unit.
  • a shadow area is generated at a corner of the light flux area of the reflected light. Is reduced. Therefore, since the light use efficiency can be improved, the distance between the light emitting / receiving unit and the mirror unit can be further increased.
  • the multi-optical axis photoelectric sensor unit has a light diverging structure for diverging a light beam emitted from the second mirror structure.
  • the light irradiation area of the light receiving element is widened, it is possible to allow a certain amount of deviation in the arrangement direction of the second mirror structure. Therefore, assemblability at the time of manufacturing the mirror unit is improved, and installation and adjustment of the light emitting / receiving unit and the mirror unit can be facilitated.
  • a light beam is diverged in a direction perpendicular to a direction in which the first mirror structure and the second mirror structure are arranged, and the first mirror structure and the It is preferable that the structure does not diverge the light beam in the direction in which the second mirror structures are arranged.
  • the light beam is diverged by the light diverging structure only in the direction in which the light from the plurality of parallel V-shaped mirror portions is condensed, the light beam is not diverged more than necessary. Therefore, it is possible to suppress a decrease in the amount of light in the light receiving element, and it is possible to increase the distance between the light emitting and receiving unit and the mirror unit.
  • the second mirror structure may include a direction in which a straight line formed by a V-shaped valley in the V-shaped mirror portion extends, and the first mirror structure and the second mirror structure.
  • a configuration may be employed in which the two mirror structures are parallel to a direction perpendicular to any of the arranged directions and have a convex shape in a cross section parallel to the direction in which the straight line formed by the V-shaped valley extends.
  • the light beam diverges in a direction perpendicular to the direction in which the first mirror structure and the second mirror structure are arranged by a simple structure in which the second mirror structure has the convex shape as described above. Structure can be realized.
  • the second mirror structure may further include a convex shape in a cross section including a direction parallel to a straight line formed by a V-shaped valley in the V-shaped mirror portion. May be adopted.
  • the light beam can be diverged in the direction perpendicular and parallel to the straight line formed by the V-shaped valley in the V-shaped mirror portion. Therefore, since the light irradiation area of the light receiving element can be further expanded, the allowable range of the displacement in the arrangement direction of the second mirror structure can be increased. Thereby, assemblability at the time of manufacturing the mirror unit can be further improved, and installation and adjustment of the light emitting / receiving unit and the mirror unit can be further facilitated.
  • the light diverging structure may be a lens that diverges the light reflected by the second mirror structure.
  • the light reflected by the second mirror structure can be diverged by the lens.
  • a plurality of light emitting / receiving sets each including the light emitting element, the first mirror structure, the second mirror structure, and the light receiving element are provided. It may be.
  • four or more optical paths can be provided between the light emitting / receiving unit and the mirror unit, so that the present invention can be applied to a detection target having a larger size.
  • 1A, 1B Multi-optical axis photoelectric sensor unit 10, 10A Light emitting and receiving unit 11 Light emitting element 12, Light receiving element 20, 20A, 20B Mirror unit 21 First mirror structure 22, 40 Second mirror structure 30 V-shaped mirror unit 31 First Reflecting surface 32 Second reflecting surface 41 Cylindrical lens (light diverging structure)

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

The present invention increases the distance between a light transmitting/receiving unit and a mirror unit. This multiple optical axis photoelectric sensor unit (1A) is provided with: a light transmitting/receiving unit provided with a light transmitting element, and a light receiving element; and a mirror unit comprising a first mirror structure (21) for reflecting light from the transmitting element, and a second mirror structure for reflecting, toward the light receiving element, the light reflected by the first mirror structure (21). The first mirror structure (21) has a structure in which a plurality of V-shaped mirror parts (30), comprising a first reflective surface (31) and a second reflective surface (32) provided perpendicular to the first reflective surface (31), are arranged in parallel, and lines (L) formed by V-shaped grooves in the respective V-shaped mirror parts (30) are parallel to a plane including the optical path of light which is emitted from the light transmitting element, is reflected by the first mirror structure (21), and reaches the second mirror structure.

Description

多光軸光電センサユニットMulti-optical axis photoelectric sensor unit
 本発明は、投光素子および受光素子を備える投受光ユニットと、上記投光素子からの光を上記受光素子に向けて反射させるミラーユニットとを備える多光軸光電センサユニットに関する。 The present invention relates to a multi-optical axis photoelectric sensor unit including a light emitting and receiving unit including a light emitting element and a light receiving element, and a mirror unit for reflecting light from the light emitting element toward the light receiving element.
 多光軸光電センサの一種として、複数の投光素子および複数の受光素子が配置された投受光ユニットと、複数の上記投光素子からの光を上記受光素子に向けて反射させるミラーユニットとを備えるものが知られている。 As a kind of multi-optical axis photoelectric sensor, a light emitting and receiving unit in which a plurality of light emitting elements and a plurality of light receiving elements are arranged, and a mirror unit for reflecting light from the plurality of light emitting elements toward the light receiving elements What is provided is known.
 例えば、特許文献1には、2つの反射構造を備えるミラーユニットを有する多光軸光電センサが開示されている。特許文献1の技術では、上記2つの反射構造のうち投光素子からの光が照射される反射構造を、V字形状ミラー構造にしている。 For example, Patent Document 1 discloses a multi-optical axis photoelectric sensor having a mirror unit having two reflection structures. In the technique of Patent Literature 1, a V-shaped mirror structure is used as a reflection structure of the two reflection structures to which light from the light emitting element is irradiated.
欧州特許出願公開第0967583号明細書European Patent Application No. 0967583
 しかしながら、上述の従来技術の場合、1つのV字形状ミラー構造となっているため投光素子から照射された光の一部を利用することができないため(詳細は後述)、受光素子に到達する光量が低下する。そのため、投受光ユニットとミラーユニットとの間の距離を長くすることができないという問題があった。 However, in the case of the above-described conventional technology, since one V-shaped mirror structure is used, a part of the light emitted from the light projecting element cannot be used (details will be described later), and thus the light reaches the light receiving element. The amount of light decreases. Therefore, there is a problem that the distance between the light emitting / receiving unit and the mirror unit cannot be increased.
 本発明の一態様は、投受光ユニットとミラーユニットとの間の距離を長くすることが可能な多光軸光電センサユニットを実現することを目的とする。 An object of one embodiment of the present invention is to realize a multi-optical axis photoelectric sensor unit capable of increasing a distance between a light emitting / receiving unit and a mirror unit.
 上記の課題を解決するために、本発明の一態様に係る多光軸光電センサユニットは、投光素子および受光素子を備える投受光ユニットと、前記投光素子からの光を反射させる第1ミラー構造、および、前記第1ミラー構造で反射された光を前記受光素子に向けて反射させる第2ミラー構造を備えるミラーユニットとを備え、前記第1ミラー構造は、第1反射面および該第1反射面に垂直に設けられる第2反射面からなるV字形状ミラー部が複数並列された構造となっている。 In order to solve the above problems, a multi-optical axis photoelectric sensor unit according to one embodiment of the present invention includes a light emitting and receiving unit including a light emitting element and a light receiving element, and a first mirror that reflects light from the light emitting element. And a mirror unit having a second mirror structure for reflecting light reflected by the first mirror structure toward the light receiving element, wherein the first mirror structure includes a first reflection surface and the first reflection surface. It has a structure in which a plurality of V-shaped mirror portions each including a second reflection surface provided perpendicular to the reflection surface are arranged in parallel.
 本発明の一態様によれば、投受光ユニットとミラーユニットとの間の距離を長くすることが可能となる。 According to one aspect of the present invention, the distance between the light emitting / receiving unit and the mirror unit can be increased.
本発明の実施形態1に係る多光軸光電センサユニットの構成を示す概略図である。It is a schematic diagram showing the composition of the multi-optical axis photoelectric sensor unit concerning Embodiment 1 of the present invention. 上記多光軸光電センサユニットが備えるミラーユニットの側面図である。FIG. 3 is a side view of a mirror unit provided in the multi-optical axis photoelectric sensor unit. 上記ミラーユニットの分解斜視図である。FIG. 3 is an exploded perspective view of the mirror unit. 上記多光軸光電センサユニットが備える第1ミラー構造の構成を示すものであり、(a)は、上記第1ミラー構造の斜視図であり、(b)は、上記第1ミラー構造の側面図である。上記多光軸光電センサユニットが備える第1ミラー構造の構成を示す斜視図である。3A and 3B show a configuration of a first mirror structure provided in the multi-optical axis photoelectric sensor unit. FIG. 4A is a perspective view of the first mirror structure, and FIG. 4B is a side view of the first mirror structure. It is. FIG. 4 is a perspective view illustrating a configuration of a first mirror structure provided in the multi-optical axis photoelectric sensor unit. 上記多光軸光電センサユニットが備える第2ミラー構造の構成を示すものであり、(a)は、上記第2ミラー構造の斜視図であり、(b)は、上記第2ミラー構造の側面図である。3A and 3B show a configuration of a second mirror structure provided in the multi-optical axis photoelectric sensor unit, wherein FIG. 4A is a perspective view of the second mirror structure, and FIG. 4B is a side view of the second mirror structure. It is. 上記多光軸光電センサユニットが備える受光素子における光の照射領域を説明するものであり、(a)は、第1ミラー構造が1つのV字形状ミラー部からなっている従来の多光軸センサユニットにおける受光素子での光束領域を示す図であり、(b)は、実施形態1に係る多光軸光電センサユニットにおける受光素子での光束領域を示す図である。4A is a view for explaining a light irradiation area in a light receiving element provided in the multi-optical axis photoelectric sensor unit, and FIG. 4A illustrates a conventional multi-optical axis sensor in which a first mirror structure includes one V-shaped mirror portion. FIG. 3B is a diagram illustrating a light beam area in a light receiving element in the unit, and FIG. 2B is a diagram illustrating a light beam area in the light receiving element in the multi-optical axis photoelectric sensor unit according to the first embodiment. 上記第2ミラー構造が備える第3反射面が平面である場合におけるにおける受光素子での光束領域を示す図である。FIG. 7 is a diagram illustrating a light beam area in a light receiving element when a third reflecting surface of the second mirror structure is a flat surface. 上記多光軸光電センサユニットの変形例としての多光軸光電センサユニットの構成を示す概略図である。It is the schematic which shows the structure of the multi-optical axis photoelectric sensor unit as a modification of the said multi-optical axis photoelectric sensor unit. 上記ミラーユニットの変形例としてのミラーユニットの側面図である。It is a side view of a mirror unit as a modification of the above-mentioned mirror unit.
 〔実施形態1〕
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。
[Embodiment 1]
Hereinafter, an embodiment according to one aspect of the present invention (hereinafter, also referred to as “the present embodiment”) will be described with reference to the drawings.
 §1 適用例
 まず、図1、図4および図6を用いて、本発明が適用される場面の一例について説明する。
§1 Application Example First, an example of a scene to which the present invention is applied will be described with reference to FIG. 1, FIG. 4 and FIG.
 図1は、本実施形態における多光軸光電センサユニット1Aの構成を示す概略図である。図4は、第1ミラー構造21の構成を示すものであり、(a)は、第1ミラー構造21の斜視図であり、(b)は、第1ミラー構造21の側面図である。図6は、本発明の一態様に係る多光軸光電センサユニット1Aが備える受光素子12における光の照射領域を説明するものであり、(a)は、第1ミラー構造が1つのV字形状ミラー部30からなっている従来の多光軸センサユニットにおける受光素子での光束領域を示す図であり、(b)は、多光軸光電センサユニット1Aにおける受光素子での光束領域を示す図である。 FIG. 1 is a schematic diagram showing the configuration of the multi-optical axis photoelectric sensor unit 1A in the present embodiment. 4A and 4B show the configuration of the first mirror structure 21. FIG. 4A is a perspective view of the first mirror structure 21, and FIG. 4B is a side view of the first mirror structure 21. FIGS. 6A and 6B illustrate a light irradiation area of the light receiving element 12 included in the multi-optical axis photoelectric sensor unit 1A according to one embodiment of the present invention. FIG. It is a figure which shows the light beam area | region in the light receiving element in the conventional multi-optical axis sensor unit which consists of the mirror part 30, (b) is a figure which shows the light beam area | region in the light receiving element in the multi-optical axis photoelectric sensor unit 1A. is there.
 多光軸光電センサユニット1Aは、投受光ユニット10と、ミラーユニット20とを備えている。投受光ユニット10は、投光素子11と、受光素子12、第1筐体13とを備えている。ミラーユニット20は、第1ミラー構造21と、第2ミラー構造22と、第2筐体23とを備える。 The multi-optical axis photoelectric sensor unit 1A includes a light emitting / receiving unit 10 and a mirror unit 20. The light emitting and receiving unit 10 includes a light emitting element 11, a light receiving element 12, and a first housing 13. The mirror unit 20 includes a first mirror structure 21, a second mirror structure 22, and a second housing 23.
 第1ミラー構造21は、投受光ユニット10の投光素子11から出射され、カバー24を介して第2筐体23に照射された光を反射して後述する第2ミラー構造22へ向けて反射するための部材である第1ミラー構造21は、V字形状ミラー部30が複数並列された構造となっている。また、各V字形状ミラー部30における直線Lが、投光素子11から出射し、第1ミラー構造21において反射され、第2ミラー構造22に至る光路を含む平面に平行となっている。 The first mirror structure 21 reflects the light emitted from the light emitting element 11 of the light emitting and receiving unit 10 and applied to the second housing 23 via the cover 24 and reflects the light toward the second mirror structure 22 described later. The first mirror structure 21 is a structure in which a plurality of V-shaped mirror units 30 are arranged in parallel. In addition, a straight line L in each V-shaped mirror unit 30 is emitted from the light projecting element 11, is reflected by the first mirror structure 21, and is parallel to a plane including an optical path reaching the second mirror structure 22.
 第2ミラー構造22は、投受光ユニット10の投光素子11から投射され第1ミラー構造21によって反射された光を投受光ユニット10の受光素子12に向けて反射させる部材である。 The second mirror structure 22 is a member that reflects the light projected from the light emitting element 11 of the light emitting and receiving unit 10 and reflected by the first mirror structure 21 toward the light receiving element 12 of the light emitting and receiving unit 10.
 上記の構成を有することにより、多光軸光電センサユニット1Aでは、複数並列されたV字形状ミラー部30からの光が第1ミラー構造21によって集光されて受光素子12に照射される。その結果、受光素子12における受光量を上げることができる。よって、投受光ユニット10とミラーユニット20との間の距離を長くすることが可能となる。 With the above configuration, in the multi-optical axis photoelectric sensor unit 1 </ b> A, the light from the plurality of V-shaped mirror units 30 arranged in parallel is condensed by the first mirror structure 21 and applied to the light receiving element 12. As a result, the amount of light received by the light receiving element 12 can be increased. Therefore, the distance between the light emitting / receiving unit 10 and the mirror unit 20 can be increased.
 また、多光軸光電センサユニット1Aでは、V字形状ミラー部30を複数並列することによって、図6の(b)に示すように、反射光の光束領域において影になってしまう領域の割合を低減することができる。これにより、光の利用効率を上げることができるので、投受光ユニット10とミラーユニット20との間の距離をさらに長くすることが可能となる。 In addition, in the multi-optical axis photoelectric sensor unit 1A, by arranging a plurality of V-shaped mirror units 30 in parallel, as shown in FIG. 6B, the ratio of the shadowed area in the luminous flux area of the reflected light is reduced. Can be reduced. As a result, the light use efficiency can be increased, and the distance between the light emitting / receiving unit 10 and the mirror unit 20 can be further increased.
 §2 構成例
 以下、本発明の多光軸光電センサユニット1Aの構成例を、図面を参照して説明する。
§2 Configuration Example Hereinafter, a configuration example of the multi-optical axis photoelectric sensor unit 1A of the present invention will be described with reference to the drawings.
 図1は、本実施形態における多光軸光電センサユニット1Aの構成を示す概略図である。図1に示すように、多光軸光電センサユニット1Aは、投受光ユニット10と、ミラーユニット20とを備える。 FIG. 1 is a schematic diagram showing the configuration of the multi-optical axis photoelectric sensor unit 1A in the present embodiment. As shown in FIG. 1, the multi-optical axis photoelectric sensor unit 1 </ b> A includes a light emitting / receiving unit 10 and a mirror unit 20.
 投受光ユニット10は、投光素子11と、受光素子12、第1筐体13とを備えている。また、投受光ユニット10は、投光素子11および受光素子12への電力の供給、投光素子11および受光素子12の制御、および受光素子12からの信号の取り出しなどを行うためのコネクタ(不図示)を備えている。 The light emitting and receiving unit 10 includes a light emitting element 11, a light receiving element 12, and a first housing 13. The light emitting and receiving unit 10 is a connector (not shown) for supplying power to the light emitting element 11 and the light receiving element 12, controlling the light emitting element 11 and the light receiving element 12, and taking out signals from the light receiving element 12. (Shown).
 投光素子11は、ミラーユニット20へ向けて光を出射する素子である。受光素子12は、投光素子11から投光され、ミラーユニット20によって反射された光を受光する素子である。第1筐体13は、投光素子11および受光素子12を内部に収納する筐体である。第1筐体13は、略直方体形状となっている。 The light projecting element 11 is an element that emits light toward the mirror unit 20. The light receiving element 12 is an element that receives light emitted from the light emitting element 11 and reflected by the mirror unit 20. The first housing 13 is a housing that houses the light emitting element 11 and the light receiving element 12 therein. The first housing 13 has a substantially rectangular parallelepiped shape.
 ミラーユニット20は、投受光ユニット10(より詳細には、投光素子11)から照射された光を、投受光ユニット10(より詳細には、受光素子12)へ向けて返すためのユニットである。ミラーユニット20には、ケーブルなどの配線が不要である。そのため、投光素子を有する投光ユニットと、受光素子を有する受光ユニットとが分離している構成の多光軸光電センサユニットと比較して、多光軸光電センサユニット1Aの設置の自由度を向上させることができる。 The mirror unit 20 is a unit for returning light emitted from the light emitting and receiving unit 10 (more specifically, the light emitting element 11) to the light emitting and receiving unit 10 (more specifically, the light receiving element 12). . The mirror unit 20 does not require wiring such as a cable. Therefore, as compared with a multi-optical axis photoelectric sensor unit having a configuration in which a light-emitting unit having a light-emitting element and a light-receiving unit having a light-receiving element are separated, the degree of freedom of installation of the multi-optical axis photoelectric sensor unit 1A is reduced. Can be improved.
 図2は、ミラーユニット20の側面図である。図3は、ミラーユニット20の分解斜視図である。図1~図3に示すように、ミラーユニット20は、第1ミラー構造21と、第2ミラー構造22と、第2筐体23と、カバー24とを備える。 FIG. 2 is a side view of the mirror unit 20. FIG. 3 is an exploded perspective view of the mirror unit 20. As shown in FIGS. 1 to 3, the mirror unit 20 includes a first mirror structure 21, a second mirror structure 22, a second housing 23, and a cover 24.
 なお、多光軸光電センサユニット1Aでは、第1筐体13と、第2筐体23とは略同様の大きさとなっており、第1筐体13および第2筐体23は、それぞれの長手方向が平行となるように設置される。投光素子11は、第1筐体13において第2筐体23と対向する対向面に垂直な方向に光を投光する。なお、図示していないが、第1筐体13における上記対向面には透光性を有するカバーが配置されており、投光素子11から投射された光がミラーユニット20へ向けて照射できるようになっている。同様に、第2筐体23における第1筐体13に対向する対向面には透光性を有するカバー24が設置されており、投光素子11から投射された光が第2筐体23の内部に透過できるようになっている。 Note that, in the multi-optical axis photoelectric sensor unit 1A, the first housing 13 and the second housing 23 have substantially the same size, and the first housing 13 and the second housing 23 have respective long sides. It is installed so that the directions are parallel. The light emitting element 11 emits light in a direction perpendicular to a facing surface of the first housing 13 facing the second housing 23. Although not shown, a translucent cover is disposed on the facing surface of the first housing 13 so that light projected from the light projecting element 11 can be emitted toward the mirror unit 20. It has become. Similarly, a light-transmitting cover 24 is provided on a surface of the second housing 23 facing the first housing 13, and light projected from the light emitting element 11 It can be transmitted inside.
 第1ミラー構造21は、投受光ユニット10の投光素子11から出射され、カバー24を介して第2筐体23に照射された光を反射して後述する第2ミラー構造22へ向けて反射するための部材である。 The first mirror structure 21 reflects the light emitted from the light emitting element 11 of the light emitting and receiving unit 10 and applied to the second housing 23 via the cover 24 and reflects the light toward the second mirror structure 22 described later. It is a member for performing.
 図4は、第1ミラー構造21の構成を示すものであり、(a)は、第1ミラー構造21の斜視図であり、(b)は、第1ミラー構造21の側面図である。図4の(a)および(b)に示すように、第1ミラー構造21は、複数のV字形状ミラー部30が複数並列された構造となっている。 4 shows the configuration of the first mirror structure 21. FIG. 4 (a) is a perspective view of the first mirror structure 21, and FIG. 4 (b) is a side view of the first mirror structure 21. As shown in FIGS. 4A and 4B, the first mirror structure 21 has a structure in which a plurality of V-shaped mirror units 30 are arranged in parallel.
 V字形状ミラー部30は、第1反射面31と第2反射面32とからなる。第1反射面31と第2反射面32とは、互いに垂直となるように(すなわち、挟角が90°のV字形状となるように)形成されている。 The V-shaped mirror unit 30 includes a first reflecting surface 31 and a second reflecting surface 32. The first reflection surface 31 and the second reflection surface 32 are formed so as to be perpendicular to each other (that is, to have a V-shape with a included angle of 90 °).
 第1反射面31と第2反射面32とが接合されることにより形成される直線L(すなわち、上記V字形状におけるV字の谷による直線L)は、投受光ユニット10の投光素子11から出射し、第1ミラー構造21において反射され、後述する第2ミラー構造22に至る光路を含む平面(図1における紙面に平行な平面)に平行となっている。 The straight line L formed by joining the first reflecting surface 31 and the second reflecting surface 32 (that is, the straight line L formed by the V-shaped valley in the V-shape) is formed by the light emitting element 11 of the light emitting and receiving unit 10. And is reflected by the first mirror structure 21 and is parallel to a plane (a plane parallel to the paper surface in FIG. 1) including an optical path to a second mirror structure 22 described later.
 第1ミラー構造21は、直線Lが、図1における紙面に平行な平面において、投光素子11から出射された光が進む方向に対して45°傾いた方向となるように設置されている。これにより、投光素子11から出射され第1ミラー構造21によって反射された光は、第2筐体23の長手方向に平行な方向に反射される。 The first mirror structure 21 is installed such that the straight line L is inclined 45 ° with respect to the direction in which the light emitted from the light projecting element 11 travels on a plane parallel to the plane of FIG. Thereby, the light emitted from the light projecting element 11 and reflected by the first mirror structure 21 is reflected in a direction parallel to the longitudinal direction of the second housing 23.
 第1ミラー構造21は、第1反射面31と第2反射面32とは、互いに垂直となるように形成されている。よって、回帰反射により、第1ミラー構造21に照射される光の角度が多少ずれても、投光素子11から照射された光の反射方向を一定方向にすることができる。これにより、第2筐体23における第1ミラー構造21に設置誤差の許容範囲を大きくすることができるので、ミラーユニット20の製造時の組立容易性をより向上させることができる。また、投受光ユニット10とミラーユニット20との配置位置誤差にも余裕を持たせることができる。 The first mirror structure 21 is formed such that the first reflection surface 31 and the second reflection surface 32 are perpendicular to each other. Therefore, even if the angle of the light applied to the first mirror structure 21 is slightly shifted due to the recursive reflection, the reflection direction of the light applied from the light emitting element 11 can be made constant. Thus, the allowable range of the installation error in the first mirror structure 21 in the second housing 23 can be increased, so that the ease of assembly of the mirror unit 20 at the time of manufacturing can be further improved. In addition, a margin can be provided for an error in the arrangement position between the light emitting / receiving unit 10 and the mirror unit 20.
 また、第1ミラー構造21は、V字形状ミラー部30が複数並列された構造となっている。ここで、上記のように、V字形状ミラー部30において回帰反射が行われるため、複数のV字形状ミラー部30で反射された光は、直線Lに垂直な面において一点に集光する方向に進むことになる。よって、投光素子11から照射された光を効率良く利用することができる。 The first mirror structure 21 has a structure in which a plurality of V-shaped mirror portions 30 are arranged in parallel. Here, as described above, since the recursive reflection is performed in the V-shaped mirror unit 30, the light reflected by the plurality of V-shaped mirror units 30 is collected in one direction on a plane perpendicular to the straight line L. Will go on. Therefore, the light emitted from the light emitting element 11 can be used efficiently.
 第2ミラー構造22は、投受光ユニット10の投光素子11から投射され第1ミラー構造21によって反射された光を投受光ユニット10の受光素子12に向けて反射させる部材である。 The second mirror structure 22 is a member that reflects the light projected from the light emitting element 11 of the light emitting and receiving unit 10 and reflected by the first mirror structure 21 toward the light receiving element 12 of the light emitting and receiving unit 10.
 図5は、第2ミラー構造22の構成を示すものであり、(a)は、第2ミラー構造22の斜視図であり、(b)は、第2ミラー構造22の側面図である。図5の(a)および(b)に示すように、第2ミラー構造22は、第1ミラー構造21によって反射された光を反射する第3反射面22Aを備えている。第3反射面22Aは、直線Lが伸びる方向、および第1ミラー構造21および第2ミラー構造22が並ぶ方向のいずれにも垂直な方向に対して平行であり、かつ、直線Lが伸びる方向に平行な断面において凸形状となっている。また、第3反射面22Aは、直線Lが伸びる方向、および第1ミラー構造21および第2ミラー構造22が並ぶ方向のいずれにも垂直な方向に対して平行であり、かつ、直線Lが伸びる方向に平行な断面の形状が、直線Lに垂直な方向の任意の箇所において同一となっている。 FIG. 5 shows the configuration of the second mirror structure 22. FIG. 5A is a perspective view of the second mirror structure 22, and FIG. 5B is a side view of the second mirror structure 22. As shown in FIGS. 5A and 5B, the second mirror structure 22 includes a third reflection surface 22A that reflects the light reflected by the first mirror structure 21. The third reflecting surface 22A is parallel to a direction perpendicular to both the direction in which the straight line L extends and the direction in which the first mirror structure 21 and the second mirror structure 22 are arranged, and in the direction in which the straight line L extends. It has a convex shape in a parallel section. The third reflecting surface 22A is parallel to a direction perpendicular to both the direction in which the straight line L extends and the direction in which the first mirror structure 21 and the second mirror structure 22 are arranged, and the straight line L extends. The shape of the cross section parallel to the direction is the same at an arbitrary position in the direction perpendicular to the straight line L.
 第2ミラー構造22は、第3反射面22Aの長軸方向(図5の(b)における紙面に垂直な方向)が、投受光ユニット10の投光素子11から出射し、第1ミラー構造21において反射され、後述する第2ミラー構造22に至る光路を含む平面(図1における紙面に平行な平面)において、第1ミラー構造21によって反射された光が進む方向に対して45°傾いた方向となるように設置されている。 The second mirror structure 22 emits light from the light emitting element 11 of the light emitting and receiving unit 10 in the long axis direction of the third reflection surface 22A (the direction perpendicular to the paper surface in FIG. 5B). In a plane including an optical path reaching the second mirror structure 22 described later (a plane parallel to the paper surface in FIG. 1), a direction inclined by 45 ° with respect to the traveling direction of the light reflected by the first mirror structure 21 It is installed to be.
 §3 動作例
 多光軸光電センサユニット1Aでは、投受光ユニット10とミラーユニット20との間に、物体(例えば、人)が存在した場合、投受光ユニット10からミラーユニット20へ向かう光、および、ミラーユニット20から投受光ユニット10へ向かう光の少なくとも一方が物体によって遮られる。そのため、受光素子12が光を受光しなくなる。これにより、多光軸光電センサユニット1Aは、投受光ユニット10とミラーユニット20との間に、物体(例えば、人)が存在することを検知する。
§3 Operation example In the multi-optical axis photoelectric sensor unit 1A, when an object (for example, a person) exists between the light emitting and receiving unit 10 and the mirror unit 20, light traveling from the light emitting and receiving unit 10 to the mirror unit 20 and At least one of the light traveling from the mirror unit 20 to the light emitting / receiving unit 10 is blocked by the object. Therefore, the light receiving element 12 does not receive light. Thereby, the multi-optical axis photoelectric sensor unit 1A detects that an object (for example, a person) exists between the light emitting / receiving unit 10 and the mirror unit 20.
 ここで、上述したように、多光軸光電センサユニット1Aでは、第1ミラー構造21が、V字形状ミラー部30が複数並列された構造となっている。また、各V字形状ミラー部30における直線Lが、投光素子11から出射し、第1ミラー構造21において反射され、第2ミラー構造22に至る光路を含む平面に平行となっている。 Here, as described above, in the multi-optical axis photoelectric sensor unit 1A, the first mirror structure 21 has a structure in which a plurality of V-shaped mirror units 30 are arranged in parallel. In addition, a straight line L in each V-shaped mirror unit 30 is emitted from the light projecting element 11, is reflected by the first mirror structure 21, and is parallel to a plane including an optical path reaching the second mirror structure 22.
 これにより、複数並列されたV字形状ミラー部30からの光が第1ミラー構造21によって集光されて受光素子12に照射される。その結果、受光素子12における受光量を上げることができる。よって、投受光ユニット10とミラーユニット20との間の距離を長くすることが可能となる。 に よ り Thereby, the light from the plurality of V-shaped mirror portions 30 arranged in parallel is converged by the first mirror structure 21 and irradiated to the light receiving element 12. As a result, the amount of light received by the light receiving element 12 can be increased. Therefore, the distance between the light emitting / receiving unit 10 and the mirror unit 20 can be increased.
 図6は、多光軸光電センサユニット1Aに係る受光素子12における光の照射領域を説明するものであり、(a)は、第1ミラー構造が1つのV字形状ミラー部30からなっている従来の多光軸センサユニットにおける受光素子での光束領域を示す図であり、(b)は、多光軸光電センサユニット1Aにおける受光素子での光束領域を示す図である。 6A and 6B illustrate a light irradiation area of the light receiving element 12 of the multi-optical axis photoelectric sensor unit 1A. FIG. 6A illustrates a first mirror structure including a single V-shaped mirror unit 30. It is a figure which shows the light beam area | region in the light receiving element in the conventional multi-optical axis sensor unit, and (b) is a figure which shows the light beam area | region in the light receiving element in 1 A of multi-optical axis photoelectric sensor units.
 図6の(a)に示すように、従来のように第1ミラー構造が1つのV字形状ミラー部30からなる場合には、V字形状ミラー部30が大きくなるため、反射光の光束領域の角の部分に影になってしまう領域が生じてしまう。したがって、受光素子12への光の照射面積が小さくなってしまう。その結果、多光軸光電センサの製造時の組立性が低下し、さらに、投受光ユニットおよびミラーユニットの設置および調整が困難となる。 As shown in FIG. 6A, when the first mirror structure is composed of one V-shaped mirror unit 30 as in the conventional case, the V-shaped mirror unit 30 becomes large, so that the luminous flux area of the reflected light is increased. In the corners, there is a shadowed area. Therefore, the light irradiation area on the light receiving element 12 is reduced. As a result, the assemblability at the time of manufacturing the multi-optical axis photoelectric sensor is reduced, and it is difficult to install and adjust the light emitting / receiving unit and the mirror unit.
 これに対して、多光軸光電センサユニット1Aでは、V字形状ミラー部30を複数並列することによって、図6の(b)に示すように、反射光の光束領域において影になってしまう領域の割合を低減することができる。これにより、光の利用効率を上げることができるので、投受光ユニット10とミラーユニット20との間の距離をさらに長くすることが可能となる。 On the other hand, in the multi-optical axis photoelectric sensor unit 1A, by arranging a plurality of V-shaped mirror units 30 in parallel, as shown in FIG. Can be reduced. As a result, the light use efficiency can be increased, and the distance between the light emitting / receiving unit 10 and the mirror unit 20 can be further increased.
 また、多光軸光電センサユニット1Aでは、上述したように、第2ミラー構造22は、直線Lが伸びる方向、および第1ミラー構造21および第2ミラー構造22が並ぶ方向のいずれにも垂直な方向に対して平行であり、かつ、直線Lが伸びる方向に平行な断面において凸形状となっている。これにより、第1ミラー構造21および前記第2ミラー構造22が並ぶ方向に対して垂直な方向において光束を発散させる構造(光発散構造)とすることができる。そのため、受光素子12における光の照射領域を広げることができるので、第2ミラー構造22の配置方向のずれをある程度許容することが可能となる。よって、ミラーユニット20の製造時の組立性が向上するとともに、投受光ユニット10およびミラーユニット20の設置および調整を容易にすることができる。 Further, in the multi-optical axis photoelectric sensor unit 1A, as described above, the second mirror structure 22 is perpendicular to both the direction in which the straight line L extends and the direction in which the first mirror structure 21 and the second mirror structure 22 are arranged. It has a convex shape in a section parallel to the direction and parallel to the direction in which the straight line L extends. Thereby, a structure (light divergence structure) that emits a light beam in a direction perpendicular to the direction in which the first mirror structure 21 and the second mirror structure 22 are arranged can be obtained. Therefore, the irradiation area of the light on the light receiving element 12 can be expanded, and it is possible to allow a certain amount of deviation in the arrangement direction of the second mirror structure 22. Therefore, assemblability during manufacture of the mirror unit 20 is improved, and installation and adjustment of the light emitting / receiving unit 10 and the mirror unit 20 can be facilitated.
 さらに、第2ミラー構造22は、直線Lが伸びる方向、および第1ミラー構造21および第2ミラー構造22が並ぶ方向のいずれにも垂直な方向に対して平行であり、かつ、直線Lが伸びる方向に平行な断面の形状が、直線Lに垂直な方向の任意の箇所において同一となっている。これにより、第1ミラー構造21および前記第2ミラー構造22が並ぶ方向において光束を発散させない構造となっている。そのため、複数並列されたV字形状ミラー部30からの光が集光される方向でのみ第2ミラー構造22によって光束が発散されるので、必要以上に光束が発散されることがない。よって、受光素子12における光量低下を抑えることができるので、投受光ユニット10とミラーユニット20との間の距離を長くすることが可能となる。 Further, the second mirror structure 22 is parallel to a direction perpendicular to both the direction in which the straight line L extends and the direction in which the first mirror structure 21 and the second mirror structure 22 are arranged, and the straight line L extends. The shape of the cross section parallel to the direction is the same at an arbitrary position in the direction perpendicular to the straight line L. Thereby, the light is not diverged in the direction in which the first mirror structure 21 and the second mirror structure 22 are arranged. Therefore, since the light beam is diverged by the second mirror structure 22 only in the direction in which the light from the plurality of parallel V-shaped mirror portions 30 is condensed, the light beam is not unnecessarily diverged. Therefore, since a decrease in the amount of light in the light receiving element 12 can be suppressed, the distance between the light emitting / receiving unit 10 and the mirror unit 20 can be increased.
 ここで、第1反射面31および第2反射面32は、樹脂などの基材の表面に金属を蒸着させることにより製造され、これにより、光反射性を付与する。しかしながら、第1ミラー構造21が、V字形状ミラー部30が複数並列された構造となっている。そのため、互いに隣接するV字形状ミラー部30間の距離(換言すれば、互いに隣接する直線L間の距離)が小さすぎると、V字形状においてより奥側(深い側)の領域への蒸着が困難になってしまう。そのため、互いに隣接するV字形状ミラー部30間の距離(換言すれば、互いに隣接する直線L間の距離)を、0.5mm以上とすることが好ましい。 Here, the first reflection surface 31 and the second reflection surface 32 are manufactured by depositing a metal on the surface of a base material such as a resin, thereby imparting light reflectivity. However, the first mirror structure 21 has a structure in which a plurality of V-shaped mirror portions 30 are arranged in parallel. For this reason, if the distance between the adjacent V-shaped mirror portions 30 (in other words, the distance between the straight lines L adjacent to each other) is too small, vapor deposition on the deeper (deeper) region in the V-shape will occur. It will be difficult. Therefore, the distance between the adjacent V-shaped mirror portions 30 (in other words, the distance between the straight lines L adjacent to each other) is preferably 0.5 mm or more.
 また、V字形状ミラー部30を大きくしすぎると、反射光の光束領域において影になってしまう領域が大きくなってしまうため、互いに隣接するV字形状ミラー部30間の距離を5.0mm以下にすることが好ましい。 Further, if the V-shaped mirror section 30 is too large, a shadowed area in the light flux area of the reflected light becomes large, so that the distance between the adjacent V-shaped mirror sections 30 is 5.0 mm or less. Is preferable.
 なお、本発明の一態様の第1ミラー構造21では、各V字形状の山側の頂点が平面、すなわち、直線Lに垂直な断面における形状が台形形状となっている構成であってもよい。 Note that the first mirror structure 21 of one embodiment of the present invention may have a configuration in which the vertices on the mountain side of each V-shape are flat, that is, the cross-section perpendicular to the straight line L is trapezoidal.
 また、本実施形態における第2ミラー構造22では、第3反射面22Aが直線Lに垂直な方向を含む断面において凸形状となっていたが、本発明の多光軸光電センサユニットは、これに限られない。本発明の一態様における多光軸光電センサユニットでは、第3反射面22Aが平面であってもよい。 Further, in the second mirror structure 22 of the present embodiment, the third reflecting surface 22A has a convex shape in a cross section including a direction perpendicular to the straight line L. However, the multi-optical axis photoelectric sensor unit of the present invention has Not limited. In the multi-optical axis photoelectric sensor unit according to one embodiment of the present invention, the third reflection surface 22A may be a flat surface.
 図7は、第3反射面22Aが平面である場合におけるにおける受光素子での光束領域を示す図である。図7に示すように、第3反射面22Aが平面である場合では、図6の(b)に比べて、左右方向の幅が細くなっている。当該構成では、投光素子11から照射された光を細長く集光しているので、照射される光の光量を多くすることができる。その結果、多光軸光電センサユニット1Aに比べて、投受光ユニット10とミラーユニット20との間の距離を長くすることが可能となる。 FIG. 7 is a diagram showing a light beam area in the light receiving element when the third reflection surface 22A is a plane. As shown in FIG. 7, when the third reflection surface 22A is a flat surface, the width in the left-right direction is smaller than that in FIG. 6B. In this configuration, the light emitted from the light projecting element 11 is condensed in a slender manner, so that the amount of light emitted can be increased. As a result, the distance between the light emitting / receiving unit 10 and the mirror unit 20 can be made longer than in the multi-optical axis photoelectric sensor unit 1A.
 §4 変形例
 以上、本発明の実施の形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略した。以下の変形例は適宜組み合わせ可能である。
§4 Modifications While the embodiments of the present invention have been described in detail, the above description is merely illustrative of the present invention in all respects. It goes without saying that various improvements and modifications can be made without departing from the scope of the invention. For example, the following changes are possible. In the following, the same reference numerals are used for the same components as those in the above-described embodiment, and the same points as those in the above-described embodiment will not be described. The following modifications can be combined as appropriate.
 <4.1>
 実施形態1における第2ミラー構造22では、第3反射面22Aが直線Lに垂直な方向を含む断面において凸形状となっているとともに、直線Lに平行な方向においては、同一の形状となっていたが、本発明の第2ミラー構造22は、これに限られない。
<4.1>
In the second mirror structure 22 according to the first embodiment, the third reflecting surface 22A has a convex shape in a cross section including a direction perpendicular to the straight line L, and has the same shape in a direction parallel to the straight line L. However, the second mirror structure 22 of the present invention is not limited to this.
 本発明の一態様の第2ミラー構造22は、第3反射面22Aが直線Lに垂直な方向を含む断面において凸形状となっているとともに、直線Lに平行な方向を含む断面においても凸形状となっている形状(換言すれば、トーリック形状、円環形状)であってもよい。 In the second mirror structure 22 of one embodiment of the present invention, the third reflecting surface 22A has a convex shape in a cross section including a direction perpendicular to the straight line L, and also has a convex shape in a cross section including a direction parallel to the straight line L. (In other words, a toric shape or an annular shape).
 上記の構成によれば、直線Lに垂直な方向および直線Lに平行な方向において光束を発散させる構造(光発散構造)とすることができる。そのため、受光素子12における光の照射領域をさらに広げることができるので、第2ミラー構造22の配置方向のずれの許容範囲を大きくすることができる。これにより、ミラーユニット20の製造時の組立性をさらに向上させることができるとともに、投受光ユニット10およびミラーユニット20の設置および調整をさらに容易にすることができる。 According to the above configuration, it is possible to have a structure (light divergence structure) that emits a light beam in a direction perpendicular to the straight line L and in a direction parallel to the straight line L. Therefore, since the light irradiation area on the light receiving element 12 can be further expanded, the allowable range of the displacement in the arrangement direction of the second mirror structure 22 can be increased. Thereby, assemblability at the time of manufacturing the mirror unit 20 can be further improved, and installation and adjustment of the light emitting / receiving unit 10 and the mirror unit 20 can be further facilitated.
 <4.2>
 次に、実施形態1における多光軸光電センサユニット1Aの変形例としての多光軸光電センサユニット1Bについて説明する。
<4.2>
Next, a multi-optical axis photoelectric sensor unit 1B as a modified example of the multi-optical axis photoelectric sensor unit 1A in Embodiment 1 will be described.
 図8は、本変形例における多光軸光電センサユニット1Bの構成を示す概略図である。図8に示すように、多光軸光電センサユニット1Bは、投受光ユニット10Aと、ミラーユニット20Aとを備える。 FIG. 8 is a schematic diagram showing a configuration of a multi-optical axis photoelectric sensor unit 1B in this modification. As shown in FIG. 8, the multi-optical axis photoelectric sensor unit 1B includes a light emitting / receiving unit 10A and a mirror unit 20A.
 投受光ユニット10Aは、投光素子11および受光素子12をそれぞれ2つずつ備えている点以外は、実施形態1における投受光ユニット10と同じ構成である。 The light emitting and receiving unit 10A has the same configuration as that of the light emitting and receiving unit 10 in the first embodiment except that two light emitting elements 11 and two light receiving elements 12 are provided.
 ミラーユニット20Aは、第1ミラー構造21および第2ミラー構造22をそれぞれ2つずつ備えている点以外は、実施形態1におけるミラーユニット20と同じ構成である。 The mirror unit 20A has the same configuration as the mirror unit 20 in the first embodiment, except that the mirror unit 20A includes two first mirror structures 21 and two second mirror structures 22.
 なお、本発明の多光軸光電センサユニットは、図8に例示したような、投光素子11、第1ミラー構造21、第2ミラー構造22、および受光素子12からなる投受光セットが2つの構成に限られない。本発明の多光軸光電センサユニットでは、上記投受光セットが3つ以上設けられていてもよい。すなわち、多光軸光電センサユニット1Bは、投光素子11、第1ミラー構造21、第2ミラー構造22、および受光素子12からなる投受光セットが複数設けられている構成であればよい。 The multi-optical axis photoelectric sensor unit of the present invention includes two light emitting / receiving sets each including a light emitting element 11, a first mirror structure 21, a second mirror structure 22, and a light receiving element 12, as illustrated in FIG. The configuration is not limited. In the multi-optical axis photoelectric sensor unit of the present invention, three or more of the light emitting and receiving sets may be provided. In other words, the multi-optical axis photoelectric sensor unit 1B may have a configuration in which a plurality of light emitting / receiving sets each including the light emitting element 11, the first mirror structure 21, the second mirror structure 22, and the light receiving element 12 are provided.
 上記の構成によれば、投受光ユニット10Aとミラーユニット20Aとの間に4つ以上の光路を設けることができるので、より大きなサイズの検知対象に適用することが可能となる。 According to the above configuration, four or more optical paths can be provided between the light emitting / receiving unit 10A and the mirror unit 20A, so that the present invention can be applied to a detection object having a larger size.
 <4.3>
 次に、実施形態1におけるミラーユニット20の変形例としてのミラーユニット20Bについて説明する。
<4.3>
Next, a mirror unit 20B as a modification of the mirror unit 20 in the first embodiment will be described.
 実施形態1におけるミラーユニット20では、直線Lに垂直な方向を含む断面において凸形状となるように第2ミラー構造22を形成することにより、直線Lに垂直な方向において光束を発散させる構造としていたが、本発明の多光軸光電センサユニットはこれに限られない。 In the mirror unit 20 according to the first embodiment, the second mirror structure 22 is formed so as to have a convex shape in a cross section including the direction perpendicular to the straight line L, so that the light flux is diverged in the direction perpendicular to the straight line L. However, the multi-optical axis photoelectric sensor unit of the present invention is not limited to this.
 図9は、本変形例におけるミラーユニット20Bの側面図である。図9に示すように、ミラーユニット20Bは、実施形態1における第2ミラー構造22の代わりに、第2ミラー構造40を備えている。また、ミラーユニット20Bは、実施形態1における第2ミラー構造22の構成に加えて、シリンドリカルレンズ41(光発散構造)を備えている。 FIG. 9 is a side view of a mirror unit 20B according to this modification. As shown in FIG. 9, the mirror unit 20B includes a second mirror structure 40 instead of the second mirror structure 22 in the first embodiment. Further, the mirror unit 20B includes a cylindrical lens 41 (light diverging structure) in addition to the configuration of the second mirror structure 22 in the first embodiment.
 第2ミラー構造40は、第1ミラー構造21によって反射された光を反射する反射面を備えている。当該反射面は、平面となっている。 2The second mirror structure 40 has a reflecting surface that reflects the light reflected by the first mirror structure 21. The reflection surface is a flat surface.
 シリンドリカルレンズ41は、第2ミラー構造40と投受光ユニット10との間に配置されている。シリンドリカルレンズ41は、直線Lに垂直な方向を含む断面において凸形状となっている。なお、シリンドリカルレンズ41は、第2筐体23の内部に設置されてもよいし、第2筐体23の外部に取り付けられてもよい。 The cylindrical lens 41 is disposed between the second mirror structure 40 and the light emitting / receiving unit 10. The cylindrical lens 41 has a convex shape in a cross section including a direction perpendicular to the straight line L. Note that the cylindrical lens 41 may be installed inside the second housing 23 or may be installed outside the second housing 23.
 上記の構成によれば、第2ミラー構造40によって反射された光をシリンドリカルレンズ41によって直線Lに垂直な方向において光束を発散させることができる。 According to the above configuration, the light reflected by the second mirror structure 40 can be diverged by the cylindrical lens 41 in a direction perpendicular to the straight line L.
 なお、発明の一態様のミラーユニットでは、シリンドリカルレンズ41の代わりに光発散構造としてトーリックレンズを用いてもよい。この場合には、直線Lに垂直な方向および直線Lに平行な方向において光束を発散させることができる。 In the mirror unit of one embodiment of the present invention, a toric lens may be used as a light diverging structure instead of the cylindrical lens 41. In this case, the luminous flux can be diverged in a direction perpendicular to the straight line L and in a direction parallel to the straight line L.
 〔まとめ〕
 本発明の一態様に係る多光軸光電センサユニットは、投光素子および受光素子を備える投受光ユニットと、前記投光素子からの光を反射させる第1ミラー構造、および、前記第1ミラー構造で反射された光を前記受光素子に向けて反射させる第2ミラー構造を備えるミラーユニットとを備え、前記第1ミラー構造は、第1反射面および該第1反射面に垂直に設けられる第2反射面からなるV字形状ミラー部が複数並列された構造となっている。
[Summary]
A multi-optical axis photoelectric sensor unit according to one embodiment of the present invention includes a light emitting and receiving unit including a light emitting element and a light receiving element, a first mirror structure for reflecting light from the light emitting element, and the first mirror structure. A mirror unit including a second mirror structure for reflecting the light reflected by the light-receiving element toward the light-receiving element, wherein the first mirror structure has a first reflection surface and a second reflection surface provided perpendicular to the first reflection surface. It has a structure in which a plurality of V-shaped mirror portions each including a reflection surface are arranged in parallel.
 上記の構成によれば、複数並列されたV字形状ミラー部からの光が集光されて受光素子に照射されるので、受光素子における受光量を上げることができる。よって、投受光ユニットとミラーユニットとの間の距離を長くすることが可能となる。 According to the above configuration, the light from the plurality of V-shaped mirror portions arranged in parallel is collected and irradiated to the light receiving element, so that the amount of light received by the light receiving element can be increased. Therefore, it is possible to increase the distance between the light emitting and receiving unit and the mirror unit.
 また、1つのV字形状ミラー部を用いた構成では、反射光の光束領域の角の部分に影になってしまう領域が生じていたが、V字形状ミラー部を複数並列することによって、影になってしまう領域の割合が低減される。よって、光の利用効率を上げることができるので、投受光ユニットとミラーユニットとの間の距離をさらに長くすることが可能となる。 Further, in the configuration using one V-shaped mirror section, a shadow area is generated at a corner of the light flux area of the reflected light. Is reduced. Therefore, since the light use efficiency can be improved, the distance between the light emitting / receiving unit and the mirror unit can be further increased.
 また、本発明の一態様に係る多光軸光電センサユニットにおいて、前記第2ミラー構造から出射される光束を発散させる光発散構造を有する構成であることが好ましい。 In addition, in the multi-optical axis photoelectric sensor unit according to one embodiment of the present invention, it is preferable that the multi-optical axis photoelectric sensor unit has a light diverging structure for diverging a light beam emitted from the second mirror structure.
 上記の構成によれば、受光素子における光の照射領域が広がるので、第2ミラー構造の配置方向のずれをある程度許容することが可能となる。よって、ミラーユニットの製造時の組立性が向上するとともに、投受光ユニットおよびミラーユニットの設置および調整を容易にすることができる。 According to the above configuration, since the light irradiation area of the light receiving element is widened, it is possible to allow a certain amount of deviation in the arrangement direction of the second mirror structure. Therefore, assemblability at the time of manufacturing the mirror unit is improved, and installation and adjustment of the light emitting / receiving unit and the mirror unit can be facilitated.
 また、本発明の一態様に係る多光軸光電センサユニットにおいて、前記第1ミラー構造および前記第2ミラー構造が並ぶ方向に対して垂直な方向において光束を発散させ、前記第1ミラー構造および前記第2ミラー構造が並ぶ方向において光束を発散させない構造であることが好ましい。 Further, in the multi-optical axis photoelectric sensor unit according to one embodiment of the present invention, a light beam is diverged in a direction perpendicular to a direction in which the first mirror structure and the second mirror structure are arranged, and the first mirror structure and the It is preferable that the structure does not diverge the light beam in the direction in which the second mirror structures are arranged.
 上記の構成によれば、複数並列されたV字形状ミラー部からの光が集光される方向でのみ光発散構造によって光束が発散されるので、必要以上に光束が発散されることがない。よって、受光素子における光量低下を抑えることができるので、投受光ユニットとミラーユニットとの間の距離を長くすることが可能となる。 According to the above configuration, since the light beam is diverged by the light diverging structure only in the direction in which the light from the plurality of parallel V-shaped mirror portions is condensed, the light beam is not diverged more than necessary. Therefore, it is possible to suppress a decrease in the amount of light in the light receiving element, and it is possible to increase the distance between the light emitting and receiving unit and the mirror unit.
 また、本発明の一態様に係る多光軸光電センサユニットにおいて、前記第2ミラー構造は、前記V字形状ミラー部におけるV字の谷による直線が伸びる方向、および前記第1ミラー構造および前記第2ミラー構造が並ぶ方向のいずれにも垂直な方向に対して平行であり、かつ、前記V字の谷による直線が伸びる方向に平行な断面において凸形状となっている構成であってもよい。 In the multi-optical axis photoelectric sensor unit according to one aspect of the present invention, the second mirror structure may include a direction in which a straight line formed by a V-shaped valley in the V-shaped mirror portion extends, and the first mirror structure and the second mirror structure. A configuration may be employed in which the two mirror structures are parallel to a direction perpendicular to any of the arranged directions and have a convex shape in a cross section parallel to the direction in which the straight line formed by the V-shaped valley extends.
 上記の構成によれば、第2ミラー構造を上記のような凸形状とするという簡易な構造によって、前記第1ミラー構造および前記第2ミラー構造が並ぶ方向に対して垂直な方向において光束を発散させる構造を実現することができる。 According to the above configuration, the light beam diverges in a direction perpendicular to the direction in which the first mirror structure and the second mirror structure are arranged by a simple structure in which the second mirror structure has the convex shape as described above. Structure can be realized.
 また、本発明の一態様に係る多光軸光電センサユニットにおいて、前記第2ミラー構造は、さらに、前記V字形状ミラー部におけるV字の谷による直線に平行な方向を含む断面においても凸形状となっている構成であってもよい。 In the multi-optical axis photoelectric sensor unit according to one embodiment of the present invention, the second mirror structure may further include a convex shape in a cross section including a direction parallel to a straight line formed by a V-shaped valley in the V-shaped mirror portion. May be adopted.
 上記の構成によれば、V字形状ミラー部におけるV字の谷による直線に垂直および平行な方向において光束を発散させることができる。そのため、受光素子における光の照射領域をさらに広げることができるので、第2ミラー構造の配置方向のずれの許容範囲を大きくすることができる。これにより、ミラーユニットの製造時の組立性をさらに向上させることができるとともに、投受光ユニットおよびミラーユニットの設置および調整をさらに容易にすることができる。 According to the above configuration, the light beam can be diverged in the direction perpendicular and parallel to the straight line formed by the V-shaped valley in the V-shaped mirror portion. Therefore, since the light irradiation area of the light receiving element can be further expanded, the allowable range of the displacement in the arrangement direction of the second mirror structure can be increased. Thereby, assemblability at the time of manufacturing the mirror unit can be further improved, and installation and adjustment of the light emitting / receiving unit and the mirror unit can be further facilitated.
 また、本発明の一態様に係る多光軸光電センサユニットにおいて、前記光発散構造は、前記第2ミラー構造により反射された光を発散させるレンズであってもよい。 In the multi-optical axis photoelectric sensor unit according to one aspect of the present invention, the light diverging structure may be a lens that diverges the light reflected by the second mirror structure.
 上記の構成によれば、第2ミラー構造により反射された光をレンズによって発散させることができる。 According to the above configuration, the light reflected by the second mirror structure can be diverged by the lens.
 また、本発明の一態様に係る多光軸光電センサユニットにおいて、前記投光素子、前記第1ミラー構造、前記第2ミラー構造、および前記受光素子からなる投受光セットが複数設けられている構成であってもよい。 Further, in the multi-optical axis photoelectric sensor unit according to an aspect of the present invention, a plurality of light emitting / receiving sets each including the light emitting element, the first mirror structure, the second mirror structure, and the light receiving element are provided. It may be.
 上記の構成によれば、投受光ユニットとミラーユニットとの間に4つ以上の光路を設けることができるので、より大きなサイズの検知対象に適用することが可能となる。 According to the above configuration, four or more optical paths can be provided between the light emitting / receiving unit and the mirror unit, so that the present invention can be applied to a detection target having a larger size.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 1A、1B 多光軸光電センサユニット
 10、10A 投受光ユニット
 11 投光素子
 12 受光素子
 20、20A、20B ミラーユニット
 21 第1ミラー構造
 22、40 第2ミラー構造
 30 V字形状ミラー部
 31 第1反射面
 32 第2反射面
 41 シリンドリカルレンズ(光発散構造)
1A, 1B Multi-optical axis photoelectric sensor unit 10, 10A Light emitting and receiving unit 11 Light emitting element 12, Light receiving element 20, 20A, 20B Mirror unit 21 First mirror structure 22, 40 Second mirror structure 30 V-shaped mirror unit 31 First Reflecting surface 32 Second reflecting surface 41 Cylindrical lens (light diverging structure)

Claims (6)

  1.  投光素子および受光素子を備える投受光ユニットと、
     前記投光素子からの光を反射させる第1ミラー構造、および、前記第1ミラー構造で反射された光を前記受光素子に向けて反射させる第2ミラー構造を備えるミラーユニットとを備え、
     前記第1ミラー構造は、
      第1反射面および該第1反射面に垂直に設けられる第2反射面からなるV字形状ミラー部が複数並列された構造となっている多光軸光電センサユニット。
    A light emitting and receiving unit including a light emitting element and a light receiving element,
    A first mirror structure that reflects light from the light projecting element, and a mirror unit that includes a second mirror structure that reflects light reflected by the first mirror structure toward the light receiving element,
    The first mirror structure includes:
    A multi-optical axis photoelectric sensor unit having a structure in which a plurality of V-shaped mirror portions each including a first reflection surface and a second reflection surface provided perpendicular to the first reflection surface are arranged in parallel.
  2.  前記第2ミラー構造から出射される光束を発散させる光発散構造を有する請求項1に記載の多光軸光電センサユニット。 2. The multi-optical axis photoelectric sensor unit according to claim 1, further comprising a light diverging structure for diverging a light beam emitted from the second mirror structure.
  3.  前記光発散構造は、前記第1ミラー構造および前記第2ミラー構造が並ぶ方向に対して垂直な方向において光束を発散させ、前記第1ミラー構造および前記第2ミラー構造が並ぶ方向において光束を発散させない構造である請求項2に記載の多光軸光電センサユニット。 The light diverging structure diverges a light beam in a direction perpendicular to a direction in which the first mirror structure and the second mirror structure are arranged, and diverges a light beam in a direction in which the first mirror structure and the second mirror structure are arranged. 3. The multi-optical axis photoelectric sensor unit according to claim 2, wherein the multi-optical axis photoelectric sensor unit has a structure that does not allow it to be formed.
  4.  前記第2ミラー構造は、前記V字形状ミラー部におけるV字の谷による直線が伸びる方向、および前記第1ミラー構造および前記第2ミラー構造が並ぶ方向のいずれにも垂直な方向に対して平行であり、かつ、前記V字の谷による直線が伸びる方向に平行な断面において凸形状となっている請求項3に記載の多光軸光電センサユニット。 The second mirror structure is parallel to a direction in which a straight line formed by a V-shaped valley in the V-shaped mirror portion extends and a direction perpendicular to both the direction in which the first mirror structure and the second mirror structure are arranged. 4. The multi-optical axis photoelectric sensor unit according to claim 3, wherein the multi-optical axis photoelectric sensor unit has a convex shape in a cross section parallel to a direction in which a straight line formed by the V-shaped valley extends.
  5.  前記光発散構造は、前記第2ミラー構造により反射された光を発散させるレンズであることを特徴とする請求項2に記載の多光軸光電センサユニット。 3. The multi-optical axis photoelectric sensor unit according to claim 2, wherein the light diverging structure is a lens that diverges the light reflected by the second mirror structure. 4.
  6.  前記投光素子、前記第1ミラー構造、前記第2ミラー構造、および前記受光素子からなる投受光セットが複数設けられている請求項1~5のいずれか1項に記載の多光軸光電センサユニット。 The multi-optical axis photoelectric sensor according to any one of claims 1 to 5, wherein a plurality of light emitting / receiving sets each including the light emitting element, the first mirror structure, the second mirror structure, and the light receiving element are provided. unit.
PCT/JP2019/028673 2018-08-07 2019-07-22 Multiple optical axis photoelectric sensor unit WO2020031674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-148574 2018-08-07
JP2018148574A JP7070221B2 (en) 2018-08-07 2018-08-07 Multi-optical axis photoelectric sensor unit

Publications (1)

Publication Number Publication Date
WO2020031674A1 true WO2020031674A1 (en) 2020-02-13

Family

ID=69414077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028673 WO2020031674A1 (en) 2018-08-07 2019-07-22 Multiple optical axis photoelectric sensor unit

Country Status (2)

Country Link
JP (1) JP7070221B2 (en)
WO (1) WO2020031674A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364464U (en) * 1976-11-01 1978-05-31
JPH0651072A (en) * 1992-08-03 1994-02-25 Idec Izumi Corp Area sensor
JPH10184194A (en) * 1996-10-31 1998-07-14 Opt Kk Safety auxiliary device for automatic door
JPH10197651A (en) * 1997-01-14 1998-07-31 Opt Kk Obstacle detector for automatic door
EP0967583A2 (en) * 1998-06-25 1999-12-29 Sick AG Opto-electronic sensor device
JP2002286859A (en) * 2001-03-22 2002-10-03 Tsubakimoto Chain Co Optical sensor
JP2002341122A (en) * 2001-05-16 2002-11-27 Tomy Co Ltd Reflection member and optical detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364464U (en) * 1976-11-01 1978-05-31
JPH0651072A (en) * 1992-08-03 1994-02-25 Idec Izumi Corp Area sensor
JPH10184194A (en) * 1996-10-31 1998-07-14 Opt Kk Safety auxiliary device for automatic door
JPH10197651A (en) * 1997-01-14 1998-07-31 Opt Kk Obstacle detector for automatic door
EP0967583A2 (en) * 1998-06-25 1999-12-29 Sick AG Opto-electronic sensor device
JP2002286859A (en) * 2001-03-22 2002-10-03 Tsubakimoto Chain Co Optical sensor
JP2002341122A (en) * 2001-05-16 2002-11-27 Tomy Co Ltd Reflection member and optical detector

Also Published As

Publication number Publication date
JP2020024134A (en) 2020-02-13
JP7070221B2 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
US8007138B2 (en) Lighting device
JP5795713B2 (en) Improved light guide and light output device
JP2014145744A (en) Object detection device
JP2008165202A5 (en)
US20120294009A1 (en) Lighting structure
WO2013150864A1 (en) Semiconductor laser optical device
JP6576719B2 (en) Vehicle lighting
TWI515465B (en) Light-couple element and light module having light-couple element
WO2014083839A1 (en) Light guide member
WO2020031674A1 (en) Multiple optical axis photoelectric sensor unit
JPWO2020174982A5 (en)
KR101758165B1 (en) Light emmiting device having laser diode
JP4207521B2 (en) Surface light source device
JP6815751B2 (en) Vehicle lighting
JP6830850B2 (en) Vehicle lighting
JP5634977B2 (en) Light source device
JP2008028614A (en) Optical space communication using vertical cavity surface emitting laser (vcsel)
US20140098518A1 (en) Device for the beam shaping of light
US7197058B2 (en) Semiconductor laser apparatus
KR20090055186A (en) Light guide plate with compensated emission light field
JP7136071B2 (en) Light emitting/receiving optical system and optical device
JP5910535B2 (en) Optical scanning device
JP2000292719A5 (en)
JPH103047A (en) Light source device for two beam scanning
WO2021141052A1 (en) Vehicle lighting tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846572

Country of ref document: EP

Kind code of ref document: A1