WO2021141052A1 - Vehicle lighting tool - Google Patents

Vehicle lighting tool Download PDF

Info

Publication number
WO2021141052A1
WO2021141052A1 PCT/JP2021/000230 JP2021000230W WO2021141052A1 WO 2021141052 A1 WO2021141052 A1 WO 2021141052A1 JP 2021000230 W JP2021000230 W JP 2021000230W WO 2021141052 A1 WO2021141052 A1 WO 2021141052A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
light guide
light source
incident
Prior art date
Application number
PCT/JP2021/000230
Other languages
French (fr)
Japanese (ja)
Inventor
洋弥 今村
鈴木 英治
悠二 大橋
Original Assignee
市光工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020000390A external-priority patent/JP2021111446A/en
Priority claimed from JP2020000391A external-priority patent/JP7439516B2/en
Application filed by 市光工業株式会社 filed Critical 市光工業株式会社
Publication of WO2021141052A1 publication Critical patent/WO2021141052A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/27Thick lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/08Refractors for light sources producing an asymmetric light distribution
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/155Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having inclined and horizontal cutoff lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/30Fog lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • This disclosure relates to vehicle lighting equipment.
  • light from the first light source is emitted from a projection lens to form a passing light distribution pattern
  • light from a second light source is emitted from a projection lens to form a traveling light distribution pattern.
  • Such a vehicle lamp has a simple configuration by providing the first light source and the second light source on the same substrate (see, for example, Patent Document 1 and the like).
  • the light from the first light source and the light from the second light source are crossed and then projected by the projection lens to obtain a light distribution pattern for passing and a light distribution pattern for traveling.
  • the above-mentioned vehicle lamp generally emits light in a direction in which the first light source and the second light source are orthogonal to the substrate. Therefore, the above-mentioned vehicle lamps are improved in that the first light source and the second light source are provided on the same substrate, and the light from them appropriately forms a light distribution pattern for passing and a light distribution pattern for traveling. There is room.
  • the present disclosure has been made in view of the above circumstances, and while the first light source and the second light source are provided on the same substrate, the light distribution pattern for passing and the light distribution pattern for traveling are appropriately provided by the light from them. It is an object of the present invention to provide a vehicle lamp that can be formed.
  • the vehicle lighting equipment of the present disclosure 1 includes a first light source that emits light that forms a light distribution pattern for passing, a second light source that emits light that forms a light distribution pattern for traveling, and light from the first light source. Is projected onto the front side in the front-rear direction in which the lens axis extends to form the passing light distribution pattern, and the light from the second light source is projected onto the front side in the front-rear direction to form the traveling light distribution pattern.
  • the projection lens, the first light source, and the substrate on which the second light source is provided are provided, and the first light source and the second light source have their emission light axes parallel to each other.
  • the second light source is inclined so as to have a dip angle with respect to the front-rear direction, and the second light source is provided at a position farther from the projection lens than the first light source in the front-rear direction.
  • the first light source and the second light source have an emission angle of 30 to 50 degrees with respect to the front-rear direction.
  • a plurality of the first light sources are arranged in the horizontal direction, and the light emitted from the plurality of the first light sources is guided to the projection lens between the plurality of the first light sources and the projection lens.
  • the lens light guide portions are individually provided corresponding to the plurality of first light sources, and the plurality of lens light guide portions have a light guide emitting surface directed to the projection lens, and as the distance from the lens axis increases.
  • the inclination angle of the light source emitting surface with respect to the orthogonal surface orthogonal to the front-rear direction becomes large.
  • a shade is provided between the first light source and the second light source to block a part of the light from the first light source to form a cut-off line in the passing light distribution pattern.
  • the dip angle is halved of the angle formed by the emitted optical axis with respect to the front-rear direction.
  • a plurality of the first light sources are arranged side by side in the horizontal direction, and the distance between the adjacent first light sources increases as the distance from the lens axis increases.
  • a lower lens portion and an upper lens portion are set around the lens axis, in the lower lens portion, a lower focus is set on the lens axis, and in the upper lens portion, the lower focus is set.
  • An upper focal point which has a shorter focal distance than the lower focal point, is set on the lens axis.
  • the vehicle lighting equipment of the present disclosure 2 has a first light source that emits light that forms a light distribution pattern for passing each other, and a plurality of second light sources that emit light that forms a light distribution pattern for traveling, which is composed of a plurality of partially distributed light regions.
  • the light source and the light from the first light source are projected to the front of the vehicle to form the passing light distribution pattern, and the light from a plurality of the second light sources is projected to the front of the vehicle to form the traveling light distribution pattern.
  • a projection lens forming the above, and a plurality of lens light guide portions that are individually provided corresponding to the plurality of the second light sources and guide the light emitted from the corresponding second light sources to the projection lens.
  • the lens light guide portion has a light guide incident surface facing the second light source, and the light guide incident surface is a curved surface having at least a part convex toward the second light source side.
  • the lens light guide unit includes a light guide reflecting surface that includes an intersection with an exit light axis of the second light source and reflects light from the second light source, and a guide that emits light reflected by the light guide reflecting surface.
  • the light guide reflecting surface has a light emitting surface, and the light guide reflecting surface is a curved surface that collects light from the second light source in the vicinity of the rear focal point of the projection lens by reflection.
  • the light guide reflecting surface is an incident side light guide reflecting surface provided on the lower lower surface in the vertical direction in the vicinity of the light guide incident surface in the lens light guide portion, and the light guide incident surface is the first light guide incident surface. It is a curved surface that refracts the light from the two light sources toward the light guide incident surface side on the lower surface of the lens light guide portion.
  • the lens light guide portion has an exit side light guide reflection surface that reflects a part of the light reflected by the incident side light guide reflection surface toward the light guide emission surface, and the exit side light guide reflection surface. Is a curved surface that is convex on the side opposite to the light guide reflection surface on the incident side.
  • the light guide reflection surface on the exit side has a tangent line at the tip on the light guide exit surface side of 5 to 10 degrees with respect to a straight line connecting the intersection and the point where the light guide reflection surface on the incident side concentrates. It is characterized by making an angle.
  • the light guide emission surface is orthogonal to a straight line connecting the intersection and the point where the reflected light from the incident side light guide reflection surface is collected.
  • the vehicle lighting equipment of the present disclosure while providing the first light source and the second light source on the same substrate, it is possible to appropriately form a passing light distribution pattern and a traveling light distribution pattern with the light from them.
  • Example 1 of the vehicle lamp 10 as an embodiment of the vehicle lamp according to the present disclosure will be described with reference to FIGS. 1 to 7.
  • the hatch showing the cross section is omitted in order to avoid complication.
  • the vehicle lamp 10 is used as a lamp used in a vehicle such as an automobile, and is used, for example, in a head lamp, a fog lamp, or the like.
  • the vehicle lighting fixture 10 has an optical axis adjustment mechanism for the vertical direction and an optical axis adjustment for the width direction in a lamp chamber formed by covering the open front end of the lamp housing with an outer lens on both the left and right sides of the front portion of the vehicle. It is provided via a mechanism.
  • the vehicle lighting equipment 10 when the direction in which the lens axis La of the projection lens 17 which is the direction of irradiating light extends is the front-rear direction (Z in the drawing) and the front-rear direction is along the horizontal plane.
  • the vertical direction is the vertical direction (Y in the drawing), and the direction orthogonal to the front-back direction and the vertical direction (horizontal direction) is the width direction (X in the drawing).
  • the front side in the front-rear direction points to the front of the vehicle in the vehicle lighting tool 10.
  • the vehicle lamp 10 includes a plurality of first light sources 11, a plurality of second light sources 12, a heat sink member 13, a first light guide lens 14, a second light guide lens 15, and a shade 16. And a projection lens 17 are provided to form a headlight unit.
  • the front-rear direction is defined by the lens axis La of the projection lens 17.
  • the lens axis La is an axis that is the optical center of the projection lens 17.
  • the plurality of first light sources 11 are aligned in the width direction, and in Example 1, seven (see FIG. 3) are aligned.
  • Each first light source 11 is composed of a light emitting element such as an LED (Light Emitting Diode), and each is mounted on a substrate 18.
  • the substrate 18 has a flat plate shape and is fixed to the front surface 13a of the heat sink member 13 in a state of being inclined with respect to the front-rear direction.
  • Each of the first light sources 11 is appropriately lit by being supplied with electric power from the lighting control circuit.
  • the seven first light sources 11 are arranged in the width direction, with one in the middle provided on the lens axis La in a plane orthogonal to the vertical direction, and the distance is increased toward the outside in the width direction. (See Fig. 3).
  • the interval from the center position on the lens axis La to both sides is 6 mm
  • the interval from them to the outside of the neighbor is 7 mm
  • the distance from them to the neighbor is set to 7 mm.
  • the distance to the outermost side, which is the outer side of the lens is 18 mm. If the number and spacing of the first light sources 11 are appropriately set, the spacing may be uniform or the spacing may be irregular, and the configuration is not limited to that of the first embodiment.
  • the plurality of second light sources 12 are aligned in the width direction, and in Example 1, 12 (see FIG. 4) are aligned.
  • Each of the second light sources 12 is composed of a light emitting element such as an LED, and is on the same plane as the first light source 11 on the same substrate 18 as the first light source 11 on the lower side in the vertical direction and the rear side in the front-rear direction.
  • the substrate 18 and the front surface 13a have a normal direction as a dip angle with respect to the front-rear direction on a surface including the front-rear direction and the up-down direction.
  • Each of the second light sources 12 is appropriately turned on all at once or individually by being supplied with electric power from the lighting control circuit.
  • the number of the second light sources 12 may be appropriately set, and is not limited to the configuration of the first embodiment.
  • Each of the first light source 11 and each second light source 12 emits light from a plane light emitting unit, and the emission optical axis Li is set in a direction orthogonal to the mounted substrate 18.
  • the first light source 11 and the second light source 12 are mounted on the same substrate 18, so that their respective emission optical axes Li are parallel.
  • Each emission optical axis Li has a dip angle in the range of 30 to 50 degrees with respect to the front-rear direction, and is 45 degrees in the first embodiment.
  • each of the emitted optical axes Li is set by determining an angle with respect to the front-rear direction on the substrate 18.
  • the heat sink member 13 is a heat radiating member that releases heat generated by each of the first light sources 11 and each of the second light sources 12 to the outside, and is made of a metal material or a resin material having high thermal conductivity.
  • a plurality of plate-shaped heat radiating fins 13b are provided in parallel on the side opposite to the front surface 13a (see FIG. 1).
  • the substrate 18 is attached to the front surface 13a so that each emission optical axis Li has the above angle.
  • the first light guide lens 14 guides the light L1 emitted from each of the first light sources 11 mounted on the substrate 18 to the projection lens 17.
  • the first light guide lens 14 is made of a transparent resin, and as shown in FIG. 3, seven first lens light guide portions arranged in the width direction individually corresponding to each first light source 11. Has 21.
  • Each first lens light guide unit 21 has a first light guide incident surface 22 facing the corresponding first light source 11, and a first light guide exit surface 23 directed toward the projection lens 17.
  • each first light guide incident surface 22 has an overall shape recessed inside the first lens light guide portion 21 (on the side opposite to the first light source 11). It has a curved incident surface 22a that is convexly curved outward at the center thereof, and an annular incident surface 22b that surrounds the curved incident surface 22a. Further, around each first light guide incident surface 22, a conical reflecting surface 22c surrounding the annular incident surface 22b is provided. Each curved incident surface 22a substantially coincides with the light emitting center of the corresponding first light source 11 with a focal point on the rear side, and the light L1 emitted from the first light source 11 travels parallel to the emitted optical axis Li. Light is incident on the light source 21 of the first lens.
  • the parallel light refers to light in a state in which light L1 is collimated by passing through a curved incident surface 22a.
  • the annular incident surface 22b is provided so as to project toward each first light source 11, and among the light L1 from the first light source 11, the light L1 that does not travel to the curved incident surface 22a is directed to the first lens light guide portion 21. Make it incident.
  • the reflecting surface 22c is formed at a position where the light L1 incident on the first light guide lens 14 travels from the annular incident surface 22b. When the light L1 incident from the annular incident surface 22b is reflected, the reflecting surface 22c is a parallel light traveling in parallel with the emitted light axis Li.
  • the reflecting surface 22c may reflect the light L1 by utilizing total reflection, or may reflect the light L1 by adhering aluminum, silver, or the like by vapor deposition, painting, or the like.
  • each of the first light guide incident surfaces 22 advances the light L1 emitted from the corresponding first light source 11 into the first light guide lens 14 as parallel light traveling in parallel with the emitted light axis Li. Then, it leads to the first light guide emitting surface 23.
  • Each first light guide exit surface 23 emits light L1 incident from the first light guide incident surface 22 to be parallel light toward the projection lens 17.
  • Each first light guide emitting surface 23 has an upper emitting surface portion 23a and a lower emitting surface portion 23b in a cross section orthogonal to the width direction.
  • Each upper exit surface portion 23a is provided in a region where the light L1 reflected by the reflection surface 22c located above the curved incident surface 22a travels, and is a concave surface that is convexly curved toward the first light guide incident surface 22 side. ing.
  • Each upper exit surface portion 23a is made to travel toward the lower lens portion 41 of the projection lens 17, which will be described later, by refracting the light L1 which is made parallel light through the first light guide incident surface 22.
  • each lower emitting surface portion 23b the focal point on the front side (projection lens 17 side) is arranged on the focal plane (image plane) including the lower focal point Fd of the lower lens portion 41 in the vicinity of the tip edge 16a of the shade 16. It has been set.
  • Each lower exit surface portion 23b refracts the light L1 which has been made parallel light through the first light guide incident surface 22 so that the light L1 is focused in the vicinity of the tip edge 16a.
  • the seven first light guide emitting surfaces 23 have an orthogonal plane Op in which the one in the center of the first lens light guide unit 21 is orthogonal to the lens axis La in a plane orthogonal to the vertical direction. It is substantially parallel, and when it deviates from the lens axis La, it is inclined with respect to the orthogonal plane Op so as to move outward in the width direction toward the rear side (first light source 11 side). Then, the inclination angles of the seven first light guide emitting surfaces 23 with respect to the orthogonal surface Op are increased toward the outside in the width direction.
  • the seven first light guide emitting surfaces 23 have their front focal points aligned on the focal planes including the lower focal point Fd in the vicinity of the tip edge 16a, in the width direction of the corresponding first light source 11.
  • the inclination angle with respect to the orthogonal plane Op is set according to the distance from the lens shaft La, that is, the distance from the lens shaft La in the width direction of the first lens light guide unit 21 provided.
  • the first light guide lens 14 is connected to each other by the connecting portion 24 in a state where each first lens light guide portion 21 has the above positional relationship.
  • the connecting portion 24 is fixed to the lens holder or the heat sink member 13 to which the heat sink member 13 and the projection lens 17 are assembled, so that the first lens guide to the first light source 11 and the projection lens 17 is obtained.
  • the positional relationship of the light unit 21 is set.
  • the second light guide lens 15 guides the light L2 emitted from each of the second light sources 12 mounted on the substrate 18 to the projection lens 17.
  • the second light guide lens 15 is made of a transparent resin, and as shown in FIG. 4, twelve second lens light guide portions arranged in the width direction individually corresponding to each second light source 12.
  • Each second lens light guide unit 31 has twelve long rod-shaped portions 32 extending toward the projection lens 17 side on the second light source 12 side, that is, the substrate 18 side, and each rod-shaped portion 32 is in the width direction. They are arranged in parallel at intervals. Further, in each second lens light guide portion 31, each rod-shaped portion 32 is integrated with a plate-shaped portion 33 on the projection lens 17 side, and has a plate shape that expands in the width direction.
  • each second lens light guide unit 31 the portion of each rod-shaped portion 32 facing the second light source 12 is designated as the second light guide incident surface 34, and the portion of the plate-shaped portion 33 facing the projection lens 17 side is the second. 2
  • the light guide emitting surface 35 is used. Therefore, the second light guide incident surface 34 is formed into 12 surfaces individually facing the 12 second light sources 12, and the second light guide exit surface 35 is the 12 second lens light guide portions 31. Is a single surface connected in the width direction.
  • each second lens light guide unit 31 is provided with a light guide reflecting surface 36 as shown in FIG.
  • the light guide reflecting surface 36 is provided on the lower side in the vertical direction in the vicinity of the second light guide incident surface 34 (mainly the rod-shaped portion 32) in the second lens light guide unit 31, and the second light guide incident surface 36 is provided.
  • the light L2 incident from the surface 34 is reflected on the second light guide emitting surface 35 side, that is, on the front side in the front-rear direction and on the upper side.
  • the light guide reflecting surface 36 may have a structure that utilizes total reflection, a reflection process, or another configuration as long as it reflects as described above.
  • the second light guide emitting surface 35 emits the light L2 reflected by the light guide reflecting surface 36 toward the projection lens 17.
  • each second lens light guide unit 31 in order to guide the light L2 incident from the second light guide incident surface 34 to the second light guide exit surface 35 side, a reflection surface may be provided at other locations as well. Well, it is not limited to the configuration of the first embodiment.
  • the shade 16 is provided on the second light guide lens 15 and has a plate shape extending in the width direction. Therefore, the shade 16 is provided between the optical path from each of the first light sources 11 to pass through the first light guide lens 14 and the optical path from each of the second light sources 12 to pass through the second light guide lens 15.
  • the shade 16 has an angle with respect to the front-rear direction smaller than each emission light axis Li of each first light source 11 and each second light source 12 on a plane orthogonal to the width direction. It is said to be 22.5 degrees, which is half the angle that Li makes.
  • the shade 16 is fixed to a lens holder that combines the heat sink member 13 and the projection lens 17, so that the above positional relationship is set.
  • the shade 16 has a shape in which the front tip edge 16a in the front-rear direction is joined by two horizontal edges having different positions in the vertical direction at an inclined edge (see FIG. 1).
  • the shade 16 is for passing by by blocking a part of the light L1 emitted from each of the first light sources 11 and guided by the first light guide lens 14 (each of the first lens light guide portions 21) by the tip edge 16a.
  • a cut-off line CL (see FIG. 5) is formed by connecting two horizontal cut-off lines with an inclined cut-off line on the upper edge of the light distribution pattern LP.
  • the size of the shade 16 may be appropriately set as long as it forms a cut-off line CL at the tip edge 16a, and is not limited to the configuration of the first embodiment.
  • the upper surface of the shade 16 in the vertical direction is a reflective surface 16b.
  • the reflecting surface 16b propagates to the projection lens 17 by reflecting the light L1 from each of the first light sources 11 guided by the first light guide lens 14. Therefore, the shade 16 can increase the utilization efficiency of the light L1 from each of the first light sources 11.
  • the shade 16 has a dip angle that is halved of the angle formed by each emission light axis Li of each first light source 11 with respect to the front-rear direction. Therefore, the shade 16 can reflect the light L1 along the emission optical axis Li from the first light source 11 guided by the first light guide lens 14 in a direction parallel to the lens axis La of the projection lens 17.
  • the shade 16 can reflect another light L1 from the first light source 11 guided by the first light guide lens 14 in a direction close to parallel to the lens axis La. From these facts, the shade 16 allows the light L1 from the first light source 11 passing through the first light guide lens 14 to travel in the direction parallel to or close to the lens axis La toward the vicinity of the lens axis La. it can.
  • the projection lens 17 is a convex lens, and in the first embodiment, the exit surface 17a is a convex surface and the incident surface 17b is a flat surface. As long as the projection lens 17 is a convex lens as a whole, the exit surface 17a may be a flat surface or a concave surface, and the incident surface 17b may be a convex surface or a concave surface, and is not limited to the configuration of the first embodiment.
  • the projection lens 17 is supported by the lens holder. The lens holder is in a state where the projection lens 17 is positioned with respect to each of the first light source 11, each second light source 12, the first light guide lens 14, the second light guide lens 15, and the shade 16 mounted on the substrate 18. , Assembled to the heat sink member 13.
  • the projection lens 17 has a lower lens portion 41 located on the lower side and an upper lens portion 42 located on the upper side. Both lens portions (41, 42) have different curvatures of the exit surface 17a in the cross section in the radial direction from the lens axis La, and have different focal lengths at each.
  • the lower focal point Fd on the rear side in the projection direction is set to be in the vicinity of the tip edge 16a of the shade plate 16 on the lens axis La.
  • the upper focal point Fu on the rear side in the projection direction is set on the lens axis La on the front side in the projection direction with respect to the lower focal point Fd.
  • the projection lens 17 continuously increases the focal length from the lower focal length Fd on the lower lens portion 41 side to the upper focal length Fu on the upper lens portion 42 side at the position where the lower lens portion 41 and the upper lens portion 42 are connected. It is changing (so-called gradual change).
  • the vehicle lighting fixture 10 is provided in the lighting chamber, and an external connector is connected to the substrate 18 via a connector connecting portion.
  • the vehicle lighting fixture 10 supplies electric power to each of the first light sources 11 and each of the second light sources 12 mounted on the substrate 18 from the lighting control circuit via the external connector and the connector connection portion, thereby causing the first light sources 11 and each of the second light sources 12.
  • Each second light source 12 is turned on and off as appropriate.
  • the light L1 from each of the first light sources 11 is emitted from each of the first light guide incident surfaces 22 of the first light guide lens 14.
  • the light L1 that has passed through the curved incident surface 22a is regarded as parallel light, and the light L1 that has passed through the annular incident surface 22b is reflected by the reflecting surface 22c and emitted from the first light guide emitting surface 23.
  • the light L1 travels to the vicinity of the lower focal point Fd of the lower lens portion 41 of the projection lens 17 set in the vicinity of the tip edge 16a of the shade 16 on the lens axis La.
  • the light L1 is divided into seven parts arranged in the horizontal direction below the vicinity of the position (horizontal line) of the lens axis La on the projection surface. It forms an optical region lp.
  • the seven partial distribution light regions lp are integrally formed side by side in the width direction while partially overlapping each other to form a passing light distribution pattern LP.
  • a part of each light L1 is blocked by the tip edge 16a and advances to the projection lens 17 while being shaped along the tip edge 16a, and is projected by the projection lens 17. Then, a cut-off line CL is formed on the upper edge.
  • the light L2 from each of the second light sources 12 is emitted from the second light guide incident surface 34 to the second light guide lens. It is incident on each of the second light source light sources 31 of 15, guided by each second lens light source 31, and is emitted from the second light source exit surface 35.
  • the light L2 travels to the vicinity of the upper focal point Fu of the upper lens portion 42 of the projection lens 17 set on the front side of the tip edge 16a in the front-rear direction on the lens axis La.
  • the optical region hp is formed.
  • the twelve partially distributed light regions hp are integrally formed side by side in the width direction while partially overlapping each other to form a traveling light distribution pattern HP.
  • the vehicle lighting fixture 10 of the first embodiment is an ADB (Adaptive Driving Beam (variable light distribution type headlight)), and by turning on and off each second light source 12 individually, 12 partial distribution light regions are used.
  • the part distribution light region hp in a specific direction of the hp can be turned on and off.
  • the vehicle lamp 10 enables partial light distribution control in any direction in the traveling light distribution pattern HP.
  • the vehicle lamp 10 can form a passing light distribution pattern LP having a cut-off line CL as shown in FIG. 5 by turning on each of the first light sources 11, and the light distribution at the time of passing (light distribution at the time of passing). It can be a so-called low beam). Further, as shown in FIG. 7, the vehicle lighting tool 10 is superposed on the passing light distribution pattern LP by turning on each of the second light sources 12 in addition to the first light source 11, and the traveling light distribution pattern. The HP can be formed, and the light distribution during traveling (so-called high beam) can be obtained. Then, as described above, the vehicle lamp 10 can individually control the arbitrary part distribution light region hp in the traveling light distribution pattern HP by turning on and off each of the second light sources 12 individually. , ADB functions can also be realized.
  • a light distribution pattern for passing is formed by light from each first light source
  • a light distribution pattern for traveling is formed by light from each second light source.
  • the light from each first light source is propagated from the upper side in the vertical direction with respect to the lens axis to the lower focal point of the lower lens portion, and then projected by the projection lens to form a light distribution pattern for passing.
  • the light from each second light source is projected from the lower side in the vertical direction with respect to the lens axis to the upper focal point of the upper lens portion and then projected by the projection lens to distribute the light for traveling.
  • the first light source and the second light source are arranged so that the light emitted from each other intersects with each other. For this reason, it is difficult to provide each first light source and each second light source on the same substrate in the vehicle lamp.
  • the first light source 11 and the second light source 12 are mounted on the same substrate 18, and the emission optical axes Li are parallel to each other and have a dip angle in the front-rear direction. It is set to 30 to 50 degrees. Therefore, the vehicle lamp 10 can direct the emission light axis Li of each first light source 11 toward the lower focal point Fd of the lower lens portion 41, and each first light source 11 is provided by the first light guide lens 14. It is possible to easily guide the light L1 from the light source to the lower focal point Fd. As a result, the vehicle lamp 10 can guide the light L1 from each first light source 11 to the lower focal point Fd with a simple configuration, so that the light L1 can be efficiently guided to the lower focal point Fd. ..
  • the direction in which the emission light axis Li of each second light source 12 faces the upper focal point Fu of the upper lens portion 42 is significantly different, but the second light source 12 is moved forward and backward more than each first light source 11.
  • the vehicle lamp 10 can secure the degree of freedom of the light guide in the second light guide lens 15, and the second light guide lens 15 changes the direction in which the light L2 from each of the second light sources 12 travels. , The light L2 can be efficiently guided to the upper focal point Fu.
  • the vehicle lighting fixture 10 provides the first light source 11 and the second light source 12 on the same substrate 18, and efficiently utilizes the light L1 and the light L2 from them to provide a light distribution pattern LP for passing each other.
  • a traveling light distribution pattern HP can be formed.
  • the vehicle lamp 10 has a configuration in which a part of the light L1 from each first light source 11 passing through the first light guide lens 14 is blocked by the tip edge 16a, and the upper surface of the shade 16 is a reflecting surface 16b. .. Therefore, the vehicle lamp 10 can reflect the light L1 from each of the first light sources 11 blocked in the vicinity of the tip edge 16a by the reflecting surface 16b and proceed to the projection lens 17, and each of the first light sources. It is possible to increase the utilization efficiency of the light L1 from 11.
  • the vehicle lamp 10 is provided with a shade 16 as a dip angle that is 1/2 of the angle formed by the emission light axis Li of each first light source 11 in the front-rear direction.
  • the vehicle lamp 10 can make the traveling direction of the light L1 reflected by the reflecting surface 16b close to parallel to the front-rear direction (a state in which the inclination with respect to the front-rear direction is small), and in that state, the lens axis of the projection lens 17 It can be advanced to the vicinity of La.
  • the vehicle lamp 10 can advance the light L1 reflected by the reflecting surface 16b to the vicinity of the center where the vertical line and the horizontal line intersect in the passing light distribution pattern LP, and the traveling light distribution pattern HP. It is possible to improve the utilization efficiency of the light L1 from each of the first light sources 11 while forming the light L1 more appropriately.
  • the vehicle lamp 10 is provided so that the distance between the seven first light sources 11 in the width direction increases toward the outside. Therefore, the vehicle lamp 10 can form the light distribution region lp over a wide range on the projection surface so as to be along the horizon while making the vicinity of the center where the vertical line and the horizon intersect the brightest. As a result, the vehicle lighting fixture 10 can be sufficiently expanded in the horizontal direction and the distributed light regions lp of each part are arranged without gaps to form a light distribution pattern LP for passing each other.
  • the passing light distribution pattern LP is required to brighten the vicinity of the lens shaft La most, the vehicle lamp 10 can appropriately form the passing light distribution pattern LP with a simple configuration.
  • the vehicle lamp 10 sets the inclination angle of the first light guide emitting surface 23 with respect to the orthogonal surface Op as the distance from the lens axis La in the width direction increases in each first lens light guide portion 21 of the first light guide lens 14. It's getting bigger. Therefore, the vehicle lamp 10 can collect each light L1 at a lined position on the focal plane (image plane) including the lower focal Fd of the lower lens portion 41 in the vicinity of the tip edge 16a of the shade 16 and pass each other.
  • the light distribution pattern LP can be appropriately formed.
  • the lower focal length Fd of the lower lens portion 41 is a long focal length Df and the upper focal length Fu of the upper lens portion 42 is a short focal length Df on the lens axis La. Then, the vehicle lamp 10 sets the lower focal point Fd of the lower lens portion 41 in the vicinity of the tip edge 16a of the shade 16. Therefore, in the vehicle lamp 10, the light L1 emitted from each of the first light sources 11 and guided by the first light guide lens 14 is directed by the shade 16 on the lower focal plane (image plane) including the lower focal Fd. It can be incident on the projection lens 17 by passing above the tip edge 16a. Therefore, in the vehicle lamp 10, the light L1 from each of the first light sources 11 can be guided below the cut-off line CL on the projection surface, and the light distribution pattern LP for passing can be appropriately formed.
  • the upper focal point Fu of the upper lens portion 42 is on the projection lens 17 side of the lower focal point Fd set in the vicinity of the tip edge 16a of the shade 16 on the lens axis La. Therefore, in the vehicle lighting equipment 10, since the light L2 from each of the second light sources 12 is not blocked by the shade 16 in the vicinity of the upper focal Fu, the upper focal Fu on the focal plane (image plane) including the upper focal Fu In addition to the lower side, the light L2 from each second light source 12 can be advanced to the projection lens 17 through the upper side of the upper focal point Fu on the same focal plane. As a result, in the vehicle lighting fixture 10, as shown in FIGS.
  • the vehicle lamp 10 can form the passing light distribution pattern LP formed by the light L2 from each of the second light sources 12 below the cut-off line CL on the projection surface, and can be combined with the traveling light distribution pattern HP. It is possible to suppress the occurrence of dark areas between the two. As a result, the vehicle lamp 10 can appropriately form the light distribution pattern LP for passing and the light distribution pattern HP for traveling while giving the projection lens 17 a good appearance without steps.
  • the vehicle lamp 10 of the first embodiment can obtain the following effects.
  • the first light source 11 and the second light source 12 are tilted as a dip angle with respect to the front-rear direction while the emission light axes Li are parallel to each other, and are projected more than the first light source 11 in the front-rear direction.
  • a second light source 12 is provided at a position away from the lens 17. Therefore, in the vehicle lamp 10, the first light source 11 and the second light source 12 are provided on the same substrate 18, and the light L1 and the light L2 from them are used to appropriately pass the light distribution pattern LP for passing and the light distribution pattern for traveling. HP can be formed.
  • the vehicle lamp 10 has an emission optical axis Li of the first light source 11 and the second light source 12 at a dip angle of 30 to 50 degrees with respect to the front-rear direction. Therefore, in the vehicle lamp 10, it is easy to appropriately form both light distribution patterns (LP, HP) by the lights L1 and L2 from both light sources (11, 12) provided on the same substrate 18. Can be done. That is, the vehicle lamp 10 has the light L1 and L2 guided by the light L1 and L2, respectively, while making the first light guide lens 14 and the second light guide lens 15 easy to configure by setting the emission light axis Li to the above angle range. Can be appropriately guided to the projection lens 17.
  • LP, HP light distribution patterns
  • the vehicle lamp 10 in the plurality of first lens light guide portions 21, the inclination angle of the first light guide emission surface 23 with respect to the orthogonal plane Op orthogonal to the front-rear direction increases as the distance from the lens axis La increases. Therefore, the vehicle lamp 10 appropriately collects the light L1 from each of the first light sources 11 in the vicinity of the tip edge 16a of the shade 16 even if the distance between the first light sources 11 in the width direction is set as described above. It is possible to appropriately form a light distribution pattern LP for passing each other.
  • the vehicle lamp 10 is provided with a shade 16 forming a cut-off line CL of the passing light distribution pattern LP between the first light source 11 and the second light source 12, and the shade 16 is set with respect to the front-rear direction.
  • the dip angle is halved of the angle formed by the emission light axis Li. Therefore, the vehicle lamp 10 can prevent the light L1 from the first light source 11 reflected by the reflecting surface 16b from being projected to an unexpected position in the region forming the traveling light distribution pattern HP.
  • the vehicle lamp 10 is configured such that a plurality of first light sources 11 are arranged in the horizontal direction, and the distance between adjacent first light sources 11 increases as the distance from the lens axis La increases. Therefore, the vehicle lighting fixture 10 can sufficiently widen the vicinity of the lens axis La in the horizontal direction and arrange the distributed light regions lp of each part without gaps, and can appropriately form the light distribution pattern LP for passing each other. ..
  • the projection lens 17 sets the upper focal length Fu of the upper lens portion 42 to be shorter than the lower focal length Fd of the lower lens portion 41 on the lens axis La. Therefore, the vehicle lighting fixture 10 can be appropriately formed so that the upper end portion of the passing light distribution pattern LP and the lower end portion of the traveling light distribution pattern HP overlap each other.
  • the first light source 11 and the second light source 12 are provided on the same substrate 18, and the light L1 and the light L2 from them are appropriately used.
  • a light distribution pattern LP for passing and a light distribution pattern HP for traveling can be formed.
  • vehicle lamps of the present disclosure have been described based on the first embodiment, the specific configuration is not limited to the first embodiment and deviates from the gist of the invention according to each claim of the claims. Unless otherwise, design changes and additions are allowed.
  • the function of the ADB can be realized by individually controlling the turning on and off of each part distributed light region hp in the traveling light distribution pattern HP.
  • the first light source 11 that forms the passing light distribution pattern LP and the second light source 12 that forms the traveling light distribution pattern HP are provided on the same substrate 18, and the respective emitted lights are provided. It is not limited to the configuration of the first embodiment as long as the axes Li are parallel to each other and each emitted light axis Li has a dip angle of 30 to 50 degrees with respect to the front-rear direction.
  • first lens light guides 21 and seven first light sources 11 are provided.
  • the number of the first lens light guide unit 21 and the first light source 11 may be appropriately set according to the number of the unit-distributed light regions lp to be formed and the size and shape of the light distribution pattern LP for passing by them. It is not limited to the configuration of Example 1.
  • the emission optical axes Li of the first light source 11 and the second light source 12 are set to 30 to 50 degrees in dip angle with respect to the front-rear direction.
  • the first light source 11 and the second light source 12 are tilted as a dip angle with respect to the front-rear direction while the emission optical axes Li are parallel to each other, and the position is farther from the projection lens 17 than the first light source 11 in the front-rear direction.
  • the angle of the emitted optical axis Li with respect to the front-rear direction may be appropriately set, and is not limited to the configuration of the first embodiment.
  • each part-distributed light region is individually turned on and off, each part-distributed light region is not greatly expanded to the adjacent part-distributed light region and is not blurred.
  • the vehicle lighting equipment described above is provided with a second light guide lens individually corresponding to each second light source, and a projection lens while condensing the light from each second light source with the corresponding second light source lens.
  • each second light source emits light from a light emitting surface having a predetermined area, it is difficult to properly collect the light with the second light guide lens, and each part distributed light region is covered. There is room for improvement in terms of clarification.
  • the second embodiment is disclosed in view of the above circumstances, and discloses a vehicle lighting fixture capable of clearly forming a distributed light region for each part of a traveling light distribution pattern.
  • FIGS. 1, 3, 5, 5 to 7, and 8 to 11 a second embodiment of the vehicle lamp 10 as an embodiment of the vehicle lamp according to the present disclosure will be described with reference to FIGS. 1, 3, 5, 5 to 7, and 8 to 11. Note that in FIGS. 8, 10 and 11, the hatch showing the cross section of the second lens light guide unit 141 and the projection lens 17 is omitted in order to avoid complication.
  • the vehicle lamp 10 includes a plurality of first light sources 11, a plurality of second light sources 12, a heat sink member 13, a first light guide lens 14, a second light guide lens 15, and a shade 16. And a projection lens 17 are provided to form a headlight unit.
  • the front-rear direction is defined by the lens axis La of the projection lens 17.
  • the lens axis La is an axis that is the optical center of the projection lens 17.
  • the plurality of first light sources 11 are aligned in the width direction, and in Example 2, seven (see FIG. 3) are aligned.
  • Each first light source 11 is composed of a light emitting element such as an LED (Light Emitting Diode), and each is mounted on a substrate 18.
  • the substrate 18 has a flat plate shape and is fixed to the front surface 13a of the heat sink member 13.
  • Each of the first light sources 11 is appropriately lit by being supplied with electric power from the lighting control circuit.
  • the seven first light sources 11 are arranged in the width direction, with one in the middle provided on the lens axis La in a plane orthogonal to the vertical direction, and the distance is increased toward the outside in the width direction. (See Fig. 3). Note that this interval may be set as appropriate, and is not limited to the configuration of the second embodiment.
  • the plurality of second light sources 12 are aligned in the width direction, and in Example 2, 12 (see FIG. 9) are aligned.
  • Each second light source 12 is composed of a light emitting element such as an LED, and is on the same substrate 18 as each first light source 11 on the lower side in the vertical direction and the rear side in the front-rear direction than each first light source 11. It is mounted on the same plane. Therefore, the substrate 18 and the front surface 13a have a normal direction as a dip angle with respect to the front-rear direction on a surface including the front-rear direction and the up-down direction.
  • Each of the second light sources 12 is appropriately turned on all at once or individually by being supplied with electric power from the lighting control circuit.
  • the number of the second light sources 12 may be appropriately set, and is not limited to the configuration of the second embodiment.
  • Each of the first light source 11 and each second light source 12 emits light from a plane light emitting unit, and the emission optical axis Li is set in a direction orthogonal to the mounted substrate 18.
  • the first light source 11 and the second light source 12 are mounted on the same substrate 18, so that their respective emission optical axes Li are parallel.
  • Each emission optical axis Li has a dip angle in the range of 30 to 50 degrees with respect to the front-rear direction.
  • each of the emitted optical axes Li is set by determining an angle with respect to the front-rear direction on the substrate 18.
  • the heat sink member 13 is a heat radiating member that releases heat generated by each of the first light sources 11 and each of the second light sources 12 to the outside, and is made of a metal material or a resin material having high thermal conductivity.
  • a plurality of plate-shaped heat radiating fins 13b are provided in parallel on the side opposite to the front surface 13a (see FIG. 1).
  • the substrate 18 is attached to the front surface 13a so that each emission optical axis Li has the above angle.
  • the first light guide lens 14 guides the light L1 emitted from each of the first light sources 11 mounted on the substrate 18 to the projection lens 17.
  • the first light guide lens 14 is made of a transparent resin, and as shown in FIG. 3, seven first lens light guide portions arranged in the width direction individually corresponding to each first light source 11. Has 21.
  • Each first lens light guide unit 21 has a first light guide incident surface 22 facing the corresponding first light source 11, and a first light guide exit surface 23 directed toward the projection lens 17. They are connected to each other by the connecting portion 24.
  • Each first lens light guide unit 21 causes light L1 from each first light source 11 incident from the first light guide incident surface 22 and emitted from each first light guide emission surface 23 to be emitted from the tip edge 16a of the shade 16. It is optically designed to focus in the vicinity.
  • the second light guide lens 15 guides the light L2 emitted from the second light source 12 mounted on the substrate 18 to the projection lens 17. As shown in FIG. 9, the second light guide lens 15 has twelve second lens light guide portions 141 individually corresponding to each second light source 12 and arranged in the width direction. The configuration of each of the second lens light guide portions 141 will be described later.
  • the shade 16 is provided on the second light guide lens 15 and has a plate shape extending in the width direction. Therefore, the shade 16 is provided between the optical path from each of the first light sources 11 to pass through the first light guide lens 14 and the optical path from each of the second light sources 12 to pass through the second light guide lens 15.
  • the shade 16 has a shape in which the front end edge 16a in the front-rear direction is joined by two horizontal edges having different positions in the vertical direction at an inclined edge.
  • the shade 16 is for passing by by blocking a part of the light L1 emitted from each of the first light sources 11 and guided by the first light guide lens 14 (each of the first lens light guide portions 21) by the tip edge 16a.
  • a cut-off line CL (see FIG.
  • the size of the shade 16 may be appropriately set as long as it forms a cut-off line CL at the tip edge 16a, and is not limited to the configuration of the second embodiment.
  • the projection lens 17 is a convex lens, and in the second embodiment, the exit surface 17a is a convex surface and the incident surface 17b is a flat surface. As long as the projection lens 17 is a convex lens as a whole, the exit surface 17a may be a flat surface or a concave surface, and the incident surface 17b may be a convex surface or a concave surface, and is not limited to the configuration of the second embodiment.
  • the projection lens 17 is supported by the lens holder. The lens holder is in a state where the projection lens 17 is positioned with respect to each of the first light source 11, each second light source 12, the first light guide lens 14, the second light guide lens 15, and the shade 16 mounted on the substrate 18. , Assembled to the heat sink member 13.
  • the projection lens 17 has the rear focal point Fb set in the vicinity of the tip edge 16a of the shade 16.
  • the projection lens 17 projects the light L1 emitted from the first light source 11 and guided by the first light guide lens 14 toward the front of the vehicle to obtain the passing light distribution pattern LP (at least a part) of FIG. Form.
  • the projection lens 17 forms the traveling light distribution pattern HP of FIG. 6 by projecting the light L2 emitted from each of the second light sources 12 and guided by the second light guide lens 15 toward the front of the vehicle. ..
  • the second light guide lens 15 is made of a transparent resin, and as shown in FIG. 9, twelve second lens light guide portions arranged in the width direction individually corresponding to each second light source 12. It has 141.
  • Each of the second lens light guide portions 141 has 12 long rod-shaped portions 142 whose second light source 12 side, that is, the substrate 18 side extends toward the projection lens 17 side, and each rod-shaped portion 142 is in the width direction. They are arranged in parallel at intervals.
  • each of the second lens light guide portions 141 has a plate shape in which each rod-shaped portion 142 is integrated with a plate-shaped portion 43 on the projection lens 17 side and expands in the width direction.
  • Each of the second lens light guide portions 141 has a portion of each rod-shaped portion 142 facing the second light source 12 as a second light guide incident surface 44, and a portion of the plate-shaped portion 43 facing the projection lens 17 side. 2
  • the light guide emitting surface 45 is used. Therefore, the second light guide incident surface 44 is formed into twelve surfaces individually facing the twelve second light sources 12, and the second light guide exit surface 45 is formed by the twelve second lens light guide portions 141. Is a single surface connected in the width direction.
  • the width direction of each rod-shaped portion 142 is widened from the second light guide incident surface 44 toward the second light guide exit surface 45.
  • the rate of expansion of each rod-shaped portion 142 in the width direction is increased from the inside to the outside in the width direction.
  • each rod-shaped portion 142 the two central portions in the width direction extend toward the projection lens 17 side with substantially the same dimensions as the second light guide incident surface 44, and the provided positions are toward the outside in the width direction. , The way of spreading with respect to the second light guide incident surface 44 becomes large.
  • Each of the second lens light guide portions 141 has the same optical design as each other. Therefore, in the following, the optical design of the second lens light guide unit 141 will be described with reference to FIG. 10 showing a cross section similar to that of FIG. 8 and FIG. 11 which is a partially enlarged view thereof.
  • FIG. 10 shows a cross section of the second lens light guide unit 141, which is the sixth from the right in FIG.
  • the second lens light guide unit 141 has, in addition to the second light guide incident surface 44 and the second light guide exit surface 45, the incident side light guide reflection surface 46 and the exit side light guide reflection surface. 47 is provided.
  • the second lens light guide unit 141 directs the light L2 from the second light source 12, whose emission optical axis Li is inclined toward the front side in the front-rear direction and downward in the up-down direction, to the rear side of the projection lens 17.
  • the second light guide incident surface 44 faces the second light source 12 and is orthogonal to the emission light axis Li of the second light source 12 as a whole, and is in the vertical direction toward the rear side in the front-rear direction.
  • the second lens light guide unit 141 intersects the direction in which the light L2 from the second light source 12 is incident from the second light guide incident surface 44 and the direction in which the light L2 is emitted from the second light guide exit surface 45. Has been done.
  • the incident side light guide reflecting surface 46 is provided on the lower surface (lower surface) in the vertical direction in the vicinity of the second light guide incident surface 44 (mainly the rod-shaped portion 142) in the second lens light guide unit 141.
  • the light L2 incident from the second light guide incident surface 44 is reflected on the second light guide exit surface 45 side, that is, on the front side in the front-rear direction and on the upper side.
  • the light emitting side light reflecting surface 47 is provided on the upper side in the vertical direction in the vicinity of the second light guide emitting surface 45 (mainly the plate-shaped portion 43) in the second lens light guide unit 141, and is provided on the incident side.
  • the light L2 reflected by the light guide reflecting surface 46 is reflected to the front side in the front-rear direction.
  • the light guide reflection surface 46 on the incident side and the light guide reflection surface 47 on the exit side may be those that utilize total reflection, those that are subjected to reflection processing, or other configurations as long as they reflect as described above.
  • the second lens light guide unit 141 is optically set as follows in order to efficiently guide the light L2 from the corresponding second light source 12.
  • the second light guide incident surface 44 advances the light L2 from the second light source 12 to the region provided with the incident side light guide reflection surface 46 on the lower surface of the second lens light guide unit 141. In other words, it is refracted toward the second light guide incident surface 44 side on the lower surface of the second lens light guide unit 141.
  • the second light guide incident surface 44 has at least a second light source 12 side, that is, a curved incident surface 44a that is convexly curved upward in the vertical direction in order to guide the light L2 in this way.
  • the curved incident surface 44a has a center of curvature Cc on the emission light axis Li of the second light source 12, and optically positions the position of the first focal point F1 of the incident side light guide reflecting surface 46 with the second light source 12. It is a curved surface that is displaced at the position (the center of light emission).
  • the curved incident surface 44a may be a free curved surface based on such a curved surface, or may be a curved surface whose curvature is gradually changed. That is, in the second lens light guide unit 141, the light L2 from the second light source 12 travels in a state of being refracted by the second light guide incident surface 44, but the traveling direction is emitted from the first focal point F1. This is consistent with the mode of travel of the virtual light Lv that has not been refracted by the second light guide incident surface 44.
  • the curved incident surface 44a may be set to an arbitrary size from the upper end 44c of the second light guide incident surface 44 in the vertical direction, and in the second embodiment, the second light source 12 is set from the upper end 44c of the second light guide incident surface 44. It is set up to the position where it intersects the emission optical axis Li.
  • the second light guide incident surface 44 of the second embodiment is provided with a continuous flat incident surface 44b of the curved incident surface 44a at a location other than the curved incident surface 44a.
  • the flat incident surface 44b is a flat surface orthogonal to the emitted light axis Li, and causes the light L2 from the second light source 12 to travel to the incident side light guide reflecting surface 46.
  • the incident-side light guide reflecting surface 46 has a position on the emission optical axis Li of the second light source 12 behind the second light source 12 in the front-rear direction as the first focal point F1 and is projected.
  • the vicinity of the rear focal point Fb of the lens 17 is a free curved surface based on an ellipse having the second focal point F2.
  • the second focal point F2 is set in the vicinity of the upper end 45a of the second light guide emitting surface 45.
  • the second light guide incident surface 44 has a curved incident surface 44a that optically displaces the position of the first focal point F1 of the incident side light guide reflection surface 46 to the position of the second light source 12 as described above.
  • the incident side light guide reflecting surface 46 substantially has the second light source 12 as the first focal point F1 in consideration of the optical characteristics of the curved incident surface 44a. Further, the incident side light guide reflecting surface 46 is optically set so as to focus the light L2 from the second light source 12 passing through the flat incident surface 44b in the vicinity of the second focal point F2. Therefore, the incident side light guide reflecting surface 46 reflects the light L2 emitted from the second light source 12 and passing through the curved incident surface 44a or the flat incident surface 44b toward the second focal point F2. As a result, the light guide reflecting surface 46 on the incident side has a second focal point F2 at which the reflected light is collected as an optical design.
  • the incident side light guide reflecting surface 46 is optically set so as to reflect the light L2 from the center position of the light emitting surface of the second light source 12 toward the second focal point F2 as a point light source.
  • the light emitting surface of the second light source 12 has a predetermined area. Therefore, it is difficult for the incident side light guide reflecting surface 46 to collect all of the light L2 passing through the second light source 12 to the second light guide incident surface 44 at the second focal point F2. Therefore, the second lens light guide unit 141 is provided with a light guide reflection surface 47 on the exit side.
  • the light emitting side light reflecting surface 47 reflects the light L2 emitted from the second light source 12 through the second light guide incident surface 44 and reflected by the incident side light guide reflecting surface 46 toward the front side in the front-rear direction. Then, it advances to the second light guide emission surface 45.
  • the light emitting side light reflecting surface 47 is a surface extending from the upper end 45a of the second light guide emitting surface 45 to the rear side (second light source 12 side) in the front-rear direction, and is the incident side light guide reflecting surface 46. It is curved convexly on the opposite side, that is, on the upper side in the vertical direction.
  • the light emitting side light reflecting surface 47 of the second embodiment has a curved surface having a radius of curvature of 100 mm to 1000 mm.
  • the tangent line Lt at the tip portion 47a on the upper end 45a side has the following positional relationship.
  • the intersection of the emission light axis Li of the second light source 12 and the light guide reflection surface 46 on the incident side is set as an intersection Ip
  • the straight line connecting the point to be focused on) is defined as the leading ray Lg.
  • the leading ray Lg is in a direction in which the light L2 from the second light source 12 using the first focal point F1 as a virtual light source is reflected by the incident side light guide reflecting surface 46 and travels to the second focal point F2.
  • the tangent line Lt has an angle ⁇ of 5 to 10 degrees with respect to the leading ray Lg.
  • leading light beam Lg is orthogonal to the second light guide emitting surface 45.
  • the second light guide emitting surface 45 of the second embodiment is a flat surface (flat surface) in a vertical cross section orthogonal to the width direction.
  • the second light guide emitting surface 45 may be curved as long as it is orthogonal to the leading light Lg at the intersection with the leading light Lg, and is not limited to the configuration of the second embodiment.
  • the second light guide exit surface 45 emits the light L2 reflected by the incident side light guide reflection surface 46 and the exit side light guide reflection surface 47 toward the projection lens 17. Since the second light guide emitting surface 45 is a flat surface orthogonal to the leading light ray Lg in the vertical cross section, the light L2 passing on the leading light ray Lg is emitted without being refracted, and the other light L2 is at an angle. It is refracted according to the above and emitted. Even when the second light guide emitting surface 45 is curved as described above, since it is orthogonal to the leading light Lg at the intersection with the leading light Lg, the second light guide emitting surface 45 is on the leading light Lg. The passing light L2 is emitted without being refracted, and the other light L2 is refracted and emitted according to the angle.
  • each second lens light guide unit 141 By fixing the second light guide lens 15 to the lens holder or the like, the above positional relationship of each second lens light guide unit 141 with respect to each second light source 12 and projection lens 17 is set. Since the second light guide lens 15 does not allow light L2 to enter and exit at locations other than the second light guide incident surface 44 and the second light guide exit surface 45, aluminum, silver, or the like is formed by vapor deposition, painting, or the like at the locations other than these. The light L2 may be reflected by adhering the reflective member of the above, or the light transmission may be prevented by adhering the light-shielding member.
  • the vehicle lighting fixture 10 is provided in the lighting chamber, and an external connector is connected to the substrate 18 via a connector connecting portion.
  • the vehicle lighting fixture 10 supplies electric power to each of the first light sources 11 and each of the second light sources 12 mounted on the substrate 18 from the lighting control circuit via the external connector and the connector connection portion, thereby causing the first light sources 11 and each of the second light sources 12.
  • Each second light source 12 is turned on and off as appropriate.
  • the light L1 from each of the first light sources 11 is emitted from each of the first lens light guide portions 21 of the first light guide lens 14. It is incident on the first light source incident surface 22 of the above, is guided by each first lens light source unit 21, and is emitted from the first light source emission surface 23.
  • the light L1 is projected by the projection lens 17, and as shown in FIG. 5, seven partially distributed light regions arranged in the horizontal direction below the vicinity of the position (horizontal line) of the lens axis La on the projection surface. Form lp.
  • the seven partial distribution light regions lp are integrally formed side by side in the width direction while partially overlapping each other to form a passing light distribution pattern LP.
  • a part of each light L1 is blocked by the tip edge 16a and projected by the projection lens 17 while being shaped along the tip edge 16a, so that a cut-off line CL is formed on the upper edge. It is formed.
  • the light L2 from each of the second light sources 12 guides the light L2 from the second light guide incident surface 44 to each second lens guide of the second light guide lens 15. It is incident on the light unit 141.
  • the incident side light guide reflecting surface 46 reflects the light L2 incident on the second light guide incident surface 44 toward the second focal point F2. A part of the light L2 reflected by the incident side light guide reflecting surface 46 travels directly to the second light guide emitting surface 45, and the other part is reflected by the emitting side light guide reflecting surface 47 to guide the second light. It proceeds to the light emitting surface 45.
  • the light L2 is emitted from the second light guide emitting surface 45 and travels to the vicinity of the second focal point F2, that is, the rear focal point Fb of the projection lens 17.
  • the light L2 travels to the projection lens 17 and is projected by the projection lens 17, and as shown in FIG. 6, is horizontal on the projection surface above the vicinity of the position (horizontal line) of the lens axis La.
  • Twelve partially distributed optical regions hp arranged in the direction are formed.
  • the twelve partially distributed light regions hp are integrally formed side by side in the width direction while partially overlapping each other to form a traveling light distribution pattern HP. Therefore, the vehicle lighting fixture 10 can form the traveling light distribution pattern HP so that the lower end portion overlaps the upper end portion of the passing light distribution pattern LP with the light L2 from each of the second light sources 12.
  • the vehicle lighting fixture 10 of the second embodiment is an ADB (Adaptive Driving Beam (variable light distribution type headlight)), and by turning on and off each second light source 12 individually, 12 partial distribution light regions are used.
  • the part distribution light region hp in a specific direction of the hp can be turned on and off.
  • the vehicle lamp 10 enables partial light distribution control in any direction in the traveling light distribution pattern HP.
  • the vehicle lamp 10 can form a passing light distribution pattern LP having a cut-off line CL as shown in FIG. 5 by turning on each of the first light sources 11, and the light distribution at the time of passing (light distribution at the time of passing). It can be a so-called low beam). Further, as shown in FIG. 7, the vehicle lighting tool 10 is superposed on the passing light distribution pattern LP by turning on each of the second light sources 12 in addition to the first light source 11, and the traveling light distribution pattern. The HP can be formed, and the light distribution during traveling (so-called high beam) can be obtained. Then, as described above, the vehicle lamp 10 can individually control the arbitrary part distribution light region hp in the traveling light distribution pattern HP by turning on and off each of the second light sources 12 individually. , ADB functions can also be realized.
  • the second light guide lens 15 has a curved incident surface 44a having a curved surface that is convex toward the second light source 12 at least in a part of the second light incident surface 44 of each second lens light guide unit 141.
  • the second light guide incident surface 44 is a second lens light guide unit 141 when the light L2 emitted from the second light source 12 is incident on the second lens light guide unit 141 due to the condensing action of the curved incident surface 44a. It can be refracted toward the second light guide incident surface 44 side on the lower surface of the light guide.
  • the second light guide lens 15 can set the direction in which the light L2 from the second light source 12 travels toward the second light guide incident surface 44 side, and directs the light L2 to the second focal point F2 of the incident side light guide reflection surface 46. Can lead to.
  • the second light guide incident surface 44 allows the light L2 from the second light source 12 to be transmitted to the incident side light guide reflection surface 46 on the lower surface of the second lens light guide unit 141. It is supposed to proceed to the area where is provided.
  • the light L2 emitted from the second light source 12 is not provided with the light L2a refracted by the curved incident surface 44a of the second light guide incident surface 44 and the curved incident surface 44a.
  • the light L2b refracted by the flat second light guide incident surface 44 (the flat incident surface 44b extended to the curved incident surface 44a side) is shown.
  • the light L2a travels to a region on the lower surface of the second lens light guide portion 141 where the incident side light guide reflecting surface 46 is provided, and is reflected by the incident side light guide reflecting surface 46 toward the second focal point F2. Then, it proceeds to the projection lens 17 through the second light guide emitting surface 45.
  • the light L2b travels to the front side in the front-rear direction from the region on the lower surface of the second lens light guide unit 141 where the incident side light guide reflection surface 46 is provided. Therefore, the light L2b is reflected at a location that is not set as the incident side light guide reflection surface 46, so that the light L2b travels to a position further downward from the second focal point F2, and the second light guide is transmitted from that position. It proceeds to the projection lens 17 through the exit surface 45. Therefore, the second light guide lens 15 appropriately guides the light L2 from the second light source 12 to the light guide reflection surface 46 on the incident side by providing the curved light incident surface 44a on the second light guide incident surface 44. Can be done. As a result, the second light guide lens 15 appropriately projects the light L2 so that the mode in which the light L2 from the second light source 12 actually travels has a desired luminous intensity distribution as the traveling light distribution pattern HP. Can lead to.
  • the incident side light guide reflection surface 46 is set at a position on the emission light axis Li of the second light source 12 behind the second light source 12 in the front-rear direction as the first focal point F1.
  • the vicinity of the rear focal point Fb of the projection lens 17 is a free curved surface based on an ellipse having the second focal point F2.
  • the second light guide lens 15 of the second embodiment optically displaces the position of the first focal point F1 of the light guide reflecting surface 46 on the incident side to the position of the corresponding second light source 12 (the center of light emission thereof). It has a curved incident surface 44a to be made to.
  • the incident side light guide reflecting surface 46 concentrates the light L2 from the second light source 12 passing through the flat incident surface 44b of the second light guide incident surface 44 in the vicinity of the second focal point F2. Is also set optically. Therefore, when the second light guide lens 15 reflects the light L2 from the second light source 12 through the second light guide incident surface 44 on the incident side light guide reflecting surface 46, the second light guide reflecting surface 46 of the incident side light guide reflecting surface 46. It can be advanced to bifocal F2. Therefore, the second light guide lens 15 can concentrate the light on the center (lens axis La) side where the vertical line and the horizontal line intersect on the projection surface, and the distant visibility can be improved.
  • the light guide reflection surface 47 on the exit side has a curved surface that is convex on the side opposite to the light guide reflection surface 46 on the incident side. Therefore, the light emitting side light emitting surface 47 directs the light L2 reflected by the incident side light guide reflecting surface 46 toward the second light guide emitting surface 45 while suppressing the light L2 from spreading in the second lens light guide unit 141. It can be reflected and the light L2 can be appropriately guided to the projection lens 17 as a result.
  • the tangent line Lt at the tip portion 47a leads a straight line connecting the intersection Ip of the emission light axis Li and the light guide reflection surface 46 on the incident side and the second focal point F2.
  • the light emitting side light reflecting surface 47 is set so as to form an angle ⁇ of 5 to 10 degrees with respect to Lg. Therefore, the light emitting side light guide reflecting surface 47 can reflect the light L2 reflected by the incident side light guide reflecting surface 46 toward the vicinity of the second focal point F2, that is, the vicinity of the lens axis La. Therefore, the second light guide lens 15 can concentrate the light on the center (lens axis La) side on the projection surface, and the distant visibility can be improved.
  • the light L2c reflected by the exit side light guide reflection surface 47 and the light exit side light guide reflection surface made flat.
  • the light L2d reflected at 47 (the position of the tangent line Lt) is shown.
  • the light L2c travels in the vicinity of the second focal point F2, whereas the light L2d travels downward from the light L2c.
  • the light emitting side light reflecting surface 47 can be curved as described above so that the angle with respect to the leading light ray Lg can be made smaller than the tangent line Lt, and the leading light ray Lg is the light guide on the incident side from the first focal point F1.
  • the second light guide lens 15 causes the light L2 from the second light source 12 to move to the vicinity of the second focal point F2, that is, to the vicinity of the lens axis La by curving the light emitting side light guide reflection surface 47 as described above. It can be directed and reflected, and can be appropriately guided to the projection lens 17.
  • the second light guide lens 15 has the second light guide emission surface 45 as a flat surface in the vertical cross section and is orthogonal to the leading light beam Lg. Therefore, the second light guide lens 15 does not refract the light L2 having a high amount of light passing on the leading light ray Lg from the second light source 12 on the second light guide emission surface 45, and the second light guide emission surface 45 thereof. Can be emitted from. From this, the second light guide lens 15 can efficiently utilize the light L2 from the second light source 12 to form the light distribution region hp for each part, that is, the light distribution pattern HP for traveling (see FIG. 6).
  • the second light guide lens 15 is composed of each second lens light guide portion 141 in which the divided rod-shaped portion 142 is integrated with the plate-shaped portion 43. Therefore, each second lens light guide unit 141 guides the light L2 from the second light source 12 to the projection lens 17 while suppressing the spread of the light L2 from the individually corresponding second light source 12. Can be done. As a result, the second light guide lens 15 can collect and brighten the light while suppressing the expansion of the distributed light region hp of each part.
  • the second light guide lens 15 of the second embodiment increases the proportion of the rod-shaped portions 142 that expand in the width direction from the inside to the outside in the width direction.
  • the second light guide lens 15 has the smallest width dimension of the two central divided light regions hp to collect light and increase the luminous intensity, and the width is increased so that the position of the divided light region hp is on the outside. Increase the size to disperse the light and reduce the luminosity.
  • the traveling light distribution pattern HP the luminous intensity near the center (lens axis La) where the vertical line and the horizontal line intersect is the highest (so-called hot zone), and the luminous intensity on the outer side in the width direction is low. Is required.
  • the second light guide lens 15 can form the traveling light distribution pattern HP with an appropriate luminous intensity distribution by setting the width dimension of each rod-shaped portion 142 as described above.
  • the vehicle lamp 10 of the second embodiment can obtain the following effects.
  • each second lens light guide portion 141 has a second light guide incident surface 44 facing the second light source 12, and at least a part of the second light guide incident surface 44 is the second light source 12. It is a curved surface that is convex to the side. Therefore, when the light L2 emitted from the second light source 12 is incident on the second lens light guide unit 141, the vehicle lamp 10 is in the front side (projection lens 17 side) in the front-rear direction in the second lens light guide unit 141. ) Can be suppressed, and the light L2 can be appropriately guided to the projection lens 17.
  • the vehicle lamp 10 projects the light L2 from each of the second light sources 12 guided by each of the second light guide lenses 15 with the projection lens 17, so that the distributed light region hp of each part is blurred and optically. It is possible to suppress the brightness from protruding from the area designed in. Therefore, the vehicle lamp 10 can be clearly formed by suppressing blurring and spreading of each part distribution light region hp.
  • the incident side light guide reflecting surface 46 is a curved surface that focuses the light L2 from the second light source 12 in the vicinity of the rear focal point Fb of the projection lens 17 by reflection. Therefore, in the vehicle lamp 10, each second lens light guide unit 141 can guide the light L2 emitted from the second light source 12 to the vicinity of the second focal point F2, and each unit is projected by the projection lens 17.
  • the distributed light region hp can be clearly formed.
  • the incident side light guide reflecting surface 46 is provided on the lower surface in the vertical direction in the vicinity of the second light guide incident surface 44 in the second lens light guide unit 141.
  • the second light guide incident surface 44 receives the light from the second light source 12 on the lower surface of the second lens light guide unit 141 on the side where the second light guide incident surface 44 is provided (second light guide incident surface 44). It is a curved surface that refracts to the side). Therefore, the vehicle lamp 10 can guide the light L2 from the corresponding second light source 12 through the second light guide incident surface 44 to the incident side light guide reflection surface 46 in each second light guide lens 15. , The light L2 can be more appropriately guided to the projection lens 17.
  • each second lens light guide unit 141 reflects a part of the light L2 reflected by the incident side light guide reflection surface 46 toward the second light guide exit surface 45. It has a surface 47, and the light emitting side light reflecting surface 47 thereof has a curved surface that is convex on the side opposite to the light emitting light reflecting surface 46 on the incident side. Therefore, the light emitting side light guide reflecting surface 47 can reflect the light L2 reflected by the incident side light guide reflecting surface 46 toward the projection lens 17 while suppressing the light L2 from spreading in the second lens light guide unit 141. As a result, the vehicle lamp 10 can appropriately guide the light L2 to the projection lens 17.
  • the vehicle lighting tool 10 has a tangent line Lt at the tip portion 47a on the second light guide emission surface 45 side on the light emission reflection surface 47 with respect to a leading light ray Lg which is a straight line connecting the intersection Ip and the second focal point F2.
  • the angle ⁇ is 5 to 10 degrees. Therefore, the light emitting side light guide reflecting surface 47 can reflect the light L2 reflected by the incident side light guide reflecting surface 46 toward the vicinity of the second focal point F2. As a result, the vehicle lamp 10 can appropriately guide the light L2 to the projection lens 17.
  • the vehicle lamp 10 has the second light guide emitting surface 45 orthogonal to the leading light beam Lg connecting the intersection Ip and the second focal point F2. Therefore, the second light guide lens 15 can emit light L2 having a high amount of light passing on the leading light ray Lg from the second light source 12 from the second light guide emission surface 45 without refraction. As a result, the vehicle lamp 10 can appropriately guide the light L2 to the projection lens 17.
  • the vehicle lighting equipment 10 of the second embodiment as the vehicle lighting equipment according to the present disclosure can clearly form the distribution light region hp of each part of the traveling light distribution pattern HP.
  • vehicle lamps of the present disclosure have been described based on the second embodiment, the specific configuration is not limited to the second embodiment and deviates from the gist of the invention according to each claim of the claims. Unless otherwise, design changes and additions are allowed.
  • the function of the ADB can be realized by individually controlling the turning on and off of the light distribution region hp of each part in the traveling light distribution pattern HP.
  • the vehicle lamp 10 projects the light L1 from the first light source 11 with the projection lens 17 to form a light distribution pattern LP for passing each other, and the light L2 from each of the second light sources 12 is directed to the lens light guide unit (the first).
  • the configuration is not limited to the configuration of the second embodiment, as long as it is guided by the two-lens light source unit 141) and projected by the projection lens 17 to form a traveling light distribution pattern HP composed of each portion distributed light region hp.
  • twelve second lens light guide portions 141 of the second light guide lens 15 are provided, and the second lens light guide portions 141 thereof are arranged side by side at intervals in the width direction. It is composed of a long rod-shaped portion 142 and a plate-shaped portion 43 that integrates them.
  • the second light guide lens 15 has a second lens light guide portion 141 corresponding to each second light source 12
  • the second light guide lens 15 is composed of only the rod-shaped portion 142 without the plate-shaped portion 43, that is, separated. It may be composed of 12 rod-shaped portions (142), and is not limited to the configuration of the second embodiment.
  • the twelve rod-shaped portions (142) may be arranged at intervals or may be arranged in contact with each other.
  • each rod-shaped portion (142) can be appropriately formed even when injection molding or the like is used, for example. This is because if the 12 rod-shaped portions (142) are integrated, the rod-shaped portions (142) will be lined up at narrow intervals or in contact with each other, which may make it difficult to form by injection molding or the like. by.
  • 12 second lens light guide portions 141 and 12 second light sources 12 are provided.
  • the number of the second lens light guide unit 141 and the second light source 12 may be appropriately set according to the number of the unit-distributed light regions hp to be formed and the size and shape of the traveling light distribution pattern HP by them. It is not limited to the configuration of Example 2.
  • the light emitting side light reflecting surface 47 is a curved surface having a radius of curvature of 100 mm to 1000 mm.
  • the light emitting side light reflecting surface 47 is convexly curved to the side opposite to the incident side light guide reflecting surface 46, and the light L2 reflected by the incident side light guide reflecting surface 46 is transferred to the second lens light guide unit. If the light is reflected toward the second light guide emitting surface 45 while being suppressed from spreading within 141, the radius of curvature may be appropriately set, and is not limited to the configuration of the second embodiment.
  • the light emitting side light reflecting surface 47 is a surface extending from the upper end 45a of the second light guide emitting surface 45 to the rear side in the front-rear direction, and is continuous with the second light guide emitting surface 45.
  • the light emitting side light emitting surface 47 reflects the light L2 reflected by the incident side light guide reflecting surface 46 toward the second light guide emitting surface 45 while suppressing the light L2 from spreading in the second lens light guide unit 141. As long as it does, it does not have to be continuous with the second light guide emitting surface 45, and is not limited to the configuration of the second embodiment.
  • the second light guide incident surface 44 has a curved incident surface 44a set as described above.
  • the second light guide incident surface 44 refracts the light L2 from the second light source 12 toward the second light guide incident surface 44 on the lower surface of the second lens light guide unit 141, and the incident side light guide reflection.
  • the surface 46 may be set to advance to the provided region, and is not limited to the configuration of the second embodiment.
  • the second light guide incident surface 44 (the curved incident surface 44a) may be a free curved surface based on a curved surface having a curvature center Cc on the emission optical axis Li of the second light source 12, and is optically first.
  • a free curved surface based on a curved surface that shifts the position of the focal point F1 to the position of the second light source 12 (the center of light emission thereof) may be used. That is, the curved incident surface 44a of the second embodiment is set based on the optical ideas of both of the two, but may be set based on the optical idea of either one. In addition, the shape of the curved incident surface 44a may be appropriately set as long as the light L2 from the second light source 12 is refracted toward the second light guide incident surface 44 on the lower surface of the second lens light guide unit 141. , The configuration is not limited to the second embodiment.
  • First lens light guide (as an example of lens light guide) 23 First light guide emission surface (as an example of light guide emission surface) 41 Lower lens part 42 Upper lens part Cl cut offline Df focal length Fd lower focus Fu upper focus Light distribution pattern for HP driving La lens axis Li exit optical axis LP passing light distribution pattern 141 (as an example of the lens light guide unit) Second lens light guide unit 142 Rod-shaped part 44 Second light guide incident surface (as an example of light guide incident surface) 45 Second light guide exit surface (as an example of light guide exit surface) 46 Incident side light guide reflection surface (as an example of light guide reflection surface) 47 Exit side light guide reflection surface 47a tip

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Provided is a vehicle lighting tool capable of appropriately forming an on-coming vehicle passing light distribution pattern and a traveling light distribution pattern using light from a first light source and a second light source while providing these light sources on the same substrate. A vehicle lighting tool 10 is provided with: a first light source 11 for emitting light L1 that forms an on-coming vehicle passing light distribution pattern LP; a second light source 12 for emitting light L2 that forms a traveling light distribution pattern HP; a projection lens 17 for forming the on-coming vehicle passing light distribution pattern LP by projecting the light L1 to the front side in the front-rear direction in which a lens axis La extends and for forming the traveling light distribution pattern HP by projecting the light L2 to the front side in the front-rear direction; and a substrate 18 on which the first light source 11 and the second light source 12 are provided. The respective outgoing light axes Li of the first light source 11 and the second light source 12 are parallel to each other. The first light source 11 and the second light source 12 are inclined at inclination angles with respect to the front-rear direction. The second light source 12 is disposed at a position away from the projection lens 17 relative to the first light source 11 in the front-rear direction.

Description

車両用灯具Vehicle lighting
 本開示は、車両用灯具に関する。 This disclosure relates to vehicle lighting equipment.
 車両用灯具は、第1光源からの光を投影レンズから出射させてすれ違い用配光パターンを形成し、第2光源からの光を投影レンズから出射させて走行用配光パターンを形成するものがある。 In vehicle lighting fixtures, light from the first light source is emitted from a projection lens to form a passing light distribution pattern, and light from a second light source is emitted from a projection lens to form a traveling light distribution pattern. is there.
 このような車両用灯具は、第1光源と第2光源とを同一の基板に設けることで、簡易な構成とすることが考えられている(例えば、特許文献1等参照)。 It is considered that such a vehicle lamp has a simple configuration by providing the first light source and the second light source on the same substrate (see, for example, Patent Document 1 and the like).
特開2017-199660号公報JP-A-2017-199660
 ここで、上記の車両用灯具は、第1光源からの光と第2光源からの光とを交差させてから投影レンズで投影することで、すれ違い用配光パターンと走行用配光パターンとを形成する。これに対して、上記の車両用灯具は、一般的に、第1光源や第2光源が基板に対して直交する方向に光を出射する。このため、上記の車両用灯具は、第1光源および第2光源を同一の基板に設けつつ、それらからの光で適切にすれ違い用配光パターンや走行用配光パターンを形成する点で改善の余地がある。 Here, in the above-mentioned vehicle lighting equipment, the light from the first light source and the light from the second light source are crossed and then projected by the projection lens to obtain a light distribution pattern for passing and a light distribution pattern for traveling. Form. On the other hand, the above-mentioned vehicle lamp generally emits light in a direction in which the first light source and the second light source are orthogonal to the substrate. Therefore, the above-mentioned vehicle lamps are improved in that the first light source and the second light source are provided on the same substrate, and the light from them appropriately forms a light distribution pattern for passing and a light distribution pattern for traveling. There is room.
 本開示は、上記の事情に鑑みて為されたもので、第1光源および第2光源を同一の基板に設けつつ、それらからの光で適切にすれ違い用配光パターンや走行用配光パターンを形成することのできる車両用灯具を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and while the first light source and the second light source are provided on the same substrate, the light distribution pattern for passing and the light distribution pattern for traveling are appropriately provided by the light from them. It is an object of the present invention to provide a vehicle lamp that can be formed.
 本開示1の車両用灯具は、すれ違い用配光パターンを形成する光を出射する第1光源と、走行用配光パターンを形成する光を出射する第2光源と、前記第1光源からの光をレンズ軸が延びる前後方向の前側に投影して前記すれ違い用配光パターンを形成するとともに、前記第2光源からの光を前記前後方向の前側に投影して前記走行用配光パターンを形成する投影レンズと、前記第1光源および前記第2光源が設けられる基板と、を備え、前記第1光源と前記第2光源とは、互いの出射光軸が平行とされつつ、前記出射光軸が前記前後方向に対して伏角とされて傾斜されており、前記第2光源は、前記前後方向で前記第1光源よりも前記投影レンズから離れた位置に設けられていることを特徴とする。 The vehicle lighting equipment of the present disclosure 1 includes a first light source that emits light that forms a light distribution pattern for passing, a second light source that emits light that forms a light distribution pattern for traveling, and light from the first light source. Is projected onto the front side in the front-rear direction in which the lens axis extends to form the passing light distribution pattern, and the light from the second light source is projected onto the front side in the front-rear direction to form the traveling light distribution pattern. The projection lens, the first light source, and the substrate on which the second light source is provided are provided, and the first light source and the second light source have their emission light axes parallel to each other. The second light source is inclined so as to have a dip angle with respect to the front-rear direction, and the second light source is provided at a position farther from the projection lens than the first light source in the front-rear direction.
 前記第1光源と前記第2光源とは、前記出射光軸が前記前後方向に対して、30度から50度の伏角とされている。 The first light source and the second light source have an emission angle of 30 to 50 degrees with respect to the front-rear direction.
 前記第1光源は、水平方向に複数が並べられて構成され、複数の前記第1光源と前記投影レンズとの間には、複数の前記第1光源から出射された光を前記投影レンズに導くレンズ導光部が複数の前記第1光源に個別に対応して設けられ、複数の前記レンズ導光部は、前記投影レンズに向けられた導光出射面を有し、前記レンズ軸から離れるに従って前記前後方向に直交する直交面に対する前記導光出射面の傾斜角度が大きくなる。
 前記第1光源と前記第2光源との間には、前記第1光源からの光の一部を遮光して前記すれ違い用配光パターンにおけるカットオフラインを形成するシェードが設けられ、前記シェードは、前記前後方向に対して前記出射光軸が為す角度の1/2の大きさの伏角とされている。
A plurality of the first light sources are arranged in the horizontal direction, and the light emitted from the plurality of the first light sources is guided to the projection lens between the plurality of the first light sources and the projection lens. The lens light guide portions are individually provided corresponding to the plurality of first light sources, and the plurality of lens light guide portions have a light guide emitting surface directed to the projection lens, and as the distance from the lens axis increases. The inclination angle of the light source emitting surface with respect to the orthogonal surface orthogonal to the front-rear direction becomes large.
A shade is provided between the first light source and the second light source to block a part of the light from the first light source to form a cut-off line in the passing light distribution pattern. The dip angle is halved of the angle formed by the emitted optical axis with respect to the front-rear direction.
 前記第1光源は、水平方向に複数が並べられて構成され、前記レンズ軸から離れるに従って隣り合う前記第1光源同士の間隔が大きくされている。 A plurality of the first light sources are arranged side by side in the horizontal direction, and the distance between the adjacent first light sources increases as the distance from the lens axis increases.
 前記投影レンズでは、前記レンズ軸を中心として下側レンズ部と上側レンズ部とが設定され、前記下側レンズ部では、前記レンズ軸上に下側焦点が設定され、前記上側レンズ部では、前記レンズ軸上に前記下側焦点よりも焦点距離の短い上側焦点が設定されている。 In the projection lens, a lower lens portion and an upper lens portion are set around the lens axis, in the lower lens portion, a lower focus is set on the lens axis, and in the upper lens portion, the lower focus is set. An upper focal point, which has a shorter focal distance than the lower focal point, is set on the lens axis.
 本開示2の車両用灯具は、すれ違い用配光パターンを形成する光を出射する第1光源と、複数の部分配光領域からなる走行用配光パターンを形成する光を出射する複数の第2光源と、前記第1光源からの光を車両前方に投影して前記すれ違い用配光パターンを形成するとともに、複数の前記第2光源からの光を車両前方に投影して前記走行用配光パターンを形成する投影レンズと、複数の前記第2光源に個別に対応して設けられ、対応する前記第2光源から出射された光を前記投影レンズに導く複数のレンズ導光部と、を備え、前記レンズ導光部は、前記第2光源に対向する導光入射面を有し、前記導光入射面は、少なくとも一部が前記第2光源側に凸となる曲面である。 The vehicle lighting equipment of the present disclosure 2 has a first light source that emits light that forms a light distribution pattern for passing each other, and a plurality of second light sources that emit light that forms a light distribution pattern for traveling, which is composed of a plurality of partially distributed light regions. The light source and the light from the first light source are projected to the front of the vehicle to form the passing light distribution pattern, and the light from a plurality of the second light sources is projected to the front of the vehicle to form the traveling light distribution pattern. A projection lens forming the above, and a plurality of lens light guide portions that are individually provided corresponding to the plurality of the second light sources and guide the light emitted from the corresponding second light sources to the projection lens. The lens light guide portion has a light guide incident surface facing the second light source, and the light guide incident surface is a curved surface having at least a part convex toward the second light source side.
 前記レンズ導光部は、前記第2光源の出射光軸と交わる交点を含み前記第2光源からの光を反射する導光反射面と、前記導光反射面で反射された光を出射させる導光出射面と、を有し、前記導光反射面は、前記第2光源からの光を反射により前記投影レンズの後側焦点の近傍に集光させる曲面である。 The lens light guide unit includes a light guide reflecting surface that includes an intersection with an exit light axis of the second light source and reflects light from the second light source, and a guide that emits light reflected by the light guide reflecting surface. The light guide reflecting surface has a light emitting surface, and the light guide reflecting surface is a curved surface that collects light from the second light source in the vicinity of the rear focal point of the projection lens by reflection.
 前記導光反射面は、前記レンズ導光部における前記導光入射面の近傍で上下方向の下側の下面に設けられた入射側導光反射面であり、前記導光入射面は、前記第2光源からの光を前記レンズ導光部の下面における前記導光入射面側へ屈折させる曲面である。 The light guide reflecting surface is an incident side light guide reflecting surface provided on the lower lower surface in the vertical direction in the vicinity of the light guide incident surface in the lens light guide portion, and the light guide incident surface is the first light guide incident surface. It is a curved surface that refracts the light from the two light sources toward the light guide incident surface side on the lower surface of the lens light guide portion.
 前記レンズ導光部は、前記入射側導光反射面で反射された光の一部を前記導光出射面へ向けて反射する出射側導光反射面を有し、前記出射側導光反射面は、前記入射側導光反射面とは反対側に凸となる曲面である。 The lens light guide portion has an exit side light guide reflection surface that reflects a part of the light reflected by the incident side light guide reflection surface toward the light guide emission surface, and the exit side light guide reflection surface. Is a curved surface that is convex on the side opposite to the light guide reflection surface on the incident side.
 前記出射側導光反射面は、前記導光出射面側の先端部における接線が、前記交点と前記入射側導光反射面が集光する点とを結ぶ直線に対して5度から10度の角度を為すことを特徴とする。 The light guide reflection surface on the exit side has a tangent line at the tip on the light guide exit surface side of 5 to 10 degrees with respect to a straight line connecting the intersection and the point where the light guide reflection surface on the incident side concentrates. It is characterized by making an angle.
 前記導光出射面は、前記交点と前記入射側導光反射面からの反射光が集光する点とを結ぶ直線に対して直交する。 The light guide emission surface is orthogonal to a straight line connecting the intersection and the point where the reflected light from the incident side light guide reflection surface is collected.
 本開示の車両用灯具によれば、第1光源および第2光源を同一の基板に設けつつ、それらからの光で適切にすれ違い用配光パターンや走行用配光パターンを形成できる。 According to the vehicle lighting equipment of the present disclosure, while providing the first light source and the second light source on the same substrate, it is possible to appropriately form a passing light distribution pattern and a traveling light distribution pattern with the light from them.
本開示に係る車両用灯具の一実施形態に係る一例としての車両用灯具の構成  を示す説明図である。It is explanatory drawing which shows the structure of the vehicle lamp as an example which concerns on one Embodiment of the vehicle lamp which concerns on this disclosure. 図1のI-I線に沿って得られた断面図である。It is sectional drawing obtained along the line II of FIG. 車両用灯具の第1レンズ導光部の構成を示す説明図である。It is explanatory drawing which shows the structure of the 1st lens light guide part of a vehicle lamp. 車両用灯具の第2レンズ導光部の構成を示す説明図である。It is explanatory drawing which shows the structure of the 2nd lens light guide part of a vehicle lamp. すれ違い用配光パターンを示す説明図である。It is explanatory drawing which shows the light distribution pattern for passing. 走行用配光パターンを示す説明図である。It is explanatory drawing which shows the light distribution pattern for traveling. 走行用配光パターンとすれ違い用配光パターンと重ねた様子を示す説明図である。It is explanatory drawing which shows the state which overlapped with the light distribution pattern for running and the light distribution pattern for passing. 図1のI-I線に沿って得られた断面図である。It is sectional drawing obtained along the line II of FIG. 車両用灯具の第2レンズ導光部の構成を示す説明図である。It is explanatory drawing which shows the structure of the 2nd lens light guide part of a vehicle lamp. 第2レンズ導光部の構成を示す説明図である。It is explanatory drawing which shows the structure of the 2nd lens light guide part. 第2レンズ導光部の第2導光入射面の構成を示す説明図である。It is explanatory drawing which shows the structure of the 2nd light guide entrance surface of the 2nd lens light guide part.
 以下に、本開示に係る車両用灯具の一実施形態としての車両用灯具10の実施例1について図1から図7を参照しつつ説明する。なお、図2では、煩雑となることを避けるために断面を示すハッチを省略している。 Hereinafter, Example 1 of the vehicle lamp 10 as an embodiment of the vehicle lamp according to the present disclosure will be described with reference to FIGS. 1 to 7. In FIG. 2, the hatch showing the cross section is omitted in order to avoid complication.
 車両用灯具10は、自動車等の車両に用いられる灯具として用いられるもので、例えば、ヘッドランプやフォグランプ等に用いられる。車両用灯具10は、車両の前部の左右両側で、ランプハウジングの開放された前端がアウターレンズで覆われて形成される灯室に、上下方向用光軸調整機構や幅方向用光軸調整機構を介して設けられる。以下の説明では、車両用灯具10において、光を照射する方向となる投影レンズ17のレンズ軸Laが伸びる方向を前後方向(図面ではZとする)とし、前後方向を水平面に沿う状態とした際の鉛直方向を上下方向(図面ではYとする)とし、前後方向および上下方向に直交する方向(水平方向)を幅方向(図面ではXとする)とする。この前後方向の前側は、車両用灯具10において車両前方を指し示すこととなる。 The vehicle lamp 10 is used as a lamp used in a vehicle such as an automobile, and is used, for example, in a head lamp, a fog lamp, or the like. The vehicle lighting fixture 10 has an optical axis adjustment mechanism for the vertical direction and an optical axis adjustment for the width direction in a lamp chamber formed by covering the open front end of the lamp housing with an outer lens on both the left and right sides of the front portion of the vehicle. It is provided via a mechanism. In the following description, in the vehicle lighting equipment 10, when the direction in which the lens axis La of the projection lens 17 which is the direction of irradiating light extends is the front-rear direction (Z in the drawing) and the front-rear direction is along the horizontal plane. The vertical direction is the vertical direction (Y in the drawing), and the direction orthogonal to the front-back direction and the vertical direction (horizontal direction) is the width direction (X in the drawing). The front side in the front-rear direction points to the front of the vehicle in the vehicle lighting tool 10.
 車両用灯具10は、図1および図2に示すように、複数の第1光源11と複数の第2光源12とヒートシンク部材13と第1導光レンズ14と第2導光レンズ15とシェード16と投影レンズ17とを備え、前照灯ユニットを構成する。車両用灯具10では、前後方向が投影レンズ17のレンズ軸Laにより規定される。そのレンズ軸Laは、投影レンズ17における光学的な中心となる軸線である。 As shown in FIGS. 1 and 2, the vehicle lamp 10 includes a plurality of first light sources 11, a plurality of second light sources 12, a heat sink member 13, a first light guide lens 14, a second light guide lens 15, and a shade 16. And a projection lens 17 are provided to form a headlight unit. In the vehicle lamp 10, the front-rear direction is defined by the lens axis La of the projection lens 17. The lens axis La is an axis that is the optical center of the projection lens 17.
 複数の第1光源11は、幅方向に整列されており、実施例1では7個(図3参照)が整列されている。各第1光源11は、LED(Light Emitting Diode)等の発光素子で構成され、それぞれが基板18に実装されている。その基板18は、平板状とされて、前後方向に対して傾斜された状態でヒートシンク部材13の前面13aに固定されている。この各第1光源11は、点灯制御回路から電力が供給されて適宜点灯される。7個の第1光源11は、上下方向に直交する平面において、真ん中の1個がレンズ軸La上に設けられ、幅方向で外側に向かうに連れて間隔が大きくされて、幅方向に並べられている(図3参照)。実施例1では、各第1光源11の幅方向の間隔の一例として、レンズ軸La上の中心位置から両隣までの間隔を6mmとし、それらから隣の外側までの間隔を7mmとし、それらから隣の外側となる最外側までの間隔を18mmとしている。なお、第1光源11の数や間隔は適宜設定すれば、均一な間隔としてもよく、間隔の差異を不規則なものとしてもよく、実施例1の構成に限定されない。 The plurality of first light sources 11 are aligned in the width direction, and in Example 1, seven (see FIG. 3) are aligned. Each first light source 11 is composed of a light emitting element such as an LED (Light Emitting Diode), and each is mounted on a substrate 18. The substrate 18 has a flat plate shape and is fixed to the front surface 13a of the heat sink member 13 in a state of being inclined with respect to the front-rear direction. Each of the first light sources 11 is appropriately lit by being supplied with electric power from the lighting control circuit. The seven first light sources 11 are arranged in the width direction, with one in the middle provided on the lens axis La in a plane orthogonal to the vertical direction, and the distance is increased toward the outside in the width direction. (See Fig. 3). In the first embodiment, as an example of the interval in the width direction of each first light source 11, the interval from the center position on the lens axis La to both sides is 6 mm, the interval from them to the outside of the neighbor is 7 mm, and the distance from them to the neighbor is set to 7 mm. The distance to the outermost side, which is the outer side of the lens, is 18 mm. If the number and spacing of the first light sources 11 are appropriately set, the spacing may be uniform or the spacing may be irregular, and the configuration is not limited to that of the first embodiment.
 複数の第2光源12は、幅方向に整列されており、実施例1では12個(図4参照)が整列されている。各第2光源12は、LED等の発光素子で構成され、第1光源11よりも上下方向の下側であって前後方向の後側で、それぞれが第1光源11と同じ基板18に同一平面上に実装されている。このため、基板18および前面13aは、法線方向が、前後方向および上下方向を含む面上で前後方向に対して伏角とされている。この各第2光源12は、点灯制御回路から電力が供給されることで、適宜一斉にまたは個別に点灯される。なお、第2光源12の数は適宜設定すればよく、実施例1の構成に限定されない。 The plurality of second light sources 12 are aligned in the width direction, and in Example 1, 12 (see FIG. 4) are aligned. Each of the second light sources 12 is composed of a light emitting element such as an LED, and is on the same plane as the first light source 11 on the same substrate 18 as the first light source 11 on the lower side in the vertical direction and the rear side in the front-rear direction. Implemented above. Therefore, the substrate 18 and the front surface 13a have a normal direction as a dip angle with respect to the front-rear direction on a surface including the front-rear direction and the up-down direction. Each of the second light sources 12 is appropriately turned on all at once or individually by being supplied with electric power from the lighting control circuit. The number of the second light sources 12 may be appropriately set, and is not limited to the configuration of the first embodiment.
 この各第1光源11および各第2光源12は、平面発光部から光を出射するもので、実装された基板18と直交する方向に出射光軸Liが設定されている。以下では、各第1光源11が出射したものを光L1とし、各第2光源12が出射したものを光L2とする。そして、各第1光源11および各第2光源12は、同一の基板18に実装されることで、それぞれの出射光軸Liが平行とされている。各出射光軸Liは、前後方向に対して伏角で30度から50度の範囲内とされ、実施例1では45度とされている。この各出射光軸Liは、実施例1では、基板18における前後方向に対する角度が定められることにより設定される。 Each of the first light source 11 and each second light source 12 emits light from a plane light emitting unit, and the emission optical axis Li is set in a direction orthogonal to the mounted substrate 18. In the following, what is emitted by each of the first light sources 11 is referred to as light L1, and what is emitted by each of the second light sources 12 is referred to as light L2. The first light source 11 and the second light source 12 are mounted on the same substrate 18, so that their respective emission optical axes Li are parallel. Each emission optical axis Li has a dip angle in the range of 30 to 50 degrees with respect to the front-rear direction, and is 45 degrees in the first embodiment. In the first embodiment, each of the emitted optical axes Li is set by determining an angle with respect to the front-rear direction on the substrate 18.
 ヒートシンク部材13は、各第1光源11および各第2光源12で発生する熱を外部に逃がす放熱部材であり、熱伝導率の高い金属材料や樹脂材料で形成される。ヒートシンク部材13では、前面13aとは反対側に、板状とされた複数の放熱フィン13bが並列して設けられている(図1参照)。ヒートシンク部材13では、各出射光軸Liを上記の角度とするように、前面13aに基板18が取り付けられる。 The heat sink member 13 is a heat radiating member that releases heat generated by each of the first light sources 11 and each of the second light sources 12 to the outside, and is made of a metal material or a resin material having high thermal conductivity. In the heat sink member 13, a plurality of plate-shaped heat radiating fins 13b are provided in parallel on the side opposite to the front surface 13a (see FIG. 1). In the heat sink member 13, the substrate 18 is attached to the front surface 13a so that each emission optical axis Li has the above angle.
 第1導光レンズ14は、基板18に実装された各第1光源11から出射された光L1を投影レンズ17へと導く。第1導光レンズ14は、透明な樹脂で形成されており、図3に示すように、各第1光源11に個別に対応されて幅方向に並べられた7個の第1レンズ導光部21を有する。各第1レンズ導光部21は、対応する第1光源11に対向された第1導光入射面22と、投影レンズ17側に向けられた第1導光出射面23と、を有する。 The first light guide lens 14 guides the light L1 emitted from each of the first light sources 11 mounted on the substrate 18 to the projection lens 17. The first light guide lens 14 is made of a transparent resin, and as shown in FIG. 3, seven first lens light guide portions arranged in the width direction individually corresponding to each first light source 11. Has 21. Each first lens light guide unit 21 has a first light guide incident surface 22 facing the corresponding first light source 11, and a first light guide exit surface 23 directed toward the projection lens 17.
 各第1導光入射面22は、図2に部分的に拡大して示すように、全体形状が第1レンズ導光部21の内側(第1光源11とは反対側)に凹んでおり、その中央で外側に凸に湾曲された湾曲入射面22aと、それを取り巻く環状入射面22bと、を有する。また、各第1導光入射面22の周辺では、環状入射面22bを取り囲む円錐状の反射面22cが設けられている。各湾曲入射面22aは、後側にある焦点が対応する第1光源11の発光中心に略一致されており、第1光源11から出射される光L1を出射光軸Liと平行に進行する平行光として第1レンズ導光部21内に入射させる。なお、この平行光(平行な光)とは、光L1が湾曲入射面22aを経ることでコリメートされた状態の光のことをいう。 As shown in a partially enlarged view of FIG. 2, each first light guide incident surface 22 has an overall shape recessed inside the first lens light guide portion 21 (on the side opposite to the first light source 11). It has a curved incident surface 22a that is convexly curved outward at the center thereof, and an annular incident surface 22b that surrounds the curved incident surface 22a. Further, around each first light guide incident surface 22, a conical reflecting surface 22c surrounding the annular incident surface 22b is provided. Each curved incident surface 22a substantially coincides with the light emitting center of the corresponding first light source 11 with a focal point on the rear side, and the light L1 emitted from the first light source 11 travels parallel to the emitted optical axis Li. Light is incident on the light source 21 of the first lens. The parallel light (parallel light) refers to light in a state in which light L1 is collimated by passing through a curved incident surface 22a.
 環状入射面22bは、各第1光源11側へと突出して設けられており、第1光源11からの光L1のうち、湾曲入射面22aへと進行しないものを第1レンズ導光部21に入射させる。反射面22cは、環状入射面22bから第1導光レンズ14内に入射した光L1が進行する位置に形成されている。反射面22cは、環状入射面22bから入射した光L1を反射すると、出射光軸Liと平行に進行する平行光とする。なお、反射面22cは、全反射を利用して光L1を反射してもよく、蒸着や塗装等によりアルミや銀等を接着させることで光L1を反射してもよい。これらのことから、各第1導光入射面22は、対応する第1光源11から出射された光L1を、出射光軸Liと平行に進行する平行光として第1導光レンズ14内に進行させて、第1導光出射面23へと導く。 The annular incident surface 22b is provided so as to project toward each first light source 11, and among the light L1 from the first light source 11, the light L1 that does not travel to the curved incident surface 22a is directed to the first lens light guide portion 21. Make it incident. The reflecting surface 22c is formed at a position where the light L1 incident on the first light guide lens 14 travels from the annular incident surface 22b. When the light L1 incident from the annular incident surface 22b is reflected, the reflecting surface 22c is a parallel light traveling in parallel with the emitted light axis Li. The reflecting surface 22c may reflect the light L1 by utilizing total reflection, or may reflect the light L1 by adhering aluminum, silver, or the like by vapor deposition, painting, or the like. From these facts, each of the first light guide incident surfaces 22 advances the light L1 emitted from the corresponding first light source 11 into the first light guide lens 14 as parallel light traveling in parallel with the emitted light axis Li. Then, it leads to the first light guide emitting surface 23.
 各第1導光出射面23は、第1導光入射面22から入射されて平行光とされた光L1を、投影レンズ17へ向けて出射する。各第1導光出射面23は、幅方向に直交する断面において、上側出射面部23aと下側出射面部23bとを有する。各上側出射面部23aは、湾曲入射面22aの上側に位置する反射面22cで反射された光L1が進行する領域に設けられ、第1導光入射面22側に凸に湾曲された凹面とされている。各上側出射面部23aは、第1導光入射面22を経て平行光とされた光L1を屈折させることで、投影レンズ17の後述する下側レンズ部41へ向けて進行させる。各下側出射面部23bは、前側(投影レンズ17側)にある焦点が、シェード16の先端縁16aの近傍で下側レンズ部41の下側焦点Fdを含む焦点面(像面)上に並べられて設定されている。各下側出射面部23bは、第1導光入射面22を経て平行光とされた光L1を屈折させることで、先端縁16aの近傍に集光させる。 Each first light guide exit surface 23 emits light L1 incident from the first light guide incident surface 22 to be parallel light toward the projection lens 17. Each first light guide emitting surface 23 has an upper emitting surface portion 23a and a lower emitting surface portion 23b in a cross section orthogonal to the width direction. Each upper exit surface portion 23a is provided in a region where the light L1 reflected by the reflection surface 22c located above the curved incident surface 22a travels, and is a concave surface that is convexly curved toward the first light guide incident surface 22 side. ing. Each upper exit surface portion 23a is made to travel toward the lower lens portion 41 of the projection lens 17, which will be described later, by refracting the light L1 which is made parallel light through the first light guide incident surface 22. In each lower emitting surface portion 23b, the focal point on the front side (projection lens 17 side) is arranged on the focal plane (image plane) including the lower focal point Fd of the lower lens portion 41 in the vicinity of the tip edge 16a of the shade 16. It has been set. Each lower exit surface portion 23b refracts the light L1 which has been made parallel light through the first light guide incident surface 22 so that the light L1 is focused in the vicinity of the tip edge 16a.
 この7個の第1導光出射面23は、図3に示すように、上下方向に直交する平面において、真ん中の第1レンズ導光部21のものがレンズ軸Laに直交する直交面Opと略平行とされ、レンズ軸La上から外れると幅方向の外側に向かうに連れて後側(第1光源11側)へと向かうように、直交面Opに対して傾斜されている。そして、7個の第1導光出射面23は、幅方向で外側に向かうに連れて、直交面Opに対する傾斜角度が大きくされている。すなわち、7個の第1導光出射面23は、前側にある焦点を先端縁16aの近傍で下側焦点Fdを含む焦点面上に並ばせており、対応する第1光源11の幅方向でのレンズ軸Laからの間隔、すなわち設けられた第1レンズ導光部21の幅方向でのレンズ軸Laからの間隔に応じて直交面Opに対する傾斜角度が設定されている。 As shown in FIG. 3, the seven first light guide emitting surfaces 23 have an orthogonal plane Op in which the one in the center of the first lens light guide unit 21 is orthogonal to the lens axis La in a plane orthogonal to the vertical direction. It is substantially parallel, and when it deviates from the lens axis La, it is inclined with respect to the orthogonal plane Op so as to move outward in the width direction toward the rear side (first light source 11 side). Then, the inclination angles of the seven first light guide emitting surfaces 23 with respect to the orthogonal surface Op are increased toward the outside in the width direction. That is, the seven first light guide emitting surfaces 23 have their front focal points aligned on the focal planes including the lower focal point Fd in the vicinity of the tip edge 16a, in the width direction of the corresponding first light source 11. The inclination angle with respect to the orthogonal plane Op is set according to the distance from the lens shaft La, that is, the distance from the lens shaft La in the width direction of the first lens light guide unit 21 provided.
 第1導光レンズ14は、各第1レンズ導光部21が上記の位置関係とされた状態で、連結部24により互いに連結されている。第1導光レンズ14は、連結部24がヒートシンク部材13と投影レンズ17とを組み付けるレンズホルダまたはヒートシンク部材13に固定されることで、各第1光源11および投影レンズ17に対する各第1レンズ導光部21の位置関係が設定される。 The first light guide lens 14 is connected to each other by the connecting portion 24 in a state where each first lens light guide portion 21 has the above positional relationship. In the first light guide lens 14, the connecting portion 24 is fixed to the lens holder or the heat sink member 13 to which the heat sink member 13 and the projection lens 17 are assembled, so that the first lens guide to the first light source 11 and the projection lens 17 is obtained. The positional relationship of the light unit 21 is set.
 第2導光レンズ15は、基板18に実装された各第2光源12から出射された光L2を投影レンズ17へと導く。第2導光レンズ15は、透明な樹脂で形成されており、図4に示すように、各第2光源12に個別に対応されて幅方向に並べられた12個の第2レンズ導光部31を有する。各第2レンズ導光部31は、各第2光源12側すなわち基板18側が、投影レンズ17側へ向けて延びる12個の長尺な棒状部分32とされており、各棒状部分32が幅方向で間隔を置いて並列されている。また、各第2レンズ導光部31は、各棒状部分32が投影レンズ17側の板状部分33で一体化されており、幅方向に拡がる板状とされている。 The second light guide lens 15 guides the light L2 emitted from each of the second light sources 12 mounted on the substrate 18 to the projection lens 17. The second light guide lens 15 is made of a transparent resin, and as shown in FIG. 4, twelve second lens light guide portions arranged in the width direction individually corresponding to each second light source 12. Has 31. Each second lens light guide unit 31 has twelve long rod-shaped portions 32 extending toward the projection lens 17 side on the second light source 12 side, that is, the substrate 18 side, and each rod-shaped portion 32 is in the width direction. They are arranged in parallel at intervals. Further, in each second lens light guide portion 31, each rod-shaped portion 32 is integrated with a plate-shaped portion 33 on the projection lens 17 side, and has a plate shape that expands in the width direction.
 各第2レンズ導光部31は、各棒状部分32の第2光源12に対向された箇所を第2導光入射面34とし、板状部分33の投影レンズ17側に向けられた箇所を第2導光出射面35とする。このため、第2導光入射面34は、12個の第2光源12に個別に対向する12個の面とされ、第2導光出射面35は、12個の第2レンズ導光部31が幅方向に連結された単一の面とされている。加えて、各第2レンズ導光部31は、図2に示すように、導光反射面36が設けられている。この導光反射面36は、第2レンズ導光部31における第2導光入射面34の近傍(主に棒状部分32)において、上下方向の下側に設けられており、第2導光入射面34から入射された光L2を第2導光出射面35側すなわち前後方向の前側でかつ上側へと反射する。なお、導光反射面36は、上記のように反射するものであれば、全反射を利用するものでも反射処理を施すものでも他の構成でもよい。第2導光出射面35は、導光反射面36により反射された光L2を投影レンズ17へ向けて出射する。また、各第2レンズ導光部31では、第2導光入射面34から入射された光L2を第2導光出射面35側に導くために、他の箇所にも反射面を設けてもよく、実施例1の構成に限定されない。 In each second lens light guide unit 31, the portion of each rod-shaped portion 32 facing the second light source 12 is designated as the second light guide incident surface 34, and the portion of the plate-shaped portion 33 facing the projection lens 17 side is the second. 2 The light guide emitting surface 35 is used. Therefore, the second light guide incident surface 34 is formed into 12 surfaces individually facing the 12 second light sources 12, and the second light guide exit surface 35 is the 12 second lens light guide portions 31. Is a single surface connected in the width direction. In addition, each second lens light guide unit 31 is provided with a light guide reflecting surface 36 as shown in FIG. The light guide reflecting surface 36 is provided on the lower side in the vertical direction in the vicinity of the second light guide incident surface 34 (mainly the rod-shaped portion 32) in the second lens light guide unit 31, and the second light guide incident surface 36 is provided. The light L2 incident from the surface 34 is reflected on the second light guide emitting surface 35 side, that is, on the front side in the front-rear direction and on the upper side. The light guide reflecting surface 36 may have a structure that utilizes total reflection, a reflection process, or another configuration as long as it reflects as described above. The second light guide emitting surface 35 emits the light L2 reflected by the light guide reflecting surface 36 toward the projection lens 17. Further, in each second lens light guide unit 31, in order to guide the light L2 incident from the second light guide incident surface 34 to the second light guide exit surface 35 side, a reflection surface may be provided at other locations as well. Well, it is not limited to the configuration of the first embodiment.
 シェード16は、図1および図2に示すように、第2導光レンズ15の上に設けられており、幅方向に伸びる板状とされている。このため、シェード16は、各第1光源11から第1導光レンズ14を経る光路と、各第2光源12から第2導光レンズ15を経る光路と、の間に設けられている。シェード16は、幅方向に直交する面上において、前後方向に対する角度が各第1光源11および各第2光源12の各出射光軸Liよりも小さくされており、実施例1では各出射光軸Liが為す角度の1/2の角度の22.5度とされている。このシェード16は、ヒートシンク部材13と投影レンズ17とを組み合わせるレンズホルダに固定されることで、上記の位置関係が設定される。 As shown in FIGS. 1 and 2, the shade 16 is provided on the second light guide lens 15 and has a plate shape extending in the width direction. Therefore, the shade 16 is provided between the optical path from each of the first light sources 11 to pass through the first light guide lens 14 and the optical path from each of the second light sources 12 to pass through the second light guide lens 15. The shade 16 has an angle with respect to the front-rear direction smaller than each emission light axis Li of each first light source 11 and each second light source 12 on a plane orthogonal to the width direction. It is said to be 22.5 degrees, which is half the angle that Li makes. The shade 16 is fixed to a lens holder that combines the heat sink member 13 and the projection lens 17, so that the above positional relationship is set.
 シェード16は、前後方向の前側の先端縁16aが、上下方向での位置の異なる2つの水平エッジが傾斜エッジで繋ぎ合わされた形状とされている(図1参照)。シェード16は、各第1光源11から出射されて第1導光レンズ14(その各第1レンズ導光部21)により導かれた光L1の一部を先端縁16aで遮ることで、すれ違い用配光パターンLPの上縁に2つの水平カットオフラインを傾斜カットオフラインで繋ぎ合わせたカットオフラインCL(図5参照)を形成する。なお、シェード16は、先端縁16aでカットオフラインCLを形成するものであれば、その大きさは適宜設定すればよく、実施例1の構成に限定されない。 The shade 16 has a shape in which the front tip edge 16a in the front-rear direction is joined by two horizontal edges having different positions in the vertical direction at an inclined edge (see FIG. 1). The shade 16 is for passing by by blocking a part of the light L1 emitted from each of the first light sources 11 and guided by the first light guide lens 14 (each of the first lens light guide portions 21) by the tip edge 16a. A cut-off line CL (see FIG. 5) is formed by connecting two horizontal cut-off lines with an inclined cut-off line on the upper edge of the light distribution pattern LP. The size of the shade 16 may be appropriately set as long as it forms a cut-off line CL at the tip edge 16a, and is not limited to the configuration of the first embodiment.
 シェード16は、上下方向の上側の面が反射面16bとされている。この反射面16bは、第1導光レンズ14により導かれた各第1光源11からの光L1を反射することで、投影レンズ17へと進行させる。このため、シェード16は、各第1光源11からの光L1の利用効率を高めることができる。加えて、シェード16は、前後方向に対して各第1光源11の各出射光軸Liが為す角度の1/2の大きさの伏角とされている。このため、シェード16は、第1導光レンズ14により導かれた第1光源11からの出射光軸Liに沿う光L1を、投影レンズ17のレンズ軸Laに平行な方向に反射できる。また、シェード16は、第1導光レンズ14により導かれた第1光源11からの他の光L1を、レンズ軸Laと平行と近い方向で反射できる。これらのことから、シェード16は、第1導光レンズ14を経た第1光源11からの光L1を、レンズ軸Laと平行もしくはそれに近い方向で、そのレンズ軸Laの近傍へと進行させることができる。 The upper surface of the shade 16 in the vertical direction is a reflective surface 16b. The reflecting surface 16b propagates to the projection lens 17 by reflecting the light L1 from each of the first light sources 11 guided by the first light guide lens 14. Therefore, the shade 16 can increase the utilization efficiency of the light L1 from each of the first light sources 11. In addition, the shade 16 has a dip angle that is halved of the angle formed by each emission light axis Li of each first light source 11 with respect to the front-rear direction. Therefore, the shade 16 can reflect the light L1 along the emission optical axis Li from the first light source 11 guided by the first light guide lens 14 in a direction parallel to the lens axis La of the projection lens 17. Further, the shade 16 can reflect another light L1 from the first light source 11 guided by the first light guide lens 14 in a direction close to parallel to the lens axis La. From these facts, the shade 16 allows the light L1 from the first light source 11 passing through the first light guide lens 14 to travel in the direction parallel to or close to the lens axis La toward the vicinity of the lens axis La. it can.
 投影レンズ17は、凸レンズとされており、実施例1では出射面17aが凸面とされるとともに入射面17bが平坦面とされている。なお、投影レンズ17は、全体として凸レンズとされていれば、出射面17aが平坦面でも凹面でもよく、入射面17bが凸面でもよく凹面でもよく、実施例1の構成に限定されない。投影レンズ17は、レンズホルダに支持される。レンズホルダは、基板18に実装された各第1光源11や各第2光源12、第1導光レンズ14、第2導光レンズ15およびシェード16に対して、投影レンズ17を位置決めした状態で、ヒートシンク部材13に組み付けられる。 The projection lens 17 is a convex lens, and in the first embodiment, the exit surface 17a is a convex surface and the incident surface 17b is a flat surface. As long as the projection lens 17 is a convex lens as a whole, the exit surface 17a may be a flat surface or a concave surface, and the incident surface 17b may be a convex surface or a concave surface, and is not limited to the configuration of the first embodiment. The projection lens 17 is supported by the lens holder. The lens holder is in a state where the projection lens 17 is positioned with respect to each of the first light source 11, each second light source 12, the first light guide lens 14, the second light guide lens 15, and the shade 16 mounted on the substrate 18. , Assembled to the heat sink member 13.
 投影レンズ17では、図2に示すように、下側に位置する下側レンズ部41と、上側に位置する上側レンズ部42と、を有する。両レンズ部(41、42)は、レンズ軸Laから半径方向での断面における出射面17aの曲率がそれぞれ異なるものとされ、それぞれにおける焦点距離が異なるものとされる。下側レンズ部41では、投影方向の後側の下側焦点Fdが、レンズ軸La上でシェード板16の先端縁16aの近傍とされている。上側レンズ部42では、投影方向の後側の上側焦点Fuが、レンズ軸La上で下側焦点Fdよりも投影方向の前側に設定されている。投影レンズ17は、下側レンズ部41と上側レンズ部42とを繋ぐ箇所において、下側レンズ部41側の下側焦点Fdから上側レンズ部42側の上側焦点Fuへと焦点距離を連続的に変化(所謂徐変)させている。 As shown in FIG. 2, the projection lens 17 has a lower lens portion 41 located on the lower side and an upper lens portion 42 located on the upper side. Both lens portions (41, 42) have different curvatures of the exit surface 17a in the cross section in the radial direction from the lens axis La, and have different focal lengths at each. In the lower lens portion 41, the lower focal point Fd on the rear side in the projection direction is set to be in the vicinity of the tip edge 16a of the shade plate 16 on the lens axis La. In the upper lens portion 42, the upper focal point Fu on the rear side in the projection direction is set on the lens axis La on the front side in the projection direction with respect to the lower focal point Fd. The projection lens 17 continuously increases the focal length from the lower focal length Fd on the lower lens portion 41 side to the upper focal length Fu on the upper lens portion 42 side at the position where the lower lens portion 41 and the upper lens portion 42 are connected. It is changing (so-called gradual change).
 次に車両用灯具10の点灯について説明する。車両用灯具10は、灯室に設けられて、コネクタ接続部を介して基板18に外部コネクタが接続される。車両用灯具10は、外部コネクタおよびコネクタ接続部を介する点灯制御回路から基板18に実装された各第1光源11および各第2光源12へと電力を供給することで、各第1光源11および各第2光源12を適宜点灯および消灯する。 Next, the lighting of the vehicle lamp 10 will be described. The vehicle lighting fixture 10 is provided in the lighting chamber, and an external connector is connected to the substrate 18 via a connector connecting portion. The vehicle lighting fixture 10 supplies electric power to each of the first light sources 11 and each of the second light sources 12 mounted on the substrate 18 from the lighting control circuit via the external connector and the connector connection portion, thereby causing the first light sources 11 and each of the second light sources 12. Each second light source 12 is turned on and off as appropriate.
 車両用灯具10は、図2に示すように、各第1光源11を点灯させると、その各第1光源11からの光L1が、第1導光レンズ14の各第1導光入射面22に入射して、その湾曲入射面22aを経た光L1が平行光とされ、環状入射面22bを経た光L1が反射面22cで反射されて、第1導光出射面23から出射される。その光L1は、レンズ軸La上でシェード16の先端縁16aの近傍に設定した投影レンズ17の下側レンズ部41の下側焦点Fdの近傍へと進行する。その光L1は、投影レンズ17により投影されることで、図5に示すように、投影面上でレンズ軸Laの位置(水平線)の近傍よりも下側において、水平方向に並ぶ7つの部分配光領域lpを形成する。その7つの部分配光領域lpは、一部を重ねつつ幅方向に並んで一体に形成されて、すれ違い用配光パターンLPを形成する。そのすれ違い用配光パターンLPは、各光L1の一部が先端縁16aで遮られて先端縁16aに沿った形状とされつつ投影レンズ17へと進行し、その投影レンズ17により投影されることで、上縁にカットオフラインCLが形成される。 As shown in FIG. 2, in the vehicle lighting tool 10, when each of the first light sources 11 is turned on, the light L1 from each of the first light sources 11 is emitted from each of the first light guide incident surfaces 22 of the first light guide lens 14. The light L1 that has passed through the curved incident surface 22a is regarded as parallel light, and the light L1 that has passed through the annular incident surface 22b is reflected by the reflecting surface 22c and emitted from the first light guide emitting surface 23. The light L1 travels to the vicinity of the lower focal point Fd of the lower lens portion 41 of the projection lens 17 set in the vicinity of the tip edge 16a of the shade 16 on the lens axis La. When the light L1 is projected by the projection lens 17, as shown in FIG. 5, the light L1 is divided into seven parts arranged in the horizontal direction below the vicinity of the position (horizontal line) of the lens axis La on the projection surface. It forms an optical region lp. The seven partial distribution light regions lp are integrally formed side by side in the width direction while partially overlapping each other to form a passing light distribution pattern LP. In the passing light distribution pattern LP, a part of each light L1 is blocked by the tip edge 16a and advances to the projection lens 17 while being shaped along the tip edge 16a, and is projected by the projection lens 17. Then, a cut-off line CL is formed on the upper edge.
 また、車両用灯具10は、図2に示すように、各第2光源12を点灯させると、その各第2光源12からの光L2が、第2導光入射面34から第2導光レンズ15の各第2レンズ導光部31へと入射して、各第2レンズ導光部31により導かれて、第2導光出射面35から出射される。その光L2は、レンズ軸La上で先端縁16aよりも前後方向の前側に設定した投影レンズ17の上側レンズ部42の上側焦点Fuの近傍へと進行する。その光L2は、投影レンズ17により投影されることで、図6に示すように、投影面上でレンズ軸Laの位置(水平線)の近傍よりも上側において、水平方向に並ぶ12個の部分配光領域hpを形成する。その12個の部分配光領域hpは、一部を重ねつつ幅方向に並んで一体に形成されて、走行用配光パターンHPを形成する。 Further, as shown in FIG. 2, in the vehicle lighting tool 10, when each of the second light sources 12 is turned on, the light L2 from each of the second light sources 12 is emitted from the second light guide incident surface 34 to the second light guide lens. It is incident on each of the second light source light sources 31 of 15, guided by each second lens light source 31, and is emitted from the second light source exit surface 35. The light L2 travels to the vicinity of the upper focal point Fu of the upper lens portion 42 of the projection lens 17 set on the front side of the tip edge 16a in the front-rear direction on the lens axis La. When the light L2 is projected by the projection lens 17, as shown in FIG. 6, 12 parts are distributed in the horizontal direction above the vicinity of the position (horizontal line) of the lens axis La on the projection surface. The optical region hp is formed. The twelve partially distributed light regions hp are integrally formed side by side in the width direction while partially overlapping each other to form a traveling light distribution pattern HP.
 実施例1の車両用灯具10は、ADB(Adaptive Driving Beam(配光可変型前照灯))としており、各第2光源12を個別に点灯および消灯することで、12個の部分配光領域hpのうちの特定の方向の部分配光領域hpを点灯および消灯できる。これにより、車両用灯具10は、走行用配光パターンHPにおける任意の方向の部分的な配光制御を可能としている。 The vehicle lighting fixture 10 of the first embodiment is an ADB (Adaptive Driving Beam (variable light distribution type headlight)), and by turning on and off each second light source 12 individually, 12 partial distribution light regions are used. The part distribution light region hp in a specific direction of the hp can be turned on and off. As a result, the vehicle lamp 10 enables partial light distribution control in any direction in the traveling light distribution pattern HP.
 以上の説明により、車両用灯具10は、各第1光源11を点灯することで、図5に示すように、カットオフラインCLを有するすれ違い用配光パターンLPを形成でき、すれ違い時の配光(所謂ロービーム)とすることができる。また、車両用灯具10は、各第1光源11に加えて各第2光源12を点灯することで、図7に示すように、すれ違い用配光パターンLPの上方に重ねて走行用配光パターンHPを形成でき、走行時の配光(所謂ハイビーム)とすることができる。そして、車両用灯具10は、上記したように、各第2光源12を個別に点灯および消灯することで、走行用配光パターンHPにおける任意の部分配光領域hpを個別に制御することができ、ADBの機能を実現させることもできる。 According to the above description, the vehicle lamp 10 can form a passing light distribution pattern LP having a cut-off line CL as shown in FIG. 5 by turning on each of the first light sources 11, and the light distribution at the time of passing (light distribution at the time of passing). It can be a so-called low beam). Further, as shown in FIG. 7, the vehicle lighting tool 10 is superposed on the passing light distribution pattern LP by turning on each of the second light sources 12 in addition to the first light source 11, and the traveling light distribution pattern. The HP can be formed, and the light distribution during traveling (so-called high beam) can be obtained. Then, as described above, the vehicle lamp 10 can individually control the arbitrary part distribution light region hp in the traveling light distribution pattern HP by turning on and off each of the second light sources 12 individually. , ADB functions can also be realized.
 次に、車両用灯具10における作用について説明する。従来から車両用灯具では、各第1光源からの光ですれ違い用配光パターンを形成するとともに、各第2光源からの光で走行用配光パターンを形成するものが考えられている。その車両用灯具では、各第1光源からの光を、レンズ軸よりも上下方向の上側から下側レンズ部の下側焦点に進行させた後に投影レンズにより投影することで、すれ違い用配光パターンを形成する。また、その車両用灯具では、各第2光源からの光を、レンズ軸よりも上下方向の下側から上側レンズ部の上側焦点に進行させた後に投影レンズにより投影することで、走行用配光パターンを形成する。このため、その車両用灯具では、各第1光源と各第2光源とを、互いに出射した光が交差するように配置することとなる。このことから、その車両用灯具では、各第1光源と各第2光源とを同一の基板に設けることが困難である。 Next, the operation of the vehicle lamp 10 will be described. Conventionally, in a vehicle lamp, a light distribution pattern for passing is formed by light from each first light source, and a light distribution pattern for traveling is formed by light from each second light source. In the vehicle lighting equipment, the light from each first light source is propagated from the upper side in the vertical direction with respect to the lens axis to the lower focal point of the lower lens portion, and then projected by the projection lens to form a light distribution pattern for passing. To form. Further, in the vehicle lamp, the light from each second light source is projected from the lower side in the vertical direction with respect to the lens axis to the upper focal point of the upper lens portion and then projected by the projection lens to distribute the light for traveling. Form a pattern. Therefore, in the vehicle lamp, the first light source and the second light source are arranged so that the light emitted from each other intersects with each other. For this reason, it is difficult to provide each first light source and each second light source on the same substrate in the vehicle lamp.
 これに対して、車両用灯具10は、各第1光源11と各第2光源12とを同一の基板18に実装して、それぞれの出射光軸Liを平行としつつ前後方向に対して伏角で30度から50度としている。このため、車両用灯具10は、各第1光源11の出射光軸Liを下側レンズ部41の下側焦点Fdの方に向けることができ、第1導光レンズ14により各第1光源11からの光L1を下側焦点Fdへと導くことを容易なものにできる。これにより、車両用灯具10は、簡易な構成で各第1光源11からの光L1を下側焦点Fdへと導くことができるので、その光L1を下側焦点Fdまで効率良く導くことができる。また、車両用灯具10は、各第2光源12の出射光軸Liが上側レンズ部42の上側焦点Fuに向く方向とは大きく異なるが、各第1光源11よりも各第2光源12を前後方向の後側に配置させることで、各第2光源12から上側焦点Fuまでの間隔を大きくできる。このため、車両用灯具10は、第2導光レンズ15における導光の自由度を確保でき、その第2導光レンズ15により各第2光源12からの光L2が進行する方向を変化させつつ、その光L2を上側焦点Fuまで効率良く導くことができる。これにより、車両用灯具10は、各第1光源11および各第2光源12を同一の基板18に設けつつ、それらからの光L1、光L2を効率良く利用してすれ違い用配光パターンLPや走行用配光パターンHPを形成できる。 On the other hand, in the vehicle lamp 10, the first light source 11 and the second light source 12 are mounted on the same substrate 18, and the emission optical axes Li are parallel to each other and have a dip angle in the front-rear direction. It is set to 30 to 50 degrees. Therefore, the vehicle lamp 10 can direct the emission light axis Li of each first light source 11 toward the lower focal point Fd of the lower lens portion 41, and each first light source 11 is provided by the first light guide lens 14. It is possible to easily guide the light L1 from the light source to the lower focal point Fd. As a result, the vehicle lamp 10 can guide the light L1 from each first light source 11 to the lower focal point Fd with a simple configuration, so that the light L1 can be efficiently guided to the lower focal point Fd. .. Further, in the vehicle lamp 10, the direction in which the emission light axis Li of each second light source 12 faces the upper focal point Fu of the upper lens portion 42 is significantly different, but the second light source 12 is moved forward and backward more than each first light source 11. By arranging it on the rear side in the direction, the distance from each second light source 12 to the upper focal point Fu can be increased. Therefore, the vehicle lamp 10 can secure the degree of freedom of the light guide in the second light guide lens 15, and the second light guide lens 15 changes the direction in which the light L2 from each of the second light sources 12 travels. , The light L2 can be efficiently guided to the upper focal point Fu. As a result, the vehicle lighting fixture 10 provides the first light source 11 and the second light source 12 on the same substrate 18, and efficiently utilizes the light L1 and the light L2 from them to provide a light distribution pattern LP for passing each other. A traveling light distribution pattern HP can be formed.
 また、車両用灯具10は、第1導光レンズ14を経た各第1光源11からの光L1の一部を先端縁16aで遮る構成とし、そのシェード16の上側の面を反射面16bとしている。このため、車両用灯具10は、先端縁16aの近傍で遮った各第1光源11からの光L1を、反射面16bで反射して投影レンズ17へと進行させることができ、各第1光源11からの光L1の利用効率を高めることができる。加えて、車両用灯具10は、前後方向に対して、各第1光源11の出射光軸Liが為す角度の1/2の大きさの伏角として、シェード16を設けている。このため、車両用灯具10は、反射面16bで反射した光L1の進行方向を前後方向と平行に近い状態(前後方向との傾斜が小さい状態)にでき、その状態で投影レンズ17におけるレンズ軸Laの近傍へと進行させることができる。これにより、車両用灯具10は、反射面16bで反射した光L1を、すれ違い用配光パターンLPにおける鉛直線と水平線とが交差する中央の近傍に進行させることができ、走行用配光パターンHPをより適切に形成しつつ各第1光源11からの光L1の利用効率を高めることができる。 Further, the vehicle lamp 10 has a configuration in which a part of the light L1 from each first light source 11 passing through the first light guide lens 14 is blocked by the tip edge 16a, and the upper surface of the shade 16 is a reflecting surface 16b. .. Therefore, the vehicle lamp 10 can reflect the light L1 from each of the first light sources 11 blocked in the vicinity of the tip edge 16a by the reflecting surface 16b and proceed to the projection lens 17, and each of the first light sources. It is possible to increase the utilization efficiency of the light L1 from 11. In addition, the vehicle lamp 10 is provided with a shade 16 as a dip angle that is 1/2 of the angle formed by the emission light axis Li of each first light source 11 in the front-rear direction. Therefore, the vehicle lamp 10 can make the traveling direction of the light L1 reflected by the reflecting surface 16b close to parallel to the front-rear direction (a state in which the inclination with respect to the front-rear direction is small), and in that state, the lens axis of the projection lens 17 It can be advanced to the vicinity of La. As a result, the vehicle lamp 10 can advance the light L1 reflected by the reflecting surface 16b to the vicinity of the center where the vertical line and the horizontal line intersect in the passing light distribution pattern LP, and the traveling light distribution pattern HP. It is possible to improve the utilization efficiency of the light L1 from each of the first light sources 11 while forming the light L1 more appropriately.
 さらに、車両用灯具10は、7個の第1光源11の幅方向での間隔を外側に向かうに連れて大きくして設けている。このため、車両用灯具10は、投影面上において、鉛直線と水平線とが交差する中央の近傍を最も明るくしつつ水平線に沿わせるように広い範囲に亘り各部分配光領域lpを形成できる。これにより、車両用灯具10は、水平方向に十分に広げて隙間なく各部分配光領域lpを並べて、すれ違い用配光パターンLPを形成できる。ここで、すれ違い用配光パターンLPは、レンズ軸Laの近傍を最も明るくすることが求められるので、車両用灯具10は、簡易な構成で適切にすれ違い用配光パターンLPを形成できる。加えて、車両用灯具10は、第1導光レンズ14の各第1レンズ導光部21において、幅方向でレンズ軸Laから離れるに従って直交面Opに対する第1導光出射面23の傾斜角度を大きくしている。このため、車両用灯具10は、シェード16の先端縁16aの近傍で下側レンズ部41の下側焦点Fdを含む焦点面(像面)上の並ぶ位置に各光L1を集光でき、すれ違い用配光パターンLPを適切に形成できる。 Further, the vehicle lamp 10 is provided so that the distance between the seven first light sources 11 in the width direction increases toward the outside. Therefore, the vehicle lamp 10 can form the light distribution region lp over a wide range on the projection surface so as to be along the horizon while making the vicinity of the center where the vertical line and the horizon intersect the brightest. As a result, the vehicle lighting fixture 10 can be sufficiently expanded in the horizontal direction and the distributed light regions lp of each part are arranged without gaps to form a light distribution pattern LP for passing each other. Here, since the passing light distribution pattern LP is required to brighten the vicinity of the lens shaft La most, the vehicle lamp 10 can appropriately form the passing light distribution pattern LP with a simple configuration. In addition, the vehicle lamp 10 sets the inclination angle of the first light guide emitting surface 23 with respect to the orthogonal surface Op as the distance from the lens axis La in the width direction increases in each first lens light guide portion 21 of the first light guide lens 14. It's getting bigger. Therefore, the vehicle lamp 10 can collect each light L1 at a lined position on the focal plane (image plane) including the lower focal Fd of the lower lens portion 41 in the vicinity of the tip edge 16a of the shade 16 and pass each other. The light distribution pattern LP can be appropriately formed.
 車両用灯具10は、レンズ軸La上において、相対的に、下側レンズ部41の下側焦点Fdを長い焦点距離Dfとし、上側レンズ部42の上側焦点Fuを短い焦点距離Dfとしている。そして、車両用灯具10は、下側レンズ部41の下側焦点Fdをシェード16の先端縁16aの近傍に設定している。このため、車両用灯具10では、各第1光源11から出射されて第1導光レンズ14により導かれた光L1を、下側焦点Fdを含む下側焦点面(像面)におけるシェード16の先端縁16aよりも上側を通らせて投影レンズ17に入射させることができる。このため、車両用灯具10では、各第1光源11からの光L1を、投影面上でカットオフラインCLよりも下側へと導くことができ、すれ違い用配光パターンLPを適切に形成できる。 In the vehicle lamp 10, the lower focal length Fd of the lower lens portion 41 is a long focal length Df and the upper focal length Fu of the upper lens portion 42 is a short focal length Df on the lens axis La. Then, the vehicle lamp 10 sets the lower focal point Fd of the lower lens portion 41 in the vicinity of the tip edge 16a of the shade 16. Therefore, in the vehicle lamp 10, the light L1 emitted from each of the first light sources 11 and guided by the first light guide lens 14 is directed by the shade 16 on the lower focal plane (image plane) including the lower focal Fd. It can be incident on the projection lens 17 by passing above the tip edge 16a. Therefore, in the vehicle lamp 10, the light L1 from each of the first light sources 11 can be guided below the cut-off line CL on the projection surface, and the light distribution pattern LP for passing can be appropriately formed.
 また、車両用灯具10では、レンズ軸La上において、シェード16の先端縁16aの近傍に設定した下側焦点Fdよりも、上側レンズ部42の上側焦点Fuを投影レンズ17側としている。このため、車両用灯具10では、上側焦点Fuの近傍においてシェード16により各第2光源12からの光L2が遮られることがないので、上側焦点Fuを含む焦点面(像面)における上側焦点Fuよりも下側に加えて、同じ焦点面における上側焦点Fuよりも上側も通して、各第2光源12からの光L2を投影レンズ17へと進行させることができる。これにより、車両用灯具10は、図6、図7に示すように、各第2光源12からの光L2の一部がシェード16の先端縁16aで遮られて、走行用配光パターンHPの下縁が先端縁16aに沿った形状にできるとともに、その下縁を投影面上でカットオフラインCLよりも下側に位置させることができる。よって、車両用灯具10は、各第2光源12からの光L2で形成するすれ違い用配光パターンLPを投影面上におけるカットオフラインCLよりも下方まで形成することでき、走行用配光パターンHPとの間に暗部が生じることを抑制できる。これにより、車両用灯具10は、投影レンズ17を段差のない良好な外観としつつ、すれ違い用配光パターンLPと走行用配光パターンHPとを適切に形成できる。 Further, in the vehicle lamp 10, the upper focal point Fu of the upper lens portion 42 is on the projection lens 17 side of the lower focal point Fd set in the vicinity of the tip edge 16a of the shade 16 on the lens axis La. Therefore, in the vehicle lighting equipment 10, since the light L2 from each of the second light sources 12 is not blocked by the shade 16 in the vicinity of the upper focal Fu, the upper focal Fu on the focal plane (image plane) including the upper focal Fu In addition to the lower side, the light L2 from each second light source 12 can be advanced to the projection lens 17 through the upper side of the upper focal point Fu on the same focal plane. As a result, in the vehicle lighting fixture 10, as shown in FIGS. 6 and 7, a part of the light L2 from each of the second light sources 12 is blocked by the tip edge 16a of the shade 16, and the traveling light distribution pattern HP The lower edge can be shaped along the tip edge 16a, and the lower edge can be positioned below the cut-off line CL on the projection surface. Therefore, the vehicle lamp 10 can form the passing light distribution pattern LP formed by the light L2 from each of the second light sources 12 below the cut-off line CL on the projection surface, and can be combined with the traveling light distribution pattern HP. It is possible to suppress the occurrence of dark areas between the two. As a result, the vehicle lamp 10 can appropriately form the light distribution pattern LP for passing and the light distribution pattern HP for traveling while giving the projection lens 17 a good appearance without steps.
 実施例1の車両用灯具10は、以下の各作用効果を得ることができる。 The vehicle lamp 10 of the first embodiment can obtain the following effects.
 車両用灯具10は、第1光源11と第2光源12とを、互いの出射光軸Liを平行としつつ前後方向に対して伏角として傾斜させており、前後方向で第1光源11よりも投影レンズ17から離れた位置に第2光源12を設けている。このため、車両用灯具10は、第1光源11および第2光源12を同一の基板18に設けつつ、それらからの光L1、光L2で適切にすれ違い用配光パターンLPや走行用配光パターンHPを形成できる。 In the vehicle lamp 10, the first light source 11 and the second light source 12 are tilted as a dip angle with respect to the front-rear direction while the emission light axes Li are parallel to each other, and are projected more than the first light source 11 in the front-rear direction. A second light source 12 is provided at a position away from the lens 17. Therefore, in the vehicle lamp 10, the first light source 11 and the second light source 12 are provided on the same substrate 18, and the light L1 and the light L2 from them are used to appropriately pass the light distribution pattern LP for passing and the light distribution pattern for traveling. HP can be formed.
 車両用灯具10は、第1光源11と第2光源12との出射光軸Li、を前後方向に対して伏角で30度から50度としている。このため、車両用灯具10は、同一の基板18に設けた両光源(11、12)からの光L1、L2により両配光パターン(LP、HP)を適切に形成することを、容易なものにできる。すなわち、車両用灯具10は、出射光軸Liを上記の角度範囲とすることで、第1導光レンズ14や第2導光レンズ15を容易な構成としつつ、それぞれが導いた光L1、L2を投影レンズ17へと適切に導くことができる。 The vehicle lamp 10 has an emission optical axis Li of the first light source 11 and the second light source 12 at a dip angle of 30 to 50 degrees with respect to the front-rear direction. Therefore, in the vehicle lamp 10, it is easy to appropriately form both light distribution patterns (LP, HP) by the lights L1 and L2 from both light sources (11, 12) provided on the same substrate 18. Can be done. That is, the vehicle lamp 10 has the light L1 and L2 guided by the light L1 and L2, respectively, while making the first light guide lens 14 and the second light guide lens 15 easy to configure by setting the emission light axis Li to the above angle range. Can be appropriately guided to the projection lens 17.
 また、車両用灯具10は、複数の第1レンズ導光部21において、レンズ軸Laから離れるに従って前後方向に直交する直交面Opに対する第1導光出射面23の傾斜角度を大きくしている。このため、車両用灯具10は、各第1光源11の幅方向での間隔を上記の設定としても、各第1光源11からの光L1をシェード16の先端縁16aの近傍に適切に集光でき、すれ違い用配光パターンLPを適切に形成できる。 Further, in the vehicle lighting fixture 10, in the plurality of first lens light guide portions 21, the inclination angle of the first light guide emission surface 23 with respect to the orthogonal plane Op orthogonal to the front-rear direction increases as the distance from the lens axis La increases. Therefore, the vehicle lamp 10 appropriately collects the light L1 from each of the first light sources 11 in the vicinity of the tip edge 16a of the shade 16 even if the distance between the first light sources 11 in the width direction is set as described above. It is possible to appropriately form a light distribution pattern LP for passing each other.
 さらに、車両用灯具10は、第1光源11と第2光源12との間に、すれ違い用配光パターンLPのカットオフラインCLを形成するシェード16を設け、そのシェード16を、前後方向に対して出射光軸Liが為す角度の1/2の大きさの伏角としている。このため、車両用灯具10は、反射面16bで反射した第1光源11からの光L1を、走行用配光パターンHPを形成する領域における不測の位置に投影することを防止できる。 Further, the vehicle lamp 10 is provided with a shade 16 forming a cut-off line CL of the passing light distribution pattern LP between the first light source 11 and the second light source 12, and the shade 16 is set with respect to the front-rear direction. The dip angle is halved of the angle formed by the emission light axis Li. Therefore, the vehicle lamp 10 can prevent the light L1 from the first light source 11 reflected by the reflecting surface 16b from being projected to an unexpected position in the region forming the traveling light distribution pattern HP.
 車両用灯具10は、第1光源11が、水平方向に複数が並べられて構成され、レンズ軸Laから離れるに従って隣り合う第1光源11同士の間隔を大きくしている。このため、車両用灯具10は、レンズ軸Laの近傍を最も明るくしつつ水平方向に十分に広げて隙間なく各部分配光領域lpを並べることができ、すれ違い用配光パターンLPを適切に形成できる。 The vehicle lamp 10 is configured such that a plurality of first light sources 11 are arranged in the horizontal direction, and the distance between adjacent first light sources 11 increases as the distance from the lens axis La increases. Therefore, the vehicle lighting fixture 10 can sufficiently widen the vicinity of the lens axis La in the horizontal direction and arrange the distributed light regions lp of each part without gaps, and can appropriately form the light distribution pattern LP for passing each other. ..
 車両用灯具10は、投影レンズ17において、レンズ軸La上で、上側レンズ部42の上側焦点Fuを下側レンズ部41の下側焦点Fdよりも焦点距離Dfを短く設定している。このため、車両用灯具10は、すれ違い用配光パターンLPの上端部と走行用配光パターンHPの下端部とが重なるように、それぞれを適切に形成できる。 In the vehicle lamp 10, the projection lens 17 sets the upper focal length Fu of the upper lens portion 42 to be shorter than the lower focal length Fd of the lower lens portion 41 on the lens axis La. Therefore, the vehicle lighting fixture 10 can be appropriately formed so that the upper end portion of the passing light distribution pattern LP and the lower end portion of the traveling light distribution pattern HP overlap each other.
 したがって、本開示に係る車両用灯具としての実施例1の車両用灯具10は、第1光源11および第2光源12を同一の基板18に設けつつ、それらからの光L1、光L2で適切にすれ違い用配光パターンLPや走行用配光パターンHPを形成できる。 Therefore, in the vehicle lighting equipment 10 of the first embodiment as the vehicle lighting equipment according to the present disclosure, the first light source 11 and the second light source 12 are provided on the same substrate 18, and the light L1 and the light L2 from them are appropriately used. A light distribution pattern LP for passing and a light distribution pattern HP for traveling can be formed.
 以上、本開示の車両用灯具を実施例1に基づき説明してきたが、具体的な構成については実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 Although the vehicle lamps of the present disclosure have been described based on the first embodiment, the specific configuration is not limited to the first embodiment and deviates from the gist of the invention according to each claim of the claims. Unless otherwise, design changes and additions are allowed.
 なお、実施例1では、走行用配光パターンHPにおける各部分配光領域hpを個別に点消灯を制御することでADBの機能を実現できるものとしている。しかしながら、車両用灯具10は、すれ違い用配光パターンLPを形成する第1光源11と、走行用配光パターンHPを形成する第2光源12と、を同一の基板18に設けてそれぞれの出射光軸Liを互いに平行とするとともに、その各出射光軸Liを前後方向に対して伏角で30度から50度とするものであればよく、実施例1の構成に限定されない。 In the first embodiment, it is assumed that the function of the ADB can be realized by individually controlling the turning on and off of each part distributed light region hp in the traveling light distribution pattern HP. However, in the vehicle lamp 10, the first light source 11 that forms the passing light distribution pattern LP and the second light source 12 that forms the traveling light distribution pattern HP are provided on the same substrate 18, and the respective emitted lights are provided. It is not limited to the configuration of the first embodiment as long as the axes Li are parallel to each other and each emitted light axis Li has a dip angle of 30 to 50 degrees with respect to the front-rear direction.
 また、実施例1では、第1レンズ導光部21および第1光源11を7個ずつ設けている。しかしながら、第1レンズ導光部21および第1光源11の数は、形成する部分配光領域lpの数やそれらによるすれ違い用配光パターンLPの大きさや形状に応じて適宜設定すればよく、実施例1の構成に限定されない。 Further, in the first embodiment, seven first lens light guides 21 and seven first light sources 11 are provided. However, the number of the first lens light guide unit 21 and the first light source 11 may be appropriately set according to the number of the unit-distributed light regions lp to be formed and the size and shape of the light distribution pattern LP for passing by them. It is not limited to the configuration of Example 1.
 さらに、実施例1では、第1光源11と第2光源12との互いの出射光軸Liを前後方向に対して伏角で30度から50度としている。しかしながら、第1光源11と第2光源12とを、互いの出射光軸Liを平行としつつ前後方向に対して伏角として傾斜させ、前後方向で第1光源11よりも投影レンズ17から離れた位置に第2光源12を設けるものであれば、出射光軸Liの前後方向に対する角度は適宜設定すればよく、実施例1の構成に限定されない。 Further, in the first embodiment, the emission optical axes Li of the first light source 11 and the second light source 12 are set to 30 to 50 degrees in dip angle with respect to the front-rear direction. However, the first light source 11 and the second light source 12 are tilted as a dip angle with respect to the front-rear direction while the emission optical axes Li are parallel to each other, and the position is farther from the projection lens 17 than the first light source 11 in the front-rear direction. If the second light source 12 is provided in the above, the angle of the emitted optical axis Li with respect to the front-rear direction may be appropriately set, and is not limited to the configuration of the first embodiment.
 ここで、特許文献1の従来の車両用灯具は、各部分配光領域を個別に点灯および消灯させることから、各部分配光領域が隣接する部分配光領域の領域まで大きく広がってぼやけることのないように、各部分配光領域を明確に形成することが望まれる。このため、上記の車両用灯具は、各第2光源に個別に対応して第2導光レンズを設け、各第2光源からの光を対応する第2導光レンズで集光しつつ投影レンズへと導くことにより、各部分配光領域を明確としている。ところが、従来の車両用灯具は、各第2光源が所定の面積を有する発光面から光を出射させるので、第2導光レンズで適切に集光することは困難であり、各部分配光領域を明確とする点で改善の余地がある。
 本実施例2は、開示は、上記の事情に鑑みて為されたもので、走行用配光パターンの各部分配光領域を明確に形成することのできる車両用灯具を開示する。
Here, in the conventional vehicle lighting equipment of Patent Document 1, since each part-distributed light region is individually turned on and off, each part-distributed light region is not greatly expanded to the adjacent part-distributed light region and is not blurred. In addition, it is desired to clearly form the light region distributed to each part. For this reason, the vehicle lighting equipment described above is provided with a second light guide lens individually corresponding to each second light source, and a projection lens while condensing the light from each second light source with the corresponding second light source lens. By leading to, the light region distributed to each part is clarified. However, in the conventional vehicle lighting equipment, since each second light source emits light from a light emitting surface having a predetermined area, it is difficult to properly collect the light with the second light guide lens, and each part distributed light region is covered. There is room for improvement in terms of clarification.
The second embodiment is disclosed in view of the above circumstances, and discloses a vehicle lighting fixture capable of clearly forming a distributed light region for each part of a traveling light distribution pattern.
 以下に、本開示に係る車両用灯具の一実施形態としての車両用灯具10の実施例2について図1、図3、図5~図7、図8~図11を参照しつつ説明する。なお、図8、図10、図11では、煩雑となることを避けるために第2レンズ導光部141や投影レンズ17における断面を示すハッチを省略している。 Hereinafter, a second embodiment of the vehicle lamp 10 as an embodiment of the vehicle lamp according to the present disclosure will be described with reference to FIGS. 1, 3, 5, 5 to 7, and 8 to 11. Note that in FIGS. 8, 10 and 11, the hatch showing the cross section of the second lens light guide unit 141 and the projection lens 17 is omitted in order to avoid complication.
 車両用灯具10は、図1および図8に示すように、複数の第1光源11と複数の第2光源12とヒートシンク部材13と第1導光レンズ14と第2導光レンズ15とシェード16と投影レンズ17とを備え、前照灯ユニットを構成する。車両用灯具10では、前後方向が投影レンズ17のレンズ軸Laにより規定される。そのレンズ軸Laは、投影レンズ17における光学的な中心となる軸線である。 As shown in FIGS. 1 and 8, the vehicle lamp 10 includes a plurality of first light sources 11, a plurality of second light sources 12, a heat sink member 13, a first light guide lens 14, a second light guide lens 15, and a shade 16. And a projection lens 17 are provided to form a headlight unit. In the vehicle lamp 10, the front-rear direction is defined by the lens axis La of the projection lens 17. The lens axis La is an axis that is the optical center of the projection lens 17.
 複数の第1光源11は、幅方向に整列されており、実施例2では7個(図3参照)が整列されている。各第1光源11は、LED(Light Emitting Diode)等の発光素子で構成され、それぞれが基板18に実装されている。その基板18は、平板状とされて、ヒートシンク部材13の前面13aに固定されている。この各第1光源11は、点灯制御回路から電力が供給されて適宜点灯される。7個の第1光源11は、上下方向に直交する平面において、真ん中の1個がレンズ軸La上に設けられ、幅方向で外側に向かうに連れて間隔が大きくされて、幅方向に並べられている(図3参照)。なお、この間隔は、適宜設定すればよく、実施例2の構成に限定されない。 The plurality of first light sources 11 are aligned in the width direction, and in Example 2, seven (see FIG. 3) are aligned. Each first light source 11 is composed of a light emitting element such as an LED (Light Emitting Diode), and each is mounted on a substrate 18. The substrate 18 has a flat plate shape and is fixed to the front surface 13a of the heat sink member 13. Each of the first light sources 11 is appropriately lit by being supplied with electric power from the lighting control circuit. The seven first light sources 11 are arranged in the width direction, with one in the middle provided on the lens axis La in a plane orthogonal to the vertical direction, and the distance is increased toward the outside in the width direction. (See Fig. 3). Note that this interval may be set as appropriate, and is not limited to the configuration of the second embodiment.
 複数の第2光源12は、幅方向に整列されており、実施例2では12個(図9参照)が整列されている。各第2光源12は、LED等の発光素子で構成され、各第1光源11よりも上下方向の下側であって前後方向の後側で、それぞれが各第1光源11と同じ基板18に同一平面上に実装されている。このため、基板18および前面13aは、法線方向が、前後方向および上下方向を含む面上で前後方向に対して伏角とされている。この各第2光源12は、点灯制御回路から電力が供給されることで、適宜一斉にまたは個別に点灯される。なお、第2光源12の数は適宜設定すればよく、実施例2の構成に限定されない。 The plurality of second light sources 12 are aligned in the width direction, and in Example 2, 12 (see FIG. 9) are aligned. Each second light source 12 is composed of a light emitting element such as an LED, and is on the same substrate 18 as each first light source 11 on the lower side in the vertical direction and the rear side in the front-rear direction than each first light source 11. It is mounted on the same plane. Therefore, the substrate 18 and the front surface 13a have a normal direction as a dip angle with respect to the front-rear direction on a surface including the front-rear direction and the up-down direction. Each of the second light sources 12 is appropriately turned on all at once or individually by being supplied with electric power from the lighting control circuit. The number of the second light sources 12 may be appropriately set, and is not limited to the configuration of the second embodiment.
 この各第1光源11および各第2光源12は、平面発光部から光を出射するもので、実装された基板18と直交する方向に出射光軸Liが設定されている。以下では、各第1光源11が出射したものを光L1とし、各第2光源12が出射したものを光L2とする。そして、各第1光源11および各第2光源12は、同一の基板18に実装されることで、それぞれの出射光軸Liが平行とされている。各出射光軸Liは、前後方向に対して伏角で30度から50度の範囲内とされる。この各出射光軸Liは、実施例2では、基板18における前後方向に対する角度が定められることにより設定される。 Each of the first light source 11 and each second light source 12 emits light from a plane light emitting unit, and the emission optical axis Li is set in a direction orthogonal to the mounted substrate 18. In the following, what is emitted by each of the first light sources 11 is referred to as light L1, and what is emitted by each of the second light sources 12 is referred to as light L2. The first light source 11 and the second light source 12 are mounted on the same substrate 18, so that their respective emission optical axes Li are parallel. Each emission optical axis Li has a dip angle in the range of 30 to 50 degrees with respect to the front-rear direction. In the second embodiment, each of the emitted optical axes Li is set by determining an angle with respect to the front-rear direction on the substrate 18.
 ヒートシンク部材13は、各第1光源11および各第2光源12で発生する熱を外部に逃がす放熱部材であり、熱伝導率の高い金属材料や樹脂材料で形成される。ヒートシンク部材13では、前面13aとは反対側に、板状とされた複数の放熱フィン13bが並列して設けられている(図1参照)。ヒートシンク部材13では、各出射光軸Liを上記の角度とするように、前面13aに基板18が取り付けられる。 The heat sink member 13 is a heat radiating member that releases heat generated by each of the first light sources 11 and each of the second light sources 12 to the outside, and is made of a metal material or a resin material having high thermal conductivity. In the heat sink member 13, a plurality of plate-shaped heat radiating fins 13b are provided in parallel on the side opposite to the front surface 13a (see FIG. 1). In the heat sink member 13, the substrate 18 is attached to the front surface 13a so that each emission optical axis Li has the above angle.
 第1導光レンズ14は、基板18に実装された各第1光源11から出射された光L1を投影レンズ17へと導く。第1導光レンズ14は、透明な樹脂で形成されており、図3に示すように、各第1光源11に個別に対応されて幅方向に並べられた7個の第1レンズ導光部21を有する。各第1レンズ導光部21は、対応する第1光源11に対向された第1導光入射面22と、投影レンズ17側に向けられた第1導光出射面23と、を有し、連結部24により互いに連結されている。各第1レンズ導光部21は、第1導光入射面22から入射させて各第1導光出射面23から出射した各第1光源11からの光L1を、シェード16の先端縁16aの近傍に集光するように、光学的に設計されている。 The first light guide lens 14 guides the light L1 emitted from each of the first light sources 11 mounted on the substrate 18 to the projection lens 17. The first light guide lens 14 is made of a transparent resin, and as shown in FIG. 3, seven first lens light guide portions arranged in the width direction individually corresponding to each first light source 11. Has 21. Each first lens light guide unit 21 has a first light guide incident surface 22 facing the corresponding first light source 11, and a first light guide exit surface 23 directed toward the projection lens 17. They are connected to each other by the connecting portion 24. Each first lens light guide unit 21 causes light L1 from each first light source 11 incident from the first light guide incident surface 22 and emitted from each first light guide emission surface 23 to be emitted from the tip edge 16a of the shade 16. It is optically designed to focus in the vicinity.
 第2導光レンズ15は、基板18に実装された第2光源12から出射された光L2を投影レンズ17へと導く。第2導光レンズ15は、図9に示すように、各第2光源12に個別に対応されて幅方向に並べられた12個の第2レンズ導光部141を有する。この各第2レンズ導光部141の構成については、後述する。 The second light guide lens 15 guides the light L2 emitted from the second light source 12 mounted on the substrate 18 to the projection lens 17. As shown in FIG. 9, the second light guide lens 15 has twelve second lens light guide portions 141 individually corresponding to each second light source 12 and arranged in the width direction. The configuration of each of the second lens light guide portions 141 will be described later.
 シェード16は、図1および図8に示すように、第2導光レンズ15の上に設けられており、幅方向に伸びる板状とされている。このため、シェード16は、各第1光源11から第1導光レンズ14を経る光路と、各第2光源12から第2導光レンズ15を経る光路と、の間に設けられている。シェード16は、前後方向の前側の先端縁16aが、上下方向での位置の異なる2つの水平エッジが傾斜エッジで繋ぎ合わされた形状とされている。シェード16は、各第1光源11から出射されて第1導光レンズ14(その各第1レンズ導光部21)により導かれた光L1の一部を先端縁16aで遮ることで、すれ違い用配光パターンLPの上縁に2つの水平カットオフラインを傾斜カットオフラインで繋ぎ合わせたカットオフラインCL(図5参照)を形成する。なお、シェード16は、先端縁16aでカットオフラインCLを形成するものであれば、その大きさは適宜設定すればよく、実施例2の構成に限定されない。 As shown in FIGS. 1 and 8, the shade 16 is provided on the second light guide lens 15 and has a plate shape extending in the width direction. Therefore, the shade 16 is provided between the optical path from each of the first light sources 11 to pass through the first light guide lens 14 and the optical path from each of the second light sources 12 to pass through the second light guide lens 15. The shade 16 has a shape in which the front end edge 16a in the front-rear direction is joined by two horizontal edges having different positions in the vertical direction at an inclined edge. The shade 16 is for passing by by blocking a part of the light L1 emitted from each of the first light sources 11 and guided by the first light guide lens 14 (each of the first lens light guide portions 21) by the tip edge 16a. A cut-off line CL (see FIG. 5) is formed by connecting two horizontal cut-off lines with an inclined cut-off line on the upper edge of the light distribution pattern LP. The size of the shade 16 may be appropriately set as long as it forms a cut-off line CL at the tip edge 16a, and is not limited to the configuration of the second embodiment.
 投影レンズ17は、凸レンズとされており、実施例2では出射面17aが凸面とされるとともに入射面17bが平坦面とされている。なお、投影レンズ17は、全体として凸レンズとされていれば、出射面17aが平坦面でも凹面でもよく、入射面17bが凸面でもよく凹面でもよく、実施例2の構成に限定されない。投影レンズ17は、レンズホルダに支持される。レンズホルダは、基板18に実装された各第1光源11や各第2光源12、第1導光レンズ14、第2導光レンズ15およびシェード16に対して、投影レンズ17を位置決めした状態で、ヒートシンク部材13に組み付けられる。 The projection lens 17 is a convex lens, and in the second embodiment, the exit surface 17a is a convex surface and the incident surface 17b is a flat surface. As long as the projection lens 17 is a convex lens as a whole, the exit surface 17a may be a flat surface or a concave surface, and the incident surface 17b may be a convex surface or a concave surface, and is not limited to the configuration of the second embodiment. The projection lens 17 is supported by the lens holder. The lens holder is in a state where the projection lens 17 is positioned with respect to each of the first light source 11, each second light source 12, the first light guide lens 14, the second light guide lens 15, and the shade 16 mounted on the substrate 18. , Assembled to the heat sink member 13.
 投影レンズ17は、図8に示すように、後側焦点Fbがシェード16の先端縁16aの近傍に設定されている。投影レンズ17は、第1光源11から出射されて第1導光レンズ14により導かれた光L1を車両の前方へ投影することで、図5のすれ違い用配光パターンLP(少なくとも一部)を形成する。また、投影レンズ17は、各第2光源12から出射されて第2導光レンズ15により導かれた光L2を車両の前方へ投影することで、図6の走行用配光パターンHPを形成する。 As shown in FIG. 8, the projection lens 17 has the rear focal point Fb set in the vicinity of the tip edge 16a of the shade 16. The projection lens 17 projects the light L1 emitted from the first light source 11 and guided by the first light guide lens 14 toward the front of the vehicle to obtain the passing light distribution pattern LP (at least a part) of FIG. Form. Further, the projection lens 17 forms the traveling light distribution pattern HP of FIG. 6 by projecting the light L2 emitted from each of the second light sources 12 and guided by the second light guide lens 15 toward the front of the vehicle. ..
 次に、第2導光レンズ15の構成について、図9から図11を用いて説明する。第2導光レンズ15は、透明な樹脂で形成されており、図9に示すように、各第2光源12に個別に対応されて幅方向に並べられた12個の第2レンズ導光部141を有する。各第2レンズ導光部141は、各第2光源12側すなわち基板18側が、投影レンズ17側へ向けて延びる12個の長尺な棒状部分142とされており、各棒状部分142が幅方向で間隔を置いて並列されている。また、各第2レンズ導光部141は、各棒状部分142が投影レンズ17側の板状部分43で一体化されており、幅方向に拡がる板状とされている。 Next, the configuration of the second light guide lens 15 will be described with reference to FIGS. 9 to 11. The second light guide lens 15 is made of a transparent resin, and as shown in FIG. 9, twelve second lens light guide portions arranged in the width direction individually corresponding to each second light source 12. It has 141. Each of the second lens light guide portions 141 has 12 long rod-shaped portions 142 whose second light source 12 side, that is, the substrate 18 side extends toward the projection lens 17 side, and each rod-shaped portion 142 is in the width direction. They are arranged in parallel at intervals. Further, each of the second lens light guide portions 141 has a plate shape in which each rod-shaped portion 142 is integrated with a plate-shaped portion 43 on the projection lens 17 side and expands in the width direction.
 各第2レンズ導光部141は、各棒状部分142の第2光源12に対向された箇所を第2導光入射面44とし、板状部分43の投影レンズ17側に向けられた箇所を第2導光出射面45とする。このため、第2導光入射面44は、12個の第2光源12に個別に対向する12個の面とされ、第2導光出射面45は、12個の第2レンズ導光部141が幅方向に連結された単一の面とされている。各棒状部分142は、幅方向の寸法が、第2導光入射面44から第2導光出射面45に向かうに連れて広げられている。その各棒状部分142は、設けられた位置が幅方向の内側から外側となるに連れて、幅方向での広がる割合が大きくされている。すなわち、各棒状部分142は、幅方向で中央の2つが第2導光入射面44と略同じ寸法で投影レンズ17側へ向けて延びており、設けられた位置が幅方向の外側に向かうほど、第2導光入射面44に対する広がり方が大きくなる。各第2レンズ導光部141は、互いに同様の光学的な設計とされている。このため、以下では、図8と同様の断面を示す図10と、それを部分的に拡大した図11と、を用いて、第2レンズ導光部141における光学的な設計について説明する。この図10は、図9の右から6個目の第2レンズ導光部141の断面を示している。 Each of the second lens light guide portions 141 has a portion of each rod-shaped portion 142 facing the second light source 12 as a second light guide incident surface 44, and a portion of the plate-shaped portion 43 facing the projection lens 17 side. 2 The light guide emitting surface 45 is used. Therefore, the second light guide incident surface 44 is formed into twelve surfaces individually facing the twelve second light sources 12, and the second light guide exit surface 45 is formed by the twelve second lens light guide portions 141. Is a single surface connected in the width direction. The width direction of each rod-shaped portion 142 is widened from the second light guide incident surface 44 toward the second light guide exit surface 45. The rate of expansion of each rod-shaped portion 142 in the width direction is increased from the inside to the outside in the width direction. That is, in each rod-shaped portion 142, the two central portions in the width direction extend toward the projection lens 17 side with substantially the same dimensions as the second light guide incident surface 44, and the provided positions are toward the outside in the width direction. , The way of spreading with respect to the second light guide incident surface 44 becomes large. Each of the second lens light guide portions 141 has the same optical design as each other. Therefore, in the following, the optical design of the second lens light guide unit 141 will be described with reference to FIG. 10 showing a cross section similar to that of FIG. 8 and FIG. 11 which is a partially enlarged view thereof. FIG. 10 shows a cross section of the second lens light guide unit 141, which is the sixth from the right in FIG.
 第2レンズ導光部141は、図10に示すように、第2導光入射面44と第2導光出射面45とに加えて、入射側導光反射面46と出射側導光反射面47とが設けられている。ここで、第2レンズ導光部141は、出射光軸Liが前後方向の前側でかつ上下方向の下側を向く傾斜とされた第2光源12からの光L2を、投影レンズ17の後側焦点Fbの近傍へと向かわせる。このため、第2導光入射面44は、第2光源12に対向されて、全体として第2光源12の出射光軸Liに直交されており、前後方向の後側へ向かうに連れて上下方向の下側に向かう傾斜、すなわち基板18と平行とされている。また、第2導光出射面45は、上端45aが後述の入射側導光反射面46の第2焦点F2の近傍に位置されていることから、前後方向の前側へ向かうに連れて上下方向の下側へ向かう傾斜とされている(図8参照)。これにより、第2レンズ導光部141は、第2光源12からの光L2を、第2導光入射面44から入射させる方向と、第2導光出射面45から出射させる方向と、が交差されている。 As shown in FIG. 10, the second lens light guide unit 141 has, in addition to the second light guide incident surface 44 and the second light guide exit surface 45, the incident side light guide reflection surface 46 and the exit side light guide reflection surface. 47 is provided. Here, the second lens light guide unit 141 directs the light L2 from the second light source 12, whose emission optical axis Li is inclined toward the front side in the front-rear direction and downward in the up-down direction, to the rear side of the projection lens 17. Direct to the vicinity of the focal point Fb. Therefore, the second light guide incident surface 44 faces the second light source 12 and is orthogonal to the emission light axis Li of the second light source 12 as a whole, and is in the vertical direction toward the rear side in the front-rear direction. It is tilted downward, that is, parallel to the substrate 18. Further, since the upper end 45a of the second light guide emission surface 45 is located near the second focal point F2 of the incident side light guide reflection surface 46 described later, the second light guide emission surface 45 is in the vertical direction toward the front side in the front-rear direction. It is said to be inclined downward (see FIG. 8). As a result, the second lens light guide unit 141 intersects the direction in which the light L2 from the second light source 12 is incident from the second light guide incident surface 44 and the direction in which the light L2 is emitted from the second light guide exit surface 45. Has been done.
 このため、入射側導光反射面46は、第2レンズ導光部141における第2導光入射面44の近傍(主に棒状部分142)において、上下方向の下側の面(下面)に設けられており、第2導光入射面44から入射された光L2を第2導光出射面45側すなわち前後方向の前側でかつ上側へと反射する。また、出射側導光反射面47は、第2レンズ導光部141における第2導光出射面45の近傍(主に板状部分43)において、上下方向の上側に設けられており、入射側導光反射面46で反射された光L2を前後方向の前側へと反射する。なお、入射側導光反射面46および出射側導光反射面47は、上記のように反射するものであれば、全反射を利用するものでも反射処理を施すものでも他の構成でもよい。第2レンズ導光部141は、対応する第2光源12からの光L2を効率良く導くために、次のように光学的に設定されている。 Therefore, the incident side light guide reflecting surface 46 is provided on the lower surface (lower surface) in the vertical direction in the vicinity of the second light guide incident surface 44 (mainly the rod-shaped portion 142) in the second lens light guide unit 141. The light L2 incident from the second light guide incident surface 44 is reflected on the second light guide exit surface 45 side, that is, on the front side in the front-rear direction and on the upper side. Further, the light emitting side light reflecting surface 47 is provided on the upper side in the vertical direction in the vicinity of the second light guide emitting surface 45 (mainly the plate-shaped portion 43) in the second lens light guide unit 141, and is provided on the incident side. The light L2 reflected by the light guide reflecting surface 46 is reflected to the front side in the front-rear direction. The light guide reflection surface 46 on the incident side and the light guide reflection surface 47 on the exit side may be those that utilize total reflection, those that are subjected to reflection processing, or other configurations as long as they reflect as described above. The second lens light guide unit 141 is optically set as follows in order to efficiently guide the light L2 from the corresponding second light source 12.
 第2導光入射面44は、図11に示すように、第2光源12からの光L2を、第2レンズ導光部141の下面において入射側導光反射面46が設けられた領域に進行させる、換言すると第2レンズ導光部141の下面において第2導光入射面44側へと屈折させる。第2導光入射面44は、このように光L2を導くために、少なくとも第2光源12側、すなわち上下方向の上側に凸に湾曲された湾曲入射面44aを有する。湾曲入射面44aは、第2光源12の出射光軸Li上に曲率中心Ccを有しており、光学的に、入射側導光反射面46の第1焦点F1の位置を、第2光源12(その発光中心)の位置に、変位させる曲面とされている。なお、湾曲入射面44aは、そのような曲面を基本とする自由曲面としてもよく、その曲率を徐々に変化させた曲面としてもよい。すなわち、第2レンズ導光部141内では、第2光源12からの光L2が第2導光入射面44で屈折された状態で進行するが、その進行する方向が、第1焦点F1から出射されて第2導光入射面44で屈折されていない仮想光Lvの進行の態様と一致される。 As shown in FIG. 11, the second light guide incident surface 44 advances the light L2 from the second light source 12 to the region provided with the incident side light guide reflection surface 46 on the lower surface of the second lens light guide unit 141. In other words, it is refracted toward the second light guide incident surface 44 side on the lower surface of the second lens light guide unit 141. The second light guide incident surface 44 has at least a second light source 12 side, that is, a curved incident surface 44a that is convexly curved upward in the vertical direction in order to guide the light L2 in this way. The curved incident surface 44a has a center of curvature Cc on the emission light axis Li of the second light source 12, and optically positions the position of the first focal point F1 of the incident side light guide reflecting surface 46 with the second light source 12. It is a curved surface that is displaced at the position (the center of light emission). The curved incident surface 44a may be a free curved surface based on such a curved surface, or may be a curved surface whose curvature is gradually changed. That is, in the second lens light guide unit 141, the light L2 from the second light source 12 travels in a state of being refracted by the second light guide incident surface 44, but the traveling direction is emitted from the first focal point F1. This is consistent with the mode of travel of the virtual light Lv that has not been refracted by the second light guide incident surface 44.
 湾曲入射面44aは、第2導光入射面44における上下方向の上端44cから任意の大きさで設定すればよく、実施例2では、第2導光入射面44の上端44cから第2光源12の出射光軸Liに交わる位置までの間に設定されている。そして、実施例2の第2導光入射面44は、湾曲入射面44a以外の箇所に、湾曲入射面44aの連続する平坦入射面44bが設けられている。平坦入射面44bは、出射光軸Liに直交する平坦な面とされており、第2光源12からの光L2を入射側導光反射面46へと進行させる。 The curved incident surface 44a may be set to an arbitrary size from the upper end 44c of the second light guide incident surface 44 in the vertical direction, and in the second embodiment, the second light source 12 is set from the upper end 44c of the second light guide incident surface 44. It is set up to the position where it intersects the emission optical axis Li. The second light guide incident surface 44 of the second embodiment is provided with a continuous flat incident surface 44b of the curved incident surface 44a at a location other than the curved incident surface 44a. The flat incident surface 44b is a flat surface orthogonal to the emitted light axis Li, and causes the light L2 from the second light source 12 to travel to the incident side light guide reflecting surface 46.
 入射側導光反射面46は、図10に示すように、第2光源12の出射光軸Li上における第2光源12よりも前後方向の後側の位置を第1焦点F1とするとともに、投影レンズ17の後側焦点Fbの近傍を第2焦点F2とする楕円を基本とする自由曲面としている。その第2焦点F2は、第2導光出射面45の上端45aの近傍に設定されている。ここで、第2導光入射面44は、上記のように光学的に入射側導光反射面46の第1焦点F1の位置を第2光源12の位置に変位させる湾曲入射面44aを有する。このため、入射側導光反射面46は、湾曲入射面44aの光学特性を考慮すると、実質的に第2光源12を第1焦点F1としていることとなる。また、入射側導光反射面46は、平坦入射面44bを経た第2光源12からの光L2に対して、第2焦点F2の近傍に集光するように光学的に設定されている。このため、入射側導光反射面46は、第2光源12から出射されて湾曲入射面44aまたは平坦入射面44bを経た光L2を、第2焦点F2へ向けて反射する。これにより、入射側導光反射面46は、光学的な設計として反射光を集光させる点を第2焦点F2としている。 As shown in FIG. 10, the incident-side light guide reflecting surface 46 has a position on the emission optical axis Li of the second light source 12 behind the second light source 12 in the front-rear direction as the first focal point F1 and is projected. The vicinity of the rear focal point Fb of the lens 17 is a free curved surface based on an ellipse having the second focal point F2. The second focal point F2 is set in the vicinity of the upper end 45a of the second light guide emitting surface 45. Here, the second light guide incident surface 44 has a curved incident surface 44a that optically displaces the position of the first focal point F1 of the incident side light guide reflection surface 46 to the position of the second light source 12 as described above. Therefore, the incident side light guide reflecting surface 46 substantially has the second light source 12 as the first focal point F1 in consideration of the optical characteristics of the curved incident surface 44a. Further, the incident side light guide reflecting surface 46 is optically set so as to focus the light L2 from the second light source 12 passing through the flat incident surface 44b in the vicinity of the second focal point F2. Therefore, the incident side light guide reflecting surface 46 reflects the light L2 emitted from the second light source 12 and passing through the curved incident surface 44a or the flat incident surface 44b toward the second focal point F2. As a result, the light guide reflecting surface 46 on the incident side has a second focal point F2 at which the reflected light is collected as an optical design.
 ここで、入射側導光反射面46が第2光源12の発光面の中心位置を点光源としてそこからの光L2を第2焦点F2へ向けて反射するように光学的に設定されているのに対し、第2光源12の発光面が所定の面積を有している。このため、入射側導光反射面46は、第2光源12から第2導光入射面44を経た光L2の全てを第2焦点F2に集めることが困難となる。そこで、第2レンズ導光部141では、出射側導光反射面47を設けている。 Here, the incident side light guide reflecting surface 46 is optically set so as to reflect the light L2 from the center position of the light emitting surface of the second light source 12 toward the second focal point F2 as a point light source. On the other hand, the light emitting surface of the second light source 12 has a predetermined area. Therefore, it is difficult for the incident side light guide reflecting surface 46 to collect all of the light L2 passing through the second light source 12 to the second light guide incident surface 44 at the second focal point F2. Therefore, the second lens light guide unit 141 is provided with a light guide reflection surface 47 on the exit side.
 出射側導光反射面47は、第2光源12から出射されて第2導光入射面44を経て入射側導光反射面46で反射された光L2を、前後方向の前側へ向けて反射して、第2導光出射面45へと進行させる。出射側導光反射面47は、第2導光出射面45の上端45aから前後方向の後側(第2光源12側)へと延びる面とされており、入射側導光反射面46とは反対側、すなわち上下方向の上側に凸に湾曲されている。実施例2の出射側導光反射面47は、100mmから1000mmの曲率半径の曲面としている。 The light emitting side light reflecting surface 47 reflects the light L2 emitted from the second light source 12 through the second light guide incident surface 44 and reflected by the incident side light guide reflecting surface 46 toward the front side in the front-rear direction. Then, it advances to the second light guide emission surface 45. The light emitting side light reflecting surface 47 is a surface extending from the upper end 45a of the second light guide emitting surface 45 to the rear side (second light source 12 side) in the front-rear direction, and is the incident side light guide reflecting surface 46. It is curved convexly on the opposite side, that is, on the upper side in the vertical direction. The light emitting side light reflecting surface 47 of the second embodiment has a curved surface having a radius of curvature of 100 mm to 1000 mm.
 また、出射側導光反射面47においては、上端45a側の先端部47aにおける接線Ltが、次の位置関係とされている。ここで、第2光源12の出射光軸Liと入射側導光反射面46とが交わる箇所を交点Ipとし、その交点Ipと第2焦点F2(入射側導光反射面46が光学的な設計上で集光する点)とを結ぶ直線を主導光線Lgとする。この主導光線Lgは、第1焦点F1を仮想光源とする第2光源12からの光L2が、入射側導光反射面46で反射されて第2焦点F2へと進行する方向となる。その主導光線Lg上の光L2は、第2光源12からの出射光軸Li上を進行するので、光量が高いものとなる。そして、接線Ltは、主導光線Lgに対する角度θが5度から10度とされている。 Further, in the light guide reflecting surface 47 on the exit side, the tangent line Lt at the tip portion 47a on the upper end 45a side has the following positional relationship. Here, the intersection of the emission light axis Li of the second light source 12 and the light guide reflection surface 46 on the incident side is set as an intersection Ip, and the intersection Ip and the second focal point F2 (the light guide reflection surface 46 on the incident side is an optical design). The straight line connecting the point to be focused on) is defined as the leading ray Lg. The leading ray Lg is in a direction in which the light L2 from the second light source 12 using the first focal point F1 as a virtual light source is reflected by the incident side light guide reflecting surface 46 and travels to the second focal point F2. Since the light L2 on the leading ray Lg travels on the light axis Li emitted from the second light source 12, the amount of light is high. The tangent line Lt has an angle θ of 5 to 10 degrees with respect to the leading ray Lg.
 さらに、主導光線Lgは、第2導光出射面45に対して直交されている。実施例2の第2導光出射面45は、幅方向に直交する縦断面において、平坦な面(平面)とされている。なお、第2導光出射面45は、主導光線Lgと交わる箇所において主導光線Lgに対して直交されていれば、曲面とされていてもよく、実施例2の構成に限定されない。 Further, the leading light beam Lg is orthogonal to the second light guide emitting surface 45. The second light guide emitting surface 45 of the second embodiment is a flat surface (flat surface) in a vertical cross section orthogonal to the width direction. The second light guide emitting surface 45 may be curved as long as it is orthogonal to the leading light Lg at the intersection with the leading light Lg, and is not limited to the configuration of the second embodiment.
 第2導光出射面45は、入射側導光反射面46や出射側導光反射面47により反射された光L2を投影レンズ17へ向けて出射する。第2導光出射面45は、縦断面において、主導光線Lgに直交する平坦な面であるので、主導光線Lg上を通る光L2を屈折させることなく出射させるとともに、それ以外の光L2は角度に応じて屈折させて出射させる。なお、第2導光出射面45は、上記のように曲面とされている場合であっても、主導光線Lgと交わる箇所において主導光線Lgに対して直交しているので、主導光線Lg上を通る光L2を屈折させることなく出射させるとともに、それ以外の光L2は角度に応じて屈折させて出射させる。 The second light guide exit surface 45 emits the light L2 reflected by the incident side light guide reflection surface 46 and the exit side light guide reflection surface 47 toward the projection lens 17. Since the second light guide emitting surface 45 is a flat surface orthogonal to the leading light ray Lg in the vertical cross section, the light L2 passing on the leading light ray Lg is emitted without being refracted, and the other light L2 is at an angle. It is refracted according to the above and emitted. Even when the second light guide emitting surface 45 is curved as described above, since it is orthogonal to the leading light Lg at the intersection with the leading light Lg, the second light guide emitting surface 45 is on the leading light Lg. The passing light L2 is emitted without being refracted, and the other light L2 is refracted and emitted according to the angle.
 この第2導光レンズ15が上記のレンズホルダ等に固定されることで、各第2光源12および投影レンズ17に対する各第2レンズ導光部141の上記の位置関係が設定される。なお、第2導光レンズ15は、第2導光入射面44および第2導光出射面45を除く箇所では光L2を出入りさせないので、それらを除く箇所に蒸着や塗装等によりアルミや銀等の反射部材を接着させて光L2を反射させてもよく、遮光部材を接着させることで光の透過を防止するものとしてもよい。 By fixing the second light guide lens 15 to the lens holder or the like, the above positional relationship of each second lens light guide unit 141 with respect to each second light source 12 and projection lens 17 is set. Since the second light guide lens 15 does not allow light L2 to enter and exit at locations other than the second light guide incident surface 44 and the second light guide exit surface 45, aluminum, silver, or the like is formed by vapor deposition, painting, or the like at the locations other than these. The light L2 may be reflected by adhering the reflective member of the above, or the light transmission may be prevented by adhering the light-shielding member.
 次に車両用灯具10の点灯について説明する。車両用灯具10は、灯室に設けられて、コネクタ接続部を介して基板18に外部コネクタが接続される。車両用灯具10は、外部コネクタおよびコネクタ接続部を介する点灯制御回路から基板18に実装された各第1光源11および各第2光源12へと電力を供給することで、各第1光源11および各第2光源12を適宜点灯および消灯する。 Next, the lighting of the vehicle lamp 10 will be described. The vehicle lighting fixture 10 is provided in the lighting chamber, and an external connector is connected to the substrate 18 via a connector connecting portion. The vehicle lighting fixture 10 supplies electric power to each of the first light sources 11 and each of the second light sources 12 mounted on the substrate 18 from the lighting control circuit via the external connector and the connector connection portion, thereby causing the first light sources 11 and each of the second light sources 12. Each second light source 12 is turned on and off as appropriate.
 車両用灯具10は、図8に示すように、各第1光源11を点灯させると、その各第1光源11からの光L1が、第1導光レンズ14の各第1レンズ導光部21の第1導光入射面22に入射して、各第1レンズ導光部21により導かれて、第1導光出射面23から出射される。その光L1は、投影レンズ17により投影されて、図5に示すように、投影面上でレンズ軸Laの位置(水平線)の近傍よりも下側において、水平方向に並ぶ7つの部分配光領域lpを形成する。その7つの部分配光領域lpは、一部を重ねつつ幅方向に並んで一体に形成されて、すれ違い用配光パターンLPを形成する。そのすれ違い用配光パターンLPは、各光L1の一部が先端縁16aで遮られて先端縁16aに沿った形状とされつつ投影レンズ17により投影されることで、上縁にカットオフラインCLが形成される。 As shown in FIG. 8, in the vehicle lighting tool 10, when each of the first light sources 11 is turned on, the light L1 from each of the first light sources 11 is emitted from each of the first lens light guide portions 21 of the first light guide lens 14. It is incident on the first light source incident surface 22 of the above, is guided by each first lens light source unit 21, and is emitted from the first light source emission surface 23. The light L1 is projected by the projection lens 17, and as shown in FIG. 5, seven partially distributed light regions arranged in the horizontal direction below the vicinity of the position (horizontal line) of the lens axis La on the projection surface. Form lp. The seven partial distribution light regions lp are integrally formed side by side in the width direction while partially overlapping each other to form a passing light distribution pattern LP. In the passing light distribution pattern LP, a part of each light L1 is blocked by the tip edge 16a and projected by the projection lens 17 while being shaped along the tip edge 16a, so that a cut-off line CL is formed on the upper edge. It is formed.
 また、車両用灯具10は、各第2光源12を点灯させると、その各第2光源12からの光L2が、第2導光入射面44から第2導光レンズ15の各第2レンズ導光部141へと入射する。その各第2レンズ導光部141では、入射側導光反射面46が、第2導光入射面44に入射した光L2を第2焦点F2へ向けて反射する。その入射側導光反射面46で反射された光L2は、一部が直に第2導光出射面45へと進行し、他部が出射側導光反射面47で反射されて第2導光出射面45へと進行する。その光L2は、第2導光出射面45から出射されて、第2焦点F2すなわち投影レンズ17の後側焦点Fbの近傍へと進行する。その光L2は、投影レンズ17へと進行することで、投影レンズ17により投影されて、図6に示すように、投影面上でレンズ軸Laの位置(水平線)の近傍よりも上側において、水平方向に並ぶ12個の部分配光領域hpを形成する。その12個の部分配光領域hpは、一部を重ねつつ幅方向に並んで一体に形成されて、走行用配光パターンHPを形成する。よって、車両用灯具10は、各第2光源12からの光L2で、すれ違い用配光パターンLPの上端部に下端部が重なるように走行用配光パターンHPを形成できる。 Further, in the vehicle lamp 10, when each of the second light sources 12 is turned on, the light L2 from each of the second light sources 12 guides the light L2 from the second light guide incident surface 44 to each second lens guide of the second light guide lens 15. It is incident on the light unit 141. In each of the second lens light guide units 141, the incident side light guide reflecting surface 46 reflects the light L2 incident on the second light guide incident surface 44 toward the second focal point F2. A part of the light L2 reflected by the incident side light guide reflecting surface 46 travels directly to the second light guide emitting surface 45, and the other part is reflected by the emitting side light guide reflecting surface 47 to guide the second light. It proceeds to the light emitting surface 45. The light L2 is emitted from the second light guide emitting surface 45 and travels to the vicinity of the second focal point F2, that is, the rear focal point Fb of the projection lens 17. The light L2 travels to the projection lens 17 and is projected by the projection lens 17, and as shown in FIG. 6, is horizontal on the projection surface above the vicinity of the position (horizontal line) of the lens axis La. Twelve partially distributed optical regions hp arranged in the direction are formed. The twelve partially distributed light regions hp are integrally formed side by side in the width direction while partially overlapping each other to form a traveling light distribution pattern HP. Therefore, the vehicle lighting fixture 10 can form the traveling light distribution pattern HP so that the lower end portion overlaps the upper end portion of the passing light distribution pattern LP with the light L2 from each of the second light sources 12.
 実施例2の車両用灯具10は、ADB(Adaptive Driving Beam(配光可変型前照灯))としており、各第2光源12を個別に点灯および消灯することで、12個の部分配光領域hpのうちの特定の方向の部分配光領域hpを点灯および消灯できる。これにより、車両用灯具10は、走行用配光パターンHPにおける任意の方向の部分的な配光制御を可能としている。 The vehicle lighting fixture 10 of the second embodiment is an ADB (Adaptive Driving Beam (variable light distribution type headlight)), and by turning on and off each second light source 12 individually, 12 partial distribution light regions are used. The part distribution light region hp in a specific direction of the hp can be turned on and off. As a result, the vehicle lamp 10 enables partial light distribution control in any direction in the traveling light distribution pattern HP.
 以上の説明により、車両用灯具10は、各第1光源11を点灯することで、図5に示すように、カットオフラインCLを有するすれ違い用配光パターンLPを形成でき、すれ違い時の配光(所謂ロービーム)とすることができる。また、車両用灯具10は、各第1光源11に加えて各第2光源12を点灯することで、図7に示すように、すれ違い用配光パターンLPの上方に重ねて走行用配光パターンHPを形成でき、走行時の配光(所謂ハイビーム)とすることができる。そして、車両用灯具10は、上記したように、各第2光源12を個別に点灯および消灯することで、走行用配光パターンHPにおける任意の部分配光領域hpを個別に制御することができ、ADBの機能を実現させることもできる。 According to the above description, the vehicle lamp 10 can form a passing light distribution pattern LP having a cut-off line CL as shown in FIG. 5 by turning on each of the first light sources 11, and the light distribution at the time of passing (light distribution at the time of passing). It can be a so-called low beam). Further, as shown in FIG. 7, the vehicle lighting tool 10 is superposed on the passing light distribution pattern LP by turning on each of the second light sources 12 in addition to the first light source 11, and the traveling light distribution pattern. The HP can be formed, and the light distribution during traveling (so-called high beam) can be obtained. Then, as described above, the vehicle lamp 10 can individually control the arbitrary part distribution light region hp in the traveling light distribution pattern HP by turning on and off each of the second light sources 12 individually. , ADB functions can also be realized.
 次に、車両用灯具10における作用について説明する。第2導光レンズ15は、各第2レンズ導光部141の第2導光入射面44において、少なくとも一部に第2光源12側に凸となる曲面とされた湾曲入射面44aを有する。この第2導光入射面44は、湾曲入射面44aの集光作用により、第2光源12から出射された光L2を第2レンズ導光部141に入射させる際に第2レンズ導光部141の下面における第2導光入射面44側へと屈折させることができる。このため、第2導光レンズ15は、第2光源12からの光L2が進行する方向を第2導光入射面44側にでき、光L2を入射側導光反射面46の第2焦点F2へと導くことができる。特に、実施例2の第2導光レンズ15は、第2導光入射面44が、第2光源12からの光L2を、第2レンズ導光部141の下面において入射側導光反射面46が設けられた領域に進行させるものとしている。 Next, the operation of the vehicle lamp 10 will be described. The second light guide lens 15 has a curved incident surface 44a having a curved surface that is convex toward the second light source 12 at least in a part of the second light incident surface 44 of each second lens light guide unit 141. The second light guide incident surface 44 is a second lens light guide unit 141 when the light L2 emitted from the second light source 12 is incident on the second lens light guide unit 141 due to the condensing action of the curved incident surface 44a. It can be refracted toward the second light guide incident surface 44 side on the lower surface of the light guide. Therefore, the second light guide lens 15 can set the direction in which the light L2 from the second light source 12 travels toward the second light guide incident surface 44 side, and directs the light L2 to the second focal point F2 of the incident side light guide reflection surface 46. Can lead to. In particular, in the second light guide lens 15 of the second embodiment, the second light guide incident surface 44 allows the light L2 from the second light source 12 to be transmitted to the incident side light guide reflection surface 46 on the lower surface of the second lens light guide unit 141. It is supposed to proceed to the area where is provided.
 この一例として、図10に、第2光源12から出射された光L2に対して、第2導光入射面44の湾曲入射面44aで屈折された光L2aと、湾曲入射面44aを設けることなく平面とされた第2導光入射面44(平坦入射面44bが湾曲入射面44a側まで伸ばされたもの)で屈折された光L2bと、を示す。光L2aは、第2レンズ導光部141の下面における入射側導光反射面46が設けられた領域へと進行しており、その入射側導光反射面46で第2焦点F2へ向けて反射されて、第2導光出射面45を経て投影レンズ17へと進行する。これに対して、光L2bは、第2レンズ導光部141の下面における入射側導光反射面46が設けられた領域よりも前後方向の前側へと進行している。このため、光L2bは、入射側導光反射面46として設定されてはいない箇所で反射されることで、第2焦点F2から下方へ離れた位置へと進行し、その位置から第2導光出射面45を経て投影レンズ17へと進行する。このため、第2導光レンズ15は、第2導光入射面44に湾曲入射面44aを設けることで、第2光源12からの光L2を入射側導光反射面46へと適切に導くことができる。これにより、第2導光レンズ15は、第2光源12からの光L2が実際に進行する態様を、走行用配光パターンHPとして望ましい光度分布とするように、適切に光L2を投影レンズ17へと導くことができる。 As an example of this, in FIG. 10, the light L2 emitted from the second light source 12 is not provided with the light L2a refracted by the curved incident surface 44a of the second light guide incident surface 44 and the curved incident surface 44a. The light L2b refracted by the flat second light guide incident surface 44 (the flat incident surface 44b extended to the curved incident surface 44a side) is shown. The light L2a travels to a region on the lower surface of the second lens light guide portion 141 where the incident side light guide reflecting surface 46 is provided, and is reflected by the incident side light guide reflecting surface 46 toward the second focal point F2. Then, it proceeds to the projection lens 17 through the second light guide emitting surface 45. On the other hand, the light L2b travels to the front side in the front-rear direction from the region on the lower surface of the second lens light guide unit 141 where the incident side light guide reflection surface 46 is provided. Therefore, the light L2b is reflected at a location that is not set as the incident side light guide reflection surface 46, so that the light L2b travels to a position further downward from the second focal point F2, and the second light guide is transmitted from that position. It proceeds to the projection lens 17 through the exit surface 45. Therefore, the second light guide lens 15 appropriately guides the light L2 from the second light source 12 to the light guide reflection surface 46 on the incident side by providing the curved light incident surface 44a on the second light guide incident surface 44. Can be done. As a result, the second light guide lens 15 appropriately projects the light L2 so that the mode in which the light L2 from the second light source 12 actually travels has a desired luminous intensity distribution as the traveling light distribution pattern HP. Can lead to.
 また、第2導光レンズ15は、入射側導光反射面46を、第2光源12の出射光軸Li上で第2光源12よりも前後方向の後側の位置を第1焦点F1とするとともに、投影レンズ17の後側焦点Fbの近傍を第2焦点F2とする楕円を基本とする自由曲面としている。また、実施例2の第2導光レンズ15は、光学的に、入射側導光反射面46の第1焦点F1の位置を、対応する第2光源12(その発光中心)の位置に、変位させる湾曲入射面44aを有する。加えて、入射側導光反射面46は、第2導光入射面44の平坦入射面44bを経た第2光源12からの光L2に対して、第2焦点F2の近傍に集光するようにも光学的に設定されている。このため、第2導光レンズ15は、第2光源12からの第2導光入射面44を経た光L2を入射側導光反射面46で反射すると、その入射側導光反射面46の第2焦点F2へと進行させることができる。よって、第2導光レンズ15は、投影面上で鉛直線と水平線とが交差する中央(レンズ軸La)側に集光することができ、遠方視認性を向上させることができる。 Further, in the second light guide lens 15, the incident side light guide reflection surface 46 is set at a position on the emission light axis Li of the second light source 12 behind the second light source 12 in the front-rear direction as the first focal point F1. At the same time, the vicinity of the rear focal point Fb of the projection lens 17 is a free curved surface based on an ellipse having the second focal point F2. Further, the second light guide lens 15 of the second embodiment optically displaces the position of the first focal point F1 of the light guide reflecting surface 46 on the incident side to the position of the corresponding second light source 12 (the center of light emission thereof). It has a curved incident surface 44a to be made to. In addition, the incident side light guide reflecting surface 46 concentrates the light L2 from the second light source 12 passing through the flat incident surface 44b of the second light guide incident surface 44 in the vicinity of the second focal point F2. Is also set optically. Therefore, when the second light guide lens 15 reflects the light L2 from the second light source 12 through the second light guide incident surface 44 on the incident side light guide reflecting surface 46, the second light guide reflecting surface 46 of the incident side light guide reflecting surface 46. It can be advanced to bifocal F2. Therefore, the second light guide lens 15 can concentrate the light on the center (lens axis La) side where the vertical line and the horizontal line intersect on the projection surface, and the distant visibility can be improved.
 さらに、第2導光レンズ15は、出射側導光反射面47を、入射側導光反射面46とは反対側に凸の曲面としている。このため、出射側導光反射面47は、入射側導光反射面46で反射された光L2を第2レンズ導光部141内で広がることを抑えつつ第2導光出射面45へ向けて反射でき、光L2を結果的に投影レンズ17へと適切に導くことができる。特に、実施例2の第2導光レンズ15は、先端部47aにおける接線Ltが、出射光軸Liと入射側導光反射面46との交点Ipと第2焦点F2とを結ぶ直線を主導光線Lgに対して、5度から10度の角度θとなすように出射側導光反射面47を設定している。このため、出射側導光反射面47は、入射側導光反射面46で反射された光L2を、第2焦点F2の近傍すなわちレンズ軸Laの近傍へ向けて反射できる。よって、第2導光レンズ15は、投影面上の中央(レンズ軸La)側に集光することができ、遠方視認性を向上させることができる。 Further, in the second light guide lens 15, the light guide reflection surface 47 on the exit side has a curved surface that is convex on the side opposite to the light guide reflection surface 46 on the incident side. Therefore, the light emitting side light emitting surface 47 directs the light L2 reflected by the incident side light guide reflecting surface 46 toward the second light guide emitting surface 45 while suppressing the light L2 from spreading in the second lens light guide unit 141. It can be reflected and the light L2 can be appropriately guided to the projection lens 17 as a result. In particular, in the second light guide lens 15 of the second embodiment, the tangent line Lt at the tip portion 47a leads a straight line connecting the intersection Ip of the emission light axis Li and the light guide reflection surface 46 on the incident side and the second focal point F2. The light emitting side light reflecting surface 47 is set so as to form an angle θ of 5 to 10 degrees with respect to Lg. Therefore, the light emitting side light guide reflecting surface 47 can reflect the light L2 reflected by the incident side light guide reflecting surface 46 toward the vicinity of the second focal point F2, that is, the vicinity of the lens axis La. Therefore, the second light guide lens 15 can concentrate the light on the center (lens axis La) side on the projection surface, and the distant visibility can be improved.
 この一例として、図10に、入射側導光反射面46で反射された光L2に対して、出射側導光反射面47で反射された光L2cと、平面とされた出射側導光反射面47(接線Ltの位置)で反射された光L2dと、を示す。光L2cは、第2焦点F2の近傍へと進行するのに対して、光L2dは、光L2cよりも下方へ向けて進行する。これは、出射側導光反射面47は、上記のように湾曲させることで、主導光線Lgに対する角度を接線Ltよりも小さくできることと、その主導光線Lgは、第1焦点F1から入射側導光反射面46で反射されて第2焦点F2へと光L2が進行する方向となることと、による。このため、第2導光レンズ15は、出射側導光反射面47を上記のように湾曲させることで、第2光源12からの光L2を第2焦点F2の近傍すなわちレンズ軸Laの近傍へ向けて反射でき、投影レンズ17へと適切に導くことができる。 As an example of this, in FIG. 10, with respect to the light L2 reflected by the incident side light guide reflection surface 46, the light L2c reflected by the exit side light guide reflection surface 47 and the light exit side light guide reflection surface made flat. The light L2d reflected at 47 (the position of the tangent line Lt) is shown. The light L2c travels in the vicinity of the second focal point F2, whereas the light L2d travels downward from the light L2c. This is because the light emitting side light reflecting surface 47 can be curved as described above so that the angle with respect to the leading light ray Lg can be made smaller than the tangent line Lt, and the leading light ray Lg is the light guide on the incident side from the first focal point F1. This is due to the fact that the light L2 is reflected by the reflecting surface 46 and travels toward the second focal point F2. Therefore, the second light guide lens 15 causes the light L2 from the second light source 12 to move to the vicinity of the second focal point F2, that is, to the vicinity of the lens axis La by curving the light emitting side light guide reflection surface 47 as described above. It can be directed and reflected, and can be appropriately guided to the projection lens 17.
 第2導光レンズ15は、第2導光出射面45を、縦断面において平坦な面とするとともに主導光線Lgに対して直交させている。このため、第2導光レンズ15は、第2光源12からの主導光線Lg上を通る光量が高い光L2を、第2導光出射面45で屈折させることなくその第2導光出射面45から出射させることができる。このことから、第2導光レンズ15は、第2光源12からの光L2を効率良く利用して各部分配光領域hpすなわち走行用配光パターンHP(図6参照)を形成することができる。 The second light guide lens 15 has the second light guide emission surface 45 as a flat surface in the vertical cross section and is orthogonal to the leading light beam Lg. Therefore, the second light guide lens 15 does not refract the light L2 having a high amount of light passing on the leading light ray Lg from the second light source 12 on the second light guide emission surface 45, and the second light guide emission surface 45 thereof. Can be emitted from. From this, the second light guide lens 15 can efficiently utilize the light L2 from the second light source 12 to form the light distribution region hp for each part, that is, the light distribution pattern HP for traveling (see FIG. 6).
 第2導光レンズ15は、分割された棒状部分142が板状部分43で一体化された各第2レンズ導光部141により構成されている。このため、各第2レンズ導光部141は、個別に対応された第2光源12からの光L2が広がることを抑制しつつ、その第2光源12からの光L2を投影レンズ17に導くことができる。これにより、第2導光レンズ15は、各部分配光領域hpが広がるのを抑制しつつ光を集めて明るくすることができる。特に、実施例2の第2導光レンズ15は、各棒状部分142において、設けられた位置が幅方向の内側から外側となるに連れて、幅方向に広がる割合を大きくしている。このため、第2導光レンズ15は、中央の2つの部分配光領域hpの幅寸法を最も小さくして光を集めて光度を高くするとともに、部分配光領域hpの位置が外側となるほど幅寸法を大きくして光を分散させて光度を低くする。ここで、走行用配光パターンHPでは、鉛直線と水平線とが交差する中央(レンズ軸La)の近傍の光度が最も高く(所謂ホットゾーン)、幅方向の外側の方の光度が低くなることが求められる。これにより、第2導光レンズ15は、上記のように各棒状部分142の幅寸法が設定されることで、走行用配光パターンHPを適切な光度分布で形成できる。 The second light guide lens 15 is composed of each second lens light guide portion 141 in which the divided rod-shaped portion 142 is integrated with the plate-shaped portion 43. Therefore, each second lens light guide unit 141 guides the light L2 from the second light source 12 to the projection lens 17 while suppressing the spread of the light L2 from the individually corresponding second light source 12. Can be done. As a result, the second light guide lens 15 can collect and brighten the light while suppressing the expansion of the distributed light region hp of each part. In particular, the second light guide lens 15 of the second embodiment increases the proportion of the rod-shaped portions 142 that expand in the width direction from the inside to the outside in the width direction. Therefore, the second light guide lens 15 has the smallest width dimension of the two central divided light regions hp to collect light and increase the luminous intensity, and the width is increased so that the position of the divided light region hp is on the outside. Increase the size to disperse the light and reduce the luminosity. Here, in the traveling light distribution pattern HP, the luminous intensity near the center (lens axis La) where the vertical line and the horizontal line intersect is the highest (so-called hot zone), and the luminous intensity on the outer side in the width direction is low. Is required. As a result, the second light guide lens 15 can form the traveling light distribution pattern HP with an appropriate luminous intensity distribution by setting the width dimension of each rod-shaped portion 142 as described above.
 実施例2の車両用灯具10は、以下の各作用効果を得ることができる。 The vehicle lamp 10 of the second embodiment can obtain the following effects.
 車両用灯具10は、各第2レンズ導光部141が、第2光源12に対向する第2導光入射面44を有し、第2導光入射面44の少なくとも一部が第2光源12側に凸となる曲面である。このため、車両用灯具10は、第2光源12から出射された光L2を第2レンズ導光部141に入射させる際に第2レンズ導光部141内で前後方向の前側(投影レンズ17側)へと広がることを抑えることができ、適切に光L2を投影レンズ17へと導くことができる。これにより、車両用灯具10は、各第2導光レンズ15で導光した各第2光源12からの光L2を、投影レンズ17で投影することで、各部分配光領域hpがぼやけて光学的に設計された領域からはみ出して明るくすることを抑制できる。よって、車両用灯具10は、各部分配光領域hpをぼやけて広がることを抑制して明確に形成できる。 In the vehicle lamp 10, each second lens light guide portion 141 has a second light guide incident surface 44 facing the second light source 12, and at least a part of the second light guide incident surface 44 is the second light source 12. It is a curved surface that is convex to the side. Therefore, when the light L2 emitted from the second light source 12 is incident on the second lens light guide unit 141, the vehicle lamp 10 is in the front side (projection lens 17 side) in the front-rear direction in the second lens light guide unit 141. ) Can be suppressed, and the light L2 can be appropriately guided to the projection lens 17. As a result, the vehicle lamp 10 projects the light L2 from each of the second light sources 12 guided by each of the second light guide lenses 15 with the projection lens 17, so that the distributed light region hp of each part is blurred and optically. It is possible to suppress the brightness from protruding from the area designed in. Therefore, the vehicle lamp 10 can be clearly formed by suppressing blurring and spreading of each part distribution light region hp.
 また、車両用灯具10では、第2レンズ導光部141が、第2光源12の出射光軸Liと交わる交点Ipを含み第2光源12からの光L2を反射する入射側導光反射面46と、入射側導光反射面46で反射された光L2を出射させる第2導光出射面45と、を有する。そして、車両用灯具10では、入射側導光反射面46が、第2光源12からの光L2を反射により投影レンズ17の後側焦点Fbの近傍に集光する曲面である。このため、車両用灯具10は、第2光源12から出射された光L2を、各第2レンズ導光部141が第2焦点F2の近傍へと導くことができ、投影レンズ17の投影により各部分配光領域hpを明確に形成できる。 Further, in the vehicle lighting tool 10, the incident side light guide reflecting surface 46 in which the second lens light guide unit 141 includes the intersection Ip that intersects the emission light axis Li of the second light source 12 and reflects the light L2 from the second light source 12. And a second light source emitting surface 45 that emits the light L2 reflected by the incident side light source reflecting surface 46. Then, in the vehicle lamp 10, the incident side light guide reflecting surface 46 is a curved surface that focuses the light L2 from the second light source 12 in the vicinity of the rear focal point Fb of the projection lens 17 by reflection. Therefore, in the vehicle lamp 10, each second lens light guide unit 141 can guide the light L2 emitted from the second light source 12 to the vicinity of the second focal point F2, and each unit is projected by the projection lens 17. The distributed light region hp can be clearly formed.
 さらに、車両用灯具10では、入射側導光反射面46が、第2レンズ導光部141における第2導光入射面44の近傍で上下方向の下面に設けられている。また、車両用灯具10では、第2導光入射面44が、第2光源12からの光を、第2レンズ導光部141の下面における自らが設けられた側(第2導光入射面44側)へと屈折させる曲面とされている。このため、車両用灯具10は、各第2導光レンズ15において、対応する第2光源12からの第2導光入射面44を経た光L2を入射側導光反射面46に導くことができ、より適切に光L2を投影レンズ17へと導くことができる。 Further, in the vehicle lamp 10, the incident side light guide reflecting surface 46 is provided on the lower surface in the vertical direction in the vicinity of the second light guide incident surface 44 in the second lens light guide unit 141. Further, in the vehicle lamp 10, the second light guide incident surface 44 receives the light from the second light source 12 on the lower surface of the second lens light guide unit 141 on the side where the second light guide incident surface 44 is provided (second light guide incident surface 44). It is a curved surface that refracts to the side). Therefore, the vehicle lamp 10 can guide the light L2 from the corresponding second light source 12 through the second light guide incident surface 44 to the incident side light guide reflection surface 46 in each second light guide lens 15. , The light L2 can be more appropriately guided to the projection lens 17.
 車両用灯具10は、各第2レンズ導光部141が、入射側導光反射面46で反射された光L2の一部を第2導光出射面45へ向けて反射する出射側導光反射面47を有し、その出射側導光反射面47を、入射側導光反射面46とは反対側に凸となる曲面としている。このため、出射側導光反射面47は、入射側導光反射面46で反射された光L2を、第2レンズ導光部141内で広がることを抑えつつ投影レンズ17へ向けて反射できる。これにより、車両用灯具10は、適切に光L2を投影レンズ17へと導くことができる。 In the vehicle lighting equipment 10, each second lens light guide unit 141 reflects a part of the light L2 reflected by the incident side light guide reflection surface 46 toward the second light guide exit surface 45. It has a surface 47, and the light emitting side light reflecting surface 47 thereof has a curved surface that is convex on the side opposite to the light emitting light reflecting surface 46 on the incident side. Therefore, the light emitting side light guide reflecting surface 47 can reflect the light L2 reflected by the incident side light guide reflecting surface 46 toward the projection lens 17 while suppressing the light L2 from spreading in the second lens light guide unit 141. As a result, the vehicle lamp 10 can appropriately guide the light L2 to the projection lens 17.
 車両用灯具10は、出射側導光反射面47において、第2導光出射面45側の先端部47aにおける接線Ltを、交点Ipと第2焦点F2とを結ぶ直線である主導光線Lgに対して5度から10度の角度θとしている。このため、出射側導光反射面47が、入射側導光反射面46で反射された光L2を、第2焦点F2の近傍へ向けて反射できる。これにより、車両用灯具10は、光L2を投影レンズ17へと適切に導くことができる。 The vehicle lighting tool 10 has a tangent line Lt at the tip portion 47a on the second light guide emission surface 45 side on the light emission reflection surface 47 with respect to a leading light ray Lg which is a straight line connecting the intersection Ip and the second focal point F2. The angle θ is 5 to 10 degrees. Therefore, the light emitting side light guide reflecting surface 47 can reflect the light L2 reflected by the incident side light guide reflecting surface 46 toward the vicinity of the second focal point F2. As a result, the vehicle lamp 10 can appropriately guide the light L2 to the projection lens 17.
 車両用灯具10は、第2導光出射面45を、交点Ipと第2焦点F2とを結ぶ主導光線Lgに対して直交させている。このため、第2導光レンズ15は、第2光源12からの主導光線Lg上を通る光量が高い光L2を、屈折させることなく第2導光出射面45から出射させることができる。これにより、車両用灯具10は、光L2を投影レンズ17へと適切に導くことができる。 The vehicle lamp 10 has the second light guide emitting surface 45 orthogonal to the leading light beam Lg connecting the intersection Ip and the second focal point F2. Therefore, the second light guide lens 15 can emit light L2 having a high amount of light passing on the leading light ray Lg from the second light source 12 from the second light guide emission surface 45 without refraction. As a result, the vehicle lamp 10 can appropriately guide the light L2 to the projection lens 17.
 したがって、本開示に係る車両用灯具としての実施例2の車両用灯具10は、走行用配光パターンHPの各部分配光領域hpを明確に形成することができる。 Therefore, the vehicle lighting equipment 10 of the second embodiment as the vehicle lighting equipment according to the present disclosure can clearly form the distribution light region hp of each part of the traveling light distribution pattern HP.
 以上、本開示の車両用灯具を実施例2に基づき説明してきたが、具体的な構成については実施例2に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 Although the vehicle lamps of the present disclosure have been described based on the second embodiment, the specific configuration is not limited to the second embodiment and deviates from the gist of the invention according to each claim of the claims. Unless otherwise, design changes and additions are allowed.
 なお、実施例2では、走行用配光パターンHPにおける各部分配光領域hpを個別に点消灯を制御することでADBの機能を実現できるものとしている。しかしながら、車両用灯具10は、第1光源11からの光L1を投影レンズ17で投影してすれ違い用配光パターンLPを形成し、各第2光源12からの光L2をレンズ導光部(第2レンズ導光部141)で導き投影レンズ17で投影して各部分配光領域hpからなる走行用配光パターンHPを形成するものであればよく、実施例2の構成に限定されない。 In the second embodiment, the function of the ADB can be realized by individually controlling the turning on and off of the light distribution region hp of each part in the traveling light distribution pattern HP. However, the vehicle lamp 10 projects the light L1 from the first light source 11 with the projection lens 17 to form a light distribution pattern LP for passing each other, and the light L2 from each of the second light sources 12 is directed to the lens light guide unit (the first). The configuration is not limited to the configuration of the second embodiment, as long as it is guided by the two-lens light source unit 141) and projected by the projection lens 17 to form a traveling light distribution pattern HP composed of each portion distributed light region hp.
 また、実施例2では、第2導光レンズ15の12個の第2レンズ導光部141を有し、その各第2レンズ導光部141を、幅方向で間隔を置いて並列された12個の長尺な棒状部分142と、それらを一体化する板状部分43と、で構成している。しかしながら、第2導光レンズ15は、各第2光源12に個別に対応する第2レンズ導光部141を有するものであれば、板状部分43を無くした棒状部分142のみの構成すなわち分離した12個の棒状部分(142)で構成してもよく、実施例2の構成に限定されない。この場合、12個の棒状部分(142)は、間隔を置いて配置してもよく、接触させて配置してもよい。また、例えば、12個の棒状部分(142)のうち、一方側から奇数の順番となる6個の棒状部分(142)を幅方向に延びる第1連結部で一体化するとともに、残りの一方側から偶数の順番となる6個の棒状部分(142)を幅方向に延びる第2連結部で一体化し、12個の棒状部分(142)が順番通りに並ぶようにそれらを噛み合わせる構成としてもよい。この場合、6個の棒状部分(142)が並ぶ2つの部品として構成できるので、例えば射出成型等を用いた場合であっても各棒状部分(142)を適切に形成することができる。これは、12個の棒状部分(142)一体化した構成とすると、各棒状部分(142)が狭い間隔もしくは接触して並ぶこととなるので、射出成型等では形成が困難となる虞があることによる。 Further, in the second embodiment, twelve second lens light guide portions 141 of the second light guide lens 15 are provided, and the second lens light guide portions 141 thereof are arranged side by side at intervals in the width direction. It is composed of a long rod-shaped portion 142 and a plate-shaped portion 43 that integrates them. However, if the second light guide lens 15 has a second lens light guide portion 141 corresponding to each second light source 12, the second light guide lens 15 is composed of only the rod-shaped portion 142 without the plate-shaped portion 43, that is, separated. It may be composed of 12 rod-shaped portions (142), and is not limited to the configuration of the second embodiment. In this case, the twelve rod-shaped portions (142) may be arranged at intervals or may be arranged in contact with each other. Further, for example, of the 12 rod-shaped portions (142), 6 rod-shaped portions (142) in an odd order from one side are integrated by a first connecting portion extending in the width direction, and the remaining one side. Six rod-shaped portions (142) in an even-numbered order may be integrated by a second connecting portion extending in the width direction, and the twelve rod-shaped portions (142) may be meshed with each other so as to be arranged in order. .. In this case, since it can be configured as two parts in which six rod-shaped portions (142) are lined up, each rod-shaped portion (142) can be appropriately formed even when injection molding or the like is used, for example. This is because if the 12 rod-shaped portions (142) are integrated, the rod-shaped portions (142) will be lined up at narrow intervals or in contact with each other, which may make it difficult to form by injection molding or the like. by.
 さらに、実施例2では、第2レンズ導光部141および第2光源12を12個ずつ設けている。しかしながら、第2レンズ導光部141および第2光源12の数は、形成する部分配光領域hpの数やそれらによる走行用配光パターンHPの大きさや形状に応じて適宜設定すればよく、実施例2の構成に限定されない。 Further, in the second embodiment, 12 second lens light guide portions 141 and 12 second light sources 12 are provided. However, the number of the second lens light guide unit 141 and the second light source 12 may be appropriately set according to the number of the unit-distributed light regions hp to be formed and the size and shape of the traveling light distribution pattern HP by them. It is not limited to the configuration of Example 2.
 実施例2では、出射側導光反射面47を、100mmから1000mmの曲率半径の曲面としている。しかしながら、出射側導光反射面47は、入射側導光反射面46とは反対側に凸に湾曲されていて、入射側導光反射面46で反射された光L2を第2レンズ導光部141内で広がることを抑えつつ第2導光出射面45へ向けて反射すれば、曲率半径は適宜設定すればよく、実施例2の構成に限定されない。 In the second embodiment, the light emitting side light reflecting surface 47 is a curved surface having a radius of curvature of 100 mm to 1000 mm. However, the light emitting side light reflecting surface 47 is convexly curved to the side opposite to the incident side light guide reflecting surface 46, and the light L2 reflected by the incident side light guide reflecting surface 46 is transferred to the second lens light guide unit. If the light is reflected toward the second light guide emitting surface 45 while being suppressed from spreading within 141, the radius of curvature may be appropriately set, and is not limited to the configuration of the second embodiment.
 実施例2では、出射側導光反射面47を、第2導光出射面45の上端45aから前後方向の後側へと延びる面としており、第2導光出射面45と連続させている。しかしながら、出射側導光反射面47は、入射側導光反射面46で反射された光L2を第2レンズ導光部141内で広がることを抑えつつ第2導光出射面45へ向けて反射するものであれば、第2導光出射面45と連続していなくてもよく、実施例2の構成に限定されない。 In the second embodiment, the light emitting side light reflecting surface 47 is a surface extending from the upper end 45a of the second light guide emitting surface 45 to the rear side in the front-rear direction, and is continuous with the second light guide emitting surface 45. However, the light emitting side light emitting surface 47 reflects the light L2 reflected by the incident side light guide reflecting surface 46 toward the second light guide emitting surface 45 while suppressing the light L2 from spreading in the second lens light guide unit 141. As long as it does, it does not have to be continuous with the second light guide emitting surface 45, and is not limited to the configuration of the second embodiment.
 実施例2では、第2導光入射面44を、上記のように設定された湾曲入射面44aを有するものとしている。しかしながら、第2導光入射面44は、第2光源12からの光L2を、第2レンズ導光部141の下面における第2導光入射面44側へと屈折させて、入射側導光反射面46が設けられた領域に進行させるように設定されていればよく、実施例2の構成に限定されない。例えば、第2導光入射面44(その湾曲入射面44a)は、第2光源12の出射光軸Li上に曲率中心Ccを有する曲面を基本とする自由曲面としてもよく、光学的に第1焦点F1の位置を第2光源12(その発光中心)の位置に変位させる曲面を基本とする自由曲面としてもよい。すなわち、実施例2の湾曲入射面44aは、この2つの双方の光学的な思想に基づく設定とされているが、いずれか一方の光学的な思想に基づいて設定されていてもよい。加えて、湾曲入射面44aは、第2光源12からの光L2を第2レンズ導光部141の下面における第2導光入射面44側へと屈折させれば、形状は適宜設定すればよく、実施例2の構成に限定されない。 In the second embodiment, the second light guide incident surface 44 has a curved incident surface 44a set as described above. However, the second light guide incident surface 44 refracts the light L2 from the second light source 12 toward the second light guide incident surface 44 on the lower surface of the second lens light guide unit 141, and the incident side light guide reflection. The surface 46 may be set to advance to the provided region, and is not limited to the configuration of the second embodiment. For example, the second light guide incident surface 44 (the curved incident surface 44a) may be a free curved surface based on a curved surface having a curvature center Cc on the emission optical axis Li of the second light source 12, and is optically first. A free curved surface based on a curved surface that shifts the position of the focal point F1 to the position of the second light source 12 (the center of light emission thereof) may be used. That is, the curved incident surface 44a of the second embodiment is set based on the optical ideas of both of the two, but may be set based on the optical idea of either one. In addition, the shape of the curved incident surface 44a may be appropriately set as long as the light L2 from the second light source 12 is refracted toward the second light guide incident surface 44 on the lower surface of the second lens light guide unit 141. , The configuration is not limited to the second embodiment.
 10 車両用灯具
 11 第1光源  
 12 第2光源  
 16 シェード 
 17 投影レンズ  
 18 基板  
 21 (レンズ導光部の一例としての)第1レンズ導光部  
 23 (導光出射面の一例としての)第1導光出射面  
 41 下側レンズ部  
 42 上側レンズ部  
 Cl カットオフライン  
 Df 焦点距離  
 Fd 下側焦点  
 Fu 上側焦点  
 HP 走行用配光パターン  
 La レンズ軸  
 Li 出射光軸  
 LP すれ違い用配光パターン
141 (レンズ導光部の一例としての)第2レンズ導光部  
142 棒状部分
 44 (導光入射面の一例としての)第2導光入射面  
 45 (導光出射面の一例としての)第2導光出射面  
 46 (導光反射面の一例としての)入射側導光反射面  
 47 出射側導光反射面  
 47a 先端部  
10 Vehicle lighting 11 First light source
12 Second light source
16 shade
17 Projection lens
18 board
21 First lens light guide (as an example of lens light guide)
23 First light guide emission surface (as an example of light guide emission surface)
41 Lower lens part
42 Upper lens part
Cl cut offline
Df focal length
Fd lower focus
Fu upper focus
Light distribution pattern for HP driving
La lens axis
Li exit optical axis
LP passing light distribution pattern 141 (as an example of the lens light guide unit) Second lens light guide unit
142 Rod-shaped part 44 Second light guide incident surface (as an example of light guide incident surface)
45 Second light guide exit surface (as an example of light guide exit surface)
46 Incident side light guide reflection surface (as an example of light guide reflection surface)
47 Exit side light guide reflection surface
47a tip

Claims (12)

  1.  すれ違い用配光パターンを形成する光を出射する第1光源と、
     走行用配光パターンを形成する光を出射する第2光源と、
     前記第1光源からの光をレンズ軸が延びる前後方向の前側に投影して前記すれ違い用配光パターンを形成するとともに、前記第2光源からの光を前記前後方向の前側に投影して前記走行用配光パターンを形成する投影レンズと、
     前記第1光源および前記第2光源が設けられる基板と、を備え、
     前記第1光源と前記第2光源とは、互いの出射光軸が平行とされつつ、前記出射光軸が前記前後方向に対して伏角とされて傾斜されており、
     前記第2光源は、前記前後方向で前記第1光源よりも前記投影レンズから離れた位置に設けられていることを特徴とする車両用灯具。
    A first light source that emits light that forms a light distribution pattern for passing,
    A second light source that emits light that forms a traveling light distribution pattern,
    The light from the first light source is projected onto the front side in the front-rear direction in which the lens axis extends to form the passing light distribution pattern, and the light from the second light source is projected on the front side in the front-rear direction to form the traveling. A projection lens that forms a light distribution pattern for
    The first light source and the substrate on which the second light source is provided are provided.
    The first light source and the second light source are inclined so that their emission optical axes are parallel to each other and their emission optical axes are dip angles with respect to the front-rear direction.
    A vehicle lamp characterized in that the second light source is provided at a position farther from the projection lens than the first light source in the front-rear direction.
  2.  前記第1光源と前記第2光源とは、前記出射光軸が前記前後方向に対して、30度から50度の伏角とされていることを特徴とする請求項1に記載の車両用灯具。 The vehicle lamp according to claim 1, wherein the first light source and the second light source have an emission optical axis having a dip angle of 30 to 50 degrees with respect to the front-rear direction.
  3.  前記第1光源は、水平方向に複数が並べられて構成され、
     複数の前記第1光源と前記投影レンズとの間には、複数の前記第1光源から出射された光を前記投影レンズに導くレンズ導光部が複数の前記第1光源に個別に対応して設けられ、
     複数の前記レンズ導光部は、前記投影レンズに向けられた導光出射面を有し、前記レンズ軸から離れるに従って前記前後方向に直交する直交面に対する前記導光出射面の傾斜角度が大きくなることを特徴とする請求項1に記載の車両用灯具。
    The first light source is configured by arranging a plurality of the first light sources in the horizontal direction.
    Between the plurality of the first light sources and the projection lens, a lens light guide unit that guides the light emitted from the plurality of the first light sources to the projection lens individually corresponds to the plurality of the first light sources. Provided,
    The plurality of lens light guide portions have a light guide emission surface directed to the projection lens, and the inclination angle of the light guide emission surface with respect to an orthogonal surface orthogonal to the front-rear direction increases as the distance from the lens axis increases. The vehicle lighting device according to claim 1, wherein the lighting device is characterized by the above.
  4.  前記第1光源と前記第2光源との間には、前記第1光源からの光の一部を遮光して前記すれ違い用配光パターンにおけるカットオフラインを形成するシェードが設けられ、
     前記シェードは、前記前後方向に対して前記出射光軸が為す角度の1/2の大きさの伏角とされていることを特徴とする請求項1に記載の車両用灯具。
    A shade is provided between the first light source and the second light source to block a part of the light from the first light source and form a cut-off line in the passing light distribution pattern.
    The vehicle lamp according to claim 1, wherein the shade has a dip angle having a magnitude of ½ of the angle formed by the emission optical axis with respect to the front-rear direction.
  5.  前記第1光源は、水平方向に複数が並べられて構成され、前記レンズ軸から離れるに従って隣り合う前記第1光源同士の間隔が大きくされていることを特徴とする請求項1に記載の車両用灯具。 The vehicle use according to claim 1, wherein a plurality of the first light sources are arranged in a horizontal direction, and the distance between adjacent first light sources is increased as the distance from the lens axis increases. Lighting equipment.
  6.  前記投影レンズでは、前記レンズ軸を中心として下側レンズ部と上側レンズ部とが設定され、
     前記下側レンズ部では、前記レンズ軸上に下側焦点が設定され、
     前記上側レンズ部では、前記レンズ軸上に前記下側焦点よりも焦点距離の短い上側焦点が設定されていることを特徴とする請求項1に記載の車両用灯具。
    In the projection lens, a lower lens portion and an upper lens portion are set around the lens axis, and the lower lens portion and the upper lens portion are set.
    In the lower lens portion, a lower focus is set on the lens axis, and the lower focus is set.
    The vehicle lamp according to claim 1, wherein an upper focal length having a focal length shorter than that of the lower focal length is set on the lens axis in the upper lens portion.
  7.  複数の前記第2光源に個別に対応して設けられ、対応する前記第2光源から出射された光を前記投影レンズに導く複数のレンズ導光部と、を備え、
     前記レンズ導光部は、前記第2光源に対向する導光入射面を有し、
     前記導光入射面は、少なくとも一部が前記第2光源側に凸となる曲面であることを特徴とする請求項1に記載の車両用灯具。
    A plurality of lens light guides, which are individually provided for the plurality of the second light sources and guide the light emitted from the corresponding second light sources to the projection lens, are provided.
    The lens light guide portion has a light guide incident surface facing the second light source.
    The vehicle lighting fixture according to claim 1, wherein the light guide incident surface is a curved surface having at least a part convex toward the second light source side.
  8.  前記レンズ導光部は、前記第2光源の出射光軸と交わる交点を含み前記第2光源からの光を反射する導光反射面と、前記導光反射面で反射された光を出射させる導光出射面と、を有し、
     前記導光反射面は、前記第2光源からの光を反射により前記投影レンズの後側焦点の近傍に集光させる曲面であることを特徴とする請求項7に記載の車両用灯具。
    The lens light guide unit includes a light guide reflecting surface that includes an intersection with an exit light axis of the second light source and reflects light from the second light source, and a guide that emits light reflected by the light guide reflecting surface. Has a light emitting surface,
    The vehicle lamp according to claim 7, wherein the light guide reflecting surface is a curved surface that collects light from the second light source in the vicinity of the rear focal point of the projection lens by reflection.
  9.  前記導光反射面は、前記レンズ導光部における前記導光入射面の近傍で上下方向の下側の下面に設けられた入射側導光反射面であり、
     前記導光入射面は、前記第2光源からの光を前記レンズ導光部の下面における前記導光入射面側へ屈折させる曲面であることを特徴とする請求項8に記載の車両用灯具。
    The light guide reflecting surface is an incident side light guide reflecting surface provided on the lower lower surface in the vertical direction in the vicinity of the light guide incident surface in the lens light guide portion.
    The vehicle lamp according to claim 8, wherein the light guide incident surface is a curved surface that refracts light from the second light source toward the light guide incident surface side on the lower surface of the lens light guide portion.
  10.  前記レンズ導光部は、前記入射側導光反射面で反射された光の一部を前記導光出射面へ向けて反射する出射側導光反射面を有し、
     前記出射側導光反射面は、前記入射側導光反射面とは反対側に凸となる曲面であることを特徴とする請求項9に記載の車両用灯具。
    The lens light guide portion has an exit side light guide reflecting surface that reflects a part of the light reflected by the incident side light guide reflection surface toward the light guide emission surface.
    The vehicle lamp according to claim 9, wherein the light emitting side light reflecting surface is a curved surface that is convex on the side opposite to the light emitting light reflecting surface on the incident side.
  11.  前記出射側導光反射面は、前記導光出射面側の先端部における接線が、前記交点と前記入射側導光反射面が集光する点とを結ぶ直線に対して5度から10度の角度を為すことを特徴とする請求項10に記載の車両用灯具。 The light guide reflection surface on the exit side has a tangent line at the tip on the light guide exit surface side of 5 to 10 degrees with respect to a straight line connecting the intersection and the point where the light guide reflection surface on the incident side concentrates. The vehicle lighting device according to claim 10, wherein the light fixture is angled.
  12.  前記導光出射面は、前記交点と前記入射側導光反射面からの反射光が集光する点とを結ぶ直線に対して直交することを特徴とする請求項11に記載の車両用灯具。 The vehicle lighting tool according to claim 11, wherein the light guide emission surface is orthogonal to a straight line connecting the intersection and the point where the reflected light from the incident side light guide reflection surface is collected.
PCT/JP2021/000230 2020-01-06 2021-01-06 Vehicle lighting tool WO2021141052A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-000390 2020-01-06
JP2020000390A JP2021111446A (en) 2020-01-06 2020-01-06 Vehicular lighting fixture
JP2020-000391 2020-01-06
JP2020000391A JP7439516B2 (en) 2020-01-06 2020-01-06 Vehicle lights

Publications (1)

Publication Number Publication Date
WO2021141052A1 true WO2021141052A1 (en) 2021-07-15

Family

ID=76787595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000230 WO2021141052A1 (en) 2020-01-06 2021-01-06 Vehicle lighting tool

Country Status (1)

Country Link
WO (1) WO2021141052A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228502A (en) * 2004-02-10 2005-08-25 Koito Mfg Co Ltd Vehicular lamp tool unit
JP2011243432A (en) * 2010-05-19 2011-12-01 Stanley Electric Co Ltd Lighting system and its heat sink
JP2013524426A (en) * 2010-03-31 2013-06-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination system and light source unit for such an illumination system
US20140016343A1 (en) * 2011-03-05 2014-01-16 Automotive Lighting Reutlingen Gmbh Motor vehicle headlamp having a multi-function projection module
JP2017123348A (en) * 2014-07-08 2017-07-13 三菱電機株式会社 Headlight module
JP2017199660A (en) * 2016-04-11 2017-11-02 ヴァレオ ビジョンValeo Vision Motor vehicle headlight module for emitting light beam
WO2018043663A1 (en) * 2016-09-02 2018-03-08 株式会社小糸製作所 Vehicular lamp
JP2018055907A (en) * 2016-09-28 2018-04-05 株式会社日立情映テック Headlight device for vehicle
JP2018101561A (en) * 2016-12-21 2018-06-28 スタンレー電気株式会社 Vehicular headlight module
JP2019212428A (en) * 2018-06-01 2019-12-12 市光工業株式会社 Vehicular lighting fixture

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228502A (en) * 2004-02-10 2005-08-25 Koito Mfg Co Ltd Vehicular lamp tool unit
JP2013524426A (en) * 2010-03-31 2013-06-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination system and light source unit for such an illumination system
JP2011243432A (en) * 2010-05-19 2011-12-01 Stanley Electric Co Ltd Lighting system and its heat sink
US20140016343A1 (en) * 2011-03-05 2014-01-16 Automotive Lighting Reutlingen Gmbh Motor vehicle headlamp having a multi-function projection module
JP2017123348A (en) * 2014-07-08 2017-07-13 三菱電機株式会社 Headlight module
JP2017199660A (en) * 2016-04-11 2017-11-02 ヴァレオ ビジョンValeo Vision Motor vehicle headlight module for emitting light beam
WO2018043663A1 (en) * 2016-09-02 2018-03-08 株式会社小糸製作所 Vehicular lamp
JP2018055907A (en) * 2016-09-28 2018-04-05 株式会社日立情映テック Headlight device for vehicle
JP2018101561A (en) * 2016-12-21 2018-06-28 スタンレー電気株式会社 Vehicular headlight module
JP2019212428A (en) * 2018-06-01 2019-12-12 市光工業株式会社 Vehicular lighting fixture

Similar Documents

Publication Publication Date Title
US7607811B2 (en) Lighting unit
KR100517420B1 (en) Light unit
KR100570481B1 (en) Vehicle headlamp
JP5146214B2 (en) Vehicle lighting
EP2159479B1 (en) Vehicle lamp unit
US11168858B2 (en) Vehicular lamp
US10161592B2 (en) LED headlamp with refractive interface creating cut-off for vehicles
JP2003317514A (en) Light source unit
US10677406B2 (en) Vehicular lamp
JP7439516B2 (en) Vehicle lights
JP7275481B2 (en) vehicle lamp
JP2021111446A (en) Vehicular lighting fixture
WO2021141052A1 (en) Vehicle lighting tool
JP7521437B2 (en) Vehicle lighting fixtures
TWI582335B (en) Lights
JP2021118119A (en) Vehicular lighting fixture
WO2024048390A1 (en) Lamp unit and vehicle lamp
JP7234681B2 (en) vehicle lamp
WO2023106422A1 (en) Lamp unit, and vehicle lamp fitting
JP2008091349A (en) Light source unit and vehicular lighting fixture
JP5640703B2 (en) Vehicle lighting
JP7443981B2 (en) Anti-glare structure for vehicle lights, vehicle lights
WO2023085344A1 (en) Lamp unit and vehicle lighting tool
WO2021085597A1 (en) Vehicle light
JP7187825B2 (en) vehicle lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21739008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21739008

Country of ref document: EP

Kind code of ref document: A1