WO2020031671A1 - 材料記述子生成方法、材料記述子生成装置、材料記述子生成プログラム、予測モデル構築方法、予測モデル構築装置及び予測モデル構築プログラム - Google Patents
材料記述子生成方法、材料記述子生成装置、材料記述子生成プログラム、予測モデル構築方法、予測モデル構築装置及び予測モデル構築プログラム Download PDFInfo
- Publication number
- WO2020031671A1 WO2020031671A1 PCT/JP2019/028602 JP2019028602W WO2020031671A1 WO 2020031671 A1 WO2020031671 A1 WO 2020031671A1 JP 2019028602 W JP2019028602 W JP 2019028602W WO 2020031671 A1 WO2020031671 A1 WO 2020031671A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- descriptor
- indicating
- formula
- additive
- list
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 557
- 238000000034 method Methods 0.000 title claims abstract description 77
- 239000000654 additive Substances 0.000 claims abstract description 316
- 230000000996 additive effect Effects 0.000 claims abstract description 268
- 239000000126 substance Substances 0.000 claims description 200
- 230000014509 gene expression Effects 0.000 claims description 62
- 238000004364 calculation method Methods 0.000 claims description 47
- 238000010276 construction Methods 0.000 claims description 15
- 238000012549 training Methods 0.000 claims description 3
- 230000007613 environmental effect Effects 0.000 claims 1
- 238000003860 storage Methods 0.000 description 48
- 238000013528 artificial neural network Methods 0.000 description 46
- 238000010586 diagram Methods 0.000 description 44
- 230000008859 change Effects 0.000 description 23
- 238000012545 processing Methods 0.000 description 23
- 238000002474 experimental method Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 18
- 230000010354 integration Effects 0.000 description 17
- 239000013598 vector Substances 0.000 description 17
- 238000010801 machine learning Methods 0.000 description 16
- 230000006870 function Effects 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000011478 gradient descent method Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 238000013529 biological neural network Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C60/00—Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B30/00—Methods of screening libraries
- C40B30/10—Methods of screening libraries by measuring physical properties, e.g. mass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
- G06F18/2155—Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the incorporation of unlabelled data, e.g. multiple instance learning [MIL], semi-supervised techniques using expectation-maximisation [EM] or naïve labelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/30—Prediction of properties of chemical compounds, compositions or mixtures
Definitions
- the present disclosure relates to a material descriptor generation method, a material descriptor generation device, and a material descriptor generation program for generating a descriptor to be input to a prediction model for predicting a predetermined property value of a material.
- the present disclosure also relates to a prediction model construction method, a prediction model construction device, and a prediction model construction program for constructing a prediction model for predicting a predetermined characteristic value of a material.
- material properties can be predicted by simulation systems such as first-principles calculations.
- material properties are predicted by performing physical calculations in detail, but the calculations may require several hours to several months.
- attention has been focused on a method for easily and quickly predicting material characteristic values by performing machine learning or constructing a logical model expression using basic information of a material as input and characteristic values as output. ing.
- Non-Patent Document 1 discloses a technique for highly accurately deriving formation energy, which is one of the characteristic values of a material, using a descriptor calculated from known parameters of elements constituting the material as an input.
- Non-Patent Document 2 discloses a technique for realizing prediction of characteristic values of a material including an additive by devising a method of calculating a descriptor calculated from known parameters of elements constituting the material. ing.
- Non-Patent Document 2 requires further improvement.
- the present disclosure provides a technique for improving the performance of predicting the characteristic value of a material.
- a method for generating a material descriptor includes a step of obtaining a composition formula of a material, and a formula indicating a base material, and one or more additives added to the base material from the composition formula. Generating an additive list including one or more formulas, and generating a plurality of descriptors required for predicting a predetermined property value of the material corresponding to the formula indicating the parent substance and the additive list. Calculating, and outputting a material descriptor obtained by integrating the plurality of descriptors, wherein the material descriptor is input to a prediction model that predicts the predetermined property value of the material.
- the computer readable recording medium includes, for example, a non-volatile recording medium such as a CD-ROM (Compact Disc-Read Only Only Memory).
- the performance of predicting the characteristic value of a material can be improved by inputting a descriptor that clearly expresses a change in the type or amount of an additive into a prediction model.
- Diagram for explaining the procedure for predicting material properties Diagram showing an example of a change in thermoelectric characteristics (power factor) due to a difference in an added element and an added amount to a base material.
- Diagram showing an example of a descriptor calculated in Non-Patent Document 2 The figure which shows the specific example of the descriptor calculated according to the method of nonpatent literature 2 Diagram showing an example of a material descriptor in the present disclosure
- FIG. 14 is a diagram illustrating a specific example of a descriptor proposed in the present disclosure.
- FIG. 2 is a diagram illustrating a configuration of a material property value prediction device according to the first embodiment. Schematic diagram for explaining a specific difference between the composition formula discrimination process of the first embodiment and the conventional composition formula discrimination process.
- Flow chart for explaining the operation of the material property value prediction device in the first embodiment Diagram showing an example of characteristic value prediction or machine learning of a neural network using a parent substance descriptor and an additive descriptor
- Flowchart for describing generation processing of step S302 in FIG. 9 in the first embodiment Diagram showing an example of material descriptors including descriptors calculated from experimental environment information
- Diagram showing an example of a material descriptor that contains the coefficient of the element symbol included in the formula indicating the additive as a descriptor
- Diagram showing an example of a material descriptor including a descriptor indicating a ratio of an element symbol included in a composition formula of an additive to a sum of coefficients of all element symbols included in an input composition formula.
- Diagram showing an example of the material descriptor including the coefficient of the additive Diagram showing an example of a material descriptor in which a zero or an average value is placed at a place where a descriptor calculated or determined from a formula indicating an additive should be placed
- FIG. 3 is a diagram illustrating a configuration of a material property value prediction device according to a second embodiment.
- Flowchart for describing generation processing of step S302 in FIG. 9 according to the second embodiment The figure which shows the structure of the material characteristic value prediction apparatus in this Embodiment 3.
- FIG. 9 is a diagram showing the results of an experiment in the third embodiment.
- Diagram for explaining the concept of a neural network device according to the fourth embodiment The figure which shows the structure of the material characteristic value prediction apparatus in Embodiment 4.
- 27 is a flowchart for describing the learning processing in step S1306 in FIG. 27 according to the fourth embodiment.
- FIG. 1 is a diagram for explaining a procedure for predicting material characteristics.
- a material descriptor 2 is derived from the material information 1.
- the material information 1 includes, for example, composition formula information indicating a composition formula of the material, structural information indicating a structure of the material, experimental environment information indicating an environment in which the material is generated, and known parameters of each element.
- the material descriptor 2 indicates information included in the material information 1 by numerical values, and corresponds to a pixel value in an image.
- the material descriptor 2 is derived, for example, by combining known parameters of each element such as an atomic weight or an ionic radius based on composition formula information.
- Non-Patent Document 1 a weighted average, a maximum value, a minimum value, and the like of known parameters unique to each element are derived, and those values are used as descriptors.
- the known parameters unique to each element indicate a known group of numerical values such as an atomic volume, a covalent bond radius, or a density, which can be obtained without performing any physical calculation and which can be obtained for each element.
- the weighted average of the parameters is calculated based on the number of atoms constituting the material.
- the material descriptor 2 is input to the material property prediction model 3.
- the material property prediction model 3 performs material property prediction and outputs a predicted property value 4.
- characteristic values of a substance containing no impurities (hereinafter, referred to as a parent substance) are predicted.
- the characteristic value of the material often changes significantly when an additive is added to the base material.
- FIG. 2 is a diagram illustrating an example of a change in thermoelectric characteristics (power factor) due to a difference in the amount of the additive element and the additive element to the base material CaMnO 3 .
- the power factor of each material is measured under a temperature condition of 1000K.
- the value of the power factor is as small as 0.43, whereas by adding Ru or Yb as an additive to the base material, It can be seen that the value of the power factor has been improved.
- the value of the power factor is approximately 1.7 times higher when adding Yb 0.05 as an additive than when adding 0.04 Ru.
- the value of the power factor is reduced to about two-thirds when adding Yb 0.1 as compared to when adding Yb 0.05 .
- the characteristic value of the material may greatly change if the amount of the additive element or the additive element is slightly different. Therefore, when the amount of the additive element or the additive element changes, it is necessary to generate a descriptor that can clearly indicate the difference between the additive element and the additive amount of the additive element.
- Non-Patent Document 2 The descriptor derived using the technique of Non-Patent Document 2 averages the element information regardless of the parent substance and the additive, so that there is a small change in the type of the additive element or the amount of the additive element. However, the difference cannot be clearly expressed. Additives can have a significant effect on the characteristic values of materials if the types of elements or the amounts of added elements are slightly different. Therefore, a prediction model, for example, a neural network device cannot be learned using data that clearly expresses the type of additive or the change in the amount of the added element. Performance decreases. Therefore, even if the change in the type of the element of the additive or the amount of the additive element is small, it is necessary to further improve the method of generating a descriptor capable of clearly expressing the change.
- Non-Patent Document 2 a method of deriving a descriptor from a composition formula including information on an additive will be described with reference to FIGS.
- the same proportion composition formula is derived from the input composition formula, and for both the input composition formula and the same proportion composition formula, a weighted average or standard deviation of information possessed by each element is calculated, and these are calculated. The value is used as a descriptor.
- FIG. 3 is a diagram illustrating an example of a descriptor calculated in Non-Patent Document 2.
- each of the descriptor 11 calculated from the input composition formula and the descriptor 12 calculated from the same ratio composition formula are connected and converted into one numerical sequence.
- the same ratio composition formula means that, for example, when there is a composition formula “CaMn 0.96 Ru 0.04 O 3 ”, the coefficients of all elements are set to 1 regardless of the classification of the base substance and the additive.
- FIG. 4 is a diagram showing a specific example of a descriptor calculated according to the method of Non-Patent Document 2.
- an additive element and an additive amount in addition to a base substance affect characteristics.
- the conventional descriptor generated from the same composition formula can express the change due to the added element.
- each descriptor changes depending on the added element, and it can be seen that the descriptor having a large change changes by about several percent.
- FIG. 2 is a diagram showing a specific example of a descriptor calculated according to the method of Non-Patent Document 2.
- the change of each descriptor is small even if the added element or the added amount changes, and even in the case of the descriptor having a large change, only about several percent of the total amount changes.
- the conventional descriptor generated from the above does not clearly express a minute change in the addition amount of the additional element that affects the characteristic value.
- a method for generating a material descriptor includes a step of obtaining a composition formula of a material, and a formula indicating a base material, and one or more additives added to the base material from the composition formula. Generating an additive list including one or more formulas, and generating a plurality of descriptors required for predicting a predetermined property value of the material corresponding to the formula indicating the parent substance and the additive list. Calculating, and outputting a material descriptor obtained by integrating the plurality of descriptors, wherein the material descriptor is input to a prediction model that predicts the predetermined property value of the material.
- a formula indicating the base material and an additive list including one or more formulas indicating one or more additives to be added to the base material are generated.
- the number of descriptors required for predicting the predetermined property value of the material corresponding to the formula and the additive list indicating are calculated, so that the material or the type of one or more additives may be finely changed. It is possible to generate a plurality of descriptors that clearly represent changes in the type or amount of one or more additives.
- the performance of predicting the characteristic value of the material can be improved.
- the step of generating the formula indicating the parent material and the additive list includes obtaining a parent material list including a plurality of formulas indicating a plurality of parent materials, Calculating a composition difference value between each of the plurality of formulas indicating the plurality of parent substances and the composition formula, and a minimum composition difference value that is a minimum composition difference value among the calculated plurality of composition difference values, Obtaining a first formula indicating a first base material used in calculating the minimum composition difference value; and a formula indicating the plurality of base materials includes a first formula indicating the first base material.
- the minimum composition difference value is When it is determined that the difference is equal to or less than the value, a step of obtaining a difference composition equation indicating an equation of a difference between the first equation and the composition equation; and a step of generating a second equation based on the difference composition equation.
- the one or more formulas indicating the one or more additives may include the second formula.
- a composition difference value between each of a plurality of formulas indicating a plurality of base substances included in the base substance list and a composition formula is calculated, and thereby a plurality of composition difference values are calculated. Then, it is determined whether or not the minimum composition difference value that is the minimum composition difference value among the plurality of calculated difference composition values is equal to or smaller than the threshold value. At this time, if the minimum composition difference value is larger than the threshold value, the amount of the element included in the formula indicating the additive, which is the difference between the formula indicating the base material and the composition formula, is the amount of the element included in the formula indicating the base material.
- the formula indicating the parent substance and the formula indicating the additive are not properly discriminated, and that the composition formula is inappropriate. Therefore, when it is determined that the minimum composition difference value is larger than the threshold value, an unacceptable label is given to the composition formula, so that an inappropriate composition formula can be prevented from being adopted. Further, when the minimum composition difference value is equal to or smaller than the threshold value, a formula indicating an additive can be specified from a difference composition formula indicating a difference composition between the formula indicating the parent substance and the composition formula. Therefore, when it is determined that the minimum composition difference value is equal to or less than the threshold value, the second equation is generated based on the difference composition equation indicating the difference composition between the equation indicating the parent substance and the composition equation, and the minimum composition difference value is calculated.
- a first formula indicating the parent substance used in the process and a list of the generated additives are output, and one or more formulas indicating the one or more additives include the second formula. , The first formula indicating the parent substance and the additive list can be properly determined.
- the step of generating the formula indicating the parent substance and the additive list includes the step of selecting one element symbol and a coefficient of the one element symbol from the composition formula. And determining whether the coefficient is greater than a threshold, and, if determining that the coefficient is less than or equal to the threshold, adding the one element symbol to the additive list; and If it is determined that the value is larger than the threshold value, a step of adding to the parent substance element list an expression combining the element symbol of 1 and a new coefficient generated by rounding up the decimal part of the coefficient; The addition of the element symbol to the additive list or the parent substance element list is performed, whereby the parent substance element list includes a plurality of the combined formulas, and Deriving a combined expression showing the integrated mother material expressions may include a step of outputting said additive lists and expression indicating the parent compound.
- one element symbol and a coefficient of the one element symbol are selected from the equation indicating the composition formula, and it is determined whether the selected coefficient is larger than the threshold. If the coefficient is less than or equal to the threshold, the selected one element symbol is added to the additive list, so that an additive list can be generated. When the coefficient is larger than the threshold value, it can be determined that the selected one element symbol is included in the expression indicating the parent substance. When it is determined that the coefficient is larger than the threshold value, an expression combined with a new coefficient generated by moving up the decimal part of the coefficient is added to the parent substance element list.
- composition formula is added to the additive list or added to the parent substance element list, whereby the parent substance element list includes a plurality of combined formulas, and the plural parent symbols are included in the parent substance element list. Since the expression indicating the parent substance obtained by integrating the expressions obtained by combining the above expressions is derived, the expression indicating the parent substance can be appropriately specified.
- the step of determining the formula indicating the base material and the additive list includes obtaining a base material list including a formula indicating a plurality of base materials; and Determining whether the sum of a plurality of coefficients of the plurality of element symbols is an integer; and, when determining that the sum is an integer, determining whether the sum of the plurality of coefficients is an integer from the composition formula. Selecting a coefficient, and determining whether the coefficient is greater than a threshold, and adding the one element to the additive list if the coefficient is determined to be less than or equal to the threshold.
- a step of adding a combination of the element symbol of 1 and a new coefficient generated by moving up a decimal part of the coefficient to the parent substance element list is performed, whereby the base material element list includes a plurality of the combined formulas, and the base material Deriving an expression indicating a parent material obtained by integrating the plurality of combined expressions included in the element list, and determining whether an expression indicating the derived parent material is present in the parent material list, When it is determined that the formula indicating the parent substance is present in the parent substance list, outputting the formula indicating the parent substance and the additive list, and when determining that the sum is not an integer, or If it is determined that the formula indicating the parent substance does not exist in the parent substance list, a step of assigning a rejection label to the composition formula may be included.
- the selected coefficient is It is determined whether it is larger than the threshold. If the coefficient is less than or equal to the threshold, the selected one element symbol is added to the additive list, so that an additive list can be generated. When the coefficient is larger than the threshold value, it can be determined that the selected one element symbol is an element constituting the parent substance. When it is determined that the coefficient is larger than the threshold value, an expression combined with a new coefficient generated by moving up the decimal part of the coefficient is added to the parent substance element list.
- the parent substance element list includes a plurality of the combined formulas, and a plurality of the parent substance element lists are included. Since the parent substance in which the elements are integrated is derived, the expression indicating the parent substance can be appropriately specified. Further, since it is determined whether or not the derived expression indicating the parent substance is present in the parent substance list, it is possible to output the expression indicating the substance actually existing as the parent substance, and the expression indicating the parent substance And the accuracy of discriminating between the additive list and the additive list can be improved.
- the method further includes a step of obtaining environment information indicating an environment in which the material is generated, and the step of calculating the plurality of descriptors includes: Calculating.
- the environment information indicating the environment in which the material is generated is obtained, and the descriptor corresponding to the environment information is calculated. Therefore, the predetermined characteristic of the material is determined in consideration of the environment in which the material is generated. The value can be predicted.
- the method further includes a step of acquiring structure information indicating a structure of the material, and the step of calculating the plurality of descriptors includes the step of calculating a descriptor corresponding to the structure information And may be included.
- the structure information indicating the structure of the material is obtained, and the descriptor corresponding to the structure information is calculated. Therefore, the predetermined characteristic value of the material can be predicted in consideration of the structure of the material. .
- the step of calculating the plurality of descriptors includes describing a coefficient of a formula indicating one additive included in the one or more formulas indicating the one or more additives. May be created with children.
- the step of calculating the plurality of descriptors includes the step of calculating one or more coefficients of one or more formulas indicating the one or more additives included in the additive list.
- a numerical value obtained by dividing each by the sum of all the coefficients included in the composition formula may be generated as a descriptor.
- the step of calculating the plurality of descriptors includes, when increasing a first coefficient, decreasing a second coefficient, describing a coefficient indicating the decreased amount.
- the one or more formulas produced as elements and indicating the one or more additives may include a first element symbol having the first coefficient and a second element symbol having the second coefficient.
- the one or more formulas indicating one or more additives include the first element symbol having the first coefficient and the second element symbol having the second coefficient, and the first coefficient is increased. By doing so, when the second coefficient is reduced, the predetermined characteristic value of the material can be predicted in further consideration of the coefficient indicating the reduced amount.
- a material descriptor generation device configured to obtain a composition formula of a material, a formula indicating a base material from the composition formula, and one or more additives added to the base material.
- a discriminating unit for discriminating between an additive list including one or more formulas indicating an object, and a plurality of formulas required for predicting a predetermined characteristic value of the material corresponding to the formula indicating the parent substance and the additive list.
- a calculating unit for calculating a descriptor, and an output unit for outputting a material descriptor obtained by integrating the plurality of descriptors, wherein the material descriptor is input to a prediction model for predicting the predetermined property value of the material. Is done.
- a formula indicating the base material and an additive list including one or more formulas indicating one or more additives to be added to the base material are generated.
- the number of descriptors required for predicting the predetermined property value of the material corresponding to the formula and the additive list indicating are calculated, so that the material or the type of one or more additives may be finely changed. It is possible to generate a plurality of descriptors that clearly represent changes in the type or amount of one or more additives.
- the performance of predicting the characteristic value of the material can be improved.
- a material descriptor generation program is a material descriptor generation program to be executed by a computer, wherein the material descriptor generation program acquires a composition formula of a material, and Generating an additive list including one or more formulas indicating one or more additives to be added to the mother material, and a formula indicating the mother material; and a formula indicating the mother material and the additive. Calculating a plurality of descriptors corresponding to a list, the plurality of descriptors necessary for predicting a predetermined property value of the material, and outputting a material descriptor obtained by integrating the plurality of descriptors, wherein the material descriptor Is input to a prediction model that predicts the predetermined property value of the material.
- a formula indicating the base material and an additive list including one or more formulas indicating one or more additives to be added to the base material are generated.
- the number of descriptors required for predicting the predetermined property value of the material corresponding to the formula and the additive list indicating are calculated, so that the material or the type of one or more additives may be finely changed. It is possible to generate a plurality of descriptors that clearly represent changes in the type or amount of one or more additives.
- the performance of predicting the characteristic value of the material can be improved.
- a prediction model construction method is a prediction model construction method in a prediction model construction apparatus that constructs a prediction model for predicting a predetermined characteristic value of a material, wherein the description indicates a predetermined characteristic of the material. Generating a child and learning the prediction model using the descriptor as an input value.
- the step of generating the descriptor includes the step of obtaining a composition formula of the material, and, from the composition formula, a formula indicating a parent material, and at least one added to the parent material.
- the composition formula of the material generates the formula indicating the base material and the additive list including the formula indicating at least one additive added to the base material, and the formula indicating the base material and the additive Since multiple descriptors corresponding to the material list and required for the prediction of the predetermined characteristic value are calculated, the change in the type or amount of the additive is clarified even for the material in which the type or amount of the additive changes minutely. Can be generated.
- a prediction model construction device is a prediction model construction device that constructs a prediction model that predicts a predetermined characteristic value of a predetermined material, and generates a descriptor indicating a characteristic of the predetermined material. And a learning unit that learns the prediction model using the descriptor as an input value.
- a prediction model construction program is a prediction model construction program that constructs a prediction model that predicts a predetermined characteristic value of a predetermined material, and generates a descriptor indicating a feature of the predetermined material. And causing the computer to execute the step of learning the prediction model using the descriptor as an input value.
- a formula indicating a parent material and a formula indicating an additive are determined from a composition formula of a material including an additive, and a descriptor is calculated from each of the formula indicating the determined parent material and the formula indicating an additive. Suggest a method. An outline of a descriptor expression proposed in the present disclosure will be described with reference to FIGS. 5 and 6. Note that “calculate a descriptor” may be rephrased as “determine a descriptor”.
- FIG. 5 is a diagram illustrating an example of a material descriptor according to the present disclosure.
- the material descriptor includes a plurality of descriptors, namely, a descriptor 21, a descriptor 22 to a descriptor 2n.
- a descriptor 21 calculated from a formula indicating a parent substance
- a descriptor 22 to a descriptor 2n calculated or determined from a formula indicating a first additive to a formula indicating an n-th additive
- FIG. 30 is a diagram illustrating an example of a material descriptor according to the present disclosure.
- the descriptor 21 calculated from the expression indicating the parent substance may be one or a plurality of descriptors 21-1, 21-2,... Calculated from the expression indicating the same parent substance.
- each of the descriptors 22 to 2n calculated from the formula indicating the first additive to the formula indicating the n-th additive is 1 or 2 calculated from the formula indicating the same additive. There may be multiple descriptors.
- a parent substance represents a substance having a chemical potential shift of zero, but in the first embodiment, a substance in which the coefficients of element symbols included in the input composition formula are all integers is simply shown.
- the formula is defined as a formula indicating a parent substance.
- FIG. 6 is a diagram illustrating a specific example of a descriptor proposed in the present disclosure.
- Examples of one or a plurality of descriptors calculated from the formula indicating the parent substance CaMnO 3 are “11166.3”, “102.6”, and / or “1804.9”. “11166.3” is the average atomic volume calculated from the formula indicating the base material CaMnO 3 , “102.6” is the average covalent bond radius calculated from the formula indicating the base material CaMnO 3 , and “1804.9” is the formula indicating the base material CaMnO 3 Is the average density calculated from.
- Examples of one or more descriptors calculated or determined from a formula indicating additive Ru 0.04 are “0.04”, “13.6”, “146.0”, and / or “12370.0”. “0.04” is the coefficient of the additive Ru 0.04 , “13.6” is the atomic volume calculated or determined from the formula indicating the additive Ru 0.04 , and “146.0” is calculated from the formula indicating the additive Ru 0.04. Alternatively, the determined covalent radius, “12370.0”, is the density calculated or determined from the equation indicating the additive Ru 0.04 .
- the material descriptor is a descriptor indicating information of the element of the additive derived from the formula indicating the additive, and the element of the additive derived from the formula indicating the additive. Includes a descriptor indicating the information on the amount of addition of.
- the material descriptor includes a descriptor using known parameters specific to the element. As shown in FIG. 6, known parameters specific to the element are, for example, atomic volume, covalent radius, or density.
- known parameters specific to the element are, for example, atomic volume, covalent radius, or density.
- the difference in the amount of additive is clearly expressed by the fact that the material descriptor includes a descriptor indicating the additive coefficient. As shown in FIG. 6, when the formula indicating the additive is Ru 0.04 , the additive coefficient is 0.04.
- FIG. 7 is a diagram showing a configuration of the material property value predicting apparatus according to the first embodiment.
- the material property value prediction device 100 is, for example, a personal computer, and includes a processor 200, an input unit 210, a memory 220, and an output unit 230.
- the processor 200 includes a material descriptor generation unit 101, a characteristic value prediction unit 102, and a learning unit 103.
- the material descriptor generation unit 101 includes an input acquisition unit 110, a composition formula discrimination unit 120, a descriptor calculation unit 130, and a descriptor integration unit 140.
- the memory 220 includes a material information storage unit 221, a parent substance list storage unit 222, and a prediction model storage unit 223.
- the material characteristic value prediction device 100 constructs a prediction model for predicting a predetermined characteristic value of a material.
- the material descriptor generation unit 101 generates a material descriptor to be input to a prediction model for predicting a predetermined characteristic value of a material.
- the input unit 210 includes, for example, a keyboard, a mouse, or a touch panel, and receives input of various information by a user.
- the input unit 210 receives an input by a user of a composition formula for which prediction of a predetermined characteristic value is desired.
- the composition formula received by the input unit 210 may be called an input composition formula.
- the composition formula input by the user may be called an input composition formula.
- the material information storage unit 221 stores material information regarding materials.
- the material information includes composition formula information indicating a composition formula of at least one material, structure information indicating a structure of at least one material, and experimental environment information of at least one material.
- the experimental environment information of the at least one material includes an environment in which the at least one material is generated, temperature information at the time of measuring characteristics of the at least one material, and / or a specific generation method of the at least one material. Including. At the time of learning, material information including a plurality of composition formula information, a plurality of structural information, and a plurality of experiment environment information is used, and at the time of prediction, it corresponds to the composition formula information indicating the composition formula of the material input by the user.
- the material information including the structural information and the experimental environment information is used.
- the material information may include one or more known parameters of each of the plurality of elements.
- the known parameter of the element may be an atomic volume value, a covalent radius value, or a density value.
- the material information may include one or more known parameters for multiple elements.
- the known parameter for the plurality of elements may be an average atomic volume value, an average covalent radius value, or an average density value.
- the parent substance list storage unit 222 stores in advance a parent substance list in which expressions indicating a plurality of parent substances are described.
- the parent substance list is stored in the parent substance list storage unit 222.
- a communication unit uses an external device via a network. It may be received.
- the parent substance list may include a formula described in a predetermined database.
- the predetermined database is, for example, Inorganic ⁇ Crystal ⁇ Structure ⁇ Database (ICSD) described in Patent Document 4.
- the mother substance list may be generated in advance using the method described in the second embodiment.
- the prediction model storage unit 223 stores a prediction model for predicting a predetermined characteristic value of a material.
- the prediction model is, for example, a neural network, and uses a material descriptor as input information and a predetermined characteristic value as output information.
- the input acquisition unit 110 receives the input composition formula from the input unit 210.
- the composition formula discriminating unit 120 discriminates, from the input composition formula received from the input acquisition unit 110, a formula indicating a parent substance and a formula indicating at least one additive added to the parent substance, and determines at least one additive. Generate an additive list containing the formula shown.
- the composition formula discriminating unit 120 acquires a parent substance list indicating a formula indicating a plurality of parent substances from the parent substance list storage unit 222.
- the composition formula determination unit 120 calculates a composition difference value between each of the formulas indicating a plurality of base materials in the base material list and the input composition formula. The detailed description of the composition difference value will be described later.
- the composition formula discriminating unit 120 acquires a minimum composition difference value among the plurality of calculated composition difference values, and a formula indicating a parent substance used in calculating the minimum composition difference value.
- the composition formula determination unit 120 determines whether the minimum composition difference value is equal to or less than a threshold.
- the composition formula determining unit 120 assigns an unacceptable label to the composition formula, and notifies the descriptor calculation unit 130 to that effect.
- the composition formula determination unit 120 acquires a difference composition formula between the formula indicating the parent substance and the composition formula.
- the composition formula determination unit 120 generates an additive list including one or a plurality of additive formulas from the difference composition formula.
- the composition formula discriminating unit 120 outputs information including a formula indicating a parent substance and an additive list.
- the descriptor calculating unit 130 determines that the formula indicating the parent substance and the additive list have not been generated.
- the descriptor calculation unit 130 calculates a plurality of descriptors necessary for predicting a predetermined characteristic value corresponding to the formula indicating the parent substance and the additive list. I do.
- the descriptor integrating unit 140 generates a material descriptor in which the plurality of descriptors calculated by the descriptor calculating unit 130 are integrated into one sequence.
- the characteristic value prediction unit 102 predicts a predetermined characteristic value from the material descriptor using the prediction model stored in the prediction model storage unit 223.
- the characteristic value prediction unit 102 inputs the material descriptor to the prediction model read from the prediction model storage unit 223, and obtains a predetermined characteristic value output from the prediction model.
- the predetermined characteristic value may be a value indicating a power factor or a value indicating an electrical resistivity of the material.
- the learning unit 103 learns a prediction model using the material descriptor generated by the material descriptor generation unit 101 as an input value.
- the learning unit 103 performs machine learning on the prediction model stored in the prediction model storage unit 223 using the material descriptor output from the descriptor integration unit 140.
- machine learning for example, supervised learning for learning the relationship between an input and an output using teacher data to which a label (output information) is added to input information, and constructing a data structure from unlabeled input
- Unsupervised learning semi-supervised learning that handles both labeled and unlabeled, learning feedback (reward) for selected actions from state observations, or learning continuous actions that give the most reward Reinforcement learning.
- specific methods of machine learning include neural networks (including deep learning using multilayer neural networks), genetic programming, decision trees, Bayesian networks, and support vector machines (SVM). Exists. In the machine learning of the present disclosure, any of the specific examples described above may be used.
- the material property value prediction device 100 can be switched between a prediction mode for predicting a predetermined property value of a material and a learning mode for learning a prediction model.
- the input obtaining unit 110 obtains the input composition formula input by the input unit 210.
- the input obtaining unit 110 obtains a plurality of input composition formulas stored in advance in the material information storage unit 221, and the learning unit 103 calculates the material description calculated from each of the plurality of input composition formulas. By inputting each of the children to the prediction model, machine learning is performed on the prediction model.
- the output unit 230 outputs the predetermined characteristic value predicted by the characteristic value prediction unit 102.
- the output unit 230 may be a display device, and may display the characteristic value predicted by the characteristic value prediction unit 102.
- the output unit 230 may be a printer, and may print the characteristic values predicted by the characteristic value prediction unit 102.
- the output unit 230 may be an output terminal, and may output the characteristic value predicted by the characteristic value prediction unit 102 to the outside.
- the material property value prediction device 100 may be a server. In this case, the material property value prediction device 100 does not include the input unit 210 and the output unit 230, further includes a communication unit, and is communicably connected to the terminal device.
- the terminal device includes an input unit 210 and an output unit 230, receives input of an input composition formula, and transmits the input composition formula, which is the input composition formula, to the material property value prediction device 100.
- the material property value prediction device 100 receives the input composition formula from the terminal device, predicts a predetermined property value from the received input composition formula, and transmits the predicted predetermined property value to the terminal device.
- the terminal device receives the predicted predetermined characteristic value from the material characteristic value prediction device 100.
- FIG. 8 is a schematic diagram for explaining a specific difference between the composition formula discrimination process of the first embodiment and the conventional composition formula discrimination process.
- the composition formula discriminating unit 120 includes a formula (CaMnO 3 ) representing a base material constituting the input composition formula (CaMn 0.96 Ru 0.04 O 3 ) and a formula (Ru 0.04 ) for an additive. ), And outputs a formula indicating the determined parent substance and an additive list including one or more additives to the descriptor calculation unit 130.
- the conventional composition formula determination unit 120B derives the same proportion composition formula (CaMnRuO) from the input composition formula (CaMn 0.96 Ru 0.04 O 3 ), and calculates the input composition formula and the same proportion composition formula. Output to the descriptor calculation unit 130.
- FIG. 9 is a flowchart for explaining the operation of the material property value predicting apparatus according to the first embodiment.
- step S301 the input acquisition unit 110 acquires an input composition formula from the input unit 210.
- step S302 the composition formula determination unit 120 performs a generation process of generating a formula indicating a parent substance and an additive list including one or more additives from the input composition formula. The details of the generation process will be described later.
- step S303 the descriptor calculation unit 130 determines whether or not the composition formula determination unit 120 has generated an additive list including a formula indicating a parent substance and a formula of one or more additives.
- the process ends.
- the descriptor calculation unit 130 includes the descriptor and the additive list of the formula indicating the parent substance. Calculate descriptors for each of the formulas representing one or more additives.
- the descriptor calculation unit 130 obtains, from the material information storage unit 221, known parameters of the elements included in the expression indicating one or more additives from the material information storage unit 221, and uses the acquired known parameters to calculate the expression of the additive. Calculate or determine the descriptor.
- the descriptor calculation unit 130 obtains the known parameters of each element included in the formula indicating the parent substance from the material information storage unit 221, and calculates the weighted average of the obtained known parameters as the descriptor of the parent substance. I do.
- the formula indicating the parent substance is CaMnO 3 and the average atomic volume is obtained as a descriptor
- the descriptor calculation unit 130 calculates ⁇ (atomic volume of Ca) + (atomic volume of Mn) + (atom of O Volume) ⁇ 3 ⁇ / 5
- the descriptor calculation unit 130 When the descriptor calculation unit 130 acquires information necessary for predicting a characteristic value in addition to the composition formula information, the descriptor calculation unit 130 also calculates a descriptor of information necessary for predicting a characteristic value. Or, decide.
- One descriptor may be calculated or determined for a formula indicating one additive, or a plurality of descriptors may be calculated or determined for a formula indicating one additive.
- One descriptor may be calculated for an expression indicating one parent substance, or a plurality of descriptors may be calculated for an expression indicating one parent substance.
- step S305 the descriptor integration unit 140 generates a material descriptor in which the plurality of descriptors calculated by the descriptor calculation unit 130 are integrated.
- the material descriptor may be a sequence in which all the descriptors generated by the descriptor calculation unit 130 are connected.
- the number of descriptors for the expression indicating one parent substance included in the material descriptor may be one or more.
- CaMnO 3 materials descriptor average atomic volume of CaMnO 3, and may include an average density of CaMnO 3.
- the average density of CaMnO 3 may be ⁇ (average density of Ca) + (average density of Mn) + (average density of O) ⁇ 3 ⁇ / 5.
- the number of descriptors for the formula indicating one additive included in the material descriptor may be one or more.
- the expression showing one additive is Ru 0.04, materials descriptor Ru 0.04, the atomic volume of the Ru, and / or may include a density of Ru.
- the characteristic value prediction unit 102 predicts the characteristic value of the material using the material descriptor generated by the descriptor integration unit 140.
- the prediction model used by the characteristic value prediction unit 102 may include machine learning such as neural network, random forest or greedy algorithm, or approximation using a logical model formula.
- FIG. 10 is a diagram illustrating an example of characteristic value prediction or machine learning of a neural network using a parent substance descriptor and an additive descriptor.
- the characteristic value prediction unit 102 inputs one or more descriptors for a formula indicating a parent substance and one or more descriptors for a formula indicating one or more additives to a plurality of units of an input layer of the prediction model. Then, a calculation based on the input signal and the weight value is performed in each of the units included in the intermediate layer and the output layer, and a predetermined characteristic value output from the unit in the output layer of the prediction model is obtained as a prediction result.
- the learning unit 103 inputs one or more descriptors for the expression indicating the parent substance and one or more descriptors for the expression indicating one or more additives to a plurality of units of the input layer of the prediction model. And train the prediction model. Learning may be performed using learning data including a plurality of data sets including values of predetermined characteristics corresponding to a plurality of descriptors.
- step S307 the output unit 230 outputs the predetermined characteristic value predicted by the characteristic value prediction unit 102.
- the generation process in step S302 in FIG. 9 includes a case where a parent substance list including a plurality of formulas indicating a plurality of parent substances constituting a plurality of input composition formulas is stored in the memory 220 in advance, and a case where the parent substance list is stored in the memory 220 in advance. This is different from the case where the information is not stored in 220.
- the mother substance list includes, for example, the composition formulas of two materials “CaMn 0.96 Ru 0.04 O 3 ” and “Nb 0.95 Ti 0.05 FeSb” in the material information.
- “CaMnO 3 ” and “NbFeSb”, which are expressions indicating the base material of each material, are listed in advance. Note that, for example, a tag indicating that the parent material of the composition formula “CaMn 0.96 Ru 0.04 O 3 ” is “CaMnO 3 ” in the parent material list may be added to the composition formula.
- the generation processing in step S302 in FIG. 9 is performed using the parent substance list.
- step S302 in FIG. 9 The generation process of step S302 in FIG. 9 according to the first embodiment will be described with reference to FIG.
- FIG. 11 is a flowchart for describing the generation processing in step S302 in FIG. 9 in the first embodiment.
- step S401 the composition formula determining unit 120 acquires a parent substance list from the parent substance list storage unit 222.
- the description of the parent substance included in the parent substance list may include CaMnO 3 .
- the composition formula determining unit 120 calculates a composition difference value between the formula indicating each base material included in the base material list and the input composition formula.
- the composition difference value is the sum of the absolute values of the coefficients in the difference composition equation between the two composition equations.
- the difference formula of the input formula wherein "CaMnO 3" indicating a parent "CaMn 0.96 Ru 0.04 O 3" is "Mn -0.04 Ru 0.04" composition difference value Is “0.08” which is the sum of the absolute value of “ ⁇ 0.04” and the absolute value of “0.04”.
- the difference composition formula between the formula “CaMnO 3 ” indicating the base substance and the input composition formula “CaMn 0.95 Yb 0.05 O 3 ” is “Mn ⁇ 0.05 Yb 0.05 ”, and the composition difference value Is “0.10” which is the sum of the absolute value of “ ⁇ 0.05” and the absolute value of “0.05”.
- the difference composition formula and the composition difference value can be defined as follows. In general, when the coefficient of the element symbol included in the composition formula is 1, “1” is not described, but in the following description, the case where the coefficient is 1 will be described. For example, when the composition formula is CaMnO 3 , it is described as Ca 1 Mn 1 O 3 .
- A1, B1,..., A2, B2,... are each element symbols, the first (composition) formula is A1 a1 B1 b1 ..., And the second (composition) formula is A2 a2 B2 b2. If a ⁇ , A1 if a ⁇ A2, B1 ⁇ B2, the first (composition) where the second (composition) where the difference (composition) formula A2 a2 B2 b2 ⁇ A1 -a1 B1 -b1 ⁇ , And the (composition) difference between the first (composition) expression and the second (composition) expression is ⁇
- A1 A2, B1 ⁇ B2, the first (composition) where the second (composition) where the difference (composition) formula A2 (a2-a1) be a B2 b2 ⁇ B1 -b1 ⁇ ,
- the composition (difference) value of the first (composition) equation and the second (composition) equation is ⁇
- the difference composition formula and the composition difference value may be defined as follows.
- vA a vector element corresponding to the element A
- v Mn a vector element corresponding to Mn in the composition formula vector.
- composition formula vectors for CaMnO 3 v Ca to 1, v 1 to Mn, v O 3, put each figure of 0 to the other vector elements.
- the composition formula vector for this CaMnO 3 is
- the sum of the absolute values of all the vector elements is defined as the composition difference value d. That is,
- composition formula in which the corresponding vector element values are arranged as coefficients is defined as a difference composition formula.
- 0.08, and the difference composition formula becomes Mn- 0.04Ru 0.04 by combining Mn with a coefficient of -0.04 and Ru with a coefficient of 0.04.
- the order of the elements in the differential composition formula is arbitrary. When the difference composition value is 0, there is no difference composition formula.
- step S404 the composition formula determining unit 120 determines whether or not the minimum composition difference value is equal to or smaller than a threshold.
- the composition formula determining unit 120 determines the parent substance whose minimum composition difference value is equal to or smaller than the threshold value. And the difference composition formula between the input composition formula.
- the composition formula determination unit 120 acquires the difference composition formula “Mn ⁇ 0.04Ru 0.04 ”. This is because 0.08 (composition difference value of the difference composition formula “Mn ⁇ 0.04 Ru 0.04 ”) ⁇ 0.10 (composition difference value of the difference composition formula “Mn ⁇ 0.05 Yb 0.05 ”). .
- the composition formula determination unit 120 generates an additive list in which formulas indicating additives are listed from the difference composition formula.
- the additive list includes the formula “Ru 0.04 ” indicating the additive, and the formula “Mn” indicating the additive. -0.04 "may not be included.
- the additive list may include both the formula “Ru 0.04 ” indicating the additive and the formula “Mn ⁇ 0.04 ” indicating the additive. If the coefficient of the difference composition formula is a positive number, it is an additive, and if the coefficient is negative, it is an additive.
- step S407 the composition formula determining unit 120 outputs to the descriptor calculating unit 130, information including the formula indicating the parent substance specified in step S403 and the additive list generated in step S406.
- step S404 determines whether the minimum composition difference value is larger than the threshold (NO in step S404). If it is determined in step S404 that the minimum composition difference value is larger than the threshold (NO in step S404), in step S408, the composition formula determining unit 120 assigns an unaccepted label to the input composition formula.
- the descriptor integration unit 140 When the descriptor integration unit 140 acquires information that can affect the material property value such as the material structure information and / or the experimental environment information of the material from the material information storage unit 221, the descriptor integration unit 140 performs Alternatively, a descriptor derived from information that may affect the material property value and a plurality of descriptors calculated from the input composition formula may be integrated to generate a material descriptor as one sequence.
- the material structure information is, for example, a parameter derived using three-dimensional position information of each element included in the input composition formula of the material, or derived using position information of each element included in the input composition formula of the material. And the like.
- the experimental environment information of the material is, for example, temperature information at the time of material generation, temperature information at the time of measuring characteristics of the material, a specific material generation method, or the like.
- Parameters obtained by performing a first-principles calculation using information on a plurality of three-dimensional positions of a plurality of elements contained in a parent material included in the material composition formula, for example, a band gap and / or an effective mass are calculated. It may be adopted as a descriptor.
- FIG. 12 is a diagram showing an example of a material descriptor including a descriptor calculated from the experiment environment information.
- a descriptor 31 calculated from the experimental environment information is a descriptor 32 calculated from a formula indicating a parent substance and descriptors 33-1 or a plurality of descriptors calculated from a formula indicating first to n-th additives. Are arranged along with the descriptor 3n to form one material descriptor.
- the descriptor 31 calculated from the experiment environment information may be one or a plurality of descriptors.
- the input acquisition unit 110 may acquire experiment environment information indicating an environment in which a material is generated.
- the descriptor calculation unit 130 calculates a descriptor corresponding to the formula indicating the parent substance, calculates a descriptor corresponding to the formula indicating at least one additive included in the additive list, and corresponds to the experiment environment information. Descriptors may be calculated.
- the user may input, from the input unit 210, experimental environment information indicating an environment in which the material is generated corresponding to the input composition formula of the material.
- the input acquisition unit 110 may acquire experiment environment information indicating an environment in which a material is generated from the input unit 210, and send the acquired environment information to the descriptor calculation unit 130 and the material information storage unit 221.
- the material information storage unit 221 may store the information.
- the material information storage unit 221 may hold experimental environment information indicating an environment in which a plurality of materials corresponding to the composition formulas of the plurality of materials are generated.
- the input acquisition unit 110 may acquire the experiment environment information indicating the environment in which the material is generated from the material information storage unit 221 and send it to the descriptor calculation unit 130.
- the input acquisition unit 110 may acquire structure information indicating the structure of the material.
- the descriptor calculation unit 130 calculates a descriptor corresponding to a formula indicating a parent substance, calculates a descriptor corresponding to a formula indicating at least one additive included in the additive list, and describes a description corresponding to the structural information. The child may be calculated.
- the user may input, from the input unit 210, structure information indicating the structure of the material corresponding to the input composition formula of the material.
- the input acquisition unit 110 may acquire the structure information indicating the structure of the material from the input unit 210 and send the acquired structure information to the descriptor calculation unit 130 and the material information storage unit 221.
- the material information storage unit 221 may store the information.
- the material information storage unit 221 may hold in advance structure information indicating a structure of a plurality of materials corresponding to a composition formula of the plurality of materials.
- the input acquisition unit 110 may acquire structure information indicating the structure of the material from the material information storage unit 221, and send the acquired structure information to the descriptor calculation unit 130.
- the plurality of descriptors included in the material descriptor generated by the descriptor calculation unit 130 may include a descriptor indicating a coefficient of an element symbol included in a formula indicating an additive.
- the descriptor calculation unit 130 may add the coefficient of the element symbol included in the expression indicating the additive included in the additive list to the material descriptor as a descriptor.
- FIG. 13 is a diagram illustrating an example of a material descriptor including, as a descriptor, a coefficient of an element symbol included in a formula indicating an additive.
- FIG. 13 exemplifies and describes a material descriptor calculated from the input composition formula CaMn 0.96 Ru 0.04 O 3 .
- the descriptor 43 shown in FIG. 13 represents the coefficient 0.04 of the element symbol Ru included in the formula “Ru 0.04 ” indicating the first additive.
- the coefficients of the element symbols included in the formula for each additive are placed immediately before the descriptor calculated from the formula for each additive.
- the descriptor calculation unit 130 calculates the ratio of the coefficient of the element symbol included in the formula indicating the additive to the sum of the coefficients of all the element symbols included in the composition formula, and assigns the descriptor indicating the calculated ratio to the material descriptor. May be included.
- FIG. 14 is a diagram illustrating an example of a material descriptor including a descriptor indicating a ratio of a coefficient of an element symbol included in a composition formula of an additive to a sum of coefficients of all element symbols included in an input composition formula.
- FIG. 14 illustrates a material descriptor calculated from the input composition formula CaMn 0.96 Ru 0.04 O 3 .
- the descriptor 53 shown in FIG. 14 indicates the ratio of the coefficient of the element symbol included in the expression indicating the first additive to the sum of the coefficients of all the element symbols included in the input composition formula.
- the descriptor 53 represents a value 0.008 obtained by dividing the coefficient 0.04 of Ru as the first additive by the sum 5 of the coefficients of all the elements included in the input composition formula.
- the ratio of the coefficient of the element symbol included in the composition formula of the additive to the sum of the coefficients of all the element symbols included in the input composition formula may be referred to as the ratio of the additive.
- the descriptor indicating the ratio of the additive is placed immediately before the descriptor calculated from the expression indicating the additive.
- the plurality of descriptors included in the material descriptor generated by the descriptor calculation unit 130 may include a descriptor indicating a coefficient of an element symbol included in a formula indicating an additive.
- the object to be additive for example, the input formula CaMn 0.96 Ru 0.04 O 3 when compared to the parent compound CaMnO 3, that of Mn became less percentage of by Ru 0.04 is added Is shown.
- the descriptor calculation unit 130 may add, as a descriptor, the coefficient of the additive whose ratio has been reduced by adding at least one additive included in the additive list.
- FIG. 15 is a diagram illustrating an example of a material descriptor including a coefficient of an additive.
- FIG. 15 exemplarily shows a material descriptor calculated from the input composition formula CaMn 0.96 Ru 0.04 O 3 with the parent material composition formula being CaMnO 3 .
- Ru 0.04 is an additive added by 0.0
- Mn 0.96 is an additive added by 0.04.
- the descriptor indicating the coefficient of the additive shown in FIG. 15 describes this “reduced by 0.04” as “added ⁇ 0.04”.
- the descriptor 63 shown in FIG. 15 represents the coefficient 0.04 of the expression “Ru 0.04 ” indicating the first additive
- the descriptor 65 represents the expression “Mn 0.96 ” indicating the first additive.
- the coefficient -0.04 of" Mn -0.04 " In the descriptor 63, the coefficient of the first additive Ru is represented by a plus sign, whereas in the descriptor 65, the coefficient of the additive Mn is represented by a minus sign.
- the descriptor indicating the coefficient of the formula indicating the additive is placed immediately before or immediately after the descriptor calculated from the formula indicating the additive.
- the lengths of the material descriptors calculated from the different composition formulas are different, the lengths may be the same. That is, the material descriptor calculated from the composition formula may be a fixed length. Even if the number of formulas indicating additives calculated from one composition formula and the number of formulas indicating additives calculated from other composition formulas are different, the material descriptor calculated from the one composition formula and This is because the material descriptor calculated from the other composition formula is included in one database.
- the plurality of material descriptors included in the database are used, for example, in a prediction model having the same number of input units.
- the descriptor integrating unit 140 determines whether the material descriptor is Place a zero or average value at a given location.
- the average value will be described later.
- the predetermined number may be, for example, n which is a natural number of 2 or more, and may be the maximum number of formulas indicating additives derived from the assumed input composition formula.
- the formula indicating the additive of the input composition formula “CaMn 0.96 Ru 0.04 O 3 ” is Ru 0.04 , and the number is one
- the formula indicating the additive of “Bi 0.1 Mn 0.9 Nb 0.1 O 3 ” is Bi 0.1 and Nb 0.1 , and the number is two.
- the first material descriptor calculated from the input composition formula “Ca 0.9 Bi 0.1 Mn 0.9 Nb 0.1 O 3 ” was calculated or determined from the two formulas indicating the two additives.
- a first descriptor and a second descriptor are included. A first descriptor is located at a first location of the first material descriptor, and a second descriptor is located at a second location of the first material descriptor.
- the material descriptor calculated from the input composition formula “CaMn 0.96 Ru 0.04 O 3 ” includes a third descriptor calculated or determined from one formula indicating the one additive.
- a third descriptor is arranged at a third position of a second material descriptor that is a material descriptor of the input composition formula “CaMn 0.96 Ru 0.04 O 3 ”, and a fourth position of the second material descriptor Are placed at zero or average.
- the length of the first material descriptor and the length of the second material descriptor are the same.
- the first location in the first material descriptor and the third location in the second material descriptor are at the same position, and the second location in the first material descriptor and the fourth location in the second material descriptor are the same It may be a position.
- the first location in the first material descriptor and the fourth location in the second material descriptor are at the same position, and the second location in the first material descriptor and the third location in the second material descriptor May be at the same position.
- FIG. 16 is a diagram showing an example of a material descriptor in which a zero or an average value is placed at a position where a descriptor calculated or determined from a formula indicating an additive is to be placed.
- the descriptor 73 calculated from the expression indicating the first additive is present, but the second additive to the n-th additive are present.
- the place where the descriptor 74 calculated from the expression indicating the second additive is to be arranged, the place where the descriptor 7n calculated from the expression indicating the n-th additive is to be arranged is zero or zero.
- the average value is placed.
- the descriptor calculation unit 130 determines, among the i-th additive for the second material descriptor, and the i-th additive for the n-th material descriptor, The average of the descriptors for the additives present may be taken as the descriptor for the i-th additive in the first material descriptor.
- the position of the descriptor of the i-th additive in the first material descriptor,..., The position of the descriptor of the i-th additive in the n-th material descriptor are at the same position from the viewpoint of the data structure.
- the average value of the second additive descriptors 74a to 74c calculated from the second additive in the other material descriptors 701a to 701c is arranged in the descriptor 74 of the material descriptor 701. Is done.
- the position in the material descriptor of the portion is determined by the formula indicating the other additive. May be the location where the descriptor calculated from is placed.
- FIG. 17 is a diagram showing another example of a material descriptor in which zero or an average value is placed at a position where a descriptor calculated or determined from a formula indicating an additive is to be placed.
- the input composition formula has a formula Ru 0.04 indicating one additive, but the descriptor calculated or determined from the formula indicating the additive is the first additive. May be arranged at the position where the descriptor 84 calculated or determined from the formula indicating the second additive is arranged, instead of the position where the descriptor 83 calculated or determined from the formula indicating the second additive is arranged.
- Zero or an average value may be arranged at the position where 85 to 8n is arranged.
- the experiment environment descriptor may be input to the prediction model along with the parent substance descriptor and the additive descriptor.
- FIG. 18 is a diagram showing an example of neural network characteristic value prediction or machine learning using a parent substance descriptor, an additive descriptor, and an experiment environment descriptor.
- the characteristic value prediction unit 102 includes one or more descriptors for a formula indicating a parent substance, one or more descriptors for a formula indicating one or more additives, and one or more descriptors.
- One or more descriptors of the experimental environment are input to a plurality of units of an input layer of the prediction model, and a predetermined characteristic value output from a unit of an output layer of the prediction model is obtained as a prediction result.
- the learning unit 103 includes one or more descriptors for a formula indicating a parent substance, one or more descriptors for a formula indicating one or more additives, and one or more descriptors for one or more experimental environments.
- the descriptor is input to a plurality of units in the input layer of the prediction model, and the prediction model is learned.
- not only the experimental environment descriptors but also one or more descriptors of one or more structural information include one or more descriptors for a formula indicating a parent substance and one or more additives. May be input to the prediction model along with one or more descriptors for the expression indicating. Learning may be performed using learning data including a plurality of data sets including values of predetermined characteristics corresponding to a plurality of descriptors.
- the learning unit 103 does not use the additive descriptor and learns the prediction model using the parent substance descriptor, and includes a parent substance descriptor and an additive description.
- a multi-stage learning including a second learning step of learning a prediction model using a child may be performed.
- FIG. 19 is a diagram showing an example of multi-stage machine learning of a neural network using a parent substance descriptor and an additive descriptor.
- the learning unit 103 trains the neural network using the additive descriptor and using the parent substance descriptor
- the learning unit 103 Trains the neural network using the parent substance descriptor and the additive descriptor.
- the experiment environment descriptor, the structure information descriptor, and the like may be similarly added stepwise after the third learning step, and the neural network may be learned in multiple steps.
- the memory 220 stores the parent substance list, but in the second embodiment, the memory 220 does not store the parent substance list.
- FIG. 20 is a diagram showing a configuration of a material property value predicting apparatus according to the second embodiment.
- the material property value prediction device 100A includes a processor 200A, an input unit 210, a memory 220A, and an output unit 230.
- the processor 200A includes a material descriptor generation unit 101A, a characteristic value prediction unit 102, and a learning unit 103.
- the material descriptor generation unit 101A includes an input acquisition unit 110, a composition formula discrimination unit 120A, a descriptor calculation unit 130, and a descriptor integration unit 140.
- the memory 220A includes a material information storage unit 221 and a prediction model storage unit 223.
- the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
- the composition formula discriminating unit 120A selects one element symbol and a coefficient of the one element symbol from the input composition formula acquired from the input acquisition unit 110.
- the composition formula determination unit 120A determines whether the coefficient is larger than a threshold. When it is determined that the coefficient is equal to or smaller than the threshold, the composition formula determination unit 120A adds the element symbol of 1 to the additive list. When it is determined that the coefficient is larger than the threshold, the composition formula discriminating unit 120A adds a combination of the element symbol of 1 and a new coefficient generated by moving up a decimal part of the coefficient to the base substance element list.
- the composition formula determination unit 120A After performing the above-described processing for all the element symbols included in the input composition formula, the composition formula determination unit 120A performs a plurality of elements included in the parent substance element list, that is, a plurality of “1 element symbols and the decimal part of the coefficient”. And a new coefficient that is generated by raising the following formula.
- the composition formula determination unit 120A outputs the parent substance and the additive list.
- the operation of the material property value prediction device 100A according to the second embodiment is the same as the operation of the material property value prediction device 100 according to the first embodiment shown in FIG.
- An operation different from the second embodiment and the first embodiment is the generation processing in step S302 in FIG.
- step S302 in FIG. 9 is performed without using the parent substance list.
- step S302 in FIG. 9 The generation process in step S302 in FIG. 9 according to the second embodiment will be described with reference to FIG.
- FIG. 21 is a flowchart for describing the generation processing in step S302 in FIG. 9 in the second embodiment.
- step S501 the composition formula discriminating unit 120A selects one element symbol and a coefficient of the one element symbol from the input composition formula.
- the composition formula determining unit 120A determines whether the selected coefficient is larger than a threshold.
- the threshold is, for example, 0.5.
- the composition formula discriminating unit 120A sets the selected element symbol and the new coefficient generated by moving up the decimal part of the coefficient. To the parent element list. For example, when the element symbol of 1 is Mn and the coefficient of the element symbol of 1 is 0.96, the coefficient obtained by rounding up the decimal part becomes 1, and “Mn 1 ” is added to the parent substance element list. If the coefficient of the element symbol of 1 is 1.5, the coefficient obtained by moving up the decimal part is 2.
- step S504 the composition formula determination unit 120A adds a combination of the selected one element symbol and the selected coefficient to the additive list. to add.
- step S505 the composition formula determining unit 120A determines whether all the element symbols included in the input composition formula have been selected. Here, if it is determined that all the element symbols have not been selected (NO in step S505), the process returns to step S501.
- step S506 the composition formula determining unit 120A determines a plurality of elements included in the base substance element list, that is, a plurality of “1”. By combining element symbols and new coefficients generated by rounding up the decimal part of the coefficients, an expression indicating the parent substance is derived. For example, when the parent substance element list is [Ca 1 , Mn 1 , O 3 ], “CaMnO 3 ” connecting all the elements in the parent substance element list is derived as an expression indicating the parent substance.
- step S507 the composition formula determining unit 120A determines whether the sum of the coefficients of the input composition formula is the same as the sum of the coefficients of the formula indicating the parent substance.
- step S508 when it is determined that the sum of the coefficients of the input composition formula is the same as the sum of the coefficients of the formula indicating the base material (YES in step S507), in step S508, the composition formula determination unit 120A determines that the base material And an additive list are output to the descriptor calculation unit 130.
- step S509 the composition formula determination unit 120A determines that the input composition formula does not match the sum. Give an adoption label.
- the composition formula determining unit 120A does not need to perform the determination process in step S507.
- the composition formula determination unit 120A may derive the formula indicating the parent substance in step S506, and then output the formula indicating the parent substance and the additive list to the descriptor calculation unit 130 in step S508.
- composition formula discriminating unit 120A may send the formula indicating the parent substance to the memory 220A and record the formula indicating the parent substance in the memory 220A.
- the processing described in the second embodiment is performed on a plurality of input composition formulas, formulas indicating a plurality of base materials are recorded in the memory 220A, and a base material list including the recorded formulas indicating the plurality of base materials is generated. Is also good.
- the generated parent substance list may be used as the parent substance list described in the first embodiment.
- the memory 220 stores a parent substance list.
- an expression indicating a parent substance is derived by the same discrimination processing as in the second embodiment, and it is confirmed whether the derived expression indicating the parent substance exists in the parent substance list.
- FIG. 22 is a diagram showing a configuration of a material property value predicting apparatus according to the third embodiment.
- the material property value prediction device 100B includes a processor 200B, an input unit 210, a memory 220, and an output unit 230.
- the processor 200B includes a material descriptor generation unit 101B, a characteristic value prediction unit 102, and a learning unit 103.
- the material descriptor generation unit 101B includes an input acquisition unit 110, a composition formula discrimination unit 120B, a descriptor calculation unit 130, and a descriptor integration unit 140.
- the memory 220 includes a material information storage unit 221, a parent substance list storage unit 222, and a prediction model storage unit 223.
- the same components as those in the first embodiment are denoted by the same reference numerals, and the description is omitted.
- the composition formula discriminating unit 120 ⁇ / b> B acquires a parent material list including a formula indicating a plurality of parent materials from the parent material list storage unit 222.
- the composition formula determining unit 120B determines whether the sum of the coefficients of the element symbols in the input composition formula obtained from the input obtaining unit 110 is an integer. When it is determined that the sum of the coefficients of the element symbols in the input composition formula is an integer, the composition formula determination unit 120B selects one element symbol and the coefficient of the one element symbol from the input composition formula.
- the composition formula determining unit 120B determines whether or not the coefficient is larger than the threshold. When it is determined that the coefficient is equal to or smaller than the threshold, the composition formula determining unit 120B adds one element to the additive list. When it is determined that the coefficient is larger than the threshold value, the composition formula determining unit 120B adds a combination of the element symbol of 1 and a new coefficient generated by moving up a decimal part of the coefficient to the base substance element list.
- the composition formula determination unit 120B determines a plurality of elements included in the parent substance element list, that is, a plurality of “1 element symbols and the decimal part of the coefficient”. A formula is derived that indicates the parent substance that integrates the "combination with the new coefficient generated by raising.” The composition formula determining unit 120B determines whether or not the formula indicating the derived mother substance exists in the mother substance list. When it is determined that the formula representing the parent substance is present in the parent substance list, the composition formula determining unit 120B outputs the formula representing the parent substance and the additive list.
- composition formula determination unit 120B determines that the label is not adopted in the input composition formula. Is given.
- the operation of the material characteristic value prediction device 100B in the third embodiment is the same as the operation of the material characteristic value prediction device 100 in the first embodiment shown in FIG.
- An operation different from the third embodiment and the first embodiment is a generation process in step S302 in FIG.
- the generation processing in step S302 in FIG. 9 is performed using the parent substance list.
- step S302 in FIG. 9 The generation process of step S302 in FIG. 9 according to the third embodiment will be described with reference to FIG.
- FIG. 23 is a flowchart for describing the generation processing in step S302 in FIG. 9 according to the third embodiment.
- step S601 the composition formula discriminating unit 120B acquires the parent substance list from the parent substance list storage unit 222.
- step S602 the composition formula determining unit 120B determines whether the sum of the coefficients of the element symbols included in the input composition formula is an integer. This determination is made in order to target a material that clearly shows the additive corresponding to the additive.
- step S611 the process proceeds to step S611.
- step S603 the composition formula determination unit 120B determines from the input composition formula that one element symbol and one element symbol And the coefficient of.
- step S604 the composition formula determining unit 120B determines whether the selected coefficient is larger than a threshold.
- the threshold is, for example, 0.5.
- the composition formula discriminating unit 120B generates a new coefficient generated by moving up the selected element symbol of 1 and the decimal part of the coefficient. To the parent element list.
- step S606 the composition formula determining unit 120B adds a combination of the selected one element symbol and the selected coefficient to the additive list. to add.
- step S607 the composition formula determination unit 120B determines whether all the element symbols included in the input composition formula have been selected. Here, if it is determined that all the element symbols have not been selected (NO in step S607), the process returns to step S603.
- step S608 the composition formula determining unit 120B determines a plurality of elements included in the base substance element list, that is, a plurality of “1”. By combining element symbols and new coefficients generated by rounding up the decimal part of the coefficients, an expression indicating the parent substance is derived.
- step S609 the composition formula discriminating unit 120B determines whether or not the formula indicating the derived parent material exists in the parent material list. This determination is made to deal with substances that actually exist.
- the composition formula determining unit 120B descriptors the formula indicating the parent substance and the additive list. Output to calculation section 130.
- step S609 when it is determined that the formula indicating the parent substance does not exist in the parent substance list (NO in step S609), or when it is determined that the sum of the coefficients of the element symbols included in the input composition formula is not an integer (step S609). (NO in S602), and in step S611, the composition formula discriminating unit 120B gives an unaccepted label to the input composition formula.
- thermoelectric ⁇ database (UCSB) described in Non-Patent Document 3.
- This database is a public database that summarizes the characteristics of thermoelectric materials, and the total number of materials is 1093.
- the predicted characteristic values are the power factor and the electrical resistivity.
- the number of formulas (input composition formulas) indicating the materials actually used is 456, and the number of formulas indicating the parent substance is 46.
- the data used as the material information is data in which a formula indicating the parent substance and a formula indicating the additive can be mechanically discriminated in the flowchart shown in FIG. 23, and the formula indicating the parent substance is described in Non-Patent Document 4.
- Inorganic ⁇ Crystal ⁇ Structure ⁇ Database (ICSD) and data with temperature information any of 300K, 400K, 700K and 1000K were selected.
- the material descriptor used in the experiment includes a descriptor indicating the temperature at the time of measuring the characteristics of the material.
- the material descriptor used in the experiment is a description indicating the ratio of the coefficient of the element symbol included in the formula indicating the additive to the sum of the coefficients of all the element symbols included in the input composition formula described with reference to FIG. Including children.
- the average value is set in the place where the descriptor for the j-th additive in the material descriptor i should be described. Placed. The average value has been described with reference to FIG.
- the predicted characteristic value is the average of the cross-validation results.
- the power factor learning method used a random forest, and the number of trees was fixed at 500.
- the method of learning the electrical resistivity uses a neural network.
- the number of elements in the intermediate layer is twice the number of descriptors, the number of layers is four, and all elements are connected.
- the RMSE (Root ⁇ Mean ⁇ Square ⁇ Error) of the characteristic value predicted by the method of the third embodiment was compared with the RMSE of the characteristic value predicted by the conventional method of Non-Patent Document 2.
- FIG. 24 is a diagram showing the results of the experiment in the third embodiment. As shown in FIG. 24, it can be seen that the prediction accuracy of both the power factor and the electric resistivity is improved by using the descriptor proposed in the third embodiment.
- Embodiment 4 In the present embodiment, a description will be given on the assumption that the prediction model of the first embodiment is a neural network device. Note that the prediction model described in Embodiment 2 and / or Embodiment 3 may be the neural network device described in this embodiment.
- FIG. 25 is a diagram illustrating the concept of the neural network device according to the fourth embodiment.
- a neural network device is an arithmetic device that performs an arithmetic operation in accordance with a calculation model imitating a biological neural network.
- a neural network device 2100 is configured by arranging a plurality of units 2105 (indicated by white circles) corresponding to neurons in an input layer 2101, a hidden layer 2102, and an output layer 2103.
- the hidden layer 2102 includes two hidden layers 2102a and 2102b, but may include a single hidden layer or three or more hidden layers.
- the unit is based on a plurality of calculation results and a plurality of weight values received from a plurality of units arranged in the lower layer.
- This is a calculation element that performs a calculated operation and transmits the calculation result to a unit arranged in an upper layer.
- the units 2105 arranged in the input layer 2101, the hidden layer 2102, and the output layer 2103 are also referred to as an input unit, a hidden unit, and an output unit, respectively.
- the neural network device 2100 may be realized by, for example, reconfigurable hardware, or may be realized by emulation by software.
- a specific method of learning of the neural network device 2100 is not limited. That is, learning of the neural network device 2100 may be performed according to a known learning method other than the method described below.
- FIG. 26 is a diagram showing a configuration of a material property value prediction device according to the fourth embodiment.
- the material property value prediction device 1100 according to the fourth embodiment includes a processor 1200, an input unit 1210, a memory 1220, and an output unit 230.
- the processor 1200 includes a material descriptor generation unit 1101, a characteristic value prediction unit 1102, and a learning unit 1103.
- the material descriptor generation unit 1101 includes an input acquisition unit 1110, a composition formula discrimination unit 120, a descriptor calculation unit 130, and a descriptor integration unit 140.
- Each unit included in the processor 1200 may be realized, for example, as a software function performed by a microprocessor executing a predetermined program.
- the memory 1220 includes a material information storage unit 1221, a parent substance list storage unit 222, and a prediction model storage unit 1223.
- the prediction model includes a prediction model storage unit 1223 and a characteristic value prediction unit 1102, and the prediction model is the neural network device 2100 shown in FIG.
- the material property value prediction device 1100 according to the fourth embodiment can be switched to a learning mode in which the neural network device 2100 learns, or a prediction mode in which the neural network device 2100 predicts a material property value, according to a user's instruction. .
- the operation of the material property value prediction device 1100 in the learning mode and the material property value prediction device 1100 in the prediction mode are as follows.
- FIG. 27 is a flowchart for explaining the operation in the learning mode of the material property value predicting apparatus according to the fourth embodiment.
- the material information storage unit 1221 holds first material information in advance.
- the first material information includes [(material composition formula) 1 , (material structure) 1 , (environment in which the material is generated) 1 , (material property value) 1 , ...], [(material (Composition formula) n , (structure of material) n , (environment in which the material is generated) n , (characteristic value of material) n ,.
- the first material information may include one or more known parameters of each of the plurality of elements.
- the known parameter of the element may be an atomic volume value, a covalent radius value, or a density value.
- the environment in which the material is generated may be temperature information at the time of generation of the material and / or temperature at the time of measuring characteristics of the material.
- the characteristic value of the material may be a value indicating the power factor of the material or a value indicating the electrical resistivity of the material.
- the first material information includes one or more known parameters of each of the plurality of elements.
- the descriptor calculation unit 130 refers to this information when generating a descriptor from a parent substance and when generating a descriptor from an additive.
- the known parameter of the element may be an average atomic volume value or an average covalent radius value or an average density value.
- the input unit 1210 includes, for example, a keyboard, a mouse, or a touch panel, and receives input of various information by a user.
- the input acquisition unit 1110 When the input unit 1210 receives an instruction from the user to switch the material property value prediction device 100 to the learning mode, the input acquisition unit 1110 includes the material composition formula (material composition formula) 1 , ..., contained in the second material information from the material information storage unit 1221. (Material composition formula) n is acquired (S1301).
- the prediction model storage unit 1223 includes configuration information of the neural network device 2100.
- the configuration information includes information indicating the number of layers included in the neural network device 2100 and the number of units arranged for each layer.
- the characteristic value prediction unit 1102 receives the input data X.
- the characteristic value prediction unit 1102 When the input data X is given to the input unit, the characteristic value prediction unit 1102 performs an operation using the weight value W according to the arrangement of the unit indicated by the configuration information described above.
- Characteristic value predicting section 1102 outputs output data Y from the output unit.
- the output data Y may be considered as a result of a calculation performed by the output unit.
- the learning unit 1103 causes the neural network device 2100 to learn (S1306).
- FIG. 28 is a flowchart illustrating the learning processing in step S1306 in FIG. 27 according to the fourth embodiment.
- the learning unit 1103 From the integration unit 140, (material descriptor) 1 ,..., (Material descriptor) n are acquired. (Material Descriptor) 1 is generated from (Material Composition Formula) 1 , and ..., (Material Descriptor) n is generated from (Material Composition Formula) n . (S1510)
- the learning unit 1103 refers to the first material information recorded in the material information storage unit 1221, and generates learning data by associating the material descriptor with the characteristic value of the material.
- the supervised learning for example, when the material descriptor included in the learning data is input to the neural network device 2100 and the neural network device 2100 outputs the output data, the output data and the characteristics of the material corresponding to the material descriptor are output.
- the operation of “inputting the material descriptor included in the learning data to the neural network device 2100 and outputting the output data by the neural network device 2100” includes the operation of “inputting the material descriptor included in the learning data to the characteristic value prediction unit 1102”. Input, and the characteristic value prediction unit 1102 outputs output data.
- the weight value Before performing the supervised learning, the weight value may be adjusted for each layer by unsupervised learning called layer-wise pre-training. As a result, a weight value that allows more accurate evaluation is obtained by the subsequent supervised learning.
- a loss function representing an evaluation value independent of a label, which is a characteristic value of a material is defined using input data and a weight value to the neural network device 2100, and the loss function is defined by a gradient descent method.
- the weight value may be updated along the decreasing gradient.
- the data input to the neural network device 2100 may be subjected to data shaping processing including normalization, threshold processing, noise elimination, data size unification, and the like.
- the normalization is not limited to input data, and may be performed on a label that is a characteristic value of a material.
- Input data X [experiment The first descriptor determined from the environment, the second descriptor determined from the experimental environment,..., The first descriptor determined from the expression indicating the parent substance, the second descriptor determined from the expression indicating the parent substance Descriptor,..., The coefficient of the element symbol included in the expression indicating the first additive, the first descriptor determined from the first additive, the second descriptor determined from the first additive,. .., the coefficient of the element symbol included in the formula indicating the n-th additive, the first descriptor determined from the n-th additive, the second descriptor determined from the n-th additive, ...] Is also good.
- output data [value indicating power factor of material represented by input composition formula]
- output data [value represented by input composition formula] Value indicating the electrical resistivity of the material used.
- the first descriptor determined from the experimental environment may be temperature information at the time of generation of the material, and the second descriptor determined from the experimental environment may be temperature at the time of measuring characteristics of the material.
- the coefficients of the element symbols included in the equation indicating the first additive are replaced with the coefficients of the element symbols included in the equation indicating the n-th additive.
- the ratio of the first additive to the sum in the element symbol included in the composition formula is replaced with the coefficients of the element symbols included in the equation indicating the n-th additive.
- the input data is obtained by removing the descriptors determined from the experimental environment, that is, the first descriptors determined from the experimental environment, the second descriptors determined from the experimental environment,... From the input data. You may.
- the input data may be obtained by removing the coefficients of the element symbols included in the equation indicating the first additive,..., The coefficients of the element symbols included in the equation indicating the n-th additive from the input data.
- the input data is based on the input data, and the input data is based on the input data, the coefficient of the element symbol included in the equation indicating the first additive, the coefficient of the element symbol included in the equation indicating the n-th additive, an experiment.
- Descriptors determined from the environment that is, the first descriptor determined from the experimental environment, the second descriptor determined from the experimental environment, ... may be excluded.
- FIG. 29 is a flowchart for explaining the operation in the prediction mode of the material property value prediction device in the fourth embodiment.
- the input unit 1210 After receiving from the user an instruction to switch the material property value prediction device 1100 to the prediction mode, the input unit 1210 receives from the user the second information including information on the composition formula of the material whose property value is to be predicted.
- the input of the material information is received and transmitted to the input acquisition unit 1110.
- the input unit 1210 generates information indicating the structure of the material corresponding to the composition formula of the material whose property value of the material is desired to be predicted and / or a material corresponding to the composition formula of the material whose property value of the material is desired to be predicted.
- the second material information may include the information indicating the experimental environment to be input by the user.
- the input acquisition unit 110 receives the composition formula of the material from the input unit 1210.
- the composition formula of the material may be called an input composition formula.
- the neural network device 2100 When the neural network device 2100 receives the material descriptor generated by the descriptor integration unit 140 as an input to the input unit, the neural network device 2100 is indicated by the configuration information stored in the prediction model storage unit 1223. According to the arrangement of the units, an operation using the adjusted weight value Wt is performed, and the characteristic value of the material is output from the output unit. The operation described above is described as follows. “The property value prediction unit 1102 receives the material descriptor generated by the descriptor integration unit 140. The property value prediction unit 1102 receives the received material descriptor as an input, and stores the received material descriptor in the prediction model storage unit 1223. According to the arrangement of units indicated by the stored configuration information, an operation using the adjusted weight value Wt is performed, and the characteristic value of the material is output "(S2306).
- all or a part of a unit, a device, a member, or a part, or all or a part of a functional block in a block diagram illustrated in the drawings is a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (Large Scale Integration). ) May be performed by one or more electronic circuits.
- the LSI or IC may be integrated on a single chip, or may be configured by combining a plurality of chips.
- functional blocks other than the storage element may be integrated on one chip.
- LSI or IC is used, but the term is changed depending on the degree of integration, and may be referred to as a system LSI, VLSI (very large scale integration), or ULSI (ultra large scale integration).
- a Field Programmable Gate Array (FPGA) which is programmed after the manufacture of the LSI, or a Reconfigurable Logic Device that can reconfigure the bonding relationship inside the LSI or set up a circuit section inside the LSI can also be used for the same purpose.
- FPGA Field Programmable Gate Array
- the software is recorded on one or more non-transitory recording media such as a ROM, an optical disk, and a hard disk drive, and when the software is executed by a processing device (Processor), the software is specified by the software.
- the executed function is executed by the processing device (Processor) and the peripheral device.
- the system or apparatus may include one or more non-transitory storage media on which software is recorded, a processor, and required hardware devices, for example, an interface.
- the present disclosure does not limit the specific implementation of the prediction model.
- the prediction model may be realized by, for example, reconfigurable hardware, or may be realized by emulation by software.
- the material descriptor generation method, the material descriptor generation device, and the material descriptor generation program according to the present disclosure can improve the performance of predicting the characteristic value of a material
- a prediction model for predicting a predetermined characteristic value of a material can be used. It is useful as a material descriptor generation method, a material descriptor generation device, and a material descriptor generation program for generating an input descriptor.
- the prediction model construction method, the prediction model construction device, and the prediction model construction program according to the present disclosure can improve the performance of predicting the characteristic value of a material, a prediction model that predicts a predetermined characteristic value of a material is constructed. It is useful as a prediction model construction method, a prediction model construction device, and a prediction model construction program.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Business, Economics & Management (AREA)
- Mathematical Physics (AREA)
- Tourism & Hospitality (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Economics (AREA)
- Biophysics (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Computational Linguistics (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- General Factory Administration (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
材料の組成式を取得するステップ(S301)と、前記組成式から、母物質を示す式と、前記母物質に添加される1または複数の添加物を示す1または複数の式を含む添加物リストとを生成するステップ(S302)と、前記母物質を示す式及び前記添加物リストに対応する、前記材料の所定の特性値の予測に必要な複数の記述子を算出するステップ(S304)と、前記複数の記述子を統合した材料記述子を出力するステップ(S305)とを含み、前記材料記述子は、前記材料の前記所定の特性値を予測する予測モデルに入力される、材料記述子生成方法。
Description
本開示は、材料の所定の特性値を予測する予測モデルに入力される記述子を生成する材料記述子生成方法、材料記述子生成装置及び材料記述子生成プログラムに関するものである。また、本開示は、材料の所定の特性値を予測する予測モデルを構築する予測モデル構築方法、予測モデル構築装置及び予測モデル構築プログラムに関するものである。
従来、材料特性は、第一原理計算などのシミュレーションシステムによって予測することが可能である。このシミュレーションシステムでは、物理計算を詳細に行うことで材料の特性を予測するが、計算に数時間~数カ月を要する場合がある。これに対し、近年、材料の基本的な情報を入力とし、特性値を出力として機械学習又は論理モデル式の構築を行うことで、材料の特性値の予測を簡易かつ高速に行う方法が注目されている。
例えば、非特許文献1では、材料を構成する元素の既知パラメータから算出される記述子を入力に用いて材料の特性値の一つである形成エネルギーを高精度に導出する技術について開示されている。また、例えば、非特許文献2では、材料を構成する元素の既知パラメータから算出される記述子の算出方法を工夫することで、添加物を含む材料の特性値の予測を実現する技術について開示されている。
A.Seko、H.Hayashi、K.Nakayama、A.Takahashi及びI.Tanaka、"Representation of compounds for machine-learning prediction of physical properties"、Physical Review B95、144110、2017年
A.Furmanchuk、J.E.Saal、J.W.Doak、G.B.Olson、A.Choudhary及びA.Agrawal、"Prediction of Seebeck Coefficient for Compounds without Restriction to Fixed Stoichiometry:A Machine Learning Approach"、Journal of Computational Chemistry 39(4)、2018年2月5日、p.191-202
M.W.Gaultois、T.D.Sparks、C.K.H.Borg、R.Seshadri、W.D.Bonificio及びD.R.Clarke、"Data-Driven Review of Thermoelectric Materials:Performance and Resource Considerations"、Chemistry of Materials、2013年、25、2911-2920
A.Belsky、M.Hellenbrandt、V.L.Karen及びP.Luksch、"New developments in the Inorganic Crystal Structure Database(ICSD):accessibility in support of materials research and design"、2002年、Acta Cryst. B58、364-369
しかしながら、非特許文献2の技術について、更なる改善が必要とされていた。
本開示は、材料の特性値の予測性能を向上させる技術を提供するものである。
本開示の一態様に係る材料記述子生成方法は、材料の組成式を取得するステップと、前記組成式から、母物質を示す式と、前記母物質に添加される1または複数の添加物を示す1または複数の式を含む添加物リストとを生成するステップと、前記母物質を示す式及び前記添加物リストに対応する、前記材料の所定の特性値の予測に必要な複数の記述子を算出するステップと、前記複数の記述子を統合した材料記述子を出力するステップとを含み、前記材料記述子は、前記材料の前記所定の特性値を予測する予測モデルに入力される。
この包括的又は具体的な態様は、装置、システム、集積回路、コンピュータプログラム又はコンピュータ読み取り可能な記録媒体で実現されてもよく、装置、システム、方法、集積回路、コンピュータプログラム及びコンピュータ読み取り可能な記録媒体の任意な組み合わせで実現されてもよい。コンピュータ読み取り可能な記録媒体は、例えばCD-ROM(Compact Disc-Read Only Memory)等の不揮発性の記録媒体を含む。
本開示によれば、添加物の種類又は量の変化を明確に表現した記述子を予測モデルに入力することで、材料の特性値の予測性能を向上させることができる。
本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
(本開示の基礎となった知見)
近年、材料の基本的な情報を入力とし、特性値を出力として機械学習又は論理モデル式の構築を行うことで、材料の特性値予測を簡易かつ高速に行う方法が注目されている。機械学習による材料の特性予測の一般的な手順について、図1を用いて説明する。
近年、材料の基本的な情報を入力とし、特性値を出力として機械学習又は論理モデル式の構築を行うことで、材料の特性値予測を簡易かつ高速に行う方法が注目されている。機械学習による材料の特性予測の一般的な手順について、図1を用いて説明する。
図1は、材料の特性予測を行う手順を説明するための図である。まず、材料情報1から材料記述子2が導出される。材料情報1は、例えば、材料の組成式を示す組成式情報、材料の構造を示す構造情報、材料が生成される環境を示す実験環境情報及び各元素の有する既知のパラメータなどを含む。また、材料記述子2は、材料情報1が含む情報を数値で示したものであり、画像で言うところの画素値にあたる。材料記述子2は、例えば、原子量又はイオン半径などの各元素が持つ既知のパラメータを、組成式情報に基づいて組み合わせるなどして導出される。
例えば、非特許文献1では、各元素固有の既知のパラメータの重み付き平均、最大値又は最小値などが導出され、それらの値が記述子として利用されている。ここで、各元素固有の既知のパラメータとは、原子容積、共有結合半径又は密度など、物理計算をせずとも取得可能な、元素ごとに持つ既知の数値群を示す。また、パラメータの重み付き平均は、材料を構成する原子の数に基づいて算出される。例えば、「CaMnO3」の原子半径の重み付き平均は、Caの原子半径である197とMnの原子半径である127とOの原子半径である60とに「Ca:Mn:O=1:1:3」の重みを付けて求める。つまり、「CaMnO3」の原子半径の重み付き平均は(197+127+60*3)/5=100.8である。材料記述子2が材料特性予測モデル3に入力される。材料特性予測モデル3は、材料特性予測を行い、予測特性値4を出力する。
一般に、材料特性予測では、不純物を含まない物質(以下、母物質と呼ぶ)の特性値が予測される。しかしながら、半導体材料では、母物質に添加物が添加されることで、材料の特性値が大幅に変化することがよくある。
発明者は、添加物の種類又は量の変化が小さくとも、それを明確に表現可能な記述子の生成方法を考案することが必要であることに気づいた。以下にその考察過程を述べる。
図2は、母物質CaMnO3への添加物の元素及び添加物の元素の添加量の違いによる熱電特性(パワーファクター)の変化の一例を示す図である。なお、図2では、1000Kの温度条件の下で各材料のパワーファクター(Power Factor)が測定されている。図2によると、母物質CaMnO3に添加物として何も加えない場合はパワーファクターの値が0.43と小さい値であるのに対し、母物質に添加物としてRu又はYbを加えることで、パワーファクターの値が向上していることが分かる。また、添加物としてYb0.05を加える場合はRu0.04を加える場合と比べ、パワーファクターの値が約1.7倍高くなっていることが分かる。さらに、同じYbであっても、Yb0.1を加える場合は、Yb0.05を加える場合に比べ、パワーファクターの値が3分の2程度まで下がることも分かる。このように、材料の特性値は、添加物の元素又は添加物の元素の添加量がわずかに異なれば、大きく変化することがある。そのため、添加物の元素又は添加物の元素の添加量が変化した際に、添加物の元素又は添加物の元素の添加量の差を明確に表すことのできる記述子の生成が必要となる。
非特許文献2の技術を用いて導出された記述子は、母物質及び添加物に関係無く元素情報を平均化してしまうため、添加物の元素の種類又は添加元素の添加量に小さな変化があってもその違いを明確に表現できない。添加物は、元素の種類又は添加元素の添加量が少し異なれば、材料の特性値に大きな影響を与えることがある。そのため、添加物の種類又は添加元素の添加量の変化を明確に表現したデータを用いて、予測モデル、例えば、ニューラルネットワーク装置を学習させることができず、ニューラルネットワーク装置による材料の特性値の予測性能が低下する。そのため、添加物の元素の種類又は添加元素の添加量の変化が小さくとも、それを明確に表現可能な記述子の生成方法について、更なる改善が必要である。以下に非特許文献2について考察した内容の詳細を述べる。まず、非特許文献2において、添加物の情報を含んだ組成式から記述子を導出する方法について、図3及び図4を用いて説明する。非特許文献2では、入力組成式から同比率組成式を導出し、入力組成式と同比率組成式との両方について、各元素の持つ情報の重み付きの平均又は標準偏差を計算し、それらの値を記述子として利用している。
図3は、非特許文献2において算出される記述子の一例を示す図である。図3では、入力組成式から算出された記述子11と同比率組成式から算出された記述子12とのそれぞれが、繋げられて1つの数列に変換されている。ここで、同比率組成式とは、例えば「CaMn0.96Ru0.04O3」という組成式があった場合、母物質及び添加物の分類に関係なく、すべての元素の係数を1にした「CaMnRuO」という組成式のことを指す。
図4は、非特許文献2の方法に従って算出された記述子の具体例を示す図である。図2で示した通り、半導体材料においては、母物質の他に添加元素及び添加量が特性に影響を及ぼす。同比率組成式から生成された従来の記述子は、添加元素による変化を表現することができる。図4の例においても、添加元素によって各記述子が変化しており、変化の大きい記述子の場合、数割程度変化していることが分かる。しかしながら、入力組成式から生成された従来の記述子は、添加量の変化を明確に表現することが困難である。図4の例においても、添加元素又は添加量が変化しても各記述子の変化は小さく、変化の大きい記述子の場合でも、全体量の数パーセント程度しか変化しておらず、入力組成式から生成された従来の記述子は、特性値に影響を与える添加元素の添加量の細かな変化が明確には表現できていない。
本開示の一態様に係る材料記述子生成方法は、材料の組成式を取得するステップと、前記組成式から、母物質を示す式と、前記母物質に添加される1または複数の添加物を示す1または複数の式を含む添加物リストとを生成するステップと、前記母物質を示す式及び前記添加物リストに対応する、前記材料の所定の特性値の予測に必要な複数の記述子を算出するステップと、前記複数の記述子を統合した材料記述子を出力するステップとを含み、前記材料記述子は、前記材料の前記所定の特性値を予測する予測モデルに入力される。
この構成によれば、材料の組成式から、母物質を示す式と、母物質に添加される1または複数の添加物を示す1または複数の式を含む添加物リストとを生成し、母物質を示す式及び添加物リストに対応する、材料の所定の特性値の予測に必要な複数の記述子が算出されるので、1または複数の添加物の種類又は量が微細に変化する材料についても、1または複数の添加物の種類又は量の変化を明確に表現した複数の記述子を生成することができる。また、添加物の種類又は量の変化を明確に表現した複数の記述子を統合した材料記述子を予測モデルに入力することで、材料の特性値の予測性能を向上させることができる。
また、上記の材料記述子生成方法において、前記母物質を示す式と前記添加物リストとを生成するステップは、複数の母物質を示す複数の式を含む母物質リストを取得するステップと、前記複数の母物質を示す複数の式のそれぞれと前記組成式との組成差分値を算出するステップと、算出された複数の組成差分値のうちの最小の組成差分値である最小組成差分値と、前記最小組成差分値を算出する際に用いられた第1母物質を示す第1式とを取得するステップと、前記複数の母物質を示す式は前記第1母物質を示す第1式を含み、前記最小組成差分値が閾値以下であるか否かを判断するステップと、前記最小組成差分値が前記閾値より大きいと判断された場合、前記組成式に不採用ラベルを付与するステップと、前記最小組成差分値が前記閾値以下であると判断された場合、前記第1式と前記組成式との差分の式を示す差分組成式を取得するステップと、前記差分組成式に基づいて、第2式を生成するステップとを含み、前記1または複数の添加物を示す1または複数の式は前記第2式を含んでもよい。
この構成によれば、母物質リストに含まれる複数の母物質を示す複数の式のそれぞれと組成式との組成差分値が算出され、これにより複数の組成差分値が算出される。そして算出された複数の差分組成値のうちの最小の組成差分値である最小組成差分値が閾値以下であるか否かが判断される。このとき、最小組成差分値が閾値より大きい場合、母物質を示す式と組成式との差分である添加物を示す式に含まれる元素の量が、母物質を示す式に含まれる元素の量よりも多いため、母物質を示す式と添加物を示す式とが適切に判別されておらず、組成式が不適切であったと判断することが可能である。したがって、最小組成差分値が閾値より大きいと判断された場合、組成式に不採用ラベルが付与されるので、不適切な組成式が採用されるのを防ぐことができる。また、最小組成差分値が閾値以下である場合、母物質を示す式と組成式との差分組成を示す差分組成式から添加物を示す式を特定することができる。したがって、最小組成差分値が閾値以下であると判断された場合、母物質を示す式と組成式との差分組成を示す差分組成式に基づいて第2式が生成され、最小組成差分値を算出する際に用いられた母物質を示す第1式と、生成された添加物リストとが出力され、そして、前記1または複数の添加物を示す1または複数の式は前記第2式を含むので、母物質を示す第1式と添加物リストとを適切に判別することができる。
また、上記の材料記述子生成方法において、前記母物質を示す式と前記添加物リストとを生成するステップは、前記組成式から1の元素記号と前記1の元素記号の係数とを選択するステップと、前記係数が閾値より大きいか否かを判断するステップと、前記係数が前記閾値以下であると判断した場合、前記1の元素記号を前記添加物リストへ追加するステップと、前記係数が前記閾値より大きいと判断した場合、前記1の元素記号と前記係数の小数部分を繰り上げて生成した新係数との組み合わせた式を母物質元素リストへ追加するステップと、前記組成式に含まれる全ての元素記号関して前記添加物リストへ追加または前記母物質元素リストへ追加を行い、これにより、前記母物質元素リストは前記組み合わせた式を複数含み、前記複数の組み合わせた式を統合した母物質を示す式を導出するステップと、前記母物質を示す式と前記添加物リストとを出力するステップとを含んでもよい。
この構成によれば、組成式を示す式から1の元素記号と当該1の元素記号の係数とが選択され、選択された係数が閾値より大きいか否かが判断される。係数が閾値以下である場合、選択された1の元素記号は添加物リストへ追加されるので、添加物リストを生成することができる。係数が閾値より大きい場合、選択された1の元素記号は母物質を示す式に含まれると判断することができる。係数が閾値より大きいと判断された場合、係数の小数部分を繰り上げて生成した新係数との組み合わせた式を母物質元素リストへ追加する。組成式に含まれる全ての元素記号関して添加物リストへ追加または母物質元素リストへ追加を行い、これにより、母物質元素リストは組み合わせた式を複数の含み、母物質元素リストに含まれる複数の組み合わせた式を統合した母物質を示す式が導出されるので、母物質を示す式を適切に特定することができる。
また、上記の材料記述子生成方法において、前記母物質を示す式と前記添加物リストとを判別するステップは、複数の母物質を示す式を含む母物質リストを取得するステップと、前記組成式における複数の元素記号の複数の係数の和が整数であるか否かを判断するステップと、前記和が整数であると判断した場合、前記組成式から1の元素記号と前記1の元素記号の係数とを選択するステップと、前記係数が閾値より大きいか否かを判断するステップと、前記係数が前記閾値以下であると判断した場合、前記1の元素を前記添加物リストへ追加するステップと、前記係数が前記閾値より大きいと判断された場合、前記1の元素記号と前記係数の小数部分を繰り上げて生成した新係数との組み合わせた式を母物質元素リストへ追加するステップと、前記組成式に含まれる全ての元素記号関して前記添加物リストへ追加または母物質元素リストへ追加を行い、これにより、前記母物質元素リストは前記組み合わせた式を複数含み、前記母物質元素リストに含まれる前記複数の組み合わせた式を統合した母物質を示す式を導出するステップと、導出した前記母物質を示す式が前記母物質リストに存在するか否かを判断するステップと、前記母物質を示す式が前記母物質リストに存在すると判断された場合、前記母物質を示す式と前記添加物リストとを出力するステップと、前記和が整数ではないと判断した場合、又は前記母物質を示す式が前記母物質リストに存在しないと判断した場合、前記組成式に不採用ラベルを付与するステップ含んでもよい。
この構成によれば、組成式における複数の元素記号の複数の係数の和が整数であれば、組成式から1の元素記号と当該1の元素記号の係数とが選択され、選択された係数が閾値より大きいか否かが判断される。係数が閾値以下である場合、選択された1の元素記号は添加物リストへ追加されるので、添加物リストを生成することができる。係数が閾値より大きい場合、選択された1の元素記号は母物質を構成する元素であると判断することができる。係数が閾値より大きいと判断された場合、係数の小数部分を繰り上げて生成した新係数との組み合わせた式を母物質元素リストへ追加する。組成式に含まれる全ての元素記号に関して添加物リストへ追加または母物質元素リストへ追加を行い、これにより、母物質元素リストは前記組み合わせた式を複数含み、母物質元素リストに含まれる複数の元素を統合した母物質が導出されるので、母物質示す式を適切に特定することができる。さらに、導出された母物質を示す式が、母物質リストに存在するか否かが判断されるので、母物質として実際に存在する物質を示す式を出力することができ、母物質を示す式と添加物リストとを判別する精度を向上させることができる。
また、上記の材料記述子生成方法において、前記材料が生成される環境を示す環境情報を取得するステップをさらに含み、前記複数の記述子を算出するステップは、前記環境情報に対応する記述子を算出するステップと、を含んでもよい。
この構成によれば、材料が生成される環境を示す環境情報が取得され、環境情報に対応する記述子とが算出されるので、材料が生成される環境を考慮して、材料の所定の特性値を予測することができる。
また、上記の材料記述子生成方法において、前記材料の構造を示す構造情報を取得するステップをさらに含み、前記複数の記述子を算出するステップは、前記構造情報に対応する記述子を算出するステップと、を含んでもよい。
この構成によれば、材料の構造を示す構造情報が取得され、構造情報に対応する記述子が算出されるので、材料の構造を考慮して、材料の所定の特性値を予測することができる。
また、上記の材料記述子生成方法において、前記複数の記述子を算出するステップは、前記1または複数の添加物を示す1または複数の式に含まれる1つの添加物を示す式の係数を記述子と生成してもよい。
この構成によれば、1または複数の添加物を示す1または複数の式に含まれる1つの添加物を示す式の係数を考慮して、材料の所定の特性値を予測することができる。
また、上記の材料記述子生成方法において、前記複数の記述子を算出するステップは、前記添加物リストに含まれる前記1または複数の添加物を示す1または複数の式の1または複数の係数のそれぞれを、前記組成式に含まれる全ての係数の和で割った数値を記述子として生成してもよい。
この構成によれば、添加物リストに含まれる1または複数の添加物を示す1または複数の式の1または複数の係数のそれぞれを、組成式に含まれる全ての係数の和で割った数値を考慮して、材料の所定の特性値を予測することができる。
また、上記の材料記述子生成方法において、前記複数の記述子を算出するステップは、第1係数を増加させることにより、第2係数を減少させた場合、前記減少させた量を示す係数を記述子として生成し、前記1または複数の添加物を示す前記1または複数の式は前記第1係数を有する第1の元素記号と、前記第2係数を有する第2の元素記号を含んでもよい。
この構成によれば、1または複数の添加物を示す1または複数の式は第1係数を有する第1の元素記号と、第2係数を有する第2の元素記号を含み、第1係数を増加させることにより、第2係数を減少させた場合、減少させた量を示す係数をさらに考慮して、材料の所定の特性値を予測することができる。
本開示の他の態様に係る材料記述子生成装置は、材料の組成式を取得する取得部と、前記組成式から、母物質を示す式と、前記母物質に添加される1または複数の添加物を示す1または複数の式を含む添加物リストとを判別する判別部と、前記母物質を示す式及び前記添加物リストに対応する、前記材料の所定の特性値の予測に必要な複数の記述子を算出する算出部と、前記複数の記述子を統合した材料記述子を出力する出力部とを含み、前記材料記述子は、前記材料の前記所定の特性値を予測する予測モデルに入力される。
この構成によれば、材料の組成式から、母物質を示す式と、母物質に添加される1または複数の添加物を示す1または複数の式を含む添加物リストとを生成し、母物質を示す式及び添加物リストに対応する、材料の所定の特性値の予測に必要な複数の記述子が算出されるので、1または複数の添加物の種類又は量が微細に変化する材料についても、1または複数の添加物の種類又は量の変化を明確に表現した複数の記述子を生成することができる。また、添加物の種類又は量の変化を明確に表現した複数の記述子を統合した材料記述子を予測モデルに入力することで、材料の特性値の予測性能を向上させることができる。
本開示の他の態様に係る材料記述子生成プログラムは、コンピュータに実行させる材料記述子生成プログラムであって、前記材料記述子生成プログラムは、材料の組成式を取得するステップと、前記組成式から、母物質を示す式と、前記母物質に添加される1または複数の添加物を示す1または複数の式を含む添加物リストとを生成するステップと、前記母物質を示す式及び前記添加物リストに対応する、前記材料の所定の特性値の予測に必要な複数の記述子を算出するステップと、前記複数の記述子を統合した材料記述子を出力するステップとを含み、前記材料記述子は、前記材料の前記所定の特性値を予測する予測モデルに入力される。
この構成によれば、材料の組成式から、母物質を示す式と、母物質に添加される1または複数の添加物を示す1または複数の式を含む添加物リストとを生成し、母物質を示す式及び添加物リストに対応する、材料の所定の特性値の予測に必要な複数の記述子が算出されるので、1または複数の添加物の種類又は量が微細に変化する材料についても、1または複数の添加物の種類又は量の変化を明確に表現した複数の記述子を生成することができる。また、添加物の種類又は量の変化を明確に表現した複数の記述子を統合した材料記述子を予測モデルに入力することで、材料の特性値の予測性能を向上させることができる。
本開示の他の態様に係る予測モデル構築方法は、材料の所定の特性値を予測する予測モデルを構築する予測モデル構築装置における予測モデル構築方法であって、前記材料の所定の特徴を示す記述子を生成するステップと、前記記述子を入力値として用いて前記予測モデルを学習させるステップと、を含む。
この構成によれば、添加物の種類又は量が微細に変化する材料についても、添加物の種類又は量の変化を明確に表現した記述子を生成し、生成した記述子を入力値として用いて予測モデルを学習させることで、予測モデルを用いた材料の特性値の予測性能を向上させることができる。
また、上記の予測モデル構築方法において、前記記述子を生成するステップは、前記材料の組成式を取得するステップと、前記組成式から、母物質を示す式と、前記母物質に添加される少なくとも1の添加物を示す式を含む添加物リストとを生成するステップと、前記母物質を示す式及び前記添加物リストに対応する、前記所定の特性値の予測に必要な複数の記述子を算出するステップと、前記複数の記述子を統合した材料記述子を出力するステップと、を含んでもよい。
この構成によれば、材料の組成式が、母物質を示す式と、母物質に添加される少なくとも1の添加物を示す式を含む添加物リストとを生成し、母物質を示す式及び添加物リストに対応する、所定の特性値の予測に必要な複数の記述子が算出されるので、添加物の種類又は量が微細に変化する材料についても、添加物の種類又は量の変化を明確に表現した記述子を生成することができる。
本開示の他の態様に係る予測モデル構築装置は、所定の材料の所定の特性値を予測する予測モデルを構築する予測モデル構築装置であって、前記所定の材料の特徴を示す記述子を生成する生成部と、前記記述子を入力値として用いて前記予測モデルを学習させる学習部と、を備える。
この構成によれば、添加物の種類又は量が微細に変化する材料についても、添加物の種類又は量の変化を明確に表現した記述子を生成し、生成した記述子を入力値として用いて予測モデルを学習させることで、予測モデルを用いた材料の特性値の予測性能を向上させることができる。
本開示の他の態様に係る予測モデル構築プログラムは、所定の材料の所定の特性値を予測する予測モデルを構築する予測モデル構築プログラムであって、前記所定の材料の特徴を示す記述子を生成するステップと、前記記述子を入力値として用いて前記予測モデルを学習させるステップと、をコンピュータに実行させる。
この構成によれば、添加物の種類又は量が微細に変化する材料についても、添加物の種類又は量の変化を明確に表現した記述子を生成し、生成した記述子を入力値として用いて予測モデルを学習させることで、予測モデルを用いた材料の特性値の予測性能を向上させることができる。
以下添付図面を参照しながら、本開示の実施の形態について説明する。なお、以下の実施の形態は、本開示を具体化した一例であって、本開示の技術的範囲を限定するものではない。
(実施の形態1)
まず、本開示で提案する記述子の概略について説明する。
まず、本開示で提案する記述子の概略について説明する。
本開示では、添加物を含む材料の組成式から母物質を示す式と添加物を示す式とを判別し、判別した母物質を示す式及び添加物を示す式のそれぞれから記述子を算出する方法を提案する。本開示で提案する記述子の表現の概略を、図5及び図6を用いて説明する。なお、「記述子を算出する」は「記述子を決定する」と言い換えてもよい。
図5は、本開示における材料記述子の一例を示す図である。材料記述子は複数の記述子、すなわち、記述子21、記述子22~記述子2nを含む。図5に示すように、母物質を示す式から算出された記述子21と、第1添加物を示す式~第n添加物を示す式から算出または決定された記述子22~記述子2nとのそれぞれが繋げられて1つの数列に変換されている。
図30は本開示における材料記述子の一例を示す図である。図30において、母物質を示す式から算出された記述子21は同一の母物質を示す式から算出された1または複数の記述子21-1、21-2、・・・であってもよい。図30に示す様に、第1添加物を示す式~第n添加物を示す式から算出された記述子22~記述子2nのそれぞれは、同一の添加物を示す式から算出された1または複数の記述子であってもよい。
なお、一般的に、母物質は、化学ポテンシャルシフトがゼロの物質を表すが、本実施の形態1では、簡易的に、入力組成式に含まれる元素記号の係数が全て整数となる物質を示す式を母物質を示す式として定義する。
一般的に組成式に含まれる元素記号の係数が1の場合は、「1」を記載しないが、本願明細書、請求の範囲、図面、要約書においては、元素記号の係数がない場合は、その係数を「1」と考えてよい。例えば、「CaMnO3」は「Ca1Mn1O3」と考えてよい。
図6は、本開示で提案する記述子の具体例を示す図である。
母物質CaMnO3を示す式から算出された1または複数の記述子の例は、「11166.3」、「102.6」、及び/または、「1804.9」である。「11166.3」は母物質CaMnO3を示す式から算出された平均原子容積、「102.6」は母物質CaMnO3を示す式から算出された平均共有結合半径、「1804.9」は母物質CaMnO3を示す式から算出された平均密度である。
添加物Ru0.04を示す式から算出または決定された1または複数の記述子の例は、「0.04」、「13.6」、「146.0」、及び/または「12370.0」である。「0.04」は添加物Ru0.04の係数、「13.6」は添加物Ru0.04を示す式から算出または決定された原子容積、「146.0」は添加物Ru0.04を示す式から算出または決定された共有結合半径、「12370.0」は添加物Ru0.04を示す式から算出または決定された密度である。
図2に示した通り、半導体材料においては、母物質の他に添加物の元素と添加物の元素の添加量とが特性に影響を与える。本開示の実施の形態1において、材料記述子は、添加物を示す式から導出された添加物の元素の情報を示す記述子、及び、当該添加物を示す式から導出された添加物の元素の添加量の情報を示す記述子を含む。
添加物の元素の違いは、材料記述子が元素固有の既知パラメータを利用した記述子を含むことで明確に表現される。図6に示す様に、元素固有の既知パラメータは、例えば、原子容積、共有結合半径、または、密度である。また、添加物の添加量の違いは、材料記述子が添加物係数を示す記述子を含むことで明確に表現される。図6に示す様に、添加物を示す式がRu0.04である場合、添加物係数は、0.04である。
図7は、本実施の形態1における材料特性値予測装置の構成を示す図である。本実施の形態1における材料特性値予測装置100は、例えば、パーソナルコンピュータであり、プロセッサ200と、入力部210と、メモリ220と、出力部230とを備える。プロセッサ200は、材料記述子生成部101と、特性値予測部102と、学習部103とを備える。また、材料記述子生成部101は、入力取得部110と、組成式判別部120と、記述子算出部130と、記述子統合部140とを備える。メモリ220は、材料情報記憶部221と、母物質リスト記憶部222と、予測モデル記憶部223とを備える。材料特性値予測装置100は、材料の所定の特性値を予測する予測モデルを構築する。
材料記述子生成部101は、材料の所定の特性値を予測する予測モデルに入力される材料記述子を生成する。
入力部210は、例えば、キーボード、マウス又はタッチパネルで構成され、種々の情報のユーザによる入力を受け付ける。入力部210は、所定の特性値の予測を所望する組成式のユーザによる入力を受け付ける。入力部210が受け付けた組成式を入力組成式と呼んでもよい。ユーザが入力した組成式を入力組成式と呼んでもよい。
材料情報記憶部221は、材料に関する材料情報を記憶する。材料情報は、少なくとも1の材料の組成式を示す組成式情報、少なくとも1の材料の構造を示す構造情報、及び、少なくとも1の材料の実験環境情報を含む。少なくとも1の材料の実験環境情報は、当該少なくとも1の材料が生成される環境、当該少なくとも1の材料の特性測定時の温度情報、及び/又は、当該少なくとも1の材料の具体的な生成方法を含む。学習時においては、複数の組成式情報、複数の構造情報及び複数の実験環境情報を含む材料情報が用いられ、予測時においては、ユーザによって入力された材料の組成式を示す組成式情報に対応する構造情報及び実験環境情報を含む材料情報が用いられる。材料情報は、複数の元素それぞれの既知のパラメータを1または複数含んでもよい。元素の既知のパラメータは原子容積値、または、共有結合半径値、または、密度値であってもよい。材料情報は、複数の元素に対する既知のパラメータを1または複数含んでもよい。複数の元素に対する既知のパラメータは平均原子容積値、または、平均共有結合半径値、または、平均密度値であってもよい。
母物質リスト記憶部222は、複数の母物質を示す式を記述した母物質リストを予め記憶する。なお、本実施の形態1では、母物質リストは、母物質リスト記憶部222に記憶されているが、本開示は特にこれに限定されず、不図示の通信部によって外部装置からネットワークを介して受信されてもよい。母物質リストは、所定のデータベースに記載された式を含んでもよい。所定のデータベースは、例えば、特許文献4に記載のInorganic Crystal Structure Database(ICSD)である。母物質リストは、実施の形態2に示す方法を用いて予め生成されてもよい。
予測モデル記憶部223は、材料の所定の特性値を予測する予測モデルを記憶する。予測モデルは、例えばニューラルネットワークであり、材料記述子を入力情報とし、所定の特性値を出力情報とする。
入力取得部110は、入力部210から入力組成式を受け取る。
組成式判別部120は、入力取得部110から受け取った入力組成式から、母物質を示す式と、母物質に添加される少なくとも1の添加物を示す式を判別し、少なくとも1つの添加物を示す式を含む添加物リストを生成する。
組成式判別部120は、母物質リスト記憶部222から複数の母物質を示す式を示す母物質リストを取得する。組成式判別部120は、母物質リストにおける複数の母物質を示す式のそれぞれと入力組成式との組成差分値を算出する。組成差分値の詳細説明は後述する。組成式判別部120は、算出された複数の組成差分値のうちの最小組成差分値と、最小組成差分値を算出する際に用いられた母物質を示す式とを取得する。組成式判別部120は、最小組成差分値が閾値以下であるか否かを判別する。最小組成差分値が閾値より大きいと判別された場合、組成式判別部120は、組成式に不採用ラベルを付与し、その旨を記述子算出部130に通知する。最小組成差分値が閾値以下であると判別された場合、組成式判別部120は、母物質を示す式と組成式との差分組成式を取得する。組成式判別部120は、差分組成式から1または複数の添加物の式を含む添加物リストを生成する。組成式判別部120は、母物質を示す式と添加物リストを含む情報を出力する。
記述子算出部130は、組成式判別部120から入力組成式に不採用ラベルが付与されことを通知された場合、母物質を示す式及び添加物リストが生成されなかったと判断する。
記述子算出部130は、母物質を示す式及び添加物リストが生成された場合、母物質を示す式及び添加物リストに対応する、所定の特性値の予測に必要な複数の記述子を算出する。
記述子統合部140は、記述子算出部130が算出した複数の記述子を一つの数列に統合した材料記述子を生成する。
特性値予測部102は、予測モデル記憶部223に記憶されている予測モデルを用いて、材料記述子から所定の特性値を予測する。特性値予測部102は、予測モデル記憶部223から読み出した予測モデルに材料記述子を入力し、予測モデルから出力された所定の特性値を得る。所定の特性値はパワーファクターを示す値または当該材料の電気抵抗率を示す値であってもよい。
学習部103は、材料記述子生成部101によって生成された材料記述子を入力値として用いて予測モデルを学習させる。学習部103は、記述子統合部140から出力された材料記述子を用いて、予測モデル記憶部223に記憶されている予測モデルに対して機械学習を行う。機械学習としては、例えば、入力情報に対してラベル(出力情報)が付与された教師データを用いて入力と出力との関係を学習させる教師あり学習、ラベルのない入力からデータの構造を構築する教師なし学習、ラベルありとラベルなしのどちらも扱う半教師あり学習、状態の観測結果から選択した行動に対するフィードバック(報酬)を得ることにより、又は最も多く報酬を得ることができる連続した行動を学習させる強化学習などが挙げられる。また、機械学習の具体的な手法としては、ニューラルネットワーク(多層のニューラルネットワークを用いた深層学習を含む)、遺伝的プログラミング、決定木、ベイジアン・ネットワーク、又はサポート・ベクター・マシン(SVM)などが存在する。本開示の機械学習においては、以上で挙げた具体例のいずれかを用いればよい。
本実施の形態1における材料特性値予測装置100は、材料の所定の特性値を予測する予測モードと、予測モデルを学習させる学習モードとに切り替え可能である。予測モードでは、入力取得部110は、入力部210によって入力された入力組成式を取得する。また、学習モードでは、入力取得部110は、材料情報記憶部221に予め記憶されている複数の入力組成式を取得し、学習部103は、複数の入力組成式のそれぞれから算出された材料記述子のそれぞれを予測モデルに入力することにより、予測モデルに対して機械学習を行う。
出力部230は、特性値予測部102によって予測された所定の特性値を出力する。なお、出力部230は、表示装置であってもよく、特性値予測部102によって予測された特性値を表示してもよい。また、出力部230は、プリンターであってもよく、特性値予測部102によって予測された特性値を印刷してもよい。さらに、出力部230は、出力端子であってもよく、特性値予測部102によって予測された特性値を外部へ出力してもよい。
なお、材料特性値予測装置100は、サーバであってもよい。この場合、材料特性値予測装置100は、入力部210及び出力部230を備えず、通信部をさらに備え、端末装置と通信可能に接続される。端末装置は、入力部210及び出力部230を備え、入力組成式の入力を受け付け、入力された組成式である入力組成式を材料特性値予測装置100へ送信する。材料特性値予測装置100は、入力組成式を端末装置から受信し、受信した入力組成式から所定の特性値を予測し、予測した所定の特性値を端末装置へ送信する。端末装置は、予測された所定の特性値を材料特性値予測装置100から受信する。
図8は、本実施の形態1の組成式判別処理と従来の組成式判別処理との具体的な違いについて説明するための模式図である。
本実施の形態1の組成式判別部120は、入力組成式(CaMn0.96Ru0.04O3)を構成する母物質を示す式(CaMnO3)と添加物の式(Ru0.04)とを判別し、判別した母物質を示す式と1または複数の添加物の式を含む添加物リストとを記述子算出部130へ出力する。これに対し、従来の組成式判別部120Bは、入力組成式(CaMn0.96Ru0.04O3)から同比率組成式(CaMnRuO)を導出し、入力組成式と同比率組成式とを記述子算出部130へ出力する。
次に、図9を用いて、本実施の形態1における材料特性値予測装置100の動作について説明する。
図9は、本実施の形態1における材料特性値予測装置の動作について説明するためのフローチャートである。
まず、ステップS301において、入力取得部110は、入力部210から入力組成式を取得する。
次に、ステップS302において、組成式判別部120は、入力組成式から母物質を示す式と1または複数の添加物の式を含む添加物リストとを生成する生成処理を行う。なお、生成処理の詳細については、後述する。
次に、ステップS303において、記述子算出部130は、組成式判別部120が母物質を示す式及び1または複数の添加物の式を含む添加物リストを生成したか否かを判断する。ここで、母物質を示す式及び添加物リストが生成されなかったと判断された場合、すなわち、入力組成式に不採用ラベルが付与された場合(ステップS303でNO)、処理が終了する。
母物質を示す式及び添加物リストが生成されたと判断された場合(ステップS303でYES)、ステップS304において、記述子算出部130は、母物質を示す式の記述子及び添加物リストに含まれる1または複数の添加物を示す式それぞれの記述子を算出する。記述子算出部130は、1または複数の添加物を示す式にそれぞれ含まれる元素の既知のパラメータを材料情報記憶部221から取得し、取得した既知のパラメータを用いて当該添加物を示す式の記述子を算出または決定する。また、記述子算出部130は、母物質を示す式に含まれる各元素の既知のパラメータを材料情報記憶部221から取得し、取得した既知のパラメータの重み付き平均を母物質の記述子として算出する。母物質を示す式がCaMnO3の場合であって、記述子として平均原子容積を求める場合、記述子算出部130は、{(Caの原子容積)+(Mnの原子容積)+(Oの原子容積)×3}/5を求める。
なお、記述子算出部130が、組成式情報の他に特性値の予測に必要な情報が取得された場合、記述子算出部130は、特性値の予測に必要な情報の記述子も算出、または、決定する。
1つの添加物を示す式について記述子を1つ計算または決定してもよいし、1つの添加物を示す式について記述子を複数計算または決定してもよい。
1つの母物質を示す式について記述子を1つ計算してもよいし、1つの母物質を示す式について記述子を複数計算してもよい。
次に、ステップS305において、記述子統合部140は、記述子算出部130によって算出された複数の記述子を統合した材料記述子を生成する。このとき、材料記述子は、記述子算出部130によって生成された全ての記述子を連結した数列であってもよい。
材料記述子に含まれる1つの母物質を示す式についての記述子の数は1または複数であってもよい。例えば、図30に示すように当該1つの母物質を示す式がCaMnO3の場合、CaMnO3の材料記述子は、CaMnO3の平均原子容積、及び、CaMnO3の平均密度を含んでもよい。なお、CaMnO3の平均密度は{(Caの平均密度)+(Mnの平均密度)+(Oの平均密度)×3}/5であってもよい。
材料記述子に含まれる1つの添加物を示す式についての記述子の数は1または複数であってもよい。例えば、1つの添加物を示す式がRu0.04の場合、Ru0.04の材料記述子は、Ruの原子容積、及び/または、Ruの密度を含んでもよい。
次に、ステップS306において、特性値予測部102は、記述子統合部140によって生成された材料記述子を用いて、材料の特性値を予測する。ここで、特性値予測部102が利用する予測モデルは、ニューラルネットワーク、ランダムフォレスト又はグリーディ算法などの機械学習、又は論理モデル式による近似を含んでもよい。
図10は、母物質記述子及び添加物記述子を用いたニューラルネットワークの特性値予測又は機械学習の一例を示す図である。特性値予測部102は、母物質を示す式に対する1または複数の記述子と、1または複数の添加物を示す式に対する1または複数の記述子とを予測モデルの入力層の複数のユニットに入力し、中間層、出力層に含まれるユニットの各々で入力信号と重み値に基づく計算を行い、予測モデルの出力層のユニットから出力される所定の特性値を予測結果として取得する。また、学習部103は、母物質を示す式に対する1または複数の記述子と、1または複数の添加物を示す式に対する1または複数の記述子とを予測モデルの入力層の複数のユニットに入力し、予測モデルを学習させる。複数の記述子に対応する所定の特性の値を含むデータセットを複数含む学習データを用いて、学習を実行すればよい。
図9に戻り、次に、ステップS307において、出力部230は、特性値予測部102によって予測された所定の特性値を出力する。
続いて、本実施の形態1における図9のステップS302の生成処理の具体例について説明する。図9のステップS302の生成処理は、複数の入力組成式を構成する複数の母物質を示す複数の式を含む母物質リストが予めメモリ220に記憶されている場合と、母物質リストが予めメモリ220に記憶されていない場合とで異なる。ここで、母物質リストとは、例えば、「CaMn0.96Ru0.04O3」、「Nb0.95Ti0.05FeSb」という2つの材料の組成式が材料情報に含まれている場合に、事前に各々の材料の母物質を示す式である「CaMnO3」、「NbFeSb」をリスト化したものである。なお、例えば、組成式「CaMn0.96Ru0.04O3」の母物質を示す式は母物質リスト中の「CaMnO3」であると明示するタグを組成式に付加してもよい。
本実施の形態1では、メモリ220が母物質リストを記憶しているため、図9のステップS302の生成処理は、母物質リストを用いて行われる。
図11を用いて、本実施の形態1における図9のステップS302の生成処理を説明する。
図11は、本実施の形態1における図9のステップS302の生成処理について説明するためのフローチャートである。
まず、ステップS401において、組成式判別部120は、母物質リスト記憶部222から母物質リストを取得する。母物質リストに含まれる母物質の記述はCaMnO3を含んでもよい。
次に、ステップS402において、組成式判別部120は、母物質リストに含まれる各母物質を示す式と入力組成式との組成差分値を算出する。ここで、組成差分値は、2つの組成式の差分組成式における係数の絶対値の和とする。例えば、母物質を示す式「CaMnO3」と入力組成式「CaMn0.96Ru0.04O3」との差分組成式は「Mn-0.04Ru0.04」であり、組成差分値は、「-0.04」の絶対値と、「0.04」の絶対値の和である「0.08」となる。
例えば、母物質を示す式「CaMnO3」と入力組成式「CaMn0.95Yb0.05O3」との差分組成式は「Mn-0.05Yb0.05」であり、組成差分値は、「-0.05」の絶対値と「0.05」の絶対値の和である「0.10」となる。
差分組成式、組成差分値は下記のように定義できる。なお、一般的に組成式に含まれる元素記号の係数が1の場合は、「1」を記載しないが、以下の説明では、係数が1の場合も記載するものとして説明する。例えば、組成式がCaMnO3の場合、Ca1Mn1O3と記載するものとする。
A1、B1、・・・、A2、B2、・・・のそれぞれを元素記号とし、第1(組成)式をA1a1B1b1・・・、第2(組成)式をA2a2B2b2・・・とした場合、A1≠A2、B1≠B2である場合、第1(組成)式と第2(組成)式の差分(組成)式はA2a2B2b2・・・A1-a1B1-b1・・・であり、第1(組成)式と第2(組成)式の(組成)差分値は{|a2|+|b2|+・・・+|-a1|+|-b1|+・・・}である。なお、A2a2、B2b2、・・・、A1-a1、B1-b1、・・・の記載順番は任意である。
A1=A2、B1≠B2である場合、第1(組成)式と第2(組成)式の差分(組成)式はA2(a2-a1)B2b2・・・B1-b1・・・であり、第1(組成)式と第2(組成)式の組成(差分)値は{|a2-a1|+|b2|+・・・+|-b1|+・・・}である。なお、A2(a2-a1)、B2b2、・・・、B1-b1、・・・の記載順番は任意である。
A1=A2、B1≠B2、a2=a1である場合、第1(組成)式と第2(組成)式の差分(組成)式はB2b2・・・B1-b1・・・であり、第1(組成)式と第2(組成)式の(組成)差分値は{|b2|+・・・+|-b1|+・・・}である。なお、B2b2、・・・、B1-b1、・・・の記載順番は任意である。
差分組成式、組成差分値は下記のように定義してもよい。
現存する全118個の各元素に対応した118次元のベクトルを組成式ベクトル
と定義する。組成式ベクトルにおいて、Aという元素に対応するベクトル要素をvAと表記することとする。たとえば、vMnは組成式ベクトルにおけるMnに対応するベクトル要素を表す。
CaMnO3についての組成式ベクトルなら、vCaに1、vMnに1、vOに3、それ以外のベクトル要素に0という数字をそれぞれ入れる。このCaMnO3についての組成式ベクトルを
と表記することとする。二つの組成式c1、c2があったとき、これらに対応する組成式ベクトルの差分ベクトル
を導入する。
このとき差分ベクトルにおいて、全ベクトル要素の絶対値の和を組成差分値dとする。つまり、
である。
また、対応するベクトル要素が0以外である全ての元素について、対応するベクトル要素値を係数として並べた組成式を差分組成式とする。例えば
としたとき、この差分ベクトルは、v’Mn=-0.04、v’Ru=0.04、それ以外のベクトル要素が0の118次元のベクトルとなり、差分組成値はd=|-0.04|+|0.04|=0.08、差分組成式は係数が-0.04のMnと係数が0.04のRuとをならべてMn-0.04Ru0.04となる。差分組成式の元素の表記順は任意である。なお、差分組成値が0の場合は、差分組成式は存在しない。
次に、ステップS403において、組成式判別部120は、最小組成差分値と、組成差分値が最小となる母物質を示す式とを特定する。例えば、入力組成式が「CaMn0.96Ru0.04O3」、「CaMn0.95Yb0.05O3」場合、最小組成差分値は「0.08」となる。ステップS402の説明で記載しように、CaMn0.96Ru0.04O3に関する組成差分値(=0.08)は、CaMn0.95Yb0.05O3に関する組成差分値(=0.10)よりも小さいからである。
次に、ステップS404において、組成式判別部120は、最小組成差分値が閾値以下であるか否かを判断する。ここで、最小組成差分値が閾値以下であると判断された場合(ステップS404でYES)、ステップS405において、組成式判別部120は、最小組成差分値が閾値以下と判断した母物質を示す式と入力組成式との差分組成式を取得する。上記した例の場合、組成式判別部120は、差分組成式「Mn-0.04Ru0.04」を取得する。0.08(差分組成式「Mn-0.04Ru0.04」の組成差分値)<0.10(差分組成式「Mn-0.05Yb0.05」の組成差分値)だからである。
次に、ステップS406において、組成式判別部120は、差分組成式から、添加物を示す式をリスト化した添加物リストを生成する。例えば、差分組成式が「Mn-0.04Ru0.04」であった場合に、添加物リストは、添加物を示す式「Ru0.04」を含み、被添加物を示す式「Mn-0.04」を含まなくてもよい。添加物リストは、添加物を示す式「Ru0.04」及び被添加物を示す式「Mn-0.04」の両方を含んでもよい。差分組成式の係数が正の数なら添加物、負の数なら被添加物である。
次に、ステップS407において、組成式判別部120は、ステップS403で特定された母物質を示す式と、ステップS406で生成された添加物リストとを含む情報を記述子算出部130へ出力する。
一方、ステップS404で最小組成差分値が閾値より大きいと判断された場合(ステップS404でNO)、ステップS408において、組成式判別部120は、入力組成式に不採用ラベルを付与する。
なお、記述子統合部140は、材料情報記憶部221から、材料の構造情報及び/又は材料の実験環境情報などの材料特性値に影響を与え得る情報が取得した場合、記述子統合部140は、材料特性値に影響を与え得る情報から導出した記述子と入力組成式から算出した複数の記述子とを統合して1つの数列とした材料記述子を生成してもよい。材料の構造情報とは、例えば、材料の入力組成式に含まれる各元素の3次元位置情報を用いて導出されたパラメータ、又は材料の入力組成式に含まれる各元素の位置情報を用いて導出されたパラメータなどである。また、材料の実験環境情報とは、例えば、当該材料生成時の温度情報、又は、当該材料の特性測定時の温度情報、又は、材料の具体的な生成方法などである。材料組成式に含まれる母物質に含まれる複数の元素の複数の3次元位置の情報を用いて第一原理(first-principles)計算を行い求めたパラメータ、例えば、バンドギャップ及び/または有効質量を記述子として採用してもよい。
図12は、実験環境情報から算出された記述子を含む材料記述子の一例を示す図である。図12において、実験環境情報から算出された記述子31は、母物質を示す式から算出された記述子32及び第1~第n添加物を示す式から算出された記述子33~1または複数の記述子3nと並べられ、1つの材料記述子を形成している。実験環境情報から算出された記述子31は1または複数の記述子であってもよい。
なお、入力取得部110は、材料が生成される環境を示す実験環境情報を取得してもよい。記述子算出部130は、母物質を示す式に対応する記述子を算出し、添加物リストに含まれる少なくとも1つの添加物を示す式に対応する記述子を算出し、実験環境情報に対応する記述子を算出してもよい。
推定モードにおいて、ユーザは入力部210から材料の入力組成式に対応する当該材料が生成される環境を示す実験環境情報を入力してもよい。入力取得部110は、入力部210から、材料が生成される環境を示す実験環境情報を、取得して、記述子算出部130、材料情報記憶部221に送付してもよい。材料情報記憶部221は当該情報を記憶してもよい。
学習モードにおいて、材料情報記憶部221は複数の材料の組成式に対応する複数の材料が生成される環境を示す実験環境情報を予め保持してもよい。入力取得部110は、材料が生成される環境を示す実験環境情報を、材料情報記憶部221から取得し、記述子算出部130に送付してもよい。
入力取得部110は、材料の構造を示す構造情報を取得してもよい。記述子算出部130は、母物質を示す式に対応する記述子を算出し、添加物リストに含まれる少なくとも1つの添加物を示す式に対応する記述子を算出し、構造情報に対応する記述子を算出してもよい。
推定モードにおいて、ユーザは入力部210から材料の入力組成式に対応する当該材料の構造を示す構造情報を入力してもよい。入力取得部110は、入力部210から、材料の構造を示す構造情報を、取得して、記述子算出部130、材料情報記憶部221に送付してもよい。材料情報記憶部221は当該情報を記憶してもよい。
学習モードにおいて、材料情報記憶部221は複数の材料の組成式に対応する複数の材料の構造を示す構造情報を予め保持してもよい。入力取得部110は、材料の構造を示す構造情報を、材料情報記憶部221から取得、記述子算出部130に送付してもよい。
なお、記述子算出部130が生成する材料記述子に含まれる複数の記述子は、添加物を示す式に含まれる元素記号の係数を示す記述子を含んでもよい。記述子算出部130は、添加物リストに含まれる添加物を示す式に含まる元素記号の係数を記述子として材料記述子に追加してもよい。
図13は、添加物を示す式に含まれる元素記号の係数を記述子として含む材料記述子の一例を示す図である。図13には入力組成式CaMn0.96Ru0.04O3から算出された材料記述子が例示記載されている。図13に示す記述子43は、第1添加物を示す式「Ru0.04」に含まれる元素記号Ruの係数0.04を表している。各添加物を示す式に含まれる元素記号の係数は、各添加物を示す式から算出された記述子の直前に配置される。
記述子算出部130は、組成式に含まれる全ての元素記号の係数の和に対する添加物を示す式に含まれる元素記号の係数の割合を算出し、算出した割合を示す記述子を材料記述子に含めてもよい。
図14は、入力組成式に含まれる全ての元素記号の係数の和に対する添加物の組成式に含まれる元素記号の係数の割合を示す記述子を含む材料記述子の一例を示す図である。図14には、入力組成式CaMn0.96Ru0.04O3から算出された材料記述子が例示記載されている。図14に示す記述子53は、入力組成式に含まれる全ての元素記号の係数の和に対する第1添加物を示す式に含まれる元素記号の係数の割合を示している。記述子53は、第1添加物であるRuの係数0.04を、入力組成式に含まれる全ての元素の係数の和5で割った値0.008を表している。入力組成式に含まれる全ての元素記号の係数の和に対する添加物の組成式に含まれる元素記号の係数の割合を添加物の割合と呼んでもよい。添加物の割合を示す記述子は、当該添加物を示す式から算出された記述子の直前に配置される。
記述子算出部130が生成する材料記述子に含まれる複数の記述子は、被添加物を示す式に含まれる元素記号の係数を示す記述子を含んでもよい。被添加物とは、例えば、入力組成式CaMn0.96Ru0.04O3を母物質CaMnO3と比較した際に、Ru0.04が添加されることで割合の少なくなったMnのことを示す。記述子算出部130は、添加物リストに含まれる少なくとも1つの添加物が添加されることにより割合が少なくなった被添加物の係数を記述子として追加してもよい。
図15は、被添加物の係数を含む材料記述子の一例を示す図である。図15には、母物質組成式をCaMnO3として入力組成式CaMn0.96Ru0.04O3から算出された材料記述子が例示記載されている。このとき、Ru0.04は0.04追加された添加物、Mn0.96は0.04削減された被添加物である。図15に示した被添加物の係数を示す記述子は、この「0.04削減された」ことを「-0.04追加された」こととして記述する。図15に示す記述子63は、第1添加物を示す式「Ru0.04」の係数0.04を表しており、記述子65は、第1被添加物を示す式「Mn0.96」すなわち「Mn-0.04」の係数-0.04を表している。記述子63では、第1添加物Ruの係数がプラス符号で表現されているのに対し、記述子65では、被添加物Mnの係数がマイナス符号で表現されている。被添加物を示す式の係数を示す記述子は、当該被添加物を示す式から算出された記述子の直前または直後に配置される。
なお、異なる組成式から計算された材料記述子の長さが異なる場合、当該長さを同じにしてもよい。つまり、組成式から計算される材料記述子は固定長としてもよい。一の組成式から算出された添加物を示す式の数と、他の組成式から算出された添加物を示す式の数が異なっても、当該一の組成式から算出された材料記述子と当該他の組成式から算出された材料記述子を1つのデータベースに含めるためである。当該データベースが含む複数の材料記述子は、例えば、入力ユニットの数が同一の予測モデルで使用される。
以下、材料記述子を固定長として決定する方法を述べる。
記述子統合部140が、記述子算出部130から、添加物を示す式から計算または決定される記述子を、予め定められた所定の数受け取らない場合、記述子統合部140は材料記述子の所定の箇所にゼロ又は平均値を配置する。なお、平均値については後で説明する。予め定められた所定の数は、例えば2以上の自然数であるnで、想定される入力組成式から導出される添加物を示す式の最大個数であってもよい。例えば、入力組成式「CaMn0.96Ru0.04O3」の添加物を示す式はRu0.04であり、その数は1つであるのに対し、入力組成式「Ca0.9Bi0.1Mn0.9Nb0.1O3」の添加物を示す式はBi0.1及びNb0.1であり、その数は2つである。入力組成式「Ca0.9Bi0.1Mn0.9Nb0.1O3」から算出された第1材料記述子は、当該2つの添加物を示す2つの式から算出または決定された第1記述子と第2記述子を含む。第1材料記述子の第1の箇所に第1記述子が配置され、第1材料記述子の第2の箇所に第2記述子が配置される。
入力組成式「CaMn0.96Ru0.04O3」から算出された材料記述子は、当該1つの添加物を示す1つの式から算出または決定された第3記述子を含む。入力組成式「CaMn0.96Ru0.04O3」の材料記述子である第2材料記述子の第3の箇所に第3記述子が配置され、第2材料記述子の第4の箇所にゼロ又は平均値が配置される。
第1材料記述子の長さと第2材料記述子の長さは同じある。第1材料記述子における第1の箇所と第2材料記述子における第3の箇所は同じ位置、かつ、第1材料記述子における第2の箇所と第2材料記述子における第4の箇所は同じ位置であってもよい。または、第1材料記述子における第1の箇所と第2材料記述子における第4の箇所は同じ位置、かつ、第1材料記述子における第2の箇所と第2材料記述子における第3の箇所は同じ位置であってもよい。
これにより情報量を落とすことなく、複数の材料記述子を1つのデータベースとして用いて予測モデルを学習させることが可能となる。
図16は、添加物を示す式から計算または決定された記述子を配置すべき箇所に、ゼロ又は平均値が配置された材料記述子の一例を示す図である。図16に示すように、材料記述子701において、第1添加物は存在するため、第1添加物を示す式から算出された記述子73は存在するが、第2添加物~第n添加物は存在しないため、第2添加物を示す式から算出された記述子74を配置すべき箇所、~、第n添加物を示す式から算出された記述子7nを配置すべき箇所にはゼロ又は平均値が配置される。なお、第1材料記述子に対する第i添加物が存在しない場合、記述子算出部130は、第2材料記述子に対する第i添加物、~、第n材料記述子に対する第i添加物のうち、存在する添加物に対する記述子の平均値を第1材料記述子の第i添加物の記述子として採用してもよい。第1材料記述子における第i添加物の記述子の位置、~、第n材料記述子における第i添加物の記述子の位置はデータ構造観点から同じ位置に存在する。
例えば、図16において、材料記述子701の記述子74には、他の材料記述子701a~701cの中の第2添加物から算出される第2添加物記述子74a~74cの平均値が配置される。
また、材料記述子における添加物を示す式から算出される記述子が配置される部分にゼロ又は平均値が配置される場合、当該部分の材料記述子における位置は、他の添加物を示す式から算出される記述子が配置される箇所であってもよい。
図17は、添加物を示す式から計算または決定された記述子を配置すべき箇所に、ゼロ又は平均値が配置された材料記述子の他の例を示す図である。図17に示すように、入力組成式は、1つの添加物を示す式Ru0.04を有しているが、当該添加物を示す式から算出または決定される記述子は、第1添加物を示す式から算出または決定される記述子83が配置される位置ではなく、第2添加物を示す式から算出または決定される記述子84が配置される位置に配置されてもよい。そして、第1添加物を示す式から算出または決定される記述子83が配置される位置には、ゼロ又は平均値が配置され、第3~第n添加物を示す式から算出される記述子85~8nが配置される位置には、ゼロ又は平均値が配置されてもよい。
なお、実験環境記述子を用いる場合は、図18に示すように、実験環境記述子は、母物質記述子及び添加物記述子と並べて予測モデルに入力してもよい。
図18は、母物質記述子、添加物記述子及び実験環境記述子を用いたニューラルネットワークの特性値予測又は機械学習の一例を示す図である。図18に示すように、特性値予測部102は、母物質を示す式に対する1または複数の記述子と、1または複数の添加物を示す式に対する1または複数の記述子と、1または複数の実験環境の1または複数の記述子とを予測モデルの入力層の複数のユニットに入力し、予測モデルの出力層のユニットから出力される所定の特性値を予測結果として取得する。また、学習部103は、母物質を示す式に対する1または複数の記述子と、1または複数の添加物を示す式に対する1または複数の記述子と、1または複数の実験環境の1または複数の記述子とを予測モデルの入力層の複数のユニットに入力し、予測モデルを学習させる。なお、図18において、実験環境記述子だけでなく、1または複数の構造情報の1または複数の記述子も、母物質を示す式に対する1または複数の記述子、及び、1または複数の添加物を示す式に対する1または複数の記述子と並べて予測モデルに入力してもよい。複数の記述子に対応する所定の特性の値を含むデータセットを複数含む学習データを用いて、学習を実行すればよい。
なお、本実施の形態1において、学習部103は、添加物記述子を用いず、かつ、母物質記述子を用いて予測モデルを学習させる第1学習ステップと、母物質記述子及び添加物記述子を用いて予測モデルを学習させる第2学習ステップとを含む多段階の学習を行ってもよい。
図19は、母物質記述子及び添加物記述子を用いたニューラルネットワークの多段階の機械学習の一例を示す図である。図19に示すように、第1学習ステップにおいて、学習部103は、添加物記述子を用いず、かつ、母物質記述子を用いてニューラルネットワークを学習させ、第2学習ステップにおいて、学習部103は、母物質記述子及び添加物記述子を用いてニューラルネットワークを学習させる。なお、実験環境記述子及び構造情報記述子なども、同じように第3学習ステップ以降に段階的に追加し、ニューラルネットワークを多段階で学習させてもよい。
(実施の形態2)
本実施の形態1では、メモリ220が母物質リストを記憶しているが、本実施の形態2では、メモリ220が母物質リストを記憶していない。
本実施の形態1では、メモリ220が母物質リストを記憶しているが、本実施の形態2では、メモリ220が母物質リストを記憶していない。
図20は、本実施の形態2における材料特性値予測装置の構成を示す図である。本実施の形態2における材料特性値予測装置100Aは、プロセッサ200Aと、入力部210と、メモリ220Aと、出力部230とを備える。プロセッサ200Aは、材料記述子生成部101Aと、特性値予測部102と、学習部103とを備える。また、材料記述子生成部101Aは、入力取得部110と、組成式判別部120Aと、記述子算出部130と、記述子統合部140とを備える。メモリ220Aは、材料情報記憶部221と、予測モデル記憶部223とを備える。なお、本実施の形態2において、実施の形態1と同じ構成については同じ符号を付し、説明を省略する。
組成式判別部120Aは、入力取得部110から取得した入力組成式から1の元素記号と当該1の元素記号の係数とを選択する。組成式判別部120Aは、係数が閾値より大きいか否かを判断する。組成式判別部120Aは、係数が閾値以下であると判断された場合、1の元素記号を添加物リストへ追加する。組成式判別部120Aは、係数が閾値より大きいと判断された場合、1の元素記号と係数の小数部分を繰り上げて生成した新係数との組み合わせを母物質元素リストへ追加する。組成式判別部120Aは、入力組成式に含まれる全ての元素記号について上記処理を行った後、母物質元素リストに含まれる複数の要素、つまり、複数の「1の元素記号と係数の小数部分を繰り上げて生成した新係数との組み合わせ」を統合した母物質を示す式を導出する。組成式判別部120Aは、母物質と添加物リストとを出力する。
本実施の形態2における材料特性値予測装置100Aの動作は、図9に示す実施の形態1における材料特性値予測装置100の動作と同じであるので、説明を省略する。本実施の形態2と実施の形態1との異なる動作は、図9のステップS302の生成処理である。
本実施の形態2では、メモリ220が母物質リストを記憶していないため、図9のステップS302の生成処理は、母物質リストを用いることなく行われる。
図21を用いて、本実施の形態2における図9のステップS302の生成処理を説明する。
図21は、本実施の形態2における図9のステップS302の生成処理について説明するためのフローチャートである。
まず、ステップS501において、組成式判別部120Aは、入力組成式から1の元素記号と当該1の元素記号の係数とを選択する。
次に、ステップS502において、組成式判別部120Aは、選択した係数が閾値より大きいか否かを判断する。なお、閾値は、例えば0.5である。ここで、係数が閾値より大きいと判断された場合(ステップS502でYES)、ステップS503において、組成式判別部120Aは、選択した1の元素記号と係数の小数部分を繰り上げて生成した新係数との組み合わせを母物質元素リストへ追加する。例えば、1の元素記号がMnであり、1の元素記号の係数が0.96であった場合、小数部分を繰り上げた係数は1となり、「Mn1」が母物質元素リストへ追加される。なお、1の元素記号の係数が1.5であった場合、小数部分を繰り上げた係数は、2となる。
一方、係数が閾値以下であると判断された場合(ステップS502でNO)、ステップS504において、組成式判別部120Aは、選択した1の元素記号と、選択した係数との組み合わせを添加物リストへ追加する。
次に、ステップS505において、組成式判別部120Aは、入力組成式に含まれる全ての元素記号が選択されたか否かを判断する。ここで、全ての元素記号が選択されていないと判断された場合(ステップS505でNO)、ステップS501に処理が戻る。
一方、全ての元素記号が選択されたと判断された場合(ステップS505でYES)、ステップS506において、組成式判別部120Aは、母物質元素リストに含まれる複数の要素、つまり、複数の「1の元素記号と係数の小数部分を繰り上げて生成した新係数との組み合わせ」を統合することにより、母物質を示す式を導出する。例えば、母物質元素リストが[Ca1,Mn1,O3]であった場合に、母物質元素リスト内の全ての要素を繋げた「CaMnO3」が母物質を示す式として導出される。
次に、ステップS507において、組成式判別部120Aは、入力組成式の係数の和が、母物質を示す式の係数の和と同じであるか否かを判断する。
ここで、入力組成式の係数の和が、母物質を示す式の係数の和と同じであると判断された場合(ステップS507でYES)、ステップS508において、組成式判別部120Aは、母物質を示す式と添加物リストとを記述子算出部130へ出力する。
例えば、入力組成式がCaMn0.96RU0.04O3であり、母物質を示す式がCaMnO3として導出された場合、(入力組成式の係数の和)=(1+0.96+0.04+3)=5であり、(母物質を示す式の係数の和)=(1+1+3)=5である。
一方、入力組成式の係数の和が、母物質を示す式の係数の和と異なると判断された場合(ステップS507でNO)、ステップS509において、組成式判別部120Aは、入力組成式に不採用ラベルを付与する。
なお、本実施の形態2において、組成式判別部120Aは、ステップS507の判断処理を行わなくてもよい。この場合、組成式判別部120Aは、ステップS506で母物質を示す式を導出した後、ステップS508で母物質を示す式と添加物リストとを記述子算出部130へ出力してもよい。
なお、組成式判別部120Aは、母物質を示す式をメモリ220Aに送付し、メモリ220Aを当該母物質の示す式を記録してもよい。上記実施形態2で説明した処理を複数の入力組成式に行い、メモリ220Aに複数の母物質を示す式を記録し、当該記録した複数の母物質を示す式を含む母物質リストを生成してもよい。この生成した母物質リストは実施の形態1で説明した母物質リストとして使用してもよい。
(実施の形態3)
本実施の形態1では、メモリ220が母物質リストを記憶している。本実施の形態3では、実施の形態2と同様の判別処理で母物質を示す式を導出し、導出した母物質を示す式が母物質リストに存在するかを確認する。
本実施の形態1では、メモリ220が母物質リストを記憶している。本実施の形態3では、実施の形態2と同様の判別処理で母物質を示す式を導出し、導出した母物質を示す式が母物質リストに存在するかを確認する。
図22は、本実施の形態3における材料特性値予測装置の構成を示す図である。本実施の形態3における材料特性値予測装置100Bは、プロセッサ200Bと、入力部210と、メモリ220と、出力部230とを備える。プロセッサ200Bは、材料記述子生成部101Bと、特性値予測部102と、学習部103とを備える。また、材料記述子生成部101Bは、入力取得部110と、組成式判別部120Bと、記述子算出部130と、記述子統合部140とを備える。メモリ220は、材料情報記憶部221と、母物質リスト記憶部222と、予測モデル記憶部223とを備える。なお、本実施の形態3において、実施の形態1と同じ構成については同じ符号を付し、説明を省略する。
組成式判別部120Bは、複数の母物質を示す式を含む母物質リストを母物質リスト記憶部222から取得する。組成式判別部120Bは、入力取得部110から取得した入力組成式における元素記号の係数の和が整数であるか否かを判断する。組成式判別部120Bは、入力組成式における元素記号の係数の和が整数であると判断された場合、入力組成式から1の元素記号と当該1の元素記号の係数とを選択する。組成式判別部120Bは、係数が閾値より大きいか否かを判断する。組成式判別部120Bは、係数が閾値以下であると判断された場合、1の元素を添加物リストへ追加する。組成式判別部120Bは、係数が閾値より大きいと判断された場合、1の元素記号と係数の小数部分を繰り上げて生成した新係数との組み合わせを母物質元素リストへ追加する。
組成式判別部120Bは、組成式に含まれる全ての元素記号について上記処理を行った後、母物質元素リストに含まれる複数の要素、つまり、複数の「1の元素記号と係数の小数部分を繰り上げて生成した新係数との組み合わせ」を統合した母物質を示す式を導出する。組成式判別部120Bは、導出した母物質を示す式が母物質リストに存在するか否かを判断する。組成式判別部120Bは、母物質を示す式が母物質リストに存在すると判断された場合、母物質を示す式と添加物リストとを出力する。組成式判別部120Bは、入力組成式における係数の和が整数ではないと判断された場合、又は母物質を示す式が母物質リストに存在しないと判断された場合、入力組成式に不採用ラベルを付与する。
本実施の形態3における材料特性値予測装置100Bの動作は、図9に示す実施の形態1における材料特性値予測装置100の動作と同じであるので、説明を省略する。本実施の形態3と実施の形態1との異なる動作は、図9のステップS302の生成処理である。
本実施の形態3では、メモリ220が母物質リストを記憶しているため、図9のステップS302の生成処理は、母物質リストを用いて行われる。
図23を用いて、本実施の形態3における図9のステップS302の生成処理を説明する。
図23は、本実施の形態3における図9のステップS302の生成処理について説明するためのフローチャートである。
まず、ステップS601において、組成式判別部120Bは、母物質リストを母物質リスト記憶部222から取得する。
次に、ステップS602において、組成式判別部120Bは、入力組成式に含まれる元素記号の係数の和が整数であるか否かを判断する。この判断は、添加物に対応する被添加物が明確にわかる材料を生成の対象とするために行われる。ここで、入力組成式の係数の和が整数ではないと判断された場合(ステップS602でNO)、ステップS611に処理が移行する。
一方、入力組成式の係数の和が整数であると判断された場合(ステップS602でYES)、ステップS603において、組成式判別部120Bは、入力組成式から1の元素記号と当該1の元素記号の係数とを選択する。
次に、ステップS604において、組成式判別部120Bは、選択した係数が閾値より大きいか否かを判断する。なお、閾値は、例えば0.5である。ここで、係数が閾値より大きいと判断された場合(ステップS604でYES)、ステップS605において、組成式判別部120Bは、選択した1の元素記号と係数の小数部分を繰り上げて生成した新係数との組み合わせを母物質元素リストへ追加する。
一方、係数が閾値以下であると判断された場合(ステップS604でNO)、ステップS606において、組成式判別部120Bは、選択した1の元素記号と、選択した係数との組み合わせを添加物リストへ追加する。
次に、ステップS607において、組成式判別部120Bは、入力組成式に含まれる全ての元素記号が選択されたか否かを判断する。ここで、全ての元素記号が選択されていないと判断された場合(ステップS607でNO)、ステップS603に処理が戻る。
一方、全ての元素記号が選択されたと判断された場合(ステップS607でYES)、ステップS608において、組成式判別部120Bは、母物質元素リストに含まれる複数の要素、つまり、複数の「1の元素記号と係数の小数部分を繰り上げて生成した新係数との組み合わせ」を統合することにより、母物質を示す式を導出する。
次に、ステップS609において、組成式判別部120Bは、導出した母物質を示す式が母物質リストに存在するか否かを判断する。この判断は、実際に存在する物質を扱うために行われる。ここで、母物質を示す式が母物質リストに存在すると判断された場合(ステップS609でYES)、ステップS610において、組成式判別部120Bは、母物質を示す式と添加物リストとを記述子算出部130へ出力する。
一方、母物質を示す式が母物質リストに存在しないと判断された場合(ステップS609でNO)、又は入力組成式に含まれる元素記号の係数の和が整数ではないと判断された場合(ステップS602でNO)、ステップS611において、組成式判別部120Bは、入力組成式に不採用ラベルを付与する。
本実施の形態3の材料特性値予測装置100B及び公開データベースを用いて実験を行い、材料特性予測の効果検証を行った実験結果について説明する。具体的な実験の概要は次のとおりである。
まず、材料情報として利用したデータベースは、非特許文献3に記載のUCSB-MRL thermoelectric database(UCSB)である。このデータベースは、熱電材料の特性をまとめた公開データベースであり、総材料数は、1093である。
また、予測した特性値は、パワーファクター及び電気抵抗率である。
実際に利用した材料を示す式(入力組成式)の数は、456であり、母物質を示す式の数は、46である。材料情報として使用するデータは、母物質を示す式と添加物を示す式とが図23に示したフローチャートで機械的に判別可能なデータであり、母物質を示す式が非特許文献4に記載のInorganic Crystal Structure Database(ICSD)に存在するデータであり、温度情報(300K、400K、700K及び1000Kのいずれか)付きのデータを選別した。
当該実験で用いた材料記述子は、材料の特性測定時の温度を示す記述子を含む。
当該実験で用いた材料記述子は、図14を用いて説明した、入力組成式に含まれる全ての元素記号の係数の和に対する添加物を示す式に含まれる元素記号の係数の割合を示す記述子を含む。
当該実験で用いた材料記述子iにより表現される材料iがj番目の添加物を含まない場合、材料記述子iにおけるj番目の添加物に対する記述子を記載すべき場所には、平均値を配置した。なお、平均値は図16に関連して説明した。
また、同じ母物質を示す式を持つ材料データが学習データとテストデータとの両方に存在しないよう、母物質ラベルごとにデータを分割した。予測した特性値は、クロスバリデーションの結果の平均である。
また、パワーファクターの学習方法は、ランダムフォレストを利用し、木の数は500で固定した。電気抵抗率の学習方法は、ニューラルネットワークを利用し、中間層は、素子数が記述子数の2倍であり、層数が4層であり、全ての素子を結合させた。
実験では、本実施の形態3の手法で予測した特性値のRMSE(Root Mean Square Error)と、非特許文献2の従来の手法で予測した特性値のRMSEとを比較した。
図24は、本実施の形態3における実験の結果を示す図である。図24に示すように、パワーファクター及び電気抵抗率のいずれも、本実施の形態3において提案する記述子を用いることで、予測精度が向上していることがわかる。
(実施の形態4)
本実施の形態では実施の形態1の予測モデルがニューラルネットワーク装置であるとして説明する。なお、実施の形態2及び/または実施の形態3に示す予測モデルが本実施の形態に示すニューラルネットワーク装置であってもよい。
本実施の形態では実施の形態1の予測モデルがニューラルネットワーク装置であるとして説明する。なお、実施の形態2及び/または実施の形態3に示す予測モデルが本実施の形態に示すニューラルネットワーク装置であってもよい。
以下では、実施の形態1と同一の構成要素には同一の符号を付してその説明を省略する。まず、本実施の形態を説明するための準備として、ニューラルネットワーク装置に関する一般的な事項について説明する。
図25は、本実施の形態4におけるニューラルネットワーク装置の概念を説明する図である。ニューラルネットワーク装置は、周知のように、生物のニューラルネットワークを模した計算モデルに従って演算を行う演算装置である。
図25に示されるように、ニューラルネットワーク装置2100は、ニューロンに相当する複数のユニット2105(白丸で示されている)を、入力層2101、隠れ層2102、及び出力層2103に配置して構成される。隠れ層2102は、一例として、2つの隠れ層2102a、2102bで構成されているが、単一の隠れ層若しくは3以上の隠れ層で構成されてもよい。
入力層2101に近い層を下位層とし、出力層2103に近い層を上位層とするとき、ユニットは、下位層に配置された複数のユニットから受信した複数の演算結果と複数の重み値に基づいた演算を行い、当該演算結果を上位層に配置されたユニットに送信する計算要素である。
ニューラルネットワーク装置2100の機能は、ニューラルネットワーク装置2100が有する層の数や各層に配置されるユニットの数を表す構成情報と、ユニットでの演算に用いられる重み値を表す重み値W=[w1,w2,・・・]とで定義される。
ニューラルネットワーク装置2100によれば、入力層2101の各ユニット2105に入力データX=[x1,x2,・・・]が入力されることにより、隠れ層2102及び出力層2103のユニット2105において重み値W=[w1,w2,・・・]を用いた演算がなされ、出力層2103の各ユニット2105から出力データY=[y1,y2,・・・]が出力される。図25では出力層2103は複数のユニットを有するが、出力層は1つユニットを有し、出力層は当該1つのユニットから出力される1つの出力データY=y1が出力されてもよい。
以下では、入力層2101、隠れ層2102、及び出力層2103に配置されるユニット2105を、それぞれ、入力ユニット、隠れユニット、及び出力ユニットとも言う。
本開示では、ニューラルネットワーク装置2100の具体的な実装について限定しない。ニューラルネットワーク装置2100は、例えば、再構成可能なハードウェアで実現されてもよく、また、ソフトウエアによるエミュレーションによって実現されてもよい。
本開示では、ニューラルネットワーク装置2100の学習の具体的な方法を限定しない。すなわち、ニューラルネットワーク装置2100の学習は以下で述べる方法以外の周知の学習方法に従って行われてもよい。
図26は、本実施の形態4における材料特性値予測装置の構成を示す図である。本実施の形態4における材料特性値予測装置1100は、プロセッサ1200と、入力部1210と、メモリ1220と、出力部230とを備える。プロセッサ1200は、材料記述子生成部1101と、特性値予測部1102と、学習部1103とを備える。また、材料記述子生成部1101は、入力取得部1110と、組成式判別部120と、記述子算出部130と、記述子統合部140とを備える。プロセッサ1200に含まれる各部は、例えば、マイクロプロセッサが所定のプログラムを実行することにより発揮されるソフトウエア機能として実現されもよい。メモリ1220は、材料情報記憶部1221と、母物質リスト記憶部222と、予測モデル記憶部1223とを備える。
なお、予測モデルは予測モデル記憶部1223と特性値予測部1102を含み、予測モデルは図25に示したニューラルネットワーク装置2100である。本実施の形態4における材料特性値予測装置1100は、ユーザの指示により、ニューラルネットワーク装置2100を学習させる学習モード、または、ニューラルネットワーク装置2100に材料の特性値を予測させる予測モードに切り替え可能である。
学習モードでの材料特性値予測装置1100と予測モードでの材料特性値予測装置1100の動作は以下の通りである。
<学習モードでの材料特性値予測装置の動作>
図26、図27を用いて、本実施の形態4における材料特性値予測装置1100の学習モードでの動作を説明する。
図26、図27を用いて、本実施の形態4における材料特性値予測装置1100の学習モードでの動作を説明する。
図27は本実施の形態4における材料特性値予測装置の学習モードでの動作を説明するためのフローチャートである。
材料情報記憶部1221は、予め第1材料情報を保持する。第1材料情報は[(材料の組成式)1、(材料の構造)1、(材料が生成される環境)1、(材料の特性値)1、・・・]、~、[(材料の組成式)n、(材料の構造)n、(材料が生成される環境)n、(材料の特性値)n、・・・]を含む。第1材料情報は、複数の元素それぞれの既知のパラメータを1または複数含んでもよい。元素の既知のパラメータは原子容積値、または、共有結合半径値、または、密度値であってもよい。
材料が生成される環境とは、当該材料の生成時の温度情報及び/又は当該材料の特性測定時の温度であってもよい。
材料の特性値は当該材料のパワーファクターを示す値または当該材料の電気抵抗率を示す値であってもよい。
また、第1材料情報は、複数の元素それぞれの既知のパラメータを1または複数含む。記述子算出部130は、母物質から記述子を生成する際及び添加物から記述子を生成する際、この情報を参照する。元素の既知のパラメータは平均原子容積値、または、平均共有結合半径値、または、平均密度値であってもよい。
入力部1210は、例えば、キーボード、マウス又はタッチパネルで構成され、種々の情報のユーザによる入力を受け付ける。
入力部1210がユーザから材料特性値予測装置100を学習モードに切り替える指示を受け付けると、入力取得部1110は材料情報記憶部1221から第2材料情報に含まれる(材料の組成式)1、~、(材料の組成式)nを取得する(S1301)。
予測モデル記憶部1223は、ニューラルネットワーク装置2100の構成情報を含む。構成情報は、ニューラルネットワーク装置2100が有する層の数、層ごとに配置されるユニットの数を示す情報を含む。
予測モデル記憶部1223は、ユニットで行われる演算に用いられる重み値W=[w1,w2,・・・]を含む。ニューラルネットワーク装置2100を学習させる前は、重み値W=[w1,w2,・・・]は、初期重み値Wi=[wi1,wi2,・・・]である。ニューラルネットワーク装置2100を学習させた後は、重み値W=[w1,w2,・・・]は、調整された重み値Wt=[wt1,wt2,・・・]である。
特性値予測部1102は、入力データXを受け取る。
特性値予測部1102は、入力データXが入力ユニットに与えられたとき、上述した構成情報によって示されるユニットの配置に従って、重み値Wを用いた演算を行う。
特性値予測部1102は、出力ユニットから出力データYを出力する。出力データYは出力ユニットで行われた演算結果であると考えてもよい。
学習部1103はニューラルネットワーク装置2100を学習させる(S1306)。
図28は、本実施の形態4における図27のステップS1306の学習処理について説明するためのフローチャートである。
実施の形態1おけるステップS302~S305に示した処理と同様の処理が(材料の組成式)1、~、(材料の組成式)nのそれぞれについて行われた後、学習部1103は、記述子統合部140から、(材料記述子)1、~、(材料記述子)nを取得する。なお、(材料記述子)1は(材料の組成式)1から生成され、~、(材料記述子)nは(材料の組成式)nから生成される。(S1510)
学習部1103は材料情報記憶部1221に記録された第1材料情報を参照し、材料記述子と材料の特性値を対応づけて学習データを生成する。すなわち、学習部1103は、学習データ={(ラベル付きデータ1)=[(材料記述子)1,(材料の特性値)1]、~、(ラベル付きデータn)=[(材料記述子)n,(材料の特性値)n]}を生成する(S1520)。
学習部1103は材料情報記憶部1221に記録された第1材料情報を参照し、材料記述子と材料の特性値を対応づけて学習データを生成する。すなわち、学習部1103は、学習データ={(ラベル付きデータ1)=[(材料記述子)1,(材料の特性値)1]、~、(ラベル付きデータn)=[(材料記述子)n,(材料の特性値)n]}を生成する(S1520)。
学習部1103は、学習部1103が生成した学習データと予測モデル記憶部1223が保持する初期重み値Wi=[wi1,wi2,・・・]を用いて、教師あり学習によって、調整された重み値Wt=[wt1,wt2,・・・]を決定する(S1530)。
教師あり学習では、例えば、学習データに含まれる材料記述子をニューラルネットワーク装置2100へ入力し、ニューラルネットワーク装置2100が出力データを出力した場合、当該出力データと当該材料記述子に対応する材料の特性値(=ラベル)との誤差を表す損失関数を定義し、勾配降下法により当該損失関数の値を減少させる勾配に沿って重み値を更新してもよい。
なお、「学習データに含まれる材料記述子をニューラルネットワーク装置2100へ入力し、ニューラルネットワーク装置2100が出力データを出力する」動作は、「学習データに含まれる材料記述子を特性値予測部1102へ入力し、特性値予測部1102が出力データを出力する」と考えてもよい。
教師あり学習を行う前に、layer-wise pre-trainingと呼ばれる教師なし学習によって、重み値を層ごとに調整してもよい。これにより、その後の教師付き学習によって、より正確な評価ができる重み値が得られる。
教師なし学習では、例えば、ニューラルネットワーク装置2100への入力データ及び重み値を用いて、材料の特性値であるラベルに依存しない評価値を表す損失関数を定義し、勾配降下法により当該損失関数を減少させる勾配に沿って重み値を更新してもよい。
ニューラルネットワーク装置2100に入力される入力データに、正規化、しきい値処理、ノイズ除去、及びデータサイズの統一などを含むデータ整形処理を行ってもよい。正規化は、入力データに限らず、材料の特性値であるラベルに対して行ってもよい。
入力データX=[入力層の第1ユニットへの入力データ,入力層の第2ユニットへの入力データ,・・・]=[x1,x2,・・・]とすると、入力データX=[実験環境から決定された第1記述子,実験環境から決定された第2記述子,・・・,母物質を示す式から決定された第1記述子,母物質を示す式から決定された第2記述子,・・・,第1添加物を示す式に含まれる元素記号の係数,第1添加物から決定された第1記述子,第1添加物から決定された第2記述子,・・・,第n添加物を示す式に含まれる元素記号の係数,第n添加物から決定された第1記述子,第n添加物から決定された第2記述子,・・・]であってもよい。
出力データY=[出力層の第1ユニットから出力データ]=[y1]とすると、出力データ=[入力組成式で示される材料のパワーファクターを示す値]または出力データ=[入力組成式で示される材料の電気抵抗率を示す値]であってもよい。
実験環境から決定された第1記述子は該材料の生成時の温度情報、実験環境から決定された第2記述子は当該材料の特性測定時の温度であってもよい。
第1添加物を示す式に含まれる元素記号の係数、・・・、第n添加物を示す式に含まれる元素記号の係数に代えて、入力組成式に含まれる全ての元素記号の係数の和に対する第1添加物の組成式に含まれる元素記号中の割合、・・・、入力組成式に含まれる全ての元素記号の係数の和に対する第n添加物の組成式に含まれる元素記号中の割合を使用してもよい。
入力データは上記入力データから、実験環境から決定された記述子、すなわち、実験環境から決定された第1記述子、実験環境から決定された第2記述子、・・・を除いたものであってもよい。
入力データは上記入力データから、第1添加物を示す式に含まれる元素記号の係数、・・・第n添加物を示す式に含まれる元素記号の係数を除いたものであってもよい。
入力データは上記入力データから、入力データは上記入力データから、第1添加物を示す式に含まれる元素記号の係数、・・・第n添加物を示す式に含まれる元素記号の係数、実験環境から決定された記述子、すなわち、実験環境から決定された第1記述子、実験環境から決定された第2記述子、・・・を除いたものであってもよい。
<予測モードでの材料特性値予測装置の動作>
図26、図29を用いて、本実施の形態4における材料特性値予測装置1100の予測モードでの動作を説明する。
図26、図29を用いて、本実施の形態4における材料特性値予測装置1100の予測モードでの動作を説明する。
図29は本実施の形態4における材料特性値予測装置の予測モードでの動作を説明するためのフローチャートである。
入力部1210はユーザから材料特性値予測装置1100を予測モードに切り替える指示を受け付けた後、入力部1210は、ユーザから、材料の特性値の予測を所望する材料の組成式の情報を含む第2材料情報の入力を受け付け、入力取得部1110へ送信する。入力部1210は、材料の特性値の予測を所望する材料の組成式に対応する材料の構造を示す情報及び/または材料の特性値の予測を所望する材料の組成式に対応する材料が生成される実験環境を示す情報のユーザによる入力を受け付け、第2材料情報はこれらの情報を含んでもよい。
入力取得部110は、入力部1210から材料の組成式を受け取る。材料の組成式を入力組成式と呼んでもよい。
ニューラルネットワーク装置2100は、記述子統合部140によって生成された材料記述子を、入力ユニットへの入力として受け取ると、ニューラルネットワーク装置2100は、予測モデル記憶部1223に記憶されている構成情報によって示されるユニットの配置に従って、調整された重み値Wtを用いた演算を行い、材料の特性値を出力ユニットから出力する。上記した動作は、「特性値予測部1102は、記述子統合部140によって生成された材料記述子を受け取る。特性値予測部1102は、受け取った材料記述子を入力とし、予測モデル記憶部1223に記憶されている構成情報によって示されるユニットの配置に従って、調整された重み値Wtを用いた演算を行い、材料の特性値を出力する」と考えてもよい(S2306)。
以上で、実施の形態4の説明を終える。
本開示において、ユニット、装置、部材又は部の全部又は一部、又は図に示されるブロック図の機能ブロックの全部又は一部は、半導体装置、半導体集積回路(IC)、又はLSI(Large Scale Integration)を含む一つ又は複数の電子回路によって実行されてもよい。LSI又はICは、一つのチップに集積されてもよいし、複数のチップを組み合わせて構成されてもよい。例えば、記憶素子以外の機能ブロックは、一つのチップに集積されてもよい。ここでは、LSIやICと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、若しくはULSI(Ultra Large Scale Integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、Field Programmable Gate Array(FPGA)、又はLSI内部の接合関係の再構成又はLSI内部の回路区画のセットアップができるReconfigurable Logic Deviceも同じ目的で使うことができる。
さらに、ユニット、装置、部材又は部の全部又は一部の機能又は操作は、ソフトウエア処理によって実行することが可能である。この場合、ソフトウエアは一つ又は複数のROM、光学ディスク、ハードディスクドライブなどの非一時的記録媒体に記録され、ソフトウエアが処理装置(Processor)によって実行されたときに、そのソフトウエアで特定された機能が処理装置(Processor)および周辺装置によって実行される。システム又は装置は、ソフトウエアが記録されている一つ又は複数の非一時的記録媒体、処理装置(Processor)、及び必要とされるハードウエアデバイス、例えばインターフェース、を備えていてもよい。
本開示では、予測モデルの具体的な実装について限定しない。予測モデルは、例えば、再構成可能なハードウェアで実現されてもよく、また、ソフトウエアによるエミュレーションによって実現されてもよい。
各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
本開示に係る材料記述子生成方法、材料記述子生成装置及び材料記述子生成プログラムは、材料の特性値の予測性能を向上させることができるので、材料の所定の特性値を予測する予測モデルに入力される記述子を生成する材料記述子生成方法、材料記述子生成装置及び材料記述子生成プログラムとして有用である。
また、本開示に係る予測モデル構築方法、予測モデル構築装置及び予測モデル構築プログラムは、材料の特性値の予測性能を向上させることができるので、材料の所定の特性値を予測する予測モデルを構築する予測モデル構築方法、予測モデル構築装置及び予測モデル構築プログラムとして有用である。
100,100A,100B,1100 材料特性値予測装置
101,101A,101B,1101 材料記述子生成部
102,1102 特性値予測部
103,1103 学習部
110,1110 入力取得部
120,120A,120B 組成式判別部
130 記述子算出部
140 記述子統合部
200,200A,200B,1200 プロセッサ
210,1210 入力部
220,220A,1220 メモリ
221,1221 材料情報記憶部
222 母物質リスト記憶部
223,1223 予測モデル記憶部
230 出力部
2100 ニューラルネットワーク装置
101,101A,101B,1101 材料記述子生成部
102,1102 特性値予測部
103,1103 学習部
110,1110 入力取得部
120,120A,120B 組成式判別部
130 記述子算出部
140 記述子統合部
200,200A,200B,1200 プロセッサ
210,1210 入力部
220,220A,1220 メモリ
221,1221 材料情報記憶部
222 母物質リスト記憶部
223,1223 予測モデル記憶部
230 出力部
2100 ニューラルネットワーク装置
Claims (15)
- 材料の組成式を取得するステップと、
前記組成式から、母物質を示す式と、前記母物質に添加される1または複数の添加物を示す1または複数の式を含む添加物リストとを生成するステップと、
前記母物質を示す式及び前記添加物リストに対応する、前記材料の所定の特性値の予測に必要な複数の記述子を算出するステップと、
前記複数の記述子を統合した材料記述子を出力するステップとを含み、
前記材料記述子は、前記材料の前記所定の特性値を予測する予測モデルに入力される、
材料記述子生成方法。 - 前記母物質を示す式と前記添加物リストとを生成するステップは、
複数の母物質を示す複数の式を含む母物質リストを取得するステップと、
前記複数の母物質を示す複数の式のそれぞれと前記組成式との組成差分値を算出するステップと、
算出された複数の組成差分値のうちの最小の組成差分値である最小組成差分値と、前記最小組成差分値を算出する際に用いられた第1母物質を示す第1式とを取得するステップと、前記複数の母物質を示す式は前記第1母物質を示す第1式を含み、
前記最小組成差分値が閾値以下であるか否かを判断するステップと、
前記最小組成差分値が前記閾値より大きいと判断された場合、前記組成式に不採用ラベルを付与するステップと、
前記最小組成差分値が前記閾値以下であると判断された場合、前記第1式と前記組成式との差分の式を示す差分組成式を取得するステップと、
前記差分組成式に基づいて、第2式を生成するステップとを含み、
前記1または複数の添加物を示す1または複数の式は前記第2式を含む、
請求項1に記載の材料記述子生成方法。 - 前記母物質を示す式と前記添加物リストとを生成するステップは、
前記組成式から1の元素記号と前記1の元素記号の係数とを選択するステップと、
前記係数が閾値より大きいか否かを判断するステップと、
前記係数が前記閾値以下であると判断した場合、前記1の元素記号を前記添加物リストへ追加するステップと、
前記係数が前記閾値より大きいと判断した場合、前記1の元素記号と前記係数の小数部分を繰り上げて生成した新係数との組み合わせた式を母物質元素リストへ追加するステップと、
前記組成式に含まれる全ての元素記号関して前記添加物リストへ追加または前記母物質元素リストへ追加を行い、これにより、前記母物質元素リストは前記組み合わせた式を複数含み、
前記母物質元素リストに含まれる前記複数の組み合わせた式を統合した母物質を示す式を導出するステップと、
前記母物質を示す式と前記添加物リストとを出力するステップと、
を含む請求項1に記載の材料記述子生成方法。 - 前記母物質を示す式と前記添加物リストとを判別するステップは、
複数の母物質を示す式を含む母物質リストを取得するステップと、
前記組成式における複数の元素記号の複数の係数の和が整数であるか否かを判断するステップと、
前記和が整数であると判断した場合、前記組成式から1の元素記号と前記1の元素記号の係数とを選択するステップと、
前記係数が閾値より大きいか否かを判断するステップと、
前記係数が前記閾値以下であると判断した場合、前記1の元素を前記添加物リストへ追加するステップと、
前記係数が前記閾値より大きいと判断した場合、前記1の元素記号と前記係数の小数部分を繰り上げて生成した新係数との組み合わせた式を母物質元素リストへ追加するステップと、
前記組成式に含まれる全ての元素記号に関して前記添加物リストへ追加または前記母物質元素リストへ追加を行い、これにより、前記母物質元素リストは前記組み合わせた式を複数含み、
前記母物質元素リストに含まれる前記複数の組み合わせた式を統合した母物質を示す式を導出するステップと、
導出した前記母物質を示す式が前記母物質リストに存在するか否かを判断するステップと、
前記母物質を示す式が前記母物質リストに存在すると判断された場合、前記母物質を示す式と前記添加物リストとを出力するステップと、
前記和が整数ではないと判断した場合、又は前記母物質を示す式が前記母物質リストに存在しないと判断した場合、前記組成式に不採用ラベルを付与するステップと、
を含む請求項1に記載の材料記述子生成方法。 - 前記材料が生成される環境を示す環境情報を取得するステップをさらに含み、
前記複数の記述子を算出するステップは、
前記環境情報に対応する記述子を算出するステップと、
を含む請求項1に記載の材料記述子生成方法。 - 前記材料の構造を示す構造情報を取得するステップをさらに含み、
前記複数の記述子を算出するステップは、
前記構造情報に対応する記述子を算出するステップと、
を含む請求項1に記載の材料記述子生成方法。 - 前記複数の記述子を算出するステップは、前記1または複数の添加物を示す1または複数の式に含まれる1つの添加物を示す式の係数を記述子と生成する、
請求項1に記載の材料記述子生成方法。 - 前記複数の記述子を算出するステップは、前記添加物リストに含まれる前記1または複数の添加物を示す1または複数の式の1または複数の係数のそれぞれを、前記組成式に含まれる全ての係数の和で割った数値を記述子として生成する、
請求項1に記載の材料記述子生成方法。 - 前記複数の記述子を算出するステップは、第1係数を増加させることにより、第2係数を減少させた場合、前記減少させた量を示す係数を記述子として生成し、
前記1または複数の添加物を示す前記1または複数の式は前記第1係数を有する第1の元素記号と、前記第2係数を有する第2の元素記号を含む、
請求項1に記載の材料記述子生成方法。 - 材料の組成式を取得する取得部と、
前記組成式から、母物質を示す式と、前記母物質に添加される1または複数の添加物を示す1または複数の式を含む添加物リストとを判別する判別部と、
前記母物質を示す式及び前記添加物リストに対応する、前記材料の所定の特性値の予測に必要な複数の記述子を算出する算出部と、
前記複数の記述子を統合した材料記述子を出力する出力部とを含み、
前記材料記述子は、前記材料の前記所定の特性値を予測する予測モデルに入力される、
材料記述子生成装置。 - コンピュータに実行させる材料記述子生成プログラムであって、
前記材料記述子生成プログラムは、
材料の組成式を取得するステップと、
前記組成式から、母物質を示す式と、前記母物質に添加される1または複数の添加物を示す1または複数の式を含む添加物リストとを生成するステップと、
前記母物質を示す式及び前記添加物リストに対応する、前記材料の所定の特性値の予測に必要な複数の記述子を算出するステップと、
前記複数の記述子を統合した材料記述子を出力するステップとを含み、
前記材料記述子は、前記材料の前記所定の特性値を予測する予測モデルに入力される、材料記述子生成プログラム。 - 材料の所定の特性値を予測する予測モデルを構築する予測モデル構築装置における予測モデル構築方法であって、
前記材料の所定の特徴を示す記述子を生成するステップと、
前記記述子を入力値として用いて前記予測モデルを学習させるステップと、
を含む予測モデル構築方法。 - 前記記述子を生成するステップは、
前記材料の組成式を取得するステップと、
前記組成式から、母物質を示す式と、前記母物質に添加される少なくとも1の添加物を示す式を含む添加物リストとを生成するステップと、
前記母物質を示す式及び前記添加物リストに対応する、前記所定の特性値の予測に必要な複数の記述子を算出するステップと、
前記複数の記述子を統合した材料記述子を出力するステップと、
を含む請求項12記載の予測モデル構築方法。 - 所定の材料の所定の特性値を予測する予測モデルを構築する予測モデル構築装置であって、
前記所定の材料の特徴を示す記述子を生成する生成部と、
前記記述子を入力値として用いて前記予測モデルを学習させる学習部と、
を備える予測モデル構築装置。 - 所定の材料の所定の特性値を予測する予測モデルを構築する予測モデル構築プログラムであって、
前記所定の材料の特徴を示す記述子を生成するステップと、
前記記述子を入力値として用いて前記予測モデルを学習させるステップと、
をコンピュータに実行させる予測モデル構築プログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980031963.9A CN112189211B (zh) | 2018-08-08 | 2019-07-22 | 材料描述符生成方法、生成装置及生成程序、预测模型构建方法、构建装置及构建程序 |
JP2020536428A JP7398679B2 (ja) | 2018-08-08 | 2019-07-22 | 材料記述子生成方法、材料記述子生成装置、材料記述子生成プログラム、予測モデル構築方法、予測モデル構築装置及び予測モデル構築プログラム |
US17/147,506 US20210133635A1 (en) | 2018-08-08 | 2021-01-13 | Material descriptor generation method, material descriptor generation device, recording medium storing material descriptor generation program, predictive model construction method, predictive model construction device, and recording medium storing predictive model construction program |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-149673 | 2018-08-08 | ||
JP2018149673 | 2018-08-08 | ||
JP2019066367 | 2019-03-29 | ||
JP2019-066367 | 2019-03-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/147,506 Continuation US20210133635A1 (en) | 2018-08-08 | 2021-01-13 | Material descriptor generation method, material descriptor generation device, recording medium storing material descriptor generation program, predictive model construction method, predictive model construction device, and recording medium storing predictive model construction program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020031671A1 true WO2020031671A1 (ja) | 2020-02-13 |
Family
ID=69413563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/028602 WO2020031671A1 (ja) | 2018-08-08 | 2019-07-22 | 材料記述子生成方法、材料記述子生成装置、材料記述子生成プログラム、予測モデル構築方法、予測モデル構築装置及び予測モデル構築プログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US20210133635A1 (ja) |
JP (1) | JP7398679B2 (ja) |
CN (1) | CN112189211B (ja) |
WO (1) | WO2020031671A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021174403A (ja) * | 2020-04-28 | 2021-11-01 | 株式会社日立製作所 | 材料の特性値を推定するシステム |
JP2021174402A (ja) * | 2020-04-28 | 2021-11-01 | 株式会社日立製作所 | 材料の特性値を推定するシステム |
WO2022045334A1 (ja) * | 2020-08-31 | 2022-03-03 | 武田薬品工業株式会社 | 推論装置、推論方法、推論プログラム、モデル生成方法、推論サービス提供システム、推論サービス提供方法及び推論サービス提供プログラム |
WO2022176945A1 (ja) * | 2021-02-22 | 2022-08-25 | パナソニックIpマネジメント株式会社 | 生成プロセス出力装置、生成プロセス出力方法、及びプログラム |
WO2023170856A1 (ja) * | 2022-03-10 | 2023-09-14 | 日本電気株式会社 | 計算システム及び計算方法 |
JP7508929B2 (ja) | 2020-07-31 | 2024-07-02 | セイコーエプソン株式会社 | 機械学習装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002097463A (ja) * | 2000-09-21 | 2002-04-02 | Tdk Corp | 蛍光体薄膜その製造方法およびelパネル |
JP2018503884A (ja) * | 2015-08-11 | 2018-02-08 | サビック グローバル テクノロジーズ ビー.ブイ. | 低い単位面積重量を有する多重プライ積層複合材 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002201064A (ja) * | 2000-12-27 | 2002-07-16 | Nippon Chemicon Corp | 誘電体磁器組成物、積層セラミックコンデンサとその製造方法 |
US7292958B2 (en) * | 2004-09-22 | 2007-11-06 | Massachusetts Institute Of Technology | Systems and methods for predicting materials properties |
JP5075362B2 (ja) * | 2005-07-05 | 2012-11-21 | 智久 石川 | 化合物の生理活性の定量的予測方法 |
US10002214B2 (en) * | 2013-10-29 | 2018-06-19 | University Of Southern California | Host materials and ligands for dopants in organic light emitting diodes |
KR102224714B1 (ko) * | 2013-12-03 | 2021-03-08 | 삼성전자주식회사 | 신규 물질 탐색 시스템 및 그 탐색 방법 |
JP6451935B2 (ja) * | 2014-11-21 | 2019-01-16 | 大日本印刷株式会社 | 圧着シート |
CN104504300B (zh) * | 2014-12-09 | 2017-07-18 | 西北师范大学 | 基于分子描述符稳定性的分子描述符选择方法 |
US10330657B2 (en) * | 2014-12-10 | 2019-06-25 | Bp Corporation North America Inc. | Estimation of conductivity for nanoporous materials |
JP6518001B2 (ja) * | 2016-03-08 | 2019-05-22 | 株式会社日立製作所 | 回転機の診断装置及び診断方法 |
JP7126337B2 (ja) * | 2016-10-27 | 2022-08-26 | 武田薬品工業株式会社 | 化合物の生物活性を予測するためのプログラム、装置及び方法 |
-
2019
- 2019-07-22 WO PCT/JP2019/028602 patent/WO2020031671A1/ja active Application Filing
- 2019-07-22 CN CN201980031963.9A patent/CN112189211B/zh active Active
- 2019-07-22 JP JP2020536428A patent/JP7398679B2/ja active Active
-
2021
- 2021-01-13 US US17/147,506 patent/US20210133635A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002097463A (ja) * | 2000-09-21 | 2002-04-02 | Tdk Corp | 蛍光体薄膜その製造方法およびelパネル |
JP2018503884A (ja) * | 2015-08-11 | 2018-02-08 | サビック グローバル テクノロジーズ ビー.ブイ. | 低い単位面積重量を有する多重プライ積層複合材 |
Non-Patent Citations (1)
Title |
---|
KOSEKI, TOSHIHIKO: "Materials data and Materials Integration System", JOURNAL OF INFORMATION PROCESSING AND MANAGEMENT, vol. 59, no. 3, 1 June 2016 (2016-06-01), pages 165 - 171, XP055684773, ISSN: 0021-7298, DOI: 10.1241/johokanri.59.165 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021174403A (ja) * | 2020-04-28 | 2021-11-01 | 株式会社日立製作所 | 材料の特性値を推定するシステム |
JP2021174402A (ja) * | 2020-04-28 | 2021-11-01 | 株式会社日立製作所 | 材料の特性値を推定するシステム |
WO2021220775A1 (ja) * | 2020-04-28 | 2021-11-04 | 株式会社日立製作所 | 材料の特性値を推定するシステム |
WO2021220776A1 (ja) * | 2020-04-28 | 2021-11-04 | 株式会社日立製作所 | 材料の特性値を推定するシステム |
JP7339924B2 (ja) | 2020-04-28 | 2023-09-06 | 株式会社日立製作所 | 材料の特性値を推定するシステム |
JP7339923B2 (ja) | 2020-04-28 | 2023-09-06 | 株式会社日立製作所 | 材料の特性値を推定するシステム |
EP4145327A4 (en) * | 2020-04-28 | 2024-07-03 | Hitachi Ltd | SYSTEM FOR ESTIMATING THE CHARACTERISTIC VALUE OF A MATERIAL |
JP7508929B2 (ja) | 2020-07-31 | 2024-07-02 | セイコーエプソン株式会社 | 機械学習装置 |
WO2022045334A1 (ja) * | 2020-08-31 | 2022-03-03 | 武田薬品工業株式会社 | 推論装置、推論方法、推論プログラム、モデル生成方法、推論サービス提供システム、推論サービス提供方法及び推論サービス提供プログラム |
WO2022176945A1 (ja) * | 2021-02-22 | 2022-08-25 | パナソニックIpマネジメント株式会社 | 生成プロセス出力装置、生成プロセス出力方法、及びプログラム |
WO2023170856A1 (ja) * | 2022-03-10 | 2023-09-14 | 日本電気株式会社 | 計算システム及び計算方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020031671A1 (ja) | 2021-08-12 |
CN112189211B (zh) | 2024-08-27 |
JP7398679B2 (ja) | 2023-12-15 |
US20210133635A1 (en) | 2021-05-06 |
CN112189211A (zh) | 2021-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020031671A1 (ja) | 材料記述子生成方法、材料記述子生成装置、材料記述子生成プログラム、予測モデル構築方法、予測モデル構築装置及び予測モデル構築プログラム | |
Hamacher et al. | Finding representative systems for discrete bicriterion optimization problems | |
US20200342953A1 (en) | Target molecule-ligand binding mode prediction combining deep learning-based informatics with molecular docking | |
KR20220047850A (ko) | 자원 제약 신경망 아키텍처 탐색 | |
Busiello et al. | Explorability and the origin of network sparsity in living systems | |
WO2018125337A2 (en) | Automated generation of workflows | |
Zhang et al. | Genetic pattern search and its application to brain image classification | |
CN112016691B (zh) | 一种量子线路的构建方法及装置 | |
JP7020547B2 (ja) | 情報処理装置、制御方法、及びプログラム | |
US20240202511A1 (en) | Gated linear networks | |
JP2020030638A (ja) | 材料情報出力方法、材料情報出力装置、材料情報出力システム、及びプログラム | |
US10790045B1 (en) | System and method for screening homopolymers, copolymers or blends for fabrication | |
Rodríguez et al. | A comparative study of different machine learning methods for dissipative quantum dynamics | |
EP4339840A1 (en) | Method and device with training database construction | |
AlSalibi et al. | A comparative study between the nearest neighbor and genetic algorithms: A revisit to the traveling salesman problem | |
Pencheva et al. | Generalized net models of basic genetic algorithm operators | |
CN115860060A (zh) | 用于神经网络训练的系统、电路、设备和/或方法 | |
Hubin | Bayesian model configuration, selection and averaging in complex regression contexts | |
CN113035286A (zh) | 产生新的化学结构的方法、神经网络设备和非瞬时计算机可读的介质 | |
Valdés et al. | Novel machine learning insights into the QM7b and QM9 quantum mechanics datasets | |
Dunn et al. | Accelerating Inference in Molecular Diffusion Models with Latent Representations of Protein Structure | |
WO2017159523A1 (ja) | 推論システム、推論方法、及び、記録媒体 | |
WO2018025288A1 (ja) | 推論システム、情報処理システム、推論方法、及び、記録媒体 | |
US20240289722A1 (en) | Method And Device For Estimating Size Of Pre-Registration Access Prior To Launch Of Game | |
Agarkhed et al. | Efficient Security Model for Pervasive Computing Using Multi-Layer Neural Network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19848527 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2020536428 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19848527 Country of ref document: EP Kind code of ref document: A1 |