WO2020031335A1 - User terminal - Google Patents
User terminal Download PDFInfo
- Publication number
- WO2020031335A1 WO2020031335A1 PCT/JP2018/029946 JP2018029946W WO2020031335A1 WO 2020031335 A1 WO2020031335 A1 WO 2020031335A1 JP 2018029946 W JP2018029946 W JP 2018029946W WO 2020031335 A1 WO2020031335 A1 WO 2020031335A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- user terminal
- search space
- pdsch
- channel
- downlink
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
Definitions
- the present disclosure relates to a user terminal in a next-generation mobile communication system.
- LTE Long Term Evolution
- LTE-A LTE Advanced, LTE @ Rel. 10, 11, 12, 13
- LTE @ Rel. 8, 9 LTE @ Rel. 8, 9
- a user terminal transmits downlink control information (DCI) transmitted via a downlink control channel (for example, PDCCH: Physical @ Downlink @ Control @ Channel).
- DCI downlink control information
- a downlink control channel for example, PDCCH: Physical @ Downlink @ Control @ Channel
- PDSCH Physical Downlink Shared Channel
- the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
- E-UTRA Evolved Universal Terrestrial Radio Access
- E-UTRAN Evolved Universal Terrestrial Radio Access Network
- NR future wireless communication system
- BF beamforming
- TCI state the state of the transmission configuration instruction (TCI: Transmission Configuration Indication or Transmission Configuration Indicator) of the channel
- the user terminal performs reception processing (for example, reception, demapping, demodulation, and decoding) of the channel. (At least one).
- the TCI state is information on pseudo collocation (QCL: Quasi-Co-Location) of a channel or a signal, and is also called a spatial reception parameter or the like.
- the TCI state is specified to the user terminal for each channel or signal.
- the user terminal determines at least one of a transmission beam (Tx beam) and a reception beam (Rx beam) of each channel based on the TCI state specified for each channel.
- At least one symbol assigned to a downlink shared channel (for example, PDSCH) in a slot overlaps with a search space in which a downlink control channel (for example, PDCCH) is monitored. collide)).
- a downlink control channel for example, PDCCH
- a user terminal includes a receiving unit that receives information indicating a transmission configuration instruction (TCI) state of a downlink shared channel, and at least one symbol allocated to the downlink shared channel in a slot is assigned to the downlink control channel.
- TCI transmission configuration instruction
- the control unit controls a reception process for at least one of the downlink shared channel and the downlink control channel in the slot.
- FIG. 1A and 1B are diagrams illustrating an example of PDSCH and PDCCH reception control in NR.
- 2A and 2B are diagrams illustrating an example of the operation of the user terminal in the case where the number of PDSCH symbols> the number of symbols in the search space.
- FIG. 3 is a diagram illustrating another example of the operation of the user terminal when the number of symbols of the PDSCH> the number of symbols of the search space.
- 4A and 4B are diagrams illustrating an example of the operation of the user terminal in the case where the number of PDSCH symbols ⁇ the number of search space symbols.
- FIG. 5 is a diagram illustrating another example of the operation of the user terminal in the case where the number of PDSCH symbols> the number of symbols in the search space.
- FIG. 6 is a diagram illustrating an example of the operation of the user terminal when at least a part of the frequency domain resources allocated to the PDSCH does not overlap with the search space.
- FIG. 7 is a diagram illustrating an example of the operation of the user terminal when at least a part of the frequency domain resources allocated to the PDSCH overlaps with the search space.
- 8A and 8B are diagrams illustrating an example of a Tx beam and an Rx beam according to the second embodiment.
- 9A and 9B are diagrams illustrating an example of an operation of the user terminal when at least one symbol assigned to the PDSCH according to the second example overlaps with a search space.
- FIG. 10 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
- FIG. 10 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
- FIG. 11 is a diagram showing an example of the entire configuration of the base station according to the present embodiment.
- FIG. 12 is a diagram illustrating an example of a functional configuration of the base station according to the present embodiment.
- FIG. 13 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment.
- FIG. 14 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment.
- FIG. 15 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the present embodiment.
- a user terminal performs a reception process (for example, reception, demapping, demodulation, and decoding) on a channel based on a state (TCI state) of a channel transmission configuration instruction (TCI: Transmission Configuration Indication or Transmission Configuration Indicator). (At least one).
- the TCI state is information on pseudo collocation (QCL: Quasi-Co-Location) of a channel or a signal, and is also called a spatial reception parameter, spatial information (spatial @ info), or the like.
- the TCI state is specified to the user terminal for each channel or signal.
- the user terminal may determine at least one of the transmission beam (Tx beam) and the reception beam (Rx beam) of each channel based on the TCI state specified for each channel.
- QCL is an index indicating the statistical property of at least one of a channel and a signal (channel / signal). For example, when a plurality of channels / signals have a QCL relationship, a Doppler shift (doppler shift), a Doppler spread (doppler spread), an average delay (average delay), a delay spread ( It may mean that it can be assumed that at least one of delay @ spread, spatial parameter (Spatial @ parameter) (e.g., spatial receiving parameter (Spatial @ Rx @ Parameter)) is the same (QCL for at least one of these).
- spatial parameter spatial parameter
- spatial receiving parameter Spatial @ Rx @ Parameter
- the QCL information for each channel may include (or indicate) at least one of the following information: Information indicating the QCL type (QCL type information); Information on a reference signal (RS: Reference Signal) having a QCL relationship with each channel (RS information); Information indicating a carrier (cell) where the RS is located; Information indicating a bandwidth part (BWP: Bandwidth Part) in which the RS is located; Information indicating a spatial reception parameter (for example, Rx beam) of each channel.
- Information indicating the QCL type QCL type information
- RS Reference Signal
- RS information Reference Signal having a QCL relationship with each channel
- RS information Information indicating a carrier (cell) where the RS is located
- BWP Bandwidth Part
- Information indicating a spatial reception parameter for example, Rx beam
- the TDC state for the PDCCH may specify information about the PDCCH (or the demodulation reference signal (DMRS) of the PDCCH) and the RS related to the QCL (for example, the resource of the RS).
- the DMRS may be paraphrased as an antenna port of the DMRS (DMRS port) or a group of the DMRS ports (DMRS port group).
- one or more TCI states may be configured (configured) by higher layer signaling for each control resource set (CORESET: Control Resource Set). Further, when one or more TCI states are set per CORESET, a single TCI state may be activated by MAC (Medium Access Control) signaling.
- CORESET Control Resource Set
- the upper layer signaling may be, for example, any one of RRC (Radio Resource Control) signaling, broadcast information, and the like, or a combination thereof.
- the broadcast information may be, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), minimum system information (RMSI: Remaining Minimum System Information), or the like.
- the MAC signaling may use, for example, a MAC control element (MAC @ CE (Control @ Element)), MAC @ PDU (Protocol @ Data @ Unit), or the like.
- $ CORESET may be associated with a search space that includes one or more PDCCH candidates (PDCCH $ candidates).
- PDCCH $ candidates One or more search spaces per coreset may be associated.
- the user terminal may monitor the search space and detect the PDCCH (DCI).
- the PDCCH candidate is a resource unit to which one PDCCH is mapped, and may be configured by, for example, a number of control channel elements (CCE: Control Channel Element) according to an aggregation level.
- CCE Control Channel Element
- the search space may include a number of PDCCH candidates according to the aggregation level.
- the user terminal may control the process of receiving the PDCCH based on a TCI state corresponding to (or activated for) the CORESET. Specifically, the user terminal may perform the PDCCH reception process on the assumption that the user terminal is transmitted using the same Tx beam as the RS specified by the TCI state. Further, the user terminal may determine a spatial reception parameter (Rx beam) of the PDCCH based on the TCI state.
- Rx beam spatial reception parameter
- the TCI state for PDSCH may specify information (for example, resources of the RS) on the RS that has a QCL relationship with the PDSCH (or the DMRS of the PDSCH).
- the DMRS may be paraphrased as a DMRS port or a DMRS port group.
- the user terminal may be notified (configured) of M (M ⁇ 1) TCI states (QCL information for M PDSCHs) for PDSCH by higher layer signaling. At least some of the M TCI states may be activated by MAC signaling.
- the value of a predetermined field (eg, TCI field) in the DCI that schedules the PDSCH may indicate one of the configured (or activated) TCI states.
- the user terminal may control the PDSCH reception process based on the TCI status indicated by the predetermined field value in DCI. Specifically, the user terminal may perform the PDSCH receiving process on the assumption that the user terminal is transmitted using the same Tx beam as the RS specified by the TCI state. Further, the user terminal may determine a spatial reception parameter (Rx beam) of the PDSCH based on the TCI state.
- Rx beam spatial reception parameter
- FIGS. 1A and 1B are diagrams showing an example of PDSCH and PDCCH reception control in NR.
- a transmission / reception point (TRP: Transmission ⁇ Reception ⁇ Point) may form a plurality of transmission beams (for example, Tx beams # 1 to # 4).
- TRP may be paraphrased as eNodeB (eNB), gNodeB (gNB), base station, radio base station, transmission point, or the like.
- the Tx beams # 1 to # 4 in FIG. 1 may be digital beams.
- Digital beam is a method of performing precoding signal processing (on a digital signal) on baseband.
- parallel processing of inverse fast Fourier transform (IFFT: Inverse Fast Fourier Transform) / digital-analog conversion (DAC: Digital to Analog Converter) / RF (Radio Frequency) is required only for the number of antenna ports (RF chains). Become.
- beams can be formed in a number corresponding to the number of RF @ chain.
- the user terminal may form a plurality of Rx beams (for example, Rx beams # 1 and # 2).
- a user terminal may be paraphrased as User @ Equipment (UE), a terminal, an apparatus, a device, or the like.
- UE User @ Equipment
- the Rx beams # 1 and # 2 in FIG. 1 may be analog beams.
- Analog beam is a method using a phase shifter on RF. In this case, since only the phase of the RF signal is rotated, the configuration can be easily realized at low cost. On the other hand, there is a problem that a plurality of beams cannot be formed at the same timing.
- FIG. 1B shows an example of PDCCH and PDSCH reception control using the pair of Tx beam and Rx beam (also referred to as a beam pair, beam pair link (BPL: Beam Pair Link), etc.) shown in FIG. 1A.
- BPL Beam Pair Link
- both the PDCCH and the PDSCH are transmitted with Tx beam # 2.
- PDCCH is received using Rx beam # 1
- PDSCH is received using Rx beam # 2.
- the Rx beam differs between the PDCCH and the PDSCH. Note that the Rx beam, the TCI state, the spatial reception parameter, and the QCL information may be paraphrased mutually.
- FIG. 1B a case is assumed where simultaneous reception (simultaneous RX) of PDCCH and PDSCH with different Rx beams is set.
- the PDCCH is mapped to one of the PDCCH candidates in the search space, and is detected by monitoring the search space.
- the present inventors studied a method of appropriately controlling at least one reception process of the PDSCH and the PDCCH in a slot where at least one symbol assigned to the PDSCH overlaps (collides) with the search space, and considers a method of the present invention. Reached.
- the TCI state of the PDSCH is indicated by a predetermined field value in the DCI
- the TCI state of the PDCCH is associated with the CORRESET in which the PDCCH is arranged. I can't.
- At least one cycle of the search space and the coreset, the frequency domain resource, the number of symbols, and the like may be configured in the user terminal by higher layer signaling.
- “reception processing” may include at least one of reception, demapping, demodulation, and decoding.
- the user terminal uses an analog beam.
- the user terminal controls a reception process for at least one of the PDSCH and the PDCCH in the slot.
- the user terminal determines which of the PDSCH or the PDCCH in the slot where at least one symbol assigned to the PDSCH overlaps with the search space based on at least one of the following parameters: It may be determined whether to perform the receiving process.
- Type of search space search space set
- Search space ID Search space ID
- CORESET type type or use
- CORESET ID CORESET ID
- Radio Network Temporary Identifier RNTI
- Number of symbols allocated to PDSCH and search space time length, period
- the operation of the user terminal based on the above parameters (1) to (6) in the slot where at least one symbol assigned to the PDSCH overlaps with the search space will be described in detail.
- the following user operation may be applied to the entire slot, or may be applied to a symbol (duplicate symbol) in which the PDSCH and the search space in the slot overlap.
- the search space may include at least one of the following types. ⁇ Search space common to one or more user terminals (common search space (CSS)) -User terminal specific search space (UE specific search space (USS)).
- CCS common search space
- USS User terminal specific search space
- the CSS may also include at least one of the following types: Type 0-PDCCH CSS, ⁇ Type 0A-PDCCH CSS, -Type 1-PDCCH CSS, -Type 2-PDCCH CSS, -Type 3-PDCCH CSS.
- Type 0-PDCCH ⁇ CSS is also called SS for SIB1, SS for RMSI (Remaining Minimum System Informatio), and the like.
- Type 0-PDCCH @ CSS is a cyclic redundancy check (CRC: Cyclic Redundancy @ Check) scrambled by a predetermined identifier (for example, SI-RNTI: System @ Information-Radio Network * Temporary @ Identifier). It may be a shared space (a search space for monitoring a DCI for scheduling a Physical Downlink Shared Channel).
- the CRC scrambling is to add (include) a CRC bit scrambled (masked) with a predetermined identifier to DCI.
- Type 0A-PDCCH CSS is also called SS for OSI (Other System Information).
- the type 0A-PDCCH @ CSS may be a search space for DCI that is scrambled with a predetermined identifier (for example, SI-RNTI) (a search space for monitoring DCI that schedules PDSCH for transmitting OSI).
- Type 1—PDCCH ⁇ CSS is also called SS for random access (RA).
- Type 1—PDCCH @ CSS is a DCI for DCI that is CRC-scrambled with a predetermined identifier (for example, RA-RNTI (Random @ Access-RNTI), TC-RNTI (Temporary @ Cell-RNTI) or C-RNTI (Cell-RNTI)).
- the search space may be a search space (a DCI monitoring search space for scheduling a PDSCH for transmitting a message for an RA procedure (for example, a random access response (message 2) and a collision resolution message (message 4)).
- Type 2—PDCCH ⁇ CSS is also referred to as paging SS, paging SS, and the like.
- Type 2-PDCCH @ CSS is a search space for CRC scramble DCI with a predetermined identifier (for example, P-RNTI: Paging-RNTI) (a search space for monitoring DCI that schedules PDSCH for transmitting paging). Good.
- Type 3—PDCCH @ CSS is transmission of a predetermined identifier (eg, INT-RNTI (Interruption @ RNTI) for indicating DL preemption, SFI-RNTI (Slot @ Format @ Indicator @ RNTI) for indicating slot format), and PUSCH (Physical @ Uplink @ Shared @ Channel).
- INT-RNTI Interruption @ RNTI
- SFI-RNTI Slot @ Format @ Indicator @ RNTI
- PUSCH Physical @ Uplink @ Shared @ Channel
- TPC-PUSCH-RNTI for power control (TPC: Transmit Power Control), TPC-PUCCH-RNTI for TPC of PUCCH (Physical Uplink Control Channel), TPC-SRS-RNTI for TPC of SRS (Sounding Reference Signal),
- the search space for CRC scramble DCI may be C-RNTI, CS-RNTI (Configured @ Scheduling @ RNTI) or SP-CSI-RNTI (Semi-Persistent-CSI-RNTI).
- the USS may be a search space for DCI to which a CRC bit scrambled by a predetermined identifier (for example, C-RNTI, CS-RNTI or SP-CSI-RNTI) is added (included).
- a predetermined identifier for example, C-RNTI, CS-RNTI or SP-CSI-RNTI
- the user terminal When at least one symbol assigned to the PDSCH in the slot overlaps with the search space, the user terminal performs either reception processing of the PDSCH or reception processing of the PDCCH in the search space based on the type of the search space. (Which one has priority) may be determined.
- the process of receiving the PDCCH in the search space may be either the process of monitoring the search space or the process of receiving the PDCCH detected by monitoring the search space.
- the user terminal may ignore the PDSCH and perform the process of receiving the PDCCH in the CSS.
- the type of the search space is CSS
- the user terminal may perform the PDSCH receiving process ignoring the PDCCH.
- ignore PDSCH may mean not receiving / decoding PDSCH or ignoring DCI for scheduling PDSCH. Further, “ignoring the PDCCH” may mean not monitoring the search space in which the PDCCH is arranged, or not performing the PDCCH reception process.
- the user terminal may ignore the PDSCH and perform the PDCCH reception processing in the CSS. Good.
- the type of the search space is USS, the user terminal may perform the PDSCH receiving process ignoring the PDCCH.
- ET ETWS Earthquake and Tsunami Warning System
- Earthquake Early Warning is placed in Type 2-PDCCH CSS (Paging SS) and triggered by DCI (Paging DCI) CRC scrambled by P-RNTI.
- the user terminal confirms the update of the system information based on the paging DCI. For this reason, when at least one symbol assigned to the PDSCH overlaps with the paging SS, reception of the paging SS can be prioritized, and user terminals scheduled for the same timing of the PDSCH can also receive an emergency earthquake bulletin.
- a set of one or more search spaces may be referred to as a search space set.
- the determination based on the search space type may be replaced with a search space set type determination.
- Search space ID is assigned to the search space.
- search space # 0 whose search space ID is “0” may be used as the type 0-PDCCH CSS.
- the user terminal determines whether to perform the PDSCH reception process or the PDCCH reception process in the search space based on the search space ID of the search space. (Which is given priority) may be determined.
- the user terminal may ignore the PDSCH and perform the PDCCH reception process in the search space.
- the search space ID is a value other than the specific value, the user terminal may ignore the PDCCH and perform the PDSCH receiving process.
- CORESET Type CORESET may include one or more types (uses, types) of CORESET.
- CORESET # 0 may be set based on an index in the MIB, and a DCI for scheduling SIB1 may be arranged.
- the user terminal when at least one symbol assigned to the PDSCH overlaps with the search space, the user terminal performs the PDSCH reception processing and the search space based on the type (type, use) of the CORRESET associated with the search space. May be determined as to which of the PDCCH reception processes to perform (which has priority).
- the user terminal may ignore the PDSCH and perform the PDCCH reception process in the search space associated with the RESET.
- the coreset is not a specific coreset, the user terminal may ignore the PDCCH and perform the PDSCH receiving process.
- CORESET ID CORESET is given a CORESET ID.
- the above-mentioned CORRESET # 0 is provided with a reset ID “0”.
- the user terminal when at least one symbol assigned to the PDSCH overlaps with the search space, the user terminal performs the reception processing of the PDSCH and the reception of the PDCCH in the search space based on the coreset ID of the coreset associated with the search space. Which of the processes to perform (which has priority) may be determined.
- the user terminal may ignore the PDSCH and perform the PDCCH reception process in the search space associated with the CORRESET.
- the CORSET @ ID is a value other than the specific value, the user terminal may ignore the PDCCH and perform the PDSCH receiving process.
- the RNTI includes SI-RNTI, RA-RNTI, TC-RNTI, P-RNTI, INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, and TPC-PUCCH-RNTI. , TPC-SRS-RNTI, C-RNTI, CS-RNTI, SP-CSI-RNTI and so on.
- the user terminal receives the PDSCH based on the type of RNTI in which the monitored DCI of the search space is CRC-scrambled. It may be determined which of the processing and the PDCCH reception processing in the search space is to be performed (which one has priority).
- the user terminal may ignore the PDSCH and perform the PDCCH reception process in the search space. Good.
- the CORSET @ ID is a value other than the specific value, the user terminal may ignore the PDCCH and perform the PDSCH receiving process.
- the user terminal determines that the symbol allocated to the PDSCH and the search space overlaps (overlapping symbol). Whether to perform the reception processing of the PDCCH or the PDSCH in the symbol) may be determined based on the PDSCH and the number of symbols in the search space.
- the user terminal may perform PDCCH reception processing ignoring PDSCH in the duplicated symbols.
- the user terminal may ignore the PDCCH and perform the PDSCH receiving process on the duplicated symbol.
- FIGS. 2A and 2B are diagrams illustrating an example of the operation of the user terminal in the case where the number of PDSCH symbols> the number of symbols in the search space.
- the user terminal performs PDCCH reception processing on symbols overlapping the PDSCH and the search space. Is also good.
- the user terminal may perform PDSCH reception processing on a symbol (non-overlapping symbol) in which the allocation of the PDSCH and the search space do not overlap, assuming that the PDSCH is punctured by the overlapping symbol. .
- the user terminal may perform the PDCCH reception process on the duplicated symbol.
- the user terminal may perform PDSCH reception processing on the non-overlapping symbol, assuming that PDSCH is rate-matched on the non-overlapping symbol instead of puncturing the PDSCH with the overlapping symbol. Good.
- the user terminal may perform the receiving process of either the PDSCH or the PDCCH and ignore the other in the slot where the PDSCH and the search space are assigned in the same slot.
- which of the PDSCH and the PDSCH reception processing is to be performed can be determined using at least one of the above parameters (1) to (5).
- FIG. 3 is a diagram illustrating another example of the operation of the user terminal in the case where the number of PDSCH symbols> the number of symbols in the search space.
- a PDCCH detected by monitoring the search space in a symbol overlapping the search space with the PDSCH in a certain slot is received / decoded.
- At least one predetermined number of symbols before and after the search space among the non-overlapping symbols may be used as an Rx beam switching period.
- the user terminal may ignore the PDSCH in the predetermined number of symbols. Further, when there is a remaining non-overlapping symbol assigned to the PDSCH in the certain slot, the user terminal may perform the PDSCH receiving process with the remaining non-overlapping symbol.
- the predetermined number of symbols for the Rx beam switching period may be determined in advance in specifications or may depend on the implementation of the user terminal. For example, in FIG. 3, an Rx beam switching period is provided for every two symbols before and after the search space, but the present invention is not limited to this.
- FIGS. 4A and 4B are diagrams illustrating an example of the operation of the user terminal in the case where the number of symbols of PDSCH ⁇ the number of symbols of search space. 4A and 4B differ from FIGS. 2A and 2B in that the number of PDSCH symbols is smaller than the number of symbols in the search space. In the following, description will be made focusing on differences from FIGS. 2A and 2B.
- the user terminal may perform the PDSCH receiving process on the overlapping symbols.
- the user terminal may perform the PDCCH reception process in the search space in the non-overlapping symbol, assuming that the PDCCH is punctured by the overlapping symbol.
- the user terminal may perform the PDSCH receiving process on the duplicated symbol.
- the user terminal may perform the PDCCH reception processing on the non-overlapping symbol on the assumption that the PDCCH is rate-matched on the non-overlapping symbol instead of puncturing the PDCCH on the overlapping symbol. Good.
- the user terminal may perform one of the PDSCH and PDCCH reception processes in a slot where the PDSCH and search space allocations overlap, and ignore the other.
- whether to receive (ignore) the PDSCH or the PDSCH can be determined using at least one of the above parameters (1) to (5).
- FIG. 5 is a diagram showing another example of the operation of the user terminal when the number of PDSCH symbols> the number of search space symbols.
- the PDSCH receiving process is performed on the symbols overlapping the PDSCH and the search space in the slot.
- At least one predetermined number of symbols before and after the symbol allocated to the PDSCH among the non-overlapping symbols may be used as an Rx beam switching period.
- the user terminal may ignore the PDCCH in the predetermined number of symbols. Further, when there is a remaining non-overlapping symbol to be allocated to the search space in the slot, the user terminal may perform a PDCCH reception process using the remaining non-overlapping symbol.
- the predetermined number of symbols for the Rx beam switching period may be determined in advance in specifications or may depend on the implementation of the user terminal. For example, in FIG. 5, it is assumed that the Rx beam switching period is provided two symbols before and after the PDSCH allocation symbol, but the present invention is not limited to this.
- the user terminal cannot receive / decode the PDCCH because there is no remaining non-overlapping symbol allocated to the search space in the certain slot.
- the user terminal may control the Rx beam switching period based on the number of symbols allocated to the search space in the certain slot. For example, in the case shown in FIG. 5, by shortening or eliminating the switching period of the Rx beam, the user terminal may perform the PDCCH reception process using the non-overlapping symbol allocated to the search space.
- the user terminal may control at least one reception process of the PDSCH and the PDCCH in a slot where at least one symbol assigned to the PDSCH overlaps with the search space. Good.
- the user terminal may perform reception processing of both the PDSCH and the PDCCH in the search space in the slot (including the overlapping symbol). .
- the frequency domain resource may be, for example, a physical resource block (PRB: Physical Resource Block) (resource block), a resource block group including one or more PRBs (RBG: Resource Resource Block Group), or one or more subcarriers. Good.
- PRB Physical Resource Block
- RBG Resource Resource Block Group
- the user terminal may determine (select) a channel or a search space in which reception processing is preferentially performed in the slot (including the duplicate symbol) based on a predetermined criterion.
- the predetermined criterion is a bandwidth (the number of PRBs or the number of RBGs) allocated to at least one of the PDSCH and the search space, a channel estimation number, a subcarrier interval (SCS: Subcarrier Spacing), a search space type or ID, It may be at least one of a coreset type or ID and an aggregation level.
- FIG. 6 is a diagram illustrating an example of the operation of the user terminal when at least a part of the frequency domain resources allocated to the PDSCH does not overlap with the search space.
- FIG. 6 illustrates an example in which the number of symbols of the PDSCH is larger than the number of symbols of the search space, the present invention is not limited to this.
- the user terminal when at least one symbol assigned to the PDSCH overlaps with the search space, but at least a part of the frequency domain resources assigned to the PDSCH does not overlap with the search space, the user terminal performs the same TCI state. Based on the (spatial reception parameter), reception processing of both PDSCH and PDCCH may be performed. For example, in FIG. 6, the user terminal may perform the receiving process of the PDSCH and the PDCCH with the symbol overlapping the PDSCH and the search space, and may perform the receiving process of the PDSCH with the non-overlapping symbol.
- the user terminal may determine (select) a channel or a search space in which reception processing is preferentially performed in the slot (including overlapping symbols) based on a predetermined priority.
- the predetermined priority may be set to one of the following, for example, when the number of estimated channels is 20: CSS PDCCH> USS PDCCH> PDSCH, PDSCH> PDCCH of CSS> PDCCH of USS.
- the predetermined priority may be determined based on the aggregation level. For example, if the aggregation level is greater than (greater than or equal to) a predetermined value, priority may be given to PDSCH reception processing, and if the aggregation level is equal to or less than (less than) a predetermined value, priority may be given to PDCCH reception processing. Alternatively, the opposite control may be performed.
- the user terminal When at least a part of the frequency domain resource allocated to the PDSCH overlaps with the search space, the user terminal performs the reception process of one of the PDSCH and the PDCCH in the search space in the frequency domain resource where the PDSCH and the search space overlap. May go.
- whether to perform the PDSCH or PDSCH reception processing in the overlapping frequency domain resources may be determined using at least one of the parameters (1) to (6), or May be determined according to the priority order.
- FIG. 7 is a diagram illustrating an example of an operation of the user terminal when at least a part of the frequency domain resources allocated to the PDSCH overlaps with the search space.
- FIG. 7 illustrates an example in which the number of PDSCH symbols is larger than the number of symbols in the search space, the present invention is not limited to this.
- the user terminal when at least one symbol assigned to the PDSCH overlaps with the search space and at least a part of the frequency domain resources assigned to the PDSCH overlap with the search space, the user terminal performs , Based on the same TCI state (spatial reception parameter), at least one reception process of PDSCH and PDCCH may be performed.
- TCI state spatial reception parameter
- the user terminal may perform reception processing of either the PDSCH or the PDCCH in the overlapping frequency domain resources among the overlapping symbols of the PDSCH and the search space, and may ignore the other.
- the reception processing of the channel (here, PDCCH) allocated to the non-overlapping frequency domain resources may be performed.
- the user terminal may or may not perform the PDSCH reception processing.
- the base station may allocate frequency domain resources to the PDSCH such that the search space and the frequency domain resources of the PDSCH do not overlap (for example, as shown in FIG. 6) in the duplicated symbols.
- the base station may control the mapping of the PDCCH to the PDCCH candidate composed of the frequency domain resources that do not overlap with the PDSCH in the overlapping symbol according to a predetermined priority.
- the predetermined priority may be determined based on at least one of the above parameters (1) to (6).
- the base station may map at least one of CSS and USS to a PDCCH candidate configured with a frequency domain resource that does not collide with PDSCH, or may map only a specific CSS.
- the user terminal in a case where the user terminal uses an analog beam and at least one symbol assigned to the PDSCH in the slot overlaps with the search space, the user terminal transmits the PDSCH and the PDCCH in the slot. At least one of the receiving processes can be appropriately controlled.
- the user terminal supports a digital beam or a multi-panel.
- FIGS. 8A and 8B are diagrams illustrating an example of a Tx beam and an Rx beam according to the second embodiment.
- FIG. 8A is different from FIG. 1A in that Rx beams # 1 and # 2 of the user terminal are digital beams. If the user terminal supports digital beams, multiple Rx beams can be formed at the same timing.
- FIG. 8B shows an example of a multi-panel.
- a plurality of Rx beams can be formed at the same timing.
- the user terminal determines the PDSCH and the search space in the duplicate symbol based on the capability information (UE @ capability) of the user terminal regardless of whether the TDC state for the PDCCH is different from the TCI state for the PDSCH. May control at least one PDCCH reception process.
- the user terminal may notify the base station of capability information indicating whether or not the user terminal has the capability to perform the reception processing of the PDCCH and the PDSCH in different TCI states at the same timing. If the user terminal has the capability, the user terminal may control at least one reception process of the PDSCH in the duplicate symbol and the PDCCH in the search space regardless of whether the TCI state for the PDCCH and the TCI state for the PDSCH are different. Good.
- the user terminal determines whether or not the TSCH state for the PDCCH and the TCI state for the PDSCH are different from each other in the PDSCH and the search space in the duplicate symbol, as in the first aspect. At least one reception process of the PDCCH may be controlled.
- FIGS. 9A and 9B are diagrams showing an example of the operation of the user terminal when at least one symbol assigned to the PDSCH according to the second example overlaps with the search space.
- 9A and 9B illustrate an example in which the number of symbols of the PDSCH is larger than the number of symbols of the search space, but the present invention is not limited to this.
- FIG. 9A shows a case where at least a part of the frequency domain resources allocated to the PDSCH does not overlap with the search space.
- FIG. 9B shows a case where at least a part of the frequency domain resources allocated to the PDSCH overlaps with the search space.
- the TDC state of the PDCCH (Rx beam, spatial reception parameter) and the TCI state of the PDSCH (Rx beam , Spatial reception parameters)
- Rx beam spatial reception parameter
- TCI state of the PDSCH Rx beam , Spatial reception parameters
- the TDC state of the PDCCH (Rx beam, spatial reception parameter) and the TCI state of the PDSCH (Rx beam, spatial reception parameter) are different, it is possible to receive / decode both the PDSCH in the duplicated symbol and the PDCCH in the search space as in the case where the TDC state of the PDCCH and the TCI state of the PDSCH are the same.
- the user terminal determines whether the TCI state for the PDCCH and the TCI state for the PDSCH of the first mode are different regardless of whether the TCI state for the PDCCH is different from the TCI state for the PDSCH. In the case where they are the same>, the same control as in the case where ⁇ frequency domain resources do not overlap ⁇ (for example, FIG. 6) can be performed.
- the user terminal determines whether the ⁇ PDCCH TCI state and the PDSCH TCI state of the first aspect are ⁇ PDCCH TCI state and PDSCH TCI state, regardless of whether the PDCCH TCI state and the PDSCH TCI state are different.
- the same control can be performed as in the case of “the case where they are the same” ⁇ the case where the frequency domain resources overlap ⁇ (for example, FIG. 7).
- the base station When the base station receives the capability information indicating that it has the capability to perform the reception processing of the PDCCH and the PDSCH in different TCI states at the same timing, as illustrated in FIG. 9A, the overlapping symbol does not overlap with the search space. In this way, frequency domain resources for PDSCH may be allocated. This can prevent the user terminal operation in the frequency domain resource where the search space overlaps with the PDSCH in FIG. 9B from becoming complicated.
- the user terminal uses a digital beam or a multi-panel and at least one symbol assigned to the PDSCH in the slot overlaps with the search space, the user terminal uses the PDSCH in the slot. And reception processing for at least one of the PDCCHs.
- wireless communication system Wireless communication system
- communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
- FIG. 10 is a diagram showing an example of a schematic configuration of the wireless communication system according to the present embodiment.
- carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a unit of a system bandwidth (for example, 20 MHz) of an LTE system are applied. can do.
- DC dual connectivity
- the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- LTE-B LTE-Beyond
- SUPER 3G IMT-Advanced
- 4G 4th generation mobile communication system
- 5G 5th generation mobile communication system
- NR New Radio
- FRA Full Radio Access
- New-RAT Radio Access Technology
- the wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
- a base station 11 forming a macro cell C1 having relatively wide coverage
- a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
- user terminals 20 are arranged in the macro cell C1 and each small cell C2.
- the arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
- the user terminal 20 can be connected to both the base station 11 and the base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. Further, the user terminal 20 may apply CA or DC using a plurality of cells (CC).
- CC a plurality of cells
- Communication between the user terminal 20 and the base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
- a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, or the like
- a wide bandwidth may be used, or between the user terminal 20 and the base station 11.
- the same carrier as described above may be used. Note that the configuration of the frequency band used by each base station is not limited to this.
- the user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- a single numerology may be applied, or a plurality of different numerologies may be applied.
- Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like.
- the numerology may be referred to as different.
- the base station 11 and the base station 12 may be connected by wire (for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)) or wirelessly. Good.
- wire for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)
- CPRI Common Public Radio Interface
- the base station 11 and each base station 12 are respectively connected to the upper station apparatus 30, and are connected to the core network 40 via the upper station apparatus 30.
- the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
- RNC radio network controller
- MME mobility management entity
- each base station 12 may be connected to the higher station apparatus 30 via the base station 11.
- the base station 11 is a base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
- the base station 12 is a base station having local coverage, such as a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and a transmission / reception point. May be called.
- a base station 10 when the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
- Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
- orthogonal frequency division multiple access Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier
- Frequency Division Multiple Access Frequency Division Multiple Access
- / or OFDMA is applied.
- OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier for communication.
- SC-FDMA divides a system bandwidth into bands each composed of one or a continuous resource block for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method.
- the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
- a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel and the like shared by each user terminal 20 are used. Used.
- the PDSCH transmits user data, upper layer control information, SIB (System @ Information @ Block), and the like. Also, MIB (Master ⁇ Information ⁇ Block) is transmitted by PBCH.
- SIB System @ Information @ Block
- MIB Master ⁇ Information ⁇ Block
- Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like.
- Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and / or PUSCH is transmitted by PDCCH.
- the DCI that schedules DL data reception may be called a DL assignment
- the DCI that schedules UL data transmission may be called an UL grant.
- PCFICH transmits the number of OFDM symbols used for PDCCH.
- the PHICH transmits HARQ (Hybrid Automatic Repeat Repeat request) acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) for the PUSCH.
- HARQ Hybrid Automatic Repeat Repeat request
- the EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
- PDSCH Downlink Shared Data Channel
- an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used.
- PUSCH Physical Uplink Shared Channel
- PUCCH Physical Uplink Control Channel
- PRACH Physical Random Access Channel
- user data higher layer control information, etc. are transmitted.
- downlink radio quality information CQI: Channel Quality Indicator
- acknowledgment information acknowledgment information
- scheduling request (SR: Scheduling Request), and the like are transmitted by PUCCH.
- the PRACH transmits a random access preamble for establishing a connection with a cell.
- a cell-specific reference signal CRS
- CSI-RS channel state information reference signal
- DMRS demodulation reference signal
- PRS Positioning Reference Signal
- a reference signal for measurement SRS: Sounding Reference Signal
- DMRS reference signal for demodulation
- the DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
- FIG. 11 is a diagram showing an example of the entire configuration of the base station according to the present embodiment.
- the base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
- the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
- the baseband signal processing unit 104 regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control) Transmission / reception control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc., and transmission / reception processing are performed.
- RLC Radio Link Control
- MAC Medium Access
- Transmission / reception control for example, HARQ transmission processing
- scheduling transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc.
- IFFT inverse fast Fourier transform
- the transmission / reception section 103 converts the baseband signal pre-coded and output from the baseband signal processing section 104 for each antenna into a radio frequency band, and transmits the radio frequency band.
- the radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101.
- the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
- a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
- the transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102.
- Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
- the baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform), inverse discrete Fourier transform (IDFT), and error correction on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106.
- the call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the base station 10, management of radio resources, and the like.
- the transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface.
- the transmission line interface 106 transmits and receives signals (backhaul signaling) to and from another base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). Is also good.
- the transmitting and receiving unit 103 may further include an analog beamforming unit that performs analog beamforming.
- the analog beamforming unit includes an analog beamforming circuit (for example, a phase shifter, a phase shift circuit) or an analog beamforming device (for example, a phase shifter) described based on common recognition in the technical field according to the present invention. May be.
- the transmitting / receiving antenna 101 may be constituted by, for example, an array antenna.
- FIG. 12 is a diagram showing an example of a functional configuration of the base station according to the present embodiment.
- functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that base station 10 also has other functional blocks necessary for wireless communication.
- the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations need only be included in base station 10, and some or all of the configurations need not be included in baseband signal processing section 104.
- the control unit (scheduler) 301 controls the entire base station 10.
- the control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
- the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
- the control unit 301 performs scheduling (for example, resource transmission) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like). Allocation). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
- scheduling for example, resource transmission
- a downlink data signal for example, a signal transmitted on the PDSCH
- a downlink control signal for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like. Allocation.
- control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
- the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), SSB, downlink reference signals (for example, CRS, CSI-RS, DMRS).
- synchronization signals for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)
- SSB Downlink reference signals
- CRS channel reference signals
- CSI-RS CSI-RS
- DMRS Downlink reference signals
- the control unit 301 includes an uplink data signal (for example, a signal transmitted on the PUSCH), an uplink control signal (for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.), a random access preamble (for example, a PRACH). (Transmission signal), scheduling of uplink reference signals and the like.
- an uplink data signal for example, a signal transmitted on the PUSCH
- an uplink control signal for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.
- a random access preamble for example, a PRACH.
- Transmission signal scheduling of uplink reference signals and the like.
- the control unit 301 controls to form a transmission beam and / or a reception beam using digital BF (for example, precoding) in the baseband signal processing unit 104 and / or analog BF (for example, phase rotation) in the transmission / reception unit 103. May be performed.
- the control unit 301 may perform control to form a beam based on downlink propagation path information, uplink propagation path information, and the like. These propagation path information may be acquired from the reception signal processing unit 304 and / or the measurement unit 305.
- Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated signal to mapping section 303.
- the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
- the transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example.
- the DL assignment and the UL grant are both DCI and follow the DCI format.
- the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel ⁇ State ⁇ Information) from each user terminal 20 or the like.
- CSI Channel ⁇ State ⁇ Information
- Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the result to transmission / reception section 103.
- the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 103.
- the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
- the reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
- the measurement unit 305 performs measurement on the received signal.
- the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
- the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal.
- Measuring section 305 receives power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
- Power for example, RSRP (Reference Signal Received Power)
- reception quality for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)
- Signal strength for example, RSSI (Received Signal Strength Indicator)
- channel information for example, CSI
- the measurement result may be output to the control unit 301.
- the transmitting / receiving section 103 may transmit a downlink shared channel (for example, PDSCH) and a downlink control channel (for example, PDCCH) (downlink control information).
- a downlink shared channel for example, PDSCH
- a downlink control channel for example, PDCCH
- the transmission / reception unit 103 is applied to information on at least one TCI state of the downlink shared channel and the downlink control channel (for example, configuration (configuration) information of the TCI state, information indicating the TCI state to be activated, PDCCH or PDSCH). Or at least one of the information indicating the TCI state of the TCI.
- the control unit 301 allocates a frequency domain resource to the downlink shared channel in the overlapping symbol. May be controlled. For example, as illustrated in FIG. 6 or 9A, the control unit 301 may allocate a frequency domain resource that does not overlap with the search space to the downlink shared channel.
- FIG. 13 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment.
- the user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
- the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
- the radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202.
- the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
- the transmitting / receiving section 203 converts the frequency of the received signal into a baseband signal and outputs the baseband signal to the baseband signal processing section 204.
- the transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
- the baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal.
- the downlink user data is transferred to the application unit 205.
- the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
- uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
- the baseband signal processor 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
- the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band.
- the radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
- the transmission / reception unit 203 may further include an analog beamforming unit that performs analog beamforming.
- the analog beamforming unit includes an analog beamforming circuit (for example, a phase shifter, a phase shift circuit) or an analog beamforming device (for example, a phase shifter) described based on common recognition in the technical field according to the present invention. May be.
- the transmitting / receiving antenna 201 may be constituted by, for example, an array antenna.
- FIG. 14 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
- the baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
- the control unit 401 controls the entire user terminal 20.
- the control unit 401 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
- the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls a signal reception process in the reception signal processing unit 404, a signal measurement in the measurement unit 405, and the like.
- the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the base station 10 from the reception signal processing unit 404.
- the control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
- the control unit 401 controls to form a transmission beam and / or a reception beam using digital BF (for example, precoding) in the baseband signal processing unit 204 and / or analog BF (for example, phase rotation) in the transmission / reception unit 203. May be performed.
- the control unit 401 may perform control to form a beam based on downlink channel information, uplink channel information, and the like. These propagation path information may be acquired from the reception signal processing unit 404 and / or the measurement unit 405.
- control unit 401 When the control unit 401 acquires various information notified from the base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
- Transmission signal generation section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403.
- the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
- the transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the base station 10 includes a UL grant.
- CSI channel state information
- Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203.
- the mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203.
- the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the base station 10.
- the reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
- the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
- the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
- the measuring unit 405 measures the received signal. For example, the measurement unit 405 may perform the same frequency measurement and / or the different frequency measurement on one or both of the first carrier and the second carrier. When the serving cell is included in the first carrier, measurement section 405 may perform different frequency measurement on the second carrier based on the measurement instruction acquired from received signal processing section 404.
- the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
- the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
- the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), and channel information (for example, CSI).
- the measurement result may be output to the control unit 401.
- the transmitting / receiving section 203 may receive a downlink shared channel (for example, PDSCH) and a downlink control channel (for example, PDCCH) (downlink control information).
- a downlink shared channel for example, PDSCH
- a downlink control channel for example, PDCCH
- the transmission / reception unit 203 is applied to information on at least one TCI state of the downlink shared channel and the downlink control channel (for example, configuration (configuration) information of the TCI state, information indicating the TCI state to be activated, PDCCH or PDSCH). Or at least one of the information indicating the TCI state of the TCI.
- At least one symbol assigned to the downlink shared channel in a slot overlaps with a search space in which the downlink control channel is monitored, at least one of the downlink shared channel and the downlink control channel in the slot. You may control the receiving process about one.
- the control unit 401 determines a type and an identifier of the search space, a type and an identifier of a control resource set associated with the search space, and a radio network temporary identifier. (RNTI), at least one of the downlink shared channel and the downlink control channel in the slot or in a symbol in which the downlink shared channel and the downlink control channel overlap in the slot. May be determined (first mode).
- RNTI radio network temporary identifier
- the control unit 401 determines whether the TCI state of the downlink shared channel is in the slot or in the slot based on the number of symbols of the downlink shared channel and the number of symbols of the search space. It may be determined whether to perform reception processing of the downlink shared channel or the downlink control channel in a symbol where the downlink shared channel and the downlink control channel overlap (FIGS. 2A, 2B, 4A, and 4B).
- control unit 401 may control the Rx beam switching period (FIGS. 3 and 5).
- the control unit 401 when the TCI state of the downlink shared channel is the same as the TCI state of the downlink control channel, and when the frequency domain resources allocated to the downlink shared channel do not overlap with the search space, the downlink shared channel and the Reception processing may be performed on both the downlink shared channel and the downlink control channel in symbols where downlink control channels overlap (FIG. 6).
- the control unit 401 When the frequency domain resource allocated to the downlink shared channel does not overlap with the search space, the control unit 401 regardless of whether the TCI state of the downlink shared channel is the same as the TCI state of the downlink control channel, In a symbol in which the downlink shared channel and the downlink control channel overlap, reception processing may be performed on both the downlink shared channel and the downlink control channel (FIG. 9A).
- the control unit 401 according to a priority determined based on at least one of the subcarrier interval, the number of estimated channels, the number of resource block groups, the type of search space, and the aggregation level, The receiving process of the downlink control channel may be controlled.
- the control unit 401 determines that the TCI state of the downlink shared channel is the same as the TCI state of the downlink control channel, and that at least one symbol assigned to the downlink shared channel in a slot is a search space in which the downlink control channel is monitored. If they overlap, the reception process of either the downlink shared channel or the downlink control channel in the frequency domain resource where the downlink shared channel and the search space overlap may be controlled (FIG. 7).
- the control unit 401 sets the TCI state of the downlink shared channel to the TCI state of the downlink control channel. Regardless of whether they are the same or not, the reception processing of either the downlink shared channel or the downlink control channel in a frequency domain resource where the downlink shared channel and the search space overlap may be controlled (see FIG. 9B).
- the control unit 401 may control the reception process of the downlink shared channel by ignoring the downlink control channel in the overlapping frequency domain resources (FIGS. 7 and 9B).
- the control unit 401 may control reception processing of the downlink control channel in at least one of frequency domain resources and symbols in which the downlink shared channel and the search space do not overlap.
- the control unit 401 may control the reception process of the downlink control channel by ignoring the downlink shared channel in the overlapping frequency domain resources (FIGS. 7 and 9B).
- the control unit 401 may control reception processing of the downlink shared channel in at least one of frequency domain resources and symbols in which the downlink shared channel and the search space do not overlap.
- the control unit 401 may stop the reception processing of the downlink shared channel in at least one of frequency domain resources and symbols in which the downlink shared channel and the search space do not overlap.
- each functional block is realized by an arbitrary combination of at least one of hardware and software.
- a method of implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.), and may be implemented using these multiple devices.
- the base station, the user terminal, and the like according to the present embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method according to the present disclosure.
- FIG. 15 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the present embodiment.
- the above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
- the term “apparatus” can be read as a circuit, a device, a unit, or the like.
- the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
- processor 1001 may be implemented by one or more chips.
- the functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
- predetermined software program
- the processor 1001 performs an arithmetic operation and communicates via the communication device 1004.
- the processor 1001 controls the entire computer by operating an operating system, for example.
- the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
- CPU Central Processing Unit
- the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
- the processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
- a program program code
- a program that causes a computer to execute at least a part of the operation described in the above embodiment is used.
- the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be implemented similarly.
- the memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one.
- the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the present embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured.
- the storage 1003 may be called an auxiliary storage device.
- the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured.
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like may be realized by the communication device 1004.
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input.
- the output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
- the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- the channel and the symbol may be a signal (signaling).
- the signal may be a message.
- the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard.
- a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
- a radio frame may be configured by one or more periods (frames) in the time domain.
- the one or more respective periods (frames) forming the radio frame may be referred to as a subframe.
- a subframe may be configured by one or more slots in the time domain.
- the subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
- the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
- Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception.
- SCS SubCarrier @ Spacing
- TTI Transmission @ Time @ Interval
- TTI Transmission @ Time @ Interval
- radio frame configuration transmission and reception.
- At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
- the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
- OFDM Orthogonal Frequency Division Multiplexing
- SC-FDMA Single Carrier Frequency Division Multiple Access
- Slots may include multiple mini-slots. Each minislot may be constituted by one or more symbols in the time domain. Also, the mini-slot may be called a sub-slot. A minislot may be made up of a smaller number of symbols than slots.
- a PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
- a PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
- Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals.
- the radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
- one subframe may be called a transmission time interval (TTI: Transmission @ Time @ Interval)
- TTI Transmission @ Time @ Interval
- TTI Transmission Time interval
- a plurality of consecutive subframes may be called a TTI
- one slot or one minislot is called a TTI.
- You may. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be.
- the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
- the TTI refers to, for example, a minimum time unit of scheduling in wireless communication.
- the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units.
- radio resources frequency bandwidth, transmission power, and the like that can be used in each user terminal
- the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
- one slot or one minislot is called a TTI
- one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like.
- a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
- a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms
- the TTI having the above-described TTI length may be replaced with the TTI.
- a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
- the number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12.
- the number of subcarriers included in the RB may be determined based on numerology.
- the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
- One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
- one or more RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
- PRB Physical @ RB
- SCG Sub-Carrier @ Group
- REG Resource @ Element @ Group
- PRB pair an RB pair, and the like. May be called.
- a resource block may be composed of one or more resource elements (RE: Resource @ Element).
- RE Resource @ Element
- one RE may be a radio resource area of one subcarrier and one symbol.
- a bandwidth part (which may be referred to as a partial bandwidth or the like) may also represent a subset of consecutive common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good.
- the common RB may be specified by an index of the RB based on the common reference point of the carrier.
- a PRB may be defined by a BWP and numbered within the BWP.
- $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP).
- BWP for a UE, one or more BWPs may be configured in one carrier.
- At least one of the configured BWPs may be active, and the UE may not have to assume transmitting and receiving a given channel / signal outside the active BWP.
- “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
- the structures of the above-described radio frame, subframe, slot, minislot, symbol, and the like are merely examples.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The configuration of the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic @ Prefix) length, and the like can be variously changed.
- the information, parameters, and the like described in the present disclosure may be expressed using an absolute value, may be expressed using a relative value from a predetermined value, or may be expressed using another corresponding information. May be represented.
- a radio resource may be indicated by a predetermined index.
- Names used for parameters and the like in the present disclosure are not limited in any respect. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure.
- the various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
- information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
- Information, signals, etc. may be input / output via a plurality of network nodes.
- Information and signals input and output may be stored in a specific place (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
- Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method.
- the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
- DCI Downlink Control Information
- UCI Uplink Control Information
- RRC Radio Resource Control
- MIB Master Information Block
- SIB System Information Block
- MAC Medium Access Control
- the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
- the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
- the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
- the notification of the predetermined information is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
- the determination may be made by a value represented by 1 bit (0 or 1), or may be made by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
- software, instructions, information, and the like may be transmitted and received via a transmission medium.
- a transmission medium For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
- system and “network” as used in this disclosure may be used interchangeably.
- precoding In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “transmission power”, “phase rotation”, “antenna port”, “layer”, “number of layers”, “rank”, Terms such as “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel”, etc., may be used interchangeably.
- base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “gNodeB (gNB)” "Access point (access @ point)”, “transmission point (TP: Transmission @ Point)”, “reception point (RP: Reception @ Point)”, “transmission / reception point (TRP: Transmission / Reception @ Point)”, “panel”, “cell” , “Sector”, “cell group”, “carrier”, “component carrier” and the like may be used interchangeably.
- a base station may also be referred to as a macro cell, a small cell, a femto cell, a pico cell, or the like.
- a base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head)).
- a base station subsystem eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head).
- RRH small indoor base station
- the term “cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
- MS mobile station
- UE user equipment
- terminal terminal
- a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable terminology.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, or the like.
- the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like.
- the moving object may be a vehicle (for example, a car, an airplane, or the like), may be an unmanned moving object (for example, a drone, an autonomous vehicle), or may be a robot (maned or unmanned). ).
- at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
- the base station in the present disclosure may be replaced with a user terminal.
- communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
- D2D Device-to-Device
- V2X Vehicle-to-Everything
- Each aspect / embodiment of the present disclosure may be applied to the configuration.
- the configuration may be such that the user terminal 20 has the function of the base station 10 described above.
- words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
- an uplink channel, a downlink channel, and the like may be replaced with a side channel.
- a user terminal in the present disclosure may be replaced by a base station.
- a configuration in which the base station 10 has the function of the user terminal 20 described above may be adopted.
- the operation performed by the base station may be performed by an upper node (upper node) in some cases.
- various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway) or the like, but not limited thereto, or a combination thereof.
- MME Mobility Management Entity
- S-GW Serving-Gateway
- Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching with execution.
- the order of the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no inconsistency.
- elements of various steps are presented in an exemplary order, and are not limited to the specific order presented.
- LTE Long Term Evolution
- LTE-A Long Term Evolution
- LTE-B LTE-Beyond
- SUPER 3G IMT-Advanced
- 4G 4th generation mobile communication
- 5G 5th generation mobile communication system
- FRA Fluture Radio Access
- New-RAT Radio Access Technology
- NR New Radio
- NX New radio access
- FX Fluture generation radio access
- GSM Registered trademark
- CDMA2000 Code Division Multiple Access 2000
- UMB Ultra Mobile Broadband
- IEEE 802.11 Wi-Fi (registered trademark)
- IEEE 802.16 WiMAX (registered trademark)
- IEEE 802.11 Wi-Fi (registered trademark)
- IEEE 802.16 WiMAX (registered trademark)
- IEEE 802.11 Wi-Fi
- WiMAX registered trademark
- UWB Ultra-WideBand
- Bluetooth registered trademark
- a system using other appropriate wireless communication methods and a next-generation system extended based on these methods.
- a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
- any reference to elements using designations such as "first,” “second,” etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in any way.
- determining means judgment (judging), calculation (computing), processing (processing), deriving (deriving), investing (investigating), searching (looking up) (for example, a table, Searching in a database or another data structure), ascertaining, etc., may be regarded as "deciding".
- determining includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
- judgment (decision) is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, and the like. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
- “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
- the “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or may refer to the rated maximum transmission power (the rated UE maximum transmit power).
- connection refers to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
- the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
- the radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) regions, and the like.
- the term “A and B are different” may mean that “A and B are different from each other”.
- the term may mean that “A and B are different from C”.
- Terms such as “separate”, “coupled” and the like may be interpreted similarly to "different”.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A user terminal according to one aspect of the present disclosure is characterized by comprising: a reception unit which receives information indicating a transmission configuration instruction (TCI) state of a downlink shared channel; and a control unit which when at least one symbol assigned to the downlink shared channel in a slot overlaps a search space in which the downlink control channel is monitored, controls reception processing for at least one among the downlink shared channel and the downlink control channel in the slot.
Description
本開示は、次世代移動通信システムにおけるユーザ端末に関する。
The present disclosure relates to a user terminal in a next-generation mobile communication system.
UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。
In a UMTS (Universal Mobile Telecommunications System) network, long term evolution (LTE: Long Term Evolution) has been specified for the purpose of higher data rates and lower delays (Non-Patent Document 1). Also, LTE-A (LTE Advanced, LTE @ Rel. 10, 11, 12, 13) has been specified for the purpose of further increasing the capacity and sophistication of LTE (LTE @ Rel. 8, 9).
LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
Succession system of LTE (for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Rel. 14 or 15 or later) are also being studied.
既存のLTEシステム(例えば、LTE Rel.8-14)では、ユーザ端末(UE:User Equipment)は、下り制御チャネル(例えば、PDCCH:Physical Downlink Control Channel)を介して伝送される下り制御情報(DCI:Downlink Control Information、DLアサインメント等ともいう)に基づいて、下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)の受信を制御する。また、ユーザ端末は、DCI(ULグラント等ともいう)に基づいて、上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)の送信を制御する。
In an existing LTE system (for example, LTE@Rel.8-14), a user terminal (UE: User @ Equipment) transmits downlink control information (DCI) transmitted via a downlink control channel (for example, PDCCH: Physical @ Downlink @ Control @ Channel). : Downlink Control Information, also referred to as DL assignment and the like, and controls the reception of a downlink shared channel (for example, PDSCH: Physical Downlink Shared Channel). Further, the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
将来の無線通信システム(以下、NR)では、ビームフォーミング(BF:Beam Forming)を利用して通信を行うことが検討されている。このため、ユーザ端末は、チャネルの送信構成指示(TCI:Transmission Configuration Indication又はTransmission Configuration Indicator)の状態(TCI状態)に基づいて、当該チャネルの受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)を制御することが検討されている。
で は In a future wireless communication system (hereinafter, NR), communication using beamforming (BF) is being studied. For this reason, based on the state (TCI state) of the transmission configuration instruction (TCI: Transmission Configuration Indication or Transmission Configuration Indicator) of the channel, the user terminal performs reception processing (for example, reception, demapping, demodulation, and decoding) of the channel. (At least one).
ここで、TCI状態とは、チャネル又は信号の疑似コロケーション(QCL:Quasi-Co-Location)に関する情報であり、空間受信パラメータ等とも呼ばれる。TCI状態は、チャネル毎又は信号毎にユーザ端末に指定される。ユーザ端末は、チャネル毎に指定されるTCI状態に基づいて、各チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも一つを決定する。
Here, the TCI state is information on pseudo collocation (QCL: Quasi-Co-Location) of a channel or a signal, and is also called a spatial reception parameter or the like. The TCI state is specified to the user terminal for each channel or signal. The user terminal determines at least one of a transmission beam (Tx beam) and a reception beam (Rx beam) of each channel based on the TCI state specified for each channel.
ところで、NRでは、スロット内で、下り共有チャネル(例えば、PDSCH)に割り当てられる少なくとも一つのシンボルが下り制御チャネル(例えば、PDCCH)がモニタリング(monitoring)されるサーチスペースと重複(overlap)(衝突(collide))することが想定される。この場合、当該スロット内における、TCI状態が同一又は異なる下り共有チャネル及び下り制御チャネルの受信処理をどのように制御するかが問題となる。
In the NR, at least one symbol assigned to a downlink shared channel (for example, PDSCH) in a slot overlaps with a search space in which a downlink control channel (for example, PDCCH) is monitored. collide)). In this case, how to control the reception processing of the downlink shared channel and the downlink control channel having the same or different TCI status in the slot becomes a problem.
そこで、本開示は、下り共有チャネルに割り当てられる少なくとも一つのシンボルがサーチスペースと重複するスロットにおける受信処理を適切に制御可能なユーザ端末を提供することを目的の1つとする。
Accordingly, it is an object of the present disclosure to provide a user terminal capable of appropriately controlling reception processing in a slot where at least one symbol assigned to a downlink shared channel overlaps a search space.
本開示の一態様に係るユーザ端末は、下り共有チャネルの送信構成指示(TCI)状態を示す情報を受信する受信部と、スロット内で前記下り共有チャネルに割り当てられる少なくとも一つのシンボルが前記下り制御チャネルがモニタリングされるサーチスペースと重複する場合、前記スロット内における前記下り共有チャネル及び前記下り制御チャネルの少なくとも一つについての受信処理を制御する制御部と、を具備することを特徴とする。
A user terminal according to an aspect of the present disclosure includes a receiving unit that receives information indicating a transmission configuration instruction (TCI) state of a downlink shared channel, and at least one symbol allocated to the downlink shared channel in a slot is assigned to the downlink control channel. When the channel overlaps with the monitored search space, the control unit controls a reception process for at least one of the downlink shared channel and the downlink control channel in the slot.
本開示の一態様によれば、下り共有チャネルに割り当てられる少なくとも一つのシンボルがサーチスペースと重複するスロットにおける受信処理を適切に制御できる。
According to an aspect of the present disclosure, it is possible to appropriately control reception processing in a slot where at least one symbol assigned to the downlink shared channel overlaps with the search space.
(TCI状態)
NRでは、ユーザ端末は、チャネルの送信構成指示(TCI:Transmission Configuration Indication又はTransmission Configuration Indicator)の状態(TCI状態)に基づいて、当該チャネルの受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)を制御することが検討されている。 (TCI state)
In NR, a user terminal performs a reception process (for example, reception, demapping, demodulation, and decoding) on a channel based on a state (TCI state) of a channel transmission configuration instruction (TCI: Transmission Configuration Indication or Transmission Configuration Indicator). (At least one).
NRでは、ユーザ端末は、チャネルの送信構成指示(TCI:Transmission Configuration Indication又はTransmission Configuration Indicator)の状態(TCI状態)に基づいて、当該チャネルの受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)を制御することが検討されている。 (TCI state)
In NR, a user terminal performs a reception process (for example, reception, demapping, demodulation, and decoding) on a channel based on a state (TCI state) of a channel transmission configuration instruction (TCI: Transmission Configuration Indication or Transmission Configuration Indicator). (At least one).
ここで、TCI状態とは、チャネル又は信号の疑似コロケーション(QCL:Quasi-Co-Location)に関する情報であり、空間受信パラメータ、空間情報(spatial info)等とも呼ばれる。TCI状態は、チャネル毎又は信号毎にユーザ端末に指定される。ユーザ端末は、チャネル毎に指定されるTCI状態に基づいて、各チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも一つを決定してもよい。
Here, the TCI state is information on pseudo collocation (QCL: Quasi-Co-Location) of a channel or a signal, and is also called a spatial reception parameter, spatial information (spatial @ info), or the like. The TCI state is specified to the user terminal for each channel or signal. The user terminal may determine at least one of the transmission beam (Tx beam) and the reception beam (Rx beam) of each channel based on the TCI state specified for each channel.
ここで、QCLとは、チャネル及び信号の少なくとも一つ(チャネル/信号)の統計的性質を示す指標である。例えば、複数のチャネル/信号がQCLの関係である場合、これらの異なる複数のチャネル/信号間において、ドップラーシフト(doppler shift)、ドップラースプレッド(doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信パラメータ(Spatial Rx Parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
QHere, QCL is an index indicating the statistical property of at least one of a channel and a signal (channel / signal). For example, when a plurality of channels / signals have a QCL relationship, a Doppler shift (doppler shift), a Doppler spread (doppler spread), an average delay (average delay), a delay spread ( It may mean that it can be assumed that at least one of delay @ spread, spatial parameter (Spatial @ parameter) (e.g., spatial receiving parameter (Spatial @ Rx @ Parameter)) is the same (QCL for at least one of these).
なお、空間受信パラメータ(空間的QCL)は、ユーザ端末のRxビーム(例えば、受信アナログビーム)に対応してもよく、空間受信パラメータに基づいてRxビームが特定されてもよい。
Note that the spatial reception parameter (spatial QCL) may correspond to an Rx beam (for example, a received analog beam) of the user terminal, and the Rx beam may be specified based on the spatial reception parameter.
QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータについて示す:
・QCLタイプA:ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
・QCLタイプB:ドップラーシフト及びドップラースプレッド、
・QCLタイプC:ドップラーシフト及び平均遅延、
・QCLタイプD:空間受信パラメータ。 A plurality of types (QCL types) may be defined for the QCL. For example, four QCL types AD with different parameters (or parameter sets) that can be assumed to be the same may be provided, and are described below.
QCL type A: Doppler shift, Doppler spread, average delay and delay spread,
・ QCL type B: Doppler shift and Doppler spread,
QCL type C: Doppler shift and average delay,
QCL type D: spatial reception parameters.
・QCLタイプA:ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
・QCLタイプB:ドップラーシフト及びドップラースプレッド、
・QCLタイプC:ドップラーシフト及び平均遅延、
・QCLタイプD:空間受信パラメータ。 A plurality of types (QCL types) may be defined for the QCL. For example, four QCL types AD with different parameters (or parameter sets) that can be assumed to be the same may be provided, and are described below.
QCL type A: Doppler shift, Doppler spread, average delay and delay spread,
・ QCL type B: Doppler shift and Doppler spread,
QCL type C: Doppler shift and average delay,
QCL type D: spatial reception parameters.
以上のようなQCLに関する情報(QCL情報、QCL-Info)は、チャネル毎に指定されてもよい。各チャネルのQCL情報は、以下の少なくとも一つの情報を含んでもよい(又は、示してもよい):
・上記QCLタイプを示す情報(QCLタイプ情報)、
・各チャネルとQCL関係となる参照信号(RS:Reference Signal)に関する情報(RS情報)、
・当該RSが位置するキャリア(セル)を示す情報、
・当該RSが位置する帯域幅部分(BWP:Bandwidth Part)を示す情報、
・各チャネルの空間受信パラメータ(例えば、Rxビーム)を示す情報。 Information on the QCL (QCL information, QCL-Info) as described above may be specified for each channel. The QCL information for each channel may include (or indicate) at least one of the following information:
Information indicating the QCL type (QCL type information);
Information on a reference signal (RS: Reference Signal) having a QCL relationship with each channel (RS information);
Information indicating a carrier (cell) where the RS is located;
Information indicating a bandwidth part (BWP: Bandwidth Part) in which the RS is located;
Information indicating a spatial reception parameter (for example, Rx beam) of each channel.
・上記QCLタイプを示す情報(QCLタイプ情報)、
・各チャネルとQCL関係となる参照信号(RS:Reference Signal)に関する情報(RS情報)、
・当該RSが位置するキャリア(セル)を示す情報、
・当該RSが位置する帯域幅部分(BWP:Bandwidth Part)を示す情報、
・各チャネルの空間受信パラメータ(例えば、Rxビーム)を示す情報。 Information on the QCL (QCL information, QCL-Info) as described above may be specified for each channel. The QCL information for each channel may include (or indicate) at least one of the following information:
Information indicating the QCL type (QCL type information);
Information on a reference signal (RS: Reference Signal) having a QCL relationship with each channel (RS information);
Information indicating a carrier (cell) where the RS is located;
Information indicating a bandwidth part (BWP: Bandwidth Part) in which the RS is located;
Information indicating a spatial reception parameter (for example, Rx beam) of each channel.
なお、TCI状態が指定されるチャネルは、下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、下り制御チャネル(PDCCH:Physical Downlink Control Channel)、上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)の少なくとも一つであってもよい。
The channels for which the TCI state is specified include a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a downlink control channel (PDCCH: Physical Downlink Control Channel), an uplink shared channel (PUSCH: Physical Uplink Shared Channel), and an uplink control channel. (PUCCH: Physical Uplink Control Channel).
また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(SSB:Synchronaization Signal Block)又はチャネル状態情報参照信号(CSI-RS:Channel Satate Information-Reference Signal)であってもよい。SSBは、プライマリ同期信号(PSS:Primary Synchronaization Signal)、セカンダリ同期信号(SSS:Secondary Synchronaization Signal)及びブロードキャストチャネル(PBCH:Physical Broadcast Channel)の少なくとも1つを含む信号ブロックである。
The RS having the QCL relationship with the channel may be, for example, a synchronization signal block (SSB: Synchronization Signal Block) or a channel state information reference signal (CSI-RS: Channel Satate Information-Reference Signal). The SSB is a signal block including at least one of a primary synchronization signal (PSS: Primary Synchronization Signal), a secondary synchronization signal (SSS: Secondary Synchronization Signal), and a broadcast channel (PBCH: Physical Broadcast Channel).
<PDCCH用のTCI状態>
PDCCH用のTCI状態は、PDCCH(又はPDCCHの復調用参照信号(DMRS:DeModulation Reference Signal))とQCL関係となるRSに関する情報(例えば、当該RSのリソース)を指定してもよい。当該DMRSは、当該DMRSのアンテナポート(DMRSポート)又は当該DMRSポートのグループ(DMRSポートグループ)等と言い換えられてもよい。 <TCI status for PDCCH>
The TDC state for the PDCCH may specify information about the PDCCH (or the demodulation reference signal (DMRS) of the PDCCH) and the RS related to the QCL (for example, the resource of the RS). The DMRS may be paraphrased as an antenna port of the DMRS (DMRS port) or a group of the DMRS ports (DMRS port group).
PDCCH用のTCI状態は、PDCCH(又はPDCCHの復調用参照信号(DMRS:DeModulation Reference Signal))とQCL関係となるRSに関する情報(例えば、当該RSのリソース)を指定してもよい。当該DMRSは、当該DMRSのアンテナポート(DMRSポート)又は当該DMRSポートのグループ(DMRSポートグループ)等と言い換えられてもよい。 <TCI status for PDCCH>
The TDC state for the PDCCH may specify information about the PDCCH (or the demodulation reference signal (DMRS) of the PDCCH) and the RS related to the QCL (for example, the resource of the RS). The DMRS may be paraphrased as an antenna port of the DMRS (DMRS port) or a group of the DMRS ports (DMRS port group).
ユーザ端末には、制御リソースセット(CORESET:Control Resource Set)毎に、一以上のTCI状態が上位レイヤシグナリングにより設定(configure)されてもよい。また、1CORESETあたり一以上のTCI状態が設定される場合、単一のTCI状態が、MAC(Medium Access Control)シグナリングによりアクティブ化されてもよい。
In the user terminal, one or more TCI states may be configured (configured) by higher layer signaling for each control resource set (CORESET: Control Resource Set). Further, when one or more TCI states are set per CORESET, a single TCI state may be activated by MAC (Medium Access Control) signaling.
ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報、などのいずれか、又はこれらの組み合わせであってもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)などであってもよい。MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。
Here, the upper layer signaling may be, for example, any one of RRC (Radio Resource Control) signaling, broadcast information, and the like, or a combination thereof. The broadcast information may be, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), minimum system information (RMSI: Remaining Minimum System Information), or the like. The MAC signaling may use, for example, a MAC control element (MAC @ CE (Control @ Element)), MAC @ PDU (Protocol @ Data @ Unit), or the like.
CORESETには、一以上のPDCCH候補(PDCCH candidates)を含むサーチスペースが関連付けられてもよい。CORESETあたり一以上のサーチスペースが関連づけられてもよい。ユーザ端末は、サーチスペースをモニタリングして、PDCCH(DCI)を検出してもよい。
$ CORESET may be associated with a search space that includes one or more PDCCH candidates (PDCCH $ candidates). One or more search spaces per coreset may be associated. The user terminal may monitor the search space and detect the PDCCH (DCI).
PDCCH候補は、一つのPDCCHがマッピングされるリソース単位であり、例えば、アグリゲーションレベルに応じた数の制御チャネル要素(CCE:Control Channel Element)で構成されてもよい。サーチスペースには、アグリゲーションレベルに応じた数のPDCCH候補が含まれてもよい。
The PDCCH candidate is a resource unit to which one PDCCH is mapped, and may be configured by, for example, a number of control channel elements (CCE: Control Channel Element) according to an aggregation level. The search space may include a number of PDCCH candidates according to the aggregation level.
なお、本開示において、「CORESET」、「サーチスペース(又はサーチスペースセット)」、「PDCCH候補(又は一以上のPDCCH候補のセット(PDCCH候補セット))」、「下り制御チャネル(例えば、PDCCH)」及び「下り制御情報(DCI)」は、互いに読み替えられてもよい。また、「モニタリング」は、「ブラインド復号及びブラインド検出の少なくとも一方」で読み替えられてもよい。
In the present disclosure, “CORESET”, “search space (or search space set)”, “PDCCH candidate (or set of one or more PDCCH candidates (PDCCH candidate set))”, “downlink control channel (for example, PDCCH)” "And" Downlink control information (DCI) "may be read each other. “Monitoring” may be read as “at least one of blind decoding and blind detection”.
例えば、ユーザ端末は、CORESETに対応する(又は、当該CORESETについてアクティブ化されている)TCI状態に基づいて、PDCCHの受信処理を制御してもよい。具体的には、ユーザ端末は、当該TCI状態によって指定されるRSと同一のTxビームを用いて送信されると想定して、PDCCHの受信処理を行ってもよい。また、ユーザ端末は、当該TCI状態に基づいて、PDCCHの空間受信パラメータ(Rxビーム)を決定してもよい。
For example, the user terminal may control the process of receiving the PDCCH based on a TCI state corresponding to (or activated for) the CORESET. Specifically, the user terminal may perform the PDCCH reception process on the assumption that the user terminal is transmitted using the same Tx beam as the RS specified by the TCI state. Further, the user terminal may determine a spatial reception parameter (Rx beam) of the PDCCH based on the TCI state.
<PDSCH用のTCI状態>
PDSCH用のTCI状態は、PDSCH(又はPDSCHのDMRS)とQCL関係となるRSに関する情報(例えば、当該RSのリソース)を指定してもよい。当該DMRSは、DMRSポート又はDMRSポートグループ等と言い換えられてもよい。 <TCI status for PDSCH>
The TCI state for PDSCH may specify information (for example, resources of the RS) on the RS that has a QCL relationship with the PDSCH (or the DMRS of the PDSCH). The DMRS may be paraphrased as a DMRS port or a DMRS port group.
PDSCH用のTCI状態は、PDSCH(又はPDSCHのDMRS)とQCL関係となるRSに関する情報(例えば、当該RSのリソース)を指定してもよい。当該DMRSは、DMRSポート又はDMRSポートグループ等と言い換えられてもよい。 <TCI status for PDSCH>
The TCI state for PDSCH may specify information (for example, resources of the RS) on the RS that has a QCL relationship with the PDSCH (or the DMRS of the PDSCH). The DMRS may be paraphrased as a DMRS port or a DMRS port group.
ユーザ端末は、PDSCH用のM(M≧1)個のTCI状態(M個のPDSCH用のQCL情報)を、上位レイヤシグナリングによって通知(設定(configure))されてもよい。M個のTCI状態の少なくとも一部は、MACシグナリングによりアクティブ化されてもよい。PDSCHをスケジューリングするDCI内の所定フィールド(例えば、TCIフィールド)の値が、設定(configure)された(又はアクティブ化された)TCI状態の中の一つを示してもよい。
The user terminal may be notified (configured) of M (M ≧ 1) TCI states (QCL information for M PDSCHs) for PDSCH by higher layer signaling. At least some of the M TCI states may be activated by MAC signaling. The value of a predetermined field (eg, TCI field) in the DCI that schedules the PDSCH may indicate one of the configured (or activated) TCI states.
ユーザ端末は、DCI内の所定フィールド値が示すTCI状態に基づいて、PDSCHの受信処理を制御してもよい。具体的には、ユーザ端末は、当該TCI状態によって指定されるRSと同一のTxビームを用いて送信されると想定して、PDSCHの受信処理を行ってもよい。また、ユーザ端末は、当該TCI状態に基づいて、PDSCHの空間受信パラメータ(Rxビーム)を決定してもよい。
The user terminal may control the PDSCH reception process based on the TCI status indicated by the predetermined field value in DCI. Specifically, the user terminal may perform the PDSCH receiving process on the assumption that the user terminal is transmitted using the same Tx beam as the RS specified by the TCI state. Further, the user terminal may determine a spatial reception parameter (Rx beam) of the PDSCH based on the TCI state.
図1A及び1Bは、NRにおけるPDSCH及びPDCCHの受信制御の一例を示す図である。図1Aに示すように、送受信ポイント(TRP:Transmission Reception Point)は、複数の送信ビーム(例えば、Txビーム#1~#4)を形成してもよい。TRPは、eNodeB(eNB)、gNodeB(gNB)、基地局、無線基地局、送信ポイント等と言い換えられてもよい。
FIGS. 1A and 1B are diagrams showing an example of PDSCH and PDCCH reception control in NR. As shown in FIG. 1A, a transmission / reception point (TRP: Transmission \ Reception \ Point) may form a plurality of transmission beams (for example, Tx beams # 1 to # 4). TRP may be paraphrased as eNodeB (eNB), gNodeB (gNB), base station, radio base station, transmission point, or the like.
例えば、図1のTxビーム#1~#4は、デジタルビームであってもよい。デジタルビームは、ベースバンド上で(デジタル信号に対して)プリコーディング信号処理を行う方法である。この場合、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)/デジタル-アナログ変換(DAC:Digital to Analog Converter)/RF(Radio Frequency)の並列処理が、アンテナポート(RF chain)の個数だけ必要となる。一方で、任意のタイミングで、RF chain数に応じた数だけビームを形成できる。
For example, the Tx beams # 1 to # 4 in FIG. 1 may be digital beams. Digital beam is a method of performing precoding signal processing (on a digital signal) on baseband. In this case, parallel processing of inverse fast Fourier transform (IFFT: Inverse Fast Fourier Transform) / digital-analog conversion (DAC: Digital to Analog Converter) / RF (Radio Frequency) is required only for the number of antenna ports (RF chains). Become. On the other hand, at an arbitrary timing, beams can be formed in a number corresponding to the number of RF @ chain.
また、図1Aに示すように、ユーザ端末は、複数のRxビーム(例えば、Rxビーム#1及び#2)を形成してもよい。ユーザ端末は、User Equipment(UE)、端末、装置、デバイス等と言い換えられてもよい。
Also, as shown in FIG. 1A, the user terminal may form a plurality of Rx beams (for example, Rx beams # 1 and # 2). A user terminal may be paraphrased as User @ Equipment (UE), a terminal, an apparatus, a device, or the like.
例えば、図1のRxビーム#1及び#2は、アナログビームであってもよい。アナログビームは、RF上で位相シフト器を用いる方法である。この場合、RF信号の位相を回転させるだけなので、構成が容易で安価に実現できる。一方で、同じタイミングに複数のビームを形成することができないという問題がある。
For example, the Rx beams # 1 and # 2 in FIG. 1 may be analog beams. Analog beam is a method using a phase shifter on RF. In this case, since only the phase of the RF signal is rotated, the configuration can be easily realized at low cost. On the other hand, there is a problem that a plurality of beams cannot be formed at the same timing.
図1Bでは、図1Aに示されるTxビーム及びRxビームのペア(ビームペア、ビームペアリンク(BPL:Beam Pair Link)等ともいう)を用いたPDCCH及びPDSCHの受信制御の一例が示される。
FIG. 1B shows an example of PDCCH and PDSCH reception control using the pair of Tx beam and Rx beam (also referred to as a beam pair, beam pair link (BPL: Beam Pair Link), etc.) shown in FIG. 1A.
例えば、図1Bでは、PDCCH及びPDSCHの双方が、Txビーム#2で送信される。一方、PDCCHは、Rxビーム#1を用いて受信され、PDSCHは、Rxビーム#2で受信される。このように、PDCCHとPDSCHとの間でRxビームが異なることが想定される。なお、Rxビーム、TCI状態、空間受信パラメータ及びQCL情報は、相互に言い換えられてもよい。
For example, in FIG. 1B, both the PDCCH and the PDSCH are transmitted with Tx beam # 2. On the other hand, PDCCH is received using Rx beam # 1, and PDSCH is received using Rx beam # 2. Thus, it is assumed that the Rx beam differs between the PDCCH and the PDSCH. Note that the Rx beam, the TCI state, the spatial reception parameter, and the QCL information may be paraphrased mutually.
一方、図1Bに示すように、Rxビームが異なるPDCCHとPDSCHとの同時受信(simultaneous RX)が設定される場合が想定される。例えば、図1Bでは、DCIによってPDSCHに割り当てられる時間領域リソース(例えば、シンボル)の一部が、サーチスペースと重複する。上述のように、PDCCHは、サーチスペース内のPDCCH候補の一つにマッピングされ、サーチスペースのモニタリングにより検出される。
On the other hand, as shown in FIG. 1B, a case is assumed where simultaneous reception (simultaneous RX) of PDCCH and PDSCH with different Rx beams is set. For example, in FIG. 1B, some of the time domain resources (eg, symbols) assigned to the PDSCH by DCI overlap the search space. As described above, the PDCCH is mapped to one of the PDCCH candidates in the search space, and is detected by monitoring the search space.
しかしながら、Rxビーム#1及びRxビーム#2がアナログビームである場合、同一のタイミングでは、異なるRxビーム(TCI状態)#1及び#2をそれぞれ用いたPDSCH及びPDCCHの受信処理を行うことができない。
However, when the Rx beam # 1 and the Rx beam # 2 are analog beams, PDSCH and PDCCH reception processes using different Rx beams (TCI states) # 1 and # 2 cannot be performed at the same timing. .
このため、スロット内で、PDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複(衝突)する場合、当該スロット内における、TCI状態が異なるPDSCH及びPDCCHの受信処理をどのように制御するかが問題となる。また、当該スロット内におけるTCI状態が同一のPDSCH及びPDCCHの受信処理をどのように制御するかが問題となる。
Therefore, when at least one symbol assigned to the PDSCH in the slot overlaps (collides with) the search space, how to control the reception processing of the PDSCH and the PDCCH having different TCI states in the slot is problematic. Becomes Another problem is how to control the reception processing of PDSCH and PDCCH having the same TCI state in the slot.
そこで、本発明者らは、PDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複(衝突)するスロットにおいて、PDSCH及びPDCCHの少なくとも一つの受信処理を適切に制御する方法を検討し、本発明に至った。
Therefore, the present inventors studied a method of appropriately controlling at least one reception process of the PDSCH and the PDCCH in a slot where at least one symbol assigned to the PDSCH overlaps (collides) with the search space, and considers a method of the present invention. Reached.
以下、本実施の形態について、図面を参照して詳細に説明する。なお、本実施の形態において、例えば、PDSCHのTCI状態は、DCI内の所定フィールド値によって示され、PDCCHのTCI状態は、当該PDCCHが配置されるCORESETに関連付けられるものとするが、これに限られない。
Hereinafter, the present embodiment will be described in detail with reference to the drawings. In the present embodiment, for example, the TCI state of the PDSCH is indicated by a predetermined field value in the DCI, and the TCI state of the PDCCH is associated with the CORRESET in which the PDCCH is arranged. I can't.
また、本実施の形態において、サーチスペース及びCORESETの少なくとも一つの周期、周波数領域リソース、シンボル数等は、上位レイヤシグナリングによりユーザ端末に設定(configure)されてもよい。また、本実施の形態において、「受信処理」とは、受信、デマッピング、復調、復号の少なくとも1つを含んでもよい。
In addition, in the present embodiment, at least one cycle of the search space and the coreset, the frequency domain resource, the number of symbols, and the like may be configured in the user terminal by higher layer signaling. Further, in the present embodiment, “reception processing” may include at least one of reception, demapping, demodulation, and decoding.
(第1の態様)
第1の態様では、ユーザ端末が、アナログビームを用いる場合を想定する。第1の態様において、スロット内でPDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複する場合、ユーザ端末は、スロット内におけるPDSCH及びPDCCHの少なくとも一つについての受信処理を制御する。 (First aspect)
In the first mode, it is assumed that the user terminal uses an analog beam. In the first aspect, when at least one symbol assigned to the PDSCH in the slot overlaps with the search space, the user terminal controls a reception process for at least one of the PDSCH and the PDCCH in the slot.
第1の態様では、ユーザ端末が、アナログビームを用いる場合を想定する。第1の態様において、スロット内でPDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複する場合、ユーザ端末は、スロット内におけるPDSCH及びPDCCHの少なくとも一つについての受信処理を制御する。 (First aspect)
In the first mode, it is assumed that the user terminal uses an analog beam. In the first aspect, when at least one symbol assigned to the PDSCH in the slot overlaps with the search space, the user terminal controls a reception process for at least one of the PDSCH and the PDCCH in the slot.
<PDCCH用のTCI状態とPDSCH用のTCI状態が異なる場合>
PDSCHのTCI状態がPDCCHのTCI状態と異なる場合、ユーザ端末は、以下の少なくとも一つのパラメータに基づいて、PDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複するスロットにおいて、PDSCH又はPDCCHのどちらの受信処理を行うかを決定してもよい。
(1)サーチスペース(サーチスペースセット)のタイプ(種類)
(2)サーチスペースの識別子(サーチスペースID)
(3)CORESETのタイプ(種類又は用途)
(4)CORESETの識別子(CORESET ID)
(5)無線ネットワーク一時識別子(RNTI:Radio Network Temporary Identifier)のタイプ(種類)
(6)PDSCH及びサーチスペースに割り当てられるシンボル数(時間長、期間) <When the TCI state for PDCCH and the TCI state for PDSCH are different>
When the TCI state of the PDSCH is different from the TCI state of the PDCCH, the user terminal determines which of the PDSCH or the PDCCH in the slot where at least one symbol assigned to the PDSCH overlaps with the search space based on at least one of the following parameters: It may be determined whether to perform the receiving process.
(1) Type of search space (search space set)
(2) Search space identifier (search space ID)
(3) CORESET type (type or use)
(4) CORESET ID (CORESET ID)
(5) Radio Network Temporary Identifier (RNTI) type (kind)
(6) Number of symbols allocated to PDSCH and search space (time length, period)
PDSCHのTCI状態がPDCCHのTCI状態と異なる場合、ユーザ端末は、以下の少なくとも一つのパラメータに基づいて、PDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複するスロットにおいて、PDSCH又はPDCCHのどちらの受信処理を行うかを決定してもよい。
(1)サーチスペース(サーチスペースセット)のタイプ(種類)
(2)サーチスペースの識別子(サーチスペースID)
(3)CORESETのタイプ(種類又は用途)
(4)CORESETの識別子(CORESET ID)
(5)無線ネットワーク一時識別子(RNTI:Radio Network Temporary Identifier)のタイプ(種類)
(6)PDSCH及びサーチスペースに割り当てられるシンボル数(時間長、期間) <When the TCI state for PDCCH and the TCI state for PDSCH are different>
When the TCI state of the PDSCH is different from the TCI state of the PDCCH, the user terminal determines which of the PDSCH or the PDCCH in the slot where at least one symbol assigned to the PDSCH overlaps with the search space based on at least one of the following parameters: It may be determined whether to perform the receiving process.
(1) Type of search space (search space set)
(2) Search space identifier (search space ID)
(3) CORESET type (type or use)
(4) CORESET ID (CORESET ID)
(5) Radio Network Temporary Identifier (RNTI) type (kind)
(6) Number of symbols allocated to PDSCH and search space (time length, period)
以下では、PDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複するスロットにおける、上記(1)~(6)のパラメータに基づくユーザ端末の動作について詳細に説明する。なお、以下のユーザ動作は、当該スロット全体に適用されてもよいし、又は、当該スロット内のPDSCHとサーチスペースとが重複するシンボル(重複シンボル)に適用されてもよい。
Hereinafter, the operation of the user terminal based on the above parameters (1) to (6) in the slot where at least one symbol assigned to the PDSCH overlaps with the search space will be described in detail. The following user operation may be applied to the entire slot, or may be applied to a symbol (duplicate symbol) in which the PDSCH and the search space in the slot overlap.
(1)サーチスペースのタイプ
サーチスペースには、以下の少なくとも一つのタイプが含まれてもよい。
・一以上のユーザ端末に共通のサーチスペース(共通サーチスペース(CSS))
・ユーザ端末固有のサーチスペース(UE固有サーチスペース(USS))。 (1) Type of search space The search space may include at least one of the following types.
・ Search space common to one or more user terminals (common search space (CSS))
-User terminal specific search space (UE specific search space (USS)).
サーチスペースには、以下の少なくとも一つのタイプが含まれてもよい。
・一以上のユーザ端末に共通のサーチスペース(共通サーチスペース(CSS))
・ユーザ端末固有のサーチスペース(UE固有サーチスペース(USS))。 (1) Type of search space The search space may include at least one of the following types.
・ Search space common to one or more user terminals (common search space (CSS))
-User terminal specific search space (UE specific search space (USS)).
また、CSSには、以下の少なくとも一つのタイプが含まれてもよい:
・タイプ0-PDCCH CSS、
・タイプ0A-PDCCH CSS、
・タイプ1-PDCCH CSS、
・タイプ2-PDCCH CSS、
・タイプ3-PDCCH CSS。 The CSS may also include at least one of the following types:
Type 0-PDCCH CSS,
・ Type 0A-PDCCH CSS,
-Type 1-PDCCH CSS,
-Type 2-PDCCH CSS,
-Type 3-PDCCH CSS.
・タイプ0-PDCCH CSS、
・タイプ0A-PDCCH CSS、
・タイプ1-PDCCH CSS、
・タイプ2-PDCCH CSS、
・タイプ3-PDCCH CSS。 The CSS may also include at least one of the following types:
Type 0-PDCCH CSS,
・ Type 0A-PDCCH CSS,
-Type 1-PDCCH CSS,
-Type 2-PDCCH CSS,
-Type 3-PDCCH CSS.
タイプ0-PDCCH CSSは、SIB1用のSS、RMSI(Remaining Minimum System Informatio)用のSS等とも呼ばれる。タイプ0-PDCCH CSSは、所定の識別子(例えば、SI-RNTI:System Information-Radio Network Temporary Identifier)で巡回冗長検査(CRC:Cyclic Redundancy Check)スクランブルされるDCI用のサーチスペース(SIB1を伝送する下り共有チャネル(PDSCH:Physical Downlink Shared Channel)をスケジューリングするDCIのモニタリング用のサーチスペース)であってもよい。
{Type 0-PDCCH} CSS is also called SS for SIB1, SS for RMSI (Remaining Minimum System Informatio), and the like. Type 0-PDCCH @ CSS is a cyclic redundancy check (CRC: Cyclic Redundancy @ Check) scrambled by a predetermined identifier (for example, SI-RNTI: System @ Information-Radio Network * Temporary @ Identifier). It may be a shared space (a search space for monitoring a DCI for scheduling a Physical Downlink Shared Channel).
ここで、CRCスクランブルとは、DCIに対して、所定の識別子でスクランブル(マスク)されるCRCビットを付加する(含める)ことである。
Here, the CRC scrambling is to add (include) a CRC bit scrambled (masked) with a predetermined identifier to DCI.
タイプ0A-PDCCH CSSは、OSI(Other System Information)用のSS等とも呼ばれる。タイプ0A-PDCCH CSSは、所定の識別子(例えば、SI-RNTI)でCRCスクランブルされるDCI用のサーチスペース(OSIを伝送するPDSCHをスケジューリングするDCIのモニタリング用のサーチスペース)であってもよい。
Type 0A-PDCCH CSS is also called SS for OSI (Other System Information). The type 0A-PDCCH @ CSS may be a search space for DCI that is scrambled with a predetermined identifier (for example, SI-RNTI) (a search space for monitoring DCI that schedules PDSCH for transmitting OSI).
タイプ1-PDCCH CSSは、ランダムアクセス(RA)用のSS等とも呼ばれる。タイプ1-PDCCH CSSは、所定の識別子(例えば、RA-RNTI(Random Access-RNTI)、TC-RNTI(Temporary Cell-RNTI)又はC-RNTI(Cell―RNTI))でCRCスクランブルされるDCI用のサーチスペース(RA手順用のメッセージ(例えば、ランダムアクセス応答(メッセージ2)、衝突解決用メッセージ(メッセージ4))を伝送するPDSCHをスケジューリングするDCIのモニタリング用のサーチスペース)であってもよい。
{Type 1—PDCCH} CSS is also called SS for random access (RA). Type 1—PDCCH @ CSS is a DCI for DCI that is CRC-scrambled with a predetermined identifier (for example, RA-RNTI (Random @ Access-RNTI), TC-RNTI (Temporary @ Cell-RNTI) or C-RNTI (Cell-RNTI)). The search space may be a search space (a DCI monitoring search space for scheduling a PDSCH for transmitting a message for an RA procedure (for example, a random access response (message 2) and a collision resolution message (message 4)).
タイプ2-PDCCH CSSは、ページング用のSS、ページングSS等とも呼ばれる。タイプ2-PDCCH CSSは、所定の識別子(例えば、P-RNTI:Paging-RNTI)でCRCスクランブルDCI用のサーチスペース(ページングを伝送するPDSCHをスケジューリングするDCIのモニタリング用のサーチスペース)であってもよい。
{Type 2—PDCCH} CSS is also referred to as paging SS, paging SS, and the like. Type 2-PDCCH @ CSS is a search space for CRC scramble DCI with a predetermined identifier (for example, P-RNTI: Paging-RNTI) (a search space for monitoring DCI that schedules PDSCH for transmitting paging). Good.
タイプ3-PDCCH CSSは、所定の識別子(例えば、DLプリエンプション指示用のINT-RNTI(Interruption RNTI)、スロットフォーマット指示用のSFI-RNTI(Slot Format Indicator RNTI)、PUSCH(Physical Uplink Shared Channel)の送信電力制御(TPC:Transmit Power Control)用のTPC-PUSCH-RNTI、PUCCH(Physical Uplink Control Channel)のTPC用のTPC-PUCCH-RNTI、SRS(Sounding Reference Signal)のTPC用のTPC-SRS-RNTI、C-RNTI、CS-RNTI(Configured Scheduling RNTI)又はSP-CSI-RNTI(Semi-Persistent-CSI-RNTI))でCRCスクランブルDCI用のサーチスペースであってもよい。
Type 3—PDCCH @ CSS is transmission of a predetermined identifier (eg, INT-RNTI (Interruption @ RNTI) for indicating DL preemption, SFI-RNTI (Slot @ Format @ Indicator @ RNTI) for indicating slot format), and PUSCH (Physical @ Uplink @ Shared @ Channel). TPC-PUSCH-RNTI for power control (TPC: Transmit Power Control), TPC-PUCCH-RNTI for TPC of PUCCH (Physical Uplink Control Channel), TPC-SRS-RNTI for TPC of SRS (Sounding Reference Signal), The search space for CRC scramble DCI may be C-RNTI, CS-RNTI (Configured @ Scheduling @ RNTI) or SP-CSI-RNTI (Semi-Persistent-CSI-RNTI).
また、USSは、所定の識別子(例えば、C-RNTI、CS-RNTI又はSP-CSI-RNTI)でCRCスクランブルされるCRCビットが付加される(含まれる)DCI用のサーチスペースであってもよい。
Further, the USS may be a search space for DCI to which a CRC bit scrambled by a predetermined identifier (for example, C-RNTI, CS-RNTI or SP-CSI-RNTI) is added (included). .
スロット内においてPDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複する場合、ユーザ端末は、当該サーチスペースのタイプに基づいて、当該PDSCHの受信処理と当該サーチスペースにおけるPDCCHの受信処理のどちらを行うか(どちらを優先するか)を決定してもよい。
When at least one symbol assigned to the PDSCH in the slot overlaps with the search space, the user terminal performs either reception processing of the PDSCH or reception processing of the PDCCH in the search space based on the type of the search space. (Which one has priority) may be determined.
ここで、サーチスペースにおけるPDCCHの受信処理は、サーチスペースのモニタリング、サーチスペースのモニタリングにより検出されるPDCCHの受信処理のいずれであってもよい。
Here, the process of receiving the PDCCH in the search space may be either the process of monitoring the search space or the process of receiving the PDCCH detected by monitoring the search space.
例えば、当該サーチスペースのタイプがCSSである場合、ユーザ端末は、PDSCHを無視して、当該CSSにおけるPDCCHの受信処理を行ってもよい。一方、当該サーチスペースのタイプがUSSである場合、ユーザ端末は、PDCCHを無視して、PDSCHの受信処理を行ってもよい。
For example, when the type of the search space is CSS, the user terminal may ignore the PDSCH and perform the process of receiving the PDCCH in the CSS. On the other hand, when the type of the search space is USS, the user terminal may perform the PDSCH receiving process ignoring the PDCCH.
ここで、「PDSCHを無視する」とは、PDSCHを受信/復号しないことであってもよいし、又は、PDSCHをスケジューリングするDCIを無視することであってもよい。また、「PDCCHを無視する」とは、当該PDCCHが配置されるサーチスペースのモニタリング自体を行わないことであってもよいし、又は、PDCCHの受信処理を行わないことであってもよい。
Here, “ignore PDSCH” may mean not receiving / decoding PDSCH or ignoring DCI for scheduling PDSCH. Further, “ignoring the PDCCH” may mean not monitoring the search space in which the PDCCH is arranged, or not performing the PDCCH reception process.
また、当該サーチスペースのタイプが特定のCSS(例えば、上記タイプ2-PDCCH CSS(ページングSS))である場合、ユーザ端末は、PDSCHを無視して、当該CSSにおけるPDCCHの受信処理を行ってもよい。一方、当該サーチスペースのタイプがUSSである場合、ユーザ端末は、PDCCHを無視して、PDSCHの受信処理を行ってもよい。
Also, when the type of the search space is a specific CSS (for example, the above-mentioned type 2-PDCCH @ CSS (paging SS)), the user terminal may ignore the PDSCH and perform the PDCCH reception processing in the CSS. Good. On the other hand, when the type of the search space is USS, the user terminal may perform the PDSCH receiving process ignoring the PDCCH.
緊急地震速報等のETWS(Earthquake and Tsunami Warning System)は、タイプ2-PDCCH CSS(ページングSS)に配置され、P-RNTIによりCRCスクランブルされるDCI(ページングDCI)によりトリガされる。ユーザ端末は、ページングDCIに基づいてシステム情報の更新を確認する。このため、PDSCHに割り当てられる少なくとも一つのシンボルがページングSSと重複する場合、ページングSSの受信を優先でき、PDSCHが同じタイミングでスケジューリングされたユーザ端末も、緊急地震速報を受信できる。
ET ETWS (Earthquake and Tsunami Warning System) such as Earthquake Early Warning is placed in Type 2-PDCCH CSS (Paging SS) and triggered by DCI (Paging DCI) CRC scrambled by P-RNTI. The user terminal confirms the update of the system information based on the paging DCI. For this reason, when at least one symbol assigned to the PDSCH overlaps with the paging SS, reception of the paging SS can be prioritized, and user terminals scheduled for the same timing of the PDSCH can also receive an emergency earthquake bulletin.
なお、一以上のサーチスペース(例えば、各アグリゲーションレベルのサーチスペース)のセットは、サーチスペースセットと呼ばれてもよい。上記サーチスペースのタイプに基づく判定は、サーチスペースセットのタイプの判定に置き換えられてもよい。
Note that a set of one or more search spaces (for example, a search space for each aggregation level) may be referred to as a search space set. The determination based on the search space type may be replaced with a search space set type determination.
(2)サーチスペースID
サーチスペースには、サーチスペースIDが付与される。例えば、サーチスペースIDが「0」であるサーチスペース#0は、上記タイプ0-PDCCH CSSとして用いられてもよい。 (2) Search space ID
A search space ID is assigned to the search space. For example, search space # 0 whose search space ID is “0” may be used as the type 0-PDCCH CSS.
サーチスペースには、サーチスペースIDが付与される。例えば、サーチスペースIDが「0」であるサーチスペース#0は、上記タイプ0-PDCCH CSSとして用いられてもよい。 (2) Search space ID
A search space ID is assigned to the search space. For example, search space # 0 whose search space ID is “0” may be used as the type 0-PDCCH CSS.
このため、PDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複する場合、ユーザ端末は、当該サーチスペースのサーチスペースIDに基づいて、当該PDSCHの受信処理と当該サーチスペースにおけるPDCCHの受信処理のどちらを行うか(どちらを優先するか)を決定してもよい。
Therefore, when at least one symbol assigned to the PDSCH overlaps with the search space, the user terminal determines whether to perform the PDSCH reception process or the PDCCH reception process in the search space based on the search space ID of the search space. (Which is given priority) may be determined.
例えば、当該サーチスペースIDが特定の値(例えば、0)である場合、ユーザ端末は、PDSCHを無視して、当該サーチスペースにおけるPDCCHの受信処理を行ってもよい。一方、当該サーチスペースIDが当該特定の値以外の値である場合、ユーザ端末は、PDCCHを無視して、PDSCHの受信処理を行ってもよい。
For example, when the search space ID is a specific value (for example, 0), the user terminal may ignore the PDSCH and perform the PDCCH reception process in the search space. On the other hand, when the search space ID is a value other than the specific value, the user terminal may ignore the PDCCH and perform the PDSCH receiving process.
(3)CORESETのタイプ
CORESETには、一以上のタイプ(用途、種類)のCORESETが含まれてもよい。例えば、CORESET#0は、MIB内のインデックスに基づいて設定され、SIB1をスケジューリングするDCIが配置されてもよい。 (3) CORESET Type CORESET may include one or more types (uses, types) of CORESET. For example, CORESET # 0 may be set based on an index in the MIB, and a DCI for scheduling SIB1 may be arranged.
CORESETには、一以上のタイプ(用途、種類)のCORESETが含まれてもよい。例えば、CORESET#0は、MIB内のインデックスに基づいて設定され、SIB1をスケジューリングするDCIが配置されてもよい。 (3) CORESET Type CORESET may include one or more types (uses, types) of CORESET. For example, CORESET # 0 may be set based on an index in the MIB, and a DCI for scheduling SIB1 may be arranged.
このため、PDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複する場合、ユーザ端末は、当該サーチスペースに関連付けられるCORESETのタイプ(種類、用途)に基づいて、当該PDSCHの受信処理と当該サーチスペースにおけるPDCCHの受信処理のどちらを行うか(どちらを優先するか)を決定してもよい。
For this reason, when at least one symbol assigned to the PDSCH overlaps with the search space, the user terminal performs the PDSCH reception processing and the search space based on the type (type, use) of the CORRESET associated with the search space. May be determined as to which of the PDCCH reception processes to perform (which has priority).
例えば、当該CORESETが特定のCORESET(例えば、CORESET#0)である場合、ユーザ端末は、PDSCHを無視して、当該CORESETに関連付けられるサーチスペースにおけるPDCCHの受信処理を行ってもよい。一方、当該CORESETが特定のCORESETではない場合、ユーザ端末は、PDCCHを無視して、PDSCHの受信処理を行ってもよい。
For example, when the RESET is a specific RESET (for example, RESET # 0), the user terminal may ignore the PDSCH and perform the PDCCH reception process in the search space associated with the RESET. On the other hand, if the coreset is not a specific coreset, the user terminal may ignore the PDCCH and perform the PDSCH receiving process.
(4)CORESET ID
CORESETには、CORESET IDが付与される。例えば、上述のCORESET#0には、CORESET ID「0」が付与される。 (4) CORESET ID
CORESET is given a CORESET ID. For example, the above-mentioned CORRESET # 0 is provided with a reset ID “0”.
CORESETには、CORESET IDが付与される。例えば、上述のCORESET#0には、CORESET ID「0」が付与される。 (4) CORESET ID
CORESET is given a CORESET ID. For example, the above-mentioned CORRESET # 0 is provided with a reset ID “0”.
このため、PDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複する場合、ユーザ端末は、当該サーチスペースに関連付けられるCORESETのCORESET IDに基づいて、当該PDSCHの受信処理と当該サーチスペースにおけるPDCCHの受信処理のどちらを行うか(どちらを優先するか)を決定してもよい。
For this reason, when at least one symbol assigned to the PDSCH overlaps with the search space, the user terminal performs the reception processing of the PDSCH and the reception of the PDCCH in the search space based on the coreset ID of the coreset associated with the search space. Which of the processes to perform (which has priority) may be determined.
例えば、当該CORESET IDが特定の値(例えば、0)である場合、ユーザ端末は、PDSCHを無視して、当該CORESETに関連付けられるサーチスペースにおけるPDCCHの受信処理を行ってもよい。一方、当該CORESET IDが当該特定の値以外の値である場合、ユーザ端末は、PDCCHを無視して、PDSCHの受信処理を行ってもよい。
{For example, when the CORSET @ ID is a specific value (for example, 0), the user terminal may ignore the PDSCH and perform the PDCCH reception process in the search space associated with the CORRESET. On the other hand, if the CORSET @ ID is a value other than the specific value, the user terminal may ignore the PDCCH and perform the PDSCH receiving process.
(5)RNTIのタイプ
RNTIには、上述のように、SI-RNTI、RA-RNTI、TC-RNTI、P-RNTI、INT-RNTI、SFI-RNTI、TPC-PUSCH-RNTI、TPC-PUCCH-RNTI、TPC-SRS-RNTI、C-RNTI、CS-RNTI、SP-CSI-RNTI等の一以上のタイプが含まれる。 (5) RNTI type As described above, the RNTI includes SI-RNTI, RA-RNTI, TC-RNTI, P-RNTI, INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, and TPC-PUCCH-RNTI. , TPC-SRS-RNTI, C-RNTI, CS-RNTI, SP-CSI-RNTI and so on.
RNTIには、上述のように、SI-RNTI、RA-RNTI、TC-RNTI、P-RNTI、INT-RNTI、SFI-RNTI、TPC-PUSCH-RNTI、TPC-PUCCH-RNTI、TPC-SRS-RNTI、C-RNTI、CS-RNTI、SP-CSI-RNTI等の一以上のタイプが含まれる。 (5) RNTI type As described above, the RNTI includes SI-RNTI, RA-RNTI, TC-RNTI, P-RNTI, INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, and TPC-PUCCH-RNTI. , TPC-SRS-RNTI, C-RNTI, CS-RNTI, SP-CSI-RNTI and so on.
このため、PDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複する場合、ユーザ端末は、当該サーチスペースのモニタリングされるDCIがCRCスクランブルされるRNTIのタイプ(種類)に基づいて、当該PDSCHの受信処理と当該サーチスペースにおけるPDCCHの受信処理のどちらを行うか(どちらを優先するか)を決定してもよい。
Therefore, when at least one symbol assigned to the PDSCH overlaps with the search space, the user terminal receives the PDSCH based on the type of RNTI in which the monitored DCI of the search space is CRC-scrambled. It may be determined which of the processing and the PDCCH reception processing in the search space is to be performed (which one has priority).
例えば、当該RNTIが特定のRNTI(例えば、P-RNTI、SI-RNTI又はRA-RNTI等)である場合、ユーザ端末は、PDSCHを無視して、当該サーチスペースにおけるPDCCHの受信処理を行ってもよい。一方、当該CORESET IDが当該特定の値以外の値である場合、ユーザ端末は、PDCCHを無視して、PDSCHの受信処理を行ってもよい。
For example, when the RNTI is a specific RNTI (for example, P-RNTI, SI-RNTI, RA-RNTI, or the like), the user terminal may ignore the PDSCH and perform the PDCCH reception process in the search space. Good. On the other hand, if the CORSET @ ID is a value other than the specific value, the user terminal may ignore the PDCCH and perform the PDSCH receiving process.
(6)PDSCH及びサーチスペースに割り当てられるシンボル数
一方、スロット内でPDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複する場合、ユーザ端末は、PDSCHとサーチスペースとの割り当てが重複するシンボル(重複シンボル)においてPDCCH又はPDSCHのどちらかの受信処理を行うかを、PDSCH及びサーチスペースのシンボル数に基づいて決定してもよい。 (6) Number of Symbols Allocated to PDSCH and Search Space On the other hand, if at least one symbol allocated to the PDSCH in the slot overlaps with the search space, the user terminal determines that the symbol allocated to the PDSCH and the search space overlaps (overlapping symbol). Whether to perform the reception processing of the PDCCH or the PDSCH in the symbol) may be determined based on the PDSCH and the number of symbols in the search space.
一方、スロット内でPDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複する場合、ユーザ端末は、PDSCHとサーチスペースとの割り当てが重複するシンボル(重複シンボル)においてPDCCH又はPDSCHのどちらかの受信処理を行うかを、PDSCH及びサーチスペースのシンボル数に基づいて決定してもよい。 (6) Number of Symbols Allocated to PDSCH and Search Space On the other hand, if at least one symbol allocated to the PDSCH in the slot overlaps with the search space, the user terminal determines that the symbol allocated to the PDSCH and the search space overlaps (overlapping symbol). Whether to perform the reception processing of the PDCCH or the PDSCH in the symbol) may be determined based on the PDSCH and the number of symbols in the search space.
具体的には、当該スロットにおけるPDSCHのシンボル数がサーチスペースのシンボル数よりも多い場合、ユーザ端末は、重複シンボルにおいて、PDSCHを無視して、PDCCHの受信処理を行ってもよい。一方、当該スロットにおけるPDSCHのシンボル数がサーチスペースのシンボル数よりも少ない場合、ユーザ端末は、重複シンボルにおいて、PDCCHを無視して、PDSCHの受信処理を行ってもよい。
Specifically, when the number of PDSCH symbols in the slot is larger than the number of symbols in the search space, the user terminal may perform PDCCH reception processing ignoring PDSCH in the duplicated symbols. On the other hand, when the number of symbols of the PDSCH in the slot is smaller than the number of symbols of the search space, the user terminal may ignore the PDCCH and perform the PDSCH receiving process on the duplicated symbol.
(6-1)PDSCHのシンボル数<サーチスペースのシンボル数の場合
図2A及び2Bは、PDSCHのシンボル数>サーチスペースのシンボル数の場合におけるユーザ端末の動作の一例を示す図である。図2A及び2Bでは、図1Bで説明したように、PDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複する。以下では、図1Bとの相違点を中心に説明する。 (6-1) Case where the number of PDSCH symbols <the number of symbols in the search space FIGS. 2A and 2B are diagrams illustrating an example of the operation of the user terminal in the case where the number of PDSCH symbols> the number of symbols in the search space. 2A and 2B, as described in FIG. 1B, at least one symbol allocated to the PDSCH overlaps with the search space. In the following, description will be made focusing on differences from FIG. 1B.
図2A及び2Bは、PDSCHのシンボル数>サーチスペースのシンボル数の場合におけるユーザ端末の動作の一例を示す図である。図2A及び2Bでは、図1Bで説明したように、PDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複する。以下では、図1Bとの相違点を中心に説明する。 (6-1) Case where the number of PDSCH symbols <the number of symbols in the search space FIGS. 2A and 2B are diagrams illustrating an example of the operation of the user terminal in the case where the number of PDSCH symbols> the number of symbols in the search space. 2A and 2B, as described in FIG. 1B, at least one symbol allocated to the PDSCH overlaps with the search space. In the following, description will be made focusing on differences from FIG. 1B.
図2Aに示すように、同一スロット内において、PDSCHに割り当てられるシンボル数がサーチスペースのシンボル数よりも多い場合、ユーザ端末は、PDSCHとサーチスペースとの重複シンボルにおいて、PDCCHの受信処理を行ってもよい。
As shown in FIG. 2A, in the same slot, when the number of symbols allocated to the PDSCH is larger than the number of symbols in the search space, the user terminal performs PDCCH reception processing on symbols overlapping the PDSCH and the search space. Is also good.
また、図2Aでは、ユーザ端末は、重複シンボルでPDSCHがパンクチャされると想定して、PDSCHとサーチスペースとの割り当てが重複しないシンボル(非重複シンボル)において、PDSCHの受信処理を行ってもよい。
In FIG. 2A, the user terminal may perform PDSCH reception processing on a symbol (non-overlapping symbol) in which the allocation of the PDSCH and the search space do not overlap, assuming that the PDSCH is punctured by the overlapping symbol. .
図2Bでも、図2Aと同様に、ユーザ端末は、重複シンボルにおいて、PDCCHの受信処理を行ってもよい。一方、図2Bでは、ユーザ端末は、重複シンボルでPDSCHがパンクチャされるのではなく、非重複シンボルにおいてPDSCHがレートマッチングされると想定して、当該非重複シンボルにおいてPDSCHの受信処理を行ってもよい。
2B, similarly to FIG. 2A, the user terminal may perform the PDCCH reception process on the duplicated symbol. On the other hand, in FIG. 2B, the user terminal may perform PDSCH reception processing on the non-overlapping symbol, assuming that PDSCH is rate-matched on the non-overlapping symbol instead of puncturing the PDSCH with the overlapping symbol. Good.
なお、図2A及び2Bにおいて、ユーザ端末は、PDSCH及びサーチスペースの割り当てが重複するスロットにおいて、PDSCH又はPDCCHのいずれか一方の受信処理を行い、他方を無視してもよい。この場合、PDSCH又はPDSCHのどちらの受信処理を行うかは、上記(1)~(5)の少なくとも一つのパラメータを用いて決定できる。
In FIGS. 2A and 2B, the user terminal may perform the receiving process of either the PDSCH or the PDCCH and ignore the other in the slot where the PDSCH and the search space are assigned in the same slot. In this case, which of the PDSCH and the PDSCH reception processing is to be performed can be determined using at least one of the above parameters (1) to (5).
図3は、PDSCHのシンボル数>サーチスペースのシンボル数の場合におけるユーザ端末の動作の他の例を示す図である。図3では、あるスロット内のPDSCHとサーチスペースの重複シンボルにおいて当該サーチスペースのモニタリングにより検出されるPDCCHを受信/復号する。
FIG. 3 is a diagram illustrating another example of the operation of the user terminal in the case where the number of PDSCH symbols> the number of symbols in the search space. In FIG. 3, a PDCCH detected by monitoring the search space in a symbol overlapping the search space with the PDSCH in a certain slot is received / decoded.
図3に示すように、非重複シンボルのうち、当該サーチスペースの前後の少なくとも一方の所定数のシンボルは、Rxビームの切り替え期間として使用されてもよい。ユーザ端末は、当該所定数のシンボルにおいてPDSCHを無視してもよい。また、当該あるスロット内でPDSCHに割り当てられた残りの非重複シンボルが有る場合、ユーザ端末は、残りの非重複シンボルでPDSCHの受信処理を行ってもよい。
As shown in FIG. 3, at least one predetermined number of symbols before and after the search space among the non-overlapping symbols may be used as an Rx beam switching period. The user terminal may ignore the PDSCH in the predetermined number of symbols. Further, when there is a remaining non-overlapping symbol assigned to the PDSCH in the certain slot, the user terminal may perform the PDSCH receiving process with the remaining non-overlapping symbol.
Rxビームの切り替え期間となる所定数のシンボルは、予め仕様で定められてもよいし、ユーザ端末の実装(implementation)次第であってもよい。例えば、図3では、サーチスペースの前後に2シンボルずつ、Rxビームの切り替え期間が設けられるものとするが、これに限られない。
The predetermined number of symbols for the Rx beam switching period may be determined in advance in specifications or may depend on the implementation of the user terminal. For example, in FIG. 3, an Rx beam switching period is provided for every two symbols before and after the search space, but the present invention is not limited to this.
(6-2)PDSCHのシンボル数<サーチスペースのシンボル数
図4A及び4Bは、PDSCHのシンボル数<サーチスペースのシンボル数の場合におけるユーザ端末の動作の一例を示す図である。図4A及び4Bでは、PDSCHのシンボル数がサーチスペースのシンボル数よりも少ない点で図2A及び2Bと異なる。以下では、図2A及び2Bとの相違点を中心に説明する。 (6-2) Number of symbols of PDSCH <number of symbols of search space FIGS. 4A and 4B are diagrams illustrating an example of the operation of the user terminal in the case where the number of symbols of PDSCH <the number of symbols of search space. 4A and 4B differ from FIGS. 2A and 2B in that the number of PDSCH symbols is smaller than the number of symbols in the search space. In the following, description will be made focusing on differences from FIGS. 2A and 2B.
図4A及び4Bは、PDSCHのシンボル数<サーチスペースのシンボル数の場合におけるユーザ端末の動作の一例を示す図である。図4A及び4Bでは、PDSCHのシンボル数がサーチスペースのシンボル数よりも少ない点で図2A及び2Bと異なる。以下では、図2A及び2Bとの相違点を中心に説明する。 (6-2) Number of symbols of PDSCH <number of symbols of search space FIGS. 4A and 4B are diagrams illustrating an example of the operation of the user terminal in the case where the number of symbols of PDSCH <the number of symbols of search space. 4A and 4B differ from FIGS. 2A and 2B in that the number of PDSCH symbols is smaller than the number of symbols in the search space. In the following, description will be made focusing on differences from FIGS. 2A and 2B.
図4Aに示すように、同一スロット内において、PDSCHに割り当てられるシンボル数がサーチスペースのシンボル数よりも少ない場合、ユーザ端末は、上記重複シンボルにおいて、PDSCHの受信処理を行ってもよい。
AAs shown in FIG. 4A, when the number of symbols allocated to the PDSCH in the same slot is smaller than the number of symbols in the search space, the user terminal may perform the PDSCH receiving process on the overlapping symbols.
また、図4Aでは、ユーザ端末は、重複シンボルでPDCCHがパンクチャされると想定して、上記非重複シンボルにおいて、サーチスペースにおけるPDCCHの受信処理を行ってもよい。
4A, the user terminal may perform the PDCCH reception process in the search space in the non-overlapping symbol, assuming that the PDCCH is punctured by the overlapping symbol.
図4Bでも、図4Aと同様に、ユーザ端末は、重複シンボルにおいて、PDSCHの受信処理を行ってもよい。一方、図4Bでは、ユーザ端末は、重複シンボルでPDCCHがパンクチャされるのではなく、非重複シンボルにおいてPDCCHがレートマッチングされると想定して、当該非重複シンボルにおいてPDCCHの受信処理を行ってもよい。
4B, similarly to FIG. 4A, the user terminal may perform the PDSCH receiving process on the duplicated symbol. On the other hand, in FIG. 4B, the user terminal may perform the PDCCH reception processing on the non-overlapping symbol on the assumption that the PDCCH is rate-matched on the non-overlapping symbol instead of puncturing the PDCCH on the overlapping symbol. Good.
なお、図4A及び4Bにおいて、ユーザ端末は、PDSCH及びサーチスペースの割り当てが重複するスロットにおいて、PDSCH又はPDCCHのいずれか一方の受信処理を行い、他方を無視してもよい。この場合、PDSCH又はPDSCHのいずれを受信(無視)するかは、上記(1)~(5)の少なくとも一つのパラメータを用いて決定できる。
4A and 4B, the user terminal may perform one of the PDSCH and PDCCH reception processes in a slot where the PDSCH and search space allocations overlap, and ignore the other. In this case, whether to receive (ignore) the PDSCH or the PDSCH can be determined using at least one of the above parameters (1) to (5).
図5は、PDSCHのシンボル数>サーチスペースのシンボル数の場合におけるユーザ端末の動作の他の例を示す図である。図5では、スロット内のPDSCHとサーチスペースの重複シンボルにおいてPDSCHの受信処理を行う。
FIG. 5 is a diagram showing another example of the operation of the user terminal when the number of PDSCH symbols> the number of search space symbols. In FIG. 5, the PDSCH receiving process is performed on the symbols overlapping the PDSCH and the search space in the slot.
図5に示すように、非重複シンボルのうち、当該PDSCHに割り当てられるシンボル前後の少なくとも一方の所定数のシンボルは、Rxビームの切り替え期間として使用されてもよい。ユーザ端末は、当該所定数のシンボルにおいてPDCCHを無視してもよい。また、当該スロット内でサーチスペースに割り当てられる残りの非重複シンボルが存在する場合、ユーザ端末は、当該残りの非重複シンボルでPDCCHの受信処理を行ってもよい。
As shown in FIG. 5, at least one predetermined number of symbols before and after the symbol allocated to the PDSCH among the non-overlapping symbols may be used as an Rx beam switching period. The user terminal may ignore the PDCCH in the predetermined number of symbols. Further, when there is a remaining non-overlapping symbol to be allocated to the search space in the slot, the user terminal may perform a PDCCH reception process using the remaining non-overlapping symbol.
Rxビームの切り替え期間となる所定数のシンボルは、予め仕様で定められてもよいし、ユーザ端末の実装次第であってもよい。例えば、図5では、PDSCHの割り当てシンボルの前後に2シンボルずつ、Rxビームの切り替え期間が設けられるものとするが、これに限られない。
The predetermined number of symbols for the Rx beam switching period may be determined in advance in specifications or may depend on the implementation of the user terminal. For example, in FIG. 5, it is assumed that the Rx beam switching period is provided two symbols before and after the PDSCH allocation symbol, but the present invention is not limited to this.
なお、図5では、当該あるスロット内において、サーチスペースに割り当てられる残りの非重複シンボルがないので、ユーザ端末は、PDCCHを受信/復号できなくなる。
In FIG. 5, the user terminal cannot receive / decode the PDCCH because there is no remaining non-overlapping symbol allocated to the search space in the certain slot.
このため、ユーザ端末は、当該あるスロット内において、サーチスペースに割り当てられるシンボル数に基づいて、Rxビームの切り替え期間を制御してもよい。例えば、図5に示す場合、Rxビームの切り替え期間を短くする、又は、無くすことによって、ユーザ端末は、サーチスペースに割り当てられる非重複シンボルで、PDCCHの受信処理を行ってもよい。
Therefore, the user terminal may control the Rx beam switching period based on the number of symbols allocated to the search space in the certain slot. For example, in the case shown in FIG. 5, by shortening or eliminating the switching period of the Rx beam, the user terminal may perform the PDCCH reception process using the non-overlapping symbol allocated to the search space.
<PDCCH用のTCI状態とPDSCH用のTCI状態が同一である場合>
PDSCHのTCI状態がPDCCHのTCI状態と同一である場合、ユーザ端末は、PDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複するスロットにおける、PDSCH及びPDCCHの少なくとも一つの受信処理を制御してもよい。 <When the TDC state for PDCCH is the same as the TCI state for PDSCH>
When the TCI state of the PDSCH is the same as the TCI state of the PDCCH, the user terminal may control at least one reception process of the PDSCH and the PDCCH in a slot where at least one symbol assigned to the PDSCH overlaps with the search space. Good.
PDSCHのTCI状態がPDCCHのTCI状態と同一である場合、ユーザ端末は、PDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複するスロットにおける、PDSCH及びPDCCHの少なくとも一つの受信処理を制御してもよい。 <When the TDC state for PDCCH is the same as the TCI state for PDSCH>
When the TCI state of the PDSCH is the same as the TCI state of the PDCCH, the user terminal may control at least one reception process of the PDSCH and the PDCCH in a slot where at least one symbol assigned to the PDSCH overlaps with the search space. Good.
≪周波数領域リソースが重複しない場合≫
ユーザ端末は、当該PDSCHに割り当てられる周波数領域リソースの少なくとも一部がサーチスペースと重複しない場合、当該スロット(重複シンボルを含む)において、PDSCH及びサーチスペースにおけるPDCCHの双方の受信処理を行ってもよい。 ≫When frequency domain resources do not overlap≫
When at least part of the frequency domain resources allocated to the PDSCH does not overlap with the search space, the user terminal may perform reception processing of both the PDSCH and the PDCCH in the search space in the slot (including the overlapping symbol). .
ユーザ端末は、当該PDSCHに割り当てられる周波数領域リソースの少なくとも一部がサーチスペースと重複しない場合、当該スロット(重複シンボルを含む)において、PDSCH及びサーチスペースにおけるPDCCHの双方の受信処理を行ってもよい。 ≫When frequency domain resources do not overlap≫
When at least part of the frequency domain resources allocated to the PDSCH does not overlap with the search space, the user terminal may perform reception processing of both the PDSCH and the PDCCH in the search space in the slot (including the overlapping symbol). .
当該周波数領域リソースは、例えば、物理リソースブロック(PRB:Physical Resource Block)(リソースブロック)、一以上のPRBを含むリソースブロックグループ(RBG:Resource Block Group)又は一以上のサブキャリア等であってもよい。
The frequency domain resource may be, for example, a physical resource block (PRB: Physical Resource Block) (resource block), a resource block group including one or more PRBs (RBG: Resource Resource Block Group), or one or more subcarriers. Good.
また、ユーザ端末は、当該スロット(重複シンボルを含む)において、受信処理を優先的に行うチャネル又はサーチスペースを所定の基準に基づいて決定(選択)してもよい。例えば、当該所定の基準は、PDSCH及びサーチスペースの少なくとも一つに割り当てられる帯域幅(PRB数又はRBG数)、チャネル推定数、サブキャリア間隔(SCS:Subcarrier Spacing)、サーチスペースのタイプ又はID、CORESETのタイプ又はID、アグリゲーションレベルの少なくとも一つであってもよい。
ユ ー ザ In addition, the user terminal may determine (select) a channel or a search space in which reception processing is preferentially performed in the slot (including the duplicate symbol) based on a predetermined criterion. For example, the predetermined criterion is a bandwidth (the number of PRBs or the number of RBGs) allocated to at least one of the PDSCH and the search space, a channel estimation number, a subcarrier interval (SCS: Subcarrier Spacing), a search space type or ID, It may be at least one of a coreset type or ID and an aggregation level.
図6は、当該PDSCHに割り当てられる周波数領域リソースの少なくとも一部がサーチスペースと重複しない場合におけるユーザ端末の動作の一例を示す図である。なお、図6では、PDSCHのシンボル数がサーチスペースのシンボル数よりも多い例を例示するが、これに限られない。
FIG. 6 is a diagram illustrating an example of the operation of the user terminal when at least a part of the frequency domain resources allocated to the PDSCH does not overlap with the search space. Although FIG. 6 illustrates an example in which the number of symbols of the PDSCH is larger than the number of symbols of the search space, the present invention is not limited to this.
図6に示すように、PDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複するが、PDSCHに割り当てられる周波数領域リソースの少なくとも一部がサーチスペースと重複しない場合、ユーザ端末は、同一のTCI状態(空間受信パラメータ)に基づいて、PDSCH及びPDCCHの双方の受信処理を行ってもよい。例えば、図6において、ユーザ端末は、PDSCHとサーチスペースの重複シンボルでは、PDSCH及びPDCCHの受信処理を行い、非重複シンボルでは、PDSCHの受信処理を行ってもよい。
As shown in FIG. 6, when at least one symbol assigned to the PDSCH overlaps with the search space, but at least a part of the frequency domain resources assigned to the PDSCH does not overlap with the search space, the user terminal performs the same TCI state. Based on the (spatial reception parameter), reception processing of both PDSCH and PDCCH may be performed. For example, in FIG. 6, the user terminal may perform the receiving process of the PDSCH and the PDCCH with the symbol overlapping the PDSCH and the search space, and may perform the receiving process of the PDSCH with the non-overlapping symbol.
また、図6において、ユーザ端末は、当該スロット(重複シンボルを含む)において、受信処理を優先的に行うチャネル又はサーチスペースを所定の優先順位に基づいて決定(選択)してもよい。
In addition, in FIG. 6, the user terminal may determine (select) a channel or a search space in which reception processing is preferentially performed in the slot (including overlapping symbols) based on a predetermined priority.
当該所定の優先順位は、例えば、チャネル推定数が20である場合、以下のいずれかに定められてもよい:
・CSSのPDCCH>USSのPDCCH>PDSCH、
・PDSCH>CSSのPDCCH>USSのPDCCH。 The predetermined priority may be set to one of the following, for example, when the number of estimated channels is 20:
CSS PDCCH> USS PDCCH> PDSCH,
PDSCH> PDCCH of CSS> PDCCH of USS.
・CSSのPDCCH>USSのPDCCH>PDSCH、
・PDSCH>CSSのPDCCH>USSのPDCCH。 The predetermined priority may be set to one of the following, for example, when the number of estimated channels is 20:
CSS PDCCH> USS PDCCH> PDSCH,
PDSCH> PDCCH of CSS> PDCCH of USS.
また、当該所定の優先順位は、アグリゲーションレベルに基づいて定められてもよい。例えば、アグリゲーションレベルが所定値より大きい(以上である)場合、PDSCHの受信処理を優先し、アグリゲーションレベルが所定値以下である(未満である)場合、PDCCHの受信処理を優先してもよい。又は、これとは反対の制御が行われてもよい。
The predetermined priority may be determined based on the aggregation level. For example, if the aggregation level is greater than (greater than or equal to) a predetermined value, priority may be given to PDSCH reception processing, and if the aggregation level is equal to or less than (less than) a predetermined value, priority may be given to PDCCH reception processing. Alternatively, the opposite control may be performed.
≪周波数領域リソースが重複する場合≫
ユーザ端末は、当該PDSCHに割り当てられる周波数領域リソースの少なくとも一部がサーチスペースと重複する場合、PDSCHとサーチスペースの重複する周波数領域リソースにおいて、PDSCH及びサーチスペースにおけるPDCCHのいずれか一方の受信処理を行ってもよい。 ≫When frequency domain resources overlap≫
When at least a part of the frequency domain resource allocated to the PDSCH overlaps with the search space, the user terminal performs the reception process of one of the PDSCH and the PDCCH in the search space in the frequency domain resource where the PDSCH and the search space overlap. May go.
ユーザ端末は、当該PDSCHに割り当てられる周波数領域リソースの少なくとも一部がサーチスペースと重複する場合、PDSCHとサーチスペースの重複する周波数領域リソースにおいて、PDSCH及びサーチスペースにおけるPDCCHのいずれか一方の受信処理を行ってもよい。 ≫When frequency domain resources overlap≫
When at least a part of the frequency domain resource allocated to the PDSCH overlaps with the search space, the user terminal performs the reception process of one of the PDSCH and the PDCCH in the search space in the frequency domain resource where the PDSCH and the search space overlap. May go.
この場合、当該重複する周波数領域リソースにおいてPDSCH又はPDSCHのどちらの受信処理を行うかは、上記(1)~(6)の少なくとも一つのパラメータを用いて決定されてもよいし、或いは、上記所定の優先順位に従って決定されてもよい。
In this case, whether to perform the PDSCH or PDSCH reception processing in the overlapping frequency domain resources may be determined using at least one of the parameters (1) to (6), or May be determined according to the priority order.
図7は、当該PDSCHに割り当てられる周波数領域リソースの少なくとも一部がサーチスペースと重複する場合におけるユーザ端末の動作の一例を示す図である。なお、図7では、PDSCHのシンボル数がサーチスペースのシンボル数よりも多い例を例示するが、これに限られない。
FIG. 7 is a diagram illustrating an example of an operation of the user terminal when at least a part of the frequency domain resources allocated to the PDSCH overlaps with the search space. Although FIG. 7 illustrates an example in which the number of PDSCH symbols is larger than the number of symbols in the search space, the present invention is not limited to this.
図7に示すように、PDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複し、かつ、PDSCHに割り当てられる周波数領域リソースの少なくとも一部がサーチスペースと重複する場合、ユーザ端末は、重複シンボルにおいて、同一のTCI状態(空間受信パラメータ)に基づいて、PDSCH及びPDCCHの少なくとも一つの受信処理を行ってもよい。
As shown in FIG. 7, when at least one symbol assigned to the PDSCH overlaps with the search space and at least a part of the frequency domain resources assigned to the PDSCH overlap with the search space, the user terminal performs , Based on the same TCI state (spatial reception parameter), at least one reception process of PDSCH and PDCCH may be performed.
例えば、図7において、ユーザ端末は、PDSCHとサーチスペースの重複シンボルのうち、重複する周波数領域リソースでは、PDSCH又はPDCCHのいずれかの受信処理を行い、他方を無視してもよい。一方、重複シンボルの非重複の周波数領域リソースでは、非重複の周波数領域リソースに割り当てられたチャネル(ここでは、PDCCH)の受信処理を行ってもよい。
For example, in FIG. 7, the user terminal may perform reception processing of either the PDSCH or the PDCCH in the overlapping frequency domain resources among the overlapping symbols of the PDSCH and the search space, and may ignore the other. On the other hand, in the non-overlapping frequency domain resources of the overlapping symbols, the reception processing of the channel (here, PDCCH) allocated to the non-overlapping frequency domain resources may be performed.
図7において、PDSCHとサーチスペースの非重複シンボルにおいて、ユーザ端末は、PDSCHの受信処理を行ってもよいし、又は、受信処理を行わなくともよい。
In FIG. 7, in the non-overlapping symbols of the PDSCH and the search space, the user terminal may or may not perform the PDSCH reception processing.
なお、図7に示すように、重複シンボルにおいてPDSCH及びサーチスペースの周波数領域リソースが重複する場合、重複する周波数領域リソースにおけるユーザ端末動作が複雑化する恐れがある。そこで、基地局は、重複シンボルにおいて、サーチスペースとPDSCHの周波数領域リソースが重複しないように(例えば、図6に示すように)、PDSCHに対して周波数領域リソースを割り当ててもよい。
As shown in FIG. 7, when the frequency domain resources of the PDSCH and the search space overlap in the overlapping symbol, the user terminal operation in the overlapping frequency domain resources may be complicated. Therefore, the base station may allocate frequency domain resources to the PDSCH such that the search space and the frequency domain resources of the PDSCH do not overlap (for example, as shown in FIG. 6) in the duplicated symbols.
また、基地局は、重複シンボルにおいて、PDSCHと重複しない周波数領域リソースで構成されるPDCCH候補に対するPDCCHのマッピングを、所定の優先順位に従って制御してもよい。具体的には、当該所定の優先順位は、上記(1)~(6)の少なくとも一つのパラメータに基づいて定められてもよい。
{Also, the base station may control the mapping of the PDCCH to the PDCCH candidate composed of the frequency domain resources that do not overlap with the PDSCH in the overlapping symbol according to a predetermined priority. Specifically, the predetermined priority may be determined based on at least one of the above parameters (1) to (6).
例えば、基地局は、PDSCHと衝突しない周波数領域リソースで構成されるPDCCH候補にCSS及びUSSの少なくとも一つをマッピングしてもよいし、特定のCSSだけをマッピングしてもよい。
For example, the base station may map at least one of CSS and USS to a PDCCH candidate configured with a frequency domain resource that does not collide with PDSCH, or may map only a specific CSS.
以上のように、第1の態様では、ユーザ端末が、アナログビームを用い、スロット内でPDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複する場合、ユーザ端末は、スロット内におけるPDSCH及びPDCCHの少なくとも一つについての受信処理を適切に制御できる。
As described above, in the first example, in a case where the user terminal uses an analog beam and at least one symbol assigned to the PDSCH in the slot overlaps with the search space, the user terminal transmits the PDSCH and the PDCCH in the slot. At least one of the receiving processes can be appropriately controlled.
(第2の態様)
第2の態様では、ユーザ端末がデジタルビーム又はマルチパネルをサポートする場合を想定する。 (Second aspect)
In the second aspect, it is assumed that the user terminal supports a digital beam or a multi-panel.
第2の態様では、ユーザ端末がデジタルビーム又はマルチパネルをサポートする場合を想定する。 (Second aspect)
In the second aspect, it is assumed that the user terminal supports a digital beam or a multi-panel.
図8A及び8Bは、第2の態様に係るTxビーム及びRxビームの一例を示す図である。図8Aでは、ユーザ端末のRxビーム#1及び#2がデジタルビームである点で、図1Aと異なる。ユーザ端末がデジタルビームをサポートする場合、同じタイミングに複数のRxビームを形成することができる。
FIGS. 8A and 8B are diagrams illustrating an example of a Tx beam and an Rx beam according to the second embodiment. FIG. 8A is different from FIG. 1A in that Rx beams # 1 and # 2 of the user terminal are digital beams. If the user terminal supports digital beams, multiple Rx beams can be formed at the same timing.
図8Bでは、マルチパネルの一例が示される。マルチパネル送信においても、同じタイミングに複数のRxビームを形成できる。
FIG. 8B shows an example of a multi-panel. In multi-panel transmission, a plurality of Rx beams can be formed at the same timing.
第2の態様では、ユーザ端末は、PDCCH用のTCI状態とPDSCH用のTCI状態が異なるか否かに関係なく、ユーザ端末の能力情報(UE capability)に基づいて、重複シンボルにおけるPDSCH及びサーチスペースにおけるPDCCHの少なくとも一つの受信処理を制御してもよい。
In the second aspect, the user terminal determines the PDSCH and the search space in the duplicate symbol based on the capability information (UE @ capability) of the user terminal regardless of whether the TDC state for the PDCCH is different from the TCI state for the PDSCH. May control at least one PDCCH reception process.
具体的には、ユーザ端末は、異なるTCI状態のPDCCH及びPDSCHの受信処理を同じタイミングで行う能力を有するか否かを示す能力情報を基地局に通知してもよい。当該能力を有する場合、ユーザ端末は、PDCCH用のTCI状態とPDSCH用のTCI状態が異なるか否かに関係なく、重複シンボルにおけるPDSCH及びサーチスペースにおけるPDCCHの少なくとも一つの受信処理を制御してもよい。
{Specifically, the user terminal may notify the base station of capability information indicating whether or not the user terminal has the capability to perform the reception processing of the PDCCH and the PDSCH in different TCI states at the same timing. If the user terminal has the capability, the user terminal may control at least one reception process of the PDSCH in the duplicate symbol and the PDCCH in the search space regardless of whether the TCI state for the PDCCH and the TCI state for the PDSCH are different. Good.
一方、当該能力を有さない場合、ユーザ端末は、第1の態様と同様に、PDCCH用のTCI状態とPDSCH用のTCI状態が異なるか否かに基づいて、重複シンボルにおけるPDSCH及びサーチスペースにおけるPDCCHの少なくとも一つの受信処理を制御してもよい。
On the other hand, if the user terminal does not have the capability, the user terminal determines whether or not the TSCH state for the PDCCH and the TCI state for the PDSCH are different from each other in the PDSCH and the search space in the duplicate symbol, as in the first aspect. At least one reception process of the PDCCH may be controlled.
図9A及び9Bは、第2の態様に係るPDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複する場合におけるユーザ端末の動作の一例を示す図である。なお、図9A及び9Bでは、PDSCHのシンボル数がサーチスペースのシンボル数よりも多い例を例示するが、これに限られない。
FIGS. 9A and 9B are diagrams showing an example of the operation of the user terminal when at least one symbol assigned to the PDSCH according to the second example overlaps with the search space. 9A and 9B illustrate an example in which the number of symbols of the PDSCH is larger than the number of symbols of the search space, but the present invention is not limited to this.
図9Aでは、PDSCHに割り当てられる周波数領域リソースの少なくとも一部がサーチスペースと重複しない場合が示される。一方、図9Bでは、PDSCHに割り当てられる周波数領域リソースの少なくとも一部がサーチスペースと重複する場合が示される。
FIG. 9A shows a case where at least a part of the frequency domain resources allocated to the PDSCH does not overlap with the search space. On the other hand, FIG. 9B shows a case where at least a part of the frequency domain resources allocated to the PDSCH overlaps with the search space.
第1の態様(例えば、図6、7)で説明したように、ユーザ端末のRxビームがアナログビームである場合、PDCCHのTCI状態(Rxビーム、空間受信パラメータ)とPDSCHのTCI状態(Rxビーム、空間受信パラメータ)とが同一である場合にだけ、重複シンボルにおけるPDSCH及びサーチスペースにおけるPDCCHの双方の受信/復号が可能となる。
As described in the first example (for example, FIGS. 6 and 7), when the Rx beam of the user terminal is an analog beam, the TDC state of the PDCCH (Rx beam, spatial reception parameter) and the TCI state of the PDSCH (Rx beam , Spatial reception parameters), it is possible to receive / decode both the PDSCH in the duplicated symbol and the PDCCH in the search space.
一方、ユーザ端末がデジタルビーム又はマルチパネルをサポートする場合、図9A及び9Bに示すように、PDCCHのTCI状態(Rxビーム、空間受信パラメータ)とPDSCHのTCI状態(Rxビーム、空間受信パラメータ)とが異なる場合にも、PDCCHのTCI状態及びPDSCHのTCI状態が同一である場合と同様に、重複シンボルにおけるPDSCH及びサーチスペースにおけるPDCCHの双方の受信/復号が可能となる。
On the other hand, when the user terminal supports digital beam or multi-panel, as shown in FIGS. 9A and 9B, the TDC state of the PDCCH (Rx beam, spatial reception parameter) and the TCI state of the PDSCH (Rx beam, spatial reception parameter) Are different, it is possible to receive / decode both the PDSCH in the duplicated symbol and the PDCCH in the search space as in the case where the TDC state of the PDCCH and the TCI state of the PDSCH are the same.
なお、図9Aに示す場合、ユーザ端末は、PDCCH用のTCI状態とPDSCH用のTCI状態が異なるか否かに関係なく、第1の態様の<PDCCH用のTCI状態とPDSCH用のTCI状態が同一である場合>の≪周波数領域リソースが重複しない場合≫(例えば、図6)と同様の制御を行うことができる。
In the case illustrated in FIG. 9A, the user terminal determines whether the TCI state for the PDCCH and the TCI state for the PDSCH of the first mode are different regardless of whether the TCI state for the PDCCH is different from the TCI state for the PDSCH. In the case where they are the same>, the same control as in the case where {frequency domain resources do not overlap} (for example, FIG. 6) can be performed.
また、図9Bに示す場合、ユーザ端末は、PDCCH用のTCI状態とPDSCH用のTCI状態が異なるか否かに関係なく、第1の態様の<PDCCH用のTCI状態とPDSCH用のTCI状態が同一である場合>の≪周波数領域リソースが重複する場合≫(例えば、図7)と同様の制御を行うことができる。
Also, in the case shown in FIG. 9B, the user terminal determines whether the <PDCCH TCI state and the PDSCH TCI state of the first aspect are <PDCCH TCI state and PDSCH TCI state, regardless of whether the PDCCH TCI state and the PDSCH TCI state are different. The same control can be performed as in the case of “the case where they are the same” {the case where the frequency domain resources overlap} (for example, FIG. 7).
なお、基地局は、異なるTCI状態のPDCCH及びPDSCHの受信処理を同じタイミングで行う能力を有することを示す能力情報を受信する場合、図9Aに示すように、重複シンボルにおいて、サーチスペースと重複しないように、PDSCHに対する周波数領域リソースを割り当ててもよい。これにより、図9BのPDSCHとサーチスペースが重複する周波数領域リソースにおけるユーザ端末動作が複雑化するのを防止できる。
When the base station receives the capability information indicating that it has the capability to perform the reception processing of the PDCCH and the PDSCH in different TCI states at the same timing, as illustrated in FIG. 9A, the overlapping symbol does not overlap with the search space. In this way, frequency domain resources for PDSCH may be allocated. This can prevent the user terminal operation in the frequency domain resource where the search space overlaps with the PDSCH in FIG. 9B from becoming complicated.
以上のように、第2の態様では、ユーザ端末が、デジタルビーム又はマルチパネルを用い、スロット内でPDSCHに割り当てられる少なくとも一つのシンボルがサーチスペースと重複する場合、ユーザ端末は、スロット内におけるPDSCH及びPDCCHの少なくとも一つについての受信処理を適切に制御できる。
As described above, in the second example, when the user terminal uses a digital beam or a multi-panel and at least one symbol assigned to the PDSCH in the slot overlaps with the search space, the user terminal uses the PDSCH in the slot. And reception processing for at least one of the PDCCHs.
(無線通信システム)
以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。 (Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the present embodiment will be described. In this wireless communication system, communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。 (Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the present embodiment will be described. In this wireless communication system, communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
図10は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
FIG. 10 is a diagram showing an example of a schematic configuration of the wireless communication system according to the present embodiment. In the wireless communication system 1, carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a unit of a system bandwidth (for example, 20 MHz) of an LTE system are applied. can do.
なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
The wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
The wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1. Have. Further, user terminals 20 are arranged in the macro cell C1 and each small cell C2. The arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
ユーザ端末20は、基地局11及び基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)を用いてCA又はDCを適用してもよい。
The user terminal 20 can be connected to both the base station 11 and the base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. Further, the user terminal 20 may apply CA or DC using a plurality of cells (CC).
ユーザ端末20と基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、基地局11との間と同じキャリアが用いられてもよい。なお、各基地局が利用する周波数帯域の構成はこれに限られない。
Communication between the user terminal 20 and the base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier). On the other hand, between the user terminal 20 and the base station 12, a carrier having a relatively high frequency band (for example, 3.5 GHz, 5 GHz, or the like) and a wide bandwidth may be used, or between the user terminal 20 and the base station 11. The same carrier as described above may be used. Note that the configuration of the frequency band used by each base station is not limited to this.
また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
The user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell. In each cell (carrier), a single numerology may be applied, or a plurality of different numerologies may be applied.
ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔が異なる場合及び/又はOFDMシンボル数が異なる場合には、ニューメロロジーが異なると称されてもよい。
Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like. For example, for a certain physical channel, if the subcarrier intervals of the constituent OFDM symbols are different and / or if the number of OFDM symbols is different, the numerology may be referred to as different.
基地局11と基地局12との間(又は、2つの基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
The base station 11 and the base station 12 (or between the two base stations 12) may be connected by wire (for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)) or wirelessly. Good.
基地局11及び各基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各基地局12は、基地局11を介して上位局装置30に接続されてもよい。
The base station 11 and each base station 12 are respectively connected to the upper station apparatus 30, and are connected to the core network 40 via the upper station apparatus 30. Note that the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each base station 12 may be connected to the higher station apparatus 30 via the base station 11.
なお、基地局11は、相対的に広いカバレッジを有する基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、基地局12は、局所的なカバレッジを有する基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
The base station 11 is a base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. The base station 12 is a base station having local coverage, such as a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and a transmission / reception point. May be called. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
In the wireless communication system 1, orthogonal frequency division multiple access (OFDMA: Orthogonal Frequency Division Multiple Access) is applied to the downlink as a wireless access method, and single carrier-frequency division multiple access (SC-FDMA: Single Carrier) is applied to the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末ごとに1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier for communication. SC-FDMA divides a system bandwidth into bands each composed of one or a continuous resource block for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method. The uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
In the wireless communication system 1, as a downlink channel, a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel and the like shared by each user terminal 20 are used. Used. The PDSCH transmits user data, upper layer control information, SIB (System @ Information @ Block), and the like. Also, MIB (Master \ Information \ Block) is transmitted by PBCH.
下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like. Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and / or PUSCH is transmitted by PDCCH.
なお、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
Note that the DCI that schedules DL data reception may be called a DL assignment, and the DCI that schedules UL data transmission may be called an UL grant.
PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
PCFICH transmits the number of OFDM symbols used for PDCCH. The PHICH transmits HARQ (Hybrid Automatic Repeat Repeat request) acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) for the PUSCH. The EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
In the wireless communication system 1, as an uplink channel, an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used. By PUSCH, user data, higher layer control information, etc. are transmitted. In addition, downlink radio quality information (CQI: Channel Quality Indicator), acknowledgment information, scheduling request (SR: Scheduling Request), and the like are transmitted by PUCCH. The PRACH transmits a random access preamble for establishing a connection with a cell.
無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
In the wireless communication system 1, as downlink reference signals, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation Reference Signal, a position determination reference signal (PRS: Positioning Reference Signal), and the like are transmitted. In the wireless communication system 1, a reference signal for measurement (SRS: Sounding Reference Signal), a reference signal for demodulation (DMRS), and the like are transmitted as uplink reference signals. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
<基地局>
図11は、本実施の形態に係る基地局の全体構成の一例を示す図である。基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。 <Base station>
FIG. 11 is a diagram showing an example of the entire configuration of the base station according to the present embodiment. Thebase station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
図11は、本実施の形態に係る基地局の全体構成の一例を示す図である。基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。 <Base station>
FIG. 11 is a diagram showing an example of the entire configuration of the base station according to the present embodiment. The
下りリンクによって基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
ユ ー ザ User data transmitted from the base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
In the baseband signal processing unit 104, regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control) Transmission / reception control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc., and transmission / reception processing are performed. 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
送受信部103は、ベースバンド信号処理部104からアンテナごとにプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
The transmission / reception section 103 converts the baseband signal pre-coded and output from the baseband signal processing section 104 for each antenna into a radio frequency band, and transmits the radio frequency band. The radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101. The transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
On the other hand, as for an uplink signal, a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102. Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行う。
The baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform), inverse discrete Fourier transform (IDFT), and error correction on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106. The call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the base station 10, management of radio resources, and the like.
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の基地局10と信号を送受信(バックホールシグナリング)してもよい。
(4) The transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface. The transmission line interface 106 transmits and receives signals (backhaul signaling) to and from another base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). Is also good.
なお、送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ101は、例えばアレーアンテナによって構成してもよい。
Note that the transmitting and receiving unit 103 may further include an analog beamforming unit that performs analog beamforming. The analog beamforming unit includes an analog beamforming circuit (for example, a phase shifter, a phase shift circuit) or an analog beamforming device (for example, a phase shifter) described based on common recognition in the technical field according to the present invention. May be. Further, the transmitting / receiving antenna 101 may be constituted by, for example, an array antenna.
図12は、本実施の形態に係る基地局の機能構成の一例を示す図である。なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
FIG. 12 is a diagram showing an example of a functional configuration of the base station according to the present embodiment. In this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that base station 10 also has other functional blocks necessary for wireless communication.
ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
The baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations need only be included in base station 10, and some or all of the configurations need not be included in baseband signal processing section 104.
制御部(スケジューラ)301は、基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
The control unit (scheduler) 301 controls the entire base station 10. The control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
The control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。
The control unit 301 performs scheduling (for example, resource transmission) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like). Allocation). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、SSB、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
The control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), SSB, downlink reference signals (for example, CRS, CSI-RS, DMRS).
制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
The control unit 301 includes an uplink data signal (for example, a signal transmitted on the PUSCH), an uplink control signal (for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.), a random access preamble (for example, a PRACH). (Transmission signal), scheduling of uplink reference signals and the like.
制御部301は、ベースバンド信号処理部104におけるデジタルBF(例えば、プリコーディング)及び/又は送受信部103におけるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。制御部301は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成する制御を行ってもよい。これらの伝搬路情報は、受信信号処理部304及び/又は測定部305から取得されてもよい。
The control unit 301 controls to form a transmission beam and / or a reception beam using digital BF (for example, precoding) in the baseband signal processing unit 104 and / or analog BF (for example, phase rotation) in the transmission / reception unit 103. May be performed. The control unit 301 may perform control to form a beam based on downlink propagation path information, uplink propagation path information, and the like. These propagation path information may be acquired from the reception signal processing unit 304 and / or the measurement unit 305.
送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated signal to mapping section 303. The transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
The transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example. The DL assignment and the UL grant are both DCI and follow the DCI format. In addition, the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel \ State \ Information) from each user terminal 20 or the like.
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the result to transmission / reception section 103. The mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
(4) The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
(4) The reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
The measurement unit 305 performs measurement on the received signal. The measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
For example, the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal. Measuring section 305 receives power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)). , Signal strength (for example, RSSI (Received Signal Strength Indicator)), channel information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 301.
なお、送受信部103は、下り共有チャネル(例えば、PDSCH)及び下り制御チャネル(例えば、PDCCH)(下り制御情報)を送信してもよい。
The transmitting / receiving section 103 may transmit a downlink shared channel (for example, PDSCH) and a downlink control channel (for example, PDCCH) (downlink control information).
また、送受信部103は、下り共有チャネル及び下り制御チャネルの少なくとも一つのTCI状態に関する情報(例えば、TCI状態の設定(configuration)情報、アクティブ化されるTCI状態を示す情報、PDCCH又はPDSCHに適用されるTCI状態を示す情報等の少なくとも一つ)を送信してもよい。
Further, the transmission / reception unit 103 is applied to information on at least one TCI state of the downlink shared channel and the downlink control channel (for example, configuration (configuration) information of the TCI state, information indicating the TCI state to be activated, PDCCH or PDSCH). Or at least one of the information indicating the TCI state of the TCI.
また、制御部301は、スロット内で前記下り共有チャネルに割り当てられる少なくとも一つのシンボルが前記下り制御チャネルがモニタリングされるサーチスペースと重複する場合、重複するシンボルにおける下り共有チャネルに対する周波数領域リソースの割り当てを制御してもよい。例えば、制御部301は、図6又は9Aに示すように、サーチスペースと重複しない周波数領域リソースを、下り共有チャネルに割り当ててもよい。
Also, when at least one symbol allocated to the downlink shared channel in a slot overlaps with a search space in which the downlink control channel is monitored, the control unit 301 allocates a frequency domain resource to the downlink shared channel in the overlapping symbol. May be controlled. For example, as illustrated in FIG. 6 or 9A, the control unit 301 may allocate a frequency domain resource that does not overlap with the search space to the downlink shared channel.
<ユーザ端末>
図13は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。 <User terminal>
FIG. 13 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment. Theuser terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205. Note that the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
図13は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。 <User terminal>
FIG. 13 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment. The
送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
(4) The radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmitting / receiving section 203 converts the frequency of the received signal into a baseband signal and outputs the baseband signal to the baseband signal processing section 204. The transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
The baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。
On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processor 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
(4) The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band. The radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ201は、例えばアレーアンテナによって構成してもよい。
Note that the transmission / reception unit 203 may further include an analog beamforming unit that performs analog beamforming. The analog beamforming unit includes an analog beamforming circuit (for example, a phase shifter, a phase shift circuit) or an analog beamforming device (for example, a phase shifter) described based on common recognition in the technical field according to the present invention. May be. Further, the transmitting / receiving antenna 201 may be constituted by, for example, an array antenna.
図14は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
FIG. 14 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
The baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
The control unit 401 controls the entire user terminal 20. The control unit 401 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
The control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls a signal reception process in the reception signal processing unit 404, a signal measurement in the measurement unit 405, and the like.
制御部401は、基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
The control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the base station 10 from the reception signal processing unit 404. The control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
制御部401は、ベースバンド信号処理部204におけるデジタルBF(例えば、プリコーディング)及び/又は送受信部203におけるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。制御部401は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成する制御を行ってもよい。これらの伝搬路情報は、受信信号処理部404及び/又は測定部405から取得されてもよい。
The control unit 401 controls to form a transmission beam and / or a reception beam using digital BF (for example, precoding) in the baseband signal processing unit 204 and / or analog BF (for example, phase rotation) in the transmission / reception unit 203. May be performed. The control unit 401 may perform control to form a beam based on downlink channel information, uplink channel information, and the like. These propagation path information may be acquired from the reception signal processing unit 404 and / or the measurement unit 405.
また、制御部401は、基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
When the control unit 401 acquires various information notified from the base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
Transmission signal generation section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403. The transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
(4) The transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the base station 10 includes a UL grant.
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203. The mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。
(4) The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the base station 10. The reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. In addition, the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
(4) The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
測定部405は、受信した信号に関する測定を実施する。例えば、測定部405は、第1のキャリア及び第2のキャリアの一方又は両方について、同周波測定及び/又は異周波測定を行ってもよい。測定部405は、第1のキャリアにサービングセルが含まれる場合に、受信信号処理部404から取得した測定指示に基づいて第2のキャリアにおける異周波測定を行ってもよい。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
The measuring unit 405 measures the received signal. For example, the measurement unit 405 may perform the same frequency measurement and / or the different frequency measurement on one or both of the first carrier and the second carrier. When the serving cell is included in the first carrier, measurement section 405 may perform different frequency measurement on the second carrier based on the measurement instruction acquired from received signal processing section 404. The measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
For example, the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), and channel information (for example, CSI). The measurement result may be output to the control unit 401.
なお、送受信部203は、下り共有チャネル(例えば、PDSCH)及び下り制御チャネル(例えば、PDCCH)(下り制御情報)を受信してもよい。
The transmitting / receiving section 203 may receive a downlink shared channel (for example, PDSCH) and a downlink control channel (for example, PDCCH) (downlink control information).
また、送受信部203は、下り共有チャネル及び下り制御チャネルの少なくとも一つのTCI状態に関する情報(例えば、TCI状態の設定(configuration)情報、アクティブ化されるTCI状態を示す情報、PDCCH又はPDSCHに適用されるTCI状態を示す情報等の少なくとも一つ)を受信してもよい。
The transmission / reception unit 203 is applied to information on at least one TCI state of the downlink shared channel and the downlink control channel (for example, configuration (configuration) information of the TCI state, information indicating the TCI state to be activated, PDCCH or PDSCH). Or at least one of the information indicating the TCI state of the TCI.
制御部401は、スロット内で前記下り共有チャネルに割り当てられる少なくとも一つのシンボルが前記下り制御チャネルがモニタリングされるサーチスペースと重複する場合、前記スロット内における前記下り共有チャネル及び前記下り制御チャネルの少なくとも一つについての受信処理を制御してもよい。
When at least one symbol assigned to the downlink shared channel in a slot overlaps with a search space in which the downlink control channel is monitored, at least one of the downlink shared channel and the downlink control channel in the slot. You may control the receiving process about one.
制御部401は、前記下り共有チャネルの前記TCI状態が下り制御チャネルのTCI状態と異なる場合、前記サーチスペースのタイプ及び識別子、前記サーチスペースに関連付けられる制御リソースセットのタイプ及び識別子、無線ネットワーク一時識別子(RNTI)のタイプの少なくとも一つに基づいて、前記スロットにおいて又は前記スロット内で前記下り共有チャネル及び前記下り制御チャネルが重複するシンボルにおいて、前記下り共有チャネル又は前記下り制御チャネルのどちらの受信処理を行うかを決定してもよい(第1の態様)。
When the TCI status of the downlink shared channel is different from the TCI status of the downlink control channel, the control unit 401 determines a type and an identifier of the search space, a type and an identifier of a control resource set associated with the search space, and a radio network temporary identifier. (RNTI), at least one of the downlink shared channel and the downlink control channel in the slot or in a symbol in which the downlink shared channel and the downlink control channel overlap in the slot. May be determined (first mode).
制御部401は、前記下り共有チャネルの前記TCI状態が下り制御チャネルのTCI状態と異なる場合、前記下り共有チャネルのシンボル数及び前記サーチスペースのシンボル数に基づいて、前記スロットにおいて又は前記スロット内で前記下り共有チャネル及び前記下り制御チャネルが重複するシンボルにおいて、前記下り共有チャネル又は前記下り制御チャネルのどちらの受信処理を行うかを決定してもよい(図2A、2B、4A、4B)。
When the TCI state of the downlink shared channel is different from the TCI state of the downlink control channel, the control unit 401 determines whether the TCI state of the downlink shared channel is in the slot or in the slot based on the number of symbols of the downlink shared channel and the number of symbols of the search space. It may be determined whether to perform reception processing of the downlink shared channel or the downlink control channel in a symbol where the downlink shared channel and the downlink control channel overlap (FIGS. 2A, 2B, 4A, and 4B).
制御部401は、前記下り共有チャネルの前記TCI状態が下り制御チャネルのTCI状態と異なる場合、Rxビームの切り替え期間を制御してもよい(図3、5)。
If the TCI state of the downlink shared channel is different from the TCI state of the downlink control channel, the control unit 401 may control the Rx beam switching period (FIGS. 3 and 5).
制御部401は、前記下り共有チャネルの前記TCI状態が下り制御チャネルのTCI状態と同一であり、前記下り共有チャネルに割り当てられる周波数領域リソースが前記サーチスペースと重複しない場合、前記下り共有チャネル及び前記下り制御チャネルが重複するシンボルにおいて、前記下り共有チャネル及び前記下り制御チャネルの双方についての受信処理を行ってもよい(図6)。
The control unit 401, when the TCI state of the downlink shared channel is the same as the TCI state of the downlink control channel, and when the frequency domain resources allocated to the downlink shared channel do not overlap with the search space, the downlink shared channel and the Reception processing may be performed on both the downlink shared channel and the downlink control channel in symbols where downlink control channels overlap (FIG. 6).
制御部401は、前記下り共有チャネルに割り当てられる周波数領域リソースが前記サーチスペースと重複しない場合、前記下り共有チャネルの前記TCI状態が下り制御チャネルのTCI状態と同一であるか否かに関係なく、前記下り共有チャネル及び前記下り制御チャネルが重複するシンボルにおいて、前記下り共有チャネル及び前記下り制御チャネルの双方についての受信処理を行ってもよい(図9A)。
When the frequency domain resource allocated to the downlink shared channel does not overlap with the search space, the control unit 401 regardless of whether the TCI state of the downlink shared channel is the same as the TCI state of the downlink control channel, In a symbol in which the downlink shared channel and the downlink control channel overlap, reception processing may be performed on both the downlink shared channel and the downlink control channel (FIG. 9A).
制御部401は、サブキャリア間隔、チャネル推定数、リソースブロックグループの数、サーチスペースのタイプ、アグリゲーションレベルの少なくとも一つに基づいて決定される優先順位に従って、前記重複するシンボルにおける前記下り共有チャネル及び前記下り制御チャネルの受信処理を制御してもよい。
The control unit 401, according to a priority determined based on at least one of the subcarrier interval, the number of estimated channels, the number of resource block groups, the type of search space, and the aggregation level, The receiving process of the downlink control channel may be controlled.
制御部401は、下り共有チャネルの前記TCI状態が下り制御チャネルのTCI状態と同一であり、スロット内で前記下り共有チャネルに割り当てられる少なくとも一つのシンボルが前記下り制御チャネルがモニタリングされるサーチスペースと重複する場合、前記下り共有チャネルと前記サーチスペースとが重複する周波数領域リソースにおける、前記下り共有チャネル又は前記下り制御チャネルのどちらかの受信処理を制御してもよい(図7)。
The control unit 401 determines that the TCI state of the downlink shared channel is the same as the TCI state of the downlink control channel, and that at least one symbol assigned to the downlink shared channel in a slot is a search space in which the downlink control channel is monitored. If they overlap, the reception process of either the downlink shared channel or the downlink control channel in the frequency domain resource where the downlink shared channel and the search space overlap may be controlled (FIG. 7).
制御部401は、スロット内で前記下り共有チャネルに割り当てられる少なくとも一つのシンボルが前記下り制御チャネルがモニタリングされるサーチスペースと重複する場合、下り共有チャネルの前記TCI状態が下り制御チャネルのTCI状態と同一であるか否かに関係なく、前記下り共有チャネルと前記サーチスペースとが重複する周波数領域リソースにおける、前記下り共有チャネル又は前記下り制御チャネルのどちらかの受信処理を制御してもよい(図9B)。
When at least one symbol allocated to the downlink shared channel in a slot overlaps with a search space in which the downlink control channel is monitored, the control unit 401 sets the TCI state of the downlink shared channel to the TCI state of the downlink control channel. Regardless of whether they are the same or not, the reception processing of either the downlink shared channel or the downlink control channel in a frequency domain resource where the downlink shared channel and the search space overlap may be controlled (see FIG. 9B).
制御部401は、前記重複する周波数領域リソースにおいて、前記下り制御チャネルを無視して、前記下り共有チャネルの受信処理を制御してもよい(図7、9B)。制御部401は、前記下り共有チャネルと前記サーチスペースとが重複しない周波数領域リソース及びシンボルの少なくとも一つにおける、前記下り制御チャネルの受信処理を制御してもよい。
The control unit 401 may control the reception process of the downlink shared channel by ignoring the downlink control channel in the overlapping frequency domain resources (FIGS. 7 and 9B). The control unit 401 may control reception processing of the downlink control channel in at least one of frequency domain resources and symbols in which the downlink shared channel and the search space do not overlap.
制御部401は、前記重複する周波数領域リソースにおいて、前記下り共有チャネルを無視して、前記下り制御チャネルの受信処理を制御してもよい(図7、9B)。制御部401は、前記下り共有チャネルと前記サーチスペースとが重複しない周波数領域リソース及びシンボルの少なくとも一つにおける、前記下り共有チャネルの受信処理を制御してもよい。
The control unit 401 may control the reception process of the downlink control channel by ignoring the downlink shared channel in the overlapping frequency domain resources (FIGS. 7 and 9B). The control unit 401 may control reception processing of the downlink shared channel in at least one of frequency domain resources and symbols in which the downlink shared channel and the search space do not overlap.
制御部401は、前記下り共有チャネルと前記サーチスペースとが重複しない周波数領域リソース及びシンボルの少なくとも一つにおける、前記下り共有チャネルの受信処理を中止してもよい。
The control unit 401 may stop the reception processing of the downlink shared channel in at least one of frequency domain resources and symbols in which the downlink shared channel and the search space do not overlap.
<ハードウェア構成>
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。 <Hardware configuration>
Note that the block diagram used in the description of the above embodiment shows a block of a functional unit. These functional blocks (configuration units) are realized by an arbitrary combination of at least one of hardware and software. In addition, a method of implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.), and may be implemented using these multiple devices.
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。 <Hardware configuration>
Note that the block diagram used in the description of the above embodiment shows a block of a functional unit. These functional blocks (configuration units) are realized by an arbitrary combination of at least one of hardware and software. In addition, a method of implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.), and may be implemented using these multiple devices.
例えば、本開示の本実施の形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図15は、本実施の形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
For example, the base station, the user terminal, and the like according to the present embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method according to the present disclosure. FIG. 15 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the present embodiment. The above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
For example, although only one processor 1001 is illustrated, there may be multiple processors. Further, the processing may be executed by one processor, or the processing may be executed by two or more processors simultaneously, sequentially, or by using another method. Note that the processor 1001 may be implemented by one or more chips.
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
The functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. For example, the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
The processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operation described in the above embodiment is used. For example, the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be implemented similarly.
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の本実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
The memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the present embodiment of the present disclosure.
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured. The storage 1003 may be called an auxiliary storage device.
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like may be realized by the communication device 1004.
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input. The output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
The devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
In addition, the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。 (Modification)
Note that terms described in the present disclosure and terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, at least one of the channel and the symbol may be a signal (signaling). Also, the signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard. A component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。 (Modification)
Note that terms described in the present disclosure and terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, at least one of the channel and the symbol may be a signal (signaling). Also, the signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard. A component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
A radio frame may be configured by one or more periods (frames) in the time domain. The one or more respective periods (frames) forming the radio frame may be referred to as a subframe. Further, a subframe may be configured by one or more slots in the time domain. The subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
Here, the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception. At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
The slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
Slots may include multiple mini-slots. Each minislot may be constituted by one or more symbols in the time domain. Also, the mini-slot may be called a sub-slot. A minislot may be made up of a smaller number of symbols than slots. A PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. The radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
For example, one subframe may be called a transmission time interval (TTI: Transmission @ Time @ Interval), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot is called a TTI. You may. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be. Note that the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
Here, the TTI refers to, for example, a minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units. Note that the definition of TTI is not limited to this.
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
If one slot or one minislot is called a TTI, one or more TTIs (ie, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like. A TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
Note that a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms The TTI having the above-described TTI length may be replaced with the TTI.
リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
A resource block (RB: Resource Block) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12. The number of subcarriers included in the RB may be determined based on numerology.
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
R Also, the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
Note that one or more RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
{Also, a resource block may be composed of one or more resource elements (RE: Resource @ Element). For example, one RE may be a radio resource area of one subcarrier and one symbol.
帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
A bandwidth part (BWP: Bandwidth @ Part) (which may be referred to as a partial bandwidth or the like) may also represent a subset of consecutive common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good. Here, the common RB may be specified by an index of the RB based on the common reference point of the carrier. A PRB may be defined by a BWP and numbered within the BWP.
BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
$ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP). For a UE, one or more BWPs may be configured in one carrier.
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定のチャネル/信号を送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
少 な く と も At least one of the configured BWPs may be active, and the UE may not have to assume transmitting and receiving a given channel / signal outside the active BWP. Note that “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
The structures of the above-described radio frame, subframe, slot, minislot, symbol, and the like are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The configuration of the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic @ Prefix) length, and the like can be variously changed.
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
Further, the information, parameters, and the like described in the present disclosure may be expressed using an absolute value, may be expressed using a relative value from a predetermined value, or may be expressed using another corresponding information. May be represented. For example, a radio resource may be indicated by a predetermined index.
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
名称 Names used for parameters and the like in the present disclosure are not limited in any respect. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure. The various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
情報 In addition, information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer. Information, signals, etc. may be input / output via a plurality of network nodes.
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
(4) Information and signals input and output may be stored in a specific place (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method. For example, the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
Note that the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. Further, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like. Also, the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
Further, the notification of the predetermined information (for example, the notification of “X”) is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
The determination may be made by a value represented by 1 bit (0 or 1), or may be made by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
Software, regardless of whether it is called software, firmware, middleware, microcode, a hardware description language, or any other name, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
ソ フ ト ウ ェ ア Also, software, instructions, information, and the like may be transmitted and received via a transmission medium. For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。
用語 The terms “system” and “network” as used in this disclosure may be used interchangeably.
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「送信電力」、「位相回転」、「アンテナポート」、「レイヤ」、「レイヤ数」、「ランク」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “transmission power”, “phase rotation”, “antenna port”, “layer”, “number of layers”, “rank”, Terms such as “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel”, etc., may be used interchangeably.
本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(TP:Transmission Point)」、「受信ポイント(RP:Reception Point)」、「送受信ポイント(TRP:Transmission/Reception Point)」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
In the present disclosure, “base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “gNodeB (gNB)” "Access point (access @ point)", "transmission point (TP: Transmission @ Point)", "reception point (RP: Reception @ Point)", "transmission / reception point (TRP: Transmission / Reception @ Point)", "panel", "cell" , "Sector", "cell group", "carrier", "component carrier" and the like may be used interchangeably. A base station may also be referred to as a macro cell, a small cell, a femto cell, a pico cell, or the like.
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
A base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head)). The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
In the present disclosure, terms such as “mobile station (MS)”, “user terminal”, “user equipment” (UE), and “terminal” may be used interchangeably. .
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable terminology.
基地局及び移動局の少なくとも一方は、送信装置、受信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。
少 な く と も At least one of the base station and the mobile station may be called a transmitting device, a receiving device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like. The moving object may be a vehicle (for example, a car, an airplane, or the like), may be an unmanned moving object (for example, a drone, an autonomous vehicle), or may be a robot (maned or unmanned). ). Note that at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
基地 Also, the base station in the present disclosure may be replaced with a user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the configuration may be such that the user terminal 20 has the function of the base station 10 described above. Further, words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”). For example, an uplink channel, a downlink channel, and the like may be replaced with a side channel.
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
Similarly, a user terminal in the present disclosure may be replaced by a base station. In this case, a configuration in which the base station 10 has the function of the user terminal 20 described above may be adopted.
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
In the present disclosure, the operation performed by the base station may be performed by an upper node (upper node) in some cases. In a network including one or more network nodes having a base station (network @ nodes), various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway) or the like, but not limited thereto, or a combination thereof.
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
各 Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching with execution. In addition, the order of the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no inconsistency. For example, for the methods described in this disclosure, elements of various steps are presented in an exemplary order, and are not limited to the specific order presented.
本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
Each aspect / embodiment described in the present disclosure is applicable to LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication). system, 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile Communications), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802. 20, UWB (Ultra-WideBand), Bluetooth (registered trademark) , A system using other appropriate wireless communication methods, and a next-generation system extended based on these methods. Further, a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
記載 The term “based on” as used in the present disclosure does not mean “based on” unless otherwise indicated. In other words, the phrase "based on" means both "based only on" and "based at least on."
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
い か な る Any reference to elements using designations such as "first," "second," etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in any way.
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
用語 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "judgment (decision)" means judgment (judging), calculation (computing), processing (processing), deriving (deriving), investing (investigating), searching (looking up) (for example, a table, Searching in a database or another data structure), ascertaining, etc., may be regarded as "deciding".
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
Also, “determining” includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
Also, “judgment (decision)” is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, and the like. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
判断 Also, “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
The “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or may refer to the rated maximum transmission power (the rated UE maximum transmit power).
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
As used in this disclosure, the terms "connected," "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements "connected" or "coupled" to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
In this disclosure, where two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, the radio frequency domain, microwave It can be considered to be "connected" or "coupled" to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) regions, and the like.
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
に お い て In the present disclosure, the term “A and B are different” may mean that “A and B are different from each other”. The term may mean that “A and B are different from C”. Terms such as "separate", "coupled" and the like may be interpreted similarly to "different".
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
Where the terms “include”, “including” and variations thereof are used in the present disclosure, these terms are as inclusive as the term “comprising” Is intended. Further, the term "or" as used in the present disclosure is not intended to be an exclusive or.
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
に お い て In the present disclosure, where articles are added by translation, for example, a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
Although the invention according to the present disclosure has been described in detail above, it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be embodied as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is intended for illustrative purposes and does not bring any restrictive meaning to the invention according to the present disclosure.
Claims (6)
- 下り共有チャネルの送信構成指示(TCI)状態を示す情報を受信する受信部と、
スロット内で前記下り共有チャネルに割り当てられる少なくとも一つのシンボルが前記下り制御チャネルがモニタリングされるサーチスペースと重複する場合、前記スロット内における前記下り共有チャネル及び前記下り制御チャネルの少なくとも一つについての受信処理を制御する制御部と、
を具備することを特徴とするユーザ端末。 A receiving unit that receives information indicating a transmission configuration instruction (TCI) state of the downlink shared channel;
Receiving at least one of the downlink shared channel and the downlink control channel in the slot if at least one symbol assigned to the downlink shared channel in a slot overlaps a search space in which the downlink control channel is monitored. A control unit for controlling processing;
A user terminal comprising: - 前記制御部は、前記下り共有チャネルの前記TCI状態が下り制御チャネルのTCI状態と異なる場合、前記サーチスペースのタイプ及び識別子、前記サーチスペースに関連付けられる制御リソースセットのタイプ及び識別子、無線ネットワーク一時識別子(RNTI)のタイプの少なくとも一つに基づいて、前記スロットにおいて又は前記スロット内で前記下り共有チャネル及び前記下り制御チャネルが重複するシンボルにおいて、前記下り共有チャネル又は前記下り制御チャネルのどちらの受信処理を行うかを決定することを特徴とする請求項1に記載のユーザ端末。 The control unit, when the TCI state of the downlink shared channel is different from the TCI state of the downlink control channel, a type and an identifier of the search space, a type and an identifier of a control resource set associated with the search space, a radio network temporary identifier (RNTI), at least one of the downlink shared channel and the downlink control channel in the slot or in a symbol in which the downlink shared channel and the downlink control channel overlap in the slot. The user terminal according to claim 1, wherein it is determined whether or not to perform.
- 前記制御部は、前記下り共有チャネルの前記TCI状態が下り制御チャネルのTCI状態と異なる場合、前記下り共有チャネルのシンボル数及び前記サーチスペースのシンボル数に基づいて、前記スロットにおいて又は前記スロット内で前記下り共有チャネル及び前記下り制御チャネルが重複するシンボルにおいて、前記下り共有チャネル又は前記下り制御チャネルのどちらの受信処理を行うかを決定することを特徴とする請求項1又は請求項2に記載のユーザ端末。 The control unit, when the TCI state of the downlink shared channel is different from the TCI state of the downlink control channel, based on the number of symbols of the downlink shared channel and the number of symbols of the search space, in the slot or in the slot The symbol according to claim 1 or 2, wherein it is determined whether to perform reception processing of the downlink shared channel or the downlink control channel in a symbol where the downlink shared channel and the downlink control channel overlap. User terminal.
- 前記制御部は、前記下り共有チャネルの前記TCI状態が下り制御チャネルのTCI状態と同一であり、前記下り共有チャネルに割り当てられる周波数領域リソースが前記サーチスペースと重複しない場合、前記下り共有チャネル及び前記下り制御チャネルが重複するシンボルにおいて、前記下り共有チャネル及び前記下り制御チャネルの双方についての受信処理を行うことを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。 The control unit, when the TCI state of the downlink shared channel is the same as the TCI state of the downlink control channel, and when the frequency domain resources allocated to the downlink shared channel do not overlap with the search space, the downlink shared channel and the 4. The user terminal according to claim 1, wherein reception processing is performed on both the downlink shared channel and the downlink control channel in a symbol in which a downlink control channel overlaps. 5.
- 前記制御部は、前記下り共有チャネルに割り当てられる周波数領域リソースと前記サーチスペースと重複しない場合、前記下り共有チャネルの前記TCI状態が下り制御チャネルのTCI状態と同一であるか否かに関係なく、前記下り共有チャネル及び前記下り制御チャネルが重複するシンボルにおいて、前記下り共有チャネル及び前記下り制御チャネルの双方についての受信処理を行うことを特徴とする請求項1に記載のユーザ端末。 When the control unit does not overlap the frequency space resources and the search space allocated to the downlink shared channel, regardless of whether the TCI state of the downlink shared channel is the same as the TCI state of the downlink control channel, The user terminal according to claim 1, wherein reception processing is performed on both the downlink shared channel and the downlink control channel in a symbol where the downlink shared channel and the downlink control channel overlap.
- 前記制御部は、サブキャリア間隔、チャネル推定数、リソースブロックグループの数、サーチスペースのタイプ、アグリゲーションレベルの少なくとも一つに基づいて決定される優先順位に従って、前記重複するシンボルにおける前記下り共有チャネル及び前記下り制御チャネルの受信処理を制御することを特徴とする請求項4又は請求項5に記載のユーザ端末。 The control unit, the subcarrier interval, the number of estimated channels, the number of resource block groups, the type of search space, according to the priority determined based on at least one of the aggregation level, the downlink shared channel in the overlapping symbols, The user terminal according to claim 4, wherein the user terminal controls reception processing of the downlink control channel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/029946 WO2020031335A1 (en) | 2018-08-09 | 2018-08-09 | User terminal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/029946 WO2020031335A1 (en) | 2018-08-09 | 2018-08-09 | User terminal |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020031335A1 true WO2020031335A1 (en) | 2020-02-13 |
Family
ID=69414566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/029946 WO2020031335A1 (en) | 2018-08-09 | 2018-08-09 | User terminal |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020031335A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116235586A (en) * | 2020-07-31 | 2023-06-06 | 株式会社Ntt都科摩 | Terminal, wireless communication method and base station |
CN116458227A (en) * | 2020-08-28 | 2023-07-18 | 株式会社Ntt都科摩 | Terminal, wireless communication method and base station |
-
2018
- 2018-08-09 WO PCT/JP2018/029946 patent/WO2020031335A1/en active Application Filing
Non-Patent Citations (3)
Title |
---|
ERICSSON: "On simultaneous reception of physical and reference signals across CCs", 3GPP TSG-RAN WG1#93 RL-1806219, 12 May 2018 (2018-05-12), XP051441428 * |
HUAWEI ET AL.: "QCL and spatial-relation for simultaneous reception and transmission", 3GPP TSG RAN WGL#92BIS RL-1803701, 6 April 2018 (2018-04-06), XP051412967 * |
INTEL CORPORATION: "Summary of simultaneous transmission and reception of channels/signals", 3GPP TSG RAN WGL#92BIS RL-1805575, 18 April 2018 (2018-04-18), XP051427758 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116235586A (en) * | 2020-07-31 | 2023-06-06 | 株式会社Ntt都科摩 | Terminal, wireless communication method and base station |
CN116458227A (en) * | 2020-08-28 | 2023-07-18 | 株式会社Ntt都科摩 | Terminal, wireless communication method and base station |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7171719B2 (en) | Terminal, wireless communication method, base station and system | |
WO2019244214A1 (en) | User terminal | |
WO2019244221A1 (en) | User terminal | |
JP7171716B2 (en) | Terminal, wireless communication method, base station and system | |
WO2020031386A1 (en) | User terminal and wireless communication method | |
WO2020021725A1 (en) | User terminal and wireless communication method | |
JP7395468B2 (en) | Terminals, wireless communication methods, base stations and systems | |
WO2019087340A1 (en) | User equipment and wireless communication method | |
JP7348179B2 (en) | Terminals, wireless communication methods, base stations and systems | |
JP7237976B2 (en) | Terminal, wireless communication method, base station and system | |
WO2020053940A1 (en) | User terminal | |
WO2020016934A1 (en) | User equipment | |
WO2020053942A1 (en) | User terminal and wireless communication method | |
WO2020012661A1 (en) | User equipment and base station | |
JP7132328B2 (en) | TERMINAL, BASE STATION, WIRELESS COMMUNICATION METHOD AND SYSTEM | |
WO2020031387A1 (en) | User equipment and wireless communication method | |
WO2020031354A1 (en) | User terminal and wireless communication method | |
JP7285845B2 (en) | Terminal, wireless communication method and system | |
WO2019215895A1 (en) | User terminal | |
WO2018143388A1 (en) | User terminal and wireless communication method | |
WO2019234929A1 (en) | User terminal and wireless communication method | |
WO2019193666A1 (en) | User terminal and wireless base station | |
WO2020031275A1 (en) | User equipment | |
WO2019225689A1 (en) | User terminal and wireless communication method | |
EP3852459B1 (en) | User equipment and wireless communication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18929450 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18929450 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |