WO2020030173A1 - 应答接收及发送方法、重传方法、通信设备及存储介质 - Google Patents

应答接收及发送方法、重传方法、通信设备及存储介质 Download PDF

Info

Publication number
WO2020030173A1
WO2020030173A1 PCT/CN2019/100173 CN2019100173W WO2020030173A1 WO 2020030173 A1 WO2020030173 A1 WO 2020030173A1 CN 2019100173 W CN2019100173 W CN 2019100173W WO 2020030173 A1 WO2020030173 A1 WO 2020030173A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
correct response
response
resource
transmission block
Prior art date
Application number
PCT/CN2019/100173
Other languages
English (en)
French (fr)
Inventor
夏树强
付婷
郝鹏
梁春丽
任敏
苟伟
石靖
韩祥辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/266,852 priority Critical patent/US11924682B2/en
Priority to KR1020217006632A priority patent/KR102570927B1/ko
Priority to EP19846290.5A priority patent/EP3836460A4/en
Publication of WO2020030173A1 publication Critical patent/WO2020030173A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/115Grant-free or autonomous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/02Inter-networking arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • Embodiments of the present invention relate to, but are not limited to, the field of communication technologies, and in particular, to but not limited to a response receiving and sending method, a retransmission method, a communication device, and a storage medium.
  • the communication system in the related technology supports a scheduling-free data transmission method.
  • the terminal can use the resources configured by the base station to send each interval data. Because the time and overhead of sending a scheduling request before receiving data and receiving the scheduling authorization sent by the base station are saved, the transmission delay and overhead of this transmission method are greatly reduced compared to the scheduling-based method in the related art, which is very suitable for Services with severe delay requirements or sensitive to overhead.
  • the response receiving and sending method, the retransmission method, the communication device and the storage medium provided in the embodiments of the present invention provide a method for realizing a transmission block detection result indication in a 5G system.
  • An embodiment of the present invention provides a response receiving method, including:
  • An embodiment of the present invention further provides a response sending method, including:
  • An embodiment of the present invention further provides a retransmission method, including:
  • the response information includes an error response, retransmit a transmission block sent within a transmission period corresponding to the error response to the first communication device.
  • An embodiment of the present invention further provides a retransmission method, including:
  • the response information includes an error response, receiving a transmission block retransmitted by the second communication device and transmitted within a transmission period corresponding to the error response.
  • An embodiment of the present invention further provides a communication device, including a processor and a memory, where the processor is configured to execute one or more first programs stored in the memory to implement the method described above, or the processor uses For executing one or more second programs stored in the memory to implement the method as described above, or for the processor to execute one or more third programs stored in the memory to implement as described above Method, or the processor is configured to execute one or more fourth programs stored in the memory to implement the method as described above.
  • An embodiment of the present invention further provides a storage medium.
  • the storage medium stores one or more first computer programs, and the one or more first computer programs can be executed by one or more processors to implement the foregoing.
  • the method, or one or more second computer programs stored in the storage medium, the one or more second computer programs can be executed by one or more processors to implement the method as described above,
  • one or more third computer programs are stored in the storage medium, and the one or more third computer programs may be executed by one or more processors to implement the method as described above, or the storage medium
  • One or more fourth computer programs are stored therein, and the one or more fourth computer programs can be executed by one or more processors to implement the method as described above.
  • FIG. 1 is a schematic flowchart of a response receiving method according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flowchart of a response sending method according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of a REG in Embodiment 2 of the present invention.
  • FIG. 4-1 is a first mapping diagram for mapping a correct response sequence to a REG
  • FIG. 4-2 is a second mapping diagram for mapping a correct response sequence to a REG
  • FIG. 4-3 is a third mapping diagram for mapping a correct response sequence to a REG
  • FIG. 4-4 is a fourth mapping diagram for mapping a correct response sequence to a REG
  • FIG. 5 is a schematic flowchart of a retransmission method according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic flowchart of a retransmission method according to Embodiment 5 of the present invention.
  • FIG. 7 is a schematic diagram of a transmission cycle according to Embodiment 5 of the present invention.
  • FIG. 9 is a schematic diagram of a corresponding relationship between a periodic resource and a time slot according to Embodiment 6 of the present invention
  • FIG. 10 is a schematic diagram of a correct response resource allocated for an ACK sequence according to Embodiment 6 of the present invention.
  • FIG. 11 is a schematic structural diagram of a response receiving apparatus according to Embodiment 7 of the present invention.
  • FIG. 12 is a schematic structural diagram of a response sending apparatus according to Embodiment 8 of the present invention.
  • FIG. 13 is a schematic structural diagram of a retransmission device according to a ninth embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a retransmission apparatus according to Embodiment 10 of the present invention.
  • FIG. 15 is a schematic structural diagram of a communication device according to Embodiment 11 of the present invention.
  • An embodiment of the present invention provides a response receiving method, as shown in FIG. 1, which is applied to a second communication device and includes:
  • S101 Send a transmission block to a first communication device through a pre-configured periodic resource.
  • the periodic resource in this embodiment may be configured by the first communication device for the second communication device, and the second communication device may send a transmission block to the first communication device within a transmission period corresponding to the periodic resource.
  • S102 Receive a correct response corresponding to the transmission block sent by the first communication device on a pre-configured correct response resource.
  • a transmission block is transmitted to a first communication device through a pre-configured periodic resource, and the transmission is received and transmitted on a pre-configured correct response resource.
  • the correct response corresponding to the block.
  • the correct response can be used to indicate the detection result of the transmission block. Since the correct response sent by the first communication device can be received, the transmission block detection result is determined based on the correct response It is possible to indicate whether the transmission block is correctly detected based on the correct response. Compared to the related art, which can only indicate whether the transmission block detection result is correct through uplink authorization, the indication result can also be improved. accuracy.
  • the first communication device in the embodiment of the present invention may be a base station
  • the second communication device may be a terminal
  • the first communication device is a terminal
  • the second communication device is a base station
  • the correct response sent by the first communication device may be obtained by detecting the transmission block. Therefore, if the detection result is incorrect, the second communication device may also receive the error response sent by the first communication device. It should be noted that the error response in this embodiment may be any response sent by the first communication device to the second communication device, which may indicate that the transmission block has not been correctly detected by the first communication device.
  • the second communication device When the second communication device receives the correct response, it can be determined that the transmission block corresponding to the correct response is correctly detected by the first communication device, and the second communication device does not need to retransmit the transmission block corresponding to the correct response, which can reduce the waste of resources. .
  • the timing can be started at the time corresponding to the transmission block. If a correct response corresponding to the transmission block is detected within a preset timing period T1, the timing is continued and the preset timing period T1 is used. It is forbidden to send a new transmission block to the first communication device through the same periodic resource as the process index of the transmission block. Of course, after the preset timing period T1 ends, a new transmission block may be allowed to be sent to the first communication device through the same period resource as the process index of the transmission block.
  • T1 in this embodiment can be arbitrarily set, for example, it can be 14 symbols, or 16 symbols, and so on.
  • the timing can be started at the time corresponding to the transmission block. If a correct response corresponding to the transmission block is detected within the preset timing period T1, the timing is stopped and the process corresponding to the transmission block is allowed to pass. A periodic resource with the same index sends a new transport block to the first communication device.
  • the timing can be started at the time corresponding to the transmission block. If the correct response and the incorrect response corresponding to the transmission block are not detected within the preset timing period T1, the timing is continued and the preset timing is In period T1, it is prohibited to send a new transmission block to the first communication device through the same period resource as the process index of the transmission block, but it is allowed to send the transmission block to the first communication device again through the same period resource as the process index of the transmission block. .
  • a new transmission block may be allowed to be sent to the first communication device through the same period resource as the process index of the transmission block, or if it has not been retransmitted within the aforementioned preset timing period T1
  • the transmission block may send the transmission block to the first communication device again through the same periodic resource as the process index of the transmission block or other periodic resources corresponding to other process indexes.
  • the timing can be started at the time corresponding to the transmission block. If an error response corresponding to the transmission block is detected within the preset timing period T1, the timing is re-timed, and the re-timed preset timing is used. In period T1, it is prohibited to send a new transmission block to the first communication device through the same period resource as the process index of the transmission block, but it is allowed to send the transmission to the first communication device again through the same period resource as the process index of the transmission block. Piece. Of course, after the preset timing period T1 ends, a new transmission block may be allowed to be sent to the first communication device through the same period resource as the process index of the transmission block.
  • the transmission start time of the transmission block
  • step S102 may include: receiving, on a pre-configured correct response resource, downlink control information (Downlink Control Information) sent by the first communication device.
  • the correct response is carried in the DCI
  • one DCI includes a correct response, and at least one of the resource allocation field, the redundancy version field, the coding modulation field, the new data indication field, and the transmission power control field in the DCI Field and the Hybrid Automatic Repeat Request (HARQ) process index field in the DCI to indicate the correct response.
  • the HARQ process index field is the process index of the transmission block.
  • all bits in the resource allocation field in DCI are 1 or 0, while all bits in the redundant version field are 1, and all bits in the coded modulation field are 0; or, the resource All bits of the allocation field are 1 or 0, all bits of the redundancy version field are 0, and all bits of the coded modulation field are 0; or, all bits of the resource allocation field are 1 or 0, and the redundancy version field All bits of the bit are 1 and all bits of the coded modulation field are 1; or all bits of the resource allocation field are 1 or 0 and all bits of the redundant version field are 1; or all bits of the resource allocation field are Is 1 or 0, all bits of the coded modulation field are 0.
  • the correct response may also be indicated by setting all bits in the new data indication field to 0 or 1, or setting all bits in the transmission power control field to 0 or 1.
  • step S102 may include: receiving, on a preconfigured correct response resource, downlink control information DCI sent by the first communication device.
  • the correct response is carried in the DCI.
  • a DCI contains a correct response, and the correct response is indicated by the target bit in the DCI and the HARQ process index field in the DCI.
  • the HARQ process index field is the process index of the transmission block.
  • the target bit in this embodiment may be a 1-bit bit, a 2-bit bit, or a 3-bit bit in DCI, etc.
  • it may be the 9th bit in DCI, that is, the 9th bit in DCI To indicate a correct response. For example, when the 9th bit is 0, it can indicate a correct response, and when the 9th bit is 1, it can indicate an incorrect response.
  • step S102 may include receiving a correct response sequence sent by the first communication device on a preconfigured correct response resource.
  • the second communication device may determine, according to the correspondence between the pre-configured correct response sequence and the process index of the second communication device, that the transmission block corresponding to the process index corresponding to the correct response sequence is the second Communication equipment is correctly detected.
  • the response receiving method provided in this embodiment may also be applicable to the third-generation mobile communication system or the fourth-generation mobile communication system or other communication systems.
  • the second communication device can determine that the transmission block corresponding to the correct response is correctly detected by the first communication device based on the received correct response, thereby preventing the first communication device from failing to detect the transmission block. However, the second communication device determines that the transmission block is correctly detected.
  • This embodiment provides a response sending method, as shown in FIG. 2, which is applied to a first communication device and includes:
  • S201 Receive a transmission block sent by a second communication device through a pre-configured periodic resource.
  • the first communication device may be a base station
  • the second communication device may be a terminal
  • the first communication device is a terminal
  • the second communication device is a base station
  • S202 Send a correct response corresponding to the transmission block to the second communication device on the pre-configured correct response resource.
  • the first communication device may send a correct response corresponding to the transmission block to the second communication device after the transmission block is correctly detected.
  • the first communication device may also configure the second communication device with the maximum number of processes K, and configure the transmission period P corresponding to the periodic resource allocated to the second communication device, where K is greater than Or an integer of 1 and P is greater than 0.
  • the first communication device may send a correct response corresponding to the transmission block to the second communication device within K * P time after detecting the transmission block.
  • step S202 may include: sending a DCI to the second communication device on a pre-configured correct response resource, and the correct response is carried in the DCI. Further, by setting the HARQ process index field in the DCI to the process index of the transport block, at least one of a resource allocation field, a redundancy version field, a coding modulation field, a new data indication field, and a transmission power control field in the DCI is set. Field is set to indicate a correct response.
  • setting at least one of a resource allocation field, a redundancy version field, a coding modulation field, a new data indication field, and a transmission power control field in the DCI includes: setting all bits of the resource allocation field to 1 Or 0, all bits of the redundant version field are set to 1, all bits of the coded modulation field are set to 0; or, all bits of the resource allocation field are set to 1 or 0, and all bits of the redundant version field are Set to 0, all bits of the coded modulation field are set to 0; or, all bits of the resource allocation field are set to 1 or 0, all bits of the redundant version field are set to 1, all bits of the coded modulation field are Set to 1; or, set all bits of the resource allocation field to 1 or 0, set all bits of the redundant version field to 1, or set all bits of the resource allocation field to 1 or 0, code the modulation field All bits are set to zero.
  • the correct response may also be indicated by setting all bits in the new data indication field to 0 or 1, or setting all bits in the transmission power control field to 0 or 1.
  • the opposite of a correct response can be used to indicate an incorrect response.
  • setting all bits of the resource allocation field to 1 or 0 may specifically include the following: when the resource allocation method corresponding to the resource allocation field in the DCI is a bitmap, all bits of the resource allocation field are set Both are set to 0. When the resource allocation method corresponding to the resource allocation field in the DCI is a non-bitmap, all bits of the resource allocation field are set to 1.
  • step S202 may include: sending a DCI to the second communication device on a pre-configured correct response resource, and the correct response is carried in the DCI. Further, by setting the HARQ process index field in the DCI to the process index of the transport block, the target bit (that is, the specific bit) in the DCI is set to indicate a correct response.
  • the target bit in this embodiment may be a 1-bit bit, a 2-bit bit, or a 3-bit bit, etc. in the DCI. Specifically, it may be the 9th bit in the DCI, that is, the 9th bit in the DCI. Bits are set to indicate correct responses. For example, you can set the 9th bit of DCI to 1 to indicate a correct response, and you can set the 9th bit of DCI to 0 to indicate an incorrect response. It should be noted that when certain fields or target bits in the DCI are used to represent the response information, such as Acknowledgement (ACK) and Negative Acknowledgement (NACK), the DCI carrying the ACK information and the DCI carrying the NACK The number of bits included can be equal.
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • the HARQ process index field represents the process index corresponding to the transport block.
  • the other fields are set to the first specified value (for example, "0") or undefined (can be “0” or “1”); if it is NACK, the aforementioned bits are set Specify a value for the second (for example, "1").
  • the DCI sent by the first communication device to the second communication device may be DCI scrambled after being configured with a Scheduling Radio Network Temporary Network Identifier (CS-RNTI).
  • CS-RNTI Scheduling Radio Network Temporary Network Identifier
  • the correct response may be represented by a correct response sequence.
  • Step S202 may include: determining a correct response sequence corresponding to the process index of the transmission block, and determining a correct response for sending the correct response sequence. Resources, and map the correct response sequence on the correct response resource to send to the second communication device.
  • the correct response sequence corresponding to each process index may be configured in advance. At this time, for step S202, the process of directly transmitting the transmission block with the pre-configured condition may be performed. The correct response sequence corresponding to the index is sent.
  • the first communication device may configure a monitoring period for the second communication device to monitor whether a correct response is received, a correct response sequence used to indicate a correct response within the monitoring period, and The correct response resource for sending the correct response sequence.
  • the first communication device may send response information within T1 time after detecting the transmission block sent by the terminal.
  • the response information includes one of a correct response and an incorrect response.
  • the correct response sequence configured for the second communication device may correspond to the process index of the second communication device on a one-to-one basis. At this time, the number of correct response sequences is equal to the maximum number of processes configured by the first communication device for the second communication device.
  • the monitoring period of the correct response configured for the second communication device may be equal to the monitoring period of the physical downlink control channel (Physical Downlink Control Channel, PDCCH) configured for the second communication device.
  • PDCCH Physical Downlink Control Channel
  • the number of Resource Elements (REs) contained in the multiple correct response resources may be the same.
  • the number of time domains included in the correct response resource may be the same, and the number of subcarriers included in the multiple correct response resources may be the same.
  • the at least two correct response sequences may share one correct response resource.
  • the correct response resource may consist of a resource element group (REG).
  • REG resource element group
  • mapping the correct response sequence to the correct response resource may include one of the following mapping methods:
  • Method 1 When the correct response resource is composed of one REG, the correct response sequence is mapped on the REG in the order of the preset frequency. When mapping, the correct response sequence is mapped on the REG resource for sending the reference signal. , And is reflected in the resources on the REG that are not used to send the reference signal, that is, the resources on the REG that are not used to send the reference signal are not skipped.
  • the preset frequency order mentioned in this mode may be the order of the frequencies from large to small, the order of the frequencies from small to large, or other orders.
  • one REG is 1 symbol in the time domain and 12 subcarriers in the frequency domain. Assuming that the subcarrier indexes are 1, 2, ...
  • Figure 3 is a schematic diagram of a REG.
  • RS in the figure represents the reference signal.
  • Figure 4-1 The correct response sequence in Figure 4-1, that is, a (0) a (1) ?? a (11) is mapped to REG in order of frequency from small to large, and it is not skipped during mapping.
  • the resource for sending the reference signal on the REG that is, the resource corresponding to the reference signal in the REG is no longer sending the reference signal.
  • Method 2 When the correct response resource is composed of one REG, the correct response sequence is mapped on the REG according to the preset frequency sequence, and the resources used to send the reference signal on the REG are skipped during the mapping.
  • the frequency sequence preset in this manner may be a sequence of frequencies from large to small, a sequence of frequencies from small to large, or another sequence. .
  • Method 3 When the correct response resource is composed of at least 2 REGs and the at least 2 REGs are in different time domains, the correct response sequence is mapped to the REGs in the order of first time domain, then frequency domain, or first frequency domain and then time domain. In the mapping, the correct response sequence is mapped onto the resources on the REG for sending the reference signal, and onto the resources on the REG that are not used for sending the reference signal.
  • Method 4 When the correct response resource is composed of at least 2 REGs and at least 2 REGs are in different time domains, the correct response sequence is mapped to the REGs in the order of first time domain, then frequency domain, or first frequency domain and then time domain. On the other hand, resources for sending reference signals on the REG are skipped during mapping.
  • Method 5 When the correct response resource is composed of at least 2 REGs, and the at least 2 REGs are continuous in the time or frequency domain, the correct response sequence is in the order of time domain first, frequency domain first, or frequency domain first and time domain first. It is mapped on the REG, and the correct response sequence is mapped onto the resources used to send the reference signal on the REG during mapping, and onto the resources not used to send the reference signal on the REG.
  • the correct response sequence is mapped according to this method, its schematic diagram can be seen in Figure 4-2.
  • Method 6 When the correct response resource is composed of at least 2 REGs, and the at least 2 REGs are not continuous in the time and frequency domains, the correct response sequence is based on the first time domain and then the frequency domain or the first frequency domain and then the time domain. The sequence is mapped on the REG, and resources for sending reference signals on the REG are skipped during the mapping.
  • the elements constituting the correct response sequence can be automatically Roll over to the next available resource or discard the element.
  • the correct response resource in Figure 4-3 contains two discontinuous REGs, and the element will be automatically postponed when the resource corresponding to the reference signal is encountered during mapping.
  • the correct response resource in Figure 4-4 also contains two discontinuous REGs, and the elements are discarded when the resource corresponding to the reference signal is encountered during mapping.
  • the correct response resources in this embodiment may correspond to resources occupied by one PDCCH in the PDCCH search space of the second communication device. Of course, in other embodiments, it may correspond to multiple PDCCHs in the PDCCH search space of the second communication device. Resources used.
  • mapping the correct response sequence to the correct response resource includes:
  • the correct response sequence is mapped on the resources occupied by the PDCCH according to the control channel element CCE to REG mapping type in the resources occupied by the PDCCH.
  • the correct response sequence can be mapped to the REG of the PDCCH candidate position, and resources for sending reference signals on the REG can be skipped during the mapping, and the CCE to REG can be mapped.
  • the mapping type is non-interleaved
  • the correct response sequence is mapped to the REG of the PDCCH candidate position.
  • the correct response sequence is mapped to the resource for sending the reference signal on the REG, and is not mapped to the REG. Send the reference signal on the resource.
  • the correct response sequence when the CCE to REG mapping type is non-interleaved, the correct response sequence is mapped to the REG at the PDCCH candidate position, and the REG is skipped for sending reference when mapping. Signal resources.
  • the correct response sequence can be mapped to the REG at the PDCCH candidate position.
  • the correct response sequence can be mapped to the REG resource used to send the reference signal.
  • mapping the correct response sequence to the correct response resource includes:
  • the resources occupied by one PDCCH include p CCEs, where p is one of ⁇ 1,2,4,8,16,32 ⁇ , and accordingly, the aggregation level of the PDCCH is called p.
  • the aggregation level in can be configured by the first communication device and notified to the second communication device in advance.
  • the above mapping the correct response sequence on the resources occupied by the PDCCH according to the aggregation levels corresponding to multiple PDCCHs includes:
  • the correct response sequence is mapped on the first type of resources occupied by the PDCCH or the The correct response sequence is mapped on the first type resource and the second type resource in the resource occupied by the PDCCH.
  • the aggregation level is greater than a preset threshold, the correct response sequence is mapped on the first resource in the resource occupied by the PDCCH.
  • the first type of resources are resources that do not correspond to the reference signal among the resources occupied by the PDCCH
  • the second type of resources are the resources corresponding to the reference resources among the resources occupied by the PDCCH.
  • the preset threshold in this embodiment can be flexibly set by a developer.
  • a selection method for selecting an aggregation level from the aggregation levels corresponding to multiple PDCCHs includes, but is not limited to, one of the following selection methods:
  • the Q-th aggregation level is selected from the aggregation levels corresponding to multiple PDCCHs, R and Q are integers, R is greater than or equal to 3, and RQ is greater than 0, less than R-1.
  • the ranking here may be ranked in order from largest to smallest, or may be ranked in order from smallest to largest.
  • the response sending method provided in this embodiment may also be applicable to a third-generation mobile communication system or a fourth-generation mobile communication system or other communication systems.
  • the first communication device can send a correct response to the second communication device, and the second communication device can determine, based on the received correct response, that the transmission block corresponding to the correct response is the first communication device.
  • the correct detection can further prevent the first communication device from failing to detect the transmission block but the second communication device determines that the transmission block is correctly detected.
  • this embodiment provides a new method for sending an indication of cancellation or stop of uplink transmission, hereinafter referred to as ULPI.
  • ULPI an indication of cancellation or stop of uplink transmission
  • the first communication device sends UL PI to the second communication device in the foregoing embodiment, and the following directly uses the base station to directly send the UL PI to the terminal as an example for specific introduction.
  • PUSCH Physical Uplink, Shared Channel
  • PUCCH Physical Uplink, Control Channel
  • SRS Sounding Reference Signal
  • PRACH Physical Random Access Channel, Physical Random Access
  • the method for transmitting the ULPI and the method for indicating the UPPI to the terminal by the base station in this embodiment may refer to the method for transmitting a correct response and the method for indicating a correct response in the foregoing embodiments, respectively.
  • the UI may be carried in the DCI and sent to the terminal.
  • a resource allocation field e.g., at least one of a resource allocation field, a redundancy version field, a coding modulation field, a new data indication field, and a transmission power control field in the DCI may be sent.
  • the field is set to indicate UL PI.
  • a specific bit in the DCI is set to indicate a correct response.
  • the UL PI can be indicated by an instruction sequence.
  • the base station can configure a monitoring period for the terminal to monitor whether the instruction sequence is received in advance. During the monitoring period, there are instructions for indicating that the uplink transmission is cancelled or stopped. An indication sequence, and a sequence resource for transmitting the indication sequence.
  • the UL PI indication achieved by the sequence method can achieve the same function with less resources, avoid DCI blocking, and improve system resource utilization.
  • the base station When the base station sends the instruction sequence, specifically, the base station may map the instruction sequence to the corresponding sequence resource for transmission. It should be noted that when an indication sequence and a correct response sequence in the above embodiment exist in a communication system, a sequence resource corresponding to the correct response sequence and a sequence resource corresponding to the indication sequence may be different.
  • the characteristics of the sequence resources corresponding to the indication sequence may be the same as the characteristics of the sequence resources corresponding to the correct response sequence in the foregoing embodiment, and details are not described herein again.
  • the manner in which the instruction sequence is mapped into the sequence resource may be the same as the manner in which the correct response sequence is mapped into the sequence resource in the foregoing embodiment, and details are not described herein again.
  • the base station may send the indication sequence corresponding to the process to the terminal according to the uplink transmission corresponding to the process to be cancelled.
  • the indication sequence is represented by DCI
  • the HARQ process index field may be set to an index corresponding to a process that needs to be cancelled.
  • the UL PI in this embodiment may be a UE-specific UL PI, which is used to indicate that the uplink transmission of one terminal is canceled or stopped.
  • the latest uplink transmission is cancelled or stopped.
  • the most recent uplink transmission includes the uplink transmission that is being transmitted. Or cancel or stop all previously scheduled uplink transmissions, or cancel or stop uplink transmissions in the RUR (Reference Uplink Resource) referenced by the UL PI.
  • RUR Reference Uplink Resource
  • the UL PI in this embodiment may be Group common UL, which is used to indicate that the uplink transmission of one group of terminals is canceled or stopped, that is, the base station can send Group common UL PI to multiple terminals at this time, and optionally cancel or stop one group.
  • the most recent uplink transmission includes the uplink transmission being transmitted, or cancel or stop all previously scheduled uplink transmissions for all terminals in a group of terminals, or cancel or stop the RUR indicated by the ULPI. Uplink transmission.
  • the method for sending an uplink transmission cancellation or stop instruction can be applied to a 5G communication system, a third-generation mobile communication system, and a fourth-generation mobile communication system. Or other communication systems.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the terminal can retransmit the transmission block to the base station only after receiving the uplink authorization sent by the base station. Then in 5G systems, when should the transmission block be retransmitted to ensure the quality of the communication? New issues.
  • This embodiment provides a new retransmission method, which indicates whether to retransmit a transport block through an error response, as shown in FIG. 5, and is applied to a second communication device, including:
  • S501 Send a transmission block to a first communication device through a pre-configured periodic resource.
  • the periodic resource in this embodiment may be configured by the first communication device for the second communication device, and the second communication device may send a transmission block to the first communication device within a transmission period corresponding to the periodic resource.
  • S502 Receive DCI sent by the first communication device, and the DCI includes response information corresponding to N transmission periods adjacent in the time domain.
  • N in this embodiment is an integer greater than or equal to 1. That is, N response information corresponding to N transmission periods are collectively carried in one DCI. In particular, when N is greater than or equal to 2, communication resources can be relatively saved.
  • the first communication device in this embodiment may send an error response and uplink authorization to the second communication device.
  • the first communication device may send an error response to the second communication device when a transmission block error is detected. And send an uplink grant.
  • the second communication device may perform a retransmission operation in one of the following ways:
  • Method 1 If the second communication device receives an uplink grant for scheduling a retransmission of the transmission block within a pre-configured timer, the second communication device retransmits the corresponding transmission block according to the uplink authorization instruction. If within the pre-configured timer, the second communication device does not receive the uplink authorization but receives the DCI, the second communication device will autonomously retransmit the transmission block that received the error response after the pre-configured timer expires. pass.
  • Method 2 Within the pre-configured timer, if the second communication device receives DCI first, the second communication device will automatically retransmit the transmission block corresponding to the error response. Specifically, it is not necessary to wait for this timer time. It is not necessary to wait for the uplink authorization after the end. When receiving the DCI, the transmission block corresponding to the error response can be retransmitted autonomously. Of course, the second communication device can also determine the retransmission timing according to other methods. For the uplink grant of the transmission block, the second communication device may choose to retransmit the transmission block again according to the uplink grant instruction or ignore the uplink grant.
  • Method 3 Within the pre-configured timer, if the second communication device first receives the uplink authorization for scheduling the transmission block retransmission, the second communication device will retransmit the corresponding transmission block according to the uplink authorization instruction. After receiving the DCI, the second communication device may choose to autonomously retransmit the transmission block corresponding to the error response in the DCI, or may not choose to retransmit the transmission block corresponding to the error response in the DCI.
  • Method 4 The second communication device does not receive the uplink authorization corresponding to a transmission block that is actually sent and does not receive its corresponding DCI within the pre-configured timer time.
  • the second communication device may use this timer time. After the end, the transmission block is automatically retransmitted.
  • the start timing time corresponding to the timer may be the time when the second communication device sends the corresponding transmission block.
  • Method 1 There is no binding relationship between the autonomous retransmission and the first transmission of the transmission block.
  • the second communication device autonomously retransmits, it autonomously selects a periodic resource and retransmits the transmission block as a new transmission block.
  • the first communication device cannot associate this autonomous retransmission with the first transmission of the transmission block, so it cannot achieve combined demodulation, and can only demodulate independently.
  • Manner 2 Configuration at a high level, for example, configuration at a MAC (physical) layer or RCC layer, or DCI to configure a binding relationship between autonomous retransmission and the first transmission of the transmission block.
  • the timing relationship between the autonomous retransmission and the first transmission of the transport block is configured through a MAC message or an RRC message or a DCI.
  • the second communication device autonomously retransmits the transmission block sent in the corresponding TB (transmission cycle) corresponding to the corresponding error response.
  • the periodic resources used by the autonomous retransmission are determined according to the timing relationship between the autonomous retransmission configured by the MAC message or the RRC message or the DCI configuration and the first transmission of the transport block.
  • the response information corresponding to each transmission period is represented by a 1-bit bit in the DCI; if the response information contains a correct response, the correct response indicates that the corresponding transmission block was received by the first communication device and demodulated correctly Is ACK; an error response indicates that the corresponding transmission block was received by the first communication device and the demodulation error was NACK, or an error response indicates that the corresponding transmission block was not received by the first communication device and is discontinuous transmission (Discontinuous Transmission, DTX ).
  • DTX discontinuous Transmission
  • the response information corresponding to each transmission period is represented by a 2-bit bit in the DCI; if the response information contains a correct response, the correct response indicates that the corresponding transmission block is received and demodulated by the first communication device Right, it is ACK, and error response includes the following three indications:
  • the transmission block is received by the first communication device with demodulation error, and the first communication device does not send the uplink authorization of the corresponding transmission block to the second communication device, which is NACK1;
  • the transmission block was received by the first communication device with demodulation error, and the first communication device will send the uplink authorization of the corresponding transmission block to the second communication device within a preset time.
  • the second communication device does not need to retransmit on its own, but is blind.
  • the second communication device can obtain explicit response information.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • This embodiment also provides a retransmission method, which is applied to a first communication device.
  • a retransmission method which is applied to a first communication device. Refer to FIG. 6, including:
  • S601 Receive a transmission block sent by a second communication device through a pre-configured periodic resource.
  • S602 Send DCI to the second communication device.
  • the DCI includes response information corresponding to N transmission periods adjacent to each other in the time domain, and N is an integer greater than or equal to 1. That is, N response information corresponding to N transmission periods are collectively carried in one DCI. In particular, when N is greater than or equal to 2, communication resources can be relatively saved.
  • the initial transmission period of the N transmission periods in this embodiment is determined by one of the following methods:
  • Method 1 Use the process index in the received transport block as the initial transmission period corresponding to the transport block whose margin is N-1.
  • Method 2 When the physical uplink shared channel PUSCH of the second communication device is detected in a certain transmission period, and the PUSCH of the second communication device is not detected in the first N-1 adjacent transmission periods of the transmission period , Use this transmission cycle as the initial transmission cycle.
  • Method 3 When the PUSCH of the second communication device is detected in a certain transmission period, and the PUSCH of the second communication device is not detected between the first transmission period of the periodic resource and the transmission period, the PUSCH of the second communication device is detected.
  • the transmission cycle is used as the initial transmission cycle.
  • the first communication device does not receive the PUSCH of the second communication device on TP m-3-TP m-1, it receives the second communication device on TP m
  • the first communication device regards TPm as the starting TP of a group of N TPs, and when feedback is provided on the response information of the group, 4 TPs of m-TPm + 3 are fed back in DCI Response message.
  • the DCI sent by the first communication device includes a unique identifier corresponding to a transmission period at a preset position in the N transmission periods. Specifically, you can add the HARQ process ID (Hybrid Automatic Repeat Request Process ID) corresponding to the TP at any specific position in a group of N TPs in the DCI, or increase the ability to uniquely determine the TP within the RTT (round trip) time Set of other instructions.
  • the DCI in addition to the response information of a group of 4 TPs (TP-m-TPm + 3), the DCI also contains the HARQ process ID corresponding to a specific TP, such as the first of a group of 4 TPs.
  • the second communication device sends PUSCH at TPm-TPm + 3, but the first communication device misses the PUSCH of TPm, such as the first communication. If the device does not receive the transmission block corresponding to TPm, the second communication device considers that the data transmission starts from TPm + 1. According to method (1), the DCI sent by the first communication device needs to carry the specific TP of the N TPs.
  • the second communication device can determine that the first communication device has missed the TP transmission block, and the second communication device can retransmit the transmission block to the first communication device.
  • a timer can be set for the DCI that can uniquely correspond to a group of N TPs, and the first communication device needs to feed back a set of N TP response information within this timer.
  • the valid period of the timer should fall within one TP duration after the end of the group of N TPs.
  • synchronous feedback may be adopted, that is, there is a clear predetermined time relationship between DCI and PUSCH transmission, and the second communication device may determine which group of N TPs the DCI feedback corresponds to by the time of the DCI feedback.
  • the N TPs forming a group can be N TPs on the same CC (component carrier), or N TPs on different CCs.
  • the response information corresponding to each transmission period may be represented by a 1-bit bit in the DCI; if the response information includes a correct response, the correct response indicates that the corresponding transmission block is received and demodulated by the first communication device Correct, it is ACK; an error response indicates that the corresponding transmission block is received by the first communication device and the demodulation error is NACK, or an error response indicates that the corresponding transmission block is not received by the first communication device, and is DTX.
  • the response information corresponding to each transmission period is represented by a 2-bit bit in the DCI; if the response information contains a correct response, the correct response indicates that the corresponding transmission block is received and demodulated by the first communication device Right, it is ACK, and error response includes the following three indications:
  • the transmission block is received by the first communication device with demodulation error, and the first communication device does not send the uplink authorization of the corresponding transmission block to the second communication device, which is NACK1;
  • the transmission block was received by the first communication device with demodulation error, and the first communication device will send the uplink authorization of the corresponding transmission block to the second communication device within a preset time.
  • the second communication device does not need to retransmit independently, but is blind.
  • the retransmission method provided in this embodiment may also be applicable to a third generation mobile communication system or a fourth generation mobile communication system or other communication systems.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • this embodiment uses the first communication device as a base station and the second communication device as a terminal to more specifically introduce the response receiving method and the response sending method.
  • the base station pre-configures a resource for the terminal that can periodically send transmission blocks, that is, the periodic resources and the configuration of the periodic resources mentioned in the first and second embodiments.
  • the information includes: the transmission period of the resource, the time-frequency position, the pilot configuration, the number of repetitions, the coding and modulation method, and the maximum number of processes.
  • the terminal can use this resource to send a transport block within a transmission cycle. It is assumed that the terminal sends one transport block (TB) using one resource, and the process index k of the transport block can be determined according to the following formula:
  • K is the maximum number of processes for the resource allocation by the base station
  • P is a period in which the base station configures the foregoing resources
  • X frame index * number of time slots in the frame * number of symbols in the time slot + index of time slots in the frame * number of symbols in the time slot + symbol index in the time slot;
  • the symbol index in the slot corresponds to the symbol index of the first symbol of the transport block in the slot.
  • the base station pre-configures a terminal with a periodic resource that can periodically transmit a transmission block and a timing period T1, and assumes that the terminal uses a periodic resource to send a transmission block with a process index of k.
  • the terminal sends the transmission block and starts timing at the time corresponding to the transmission block, with a duration of T1.
  • the terminal does not use the same resource as the transmission block process index to send a new transmission block.
  • the terminal detects the corresponding transmission block, it instructs the terminal to retransmit the uplink grant of the transmission block, or Upon detecting an error response corresponding to the transport block, such as NACK or DTX, the terminal restarts timing.
  • the terminal still does not use the same resource as the process block process index to send a new transport block.
  • T 14 symbols.
  • the terminal sends a transmission block (TB1) on symbols 0 and 1 of slot 0 of frame index 0, and the terminal receives symbol 0 of slot 1 of frame index 0.
  • the time corresponding to TB4 is within the time T1 corresponding to the transmission block
  • the time corresponding to TB7 is within the time T1 corresponding to the foregoing uplink authorization or NACK. Even if the terminal sends a new transmission block, the terminal will not use it.
  • These resources (periodical resources corresponding to TB4 and TB7) send new transmission blocks. Without conflicting with the resources indicated by the uplink grant or NACK, the terminal can retransmit TB1 using the resources corresponding to TB4 and the resources corresponding to TB7.
  • the terminal within the time T1 corresponding to the transmission block, if a correct response corresponding to the transmission block is detected, that is, ACK information, or no ACK information and error response UACK information are detected, the terminal continues to time In time T1, the terminal does not use the same resource as the transmission block process index k to send a new transmission block. After time T1, the terminal can use the same resource as the transmission block process index to send a new transmission block.
  • T1 16 symbols. The terminal sends a transmission block (TB1) on symbols 0 and 1 of slot 0 of frame index 0, and the terminal receives symbol 4 of slot 0 of frame index 0.
  • the terminal can avoid that the base station in the prior art fails to detect the transmission block sent by the terminal, but the terminal mistakenly thinks that the base station detects the correct problem.
  • the solution provided by this example can also effectively solve the problem of process number ambiguity in the following situations:
  • the terminal incorrectly detects the problem of process ambiguity caused by ACK information. Still using FIG. 9 as an example, the terminal incorrectly detects the ACK information corresponding to TB1 (for example, the base station does not send ACK information or sends NACK information, etc.), and then sends a new transmission block in TB4. If both TB1 and TB4 detect errors, the base station For this reason, even if the new NACK information terminal is detected correctly, the two parties may still have different understandings.
  • the terminal stops timing. After the timing is stopped, the terminal can use the same resource as the process block process index Send a new transport block.
  • the terminal detects an uplink grant, it retransmits a transport block with a process index of k according to the indication of the uplink grant; the terminal does not use the process index of k in the configuration resources of the base station before detecting the ACK signal.
  • the resource sends a new transmission block, but the resource can be used to retransmit the transmission block.
  • the resource with the process index k in the resource configured by the base station can be used to send the new transmission block.
  • the terminal may use the resources configured by the base station to send data.
  • ACK information sending method proposed in this example is as follows:
  • the base station allocates a monitoring period for the ACK information to the terminal, allocates one or more sequences that carry the ACK information and multiple resources that can send the sequence within the monitoring period, and the sequence has a predefined process index corresponding to the terminal sending the transmission block.
  • the aforementioned number of sequences is equal to the maximum number of processes configured by the base station.
  • each sequence has a predefined one-to-one correspondence with the process index.
  • the base station can map the sequence on one resource or multiple resources of multiple resources and send them within a monitoring period.
  • the base station allocates ACK sequences corresponding to processes 0, 1, and 2 to the terminal (process 0 ACK sequence, process 1 ACK sequence, and process 2 ACK sequence) and multiple resources that can send ACK sequences.
  • the ACK sequence of process 0 can be sent on resources 0, 1, 2, and 3 (the base station can choose one to send)
  • the ACK sequence of process 1 can be sent on resources 0, 1, 2, and 3
  • the ACK sequence of process 2 can be sent on Send on resources 2 and 3.
  • the ACK sequence corresponding to process 0 and 1 is fully shared, and the ACK sequence corresponding to process 0, 1 and process 2 is partially shared.
  • the ACK sequence corresponding to a process is a pseudo-random sequence.
  • the sequence used is different, but these sequences have the same initialization parameters and generate polynomials.
  • the terminal can detect the ACK information on multiple resource locations allocated by the base station according to the ACK sequence monitoring period configured by the base station. As long as the ACK information is detected on one resource, it is considered that the transmission block corresponding to the process index is detected correctly.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • An embodiment of the present invention provides a response receiving device, as shown in FIG. 11, which is applied to a second communication device and includes: a first transmission block sending module 1101 and a correct response receiving module 1102, where the first transmission block sending module 1101 is used
  • the correct response receiving module 1102 is configured to receive a correct response corresponding to the transmission block sent by the first communication device on the pre-configured correct response resource.
  • the periodic resource in this embodiment may be configured by the first communication device for the second communication device, and the second communication device may send a transmission block to the first communication device within a transmission period corresponding to the periodic resource.
  • the first communication device in the embodiment of the present invention may be a base station
  • the second communication device may be a terminal
  • the first communication device is a terminal
  • the second communication device is a base station
  • the correct response sent by the first communication device can be obtained by detecting the transmission block. Therefore, if the detection result is incorrect, the second communication device can also receive the error response sent by the first communication device. Yes, the error response in this embodiment may be any response sent by the first communication device to the second communication device that may indicate that the transmission block was not correctly detected by the first communication device.
  • the second communication device When the second communication device receives the correct response, it can be determined by the determining module that the transmission block corresponding to the correct response is correctly detected by the first communication device. The second communication device does not need to retransmit the transmission block corresponding to the correct response, which can reduce Waste of resources.
  • the timing can be started by the timing module at the time corresponding to the transmission block. If a correct response corresponding to the transmission block is detected within the preset timing period T1, the timing is continued and the pre-design It is forbidden to send a new transmission block to the first communication device through the same period resource as the process index of the transmission block within the time period T1. Of course, after the preset timing period T1 ends, a new transmission block may be allowed to be sent to the first communication device through the same period resource as the process index of the transmission block.
  • T1 in this embodiment can be arbitrarily set, for example, it can be 14 symbols, or 16 symbols, and so on.
  • the timing can be started by the timing module at the time corresponding to the transmission block. If a correct response corresponding to the transmission block is detected within the preset timing period T1, the timing is stopped and the transmission through the transmission block is allowed. A periodic resource with the same process index of the block sends a new transmission block to the first communication device.
  • the timing can be started by the timing module at the time corresponding to the transmission block. If the correct response and the incorrect response corresponding to the transmission block are not detected within the preset timing period T1, the timing is continued and the It is forbidden to send a new transmission block to the first communication device through the same period resource as the process index of the transmission block within the preset timing period T1, but it is allowed to send it to the first communication device again through the same period resource as the process index of the transmission block.
  • the transport block is forbidden to send a new transmission block to the first communication device through the same period resource as the process index of the transmission block within the preset timing period T1, but it is allowed to send it to the first communication device again through the same period resource as the process index of the transmission block.
  • a new transmission block may be allowed to be sent to the first communication device through the same period resource as the process index of the transmission block, or if it has not been retransmitted within the aforementioned preset timing period T1
  • the transmission block may send the transmission block to the first communication device again through the same periodic resource as the process index of the transmission block or other periodic resources corresponding to other process indexes.
  • the timing can be started by the timing module at the time corresponding to the transmission block. If an error response corresponding to the transmission block is detected within the preset timing period T1, the timing is restarted and the It is forbidden to send a new transmission block to the first communication device through the same period resource as the process index of the transmission block within the preset timing period T1, but it is allowed to resend to the first communication device through the same period resource as the process index of the transmission block.
  • This transport block at a time.
  • a new transmission block may be allowed to be sent to the first communication device through the same period resource as the process index of the transmission block.
  • the transmission start time of the transmission block
  • the correct response receiving module 1102 may receive the downlink control information DCI sent by the first communication device on a preconfigured correct response resource.
  • the correct response is carried in the DCI, and one DCI includes a correct response, and at least one of the resource allocation field, the redundancy version field, the coding modulation field, the new data indication field, and the transmission power control field in the DCI is included.
  • Field and the hybrid automatic retransmission request in the DCI HARQ process index field to indicate the correct response, the HARQ process index field is the process index of the transport block.
  • all bits in the resource allocation field in DCI are 1 or 0, while all bits in the redundant version field are 1, and all bits in the coded modulation field are 0; or, the resource All bits of the allocation field are 1 or 0, all bits of the redundancy version field are 0, and all bits of the coded modulation field are 0; or, all bits of the resource allocation field are 1 or 0, and the redundancy version field All bits of the bit are 1 and all bits of the coded modulation field are 1; or all bits of the resource allocation field are 1 or 0 and all bits of the redundant version field are 1; or all bits of the resource allocation field are Is 1 or 0, all bits of the coded modulation field are 0.
  • the correct response may also be indicated by setting all bits in the new data indication field to 0 or 1, or setting all bits in the transmission power control field to 0 or 1.
  • the correct response receiving module 1102 may receive the downlink control information DCI sent by the first communication device on a preconfigured correct response resource.
  • the correct response is carried in the DCI.
  • a DCI contains a correct response, and the correct response is indicated by the target bit in the DCI and the HARQ process index field in the DCI.
  • the HARQ process index field is the process index of the transmission block.
  • the target bit in this embodiment may be a 1-bit bit, a 2-bit bit, or a 3-bit bit in the DCI, etc. Specifically, it may be the 9th bit in the DCI, that is, the 9th bit in the DCI To indicate a correct response. For example, when the 9th bit is 0, it can indicate a correct response, and when the 9th bit is 1, it can indicate an incorrect response.
  • the correct response receiving module 1102 may receive the correct response sequence sent by the first communication device on a preconfigured correct response resource.
  • the second communication device may determine, according to the correspondence between the pre-configured correct response sequence and the process index of the second communication device, that the transmission block corresponding to the process index corresponding to the correct response sequence is the second Communication equipment is correctly detected.
  • the functions corresponding to the first transmission block sending module 1101, the correct response receiving module 1102, the determining module, and the timing module in this embodiment may be implemented by the processor executing a corresponding program stored in the memory.
  • the response receiving device based on the received correct response, it can be determined that the transmission block corresponding to the correct response is correctly detected by the first communication device, thereby preventing the first communication device from failing to detect the transmission block and the second communication device. However, it is considered that the transmission block is detected correctly.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • This embodiment provides a response sending device, as shown in FIG. 12, which is applied to a first communication device and includes a first transmission block receiving module 1201 and a correct response sending module 1202, where the first transmission block receiving module 1201 is configured to receive
  • the correct response sending module 1202 is sent by the second communication device through a pre-configured periodic resource, and sends a correct response corresponding to the transmission block to the second communication device on the pre-configured correct response resource.
  • the first communication device may send a correct response corresponding to the transmission block to the second communication device after the transmission block is correctly detected.
  • the first communication device may also configure the maximum number of processes K for the second communication device, and configure the transmission period P corresponding to the period resource allocated to the second communication device, where K is an integer greater than or equal to 1. , P is greater than 0.
  • the first communication device may send a correct response corresponding to the transmission block to the second communication device within K * P time after detecting the transmission block.
  • the correct response sending module 1202 may send a DCI to the second communication device on a preconfigured correct response resource, and the correct response is carried in the DCI. Further, by setting the HARQ process index field in the DCI to the process index of the transport block, at least one of the resource allocation field, the redundancy version field, the coding modulation field, the new data indication field, and the transmission power control field in the DCI is set. This field is set to indicate a correct response.
  • setting at least one of the resource allocation field, the redundancy version field, the coding modulation field, the new data indication field, and the transmission power control field in the DCI includes: setting all bits of the resource allocation field to 1 or 0, all bits of the redundant version field are set to 1, all bits of the coded modulation field are set to 0, or all bits of the resource allocation field are set to 1 or 0, all bits of the redundant version field All bits are set to 0, all bits of the coded modulation field are set to 0; or, all bits of the resource allocation field are set to 1 or 0, all bits of the redundant version field are set to 1, and all bits of the coded modulation field are set All bits are set to 1; or, all bits of the resource allocation field are set to 1 or 0, and all bits of the redundant version field are set to 1; or, all bits of the resource allocation field are set to 1 or 0, coding modulation All bits of the field are set to zero.
  • the correct response may also be indicated by setting all bits in the new data indication field to 0 or 1, or setting all bits in the transmission power control field to 0 or 1.
  • the opposite of a correct response can be used to indicate an incorrect response.
  • setting all bits of the resource allocation field to 1 or 0 may specifically include the following: when the resource allocation method corresponding to the resource allocation field in the DCI is a bitmap, all bits of the resource allocation field are set Both are set to 0. When the resource allocation method corresponding to the resource allocation field in the DCI is a non-bitmap, all bits of the resource allocation field are set to 1.
  • the correct response sending module 1202 may also send a DCI to the second communication device on a preconfigured correct response resource, and the correct response is carried in the DCI. Further, by setting the HARQ process index field in the DCI to the process index of the transport block, the target bit in the DCI is set to indicate a correct response.
  • the target bit in this embodiment may be a 1-bit bit, a 2-bit bit, or a 3-bit bit, etc. in the DCI. Specifically, it may be the 9th bit in the DCI, that is, the 9th bit in the DCI. Bits are set to indicate correct responses. For example, you can set the 9th bit of DCI to 1 to indicate a correct response, and you can set the 9th bit of DCI to 0 to indicate an incorrect response. It should be noted that when certain fields or target bits in the DCI are used to represent the response information, such as ACK and NACK, the number of bits included in the DCI carrying the ACK information and the DCI carrying the NACK may be equal.
  • the HARQ process index field represents the process index corresponding to the transport block, and the other fields are set to the first specified value (such as "0") or undefined (can be “0” or “1”); if it is NACK, the aforementioned bits are set Specify a value for the second (for example, "1").
  • the DCI sent by the first communication device to the second communication device may be a DCI configured to schedule a CS-RNTI scrambling process.
  • the correct response is represented by the correct response sequence.
  • the correct response sending module 1202 may also determine the correct response sequence corresponding to the process index of the transmission block, and determine the correctness for sending the correct response sequence.
  • a response resource and map the correct response sequence on the correct response resource and send it to the second communication device.
  • the first communication device may configure a monitoring period for the second communication device to monitor whether a correct response is received, and within the monitoring period, there is a correct response sequence to indicate a correct response, and to send the correct response.
  • the correct response resource for the response sequence may be configured to indicate a correct response.
  • the first communication device may send response information within T1 time after detecting the transmission block sent by the terminal.
  • the response information includes one of a correct response and an incorrect response.
  • the correct response sequence configured for the second communication device may correspond to the process index of the second communication device on a one-to-one basis. At this time, the number of correct response sequences is equal to the maximum number of processes configured by the first communication device for the second communication device.
  • the monitoring period of the correct response configured for the second communication device may be equal to the monitoring period of the physical downlink control channel PDCCH configured for the second communication device.
  • the number of resource elements RE contained in the multiple correct response resources may be the same.
  • the number of time domains included in the correct response resource may be the same, and the number of subcarriers included in the multiple correct response resources may be the same.
  • the at least two correct response sequences may share one correct response resource.
  • the correct response resource may consist of a resource element group REG.
  • the correct response sending module 1202 mapping the correct response sequence to the correct response resource may include one of the following mapping methods:
  • Method 1 When the correct response resource is composed of one REG, the correct response sequence is mapped on the REG in the order of the preset frequency.
  • mapping the correct response sequence is mapped on the REG resource for sending the reference signal.
  • And is reflected in the resources on the REG that are not used to send the reference signal, that is, the resources on the REG that are not used to send the reference signal are not skipped.
  • the preset frequency order mentioned in this mode may be the order of the frequencies from large to small, the order of the frequencies from small to large, or other orders.
  • Method 2 When the correct response resource is composed of one REG, the correct response sequence is mapped on the REG according to the preset frequency sequence, and the resources used to send the reference signal on the REG are skipped during the mapping.
  • the frequency sequence preset in this manner may be a sequence of frequencies from large to small, a sequence of frequencies from small to large, or another sequence. .
  • Method 3 When the correct response resource is composed of at least 2 REGs and the at least 2 REGs are in different time domains, the correct response sequence is mapped to the REGs in the order of first time domain, then frequency domain, or first frequency domain and then time domain. In the mapping, the correct response sequence is mapped onto the resources on the REG for sending the reference signal, and onto the resources on the REG that are not used for sending the reference signal.
  • Method 4 When the correct response resource is composed of at least 2 REGs and at least 2 REGs are in different time domains, the correct response sequence is mapped to the REGs in the order of first time domain, then frequency domain, or first frequency domain and then time domain. On the other hand, resources for sending reference signals on the REG are skipped during mapping.
  • Method 5 When the correct response resource is composed of at least 2 REGs and the at least 2 REGs are continuous in the time or frequency domain, the correct response sequence is mapped in the order of time domain first, frequency domain first, or frequency domain first and time domain first. On the REG, a correct response sequence is mapped onto a resource for sending a reference signal on the REG during mapping, and onto a resource not used for sending a reference signal on the REG.
  • Method 6 When the correct response resource is composed of at least 2 REGs, and the at least 2 REGs are not continuous in the time and frequency domains, the correct response sequence is based on the time domain first, frequency domain first, or frequency domain first and time domain first.
  • the REGs are sequentially mapped on the REGs, and resources used for sending reference signals on the REGs are skipped during the mapping.
  • the elements constituting the correct response sequence can be automatically Roll over to the next available resource or discard the element.
  • the correct response resources in this embodiment may correspond to resources occupied by one PDCCH in the PDCCH search space of the second communication device. Of course, in other embodiments, it may correspond to multiple PDCCHs in the PDCCH search space of the second communication device. Resources used.
  • the correct response sending module 1202 may map the correct response sequence on the resources occupied by the PDCCH according to the control channel element CCE to REG mapping type among the resources occupied by the PDCCH.
  • the correct response sending module 1202 may map the correct response sequence to the REG of the PDCCH candidate position, and skip the resources for sending reference signals on the REG during mapping.
  • the correct response sending module 1202 may map the correct response sequence to the REG of the PDCCH candidate position when the mapping type of CCE to REG is a non-interleaved type, and map the correct response sequence to the REG during mapping to send a reference signal. On the resources that are not used to send the reference signal on the REG.
  • the correct response sequence when the CCE to REG mapping type is non-interleaved, the correct response sequence is mapped to the REG at the PDCCH candidate position, and the REG is skipped for sending reference when mapping. Signal resources.
  • the correct response sequence can be mapped to the REG at the PDCCH candidate position.
  • the correct response sequence can be mapped to the REG resource used to send the reference signal.
  • the correct response sending module 1202 may obtain multiple PDCCH addresses in the PDCCH search space of the second communication device.
  • the corresponding aggregation level maps the correct response sequence on the resources occupied by the PDCCH according to the aggregation levels corresponding to multiple PDCCHs.
  • the resources occupied by one PDCCH include p CCEs, where p is one of ⁇ 1,2,4,8,16,32 ⁇ , and accordingly, the aggregation level of the PDCCH is called p.
  • the aggregation level in can be configured by the first communication device and notified to the second communication device in advance.
  • the correct response sending module 1202 may select an aggregation level from the aggregation levels corresponding to multiple PDCCHs. When the aggregation level is less than or equal to a preset threshold, the correct response sequence is mapped to the resources occupied by the PDCCH. The first type resource or the correct response sequence is mapped to the first type resource and the second type resource of the resources occupied by the PDCCH.
  • the correct response sequence is mapped to On a second type of resource occupied by the PDCCH;
  • the first type of resource is a resource that does not correspond to a reference signal among the resources occupied by the PDCCH, and the second type of resource is among the resources occupied by the PDCCH The resource corresponding to the reference resource.
  • the preset threshold in this embodiment can be flexibly set by a developer.
  • a selection method for selecting an aggregation level from the aggregation levels corresponding to multiple PDCCHs includes, but is not limited to, one of the following selection methods:
  • the Q-th aggregation level is selected from the aggregation levels corresponding to multiple PDCCHs, R and Q are integers, R is greater than or equal to 3, and RQ is greater than 0, less than R-1.
  • the ranking here can be ranked in order from largest to smallest, or can be ranked in order from smallest to largest.
  • the function corresponding to the first transmission block receiving module 1201 and the correct response sending in this embodiment may be implemented by the processor executing a corresponding program stored in the memory.
  • this embodiment provides a retransmission device, which is applied to a second communication device, and includes a second transmission block sending module 1301, a DCI receiving module 1302, and a retransmission sending module 1303.
  • the second transmission block The sending module 1301 is configured to send a transmission block to the first communication device through a pre-configured period resource.
  • the DCI receiving module 1302 is configured to receive a DCI sent by the first communication device.
  • the DCI includes N transmission periods corresponding to adjacent time domains.
  • the retransmission sending module 1303 is configured to retransmit a transmission block sent within a transmission period corresponding to the error response to the first communication device when the response information includes an error response.
  • the periodic resource in this embodiment may be configured by the first communication device for the second communication device, and the second communication device may send a transmission block to the first communication device within a transmission period corresponding to the periodic resource.
  • N in this embodiment is an integer greater than or equal to 1. That is, N response information corresponding to N transmission periods are collectively carried in one DCI. In particular, when N is greater than or equal to 2, communication resources can be relatively saved.
  • the first communication device in this embodiment may send an error response and uplink authorization to the second communication device.
  • the first communication device may send an error response to the second communication device when a transmission block error is detected. And send an uplink grant.
  • the retransmission sending module 1303 may perform retransmission in one of the following ways:
  • Manner 1 If the second communication device receives an uplink grant for scheduling the retransmission of the transmission block within a pre-configured timer, the second communication device retransmits the corresponding transmission block according to the uplink authorization instruction. If within the pre-configured timer, the second communication device does not receive the uplink authorization but receives the DCI, the second communication device will receive an error response after the pre-configured timer time expires. The transmission block retransmits autonomously.
  • Method 2 Within the pre-configured timer, if the second communication device receives DCI first, the second communication device will automatically retransmit the transmission block corresponding to the error response. Specifically, it is not necessary to wait for this timer time. At the end, when the DCI is received, the transmission block corresponding to the error response can be retransmitted autonomously. Of course, the second communication device can also determine the retransmission timing according to other methods. If an uplink grant corresponding to the transmission block is subsequently received, The retransmission sending module 1303 may choose to retransmit the transmission block again according to the uplink grant instruction or ignore the uplink grant.
  • Method 3 Within the pre-configured timer, if the second communication device first receives the uplink authorization for scheduling the transmission block retransmission, the second communication device will retransmit the corresponding transmission block according to the uplink authorization instruction. After receiving the DCI, the retransmission sending module 1303 may choose to retransmit the transmission block corresponding to the error response in the DCI autonomously, or may not choose to retransmit the transmission block corresponding to the error response in the DCI.
  • Method 4 Within the pre-configured timer, the second communication device does not receive the uplink authorization corresponding to a transmission block actually sent, nor does it receive its corresponding DCI.
  • the retransmission sending module 1303 may use this timer.
  • the transmission block is automatically retransmitted after the time expires.
  • the start timing time corresponding to the timer may be the time when the second communication device sends the corresponding transmission block.
  • Method 1 There is no binding relationship between the autonomous retransmission and the first transmission of the transmission block.
  • the second communication device autonomously retransmits, it autonomously selects a periodic resource and retransmits the transmission block as a new transmission block.
  • the first communication device cannot associate this autonomous retransmission with the first transmission of the transmission block, so it cannot achieve combined demodulation, and can only demodulate independently.
  • Manner 2 Configuration at a high level, for example, configuration at a MAC (physical) layer or RCC layer, or DCI to configure a binding relationship between autonomous retransmission and the first transmission of the transmission block.
  • the timing relationship between the autonomous retransmission and the first transmission of the transport block is configured through a MAC message or an RRC message or a DCI.
  • the second communication device autonomously retransmits the transmission block sent in the corresponding TB (transmission cycle) corresponding to the corresponding error response.
  • the periodic resources used by the autonomous retransmission are determined according to the timing relationship between the autonomous retransmission configured by the MAC message or the RRC message or the DCI configuration and the first transmission of the transport block.
  • the response information corresponding to each transmission period is represented by a 1-bit bit in the DCI; if the response information contains a correct response, the correct response indicates that the corresponding transmission block was received by the first communication device and demodulated correctly Is ACK; an error response indicates that the corresponding transmission block is received by the first communication device and the demodulation error is NACK, or an error response indicates that the corresponding transmission block is not received by the first communication device and is DTX.
  • the response information corresponding to each transmission period is represented by a 2-bit bit in the DCI; if the response information contains a correct response, the correct response indicates that the corresponding transmission block is received and demodulated by the first communication device Right, it is ACK, and error response includes the following three indications:
  • the transmission block is received by the first communication device with demodulation error, and the first communication device does not send the uplink authorization of the corresponding transmission block to the second communication device, which is NACK1;
  • the transmission block was received by the first communication device with demodulation error, and the first communication device will send the uplink authorization of the corresponding transmission block to the second communication device within a preset time.
  • the second communication device does not need to retransmit on its own, but is blind.
  • the functions corresponding to the second transmission block sending module 1301, the DCI receiving module 1302, and the retransmission sending module 1303 in this embodiment can be implemented by the processor executing the corresponding program stored in the memory.
  • Embodiment 10 is a diagrammatic representation of Embodiment 10:
  • This embodiment provides a retransmission device, which is applied to a first communication device.
  • a retransmission device As shown in FIG. 14, it includes a second transmission block receiving module 1401, a DCI transmitting module 1402, and a retransmit receiving module 1403.
  • the second transmission block receiving module 1401 is configured to receive a transmission block sent by a second communication device through a pre-configured periodic resource.
  • the DCI transmission module 1402 is configured to send a DCI to the second communication device.
  • the retransmission receiving module 1403 is configured to respond to The message includes an error response, and receives a transmission block transmitted within a transmission period corresponding to the error response retransmitted by the second communication device.
  • the DCI includes response information corresponding to N transmission periods adjacent to each other in the time domain, and N is an integer greater than or equal to 1. That is, N response information corresponding to N transmission periods are collectively carried in one DCI. In particular, when N is greater than or equal to 2, communication resources can be relatively saved.
  • the initial transmission period of the N transmission periods in this embodiment is determined by one of the following methods:
  • Method 1 Use the process index in the received transport block as the initial transmission period corresponding to the transport block whose margin is N-1.
  • Method 2 When the physical uplink shared channel PUSCH of the second communication device is detected in a certain transmission period, and the PUSCH of the second communication device is not detected in the first N-1 adjacent transmission periods of the transmission period , Use this transmission cycle as the initial transmission cycle.
  • Method 3 When the PUSCH of the second communication device is detected in a certain transmission period, and the PUSCH of the second communication device is not detected between the first transmission period of the periodic resource and the transmission period, the PUSCH of the second communication device is detected.
  • the transmission cycle is used as the initial transmission cycle.
  • the DCI sent by the DCI sending module 1402 includes a unique identifier corresponding to a transmission period at a preset position among the N transmission periods. Specifically, you can add the HARQ process ID (Hybrid Automatic Repeat Request Process ID) corresponding to the TP at any specific position in a group of N TPs in the DCI, or increase the ability to uniquely determine the TP within the RTT (round trip) time Set of other instructions.
  • HARQ process ID Hybrid Automatic Repeat Request Process ID
  • the DCI sending module 1402 sends DCI to the second communication device within a pre-configured timing period.
  • the N TPs forming a group may be N TPs on the same CC (component carrier), or may be N TPs on different CCs.
  • the response information corresponding to each transmission period may be represented by a 1-bit bit in the DCI; if the response information includes a correct response, the correct response indicates that the corresponding transmission block is received and demodulated by the first communication device Correct, it is ACK; an error response indicates that the corresponding transmission block is received by the first communication device and the demodulation error is NACK, or an error response indicates that the corresponding transmission block is not received by the first communication device, and is DTX.
  • the response information corresponding to each transmission period is represented by a 2-bit bit in the DCI; if the response information contains a correct response, the correct response indicates that the corresponding transmission block is received and demodulated by the first communication device Right, it is ACK, and error response includes the following three indications:
  • the transmission block is received by the first communication device with demodulation error, and the first communication device does not send the uplink authorization of the corresponding transmission block to the second communication device, which is NACK1;
  • the transmission block was received by the first communication device with demodulation error, and the first communication device will send the uplink authorization of the corresponding transmission block to the second communication device within a preset time.
  • the second communication device does not need to retransmit on its own, but is blind.
  • the functions corresponding to the second transmission block receiving module 1401, the DCI sending module 1402, and the retransmission receiving module 1403 in this embodiment may be implemented by the processor executing a corresponding program stored in the memory.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • the communication device includes a processor 1501 and a memory 1502, where the processor 1501 is configured to execute one or more first programs stored in the memory 1502 to implement Any response receiving method in the first embodiment, or the processor 1501 is configured to execute one or more second programs stored in the memory 1502, so as to implement any retransmission method in the fourth embodiment, or the processor 1501 is configured to execute one or more third programs stored in the memory 1502 to implement any response sending method in the foregoing second embodiment, or the processor 1501 is configured to execute one or more of the third programs stored in the memory 1502
  • the fourth procedure is to implement any retransmission method in the fifth embodiment.
  • the communication device may be a terminal.
  • the processor is configured to execute one or more first programs stored in the memory to implement the steps or processing of any response receiving method in the first embodiment.
  • the processor is configured to execute one or more second programs stored in the memory to implement any one of the retransmission methods in the fourth embodiment.
  • the communication device may also be a base station.
  • the processor is configured to execute one or more third programs stored in the memory to implement the steps of any response sending method in the foregoing second embodiment.
  • the processor is configured to execute one or more fourth programs stored in the memory to implement any one of the retransmission methods in Embodiment 5.
  • This embodiment also provides a response system including a terminal and a base station.
  • the terminal is configured to send a transmission block to the base station through a pre-configured periodic resource, the base station receives the transmission block, and sends the transmission block to the terminal on the pre-configured correct response resource Correct response corresponding to this transport block.
  • This embodiment provides a retransmission system including a terminal and a base station.
  • the terminal sends a transmission block to the base station through a pre-configured periodic resource, and the base station sends a DCI to the terminal.
  • the DCI includes N adjacent to the time domain.
  • Response information corresponding to each transmission period. If the response information includes an error response, the terminal retransmits the transmission block sent in the transmission period corresponding to the error response to the base station.
  • This embodiment also provides a storage medium including a volatile implemented in any method or technology for storing information such as computer-readable instructions, data structures, computer program modules, or other data. Or non-volatile, removable or non-removable media.
  • Computer-readable storage media include, but are not limited to, RAM (Random Access Memory), ROM (Read-Only Memory, Read-Only Memory), EEPROM (Electrically Erasable, Programmable, Read-Only Memory, and Erasable Programmable Read-Only Memory) ), Flash memory or other memory technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disc (Digital Video Disc, DVD) or other optical disc storage, magnetic box, magnetic tape, disk storage or other A magnetic storage device, or any other medium that can be used to store desired information and can be accessed by a computer.
  • the storage medium stores one or more first computer programs, and the one or more first computer programs can be executed by one or more processors to implement the steps of any response receiving method in the first embodiment, or
  • One or more second computer programs are stored in the storage medium, and the one or more second computer programs may be executed by one or more processors to implement any one of the retransmission methods in Embodiment 4 above, or stored in the storage medium.
  • One or more third computer programs, the one or more third computer programs may be executed by one or more processors to implement any one of the response sending methods in the second embodiment, or one or more is stored in a storage medium
  • Multiple fourth computer programs, and one or more fourth computer programs may be executed by one or more processors to implement any one of the retransmission methods in the fifth embodiment.
  • This embodiment also provides a computer program (also referred to as computer software).
  • the computer program may be distributed on a computer-readable medium and executed by a computable device to implement at least one of the methods in the first to fifth embodiments. Steps; and in some cases, at least one of the steps shown or described may be performed in an order different from that described in the above embodiments.
  • This embodiment also provides a computer program product including a computer-readable device, where the computer-readable device stores the computer program as shown above.
  • the computer-readable device in this embodiment may include a computer-readable storage medium as shown above.
  • a communication medium typically contains computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium. Therefore, the present disclosure is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明实施例提供一种应答接收及发送方法、重传方法、通信设备及存储介质,其中,该方法包括:预先配置的周期资源向第一通信设备发送传输块,在预先配置的正确应答资源上接收与该传输块对应的正确应答。

Description

应答接收及发送方法、重传方法、通信设备及存储介质
本申请要求在2018年08月10日提交中国专利局、申请号为201810910233.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及但不限于通信技术领域,具体而言,涉及但不限于应答接收及发送方法、重传方法、通信设备及存储介质。
背景技术
为了降低上行数据传输的时延及上行调度的开销,相关技术中的通信系统支持一种免调度的数据传输方法,在该方法中,每间隔一定的周期,终端就可以使用基站配置的资源发送数据。由于节省了发送数据前发送调度请求及接收基站发送的调度授权的时间和开销,相比相关技术中的基于调度的方式,这种传输方式的传输时延和开销大为降低,非常适用于对时延要求比较苛刻或对开销比较敏感的业务。
然而随着通信系统的不断升级换代,第五代移动通信技术(5th Generation,5G)系统中又该如何指示免调度的传输块是否被正确检测,已经成为现在亟待解决的技术问题。
发明内容
本发明实施例提供的应答接收及发送方法、重传方法、通信设备及存储介质,提供一种可以在5G系统中实现传输块检测结果指示的方法。
本发明实施例提供一种应答接收方法,包括:
通过预先配置的周期资源向第一通信设备发送传输块;
在预先配置的正确应答资源上接收与所述传输块对应的正确应答。
本发明实施例还提供一种应答发送方法,包括:
接收第二通信设备通过预先配置的周期资源发送的传输块;
在预先配置的正确应答资源上向所述第二通信设备发送与所述传输块对应的正确应答。
本发明实施例还提供一种重传方法,包括:
通过预先配置的周期资源向第一通信设备发送传输块;
接收所述第一通信设备发送的DCI,所述DCI中包含与时域上相邻的N个传输周期对应的应答信息,所述N为大于或等于1的整数;
若所述应答信息中包含错误应答,将与所述错误应答对应的传输周期内发送的传输块重传给所述第一通信设备。
本发明实施例还提供一种重传方法,包括:
接收第二通信设备通过预先配置的周期资源发送的传输块;
向所述第二通信设备发送DCI,所述DCI中包含与时域上相邻的N个传输周期对应的应答信息,所述N为大于或等于1的整数;
若所述应答信息中包含错误应答,接收所述第二通信设备重传的与所述错误应答对应的传输周期内发送的传输块。
本发明实施例还提供一种通信设备,包括处理器和存储器,所述处理器用于执行所述存储器中存储的一个或者多个第一程序,以实现如上所述的方法,或所述处理器用于执行所述存储器中存储的一个或者多个第二程序,以实现如上所述的方法,或所述处理器用于执行所述存储器中存储的一个或者多个第三程序,以实现如上所述的方法,或所述处理器用于执行所述存储器中存储的一个或者多个第四程序,以实现如上所述的方法。
本发明实施例还提供一种存储介质,所述存储介质中存储有一个或者多个第一计算机程序,所述一个或者多个第一计算机程序可被一个或者多个处理器执行,以实现如上所述的方法,或所述存储介质中存储有一个或者多个第二计算机程序,所述一个或者多个第二计算机程序可被一个或者多个处理器执行,以实现如上所述的方法,或所述存储介质中存储有一个或者多个第三计算机程序,所述一个或者多个第三计算机程序可被一个或者多个处理器执行,以实现如上所述的方法,或所述存储介质中存储有一个或者多个第四计算机程序,所述一个或者多个第四计算机程序可被一个或者多个处理器执行,以实现如上所述的方法。
附图说明
图1为本发明实施例一的应答接收方法流程示意图;
图2为本发明实施例二的应答发送方法流程示意图;
图3为本发明实施例二中一个REG的示意图;
图4-1为将正确应答序列映射到REG上的第一映射示意图;
图4-2为将正确应答序列映射到REG上的第二映射示意图;
图4-3为将正确应答序列映射到REG上的第三映射示意图;
图4-4为将正确应答序列映射到REG上的第四映射示意图;
图5为本发明实施例四的重传方法的流程示意图;
图6为本发明实施例五的重传方法的流程示意图;
图7为本发明实施例五的传输周期的示意图;
图8为本发明实施例五的N个传输周期的示意图;
图9为本发明实施例六的周期资源与时隙对应关系的示意图
图10为本发明实施例六的为ACK序列分配的正确应答资源的示意图;
图11为本发明实施例七的应答接收装置的结构示意图;
图12为本发明实施例八的应答发送装置的结构示意图;
图13为本发明实施例九的重传装置的结构示意图;
图14为本发明实施例十的重传装置的结构示意图;
图15为本发明实施例十一的通信设备的结构示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
实施例一:
本发明实施例提供一种应答接收方法,请参见图1所示,应用于第二通信设备,包括:
S101:通过预先配置的周期资源向第一通信设备发送传输块。
本实施例中的周期资源可以是第一通信设备为第二通信设备配置的,第二通信设备在周期资源对应的传输周期内可以向第一通信设备发送一个传输块。
S102:在预先配置的正确应答资源上接收第一通信设备发送的与该传输块对应的正确应答。
根据本发明实施例提供的应答接收及发送方法、重传方法、通信设备及存储介质,通过预先配置的周期资源向第一通信设备发送传输块,在预先配置的正确应答资源上接收与该传输块对应的正确应答,在某些实施过程中,可以通过该正确应答来指示对传输块的检测结果,由于可以接收第一通信设备发送的正确应答,所以使得基于正确应答来判定传输块检测结果的正确与否成为了可 能,所以可以基于正确应答来指示传输块被正确检测,相对于相关技术中只能通过上行授权来指示传输块检测结果的正确与否而言,还可以提升指示结果的准确性。
应当说明的是,本发明实施例中的第一通信设备可以为基站,第二通信设备可以为终端,或者第一通信设备为终端,第二通信设备为基站。
对于步骤S102,具体的来说,第一通信设备发送的正确应答可以是根据对传输块进行检测得到的,所以,若检测结果错误,第二通信设备还可以接收第一通信设备发送的错误应答,需要说明的是,本实施例中的错误应答可以是第一通信设备向第二通信设备发送的任意可以表征传输块未被第一通信设备正确检测的应答。
当第二通信设备接收到正确应答时,可以确定与该正确应答对应的传输块被第一通信设备正确检测,第二通信设备无需重传与该正确应答对应的传输块,可以降低资源的浪费。
在第一种示例中,可以在与传输块对应的时刻开始计时,若在预设计时周期T1内检测到与该传输块对应的正确应答,则继续计时,并在所述预设计时周期T1内禁止通过与该传输块的进程索引相同的周期资源向第一通信设备发送新传输块。当然,在该预设计时周期T1结束之后,可以允许通过与该传输块的进程索引相同的周期资源向第一通信设备发送新传输块。
本实施例中的T1可以任意设置,比如可以是14个符号,或者16个符号等等。
在第二种示例中,可以在与传输块对应的时刻开始计时,若在预设计时周期T1内检测到与该传输块对应的正确应答,则停止计时,并允许通过与该传输块的进程索引相同的周期资源向第一通信设备发送新传输块。
在第三种示例中,可以在与该传输块对应的时刻开始计时,若在预设计时周期T1内未检测到与传输块对应的正确应答和错误应答,则继续计时,并在预设计时周期T1内禁止通过与传输块的进程索引相同的周期资源向第一通信设备发送新传输块,但是可以允许通过与传输块的进程索引相同的周期资源向第一通信设备再发送一次该传输块。当然,在该预设计时周期T1结束之后,可以允许通过与传输块的进程索引相同的周期资源向第一通信设备发送新传输块,或者如果在前述的预设计时周期T1内未重传过该传输块,可以在该预设计时周期T1结束之后通过与传输块的进程索引相同的周期资源或者其他进程索引对应的周期资源再向第一通信设备再发送一次该传输块。
在第四种示例中,可以在与该传输块对应的时刻开始计时,若在预设计时 周期T1内检测到与该传输块对应的错误应答,则重新计时,并在重新计时的预设计时周期T1内禁止通过与该传输块的进程索引相同的周期资源向第一通信设备发送新传输块,但是可以允许通过与传输块的进程索引相同的周期资源向第一通信设备再发送一次该传输块。当然,在该预设计时周期T1结束之后,可以允许通过与传输块的进程索引相同的周期资源向第一通信设备发送新传输块。
应当说明的是,本实施例中所提及的与传输块对应的时刻可以为以下时刻中的任意一种:
传输块的发送开始时刻;
传输块的发送结束时刻;
传输块的生成时刻;
传输块对应的协议数据单元生成时刻。
在第一种实施例中,步骤S102可以包括:在预先配置的正确应答资源上接收第一通信设备发送的下行控制信息(Downlink Control Information,DCI)。其中,正确应答被携带在DCI中,一个DCI中包含一个正确应答,且通过DCI中的资源分配字段、冗余版本字段、编码调制字段、新数据指示字段和发射功率控制字段中的至少1个字段以及DCI中的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程索引字段来表示该正确应答,HARQ进程索引字段为传输块的进程索引。
具体而言,在表示正确应答时,DCI中的资源分配字段的所有比特都为1或0,同时冗余版本字段的所有比特都为1,编码调制字段的所有比特都为0;或,资源分配字段的所有比特都为1或0,冗余版本字段的所有比特都为0,编码调制字段的所有比特都为0;或,资源分配字段的所有比特都为1或0,冗余版本字段的所有比特都为1,编码调制字段的所有比特都为1;或,资源分配字段的所有比特都为1或0,冗余版本字段所有比特都为1;或,资源分配字段的所有比特都为1或0,编码调制字段所有比特都为0。
当然了,在其他的实施例中,还可以通过将新数据指示字段的所有比特都设置为0或1,或者将发射功率控制字段中的所有比特设置为0或1来表示正确应答。
在第二种实施例中,步骤S102可以包括:在预先配置的正确应答资源上接收第一通信设备发送的下行控制信息DCI。其中,正确应答被携带在DCI中,一个DCI中包含一个正确应答,且通过DCI中的目标位以及DCI中的HARQ进程索引字段来表示正确应答,HARQ进程索引字段为传输块的进程索引。
本实施例中的目标位可以是DCI中的1比特位,或者2比特位,或者3比 特位等等,具体的,其可以是DCI中的第9位,也即通过DCI中的第9位来表示正确应答,比如,当第9位为0时,可以表示正确应答,第9位为1时,可以表示错误应答。
在第三种实施例中,步骤S102可以包括:在预先配置的正确应答资源上接收第一通信设备发送的正确应答序列。
第二通信设备在接收到该正确应答序列之后,可以根据预先配置的正确应答序列与第二通信设备的进程索引的对应关系确定与该正确应答序列对应的进程索引所对应的传输块被第二通信设备正确检测。
最后需要说明的是,本实施例所提供的应答接收方法除了可以适用于5G通信系统,还可以适用于第三代移动通信系统也可以适用于第四代移动通信系统或者其他通信系统中。
通过本实施例提供的应答接收方法,第二通信设备可以基于接收到的正确应答确定与该正确应答对应的传输块被第一通信设备正确检测,进而可以防止第一通信设备漏检传输块而第二通信设备却认定该传输块被正确检测的这一种情况的发生。
实施例二:
本实施例提供一种应答发送方法,请参见图2所示,应用于第一通信设备,包括:
S201:接收第二通信设备通过预先配置的周期资源发送的传输块。
同样的,本发明实施例中的第一通信设备可以为基站,第二通信设备可以为终端,或者第一通信设备为终端,第二通信设备为基站。
S202:在预先配置的正确应答资源上向第二通信设备发送与该传输块对应的正确应答。
对于步骤S202,具体的来说,第一通信设备可以在正确检测到该传输块后向第二通信设备发送与该传输块对应的正确应答。
应当说明的是,在步骤S201之前,第一通信设备还可以给第二通信设备配置最大进程数目K,并对配置给第二通信设备的周期资源配置对应的传输周期P,其中,K为大于或等于1的整数,P大于0。此时,第一通信设备可以在检测到该传输块后的K*P时间内向第二通信设备发送与该传输块对应的正确应答。
在第一种实施例中,步骤S202可以包括:在预先配置的正确应答资源上向第二通信设备发送DCI,正确应答被携带在DCI中。进一步的,通过将DCI中 的HARQ进程索引字段设置为传输块的进程索引,对DCI中的资源分配字段、冗余版本字段、编码调制字段、新数据指示字段和发射功率控制字段中的至少一个字段进行设置来表示正确应答。
具体而言,对DCI中的资源分配字段、冗余版本字段、编码调制字段、新数据指示字段和发射功率控制字段中的至少一个字段进行设置包括:将资源分配字段的所有比特都设置为1或0,冗余版本字段的所有比特都设置为1,编码调制字段的所有比特都设置为0;或,将资源分配字段的所有比特都设置为1或0,冗余版本字段的所有比特都设置为0,编码调制字段的所有比特都设置为0;或,将资源分配字段的所有比特都设置为1或0,冗余版本字段的所有比特都设置为1,编码调制字段的所有比特都设置为1;或,将资源分配字段的所有比特都设置为1或0,冗余版本字段所有比特都设置为1;或,将资源分配字段的所有比特都设置为1或0,编码调制字段所有比特都设置为0。
当然了,在其他的实施例中,还可以通过将新数据指示字段的所有比特都设置为0或1,或者将发射功率控制字段中的所有比特设置为0或1来表示正确应答。与正确应答相反的表示方式则可以用于表示错误应答。
应当说明的是,将资源分配字段的所有比特都设置为1或0具体而言可以包括以下内容:在DCI中资源分配字段所对应的资源分配方法为位图时,将资源分配字段的所有比特都设置为0,在DCI中资源分配字段所对应的资源分配方法为非位图时,将资源分配字段的所有比特都设置为1。
在第二种实施例中,步骤S202可以包括:在预先配置的正确应答资源上向第二通信设备发送DCI,正确应答被携带在DCI中。进一步的,通过将DCI中的HARQ进程索引字段设置为传输块的进程索引,对DCI中的目标位(即特定位)进行设置来表示正确应答。
本实施例中的目标位可以是DCI中的1比特位,或者2比特位,或者3比特位等等,具体的,其可以是DCI中的第9位,也即通过对DCI中的第9位进行设置来表示正确应答,比如,可以通过设置DCI的第9位为1来表示正确应答,可以通过设置DCI的第9位为0来表示错误应答。需要说明的是,当采用DCI中的某些字段或者目标位来表示应答信息时,比如表示确认(Acknowledgement,ACK)和否定确认(Negative Acknowledgement,NACK),携带ACK信息的DCI与携带NACK的DCI包含的比特数目可以相等。HARQ进程索引字段代表传输块对应的进程索引,其它字段则设置为第一指定值(比如为“0”)或不定义(可以为“0”或“1”);如果为NACK,前述比特设置为第二指定值(比如为“1”)。
对于上述两种实施例,第一通信设备向第二通信设备发送的DCI可以是经 配置调度无线网络临时标识(Configured Scheduling Radio Network Temporary Identifier,CS-RNTI)加扰处理后的DCI。
在第三种实施例中,可以通过正确应答序列来表示正确应答,步骤S202可以包括:确定出与传输块的进程索引对应的正确应答序列,并确定出用于发送该正确应答序列的正确应答资源,将该正确应答序列映射在该正确应答资源上向第二通信设备发送。
需要说明的是,在其他的实施例中,每个进程索引对应的正确应答序列可以是预先就配置好了的,此时对于步骤S202而言,可以根据预先配置的情况直接将与传输块进程索引对应的正确应答序列发送出。
对于第三种实施例,在步骤S201之前,第一通信设备可以为第二通信设备配置用于监测是否接收到正确应答的监控周期,在监控周期内用于表示正确应答的正确应答序列,以及用于发送该正确应答序列的正确应答资源。
可选的,本实施例中第一通信设备可以在检测到终端发送的传输块后的T1时间内发送应答信息。该应答信息中包括正确应答和错误应答中的一种。
下面对于上述第三种实施例中的情景进行进一步的介绍。
为第二通信设备配置的正确应答序列可以与第二通信设备的进程索引一一对应。此时,正确应答序列的数量等于第一通信设备为第二通信设备配置的最大进程数目。
为第二通信设备配置的正确应答的监控周期可以等于为第二通信设备配置的物理下行控制信道(Physical Downlink Control Channel,PDCCH)的监控周期。
在为第一通信设备配置至少两个用于发送正确应答序列的正确应答资源时,多个正确应答资源包含的资源元素(Resource Element,RE)数目可以相同。
在为第一通信设备配置至少两个用于发送正确应答序列的正确应答资源时,正确应答资源包含的时域数目可以相同,且多个正确应答资源包含的子载波数目可以相同。
在为所述第二通信设备配置至少两个正确应答序列时,至少两个正确应答序列可以共享一个正确应答资源。
正确应答资源可以由资源元素组(Resource Element Group,REG)组成。
对于第三种实施例中的情景,将正确应答序列映射在正确应答资源上可以包括以下映射方式中的一种:
方式一:在正确应答资源由1个REG组成时,将正确应答序列按照预先设 置的频率大小顺序映射在该REG上,在映射时将正确应答序列映入REG上用于发送参考信号的资源上,并映入REG上不用于发送参考信号的资源上,也即是不跳过REG上用于发送参考信号的资源。本方式中所提及的预先设置的频率大小顺序可以是频率由大到小的顺序,也可以是频率由小到大的顺序,或者也可以是其他的顺序。在5G系统中,一个REG时域上为1个符号,频域上为12个子载波,假设子载波索引分别为1,2,......11,第1、5、9子载波上为发送参考信号的位置,请参见图3所示,图3为一个REG的示意图,图中的RS代表参考信号,则按照本方式对正确应答序列进行映射时,其示意图可以参见图4-1,图4-1中的正确应答序列,也即a(0)a(1)......a(11)按照频率由小到大的顺序映射到REG上,在映射时不跳过REG上用于发送参考信号的资源,也即该REG中与参考信号对应的资源上不再发送参考信号。
方式二:在正确应答资源由1个REG组成时,将正确应答序列按照预先设置的频率大小顺序映射在REG上,在映射时跳过REG上用于发送参考信号的资源。同样的,本方式中预先设置的频率大小顺序可以是频率由大到小的顺序,也可以是频率由小到大的顺序,或者也可以是其他的顺序。.
方式三:在正确应答资源由至少2个REG组成,且至少2个REG在不同的时域上时,将正确应答序列按照先时域后频域或先频域后时域的顺序映射在REG上,在映射时将正确应答序列映入REG上用于发送参考信号的资源上,并映入REG上不用于发送参考信号的资源上。
方式四:在正确应答资源由至少2个REG组成,且至少2个REG在不同的时域上时,将正确应答序列按照先时域后频域或先频域后时域的顺序映射在REG上,在映射时跳过REG上用于发送参考信号的资源。
方式五:在正确应答资源由至少2个REG组成,且该至少2个REG在时域或频域上连续时,述正确应答序列按照先时域后频域或先频域后时域的顺序映射在所述REG上,在映射时将正确应答序列映入REG上用于发送参考信号的资源上,并映入REG上不用于发送参考信号的资源上。继续延用上述方式一中所提及的示例,按照本方式对正确应答序列进行映射时,其示意图可以参见图4-2。
方式六:在正确应答资源由至少2个REG组成,且该至少2个REG在时域和频域上都不连续时,将正确应答序列按照先时域后频域或先频域后时域的顺序映射在所述REG上,在映射时跳过REG上用于发送参考信号的资源。
这里假设正确应答资源由M个REG组成,这M个REG包括矩形资源,若矩形资源由p个符号×q个载波组成,p,q都是正整数,且满足p*q=12M,则该M个REG是连续的,此时可以采用上述方式五进行映射,若不满足p*q=12M, 则该M个REG是不连续的,此时可以采用方式六进行映射。
需要说明的是,上述多种方式中,对于在映射时跳过REG上用于发送参考信号的资源的情况,在映射时,若遇到参考信号对应的资源,组成正确应答序列的元素可以自动顺延到下一个可用的资源上,或将该元素丢弃。比如,请参见图4-3,图4-3中的正确应答资源包含两个不连续的REG,且在映射时遇到参考信号对应的资源时,将元素自动顺延。同样的,图4-4中的正确应答资源也包含两个不连续的REG,且在映射时遇到参考信号对应的资源时,将元素丢弃。
本实施例中的正确应答资源可以对应第二通信设备的PDCCH搜索空间中一个PDCCH所占用的资源,当然了,在其他的实施例中,可以对应第二通信设备的PDCCH搜索空间中多个PDCCH所占用的资源。
在一种实施例中,在正确应答资源对应第二通信设备的PDCCH搜索空间中一个PDCCH所占用的资源时,将正确应答序列映射在正确应答资源上则包括:
根据一个PDCCH所占用的资源中控制信道元素CCE到REG的映射类型将正确应答序列映射在该PDCCH所占用的资源上。
具体的,可以在CCE到REG的映射类型为交织类型时,将正确应答序列映射到该PDCCH候选位置的REG上,在映射时跳过REG上用于发送参考信号的资源,可以在CCE到REG的映射类型为非交织类型时,将正确应答序列映射到该PDCCH候选位置的REG上,在映射时将正确应答序列映入REG上用于发送参考信号的资源上,并映入REG上不用于发送参考信号的资源上。当然了,在其他的实施例中,也可以是CCE到REG的映射类型为非交织类型时,将正确应答序列映射到该PDCCH候选位置的REG上,在映射时跳过REG上用于发送参考信号的资源,可以在CCE到REG的映射类型为交织类型时,将正确应答序列映射到该PDCCH候选位置的REG上,在映射时将正确应答序列映入REG上用于发送参考信号的资源上,并映入REG上不用于发送参考信号的资源上。
在另一种实施例中,在正确应答资源对应第二通信设备的PDCCH搜索空间中一个PDCCH所占用的资源时,将正确应答序列映射在正确应答资源上包括:
获取第二通信设备的PDCCH搜索空间中多个PDCCH所对应的聚合等级;
根据多个PDCCH所对应的聚合等级将正确应答序列映射在该PDCCH所占用的资源上。
需要说明的是,一个PDCCH所占用的资源包括p个CCE,p为{1,2,4,8,16,32}中的一个,相应的,称该PDCCH的聚合等级为p,本实施例中的聚合等级可以由第一通信设备配置并提前通知第二通信设备。
上述根据多个PDCCH所对应的聚合等级将正确应答序列映射在该PDCCH所占用的资源上包括:
从多个PDCCH所对应的聚合等级中选择一个聚合等级,当该聚合等级小于或等于预设门限值时,将该正确应答序列映射在该PDCCH所占用资源中的第一类型资源上或将正确应答序列映射在该PDCCH所占用资源中第一类型资源和第二类型资源上,当该聚合等级大于预设门限值时,将该正确应答序列映射在该PDCCH所占用的资源中的第二类型资源上;所述第一类型资源为该PDCCH所占用的资源中未与参考信号对应的资源,所述第二类型资源为该PDCCH所占用的资源中与参考资源所对应的资源。
本实施例中的预设门限值可以由开发人员灵活设置。
具体的,从多个PDCCH所对应的聚合等级中选择一个聚合等级的选择方式包括但不限于以下选择方式中的一种:
从多个PDCCH所对应的聚合等级中选择最大的一个聚合等级;
从多个PDCCH所对应的聚合等级中选择最小的一个聚合等级;
当搜索空间中对应的PDCCH的数量为R时,从多个所述PDCCH所对应的聚合等级中选择排名第Q位的聚合等级,R和Q为整数,且R大于或等于3,且R-Q大于0,小于R-1。
应当说明的是,这里的排名可以是按从大到小的顺序进行排名的,也可以是按照从小到大的顺序进行排名的。
最后需要说明的是,本实施例所提供的应答发送方法除了可以适用于5G通信系统,还可以适用于第三代移动通信系统也可以适用于第四代移动通信系统或者其他通信系统中。
通过本实施例提供的应答发送方法,第一通信设备可以向第二通信设备发送正确应答,且第二通信设备可以基于接收到的正确应答确定与该正确应答对应的传输块被第一通信设备正确检测,进而可以防止第一通信设备漏检传输块而第二通信设备却认定该传输块被正确检测的这一种情况的发生。
实施例三:
在5G系统中如何实现上行传输取消或停止的指示也成为了一种亟待解决的技术问题。
因此本实施例提供一种新的用于发送上行传输取消或停止指示的方法,以下简称UL PI。具体而言,可以是上述实施例中的第一通信设备向第二通信设备发送UL PI,以下直接以基站向终端发送UL PI为例进行具体介绍。
本实施例中的上行传输包括但不限于是以下上行传输信号中的至少一种:
PUSCH(Physical Uplink Shared Channel,物理上行共享信道),PUCCH(Physical Uplink Control Channel,物理上行链路控制信道),SRS(Sounding Reference Signal,探测参考信号),PRACH(Physical Random Access Channel,物理随机接入信道)。
本实施例中的基站向终端发送UL PI的发送方法以及表示UP PI的方式可以分别参照上述实施例中发送正确应答的方法以及表示正确应答的方式。
比如,可以通过将UI PI携带在DCI中发送给终端,具体的,可以通过对DCI中的资源分配字段、冗余版本字段、编码调制字段、新数据指示字段和发射功率控制字段中的至少一个字段进行设置来表示UL PI。或者,通过对DCI中的特定位进行设置来表示正确应答。
具体的,上述多个字段应该如何设置请参见上述的实施例,这里不再赘述。
再比如,可以通过指示序列来表示UL PI,具体的来说,基站可以预先为终端配置用于监测是否接收到指示序列的监控周期,在监控周期内,有可用于指示上行传输取消或停止的指示序列,以及用于发送该指示序列的序列资源。相较于通过DCI方式实现UL PI指示,通过序列方式实现UL PI指示可以以较小的资源实现同样功能,避免DCI阻塞,提升系统资源利用率。
基站在发送指示序列时,具体的,可以将该指示序列映射到相应的序列资源上进行发送。需要说明的是,当一个通信系统中同时存在指示序列与上述实施例中的正确应答序列时,正确应答序列对应的序列资源与指示序列对应的序列资源可以是不同的。
本实施例中,与指示序列对应的序列资源的特点可以与上述实施例中与正确应答序列对应的序列资源的特点相同,这里不再赘述。同样的,将指示序列映入序列资源的方式可以与上述实施例中将正确应答序列映入序列资源的方式相同,这里也不再赘述。
应当说明的是,不同的进程可以对应不同的指示序列,基站可以根据需要取消的进程对应的上行传输将与该进程对应的指示序列发送给终端。当然,当通过DCI来表示指示序列时,可将HARQ进程索引字段设置为需要取消的进程对应的索引。终端在接收到UL PI时,则取消或停止对应进程的上行传输。
本实施例中的UL PI可以是UE-specific UL PI,用于指示1个终端的上行传输取消或停止,可选的,取消或停止最近的上行传输,最近的上行传输包括正在传输的上行传输,或者取消或停止之前所有调度的上行传输,或者取消或停止该UL PI所指示的RUR(Reference Uplink Resource,参考上行资源)中的上 行传输。
本实施例中的UL PI可以是Group common UL PI,用于指示1组终端的上行传输取消或停止,也即此时基站可以向多个终端发送Group common UL PI,可选取消或停止1组终端中所有终端各自最近的上行传输,最近的上行传输包括正在传输的上行传输,或者取消或停止1组终端中所有终端之前所有调度的上行传输,或者取消或停止该UL PI所指示的RUR中的上行传输。
最后需要说明的是,本实施例所提供的于发送上行传输取消或停止指示的方法除了可以适用于5G通信系统,还可以适用于第三代移动通信系统也可以适用于第四代移动通信系统或者其他通信系统中。
实施例四:
在传统的通信系统中,终端只有在接收到基站发送的上行授权之后才能向基站重传传输块,那么在5G系统中又应该在何时进行传输块的重传以保证通信的质量也成为一个新问题。
本实施例提供一种新的重传方法,通过错误应答来指示是否重传传输块,请参见图5所示,应用于第二通信设备,包括:
S501:通过预先配置的周期资源向第一通信设备发送传输块。
本实施例中的周期资源可以是第一通信设备为第二通信设备配置的,第二通信设备在在周期资源对应的传输周期内可以向第一通信设备发送一个传输块。
S502:接收第一通信设备发送的DCI,DCI中包含与时域上相邻的N个传输周期对应的应答信息。
本实施例中的N为大于或等于1的整数。也即是说,将N个传输周期对应的N个应答信息集中承载在一个DCI中。特别地,当N为大于或等于2时,可以相对节省通信资源。
S503:若应答信息中包含错误应答,将与错误应答对应的传输周期内发送的传输块重传给第一通信设备。
具体的来说,本实施例中的第一通信设备可以向第二通信设备发送错误应答及上行授权,具体的,第一通信设备可以在检测到传输块错误时向第二通信设备发送错误应答,并发送上行授权,本实施例中,第二通信设备可以采用如下方式之一进行重传操作:
方式一:如果第二通信设备在预先配置的定时器时间内收到了用于调度传输块重传的上行授权,则第二通信设备按照上行授权的指示将对应的传输块重 传。如果在预先配置的定时器内,第二通信设备没有收到上行授权,但是收到了DCI,则第二通信设备将在预先配置的定时器时间结束之后,将收到错误应答的传输块自主重传。
方式二:在预先配置的定时器时间内,第二通信设备如果先收到了DCI,则第二通信设备将收到错误应答对应的传输块自主重传,具体的,可以不用等待这个定时器时间结束也可以不用等待上行授权,可以在收到DCI时,将其中错误应答对应的传输块自主重传,当然,第二通信设备还可以根据其他方式确定重传时机,如果后续又收到对应该传输块的上行授权,第二通信设备可以选择按照该上行授权指令再次重传该传输块或者忽略该上行授权。
方式三:在预先配置的定时器时间内,如果第二通信设备先收到了调度传输块重传的上行授权,第二通信设备将按照该上行授权指令将对应的传输块重传,如果后续又收到了DCI,第二通信设备可以选择再次自主重传DCI中错误应答对应的传输块,也可以选择不重传DCI中错误应答对应的传输块。
方式四:在预先配置的定时器时间内,第二通信设备没有收到对应某个实际发送的传输块的上行授权,也没有收到其对应的DCI,第二通信设备可以在这个定时器时间结束之后自动重传该传输块。
通过上述方式的重传操作,能更进一步保证被漏检,或者检测错误的传输块重传给第一通信设备,保证了通信的可靠性。
应当说明的是,本实施例中定时器对应的起始计时时间可以是第二通信设备发送对应传输块的时间。
本实施例中自主重传的方式有多种,包括但不限于是以下的一种:
方式一:自主重传与该传输块的首传之间没有绑定关系。第二通信设备在自主重传时,自主选择一个周期资源,将该传输块当做新传输块重新发送。第一通信设备不能将此自主重传与该传输块的首传联系起来,因而无法实现合并解调,只能分别独立解调。
方式二:通过高层配置,例如通过MAC(物理)层或RCC层配置,或者DCI配置自主重传与该传输块的首传之间的绑定关系。例如,通过MAC消息或者RRC消息或者DCI配置自主重传与该传输块的首传之间的时序关系。第二通信设备在收到了DCI之后,将对应的错误应答对应的TB(传输周期)内发送的传输块自主重传。自主重传所使用的周期资源是根据MAC消息或者RRC消息或者DCI配置自主重传与该传输块的首传之间的时序关系来确定的。
在一种实施例中,每一传输周期对应的应答信息由DCI中的1比特位表示;若应答信息中包含正确应答,则正确应答表示相应的传输块被第一通信设备接 收且解调正确,为ACK;错误应答表示相应的传输块被第一通信设备接收且解调错误,为NACK,或错误应答表示相应的传输块未被第一通信设备接收,为非连续传输(Discontinuous Transmission,DTX)。
在另一种实施例中,每一传输周期对应的应答信息由DCI中的2比特位表示;若应答信息中包含正确应答,则正确应答表示相应的传输块被第一通信设备接收且解调正确,为ACK,错误应答包括以下三种指示:
表示传输块被第一通信设备接收且解调错误,且第一通信设备不会给第二通信设备发送相应传输块的上行授权,为NACK1;
表示传输块被第一通信设备接收且解调错误,且第一通信设备在预设时间内会给第二通信设备发送相应传输块的上行授权,第二通信设备无需自主重传,而是盲检上行授权,按照上行授权的指示重传传输块,为NACK2;
表示相应的传输块未被第一通信设备接收,为DTX。
通过本实施例提供的重传方法,第二通信设备就可以获得显式的应答信息。
实施例五:
本实施例还提供一种重传方法,应用于第一通信设备,请参见图6所示,包括:
S601:接收第二通信设备通过预先配置的周期资源发送的传输块。
S602:向第二通信设备发送DCI。
其中,DCI中包含与时域上相邻的N个传输周期对应的应答信息,N为大于或等于1的整数。也即是说,将N个传输周期对应的N个应答信息集中承载在一个DCI中。特别地,当N为大于或等于2时,可以相对节省通信资源。
S603:若应答信息中包含错误应答,接收第二通信设备重传的与错误应答对应的传输周期内发送的传输块。
具体的来说,本实施例中N个传输周期的起始传输周期由以下方式中的一种确定:
方式一:将接收到的传输块中的进程索引对N取余为N-1的传输块所对应的传输周期作为起始传输周期。
方式二:当在某个传输周期内检测到第二通信设备的物理上行共享信道PUSCH,且在该传输周期的前N-1个相邻传输周期上都没有检测到第二通信设备的PUSCH时,将该传输周期作为起始传输周期。
方式三:当在某个传输周期内检测到第二通信设备的PUSCH,且从该周期 资源的第一个传输周期到该传输周期之间都没有检测到第二通信设备的PUSCH,则将该传输周期作为起始传输周期。
以N=4为例,请参见图7所示,如果第一通信设备在TP m-3-TP m-1上都没有收到该第二通信设备的PUSCH,在TP m收到了该第二通信设备的PUSCH,则第一通信设备将TP m作为一组N个TP的起始TP,在针对该组的应答信息进行反馈时,在DCI中反馈TP m-TP m+3的4个TP的应答信息。
在这种方式下,为了让第二通信设备清楚的知道应答信息对应哪一组N个TP,且为了让第二通信设备获知第一通信设备漏检的情况,本实施例中可以采用以下方式中的至少一种方式来解决上述问题:
(1)、第一通信设备发送的DCI中包含所述N个传输周期中预设位置上的传输周期所对应的唯一标识。具体而言,可以在DCI中增加一组N个TP中任意特定位置上的TP对应的HARQ process ID(混合自动重传请求进程标识),或者增加能够在RTT(往返)时间内唯一确定该TP组的其他指示。以图7为例,该DCI中,除了包含一组4个TP(TP m-TP m+3)的应答信息外,还包含特定TP对应的HARQ process ID,例如一组4个TP中的第一个TP的HARQ process ID,或者一组4个TP中的第二TP的HARQ process ID。
为了便于理解,这里对具体的防止漏检的情况进行说明,假设第二通信设备在TP m-TP m+3都发送了PUSCH,但是第一通信设备漏检了TPm的PUSCH,比如第一通信设备没有收到TPm对应传输块,则第二通信设备会认为数据传输是从TP m+1开始的,按照方式(1),第一通信设备发送的DCI中需要携带N个TP中特定TP的HARQ process ID(假定携带的是第一个TP的HARQ process ID),那么在上述漏检的情况下,第一通信设备反馈的DCI中将会携带TP m+1的HARQ process ID,而不是TPm的HARQ process ID,第二通信设备在收到这个DCI中就可以判定出第一通信设备漏检了TP m的传输块,此时第二通信设备可以向第一通信设备重传该传输块。
(2)、在预先配置的定时周期内向第二通信设备发送DCI,定时周期为在N个传输周期之后的m个传输周期,其中,m为大于或等于1的整数,可选的,m=1。
对于上述方式(2),具体的可以为DCI设置一个能唯一对应一组N个TP的定时器,第一通信设备需要在这个定时器内反馈一组N个TP的应答信息。例如,定时器的有效时段要落在该组N个TP结束之后的一个TP时长之内。或者可以采用同步反馈的方式,即DCI与PUSCH传输之间有明确的预定的时间关系,第二通信设备可以由该DCI反馈的时间确定该DCI反馈对应哪组N个TP。
组成一组的N个TP可以是同一个CC(component carrier,组成载波)上的N个TP,也可以是不同CC上的N个TP,例如请参见图8所示,该第二通信设备有2个CC,分别配置了上行免授权传输,RRC配置N=4,CC1上的TP m和TPm+1与CC2上的TP n和TP n+1共同组成N=4的一组TP,第一通信设备使用DCI对CC1上的TP m和TP m+1与CC2上的TP n和TP n+1集中反馈应答信息。
在一种实施例中,每一传输周期对应的应答信息可以由DCI中的1比特位表示;若应答信息中包含正确应答,则正确应答表示相应的传输块被第一通信设备接收且解调正确,为ACK;错误应答表示相应的传输块被第一通信设备接收且解调错误,为NACK,或错误应答表示相应的传输块未被第一通信设备接收,为DTX。
在另一种实施例中,每一传输周期对应的应答信息由DCI中的2比特位表示;若应答信息中包含正确应答,则正确应答表示相应的传输块被第一通信设备接收且解调正确,为ACK,错误应答包括以下三种指示:
表示传输块被第一通信设备接收且解调错误,且第一通信设备不会给第二通信设备发送相应传输块的上行授权,为NACK1;
表示传输块被第一通信设备接收且解调错误,且第一通信设备在预设时间内会给第二通信设备发送相应传输块的上行授权,第二通信设备无需自主重传,而是盲检上行授权,按照上行授权的指示重传传输块,为NACK2;
表示相应的传输块未被第一通信设备接收,为DTX。
最后需要说明的是,本实施例所提供的重传方法除了可以适用于5G通信系统,还可以适用于第三代移动通信系统也可以适用于第四代移动通信系统或者其他通信系统中。
实施例六:
为了更好的进行理解,本实施例以第一通信设备为基站,第二通信设备为终端对应答接收方法和应答发送方法进行更具体的介绍。
为了降低上行数据传输的时延及上行调度的开销,基站预先为终端配置一个可以周期发送传输块的资源,也即上述实施例一和实施例二中所提及的周期资源,周期资源的配置信息包括:资源的传输周期、时频位置、导频配置、重复次数、编码调制方式、最大进程数目等。不考虑空间复用情况,终端一个传输周期内可以使用该资源发送一个传输块。设终端使用一个资源发送一个传输块(TB),该传输块的进程索引k可以根据下式确定:
k=floor(X/P)mod K;
Floor(x)表示对x进行向下取整;
Mod表示求模运算;
K是基站对前述资源配置的最大进程数目;
P是基站对前述资源配置的周期;
X=帧索引*帧内时隙数目*时隙内符号数目+帧内时隙索引*时隙内符号数目+时隙内符号索引;
时隙内符号索引对应传输块在时隙内第1个符号的符号索引。
设帧索引=0,帧内时隙数目=10,时隙内符号数目=10,K=3,P=4个符号,终端可以在图9中TB1-TB7所示的位置上发送传输块,根据上式,可以发现它们对应的进程索引为0,1,2,0,1,2,0......
在本实施例中,基站预先为终端配置一个可以周期发送传输块的周期资源及一个计时周期T1,设终端使用一个周期资源发送一个进程索引为k的传输块。
在终端侧,终端发送该传输块并在该传输块对应的时刻开始计时,时长为T1,在第一种示例中,在与该传输块对应的时间T1内,也即是在该传输块对应的计时周期T1内,终端不使用和该传输块进程索引相同的资源发送新传输块,在时间T1内,终端如果检测到与该传输块对应的指示终端重传该传输块的上行授权,或检测到该传输块对应的错误应答如NACK或者DTX,终端重新开始计时,在时间T1内,终端仍不使用和该传输块进程索引相同的资源发送新传输块。以图9为例,设T=14个符号,终端在帧索引0的时隙0的符号0和1上发送了传输块(TB1),终端在帧索引0的时隙1的符号0收到了上行授权或NACK,则,TB4对应的时间在该传输块对应的时间T1内,TB7对应的时间在前述上行授权或NACK所对应的时间T1内,终端即使有新传输块发送,终端也不使用这些资源(TB4和TB7对应的周期资源)发送新传输块,在不与前述上行授权或NACK的指示的资源冲突的情况下,终端可以使用TB4对应的资源、TB7对应的资源重传TB1。
在第一种示例中,在与该传输块对应的时间T1内,如果检测到与该传输块对应的正确应答,也即ACK信息,或者没有检测到ACK信息和错误应答UACK信息,终端继续计时,在时间T1内,终端不使用与该传输块进程索引k相同的资源发送新传输块,在时间T1之后,终端可以使用与该传输块进程索引相同的资源发送新传输块。继续以图9为例,设T1=16个符号,终端在帧索引0的时隙0的符号0和1上发送了传输块(TB1),终端在帧索引0的时隙0的符号4收到了ACK信号,由于TB4所对应的时域位置在TB1所对应的时间T1内,终端即使有新数据发送,终端也不可以使用TB4所对应的资源发送新传输块。相 反,由于TB7所对应的时域位置时间T1之后,终端如有新数据发送,终端可以在TB 7所对应资源上发送。采用本示例的方法,终端可以避免现有技术中基站漏检终端发送的传输块,终端却误以为基站检测正确的问题。与此同时,本示例提供的方案还可以有效解决下面情况的进程号模糊问题:
终端错误检测出ACK信息导致的进程模糊问题。仍以图9为例,终端错误检测出TB1相对应的ACK信息(比如基站没有发送ACK信息或者发送的是NACK信息等),进而在TB4发送新传输块,如果TB1、TB4都检测错误,基站为此新发的NACK信息终端即使正确检测,双方仍有可能有不同的理解。
在第三种示例中,在与该传输块对应的时间T1内,如果检测到与该传输块对应的ACK信息,终端停止计时,停止计时后,终端可以使用与该传输块进程索引相同的资源发送新传输块。
在第四种示例中,终端如果检测到上行授权,则根据上行授权的指示重传进程索引为k的传输块;终端在没有检测到ACK信号前,不使用基站配置资源中进程索引为k的资源发送新传输块,但是可以使用该资源重传该传输块,检测到ACK信号后,则可以使用基站配置资源中进程索引为k的资源发送新传输块。
对于前述每间隔一定的周期,终端就可以使用基站配置的资源发送数据的方法,这里给出一种ACK信息的具体发送方法。本示例提出的ACK信息发送方法如下:
基站为终端分配一个ACK信息的监控周期,分配在监控周期内携带ACK信息的一个或多个序列和多个可以发送该序列的资源,序列与终端发送传输块所对应的进程索引有预定义的对应关系,更进一步,前述序列数目与基站配置的最大进程数目相等,这时,每个序列与进程索引有预定义的一一对应关系。对于某进程索引对应的序列,在一个监控周期内基站可以在多个资源中的一个资源或多个资源上映射序列并发送。
如下图10所示,基站为终端分配了进程0、1、2对应的ACK序列(图中分别以进程0 ACK序列、进程1 ACK序列、进程2 ACK序列)和可以发送ACK序列的多个资源。图10中进程0 ACK序列可以在资源0、1、2、3上发送(基站可以选择一个发送),进程1 ACK序列可以在资源0、1、2、3上发送,进程2 ACK序列可以在资源2、3上发送,进程0、1 ACK序列对应资源完全共享,进程0、1和进程2 ACK序列对应资源部分共享。
更进一步,对于某进程对应的ACK序列为伪随机序列,该序列在不同的资源上发送时,所使用的序列不同,但是这些序列有相同的初始化参数和生成多 项式。
终端可以根据基站配置的ACK序列监控周期,在基站分配的多个资源位置上检测ACK信息,只要有一个资源上检测到ACK信息,即认为该ACK信息对应进程索引的传输块检测正确。
采用上述方法,在有限解决前述问题的同时,还具有提高基站调度灵活度、终端ACK信息检测性能等诸多优点。
实施例七:
本发明实施例提供一种应答接收装置,请参见图11所示,应用于第二通信设备,包括:第一传输块发送模块1101和正确应答接收模块1102,其中第一传输块发送模块1101用于通过预先配置的周期资源向第一通信设备发送传输块,正确应答接收模块1102用于在预先配置的正确应答资源上接收第一通信设备发送的与该传输块对应的正确应答。
本实施例中的周期资源可以是第一通信设备为第二通信设备配置的,第二通信设备在周期资源对应的传输周期内可以向第一通信设备发送一个传输块。
应当说明的是,本发明实施例中的第一通信设备可以为基站,第二通信设备可以为终端,或者第一通信设备为终端,第二通信设备为基站。
具体的来说,第一通信设备发送的正确应答可以是根据对传输块进行检测得到的,所以,若检测结果错误,第二通信设备还可以接收第一通信设备发送的错误应答,需要说明的是,本实施例中的错误应答可以是第一通信设备向第二通信设备发送的任意可以表征传输块未被第一通信设备正确检测的应答。
当第二通信设备接收到正确应答时,可以通过确定模块确定与该正确应答对应的传输块被第一通信设备正确检测,第二通信设备无需重传与该正确应答对应的传输块,可以降低资源的浪费。
在第一种示例中,可以通过计时模块在与传输块对应的时刻开始计时,若在预设计时周期T1内检测到与该传输块对应的正确应答,则继续计时,并在所述预设计时周期T1内禁止通过与该传输块的进程索引相同的周期资源向第一通信设备发送新传输块。当然,在该预设计时周期T1结束之后,可以允许通过与该传输块的进程索引相同的周期资源向第一通信设备发送新传输块。
本实施例中的T1可以任意设置,比如可以是14个符号,或者16个符号等等。
在第二种示例中,可以通过计时模块在与传输块对应的时刻开始计时,若在预设计时周期T1内检测到与该传输块对应的正确应答,则停止计时,并允许 通过与该传输块的进程索引相同的周期资源向第一通信设备发送新传输块。
在第三种示例中,可以通过计时模块在与该传输块对应的时刻开始计时,若在预设计时周期T1内未检测到与传输块对应的正确应答和错误应答,则继续计时,并在预设计时周期T1内禁止通过与传输块的进程索引相同的周期资源向第一通信设备发送新传输块,但是可以允许通过与传输块的进程索引相同的周期资源向第一通信设备再发送一次该传输块。当然,在该预设计时周期T1结束之后,可以允许通过与传输块的进程索引相同的周期资源向第一通信设备发送新传输块,或者如果在前述的预设计时周期T1内未重传过该传输块,可以在该预设计时周期T1结束之后通过与传输块的进程索引相同的周期资源或者其他进程索引对应的周期资源再向第一通信设备再发送一次该传输块。
在第四种示例中,可以通过计时模块在与该传输块对应的时刻开始计时,若在预设计时周期T1内检测到与该传输块对应的错误应答,则重新计时,并在重新计时的预设计时周期T1内禁止通过与该传输块的进程索引相同的周期资源向第一通信设备发送新传输块,但是可以允许通过与传输块的进程索引相同的周期资源向第一通信设备再发送一次该传输块。当然,在该预设计时周期T1结束之后,可以允许通过与传输块的进程索引相同的周期资源向第一通信设备发送新传输块。
应当说明的是,本实施例中所提及的与传输块对应的时刻可以为以下时刻中的任意一种:
传输块的发送开始时刻;
传输块的发送结束时刻;
传输块的生成时刻;
传输块对应的协议数据单元生成时刻。
在第一种实施例中,正确应答接收模块1102可以在预先配置的正确应答资源上接收第一通信设备发送的下行控制信息DCI。其中,正确应答被携带在DCI中,一个DCI中包含一个正确应答,且通过DCI中的资源分配字段、冗余版本字段、编码调制字段、新数据指示字段和发射功率控制字段中的至少1个字段以及DCI中的混合自动重传请求HARQ进程索引字段来表示该正确应答,HARQ进程索引字段为传输块的进程索引。
具体而言,在表示正确应答时,DCI中的资源分配字段的所有比特都为1或0,同时冗余版本字段的所有比特都为1,编码调制字段的所有比特都为0;或,资源分配字段的所有比特都为1或0,冗余版本字段的所有比特都为0,编码调制字段的所有比特都为0;或,资源分配字段的所有比特都为1或0,冗余 版本字段的所有比特都为1,编码调制字段的所有比特都为1;或,资源分配字段的所有比特都为1或0,冗余版本字段所有比特都为1;或,资源分配字段的所有比特都为1或0,编码调制字段所有比特都为0。
当然了,在其他的实施例中,还可以通过将新数据指示字段的所有比特都设置为0或1,或者将发射功率控制字段中的所有比特设置为0或1来表示正确应答。
在第二种实施例中,正确应答接收模块1102可以在预先配置的正确应答资源上接收第一通信设备发送的下行控制信息DCI。其中,正确应答被携带在DCI中,一个DCI中包含一个正确应答,且通过DCI中的目标位以及DCI中的HARQ进程索引字段来表示正确应答,HARQ进程索引字段为传输块的进程索引。
本实施例中的目标位可以是DCI中的1比特位,或者2比特位,或者3比特位等等,具体的,其可以是DCI中的第9位,也即通过DCI中的第9位来表示正确应答,比如,当第9位为0时,可以表示正确应答,第9位为1时,可以表示错误应答。
在第三种实施例中,正确应答接收模块1102可以在预先配置的正确应答资源上接收第一通信设备发送的正确应答序列。
第二通信设备在接收到该正确应答序列之后,可以根据预先配置的正确应答序列与第二通信设备的进程索引的对应关系确定与该正确应答序列对应的进程索引所对应的传输块被第二通信设备正确检测。
最后需要说明的是,本实施例中的第一传输块发送模块1101、正确应答接收模块1102、确定模块以及计时模块对应的功能可以通过处理器执行存储器中存储的相应程序来实现。
通过本实施例提供的应答接收装置,可以基于接收到的正确应答确定与该正确应答对应的传输块被第一通信设备正确检测,进而可以防止第一通信设备漏检传输块而第二通信设备却认定该传输块被正确检测的这一种情况的发生。
实施例八:
本实施例提供一种应答发送装置,请参见图12所示,应用于第一通信设备,包括第一传输块接收模块1201和正确应答发送模块1202,其中第一传输块接收模块1201用于接收第二通信设备通过预先配置的周期资源发送的传输块,正确应答发送模块1202用于在预先配置的正确应答资源上向第二通信设备发送与该传输块对应的正确应答。
第一通信设备可以在正确检测到该传输块后向第二通信设备发送与该传输块对应的正确应答。
应当说明的是,第一通信设备还可以给第二通信设备配置最大进程数目K,并对配置给第二通信设备的周期资源配置对应的传输周期P,其中,K为大于或等于1的整数,P大于0。此时,第一通信设备可以在检测到该传输块后的K*P时间内向第二通信设备发送与该传输块对应的正确应答。
在第一种实施例中,正确应答发送模块1202可以在预先配置的正确应答资源上向第二通信设备发送DCI,正确应答被携带在DCI中。进一步的,通过将DCI中的HARQ进程索引字段设置为传输块的进程索引,对DCI中的资源分配字段、冗余版本字段、编码调制字段、新数据指示字段和发射功率控制字段中的至少1个字段进行设置来表示正确应答。
具体而言,对DCI中的资源分配字段、冗余版本字段、编码调制字段、新数据指示字段和发射功率控制字段中的至少1个字段进行设置包括:将资源分配字段的所有比特都设置为1或0,冗余版本字段的所有比特都设置为1,编码调制字段的所有比特都设置为0;或,将资源分配字段的所有比特都设置为1或0,冗余版本字段的所有比特都设置为0,编码调制字段的所有比特都设置为0;或,将资源分配字段的所有比特都设置为1或0,冗余版本字段的所有比特都设置为1,编码调制字段的所有比特都设置为1;或,将资源分配字段的所有比特都设置为1或0,冗余版本字段所有比特都设置为1;或,将资源分配字段的所有比特都设置为1或0,编码调制字段所有比特都设置为0。
当然了,在其他的实施例中,还可以通过将新数据指示字段的所有比特都设置为0或1,或者将发射功率控制字段中的所有比特设置为0或1来表示正确应答。与正确应答相反的表示方式则可以用于表示错误应答。
应当说明的是,将资源分配字段的所有比特都设置为1或0具体而言可以包括以下内容:在DCI中资源分配字段所对应的资源分配方法为位图时,将资源分配字段的所有比特都设置为0,在DCI中资源分配字段所对应的资源分配方法为非位图时,将资源分配字段的所有比特都设置为1。
在第二种实施例中,正确应答发送模块1202还可以在预先配置的正确应答资源上向第二通信设备发送DCI,正确应答被携带在DCI中。进一步的,通过将DCI中的HARQ进程索引字段设置为传输块的进程索引,对DCI中的目标位进行设置来表示正确应答。
本实施例中的目标位可以是DCI中的1比特位,或者2比特位,或者3比特位等等,具体的,其可以是DCI中的第9位,也即通过对DCI中的第9位进行设置来表示正确应答,比如,可以通过设置DCI的第9位为1来表示正确应答,可以通过设置DCI的第9位为0来表示错误应答。需要说明的是,当采用DCI中的某些字段或者目标位来表示应答信息时,比如表示ACK和NACK,携 带ACK信息的DCI与携带NACK的DCI包含的比特数目可以相等。HARQ进程索引字段代表传输块对应的进程索引,其它字段则设置为第一制定值(比如为“0”)或不定义(可以为“0”或“1”);如果为NACK,前述比特设置为第二指定值(比如为“1”)。
对于上述两种实施例,第一通信设备向第二通信设备发送的DCI可以是经配置调度CS-RNTI加扰处理后的DCI。
在第三种实施例中,通过正确应答序列来表示正确应答,正确应答发送模块1202还可以确定出与传输块的进程索引对应的正确应答序列,并确定出用于发送该正确应答序列的正确应答资源,将该正确应答序列映射在该正确应答资源上向第二通信设备发送。
对于第三种实施例,第一通信设备可以为第二通信设备配置用于监测是否接收到正确应答的监控周期,在监控周期内有用于表示正确应答的正确应答序列,以及用于发送该正确应答序列的正确应答资源。
可选的,本实施例中第一通信设备可以在检测到终端发送的传输块后的T1时间内发送应答信息。该应答信息中包括正确应答和错误应答中的一种。
下面对于上述第三种实施例中的情景进行进一步的介绍。
为第二通信设备配置的正确应答序列可以与第二通信设备的进程索引一一对应。此时,正确应答序列的数量等于第一通信设备为第二通信设备配置的最大进程数目。
为第二通信设备配置的正确应答的监控周期可以等于为第二通信设备配置的物理下行控制信道PDCCH的监控周期。
在为第一通信设备配置至少两个用于发送正确应答序列的正确应答资源时,多个正确应答资源包含的资源元素RE数目可以相同。
在为第一通信设备配置至少两个用于发送正确应答序列的正确应答资源时,正确应答资源包含的时域数目可以相同,且多个正确应答资源包含的子载波数目可以相同。
在为所述第二通信设备配置至少两个正确应答序列时,至少两个正确应答序列可以共享一个正确应答资源。
正确应答资源可以由资源元素组REG组成。
对于第三种实施例中的情景,正确应答发送模块1202将正确应答序列映射在正确应答资源上可以包括以下映射方式中的一种:
方式一:在正确应答资源由1个REG组成时,将正确应答序列按照预先设 置的频率大小顺序映射在该REG上,在映射时将正确应答序列映入REG上用于发送参考信号的资源上,并映入REG上不用于发送参考信号的资源上,也即是不跳过REG上用于发送参考信号的资源。本方式中所提及的预先设置的频率大小顺序可以是频率由大到小的顺序,也可以是频率由小到大的顺序,或者也可以是其他的顺序。
方式二:在正确应答资源由1个REG组成时,将正确应答序列按照预先设置的频率大小顺序映射在REG上,在映射时跳过REG上用于发送参考信号的资源。同样的,本方式中预先设置的频率大小顺序可以是频率由大到小的顺序,也可以是频率由小到大的顺序,或者也可以是其他的顺序。.
方式三:在正确应答资源由至少2个REG组成,且至少2个REG在不同的时域上时,将正确应答序列按照先时域后频域或先频域后时域的顺序映射在REG上,在映射时将正确应答序列映入REG上用于发送参考信号的资源上,并映入REG上不用于发送参考信号的资源上。
方式四:在正确应答资源由至少2个REG组成,且至少2个REG在不同的时域上时,将正确应答序列按照先时域后频域或先频域后时域的顺序映射在REG上,在映射时跳过REG上用于发送参考信号的资源。
方式五:在正确应答资源由至少2个REG组成,且至少2个REG在时域或频域上连续时,述正确应答序列按照先时域后频域或先频域后时域的顺序映射在所述REG上,在映射时将正确应答序列映入REG上用于发送参考信号的资源上,并映入REG上不用于发送参考信号的资源上。
方式六:在正确应答资源由至少2个REG组成,且至少2个REG在时域和频域上都不连续时,将正确应答序列按照先时域后频域或先频域后时域的顺序映射在所述REG上,在映射时跳过REG上用于发送参考信号的资源。
需要说明的是,上述多种方式中,对于在映射时跳过REG上用于发送参考信号的资源的情况,在映射时,若遇到参考信号对应的资源,组成正确应答序列的元素可以自动顺延到下一个可用的资源上,或将该元素丢弃。本实施例中的正确应答资源可以对应第二通信设备的PDCCH搜索空间中一个PDCCH所占用的资源,当然了,在其他的实施例中,可以对应第二通信设备的PDCCH搜索空间中多个PDCCH所占用的资源。
在一种实施例中,正确应答发送模块1202可以根据一个PDCCH所占用的资源中控制信道元素CCE到REG的映射类型将正确应答序列映射在该PDCCH所占用的资源上。
具体的,可以在CCE到REG的映射类型为交织类型时,正确应答发送模 块1202可以将正确应答序列映射到该PDCCH候选位置的REG上,在映射时跳过REG上用于发送参考信号的资源,正确应答发送模块1202可以在CCE到REG的映射类型为非交织类型时,将正确应答序列映射到该PDCCH候选位置的REG上,在映射时将正确应答序列映入REG上用于发送参考信号的资源上,并映入REG上不用于发送参考信号的资源上。当然了,在其他的实施例中,也可以是CCE到REG的映射类型为非交织类型时,将正确应答序列映射到该PDCCH候选位置的REG上,在映射时跳过REG上用于发送参考信号的资源,可以在CCE到REG的映射类型为交织类型时,将正确应答序列映射到该PDCCH候选位置的REG上,在映射时将正确应答序列映入REG上用于发送参考信号的资源上,并映入REG上不用于发送参考信号的资源上。
在另一种实施例中,在正确应答资源对应第二通信设备的PDCCH搜索空间中一个PDCCH所占用的资源时,正确应答发送模块1202可以获取第二通信设备的PDCCH搜索空间中多个PDCCH所对应的聚合等级,根据多个PDCCH所对应的聚合等级将正确应答序列映射在该PDCCH所占用的资源上。
需要说明的是,一个PDCCH所占用的资源包括p个CCE,p为{1,2,4,8,16,32}中的一个,相应的,称该PDCCH的聚合等级为p,本实施例中的聚合等级可以由第一通信设备配置并提前通知第二通信设备。
具体的,正确应答发送模块1202可以从多个PDCCH所对应的聚合等级中选择一个聚合等级,当该聚合等级小于或等于预设门限值时,将该正确应答序列映射在该PDCCH所占用资源中的第一类型资源上或将正确应答序列映射在该PDCCH所占用资源中第一类型资源和第二类型资源上,当该聚合等级大于预设门限值时,将该正确应答序列映射在该PDCCH所占用的资源中的第二类型资源上;所述第一类型资源为该PDCCH所占用的资源中未与参考信号对应的资源,所述第二类型资源为该PDCCH所占用的资源中与参考资源所对应的资源。
本实施例中的预设门限值可以由开发人员灵活设置。
具体的,从多个PDCCH所对应的聚合等级中选择一个聚合等级的选择方式包括但不限于以下选择方式中的一种:
从多个PDCCH所对应的聚合等级中选择最大的一个聚合等级;
从多个PDCCH所对应的聚合等级中选择最小的一个聚合等级;
当搜索空间中对应的PDCCH的数量为R时,从多个所述PDCCH所对应的聚合等级中选择排名第Q位的聚合等级,R和Q为整数,且R大于或等于3,且R-Q大于0,小于R-1。
应当说明的是,这里的排名可以是按从大到小的顺序进行排名的,也可以 是按照从小到大的顺序进行排名的。
最后需要说明的是,本实施例中的第一传输块接收模块1201、正确应答发送对应的功能可以通过处理器执行存储器中存储的相应程序来实现。
实施例九:
请参见图13所示,本实施例提供一种重传装置,应用于第二通信设备,包括第二传输块发送模块1301、DCI接收模块1302和重传发送模块1303,其中,第二传输块发送模块1301用于通过预先配置的周期资源向第一通信设备发送传输块,DCI接收模块1302用于接收第一通信设备发送的DCI,DCI中包含与时域上相邻的N个传输周期对应的应答信息,重传发送模块1303用于在应答信息中包含错误应答时,将与错误应答对应的传输周期内发送的传输块重传给第一通信设备。
本实施例中的周期资源可以是第一通信设备为第二通信设备配置的,第二通信设备在在周期资源对应的传输周期内可以向第一通信设备发送一个传输块。本实施例中的N为大于或等于1的整数。也即是说,将N个传输周期对应的N个应答信息集中承载在一个DCI中。特别地,当N为大于或等于2时,可以相对节省通信资源。具体的来说,本实施例中的第一通信设备可以向第二通信设备发送错误应答及上行授权,具体的,第一通信设备可以在检测到传输块错误时向第二通信设备发送错误应答,并发送上行授权,本实施例中,重传发送模块1303可以采用如下方式之一进行重传:
方式一:如果第二通信设备在预先配置的定时器时间内收到了用于调度传输块重传的上行授权,则第二通信设备按照上行授权的指示将对应的传输块重传。如果在预先配置的定时器内,第二通信设备没有收到上行授权,但是收到了DCI,则第二通信设备将在预先配置的定时器时间结束之后,重传发送模块1303将收到错误应答的传输块自主重传。
方式二:在预先配置的定时器时间内,第二通信设备如果先收到了DCI,则第二通信设备将收到错误应答对应的传输块自主重传,具体的,可以不用等待这个定时器时间结束,可以在收到DCI时,将其中错误应答对应的传输块自主重传,当然,第二通信设备还可以根据其他方式确定重传时机,如果后续又收到对应该传输块的上行授权,重传发送模块1303可以选择按照该上行授权指令再次重传该传输块或者忽略该上行授权。
方式三:在预先配置的定时器时间内,如果第二通信设备先收到了调度传输块重传的上行授权,第二通信设备将按照该上行授权指令将对应的传输块重传,如果后续又收到了DCI,重传发送模块1303可以选择再次自主重传DCI中 错误应答对应的传输块,也可以选择不重传DCI中错误应答对应的传输块。
方式四:在预先配置的定时器时间内,第二通信设备没有收到对应某个实际发送的传输块的上行授权,也没有收到其对应的DCI,重传发送模块1303可以在这个定时器时间结束之后自动重传该传输块。
应当说明的是,本实施例中定时器对应的起始计时时间可以是第二通信设备发送对应传输块的时间。
本实施例中自主重传的方式有多种,包括但不限于是以下的一种:
方式一:自主重传与该传输块的首传之间没有绑定关系。第二通信设备在自主重传时,自主选择一个周期资源,将该传输块当做新传输块重新发送。第一通信设备不能将此自主重传与该传输块的首传联系起来,因而无法实现合并解调,只能分别独立解调。
方式二:通过高层配置,例如通过MAC(物理)层或RCC层配置,或者DCI配置自主重传与该传输块的首传之间的绑定关系。例如,通过MAC消息或者RRC消息或者DCI配置自主重传与该传输块的首传之间的时序关系。第二通信设备在收到了DCI之后,将对应的错误应答对应的TB(传输周期)内发送的传输块自主重传。自主重传所使用的周期资源是根据MAC消息或者RRC消息或者DCI配置自主重传与该传输块的首传之间的时序关系来确定的。
在一种实施例中,每一传输周期对应的应答信息由DCI中的1比特位表示;若应答信息中包含正确应答,则正确应答表示相应的传输块被第一通信设备接收且解调正确,为ACK;错误应答表示相应的传输块被第一通信设备接收且解调错误,为NACK,或错误应答表示相应的传输块未被第一通信设备接收,为DTX。
在另一种实施例中,每一传输周期对应的应答信息由DCI中的2比特位表示;若应答信息中包含正确应答,则正确应答表示相应的传输块被第一通信设备接收且解调正确,为ACK,错误应答包括以下三种指示:
表示传输块被第一通信设备接收且解调错误,且第一通信设备不会给第二通信设备发送相应传输块的上行授权,为NACK1;
表示传输块被第一通信设备接收且解调错误,且第一通信设备在预设时间内会给第二通信设备发送相应传输块的上行授权,第二通信设备无需自主重传,而是盲检上行授权,按照上行授权的指示重传传输块,为NACK2;
表示相应的传输块未被第一通信设备接收,为DTX。
最后需要说明的是,本实施例中的第二传输块发送模块1301、DCI接收模 块1302和重传发送模块1303对应的功能可以通过处理器执行存储器中存储的相应程序来实现。
实施例十:
本实施例化提供一种重传装置,应用于第一通信设备,请参见图14所示,包括:第二传输块接收模块1401、DCI发送模块1402以及重传接收模块1403。其中,第二传输块接收模块1401用于接收第二通信设备通过预先配置的周期资源发送的传输块,DCI发送模块1402用于向第二通信设备发送DCI,重传接收模块1403用于在应答信息中包含错误应答,接收第二通信设备重传的与错误应答对应的传输周期内发送的传输块。
其中,DCI中包含与时域上相邻的N个传输周期对应的应答信息,N为大于或等于1的整数。也即是说,将N个传输周期对应的N个应答信息集中承载在一个DCI中。特别地,当N为大于或等于2时,可以相对节省通信资源。
具体的来说,本实施例中N个传输周期的起始传输周期由以下方式中的一种确定:
方式一:将接收到的传输块中的进程索引对N取余为N-1的传输块所对应的传输周期作为起始传输周期。
方式二:当在某个传输周期内检测到第二通信设备的物理上行共享信道PUSCH,且在该传输周期的前N-1个相邻传输周期上都没有检测到第二通信设备的PUSCH时,将该传输周期作为起始传输周期。
方式三:当在某个传输周期内检测到第二通信设备的PUSCH,且从该周期资源的第一个传输周期到该传输周期之间都没有检测到第二通信设备的PUSCH,则将该传输周期作为起始传输周期。
为了让第二通信设备清楚的知道应答信息对应哪一组N个TP,且为了让第二通信设备获知第一通信设备漏检的情况,本实施例中可以采用以下方式中的至少一种方式来解决上述问题:
(1)、DCI发送模块1402发送的DCI中包含所述N个传输周期中预设位置上的传输周期所对应的唯一标识。具体而言,可以在DCI中增加一组N个TP中任意特定位置上的TP对应的HARQ process ID(混合自动重传请求进程标识),或者增加能够在RTT(往返)时间内唯一确定该TP组的其他指示。
(2)、DCI发送模块1402在预先配置的定时周期内向第二通信设备发送DCI,定时周期为在N个传输周期之后的m个传输周期,其中,m为大于或等于1的整数,可选的,m=1。
组成一组的N个TP可以是同一个CC(component carrier,组成载波)上的N个TP,也可以是不同CC上的N个TP。
在一种实施例中,每一传输周期对应的应答信息可以由DCI中的1比特位表示;若应答信息中包含正确应答,则正确应答表示相应的传输块被第一通信设备接收且解调正确,为ACK;错误应答表示相应的传输块被第一通信设备接收且解调错误,为NACK,或错误应答表示相应的传输块未被第一通信设备接收,为DTX。
在另一种实施例中,每一传输周期对应的应答信息由DCI中的2比特位表示;若应答信息中包含正确应答,则正确应答表示相应的传输块被第一通信设备接收且解调正确,为ACK,错误应答包括以下三种指示:
表示传输块被第一通信设备接收且解调错误,且第一通信设备不会给第二通信设备发送相应传输块的上行授权,为NACK1;
表示传输块被第一通信设备接收且解调错误,且第一通信设备在预设时间内会给第二通信设备发送相应传输块的上行授权,第二通信设备无需自主重传,而是盲检上行授权,按照上行授权的指示重传传输块,为NACK2;
表示相应的传输块未被第一通信设备接收,为DTX。
最后需要说明的是,本实施例中的第二传输块接收模块1401、DCI发送模块1402以及重传接收模块1403对应的功能可以通过处理器执行存储器中存储的相应程序来实现。
实施例十一:
本实施例提供一种通信设备,请参见图15所示,该通信设备包括处理器1501和存储器1502,其中,处理器1501用于执行存储器1502中存储的一个或者多个第一程序,以实现上述实施例一中任一应答接收方法,或所述处理器1501用于执行所述存储器1502中存储的一个或者多个第二程序,以实现上述实施例四中任一重传方法,或处理器1501用于执行存储器1502中存储的一个或者多个第三程序,以实现上述实施例二中任一应答发送方法,或所述处理器1501用于执行所述存储器1502中存储的一个或者多个第四程序,以实现上述实施例五中任一重传方法。
具体的来说,通信设备可以是终端,此时,可选的,处理器用于执行存储器中存储的一个或者多个第一程序,以实现上述实施例一中任一应答接收方法的步骤或处理器用于执行所述存储器中存储的一个或者多个第二程序,以实现上述实施例四中任一重传方法。
具体的来说,通信设备还可以是基站,此时,可选的,处理器用于执行存 储器中存储的一个或者多个第三程序,以实现上述实施例二中任一应答发送方法的步骤,或所述处理器用于执行所述存储器中存储的一个或者多个第四程序,以实现上述实施例五中任一重传方法。
本实施例还提供一种应答系统,包括终端和基站,其中,终端用于通过预先配置的周期资源向基站发送传输块,基站接收该传输块,并在预先配置的正确应答资源上向终端发送与该传输块对应的正确应答。
本实施例化提供一种重传系统,包括终端和基站,其中,终端通过预先配置的周期资源向基站发送传输块,基站向终端发送DCI,其中,DCI中包含与时域上相邻的N个传输周期对应的应答信息,若应答信息中包括错误应答,终端将与错误应答对应的传输周期内发送的传输块重传给基站。
本实施例还提供一种存储介质,存储介质,该存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(Digital Video Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
其中,存储介质中存储有一个或者多个第一计算机程序,一个或者多个第一计算机程序可被一个或者多个处理器执行,以实现上述实施例一中任一应答接收方法的步骤,或存储介质中存储有一个或者多个第二计算机程序,一个或者多个第二计算机程序可被一个或者多个处理器执行,以实现上述实施例四中任一重传方法,或存储介质中存储有一个或者多个第三计算机程序,所述一个或者多个第三计算机程序可被一个或者多个处理器执行,以实现上述实施例二中任一应答发送方法,或存储介质中存储有一个或者多个第四计算机程序,一个或者多个第四计算机程序可被一个或者多个处理器执行,以实现上述实施例五中任一重传方法。
本实施例还提供了一种计算机程序(或称计算机软件),该计算机程序可以分布在计算机可读介质上,由可计算装置来执行,以实现上述实施例一至实施例五中方法的至少一个步骤;并且在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
本实施例还提供了一种计算机程序产品,包括计算机可读装置,该计算机 可读装置上存储有如上所示的计算机程序。本实施例中该计算机可读装置可包括如上所示的计算机可读存储介质。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本公开不限制于任何特定的硬件和软件结合。

Claims (38)

  1. 一种应答接收方法,包括:
    通过预先配置的周期资源向第一通信设备发送传输块;
    在预先配置的正确应答资源上接收与所述传输块对应的正确应答。
  2. 如权利要求1所述的方法,还包括:
    在与所述传输块对应的时刻开始计时,响应于在预设计时周期T1内检测到与所述传输块对应的正确应答,继续计时,并在所述预设计时周期T1内禁止通过与所述传输块的进程索引相同的周期资源向所述第一通信设备发送新传输块。
  3. 如权利要求1所述的方法,还包括:
    在与所述传输块对应的时刻开始计时,响应于在预设计时周期T1内检测到与所述传输块对应的正确应答,停止计时,并允许通过与所述传输块的进程索引相同的周期资源向所述第一通信设备发送新传输块。
  4. 如权利要求1所述的方法,还包括:
    在与所述传输块对应的时刻开始计时,响应于在预设计时周期T1内未检测到与所述传输块对应的正确应答和错误应答,继续计时,并在预设计时周期T1内禁止通过与所述传输块的进程索引相同的周期资源向所述第一通信设备发送新传输块;
    或者,
    在与所述传输块对应的时刻开始计时,响应于在预设计时周期T1内检测到与所述传输块对应的错误应答,重新计时,并在重新计时的所述预设计时周期T1内禁止通过与所述传输块的进程索引相同的周期资源向所述第一通信设备发送新传输块。
  5. 如权利要求2-4任一项所述的方法,其中,所述与所述传输块对应的时刻为以下时刻的一种:
    所述传输块的发送开始时刻;
    所述传输块的发送结束时刻;
    所述传输块的生成时刻;
    所述传输块对应的协议数据单元生成时刻。
  6. 如权利要求1-4任一项所述的方法,其中,所述在预先配置的正确应答资源上接收与所述传输块对应的正确应答,包括:
    在预先配置的正确应答资源上接收到所述第一通信设备发送的下行控制信息DCI,所述正确应答被携带在所述DCI中,一个所述DCI中包含一个所述正确应答,且通过所述DCI中的资源分配字段、冗余版本字段、编码调制字段、新数据指示字段和发射功率控制字段中的至少一个字段以及所述DCI中的混合自动重传请求HARQ进程索引字段来表示所述正确应答,所述HARQ进程索引字段为所述传输块的进程索引。
  7. 如权利要求1-4任一项所述的方法,其中,所述在预先配置的正确应答资源上接收与所述传输块对应的正确应答,包括:
    在预先配置的正确应答资源上接收到所述第一通信设备发送的DCI,所述正确应答被携带在所述DCI中,一个所述DCI中包含一个所述正确应答,且通过所述DCI中的特定位以及所述DCI中的HARQ进程索引字段来表示所述正确应答,所述HARQ进程索引字段为所述传输块的进程索引。
  8. 如权利要求1-4任一项所述的方法,其中,所述在预先配置的正确应答资源上接收与所述传输块对应的正确应答,包括:
    在预先配置的正确应答资源上接收到所述第一通信设备发送的正确应答序列。
  9. 一种应答发送方法,应用于第一通信设备,包括:
    接收第二通信设备通过预先配置的周期资源发送的传输块;
    在预先配置的正确应答资源上向所述第二通信设备发送与所述传输块对应的正确应答。
  10. 如权利要求9所述的方法,在所述接收第二通信设备通过预先配置的周期资源发送的传输块之前,还包括:
    给所述第二通信设备配置最大进程数目K,并对配置给所述第二通信设备的所述周期资源配置对应的传输周期P;
    所述在预先配置的正确应答资源上向所述第二通信设备发送与所述传输块对应的正确应答,包括:
    在检测到所述传输块后的K*P时间内向所述第二通信设备发送所述正确应答。
  11. 如权利要求9所述的方法,其中,所述正确应答被携带在向所述第二通信设备发送的DCI中,一个所述DCI中包含一个所述正确应答,且通过将所述DCI中的HARQ进程索引字段设置为所述传输块的进程索引,对所述DCI中的资源分配字段、冗余版本字段、编码调制字段、新数据指示字段和发射功率控 制字段中的至少一个字段进行设置来表示所述正确应答。
  12. 如权利要求11所述的方法,其中,所述对所述DCI中的资源分配字段、冗余版本字段、编码调制字段、新数据指示字段和发射功率控制字段中的至少一个字段进行设置,包括:
    将所述资源分配字段的所有比特都设置为1或0,所述冗余版本字段的所有比特都设置为1,所述编码调制字段的所有比特都设置为0;
    或者,
    将所述资源分配字段的所有比特都设置为1或0,所述冗余版本字段的所有比特都设置为0,所述编码调制字段的所有比特都设置为0;
    或者,
    将所述资源分配字段的所有比特都设置为1或0,所述冗余版本字段的所有比特都设置为1,所述编码调制字段的所有比特都设置为1;
    或者,
    将所述资源分配字段的所有比特都设置为1或0,所述冗余版本字段所有比特都设置为1;
    或者,
    将所述资源分配字段的所有比特都设置为1或0,所述编码调制字段所有比特都设置为0。
  13. 如权利要求12所述的方法,其中,所述将所述资源分配字段的所有比特都设置为1或0,包括:
    在所述DCI中资源分配字段所对应的资源分配方法为位图的情况下,将所述资源分配字段的所有比特都设置为0,在所述DCI中资源分配字段所对应的资源分配方法为非位图的情况下,将所述资源分配字段的所有比特都设置为1。
  14. 如权利要求9所述的方法,其中,所述在预先配置的正确应答资源上向所述第二通信设备发送与所述传输块对应的正确应答,包括:
    向所述第二通信设备发送经配置调度无线网络临时标识CS-RNTI加扰处理后的DCI。
  15. 如权利要求12所述的方法,其中,所述正确应答被携带在向所述第二通信设备发送的DCI中,一个所述DCI中包含一个所述正确应答,且通过将所述DCI中的HARQ进程索引字段设置为所述传输块的进程索引,对所述DCI中的特定位进行设置来表示所述正确应答。
  16. 如权利要求15所述的方法,其中,所述特定位为1比特位。
  17. 如权利要求9所述的方法,在所述接收第二通信设备通过预先配置的周期资源发送传输块之前,还包括:
    为所述第二通信设备配置用于监测是否接收到所述正确应答的监控周期,所述监控周期中包括用于表示正确应答的正确应答序列,以及用于发送所述正确应答序列的正确应答资源;
    所述在预先配置的正确应答资源上向所述第二通信设备发送与所述传输块对应的正确应答,包括:
    将与所述传输块的进程索引对应的正确应答序列映射在所述正确应答资源上向所述第二通信设备发送。
  18. 如权利要求17所述的方法,其中,为所述第二通信设备配置的所述正确应答序列与所述第二通信设备的进程索引一一对应。
  19. 如权利要求17所述的方法,其中,所述正确应答的监控周期等于为所述第二通信设备配置的物理下行控制信道PDCCH的监控周期。
  20. 如权利要求17所述的方法,其中,在为所述第二通信设备配置至少两个正确应答序列的情况下,所述至少两个正确应答序列共享所述正确应答资源。
  21. 如权利要求17-20任一项所述的方法,其中,所述正确应答资源由资源元素组REG组成。
  22. 如权利要求21所述的方法,其中,所述将所述正确应答序列映射在所述正确应答资源上包括以下映射方式中的一种:
    在所述正确应答资源由1个REG组成的情况下,将所述正确应答序列按照预先设置的频率大小顺序映射在所述REG上,在映射时将所述正确应答序列映射入所述REG上用于发送参考信号的资源上,并映射入所述REG上不用于发送参考信号的资源上;
    在所述正确应答资源由1个REG组成的情况下,将所述正确应答序列按照预先设置的频率大小顺序映射在所述REG上,在映射时跳过所述REG上用于发送参考信号的资源;
    在所述正确应答资源由至少2个REG组成,且所述至少2个REG在不同的时域上的情况下,将所述正确应答序列按照先时域后频域或先频域后时域的顺序映射在所述REG上,在映射时将所述正确应答序列映射入所述REG上用于发送参考信号的资源上,并映射入所述REG上不用于发送参考信号的资源上;
    在所述正确应答资源由至少2个REG组成,且所述至少2个REG在不同 的时域上的情况下,将所述正确应答序列按照先时域后频域或先频域后时域的顺序映射在所述REG上,在映射时跳过所述REG上用于发送参考信号的资源;
    在所述正确应答资源由至少2个REG组成,且所述至少两个REG在时域或频域上依次连续的情况下,将所述正确应答序列按照先时域后频域或先频域后时域的顺序映射在所述REG上,在映射时将所述正确应答序列映射入所述REG上用于发送参考信号的资源上,并映射入所述REG上不用于发送参考信号的资源上;
    在所述正确应答资源由至少2个REG组成,且所述至少两个REG在时域和频域上都不连续的情况下,将所述正确应答序列按照先时域后频域或先频域后时域的顺序映射在所述REG上,在映射时跳过所述REG上用于发送参考信号的资源。
  23. 如权利要求21所述的方法,其中,所述正确应答资源对应所述第二通信设备的PDCCH搜索空间中一个PDCCH所占用的资源;所述将与所述传输块的进程索引对应的所述正确应答序列映射在所述正确应答资源上,包括:
    根据所述一个PDCCH所占用的资源中控制信道元素CCE到REG的映射类型将所述正确应答序列映射在所述PDCCH所占用的资源上。
  24. 如权利要求23所述的方法,其中,所述根据所述一个PDCCH所占用的资源中CCE到REG的映射类型将所述正确应答序列映射在所述PDCCH所占用的资源上,包括:
    响应于所述CCE到REG的映射类型为交织类型,将所述正确应答序列映射到所述PDCCH候选位置的REG上,在映射时跳过所述REG上用于发送参考信号的资源;
    响应于所述CCE到REG的映射类型为非交织类型,将所述正确应答序列映射到所述PDCCH候选位置的REG上,在映射时将所述正确应答序列映入所述REG上用于发送参考信号的资源上,并映射入所述REG上不用于发送参考信号的资源上。
  25. 如权利要求21所述的方法,其中,所述正确应答资源对应所述第二通信设备的PDCCH搜索空间中一个PDCCH所占用的资源;所述将与所述传输块的进程索引对应的所述正确应答序列映射在所述正确应答资源上,包括:
    获取所述第二通信设备的PDCCH搜索空间中多个PDCCH所对应的聚合等级;
    根据多个PDCCH所对应的聚合等级将所述正确应答序列映射在所述PDCCH所占用的资源上。
  26. 如权利要求25所述的方法,其中,根据多个PDCCH所对应的聚合等级将所述正确应答序列映射在所述PDCCH所占用的资源上,包括:
    从多个PDCCH所对应的聚合等级中选择一个聚合等级,在所述聚合等级小于或等于预设门限值的情况下,将所述正确应答序列映射在所述PDCCH所占用资源中的第一类型资源上或将所述正确应答序列映射在所述PDCCH所占用资源中第一类型资源和第二类型资源上,在所述聚合等级大于预设门限值的情况下,将所述正确应答序列映射在所述PDCCH所占用的资源中的第二类型资源上;所述第一类型资源为所述PDCCH所占用的资源中未与参考信号对应的资源,所述第二类型资源为所述PDCCH所占用的资源中与参考资源所对应的资源。
  27. 一种重传方法,包括:
    通过预先配置的周期资源向第一通信设备发送传输块;
    接收所述第一通信设备发送的DCI,所述DCI中包含与时域上相邻的N个传输周期对应的应答信息,所述N为大于或等于1的整数;
    响应于所述应答信息中包含错误应答,将与所述错误应答对应的传输周期内发送的传输块重传给所述第一通信设备。
  28. 如权利要求27所述的方法,其中,所述将与所述错误应答对应的传输周期内发送的传输块重传给所述第一通信设备,包括:
    响应于在预先配置的定时器时间内接收到与所述错误应答对应的传输块的上行授权,直接按照所述上行授权的指示将与所述错误应答对应的传输块重传给所述第一通信设备;
    或者,
    响应于在预先配置的定时器时间内未接收到与所述错误应答对应的传输块的上行授权,在所述定时器时间结束之后将与所述错误应答对应的传输块重传给所述第一通信设备;
    或者,
    响应于在预先配置的定时器时间内接收到所述错误应答,不等待上行授权,直接将与所述错误应答对应的传输块重传给所述第一通信设备。
  29. 如权利要求27或28所述的方法,其中,每一所述传输周期对应的应答信息由所述DCI中的1比特位表示;响应于所述应答信息中包含正确应答,所述正确应答表示所述正确应答对应的传输周期内发送的传输块被所述第一通信设备接收且解调正确,所述错误应答表示所述错误应答对应的传输周期内发送 的传输块被所述第一通信设备接收且解调错误,或所述错误应答表示所述错误应答对应的传输周期内发送的传输块未被所述第一通信设备接收。
  30. 如权利要求27或28所述的方法,其中,每一所述传输周期对应的应答信息由所述DCI中的2比特位表示;响应于所述应答信息中包含正确应答,所述正确应答表示所述正确应答对应的传输周期内发送的传输块被所述第一通信设备接收且解调正确,所述错误应答包括以下三种指示:
    表示所述传输块被所述第一通信设备接收且解调错误,且第一通信设备不会给所述第二通信设备发送所述传输块的上行授权;
    表示所述传输块被所述第一通信设备接收且解调错误,且第一通信设备在预设时间内会给所述第二通信设备发送所述传输块的上行授权;
    表示所述传输块未被所述第一通信设备接收。
  31. 一种重传方法,应用于第一通信设备,包括:
    接收第二通信设备通过预先配置的周期资源发送的传输块;
    向所述第二通信设备发送DCI,所述DCI中包含与时域上相邻的N个传输周期对应的应答信息,所述N为大于或等于1的整数;
    响应于所述应答信息中包含错误应答,接收所述第二通信设备重传的与所述错误应答对应的传输周期内发送的传输块。
  32. 如权利要求31所述的方法,其中,所述N个传输周期的起始传输周期由以下方式中的一种确定:
    将接收到的所述传输块中的进程索引对所述N取余为N-1的传输块所对应的传输周期作为所述起始传输周期;
    在一个传输周期内检测到所述第二通信设备的物理上行共享信道PUSCH,且在所述传输周期的前N-1个相邻传输周期上都没有检测到所述第二通信设备的PUSCH的情况下,将所述传输周期作为所述起始传输周期;
    在一个传输周期内检测到所述第二通信设备的PUSCH,且从所述周期资源的第一个传输周期到所述传输周期之间都没有检测到所述第二通信设备的PUSCH的情况下,将所述传输周期作为所述起始传输周期。
  33. 如权利要求31所述的方法,其中,所述DCI中包含所述N个传输周期中预设位置上的传输周期所对应的唯一标识。
  34. 如权利要求31所述的方法,其中,所述向所述第二通信设备发送DCI,包括:
    在预先配置的定时周期内向所述第二通信设备发送DCI,所述定时周期为在所述N个传输周期之后的m个传输周期,所述m为大于或等于1的整数。
  35. 如权利要求31-34任一项所述的方法,其中,每一所述传输周期对应的应答信息由所述DCI中的1比特位表示;响应于所述应答信息中包含正确应答,所述正确应答表示所述正确应答对应的传输周期内发送的传输块被所述第一通信设备接收且解调正确,所述错误应答表示所述错误应答对应的传输周期内发送的传输块被所述第一通信设备接收且解调错误,或所述错误应答表示所述错误应答对应的传输周期内发送的传输块未被所述第一通信设备接收。
  36. 如权利要求31-34任一项所述的方法,其中,每一所述传输周期对应的应答信息由所述DCI中的2比特位表示;响应于所述应答信息中包含正确应答,所述正确应答表示所述正确应答对应的传输周期内发送的传输块被所述第一通信设备接收且解调正确,所述错误应答包括以下三种指示:
    表示所述传输块被所述第一通信设备接收且解调错误,且第一通信设备不会给所述第二通信设备发送所述传输块的上行授权;
    表示所述传输块被所述第一通信设备接收且解调错误,且第一通信设备在预设时间内会给所述第二通信设备发送所述传输块的上行授权;
    表示所述传输块未被所述第一通信设备接收。
  37. 一种通信设备,包括处理器和存储器;
    所述处理器设置为执行所述存储器中存储的一个或者多个第一程序,以实现如权利要求1-8中任一项所述的方法,或所述处理器设置为执行所述存储器中存储的一个或者多个第二程序,以实现如权利要求27-30中任一项所述的方法,或所述处理器设置为执行所述存储器中存储的一个或者多个第三程序,以实现如权利要求9-26中任一项所述的方法,或所述处理器设置为执行所述存储器中存储的一个或者多个第四程序,以实现如权利要求31-36中任一项所述的方法。
  38. 一种存储介质,所述存储介质中存储有一个或者多个第一计算机程序,所述一个或者多个第一计算机程序可被一个或者多个处理器执行,以实现如权利要求1-8中任一项所述的方法,或所述存储介质中存储有一个或者多个第二计算机程序,所述一个或者多个第二计算机程序可被一个或者多个处理器执行,以实现如权利要求27-30中任一项所述的方法的,或所述存储介质中存储有一个或者多个第三计算机程序,所述一个或者多个第三计算机程序可被一个或者多个处理器执行,以实现如权利要求9-26中任一项所述的方法,或所述存储介质中存储有一个或者多个第四计算机程序,所述一个或者多个第四计算机程序可被一个或者多个处理器执行,以实现如权利要求31-36中任一项所述的方法。
PCT/CN2019/100173 2018-08-10 2019-08-12 应答接收及发送方法、重传方法、通信设备及存储介质 WO2020030173A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/266,852 US11924682B2 (en) 2018-08-10 2019-08-12 Response receiving and sending method, retransmission method, communication device, and storage medium
KR1020217006632A KR102570927B1 (ko) 2018-08-10 2019-08-12 응답 수신 및 송신 방법, 재전송 방법, 통신 설비 및 저장 매체
EP19846290.5A EP3836460A4 (en) 2018-08-10 2019-08-12 RESPONSE RECEIVING AND TRANSMITTING METHOD, REPLY METHOD, COMMUNICATION DEVICE AND STORAGE MEDIA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810910233.3 2018-08-10
CN201810910233.3A CN110535568B (zh) 2018-08-10 2018-08-10 应答接收及发送方法、重传方法、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2020030173A1 true WO2020030173A1 (zh) 2020-02-13

Family

ID=68657275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100173 WO2020030173A1 (zh) 2018-08-10 2019-08-12 应答接收及发送方法、重传方法、通信设备及存储介质

Country Status (5)

Country Link
US (1) US11924682B2 (zh)
EP (1) EP3836460A4 (zh)
KR (1) KR102570927B1 (zh)
CN (1) CN110535568B (zh)
WO (1) WO2020030173A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022061648A1 (en) 2020-09-24 2022-03-31 Apple Inc. Systems and methods for network-side ul cancellation using interlaced frequency resource allocation
WO2022061634A1 (en) * 2020-09-24 2022-03-31 Apple Inc. Ue handling of interlaced ul cancellation indication
CN113490268A (zh) * 2021-06-28 2021-10-08 泰凌微电子(上海)股份有限公司 音频数据无线传输方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101568181A (zh) * 2008-04-23 2009-10-28 中兴通讯股份有限公司 非调度业务资源配置方法及系统、无线网络控制器
CN106788912A (zh) * 2016-11-04 2017-05-31 北京展讯高科通信技术有限公司 基站、用户设备及上行数据传输方法
WO2018084559A1 (en) * 2016-11-04 2018-05-11 Samsung Electronics Co., Ltd. Method and apparatus for grant-free data transmission in wireless communication system
CN108023671A (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 一种数据传输方法、基站、用户设备及系统
CN108207020A (zh) * 2016-12-19 2018-06-26 中国电信股份有限公司 上行免调度传输方法、终端和基站
CN108347321A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 一种通信方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378306B (zh) * 2007-08-31 2012-07-04 华为技术有限公司 控制信道分配及ack/nack信道分配指示的方法和装置
CN102098151B (zh) * 2010-12-28 2015-08-12 中兴通讯股份有限公司 一种正确/错误应答消息的发送方法及用户终端
CN113541882B (zh) * 2012-03-05 2024-04-09 三星电子株式会社 用于无线通信的用户设备和基站的装置及其方法
CN103684705A (zh) * 2012-09-10 2014-03-26 中兴通讯股份有限公司 传输harq应答信息以及csi的方法、装置和系统
WO2017218785A1 (en) 2016-06-15 2017-12-21 Convida Wireless, Llc Grant-less uplink transmission for new radio
CN115884403A (zh) * 2017-01-06 2023-03-31 中兴通讯股份有限公司 数据传输方法、设备及存储介质
US10652866B2 (en) * 2017-03-20 2020-05-12 Huawei Technologies Co., Ltd. Systems and methods for supporting asynchronous uplink HARQ and multiple simultaneous transmissions
AU2017405969B2 (en) * 2017-03-23 2021-01-28 Huawei Technologies Co., Ltd. Configuration, indication and ACK/NACK for multiple HARQ grant-free transmission
US10499386B2 (en) * 2017-06-15 2019-12-03 Sharp Kabushiki Kaisha Procedure, base station and user equipment for uplink transmission without grant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101568181A (zh) * 2008-04-23 2009-10-28 中兴通讯股份有限公司 非调度业务资源配置方法及系统、无线网络控制器
CN106788912A (zh) * 2016-11-04 2017-05-31 北京展讯高科通信技术有限公司 基站、用户设备及上行数据传输方法
WO2018084559A1 (en) * 2016-11-04 2018-05-11 Samsung Electronics Co., Ltd. Method and apparatus for grant-free data transmission in wireless communication system
CN108023671A (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 一种数据传输方法、基站、用户设备及系统
CN108207020A (zh) * 2016-12-19 2018-06-26 中国电信股份有限公司 上行免调度传输方法、终端和基站
CN108347321A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 一种通信方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "HARQ indication design for UL GF transmission", 3GPP TSG RAN WG1 MEETING #88BIS, R1-1704223, 3 April 2017 (2017-04-03), XP051242375 *

Also Published As

Publication number Publication date
EP3836460A4 (en) 2022-04-20
CN110535568A (zh) 2019-12-03
CN110535568B (zh) 2022-05-03
US20210297194A1 (en) 2021-09-23
KR102570927B1 (ko) 2023-08-25
KR20210040418A (ko) 2021-04-13
US11924682B2 (en) 2024-03-05
EP3836460A1 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
US20230130137A1 (en) Method, apparatus and system for transmitting and receiving control channel of wireless communication system
US11558889B2 (en) User equipment and base station for mobile communication system
JP5813809B2 (ja) 制御情報を伝送する方法及びそのための装置
US8989118B2 (en) Uplink control channel resource mapping for an enhanced PDCCH in LTE systems
US11601987B2 (en) Collision handling between STTI and TTI transmissions
CA2833750C (en) Apparatus and method for transmitting acknowledgement information in a tdd communication system
JP5433792B2 (ja) アップリンク制御チャンネル資源配置方法および装置
US9578638B2 (en) Method and apparatus for transmitting control information in wireless communication system
KR101875253B1 (ko) 다중 셀 통신 네트워크에서의 제어 타이밍 구성 할당을 위한 기지국, 사용자 장비 및 이들에서의 방법
JP6526231B2 (ja) 制御情報を送信するための方法、ユーザ機器、及び基地局
US9893845B2 (en) Method for transmitting uplink response signals, base station, mobile station and communication system
WO2020030173A1 (zh) 应答接收及发送方法、重传方法、通信设备及存储介质
JP2020522198A (ja) フィードバックシグナリングのためのサイズ指示
US20130242913A1 (en) Method for transmitting uplink response signal, terminal equipment and base station
JP2013535925A (ja) 上り応答信号を伝送する方法、移動端末及びマルチキャリア通信システム
RU2795154C1 (ru) Способ и аппарат оптимизации информации, устройство и носитель данных
CN108668365B (zh) 一种数据传输方法、基站及用户设备
JP6274311B2 (ja) 基地局、受信確認方法、およびプログラムが記憶された記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019846290

Country of ref document: EP

Effective date: 20210310