WO2020030171A1 - 信道状态信息的上报和处理方法、设备及存储介质 - Google Patents

信道状态信息的上报和处理方法、设备及存储介质 Download PDF

Info

Publication number
WO2020030171A1
WO2020030171A1 PCT/CN2019/100165 CN2019100165W WO2020030171A1 WO 2020030171 A1 WO2020030171 A1 WO 2020030171A1 CN 2019100165 W CN2019100165 W CN 2019100165W WO 2020030171 A1 WO2020030171 A1 WO 2020030171A1
Authority
WO
WIPO (PCT)
Prior art keywords
subband
subbands
csi
state information
channel state
Prior art date
Application number
PCT/CN2019/100165
Other languages
English (en)
French (fr)
Inventor
李永
吴昊
李儒岳
鲁照华
陈艺戬
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/266,740 priority Critical patent/US12009893B2/en
Priority to EP19848507.0A priority patent/EP3836439A4/en
Publication of WO2020030171A1 publication Critical patent/WO2020030171A1/zh
Priority to US18/660,393 priority patent/US20240291540A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0641Differential feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/066Combined feedback for a number of channels, e.g. over several subcarriers like in orthogonal frequency division multiplexing [OFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Definitions

  • the present disclosure relates to the field of wireless communications, and for example, to a method, a device, and a storage medium for reporting and processing channel state information.
  • the multi-antenna technology precoding technology improves the performance of communications by applying precoding to the transmitting antenna.
  • the transmitting side transmits a reference signal (RS, Reference Signal) on a resource
  • the receiving side uses the reference signal to measure channel state information (CSI, Channel State Information), and then feeds back the measured value in the form of precoding.
  • Channel status Precoding is usually fed back in the form of Precoding Matrix Indication (PMI) information.
  • PMI Precoding Matrix Indication
  • the precoding is formed by a linear combination of multiple vectors, and the precoding information is fed back by feeding back the vector or the coefficients of the vector.
  • the coefficients of the vector include the magnitude and coefficients of the coefficients.
  • the phase
  • the vectors constituting the precoding are determined, and then the amplitudes of the corresponding vectors and the phases of the corresponding vectors are fed back respectively.
  • the subband that reports the channel status it is usually reported in the same way. There is no difference in the reporting method between the subbands, which causes too much repeated information reported between the subbands, and a large amount of redundant information, which occupies Reporting resources reduces resource utilization, increases the energy consumption of the reporting terminal, and reduces the accuracy of the channel status report.
  • the present disclosure provides a method, a device, and a storage medium for reporting and processing channel state information, which are used to solve the problem that there is no difference in reporting methods between subbands in the related art, which causes too much duplicated information and redundant information to be reported between subbands. Large amount, not only occupying the reporting resources, reducing the resource utilization rate, but also increasing the energy consumption of the reporting terminal, and reducing the accuracy of the channel status report.
  • the present disclosure provides a method for reporting channel state information, including: dividing M subbands to be reported into two sets, wherein the first set includes N of the M subbands, M is a positive integer greater than 1, N is a positive integer greater than or equal to 1, and MN ⁇ 1; determining the channel state information CSI of each subband in the second set and the CSI of the reference subband corresponding to each subband The relative value between each; the CSI of each subband in the first set and the relative value of each subband in the second set are reported to the base station.
  • the present disclosure further provides a method for processing channel state information, including: receiving channel state information CSI of each subband in a first set and a relative value of each subband in a second set sent by a terminal, where , The relative value is a relative value between the CSI of each subband in the second set and the CSI of a reference subband corresponding to each subband, and the number of subbands in the first set and the first
  • the sum of the number of subbands in the two sets is M, and M is an integer greater than 1.
  • the first CSI for each subband in the two sets According to the relative value of each subband in the second set and the CSI of the reference subband corresponding to each subband, the first CSI for each subband in the two sets.
  • the present disclosure further provides a device for reporting channel state information, the device including: a processor, a memory, and a communication bus;
  • the communication bus is configured to implement connection and communication between the processor and the memory
  • the processor is configured to execute a program for reporting channel state information stored in the memory, so as to implement the method in the foregoing embodiment.
  • the present disclosure further provides a device for processing channel state information, the device including: a processor, a memory, and a communication bus;
  • the communication bus is configured to implement connection and communication between the processor and the memory
  • the processor is configured to execute a processing program for channel state information stored in the memory, so as to implement the method in the foregoing embodiment.
  • the present disclosure further provides a storage medium storing a computer program, and the computer program is executed by a processor to implement the foregoing method.
  • the present disclosure further provides a storage medium storing a computer program, and the computer program is executed by a processor to implement the foregoing method.
  • the present disclosure divides the subbands to be reported into two sets, normally sends the channel state information of the subbands in the first set, and determines and sends the relative channel state information between each subband in the second set and its reference subband. Value, so that the subbands in the second set do not need to report the same channel state information part as the reference subband, only the relative value of the channel state information between the subband and the reference subband can be reported, which reduces the redundancy.
  • the reporting of channel state information saves the overhead of reporting resources, improves the utilization efficiency of reporting resources, and further improves the accuracy of channel state reporting.
  • FIG. 1 is a flowchart of a method for reporting channel state information in a first embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for processing channel state information in a second embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a device for reporting or processing channel state information in the third and fourth embodiments of the present disclosure.
  • the present disclosure provides a method, a processing method, and a storage medium for reporting channel state information.
  • the present disclosure is described in further detail below with reference to the drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present disclosure, but not to limit the present disclosure.
  • the first embodiment of the present disclosure provides a method for reporting channel state information, which is mainly applied to a reporting side device that reports channel state information.
  • the flowchart is shown in FIG. 1 and mainly includes steps S101 to S103:
  • the subband is a unit in the frequency domain.
  • the channel state information can be expressed through various parameters, such as the precoding of the base station side (ie, the transmitting side) antenna, or the antenna channel coefficient matrix from the base station to the terminal, or the correlation matrix of the antenna channel coefficient matrix; the channel state
  • the information may also be coefficients participating in the precoding vector, or the magnitude of the coefficients participating in the precoding vector, or the phase of the coefficients participating in the precoding vector; or the channel state information may also be an antenna channel coefficient matrix.
  • the channel state information may also be the received power (RSRP, Reference Signal) of the reference signal sent by the transmitting side received by the terminal, or the received quality (RSRQ, Reference Signal) of the reference signal sent by the transmitted side received by the terminal. Receiving Quality), or the received power RSRP of the synchronization signal, or the received quality RSRQ of the synchronization signal.
  • the channel state information may also be a quality indicator (CQI, Channel Quality Indicator) of a data transmission channel from the base station to the terminal.
  • CQI Channel Quality Indicator
  • the method provided in this embodiment is mainly applied to a case where the channel state information includes at least one of the following parameters: the coefficients that participate in the combination of the pre-encoded vectors, the magnitudes of the coefficients that participate in the pre-encoded vectors, Phases of the coefficients that make up the precoded vector.
  • the coefficients of the vectors of the second set of subbands only the relative values of the coefficients of the vectors of the subbands in the second set may be reported when reporting.
  • the transmitting side receives the vectors of the subbands in the second set reported by the reporting side.
  • the coefficients of the vectors of the subbands in the second set may be determined according to the relative values and the coefficients of the vectors of the reference subbands. For the phase or coefficient magnitude of the coefficients of the vectors of the second set of subbands
  • the reporting and processing procedures are similar to the reporting and processing procedures of the coefficients of the vectors of the second set of subbands, and details are not described herein again.
  • the reference subband corresponding to each subband in the second set includes at least one subband in the first set.
  • the subband in the first set may be The reference subband of each subband in the second set; if there are multiple subbands in the first set, the subbands in the second set can be divided into corresponding groups according to each subband in the first set, Each subband is a reference subband of a corresponding subband group in the second set; or, the subbands in the first set are divided into multiple subband groups, and the subbands in the second set are divided into subband groups in the first set.
  • each subband group in the first set is a reference subband of the corresponding subband group in the second set; or, there are multiple subbands in the first set, which are reference subbands of some subbands in the second set band.
  • the setting of the reference subband of each subband in the second set can be set uniformly by the transmitting side, or manually by the commissioning operation and maintenance personnel, or set by the reporting side according to the actual situation.
  • the reference subband When the band is set by the reporting side, the setting of the reference subband corresponding to each subband in the second set should be reported to the transmitting side together, so that the transmitting side can obtain the corresponding subband in the second set according to the setting.
  • Channel state information is a reference subband of the corresponding subband group in the second set.
  • the reference subband corresponding to each subband in the second set may also be at least one subband in the first set or an adjacent subband of the subband, where at least one subband should be in the second set
  • the reference subband of is at least one subband in the first set.
  • Adjacent subbands are the second set of subbands, and the adjacent subbands to the subband to which the current channel state information belongs may specifically be the lower frequency side or the higher frequency side of the current subband, for example, the first The set includes subband 0, and the second set includes subbands 1 to 5. Then, the adjacent subbands of subband 2 are subband 1 and subband 3. When determining the reference subband of subband 2, subbands can be used.
  • subband 1 is used as the reference subband of subband 2
  • subband 3 may be used as the reference subband of subband 2
  • subband 1 and subband 3 are set as the reference subband of subband 2 at the same time
  • the subbands are subband 0 and subband 2.
  • the reference subband of subband 1 can be subband 0 or subband 2. That is, the reference subband of subband 1 can be the subband in the first set or the second set. Subband.
  • each subband in the second set will correspond to a reference subband.
  • This reference subband belongs to either the first set or the second set. If the reference subband belongs to the second set, then this The reference subband should also have its own reference subband. This reference subband belongs to either the first set or the second set. Then, according to the above link relationship, there will eventually be a reference to a subband in the second set.
  • the subbands belong to the first set, and it does not appear that all the subbands in the second set are reference subbands in the second set to ensure the computability and accuracy of the channel state information of the subbands in the second set Sex.
  • the reporting side receives the reference signal sent by the transmitting side, and reports the channel state information of the corresponding bandwidth according to the reference signal.
  • the M subbands constituting the bandwidth are first divided into two different subbands.
  • Band set where M is a positive integer greater than 1, the first set includes N subbands, N is a positive integer greater than or equal to 1, and the corresponding set in the second set includes MN subbands, and MN ⁇ 1.
  • M is a positive integer greater than 1
  • N is a positive integer greater than or equal to 1
  • the corresponding set in the second set includes MN subbands, and MN ⁇ 1.
  • the specific value of N can be set by the reporting side according to the actual situation, or set by the transmitting side according to the actual situation, or manually set by the commissioning operation and maintenance personnel.
  • the channel quality can be divided according to the channel quality CQI.
  • the channel quality of each subband in the M subbands is first calculated, and then the first N subbands with the highest channel quality are selected.
  • the band is used as the subband in the first set, and the remaining MN subbands are used as the subband in the second set. Since the subband in the second set must have a reference subband as the subband in the first set Therefore, it is ensured that the channel quality of the subbands in the first set is high, which is helpful to improve the reporting accuracy of the channel state information.
  • the first set has at least one of the following characteristics:
  • the sequence number difference between the center-sub-frequency sub-bands and the lowest-frequency sub-band among the D sub-bands is D1.
  • the sequence number difference between subbands is D2, and the absolute value of the difference between D1 and D2 does not exceed 1.
  • the first set includes one of the subbands located at both ends of the frequency domain in the report subband, such as the report subband.
  • the lowest frequency subband, or the highest frequency subband in the report subband can provide the initial reference subbands for the subbands in the second set to form a simple link between the reference subbands, reducing the link's Complexity to reduce the complexity of the channel state information reported by the terminal. For example, when M is equal to 6, and N is equal to 1, the subbands to be reported are ⁇ 0, 1, 2, 3, 4, 5 ⁇ , where the frequency of subband 0 is the lowest, and the first set includes subband 0.
  • the second set includes subband 1 to subband 5, then the reference subband link relationship of each subband in the second set can be: subband 0 is the reference subband of subband 1, and subband 1 is subband 2 Sub-band 2 is a reference sub-band of sub-band 3, sub-band 3 is a reference sub-band of sub-band 4, and sub-band 4 is a reference sub-band of sub-band 5.
  • subband 5 has the highest frequency, and it is classified into the first set, and the remaining subbands are the second set.
  • the reference subband link relationship of each subband in the second set may be: subband 5 is subband 4 Subband 4, subband 4 is the reference subband of subband 3, subband 3 is the reference subband of subband 2, subband 2 is the reference subband of subband 1, and subband 1 is the reference of subband 0 Subband.
  • the link relationship between the subbands in the second set is simple, and the correlation of the channel state information of adjacent subbands can be continuously used, which simplifies the complexity of reporting channel state information.
  • the channel state information has a continuous change trend from low to high frequency, or the channel state information has a continuous change trend from high to low frequency. This trend brings simplification on the reporting side, such as the phase is positive. Change, or all changes are negative, etc., multiple subbands or all subbands need only report the direction of phase change once, and do not need to report the direction of phase change for each subband.
  • the first set includes subbands that report centered frequency positions in the M subbands, which can provide the initial reference subbands for the subbands in the second set, reducing the maximum length of the reference subband link and further reducing Cumulative error from end to end of the link.
  • the CSI of each subband in the second set should be calculated first, and according to each subband
  • the relationship between the corresponding reference subbands of the bands is used to determine the CSI value of the corresponding reference subband, and then the relative value of each subband is determined according to the CSI value of each subband and the CSI value of the corresponding reference subband.
  • the base station receives the relative value between the subband in the second set reported by the terminal and the reference subband, it can calculate the neutron in the second set according to the CSI and relative value of the reference subband and according to a preset function.
  • the preset CSI value may be a calculation function agreed in advance by the base station and the terminal. The specific execution process of the function is determined according to the actual situation.
  • the first set includes subband 0, subband 2 and subband 4
  • the second set includes subband 1, subband 3, and subband 5
  • the reference subband of subband 1 is subband 0 and subband 3
  • the reference subband is subband 2
  • the reference subband of subband 5 is subband 4.
  • the terminal calculates the channel state information from subband 0 to subband 5 as C0, C1, C2, C3, C4, and C5.
  • the first set includes subband 0, the second set includes subbands 1 to 3, the reference subband of subband 1 is 1, the reference subband of subband 2 is 1, and the reference subband of subband 3 is 2.
  • the terminal calculates the channel state information from subband 0 to subband 3 as C0, C1, C2, and C3.
  • the relative value between the bands I2 C2-C1
  • the terminal reports, it only needs to report the channel state information C0 of the subband 0 in the first set, and the relative values I1, I2, and I3 of the subband in the second set.
  • the number of reference subbands corresponding to each subband in the second set may be one or multiple.
  • the subband The relative value of the band is determined according to the CSI of multiple reference subbands and the CSI value of the subband.
  • the base station side is determined according to the relative value of the subband and the CSI values of its corresponding multiple reference subbands.
  • the relative value of the subband in the second set is the product of the relative value and the product factor.
  • the relative value of each subband can be different.
  • Each subband in the second set is reported separately, but the product factor is The second set in the report can use the same multiplication factor, and only needs to be reported once when reporting, which can further reduce the content to be reported and improve the resource utilization efficiency.
  • the base station or terminal may change the dynamic range of the relative value of the subband in the second set only by changing the size of the multiplication factor.
  • the multiplication factor may appear in the form of a maximum value, a unit, or a scaling factor.
  • the value of the multiplication factor may be a numerical value or a physical quantity having a size and a direction.
  • the multiplication factor when the CSI reported by the terminal is the phase of the coefficients participating in the pre-encoded vector, the multiplication factor can be expressed as radians or angles, and the value of the value can indicate the direction, and the magnitude of the value indicates the amplitude of the rotation, such as a positive number Indicates clockwise rotation, negative numbers indicate counterclockwise rotation; when the multiplication factor appears in the form of a scaling factor, the multiplication factor can only be a numerical value, and only the size of the specific scaling need be indicated.
  • the foregoing multiplication factor may be determined according to a CSI value of each subband in the first set.
  • the quantized granularity of the CSI of the subbands in the first set is used as the maximum value of the relative value of the subbands in the second set, and it can also be used as a unit of the relative value; or the quantized granularity of the CSI of the subbands in a set
  • the function of reporting the maximum value or unit of the relative value of the subbands in the second set or the function of the number of bits used by the first set of subbands and / or the number of quantized values as the relative value of the subbands in the second set.
  • the maximum value or unit of the value or, calculating the change amount of CSI with the subband number or subband difference according to the CSI and the subband number of the first set of subbands, and using the change amount or the function of the change amount as the second set.
  • the number of bits used to report the CSI of each subband in the first set should be greater than the number of bits reported.
  • Each subband in the second set will correspond to a reference subband. This reference subband belongs to either the first set or the second set.
  • this reference subband should also Has its own reference subband, and this reference subband belongs to either the first set or the second set, then, according to the above link relationship, there will be a reference subband of the subband in the second set eventually belonging to the first Set, and it does not appear that all reference subbands in the second set are subbands in the second set. Therefore, increasing the number of bits used to report the CSI of a subband in the first set can improve the reporting accuracy corresponding to the first set, which is equivalent to improving the accuracy of the reference subband corresponding to the subband in the second set, thereby improving the channel state information. Reporting accuracy, while reducing the number of bits used to report the second set, reducing the reporting resource overhead.
  • the state of the bit can be used to determine the reference of the CSI of each subband in the second set with respect to the subband. Whether the CSI of the subband changes. Specifically, the zero state of the bits indicates that the CSI of each subband in the second set is unchanged from the CSI of the reference subband of the subband.
  • the corresponding base station side When the corresponding base station side receives the 0 state bit, it can directly determine the second The CSI of the subband in the set is the same as the CSI of its corresponding reference subband; the non-zero state (ie, the 1 state) of the bit indicates that the CSI of each subband in the second set is preset according to the CSI of its corresponding reference subband
  • the direction and size of the base station can be changed.
  • the preset direction and size can be pre-negotiated values between the base station and the terminal.
  • the base station receives the bit in the 1 state, it can directly refer to the subband in the second set. Based on the CSI with the tape, the preset size can be changed according to the preset direction.
  • the subbands to be reported are divided into two sets.
  • the channel state information of the subbands in the first set is normally transmitted, and the channel state information between each subband in the second set and its reference subband is determined and sent.
  • Relative value so that the subbands in the second set do not need to report the same channel state information part as the reference subband. Only the relative value of the channel state information between the reference subband and the reference subband can be reported, which reduces redundancy.
  • the reporting of the remaining channel state information saves the overhead of reporting resources, improves the utilization efficiency of the reporting resources, and further improves the accuracy of the channel state report.
  • the second embodiment of the present disclosure provides a method for processing channel state information, which is mainly applied to a transmitting-side device that receives channel state information.
  • the flowchart is shown in FIG. 2 and mainly includes steps S201 and S202:
  • the method provided in this embodiment is mainly applied to a case where the channel state information includes at least one of the following parameters: the coefficients that participate in the precoding vector, the magnitude of the coefficients that participate in the precoding vector, and the The phase of the coefficients of the vector.
  • the terminal only needs to report the relative values of the coefficients of the vectors of the subbands in the second set when reporting.
  • the base station receives the After the relative values of the coefficients, the coefficients of the vectors of the subbands in the second set may be determined according to the relative values and the coefficients of the vectors of the reference subbands.
  • the base station After receiving the relative value of a certain subband in the second set, calculates the CSI of the subband according to the relative value and the CSI value of its reference subband.
  • the reference subbands of the subbands in the second set include at least one subband in the first set.
  • the base station determines according to the relative value of each subband in the second set and the CSI of the reference subband corresponding to each subband.
  • the CSI of each subband in the second set may specifically be: substituting the relative value of each subband in the second set and the CSI of at least one of the following subbands into a first preset function, that is, subbands in the first set
  • the CSI value is substituted into the first preset function to determine the CSI of each subband in the second set:
  • the specific content of the first preset function may be predetermined by the base station and the terminal. After receiving the relative values of the subbands in the second set, the base station combines the CSI values of the corresponding reference subbands according to the first preset function. The content of the function calculates the CSI value of the subband in the second set.
  • subband i is a subband in the second set, and the relative value of the channel state information of subband i is Ii; subband 0 is the lowest frequency subband of all the reported subbands, and the channel of subband 0
  • the status information is C0; subband 1 is the highest frequency subband reported among all subbands, and channel state information of subband 1 is C1; subband 2 is the reported subband where the frequency position is in the middle ,
  • the channel state information of subband 2 is C2; the channel state information of subband i is denoted as Ci, then Ci is calculated by a function consisting of one of Ii and ⁇ C0, C1, C2 ⁇ , that is, the first preset function.
  • the first preset function is not limited to the addition or multiplication described in this embodiment, but may also be a combination of any other calculation methods, and after the first preset function is agreed, the terminal should The inverse calculation mode of the preset function is used to calculate the relative value of the subbands in the second set.
  • the reference subbands of the subbands in the second set may further include at least one subband in the first set or an adjacent subband of each subband, where at least one of the subbands in the second set is a reference subband.
  • the band is at least one subband in the first set.
  • the relative value of each subband in the second set and the CSI of an adjacent subband of each subband are substituted into a second preset function to determine the second set.
  • subband 1 is a subband in the second set, and the relative value of its channel state information is I1.
  • Subband 2 is an adjacent subband of subband 1
  • its channel state information is C2
  • the subband is 2 is a reference subband of subband 1.
  • the channel state information of subband 1 is a combination of I1 and C2, or a function of I1 and C2, that is, a second preset function.
  • the second preset function is not limited to the addition or multiplication described in this embodiment, and may be a combination of any other calculation methods.
  • the terminal should calculate the relative value of the subband in the second set according to the inverse calculation mode of the second preset function.
  • the first preset function and the second preset function may be the same or different.
  • the first preset function and the second preset function may be used at the same time, or only one of them may be used. The situation depends on the setting of the reference subband.
  • This embodiment can obtain the channel state information of the subband in the second set according to the relative value of the channel state information of the subband in the second set and the channel state information value of the reference subband, so that the terminal does not need to report when reporting.
  • the same channel state information part as the reference subband can only report the relative value of the channel state information between the reference subband, which reduces the reporting of redundant channel state information, saves the overhead of reporting resources, and improves The reporting resource utilization efficiency further improves the accuracy of the channel status report.
  • a third embodiment of the present disclosure provides a device for reporting channel state information, where the device includes: a processor 301, a memory 302, and a communication bus;
  • the communication bus is used to implement connection and communication between the processor 301 and the memory 302;
  • the processor 301 is configured to execute a program for reporting channel state information stored in the memory 302 to implement the following steps:
  • the M subbands to be reported are divided into two sets, where the first set includes N of the M subbands, M is a positive integer greater than 1, N is a positive integer greater than or equal to 1, and MN ⁇ 1;
  • a fourth embodiment of the present disclosure provides a device for processing channel state information.
  • the device includes: a processor 301, a memory 302, and a communication bus;
  • the communication bus is used to implement connection and communication between the processor 301 and the memory 302;
  • the processor 301 is configured to execute a processing program of the channel state information stored in the memory 302 to implement the following steps:
  • a fifth embodiment of the present disclosure provides a storage medium that stores a computer program.
  • the computer program is executed by a processor, the following steps are implemented:
  • the storage medium in this embodiment may be installed on a device having a channel state information reporting function. Since the specific steps of the method for reporting channel state information have been described in detail in the first embodiment, details are not described in this embodiment.
  • a sixth embodiment of the present disclosure provides a storage medium that stores a computer program. When the computer program is executed by a processor, the following steps are implemented:
  • S21 Receive the channel state information CSI of each subband in the first set and the relative value of each subband in the second set sent by the terminal;
  • the storage medium in this embodiment may be installed on a device having a channel state information processing function. Since the specific steps of the method for processing channel state information have been described in detail in the second embodiment, details are not described in this embodiment.
  • the foregoing storage medium may include, but is not limited to, a universal serial bus flash disk (Universal Serial Bus Flash Disk (U disk)), a read-only memory (ROM, Read-Only Memory), and a random storage Access to various media that can store program code, such as RAM (Random Access Memory), mobile hard disk, magnetic disk or optical disk.
  • the processor executes the method steps described in the foregoing embodiment according to the program code stored in the storage medium.
  • modules or steps of the present disclosure may be implemented by a general-purpose computing device, and they may be centralized on a single computing device or distributed on a network composed of multiple computing devices. Above, optionally, they may be implemented with program code executable by a computing device, so that they may be stored in a storage device and executed by the computing device, and in some cases, may be in a different order than here
  • the steps shown or described are performed either by making them into individual integrated circuit modules or by making multiple modules or steps into a single integrated circuit module. As such, the present disclosure is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了一种信道状态信息的上报和处理方法、设备及存储介质,该信道状态信息的上报方法包括:将待上报的M个子带划分为两个集合;确定第二集合中每个子带的信道状态信息CSI与每个子带对应的参考子带的CSI之间的相对值;向基站报告第一集合中每个子带的CSI以及第二集合中每个子带的相对值。

Description

信道状态信息的上报和处理方法、设备及存储介质
本申请要求在2018年08月10日提交中国专利局、申请号为201810909262.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及无线通信领域,例如涉及一种信道状态信息的上报和处理方法、设备及存储介质。
背景技术
在无线通信技术中,多天线技术的预编码技术,通过给发射天线施加预编码(Precoding)以提高通信的性能。通常,发射侧在一个资源(Resource)上,发射一个参考信号(RS,Reference Signal),接收侧利用参考信号测量信道状态信息(CSI,Channel State Information),再以预编码的形式反馈所测量的信道状态。预编码通常以预编码矩阵指示(PMI,Precoding Matrix Indicator)信息的方式反馈。为了提高以预编码形式反馈信道状态的精度,预编码以多个矢量的线性组合构成,以反馈组成预编码的矢量或矢量的系数等方式反馈预编码信息,矢量的系数包括系数的幅度与系数的相位。
相关技术中,首先确定组成预编码的矢量,再分别反馈对应矢量的幅度与对应矢量的相位。在上报信道状态的子带(Subband)上,通常以相同的方式进行上报,子带之间的上报方式没有差异,造成子带之间上报的重复信息过多,冗余信息量大,既占用上报资源,使资源利用率降低,又增加了上报终端的能量消耗,降低了信道状态报告的精度。
发明内容
本公开提供一种信道状态信息的上报和处理方法、设备及存储介质,用以解决相关技术中子带之间的上报方式没有差异,造成子带之间上报的重复信息过多,冗余信息量大,既占用上报资源,使资源利用率降低,又增加了上报终端的能量消耗,降低了信道状态报告的精度的问题。
在一实施例中,本公开提供一种信道状态信息的上报方法,包括:将待上报的M个子带划分为两个集合,其中,第一集合中包括所述M个子带中的N个,M为大于1的正整数,N为大于或等于1的正整数,且M-N≥1;确定第二集合中每个子带的信道状态信息CSI与所述每个子带对应的参考子带的CSI之间的相对值;向基站报告所述第一集合中每个子带的CSI以及所述第二集合中 每个子带的所述相对值。
在一实施例中,本公开还提供一种信道状态信息的处理方法,包括:接收终端发送的第一集合中每个子带的信道状态信息CSI以及第二集合中每个子带的相对值,其中,所述相对值为所述第二集合中每个子带的CSI与所述每个子带对应的参考子带的CSI之间的相对值,所述第一集合中的子带数量与所述第二集合中子带的数量之和为M,M为大于1的整数;根据所述第二集合中每个子带的相对值以及所述每个子带对应的参考子带的CSI,确定所述第二集合中每个子带的CSI。
在一实施例中,本公开还提供一种信道状态信息的上报设备,所述设备包括:处理器、存储器及通信总线;
所述通信总线设置为实现所述处理器和所述存储器之间的连接通信;
所述处理器设置为执行所述存储器中存储的信道状态信息的上报程序,以实现上述实施例中的方法。
在一实施例中,本公开还提供一种信道状态信息的处理设备,所述设备包括:处理器、存储器及通信总线;
所述通信总线设置为实现所述处理器和所述存储器之间的连接通信;
所述处理器设置为执行所述存储器中存储的信道状态信息的处理程序,以实现上述实施例中的方法。
在一实施例中,本公开还提供一种存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述的方法。
在一实施例中,本公开还提供一种存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述的方法。
本公开将待上报的子带分为两个集合,正常发送第一集合中的子带的信道状态信息,确定并发送第二集合中的每个子带与其参考子带之间信道状态信息的相对值,使第二集合中的子带在上报时不需要报告与参考子带上相同的信道状态信息部分,只上报与参考子带之间信道状态信息的相对值即可,减少了对冗余的信道状态信息的报告,节省了上报资源的开销,提高了上报资源的利用效率,进一步提高了信道状态报告的精度。
附图说明
图1是本公开第一实施例中的一种信道状态信息的上报方法的流程图;
图2是本公开第二实施例中的一种信道状态信息的处理方法的流程图;
图3是本公开第三、四实施例中的一种信道状态信息的上报或处理设备的组成结构示意图。
具体实施方式
为了解决相关技术中子带之间的上报方式没有差异,造成子带之间上报的重复信息过多,冗余信息量大,既占用上报资源,使资源利用率降低,又增加了上报终端的能量消耗,降低了信道状态报告的精度的问题,本公开提供了一种信道状态信息的上报方法、处理方法及存储介质,以下结合附图以及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不限定本公开。
本公开的第一实施例提供了一种信道状态信息的上报方法,主要应用于进行信道状态信息上报的上报侧设备,其流程图如图1所示,主要包括步骤S101至S103:
S101,将待上报的M个子带划分为两个集合;
S102,确定第二集合中每个子带的信道状态信息CSI与每个子带对应的参考子带的CSI之间的相对值;
S103,向基站报告第一集合中每个子带的CSI以及第二集合中每个子带的相对值。
在本实施例中,子带是频域上的单位,信道状态信息的上报侧,如终端等设备在报告一定带宽的的信道状态信息时,通过报告组成带宽的多个子带上的信道状态信息的方式进行。在相关技术中,信道状态信息可以通过多种参数进行表示,如基站侧(即发射侧)天线的预编码,或者基站到终端的天线信道系数矩阵,或者天线信道系数矩阵的相关矩阵;信道状态信息还可以是参与组成预编码的矢量的系数,或者参与组成预编码的矢量的系数的幅度,或者参与组成预编码的矢量的系数的相位;或者,信道状态信息还可以是组成天线信道系数矩阵的矢量的系数,或者组成天线信道系数矩阵的矢量的系数的幅度,或者组成天线信道系数矩阵的矢量的系数的相位。或者,信道状态信息还可以是终端接收到的发射侧发送的参考信号的接收功率(RSRP,Reference Signal Receiving Power),或者是终端接收到的发射侧发送的参考信号的接收质量(RSRQ,Reference Signal Receiving Quality),或者是同步信号的接收功率RSRP,或者是同步信号的接收质量RSRQ。或者,信道状态信息还可以是基站到终端的数据传输信道的质量指示(CQI,Channel Quality Indicator)。
应当了解的是,本实施例中所提供的方法,主要应用于信道状态信息至少 包括以下参数之一的情况:参与组合成预编码的矢量的系数、参与组成预编码的矢量的系数的幅度、参与组成预编码的矢量的系数的相位。例如,对于第二集合子带的矢量的系数,在上报时只报告第二集合中子带的矢量的系数的相对值即可,发射侧接收到上报侧上报的第二集合中子带的矢量的系数的相对值之后,根据相对值及其参考子带的矢量的系数确定第二集合中子带的矢量的系数即可,对于第二集合子带的矢量的系数的相位或系数的幅度,其上报和处理过程均与第二集合子带的矢量的系数的上报和处理过程相似,在此不再详细赘述。
具体地,第二集合中的每个子带对应的参考子带包括第一集合中的至少一个子带,例如,第一集合中仅有一个子带,那么,第一集合中的子带可以为第二集合中每个子带的参考子带;若第一集合中存在多个子带,则第二集合中子带可按照第一集合中每一个子带划分成对应的组,第一集合中每个子带是第二集合中对应子带组的参考子带;或者,将第一集合中的子带划分为多个子带组,第二集合中子带按照第一集合中的子带组划分成对应的组,则第一集合中每个子带组是第二集合中对应子带组的参考子带;或者,第一个集合中有多个子带,它们是第二集合中部分子带的参考子带。在实际使用时,第二集合中每个子带的参考子带的设置情况,可以由发射侧进行统一设置,或由调试运维人员人为设置,或者由上报侧根据实际情况设置,但是,参考子带由上报侧设置时,应将第二集合中每个子带对应的参考子带的设置情况一同上报至发射侧,使发射侧可以根据该设置情况,得出对应的第二集合中子带的信道状态信息。
进一步地,第二集合中的每个子带对应的参考子带还可以为第一集合中的至少一个子带或该子带的相邻子带,其中,第二集合中应当至少有一个子带的参考子带为第一集合中的至少一个子带。相邻子带为第二集合的子带中,与当前信道状态信息所属子带的相邻子带,具体可以为当前子带的较低频率一侧或较高频率一侧,例如,第一集合中包括子带0,第二集合中包括子带1至5,那么子带2的相邻子带为子带1和子带3,在确定子带2的参考子带时,可以使用子带1作为子带2的参考子带,也可以将子带3作为子带2的参考子带,或者将子带1和子带3同时设置为子带2的参考子带;子带1的相邻子带为子带0和子带2,子带1的参考子带可以为子带0或子带2,即子带1的参考子带可以为第一集合中的子带,或者第二集合中的子带。
需要说明的是,在第二集合中的每一个子带都会对应一个参考子带,这个参考子带或者属于第一集合,或者属于第二集合,如果参考子带属于第二个集合,那么这个参考子带也应当具有一个其自身的参考子带,这个参考子带或者属于第一集合,或者属于第二集合,那么,按照上述链接关系,在第二集合中最终会有一个子带的参考子带属于第一集合,并且不会出现第二集合中所有子带的参考子带均为第二集合中的子带,以保证第二集合中子带的信道状态信息 的可计算性以及精确性。
在本实施例中,上报侧接收发射侧发送的参考信号,并根据参考信号,上报对应带宽的的信道状态信息,并且在报告之前,首先将组成带宽的M个子带划分为两个不同的子带集合,其中,M为大于1的正整数,第一集合中包括N个子带,N为大于或等于1的正整数,第二集合内对应的包括M-N个子带,且M-N≥1,应当了解的是,N的具体数值可以由上报侧根据实际情况自行设定,或者由发射侧根据实际情况主动设置,或者由调试运维人员人为设置。
具体地,将M个子带划分为两个集合时,可以按照信道质量CQI为标准进行划分,在划分时,首先计算M个子带中每个子带的信道质量,然后选择信道质量最高的前N个子带作为第一集合中的子带,剩余的M-N个子带作为第二集合中的子带,由于第二集合中的子带一定会有一条子带的参考子带为第一集合中的子带,因此保证第一集合内子带的信道质量高,有益于提升信道状态信息的上报精度。
或者,在确定第一集合中的子带时,保证第一集合至少具有以下特征之一:
(1)至少包括M个子带中频率最低的子带;
(2)至少包括M个子带中频率最高的子带;
(3)至少包括M个子带中频率位置居中的子带,其中,频率位置居中的子带与M个子带中频率最低的子带之间的序号差为D1,与M个子带中频率最高的子带之间的序号差为D2,D1与D2之间差值的绝对值不超过1。
需要说明的是,在第二集合中总会有一个子带的参考子带属于第一集合,那么,第一集合中包括报告子带中位于频域两端的子带之一,例如报告子带中频率最低的子带,或者报告子带中频率最高的子带,可以为第二集合中的子带提供最初始的参考子带,以形成简单的参考子带之间的链接,降低链接的复杂度,以减小终端上报信道状态信息的复杂度。例如,在M等于6,N等于1的情况下,需要上报的子带为{0,1,2,3,4,5},其中子带0的频率最低,则第一集合包括子带0,第二集合包括子带1至子带5,那么,第二集合中各个子带的参考子带链接关系可以为:子带0为子带1的参考子带,子带1为子带2的参考子带,子带2为子带3的参考子带,子带3为子带4的参考子带,子带4为子带5的参考子带。或者,子带5的频率最高,将其划入第一集合,剩余子带为第二集合,那么,第二集合中各个子带的参考子带链接关系可以为:子带5为子带4的参考子带,子带4为子带3的参考子带,子带3为子带2的参考子带,子带2为子带1的参考子带,子带1为子带0的参考子带。
上述第二集合的子带之间链接关系简单,并且可连续利用相邻子带的信道 状态信息的相关性,简化信道状态信息报告的复杂度。例如,信道状态信息按照频率从低到高具有连续的变化趋势,或者信道状态信息按照频率从高到低具有连续的变化趋势,这种趋势带来上报侧报告上的简化,如相位都是正向变化,或都是负向变化等,多个子带或所有子带只需要报告一次相位变化方向,而不需要针对每个子带报告相位变化的方向。
另外,第一集合中包括报告M个子带中频率位置居中的子带,可以为第二个集合中的子带提供最初始的参考子带,减小参考子带链接的最大长度,进一步减小链接的末端到初始端产生的累积误差。
在确定第二集合中每个子带的信道状态信息CSI与每个子带对应的参考子带的CSI之间的相对值时,首先应当计算出第二集合内每个子带的CSI,并且根据每个子带对应的参考子带关系,确定其对应的参考子带的CSI值,随后根据每个子带的CSI值以及其对应的参考子带的CSI值,来确定每个子带的相对值。反之,在基站接收到终端上报的第二集合中子带与参考子带之间的相对值时,可根据参考子带的CSI以及相对值,根据预设的函数,计算得到第二集合中子带的CSI值,上述预设的函数可以为基站与终端预先约定的计算函数,该函数的具体执行过程,根据实际情况确定。
例如,第一集合中包括子带0、子带2和子带4,第二集合中包括子带1、子带3和子带5,子带1的参考子带为子带0,子带3的参考子带为子带2,子带5的参考子带为子带4。终端计算出子带0至子带5的信道状态信息分别为C0、C1、C2、C3、C4和C5,此时,子带1与子带0之间的相对值I1=C1-C0,子带3与子带2之间的相对值I3=C3-C2,子带5与子带4之间的相对值I5=C5-C4。终端在上报时,只需要上报第一集合中子带0、子带2和子带4对应的信道状态信息C0、C2和C4,以及第二集合中子带的相对值I1、I3和I5即可。
再例如,第一集合中包括子带0,第二集合中包括子带1至3,子带1的参考子带为,子带2的参考子带为1,子带3的参考子带为2。终端计算出子带0至子带3的信道状态信息分别为C0、C1、C2、C3,此时,子带1与子带0之间的相对值I1=C1-C0,子带2与子带1之间的相对值I2=C2-C1,子带3与子带3之间的相对值I3=C3-C2。终端在上报时,只需要上报第一集合中子带0的信道状态信息C0,以及第二集合中子带的相对值I1、I2和I3即可。
应当了解的是,第二集合中的每个子带对应的参考子带的数量可以为一个,也可以为多个,在第二集合中子带的参考子带的数量为多个时,该子带的相对值则根据多个参考子带的CSI与该子带的CSI值共同确定。反之,基站侧在计算第二集合中子带的CSI值时,根据该子带的相对值和其对应的多个参考子带的CSI值确定。
第二集合中子带的相对值为相对值的数值与乘积因子的乘积,其中,每个子带的相对值的数值可以不相同,第二集合中各个子带分别进行上报,但是乘积因子在一次上报中第二集合可以使用同一个乘积因子,上报时只需要上报一次即可,即可以进一步减少需要上报的内容,提高资源的利用效率。另外,基站或终端可以只通过改变乘积因子的大小来改变第二集合中子带相对值的动态范围。
进一步地,乘积因子可以以最大值、单位或缩放因子的形式出现,在乘积因子以最大值或单位的形式出现时,乘积因子的值可以是一个数值,也可以是一个具有大小和方向的物理量,例如,终端上报的CSI为参与组合成预编码的矢量的系数的相位时,乘积因子可以表示为弧度或角度,其数值的正负可以表示方向,数值的大小表示旋转的幅度,如正数表示顺时针旋转,负数表示逆时针旋转;在乘积因子以缩放因子的形式出现时,乘积因子只能为数值,只需要表示具体缩放的大小即可。
在本实施例中,可以根据第一集合中每个子带的CSI值确定上述乘积因子。例如,将第一集合中子带的CSI的量化粒度作为报告第二集合中子带的相对值的最大值,也可以作为相对值数值的单位;或者将一集合中子带的CSI的量化粒度的函数作为报告第二集合中子带的相对值的最大值或单位;或者将第一集合子带使用的比特数目,和/或量化值的数目的函数作为报告第二集合中子带的相对值的最大值或单位;或者,根据第一集合子带的CSI与子带序号计算出CSI随子带序号或子带差的变化量,以此变化量或变化量的函数作为第二集合中子带的相对值的最大值或单位或缩放因子。
可选地,终端在向基站上报第一集合中每个子带的CSI以及第二集合中每个子带的相对值时,报告第一集合中每个子带的CSI所使用的比特数目应当大于报告第二集合中每个子带的相对值所使用的比特数目。在第二集合中的每一个子带都会对应一个参考子带,这个参考子带或者属于第一集合,或者属于第二集合,如果参考子带属于第二个集合,那么这个参考子带也应当具有一个其自身的参考子带,这个参考子带或者属于第一集合,或者属于第二集合,那么,按照上述链接关系,在第二集合中最终会有一个子带的参考子带属于第一集合,并且不会出现第二集合中所有子带的参考子带均为第二集合中的子带。因此提高第一集合中报告一个子带的CSI所用的比特数目,可以提高第一集合对应的报告精度,相当于提升第二集合中子带对应的参考子带的精度,进而提高了信道状态信息的报告精度,同时缩减了报告第二集合所用的比特数目,降低了报告的资源开销。
进一步地,在报告第二集合中每个子带的相对值所用的比特数目为1的情 况下,可以通过该比特的状态,来判断第二集合中每个子带的CSI相对于该子带的参考子带的CSI是否存在变化。具体地,比特的零状态表示第二集合中每个子带的CSI相对于该子带的参考子带的CSI没有变化,对应的基站侧在接收到0状态的比特时,可直接确定该第二集合中的子带的CSI与其对应的参考子带的CSI相同;比特的非零状态(即1状态)表示第二集合中每个子带的CSI相对于其对应的参考子带的CSI按照预设的方向和大小变化,其中,预设的方向和大小可以为基站和终端之间预先协商好的值,基站在接收到1状态的比特时,可直接在第二集合中子带对应的参考子带的CSI的基础上,按照预设的方向变化预设的大小即可。
本实施例将待上报的子带分为两个集合,正常发送第一集合中的子带的信道状态信息,确定并发送第二集合中的每个子带与其参考子带之间信道状态信息的相对值,使第二集合中的子带在上报时不需要报告与参考子带上相同的信道状态信息部分,只上报与参考子带之间信道状态信息的相对值即可,减少了对冗余的信道状态信息的报告,节省了上报资源的开销,提高了上报资源的利用效率,进一步提高了信道状态报告的精度。
本公开的第二实施例提供了一种信道状态信息的处理方法,主要应用于接收信道状态信息的发射侧设备,其流程图如2所示,主要包括步骤S201和S202:
S201,接收终端发送的第一集合中每个子带的信道状态信息CSI以及第二集合中每个子带的相对值;
S202,根据第二集合中每个子带的相对值以及每个子带对应的参考子带的CSI,确定第二集合中每个子带的CSI。
本实施例中所提供的方法,主要应用于信道状态信息至少包括以下参数之一的情况:参与组合成预编码的矢量的系数、参与组成预编码的矢量的系数的幅度、参与组成预编码的矢量的系数的相位。例如,对于第二集合子带的矢量的系数,终端在上报时只报告第二集合中子带的矢量的系数的相对值即可,基站接收到终端上报的第二集合中子带的矢量的系数的相对值之后,根据相对值及其参考子带的矢量的系数确定第二集合中子带的矢量的系数即可。
具体地,第一集合和第二集合中子带数量的和为M个,M为大于1的正整数,终端上报的相对值为第二集合中每个子带的CSI与每个子带对应的参考子带的CSI之间的相对值,基站接收到第二集合中某个子带的相对值之后,根据该相对值和其参考子带的CSI值计算该子带的CSI。
第二集合中子带的参考子带至少包括第一集合中的至少一个子带,此时, 基站根据第二集合中每个子带的相对值以及每个子带对应的参考子带的CSI,确定第二集合中每个子带的CSI,具体可以为:将第二集合中每个子带的相对值与至少以下子带之一的CSI代入至第一预设函数,即将第一集合中的子带的CSI值代入至第一预设函数,确定第二集合中每个子带的CSI:
至少包括M个子带中频率最低的子带;
至少包括M个子带中频率最高的子带;
至少包括M个子带中频率位置居中的子带,其中,频率位置居中的子带与M个子带中频率最低的子带之间的序号差为D1,与M个子带中频率最高的子带之间的序号差为D2,且D1与D2之间差值的绝对值不超过1。
进一步地,第一预设函数的具体内容可以为基站与终端事先约定好的,基站接收到第二集合中子带的相对值后,结合其对应参考子带的CSI值,根据第一预设函数的内容,计算得出第二集合中该子带的CSI值。例如:子带i是第二集合中的一个子带,子带i的信道状态信息的相对值为Ii;子带0是所报告的所有子带中频率最低的子带,子带0的信道状态信息为C0;子带1是所报告的所以子带中频率最高的子带,子带1的信道状态信息为C1;子带2是所报告的所以子带中频率位置居中间的子带,子带2的信道状态信息为C2;子带i的信道状态信息记为Ci,则Ci是由Ii与{C0,C1,C2}其中之一组成的函数计算而来,即第一预设函数。例如,Ci=Ii+C2,或者,Ci=Ii*C1*D,其中D是一个预设的参考数或物理量。应当了解的是,第一预设函数不仅限于本实施例中所描述的相加或相乘,还可以是其他任何计算方式的组合,并且,第一预设函数约定后,终端应当按照第一预设函数的反向计算方式,计算得出第二集合中子带的相对值。
另外,第二集合中的子带的参考子带还可以至少包括第一集合中的至少一个子带或每个子带的相邻子带,其中,第二集合中至少有一个子带的参考子带为第一集合中的至少一个子带,此时,将第二集合中每个子带的相对值与每个子带的相邻子带的CSI代入至第二预设函数,确定第二集合中每个子带的CSI。例如,子带1是第二集合中的一个子带,它的信道状态信息的相对值为I1,子带2是子带1的相邻子带,它的信道状态信息为C2,且子带2是子带1的参考子带,此时,子带1的信道状态信息为I1与C2的组合,或I1与C2的函数,即第二预设函数。如,C1=I1+C2,或者C1=I1*C2,应当了解的是,第二预设函数不仅限于本实施例中所描述的相加或相乘,还可以是其他任何计算方式的组合,并且,第二预设函数约定后,终端应当按照第二预设函数的反向计算方式,计算得出第二集合中子带的相对值。第一预设函数与第二预设函数可以相同,也可以不同,在一次上报的过程中,可以同时使用第一预设函数和第二预设函数,或者只使用二者之一,使用的情况,根据参考子带的设置而定。
本实施例根据第二集合中子带的信道状态信息相对值以及其参考子带的信道状态信息值,可对应得到第二集合中子带的信道状态信息,使终端在上报时,不需要报告与参考子带上相同的信道状态信息部分,只上报与参考子带之间信道状态信息的相对值即可,减少了对冗余的信道状态信息的报告,节省了上报资源的开销,提高了上报资源的利用效率,进一步提高了信道状态报告的精度。
本公开的第三实施例提供了一种信道状态信息的上报设备,所述设备包括:处理器301、存储器302及通信总线;
通信总线用于实现处理器301和存储器302之间的连接通信;
处理器301用于执行存储器302中存储的信道状态信息的上报程序,以实现以下步骤:
将待上报的M个子带划分为两个集合,其中,第一集合中包括所述M个子带中的N个,M为大于1的正整数,N为大于或等于1的正整数,且M-N≥1;
确定第二集合中每个子带的信道状态信息CSI与所述每个子带对应的参考子带的CSI之间的相对值;
向基站报告所述第一集合中每个子带的CSI以及所述第二集合中每个子带的所述相对值。
本公开的第四实施例提供了一种信道状态信息的处理设备,所述设备包括:处理器301、存储器302及通信总线;
通信总线用于实现处理器301和存储器302之间的连接通信;
处理器301用于执行存储器302中存储的信道状态信息的处理程序,以实现以下步骤:
接收终端发送的第一集合中每个子带的信道状态信息CSI以及第二集合中每个子带的相对值,其中,所述相对值为所述第二集合中每个子带的CSI与所述每个子带对应的参考子带的CSI之间的相对值,所述第一集合中的子带数量与所述第二集合中子带的数量之和为M,M为大于1的整数;
根据所述第二集合中每个子带的相对值以及所述每个子带对应的参考子带的CSI,确定所述第二集合中每个子带的CSI。
本公开的第五实施例提供了一种存储介质,存储有计算机程序,计算机程 序被处理器执行时实现如下步骤:
S11,将待上报的M个子带划分为两个集合;
S12,确定第二集合中每个子带的信道状态信息CSI与每个子带对应的参考子带的CSI之间的相对值;
S13,向基站报告第一集合中每个子带的CSI以及第二集合中每个子带的相对值。
本实施例中的存储介质可以被安装在具有信道状态信息上报功能的设备上。由于在第一实施例中已经对信道状态信息的上报方法的具体步骤进行了详细说明,因此,在本实施例中不再赘述。
本公开的第六实施例提供了一种存储介质,存储有计算机程序,计算机程序被处理器执行时实现如下步骤:
S21,接收终端发送的第一集合中每个子带的信道状态信息CSI以及第二集合中每个子带的相对值;
S22,根据第二集合中每个子带的相对值以及每个子带对应的参考子带的CSI,确定第二集合中每个子带的CSI。
本实施例中的存储介质可以被安装在具有信道状态信息处理功能的设备上。由于在第二实施例中已经对信道状态信息的处理方法的具体步骤进行了详细说明,因此,在本实施例中不再赘述。
可选地,在本实施例中,上述存储介质可以包括但不限于:通用串行总线闪存盘(Universal Serial Bus Flash Disk,U盘)、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例记载的方法步骤。可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。

Claims (20)

  1. 一种信道状态信息的上报方法,包括:
    将待上报的M个子带划分为两个集合,其中,第一集合中包括所述M个子带中的N个,所述M为大于1的正整数,所述N为大于或等于1的正整数,且M-N≥1;
    确定第二集合中每个子带的信道状态信息CSI与所述每个子带对应的参考子带的CSI之间的相对值;
    向基站报告所述第一集合中每个子带的CSI以及所述第二集合中每个子带的所述相对值。
  2. 如权利要求1所述的方法,其中,所述信道状态信息包括以下至少之一:参与组合成预编码的矢量的系数、所述系数的相位、所述系数的幅度。
  3. 如权利要求1所述的方法,其中,所述第二集合中的每个子带对应的参考子带包括所述第一集合中的至少一个子带。
  4. 如权利要求1所述的方法,其中,所述第二集合中的每个子带对应的参考子带包括所述第一集合中的至少一个子带或所述每个子带的相邻子带,其中,所述第二集合中至少有一个子带的参考子带为所述第一集合中的至少一个子带。
  5. 如权利要求1所述的方法,其中,所述将待上报的M个子带划分为两个集合,包括:
    计算所述M个子带中每个子带的信道质量CQI的值;
    选取信道质量的值从高到低的前N个子带作为所述第一集合中的子带;
    将所述M个子带中除去所述N个子带后的剩余子带作为所述第二集合中的子带。
  6. 如权利要求1所述的方法,其中,所述第一集合包括以下至少一种特征:
    包括所述M个子带中频率最低的子带;
    包括所述M个子带中频率最高的子带;
    包括所述M个子带中频率位置居中的子带,其中,所述频率位置居中的子带与所述M个子带中频率最低的子带之间的序号差为D1,所述频率位置居中的子带与所述M个子带中频率最高的子带之间的序号差为D2,且所述D1与所述D2之间差值的绝对值不超过1。
  7. 如权利要求1至6中任一项所述的方法,其中,所述相对值为所述相对值的数值与所述相对值的乘积因子的乘积,其中,所述乘积因子为具有方向的 物理量。
  8. 如权利要求7所述的方法,还包括:根据所述第一集合中每个子带的CSI确定所述乘积因子。
  9. 如权利要求1至6中任一项所述的方法,其中,所述向基站报告所述第一集合中每个子带的CSI以及所述第二集合中每个子带的所述相对值,包括:
    报告所述第一集合中每个子带的CSI所用的比特数目大于报告所述第二集合中每个子带的所述相对值所用的比特数目。
  10. 如权利要求9所述的方法,其中,所述向基站报告所述第一集合中每个子带的CSI以及所述第二集合中每个子带的所述相对值,包括:
    在报告所述第二集合中每个子带的所述相对值所用的比特数目为1的情况下,所述比特的零状态表示所述第二集合中每个子带的CSI相对于所述每个子带的参考子带的CSI没有变化,所述比特的非零状态表示所述第二集合中每个子带的CSI相对于所述每个子带的参考子带的CSI按照预设的方向和大小变化。
  11. 一种信道状态信息的处理方法,包括:
    接收终端发送的第一集合中每个子带的信道状态信息CSI以及第二集合中每个子带的相对值,其中,所述相对值为所述第二集合中每个子带的CSI与所述每个子带对应的参考子带的CSI之间的相对值,所述第一集合中的子带数量与所述第二集合中的子带的数量之和为M,所述M为大于1的整数;
    根据所述第二集合中每个子带的相对值以及所述每个子带对应的参考子带的CSI,确定所述第二集合中每个子带的CSI。
  12. 如权利要求11所述的方法,其中,所述信道状态信息包括以下至少之一:参与组合成预编码的矢量的系数、所述系数的相位、所述系数的幅度。
  13. 如权利要求11或12所述的方法,其中,所述第二集合中的每个子带对应的参考子带包括所述第一集合中的至少一个子带。
  14. 如权利要求11或12所述的方法,其中,所述第二集合中的每个子带对应的参考子带包括所述第一集合中的至少一个子带或所述每个子带的相邻子带,其中,所述第二集合中至少有一个子带的参考子带为所述第一集合中的至少一个子带。
  15. 如权利要求13所述的方法,其中,所述根据所述第二集合中每个子带的相对值以及所述每个子带对应的参考子带的CSI,确定所述第二集合中每个子带的CSI,包括:
    将所述第二集合中每个子带的相对值与以下子带至少之一的CSI代入至第 一预设函数,确定所述第二集合中每个子带的CSI:
    包括M个子带中频率最低的子带;
    包括M个子带中频率最高的子带;
    包括M个子带中频率位置居中的子带,其中,所述频率位置居中的子带与所述M个子带中频率最低的子带之间的序号差为D1,所述频率位置居中的子带与所述M个子带中频率最高的子带之间的序号差为D2,且所述D1与所述D2之间差值的绝对值不超过1。
  16. 如权利要求14所述的方法,其中,所述根据所述第二集合中每个子带的相对值以及所述每个子带对应的参考子带的CSI,确定所述第二集合中每个子带的CSI,包括:
    将所述第二集合中每个子带的相对值与所述每个子带的相邻子带的CSI代入至第二预设函数,确定所述第二集合中每个子带的CSI。
  17. 一种信道状态信息的上报设备,包括:处理器、存储器及通信总线;
    所述通信总线设置为实现所述处理器和所述存储器之间的连接通信;
    所述处理器设置为执行所述存储器中存储的信道状态信息的上报程序,以实现权利要求1至10中任一项所述的方法。
  18. 一种信道状态信息的处理设备,包括:处理器、存储器及通信总线;
    所述通信总线设置为实现所述处理器和所述存储器之间的连接通信;
    所述处理器设置为执行所述存储器中存储的信道状态信息的处理程序,以实现权利要求11至16中任一项所述的方法。
  19. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至10中任一项所述的方法。
  20. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求11至16中任一项所述的方法。
PCT/CN2019/100165 2018-08-10 2019-08-12 信道状态信息的上报和处理方法、设备及存储介质 WO2020030171A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/266,740 US12009893B2 (en) 2018-08-10 2019-08-12 Methods and devices for reporting and processing channel state information, and storage medium
EP19848507.0A EP3836439A4 (en) 2018-08-10 2019-08-12 METHODS AND DEVICES FOR REPORTING AND PROCESSING CHANNEL STATUS INFORMATION AND MEDIA
US18/660,393 US20240291540A1 (en) 2018-08-10 2024-05-10 Methods and devices for reporting and processing channel state information, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810909262.8 2018-08-10
CN201810909262.8A CN110535510B (zh) 2018-08-10 2018-08-10 一种信道状态信息的上报/处理方法、设备及存储介质

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/266,740 A-371-Of-International US12009893B2 (en) 2018-08-10 2019-08-12 Methods and devices for reporting and processing channel state information, and storage medium
US18/660,393 Continuation US20240291540A1 (en) 2018-08-10 2024-05-10 Methods and devices for reporting and processing channel state information, and storage medium

Publications (1)

Publication Number Publication Date
WO2020030171A1 true WO2020030171A1 (zh) 2020-02-13

Family

ID=68657963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100165 WO2020030171A1 (zh) 2018-08-10 2019-08-12 信道状态信息的上报和处理方法、设备及存储介质

Country Status (4)

Country Link
US (2) US12009893B2 (zh)
EP (1) EP3836439A4 (zh)
CN (1) CN110535510B (zh)
WO (1) WO2020030171A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114667758A (zh) * 2019-11-29 2022-06-24 中兴通讯股份有限公司 用于压缩无线信道状态信息反馈的方法
CN114586406B (zh) * 2022-01-13 2024-07-09 北京小米移动软件有限公司 信息上报、信息接收方法、装置、设备及存储介质
US20240056273A1 (en) * 2022-08-01 2024-02-15 Samsung Electronics Co., Ltd. Measurement configurations for reporting in multi-trp communication systems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808370A (zh) * 2009-02-18 2010-08-18 华为技术有限公司 上报信道状态信息的方法及装置
WO2011097924A1 (zh) * 2010-02-09 2011-08-18 华为技术有限公司 信道信息反馈和处理方法、终端及基站
CN103580779A (zh) * 2012-07-20 2014-02-12 电信科学技术研究院 信道质量指示信息上报及确定方法和设备
CN105991220A (zh) * 2015-01-30 2016-10-05 中兴通讯股份有限公司 Ue上报csi及触发ue上报csi的方法和装置
CN107743042A (zh) * 2016-08-11 2018-02-27 华为技术有限公司 一种信道状态反馈的方法及装置
CN108282254A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信道状态信息上报方法、基站和用户设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321191B1 (ko) * 2007-03-29 2013-10-22 엘지전자 주식회사 채널품질정보 전송방법
US8942164B2 (en) * 2007-10-22 2015-01-27 Texas Instruments Incorporated Differential CQI for OFDMA systems
KR101482262B1 (ko) * 2007-10-18 2015-01-13 엘지전자 주식회사 무선 통신 시스템에서 피드백 메시지 전송 방법
US20090116570A1 (en) * 2007-11-02 2009-05-07 Interdigital Patent Holdings, Inc. Method and apparatus for generating channel quality indicator, precoding matrix indicator and rank information
CN101277166A (zh) * 2008-04-03 2008-10-01 中兴通讯股份有限公司 一种信道质量指示反馈方法
US20100278058A1 (en) * 2009-05-04 2010-11-04 Qualcomm Incorporated Method and apparatus for facilitating multicarrier differential channel quality indicator (cqi) feedback
CN102055547B (zh) * 2009-10-30 2014-04-02 华为技术有限公司 获取信道状态信息的方法和设备
US11296767B2 (en) * 2018-05-04 2022-04-05 Lg Electronics Inc. Method for reporting channel state information in wireless communication system, and device therefor
WO2020155016A1 (en) * 2019-01-31 2020-08-06 Qualcomm Incorporated Codebook design with differential phase feedback in frequency domain

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808370A (zh) * 2009-02-18 2010-08-18 华为技术有限公司 上报信道状态信息的方法及装置
WO2011097924A1 (zh) * 2010-02-09 2011-08-18 华为技术有限公司 信道信息反馈和处理方法、终端及基站
CN103580779A (zh) * 2012-07-20 2014-02-12 电信科学技术研究院 信道质量指示信息上报及确定方法和设备
CN105991220A (zh) * 2015-01-30 2016-10-05 中兴通讯股份有限公司 Ue上报csi及触发ue上报csi的方法和装置
CN107743042A (zh) * 2016-08-11 2018-02-27 华为技术有限公司 一种信道状态反馈的方法及装置
CN108282254A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信道状态信息上报方法、基站和用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3836439A4

Also Published As

Publication number Publication date
US12009893B2 (en) 2024-06-11
US20240291540A1 (en) 2024-08-29
EP3836439A1 (en) 2021-06-16
CN110535510A (zh) 2019-12-03
EP3836439A4 (en) 2022-05-18
CN110535510B (zh) 2022-10-18
US20210314044A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
KR102693787B1 (ko) 다중빔 프리코더 기반 채널 상태 정보
CN105991231B (zh) 获取信道状态信息csi的方法及装置
CN102638337B (zh) 一种csi上报控制方法、csi上报方法及装置
US20240291540A1 (en) Methods and devices for reporting and processing channel state information, and storage medium
US20230224006A1 (en) Reporting of coefficients for channel state information
CN102255685B (zh) 反馈csi的方法和ue
CN113348711B (zh) 无线通信中的信道状态评估和上报方案
US10574409B2 (en) Information notification method and channel state information process execution method
US11239895B2 (en) Data transmission method, terminal device, and network device
EP4184841A1 (en) Csi measurement reporting method, terminal, and network-side device
WO2019105400A1 (zh) 测量上报的触发方法、装置及其存储介质
US11387885B2 (en) Method and device for reporting antenna port weighting vector, method and device for acquiring antenna port weighting vector, processing apparatus, and storage medium
JP7142706B2 (ja) 情報伝送方法及び装置
CN111435846B (zh) 一种信道状态信息上报方法、终端和网络侧设备
CN111436107B (zh) 上行信号的发送方法、信道质量确定方法和相关设备
WO2020118728A1 (zh) 通信方法及装置
CN103368697A (zh) 协作cqi和/或节点间的pci的反馈方法及装置
CN109286967A (zh) 无线传输方法、装置及设备
WO2024212533A1 (zh) 监测方法及装置
TWI784462B (zh) 上行功率、調度資訊確定方法、終端和網路側設備
WO2024078074A1 (zh) 信道状态信息的发送方法、接收方法及装置、存储介质
WO2023044761A1 (zh) 信息上报方法、装置、设备及存储介质
WO2020038081A1 (zh) 一种传输方法及装置
CN115883044A (zh) 信息传输方法、设备和存储介质
CN117955531A (zh) 数据传输方法、数据接收方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019848507

Country of ref document: EP

Effective date: 20210310