WO2020030137A1 - Drb建立方法、装置、系统、辅节点及主节点 - Google Patents

Drb建立方法、装置、系统、辅节点及主节点 Download PDF

Info

Publication number
WO2020030137A1
WO2020030137A1 PCT/CN2019/100043 CN2019100043W WO2020030137A1 WO 2020030137 A1 WO2020030137 A1 WO 2020030137A1 CN 2019100043 W CN2019100043 W CN 2019100043W WO 2020030137 A1 WO2020030137 A1 WO 2020030137A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
drb
target
tnl
qos flow
Prior art date
Application number
PCT/CN2019/100043
Other languages
English (en)
French (fr)
Inventor
艾建勋
马子江
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020030137A1 publication Critical patent/WO2020030137A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • Embodiments of the present invention relate to, but are not limited to, the field of communications, and in particular, to but not limited to a method, a device, a system, a secondary node, and a primary node for establishing a DRB (Data Radio Bearer).
  • DRB Data Radio Bearer
  • DC Dual Connection
  • a UE User Equipment
  • MN Master Node
  • SN Secondary Node
  • the radio resources configured by the network for a group of cells configured by the UE under the MN network element are called MCG (Mater, Cell, Group), and the radio resources configured by a group of cells configured under the SN network element are called SCG ( Secondary Cell Group) configuration.
  • MCG Mobile, Cell, Group
  • SCG Secondary Cell Group
  • the core network connected to the access network is a 3GPP 5th Generation Mobile Communication System (5G) core network (5GC)
  • the core network sends user data to the access network.
  • the radio access network maps one or more QoS flows to a DRB for scheduling and transmission of wireless interfaces .
  • the method shown in FIG. 1 it is used to implement the mapping of QoS flow to DRB under the DC architecture and allocate resources for DRB on the MN network element and the SN network element.
  • the method shown in FIG. 1 includes The following steps:
  • the MN network element sends request information to the SN network element.
  • the request information indicates a set of QoS flow information that needs to use the SN network element resources, including QoS flow ID and MCG resource information.
  • the network element of the SN network After receiving the above request information, the network element of the SN network determines the mapping of QoS flow to DRB, that is, determines which QoS flow is mapped to a DRB, and determines the bearer type of the DRB.
  • S103 The SN network element sends the mapping relationship between the QoS flow to the DRB and the DRB bearer type to the MN network element in a subsequent response message.
  • the Packet Data Convergence Protocol (PDCP) entity of the DRB is located in the network element of the SN network and uses MCG resources, that is, the bearer type of the DRB is the primary unit group bearer (SN) terminated by the secondary node
  • the MN network element allocates a TNL (Transport Network Network Layer) for each DRB to receive the DRB downlink data sent from the SN network element. , Transport layer) information, and send an independent third piece of TNL information to the network element of the SN with a third piece of information.
  • the third piece of information includes the DRB identifier (Identifier, ID) and the TLB information corresponding to the DRB.
  • the MN network element since the MN network element cannot predict how the SN network element maps the QoS flow to the DRB when initiating the request information, the MN network element can only receive the response information from the SN network element. Knowing the mapping relationship between QoS flow and DRB, the TLB information for the DRB's downlink data sent from the SN network element to the MN network element is assigned to the DRB, and the TNL information is sent to the SN with the third message; In this manner, due to the third piece of information described above, additional signaling overhead between the MN network element and the SN network element is caused, and additional processing delay is caused.
  • the method, device, system, secondary node, and master node for establishing a DRB solve the problem that the MN network element cannot predict how the SN network element maps the QoS flow to the DRB when the request information is initiated, so the MN network element Only after receiving the response information of the network element of the SN network and knowing the mapping relationship between QoS flow and DRB, the TLB information for the DRB's downlink data sent from the network element of the SN network to the network element of the MN is assigned to the DRB. And use the third message to send this TNL information to the SN; this method causes additional signaling overhead between the MN network element and the SN network element due to the third message, and causes additional processing delays The problem.
  • An embodiment of the present invention provides a DRB establishment method, including:
  • the request information includes a set of QoS flow information that is terminated at the secondary node and needs to be newly created or modified, and a set of downlink TNL information on the master node side;
  • An embodiment of the present invention further provides a device for establishing a DRB, including:
  • a first receiving module configured to receive request information from a master node, where the request information includes information on a set of QoS flows that are terminated on a secondary node and need to be newly created or modified, and a set of Downlink TNL information;
  • a first sending module is configured to send response information to the master node, where the response information includes sub-information, and the sub-information is used to determine target TNL information allocated for each target DRB.
  • An embodiment of the present invention further provides a secondary node, including a first processor, a first memory, and a first communication bus;
  • the first communication bus is configured to implement connection and communication between the first processor and a first memory
  • the first processor is configured to execute one or more programs stored in the first memory to implement the DRB establishment method described above.
  • An embodiment of the present invention further provides a DRB establishment method, including:
  • the request information including a set of QoS flow information that is terminated at the secondary node and needs to be newly created or modified, and a set of downlink TNL information on the primary node side;
  • Receive response information sent from the secondary node the response information includes sub-information, and the sub-information is used to determine target TNL information allocated for each target DRB in the DRB to which QoS flow is mapped, and the target DRB
  • the bearer type of DRB is determined;
  • the target TNL information allocated for each target DRB is determined according to the sub-information in the response information.
  • An embodiment of the present invention further provides a device for establishing a DRB, including:
  • a second sending module configured to send request information to a secondary node, where the request information includes information on a set of QoS flows that are terminated on the secondary node and need to be newly created or modified, and a set of downlinks on the primary node side of the primary node TNL information;
  • a second receiving module configured to receive response information sent from the secondary node, where the response information includes sub-information, and the sub-information is used to determine a target TNL assigned to each target DRB in the DRB to which the QoS flow is mapped; Information, the target DRB is determined according to the bearer type of the DRB;
  • a determining module configured to determine target TNL information allocated to each target DRB according to the sub-information in the response information.
  • An embodiment of the present invention further provides a master node, including a second processor, a second memory, and a second communication bus;
  • the second communication bus is configured to implement connection and communication between the second processor and a second memory
  • the second processor is configured to execute one or more programs stored in the second memory to implement the DRB establishment method described above.
  • An embodiment of the present invention further provides a DRB establishment method, including:
  • the master node sends request information to the secondary node, where the request information includes information on a set of QoS flows that are terminated on the secondary node and need to be created or modified, and a set of downlink TNL information on the primary node side;
  • the secondary node determines a mapping relationship from QoS flow to DRB, determines a target DRB according to the mapping relationship between QoS flow to DRB, and a DRB bearer type, and from the set of downlink TNL information on the primary node side for each
  • the target DRB allocates target TNL information and sends response information to the master node, where the response information includes sub-information, and the sub-information is used to determine target TNL information allocated for each target DRB;
  • the master node determines target TNL information allocated for each target DRB according to the sub-information in the response information.
  • An embodiment of the present invention further provides a DRB establishment system, including: a primary node and a secondary node,
  • the master node is configured to send request information to the secondary node, where the request information includes information on a set of QoS flows that are terminated on the secondary node and need to be newly created or modified, and a group of the primary node side
  • the downlink TNL information of the server and determine the target TNL information allocated for each target DRB according to the sub-information in the response information sent by the secondary node;
  • the secondary node is configured to determine a mapping relationship between QoS flow and DRB, determine a target DRB according to the mapping relationship between QoS flow and DRB, and a DRB bearer type, and from the downlink TNL information of the group of the master nodes Assign target TNL information for each target DRB, and send response information to the master node.
  • the response information includes sub-information, and the sub-information is used to determine the target TNL information allocated for each target DRB.
  • An embodiment of the present invention further provides a DRB establishment system, which includes a third processor, a third memory, and a third communication bus;
  • the third communication bus is configured to implement connection and communication between the third processor and a third memory
  • the third processor is configured to execute one or more programs stored in the third memory to implement the DRB establishment method described above.
  • An embodiment of the present invention further provides a computer-readable storage medium, where the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the foregoing. Any one of the DRB establishment methods.
  • the primary node sends request information to the secondary node, and the request information includes a set of QoS flow information that is terminated at the secondary node and needs to be newly created or modified.
  • the request information includes a set of QoS flow information that is terminated at the secondary node and needs to be newly created or modified.
  • the secondary node determines the QoS flow to DRB mapping relationship, determines the target DRB according to the bearer type of the DRB, and from the group of downstream TNL information on the primary node side for each target DRB Assign target TNL information and send response information to the master node.
  • the response information includes sub-information.
  • the sub-information is used to determine the target TNL information allocated for each target DRB.
  • the master node determines each target based on the sub-information in the response information.
  • Target TNL information allocated by DRB in some implementation processes, the master node sends a set of downlink TNL information on the master node side directly to the secondary node, and the secondary node determines the mapping relationship between QoS flow and DRB, and according to the DRB
  • the target TNL information is assigned to each target DRB from a set of TNL information, thereby completing the establishment of the DRB and saving Message signaling flow when the number of new or modified QoS flow for a UE in the secondary node resources required, saving the interface between the load node and secondary master node, saving time and cost of the process.
  • FIG. 1 is a flowchart of a related art DRB establishment or modification process connected to a 5GC;
  • FIG. 2 is a schematic diagram of a DRB bearer type SN terminated MCG bearer according to the first embodiment of the present invention
  • FIG. 3 is a schematic diagram of a DRB bearer type of SN terminated split bearer according to the first embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a DRB establishment method on a network element side of an SN network according to Embodiment 1 of the present invention
  • 5 is a schematic diagram of QoS flow to DRB mapping in 5G NR according to the first embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a method for establishing a DRB on a network element side of an MN network according to Embodiment 2 of the present invention
  • FIG. 7 is a schematic flowchart of a DRB establishment method of a system according to Embodiment 3 of the present invention.
  • FIG. 8 is a second schematic flowchart of a DRB establishment method of a system according to Embodiment 3 of the present invention.
  • FIG. 9 is a first schematic structural diagram of a DRB establishment apparatus according to Embodiment 4 of the present invention.
  • FIG. 10 is a schematic diagram of a second structure of a DRB establishment apparatus according to Embodiment 5 of the present invention.
  • FIG. 11 is a first schematic structural diagram of a DRB establishment system according to Embodiment 6 of the present invention.
  • FIG. 12 is a schematic structural diagram of a secondary node according to Embodiment 7 of the present invention.
  • FIG. 13 is a schematic structural diagram of a master node according to a seventh embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a second structure of a DRB establishment system according to Embodiment 7 of the present invention.
  • the UE establishes a wireless connection with the MN network element (that is, the primary node) and the SN network element (that is, the secondary node) at the same time.
  • the network is a network configured by the UE under the MN network element.
  • the radio resources configured in a group of cells are called MCG configuration, and the radio resources configured in a group of cells configured under the SN network element are called SCG configuration.
  • the types of DRB include: the main unit group terminated by the master node Bearer (MN terminated MCG bearer), primary unit terminated bearer (MN terminated SCG bearer), master node terminated separate bearer (MN terminated split bearer), secondary node terminated primary unit group bearer (SN terminated MCG bearer) ,
  • MN terminated MCG bearer master node Bearer
  • MN terminated SCG bearer primary unit terminated bearer
  • MN terminated split bearer master node terminated separate bearer
  • SN terminated MCG bearer secondary node terminated primary unit group bearer
  • SN terminated MCG bearer refers to that the PDCP protocol entity of the DRB is established in the network element of the SN network, the RLC (Radio Link Control) protocol entity and the MAC (Medium Access Control). Control)
  • the protocol entity is a wireless bearer form of the MN network element.
  • SN terminated split bearer refers to the DRCP PDCP protocol entity established on the SN network element and on the MN and SN network elements.
  • a radio bearer form of the RLC protocol entity and the MAC protocol entity of the DRB is respectively established in the element.
  • the MN network element cannot predict how the SN network element maps the QoS flow to the DRB when initiating the request information, the MN network element can only learn the QoS flow to the DRB when it receives the response information from the SN network element.
  • the TNL information for the downlink data of the DRB sent from the SN network element to the MN network element is allocated to the DRB, and the TNL information is sent to the SN by using the third message.
  • the third piece of information causes additional signaling overhead between the MN network element and the SN network element, and causes an additional processing delay problem.
  • An embodiment of the present invention provides a DRB establishment method.
  • the DRB establishment method is the DRB establishment method on the network element (that is, the secondary node) side of the SN network. See FIG. 4 and includes:
  • S401 Receive request information sent from a network element (that is, the master node) of the MN network.
  • the request information includes information about a set of QoS flows that are terminated (that is, terminated) in the SN network network element and that need to be newly created or modified, and A set of downlink TNL information on the network element side of the MN network.
  • the MN network element sends the request information to the SN network element, and the request information carries a set of SN terminated and needs to be newly created QoS flow information (QoS flow set list) or a set of SN terminated and QoS flow information that needs to be modified (QoS flow to modify list); a set of QoS flows includes at least one QoS flow; in some embodiments, for each QoS flow, including: QoS flow identity information, QoS flow level information QoS parameters, and QoS parameters of MCG resources available for the QoS flow.
  • the QoS flow identity information includes, but is not limited to, QoS flow ID information or QoS flow sequence number information.
  • the request information also carries a set of downlink TNL information on the network element side of the MN network, and the set of TNL information includes at least one TNL information; in some embodiments, each TNL information includes the TNL identity information; the TNL identity information includes the transport layer Address TNL address information and / or General Packet Radio Service Tunneling Protocol (Tunnelling Protocol-Tunnel Endpoint Identifier, GTP-TEID) information; or TNL information identification (TNL information index); or TNL sequence number Information; TNL sequence number information refers to sequential numbering for each TNL.
  • TNL identity information includes the transport layer Address TNL address information and / or General Packet Radio Service Tunneling Protocol (Tunnelling Protocol-Tunnel Endpoint Identifier, GTP-TEID) information
  • TNL information identification TNL information index
  • TNL sequence number information refers to sequential numbering for each TNL.
  • S402 Determine the mapping relationship between QoS flow and DRB, determine the target DRB according to the mapping relationship between QoS flow and DRB, and the DRB bearer type, and assign a target for each target DRB from the downlink TNL information on the side of a group of MN network elements. TNL information.
  • the SN network element After receiving the request information from the MN network element, the SN network element determines the mapping relationship between QoS flow and DRB, and determines the target DRB according to the bearer type of the DRB.
  • the target DRB indicates that the DRB needs to allocate TNL information, That is, the bearer type is the SN terminated MCG bearer shown in FIG. 2 or the SN terminated split bearer shown in FIG. 3.
  • the bearer type is the SN terminated MCG bearer shown in FIG. 2 or the SN terminated split bearer shown in FIG. 3.
  • the following example illustrates: For example, there are 3 DRBs mapped to QoS flow, which are denoted as DRB1, DRB2, and DRB3.
  • the bearer types of DRB1 and DRB2 are SN terminated MCG bearer, and the bearer type of DRB3 is SN terminated
  • DRB1 and DRB2 are taken as the target DRB, and DRB3 is not taken as the target DRB.
  • the SN network element allocates target TNL information for each target DRB from a group of downlink TNL information on the MN network element side to send the downlink data of the target DRB from the SN network element to the MN network element; for one of them
  • the target DRB, the target TNL information assigned to it, is the TNL information used by the target DRB, and the SN network element sends the downlink data of the target DRB to the MN network element according to the target TNL information.
  • the SN network element can determine the bearer type of the DRB. If the PDCP entity of the DRB is located on the SN network element and uses MCG resources, the DRB is indicated.
  • the bearer type is SN terminated MCG bearer shown in Figure 2 or SN terminated split bearer shown in Figure 3
  • the DRB bearer type is SN terminated MCG bearer or SN terminated split bearer
  • the downlink is transmitted according to the TNL information corresponding to the DRB Data is sent to the network element of the MN network; therefore, after determining that the bearer type of the DRB is SN terminated MCG bearer or SN term split bearer, the target TNL information can be assigned to the DRB from the downlink TNL information on the side of the MN network element.
  • S403 Send response information to the network element of the MN network.
  • the response information includes sub-information, and the sub-information is used to determine target TNL information allocated for each target DRB.
  • the MN network element since the MN network element cannot pre-judge how the SN network element maps QoS flow to DRB when initiating the request information, nor does it know the number of DRBs obtained from the mapping, and each target DRB has a TNL Information, in order to ensure that each target DRB can be assigned TNL information, the number of TNL information carried in the request information sent by the MN network element to the SN network element may be greater than the number of QoS flows, or The number of QoS flows is equal to the number of TNL information in the request information.
  • the wireless access network assigns one or more QoS The flow is mapped to a DRB for scheduling and transmission of the radio interface.
  • the protocol layer Service Data Adaptation Protocol (SDAP) entity maps multiple QoS flows to two different DRBs, and then submits the data to the PDCP layer to continue processing, as shown in Figure 5.
  • Multiple QoS flows are represented by QoS flows.
  • Two different DRBs are represented by DRB ID and DRB ID.
  • SDAP entities map a set of QoS flows to a set of DRBs, that is, multiple QoS flows are mapped to two. Different DRBs, these two different DRBs are a group.
  • the mapping relationship between QoS flow and DRB can be expressed by a combination of DRB ID and a set of QoS flow ID mapped to this DRB.
  • the following table is exemplified For the mapping relationship between QoS flow and DRB, see Table 1 below.
  • Table 1 shows the mapping of QoS flow ID1 to QoS flow ID5 to DRB in a set of QoS flows, where QoS flow ID1 to QoS flow ID3 is mapped to DRB ID1, and QoS flow ID4 to QoS flow ID5 is mapped to DRB ID2.
  • the network element of the SN network also needs to allocate a TNL information for each target DRB from a set of TNL information in the request information.
  • the network element of the SN network allocates a TNL information allocation rule for each target DRB. Including: For one of the target DRBs, arbitrarily select a piece of TNL information from the downlink TNL information on the network element side of the MN network as the target TNL information of the target DRB, and the TNL information corresponding to each target DRB is different; or, In the downstream TNL information on the network element side of the group MN network, a TNL information is selected as the target TLB information of the target DRB according to the order of the TNL information in the TNL information list (list), that is, the sequence number information can be It is reflected by the arrangement order of the TNL information in the TNL information list; or when each TNL information in the request information includes TNL sequence number information, the downlink TNL information on the side of a group of MN network elements is ordered or reversed
  • the TNL information with a sequence number of 1 is assigned to the first target DRB
  • the TNL information with a sequence number of 2 is assigned to the second target DRB
  • the TNL information with a sequence number of 3 is assigned to the third target DRB, and so on;
  • the TNL information with the sequence number being the last is assigned to the first target DRB, and the sequence number is
  • the TNL information with the penultimate number is allocated to the second target DRB
  • the TNL information with the penultimate number is allocated to the third target DRB, and so on.
  • the SN network element can notify the MN network element of the target TNL information of each target DRB in an explicit or implicit manner through the sub-information; when notified in a clear manner, the sub-information includes QoS flow and DRB Mapping relationship, and TNL identity information assigned to each target DRB; when notified in an implicit way, the sub-information includes the mapping relationship between QoS flow and DRB, and the MN network element indirectly according to the mapping relationship between QoS flow and DRB Determine the target TNL information for each target DRB.
  • the TNL carried in the request information sent by the MN network element to the SN network element includes identity information of each TNL, and the identity information of the TNL includes TNL address information and / or GTP-TEID information; or the identification of the TNL information; or the sequence number information of the TNL.
  • the SN network element selects the corresponding target TNL information for each target DRB, it also needs to inform the MN network element that the corresponding target TNL information is selected for each target DRB; the SN network element sends the MN network element to the MN network element. Send response information.
  • the response information includes sub-information.
  • the sub-information is used to determine the target TNL information allocated for each target DRB.
  • the sub-information may be identity information that selects the corresponding target TNL information for each target DRB.
  • the MN network element is informed of the TNL information corresponding to each target DRB.
  • the sub-information in the response message includes the identifier of the downstream TNL information on the MN network element side of the target DRB.
  • the identifier of the TNL information is that the SN network element is a group of MN network element side downlink carried in the request information from the request DRB.
  • the request information indicates the identifier of the downlink TNL information on the network element side of each MN network.
  • the sub-information in the response information includes the sequence number of the downstream TNL information of the MN network element side of the target DRB.
  • the sequence number of the TNL information is a group of MN network element side downstream TNL information carried by the SN network element from the request information.
  • the sequence number of a TNL message selected for the target DRB for example, the sequence of the target TNL information selected for the target DRB in a group of MN network element side downlink TNL information in the request message
  • the sequence number is Nth, and the sequence number of the target TNL information selected for the target DRB is N.
  • the TNL information is characterized by QoS flow ID information, each QoS flow in the request information includes QoS flow ID information, and each QoS flow indicates that there is corresponding TNL information; the sub-information in the response information includes QoS Flow ID information corresponding to the TNL information used by the target DRB. That is, the target TNL information is determined according to the QoS Flow ID information corresponding to the TNL information used by the target DRB.
  • the TNL information corresponding to the target DRB can be distinguished according to the QoS flow ID information;
  • the sub-information in the response information sent by the SN network element to the MN network element includes The mapping relationship between QoS flow and DRB, and the QoS flow ID information corresponding to the selected TNL information; the MN network element can determine the TNL information corresponding to the target DRB according to the QoS flow ID information.
  • the TNL information is characterized by QoS flow ID information.
  • Each QoS flow in the request information includes QoS flow ID information.
  • Each QoS flow indicates that there is corresponding TNL information.
  • the allocation rules for assigning target TNL information to each target DRB include: selecting from all QoS flows mapped to the target DRB the TNL with the smallest QoS flow ID or the largest QoS flow ID. The information is used as the target TNL information of the target DRB.
  • the sub-information in the response information includes the mapping relationship between QoS flow and DRB.
  • the mapping relationship between QoS flow and DRB is characterized by DRB ID and a set of QoS flow ID mapped to the DRB.
  • the MN network element can determine the TNL information corresponding to the target DRB according to the mapping relationship between QoS flow and DRB.
  • the response information sent by the SN network element to the MN network element does not clearly indicate the target TNL information of the target DRB, but instead carries the mapping relationship between QoS flow and DRB, where the mapping relationship between QoS flow and DRB It is characterized by the DRB ID and a set of QoS flow IDs mapped to the DRB to inform the MN network element implicitly.
  • the MN network element determines the smallest QoS flow ID or QoS flow among all QoS flows mapped to the target DRB.
  • the TNL information corresponding to the QoS with the largest ID is used as the target TNL information of the target DRB.
  • the MN network element can obtain the maximum or minimum QoS flow ID of the target DRB to be mapped through the mapping relationship between DRB and QoS flow and the TNL information of the MN network element side indicated in the request information for each QoS flow.
  • MN-side downlink TNL information corresponding to this maximum or minimum QoS Flow ID.
  • each TNL information in the request information includes TNL sequence number information; an allocation rule for assigning target TNL information to each target DRB from a set of downlink TNL information on the network element side of the MN network includes: for QoS Each DRB to which the flow maps is sequentially numbered, and the TNL information with the same sequence number as that of the target DRB is used as the target TNL information of the target DRB.
  • the sub-information in the response information includes the order of each DRB to which the QoS flow is mapped. ⁇ ⁇ Number information.
  • the target DRB uses the Nth of a group of downlink TNL information of the MN network element side carried in the request information; in this case, The MN network element determines the target TNL information of the target DRB by determining the sequence number of the target DRB in the DRB list in the response information and the sequence number information of each TNL in the request information.
  • the above SN network element informs the MN network element of the target TNL information of each target DRB in an explicit or implicit manner through the sub-information, and the MN network element can determine the target TNL information of the SN network element selected for each target DRB. To achieve the establishment of DRB.
  • the method before the MN network element sends the request information, or after the MN network element sends the request information and before the MN network element receives the response information from the SN network element, the method further includes: MN network When the network element receives the downlink data according to the TNL information in the request information, the network element buffers the downlink data locally until a response message is received. That is, before the MN network element sends the request information, or after the MN network element sends the request information and before the MN network element receives the response information from the SN network element, the MN network element is ready to start to respond to the request information.
  • the TNL information in the network receives the downlink data sent from the network element of the SN network; that is, if the network element of the MN network receives data according to the above-mentioned downlink TNL information of the network element side of the MN network, the network element of the MN network buffers locally until the response information is received and Determine the mapping relationship between downlink TNL information and DRB on the network element side of the MN network.
  • the MN network element after the MN network element receives the response information sent from the SN network element, it further includes: when it is not ready to start receiving downlink data sent from the SN network element according to the TNL information in the request information Next, it is ready to start receiving downlink data sent from the network element of the SN network according to the target TNL information allocated for the target DRB.
  • the MN network element may determine the target TNL information allocated to each target DRB according to the sub-information in the response information. After the sub-information in the response information determines the target TNL information allocated for each target DRB, it further includes: the MN network element releases the resources corresponding to the unallocated TNL information; for the resources corresponding to the unallocated TNL information, each target DRB will not be used, so release it for the rest of the needs.
  • the method further includes: the SN network element sends downlink data to the MN network element according to the target TNL information allocated for the target DRB.
  • the network element of the SN network can transmit the downlink data of the target DRB to the network element of the MN according to the target TNL information of the target DRB.
  • the response information further includes an RRC (Radio Resource Control) message sent to the UE; after sending the response information to the network element of the MN network in S403, the method further includes: after receiving the UE feedback RRC message , Sending downlink data to the MN network element according to the target TNL information allocated for the target DRB.
  • the SN network element can confirm that the MN network element and the UE are ready to receive data on the MN network element side.
  • the manner of sending downlink data to the network element of the MN according to the target TNL information allocated for the target DRB includes: processing the SDAP entity and the PDCP entity to obtain downlink data packets received from the core network or other network elements.
  • the PDCP protocol data unit (Protocol Data Unit) is encapsulated by the GTP protocol, and the GTP tunnel identifier is set to the GTP-TEID in the target TNL information, and / or the transport layer address is set to the target TNL information.
  • Transport layer address is set to the target TNL information.
  • the SN network element sends the data packet PDCP processed by the PDCP entity through the interface between the MN network element and the SN network element, and uses the target DRB on the MN network element side to receive the target TNL information for receiving the downlink data of the target DRB. To the MN network element. The MN network element will continue to perform the RLC and MAC layer protocol processing on the received PDCP and PDU, and send it to the UE on the wireless interface.
  • a group of MN network element side downlink TNL information is directly sent by the MN network element to the SN network element, which is determined by the SN network element
  • the target TNL information is assigned to each target DRB from a set of TNL information, thereby completing the dual connection in the 3GPP wireless access network
  • the establishment of DRB in the architecture saves the number of messages in the signaling flow required when the SN network element creates or modifies the resources of the QoS flow for the UE, saves the interface burden between the MN and the SN network element, and saves the process Time overhead.
  • the MN network element cannot predict how the SN network element maps the QoS flow to the DRB when initiating the request information, the MN network element can only learn the QoS flow to the DRB when it receives the response information from the SN network element.
  • the TNL information for the downlink data of the DRB sent from the SN network element to the MN network element is allocated to the DRB, and the TNL information is sent to the SN by using the third message.
  • the third piece of information causes additional signaling overhead between the MN network element and the SN network element, and causes an additional processing delay problem.
  • An embodiment of the present invention provides a DRB establishment method.
  • the DRB establishment method is the DRB establishment method on the network element side of the MN network, as shown in FIG. 6, including:
  • the request information includes information of a set of QoS flows that need to be newly created or modified, and a set of downlink TNL information of the network element side of the MN network.
  • the MN network element sends request information to the SN network element, and the request information carries a set of SN terminated information that needs to be newly created and a set of SN terminated information that needs to be modified;
  • a set of QoS flows includes at least one QoS flow.
  • for each QoS flow it includes: QoS flow identity information, QoS parameters of QoS flow level, and QoS parameters of MCG resources available for the QoS flow.
  • the QoS flow identity information includes, but is not limited to, QoS flow ID information or QoS flow sequence number information.
  • the request information also carries a set of downlink TNL information on the network element side of the MN network, and the set of TNL information includes at least one TNL information; in some embodiments, each TNL information includes the TNL identity information; the TNL identity information includes the TNL address Information and / or GTP-TEID information; or the identification of the TNL information; or the sequence number information of the TNL; the sequence number information of the TNL refers to sequential numbering for each TNL.
  • S602 Receive the response information sent from the network element of the SN network.
  • the response information includes sub-information.
  • the sub-information is used to determine the target TNL information allocated for each target DRB in the DRB mapped to the QoS flow.
  • the target DRB is based on the bearer type of the DRB. determine.
  • S603 Determine target TNL information allocated for each target DRB according to the sub-information in the response information.
  • the SN network element After receiving the request information from the MN network element, the SN network element determines the mapping relationship between QoS flow and DRB, and determines the target DRB according to the bearer type of the DRB.
  • the target DRB indicates that the DRB needs to allocate TNL information, That is, the bearer type is the SN terminated MCG bearer shown in FIG. 2 or the SN terminated split bearer shown in FIG. 3.
  • the bearer type is the SN terminated MCG bearer shown in FIG. 2 or the SN terminated split bearer shown in FIG. 3.
  • the following example illustrates: For example, there are 3 DRBs mapped to QoS flow, which are denoted as DRB1, DRB2, and DRB3.
  • the bearer types of DRB1 and DRB2 are SN terminated MCG bearer, and the bearer type of DRB3 is SN terminated
  • DRB1 and DRB2 are taken as the target DRB, and DRB3 is not taken as the target DRB.
  • the SN network element allocates target TNL information for each target DRB from a group of downlink TNL information on the MN network element side to send the downlink data of the target DRB from the SN network element to the MN network element; for one of them
  • the target DRB, the target TNL information assigned to it, is the TNL information used by the target DRB, and the SN network element sends the downlink data of the target DRB to the MN network element according to the target TNL information.
  • the SN network element can determine the bearer type of the DRB.
  • the PDCP entity of the DRB is located on the SN network element and uses MCG resources, it indicates that the DRB bearer type is The SN terminated MCG bearer shown in Figure 2 or the SN terminated split bearer shown in Figure 3, when the DRB bearer type is SN terminated MCG bearer or SN terminated split bearer, sends downlink data to the MN network according to the TNL information corresponding to the DRB Network element; after determining that the bearer type of the DRB is SN terminated MCG bearer or SN terminated split bearer, the target TNL information can be assigned to the DRB from the downlink TNL information on the network element side of the MN network.
  • the MN network element since the MN network element cannot pre-judge how the SN network element maps QoS flow to DRB when initiating the request information, nor does it know the number of DRBs obtained from the mapping, and each target DRB has a TNL Information, in order to ensure that each target DRB can be assigned TNL information, the number of TNL information carried in the request information sent by the MN network element to the SN network element may be greater than the number of QoS flows, or The number of QoS flows is equal to the number of TNL information in the request information.
  • the core network connected to the access network is a 3GPP 5G core network
  • the user data sent by the core network to the access network is organized into multiple QoS flows.
  • the wireless access network assigns one or more QoS The flow is mapped to a DRB for scheduling and transmission of the radio interface.
  • the SDAP entity at the protocol layer maps multiple QoS flows to two different DRBs, and then submits the data to the PDCP layer to continue processing.
  • the multiple QoS flows shown in Figure 5 are represented by QoS flows, two Different DRBs are represented by DRB ID and DRB ID.
  • SDAP protocol entities map a set of QoS flows to a set of DRBs, that is, multiple QoS flows are mapped to two different DRBs. These two different DRBs are One group.
  • the mapping relationship between QoS flow and DRB can be expressed by a combination of DRB ID and a set of QoS flow ID mapped to the DRB.
  • the following table is exemplified in the form of a table For the mapping relationship from QoS flow to DRB, see Table 2 below.
  • Table 2 shows the mapping of QoS flow ID1 to QoS flow ID5 to DRB in a set of QoS flows, where QoS flow ID1 to QoS flow ID3 is mapped to DRB ID1, and QoS flow ID4 to QoS flow ID5 is mapped to DRB ID2.
  • the network element of the SN network also needs to allocate a TNL information for each target DRB from a set of TNL information in the request information.
  • the network element of the SN network allocates a TNL information allocation rule for each target DRB. Including: For one of the target DRBs, arbitrarily select a piece of TNL information from the downlink TNL information on the network element side of the MN network as the target TNL information of the target DRB, and the TNL information corresponding to each target DRB is different; or, In the downstream TNL information on the network element side of the group MN, a TNL information is selected as the target TLB information of the target DRB in a sequential or reverse order according to the order of the TNL information in the TNL information list.
  • the sequence number information can be transmitted through TNL.
  • the order of the information in the TNL information list is reflected; or when each TNL information in the request information includes TNL sequence number information, one is selected from the downstream TNL information on the side of a group of MN network elements in order or in reverse order.
  • the TNL information is used as the target TNL information of the target DRB. For the latter two methods, for example, when the TNL information is allocated in a sequential manner, the TNL information with a sequence number of 1 is assigned to the first target DRB, and the TNL information with a sequence number of 2 is assigned to the second target DRB.
  • the TNL information with a sequence number of 3 is assigned to the third target DRB, and so on; when the TNL information is assigned in a reverse order manner, the TNL information with the sequence number being the last is assigned to the first target DRB, and the sequence number is The penultimate TNL information is allocated to the second target DRB, the TNL information with the penultimate number is allocated to the third target DRB, and so on.
  • the SN network element can notify the MN network element of the target TNL information of each target DRB in an explicit or implicit manner through the sub-information; when notified in a clear manner, the sub-information includes QoS flow and DRB Mapping relationship, and TNL identity information assigned to each target DRB; when notified in an implicit way, the sub-information includes the mapping relationship between QoS flow and DRB, and the MN network element indirectly according to the mapping relationship between QoS flow and DRB Determine the target TNL information for each target DRB.
  • the TNL carried in the request information sent by the MN network element to the SN network element includes identity information of each TNL, and the identity information of the TNL includes TNL address information and / or GTP-TEID information; or the identification of the TNL information; or the sequence number information of the TNL.
  • the SN network element selects the corresponding target TNL information for each target DRB, it also needs to inform the MN network element that the corresponding target TNL information is selected for each target DRB; the SN network element sends the MN network element to the MN network element. Send response information.
  • the response information includes sub-information.
  • the sub-information is used to determine the target TNL information allocated for each target DRB.
  • the sub-information may be identity information that selects the corresponding target TNL information for each target DRB.
  • the MN network element is informed of the TNL information corresponding to each target DRB.
  • the sub-information in the response message includes the identifier of the downstream TNL information on the MN network element side of the target DRB.
  • the identifier of the TNL information is that the SN network element is a group of MN network element side downlinks carried in the request information for the target DRB.
  • the request information indicates the identifier of the downlink TNL information on the network element side of each MN network.
  • the sub-information in the response information includes the sequence number of the downstream TNL information of the MN network element side of the target DRB.
  • the sequence number of the TNL information is a group of MN network element side downstream TNL information carried by the SN network element from the request information.
  • the sequence number of a TNL message selected for the target DRB for example, the sequence of the target TNL information selected for the target DRB in a group of MN network element side downlink TNL information in the request message
  • the sequence number is Nth, and the sequence number of the target TNL information selected for the target DRB is N.
  • the TNL information is characterized by QoS flow ID information, each QoS flow in the request information includes QoS flow ID information, and each QoS flow indicates that there is corresponding TNL information; the sub-information in the response information includes QoS Flow ID information corresponding to the TNL information used by the target DRB. That is, the target TNL information is determined according to the QoS Flow ID information corresponding to the TNL information used by the target DRB.
  • the TNL information corresponding to the target DRB can be distinguished according to the QoS flow ID information;
  • the sub-information in the response information sent by the SN network element to the MN network element includes The mapping relationship between QoS flow and DRB, and the QoS flow ID information corresponding to the selected TNL information; the MN network element can determine the TNL information corresponding to the target DRB according to the QoS flow ID information.
  • the TNL information is characterized by QoS flow ID information.
  • Each QoS flow in the request information includes QoS flow ID information.
  • Each QoS flow indicates that there is corresponding TNL information.
  • the allocation rule of the target TNL information for each target DRB in the downlink TNL information on the meta side includes: selecting the TNL corresponding to the QoS with the lowest QoS flow ID or the largest QoS flow ID from all QoS flows mapped to the target DRB. The information is used as the target TNL information of the target DRB.
  • the sub-information in the response information includes the mapping relationship between QoS flow and DRB.
  • the mapping relationship between QoS flow and DRB is characterized by DRB ID and a set of QoS flow ID mapped to the DRB.
  • the MN network element can determine the TNL information corresponding to the target DRB according to the mapping relationship between QoS flow and DRB.
  • the response information sent by the SN network element to the MN network element does not explicitly indicate the target TNL information of the target DRB. Instead, it carries the mapping relationship between QoS flow and DRB, and the mapping relationship between QoS flow and DRB passes
  • the DRB ID and a set of QoS flow IDs mapped to the DRB are characterized to inform the MN network element implicitly.
  • the MN network element determines the smallest QoS flow ID or QoS flow ID of all QoS flows mapped to the target DRB.
  • the TNL information corresponding to the largest QoS flow is used as the target TNL information of the target DRB.
  • the MN network element can obtain the maximum or minimum QoS flow ID of the target DRB to be mapped through the mapping relationship between DRB and QoS flow and the TNL information of the MN network element side indicated in the request information for each QoS flow. MN-side downlink TNL information corresponding to this maximum or minimum QoS Flow ID.
  • the target DRB uses the Nth of a group of downlink TNL information of the MN network element side carried in the request information; in this case, The MN network element determines the target TNL information of the target DRB by determining the sequence number of the target DRB in the DRB list in the response information and the sequence number information of each TNL in the request information.
  • the above SN network element informs the MN network element of the target TNL information of each target DRB in an explicit or implicit manner through the sub-information, and the MN network element can determine the target TNL information of the SN network element selected for each target DRB. To achieve the establishment of DRB.
  • the method before the MN network element sends the request information, or after the MN network element sends the request information and before the MN network element receives the response information from the SN network element, the method further includes: MN network When the network element receives the downlink data according to the TNL information in the request information, the network element buffers the downlink data locally until a response message is received. That is, before the MN network element sends the request information, or after the MN network element sends the request information and before the MN network element receives the response information from the SN network element, the MN network element is ready to start to respond to the request information.
  • the TNL information in the network receives the downlink data sent from the network element of the SN network; that is, if the network element of the MN network receives data according to the above-mentioned downlink TNL information of the network element side of the MN network, the network element of the MN network buffers locally until the response information is received and Determine the mapping relationship between downlink TNL information and DRB on the network element side of the MN network.
  • the MN network element after the MN network element receives the response information sent from the SN network element, it further includes: when it is not ready to start receiving downlink data sent from the SN network element according to the TNL information in the request information Next, it is ready to start receiving downlink data sent from the network element of the SN network according to the target TNL information allocated for the target DRB.
  • the MN network element may determine the target TNL information allocated to each target DRB according to the sub-information in the response information. After the sub-information in the response information determines the target TNL information allocated for each target DRB, it further includes: the MN network element releases the resources corresponding to the unallocated TNL information; for the resources corresponding to the unallocated TNL information, each target DRB will not be used, so release it for the rest of the needs.
  • the method further includes: the SN network element sends downlink data to the MN network element according to the target TNL information allocated for the target DRB.
  • the network element of the SN network can transmit the downlink data of the target DRB to the network element of the MN according to the target TNL information of the target DRB.
  • the response information further includes an RRC message sent to the UE; after sending the response information to the MN network element, the method further includes: after receiving the UE feedback RRC message, according to the target TNL information allocated for the target DRB Send downlink data to the network element of the MN network.
  • the SN network element can confirm that the MN network element and the UE are ready to receive data on the MN network element side.
  • the manner of sending downlink data to the network element of the MN according to the target TNL information allocated for the target DRB includes: processing the SDAP entity and the PDCP entity to obtain downlink data packets received from the core network or other network elements.
  • the data packet PDCP PDU is GTP encapsulated, and the GTP tunnel identifier is set to the GTP-TEID in the target TNL information, and / or the transport layer address is set to the transport layer address in the target TNL information.
  • the SN network element sends the data packet PDCP processed by the PDCP entity through the interface between the MN network element and the SN network element, and uses the target DRB on the MN network element side to receive the target TNL information for receiving the downlink data of the target DRB. To the MN network element. The MN network element will continue to perform the RLC and MAC layer protocol processing on the received PDCP and PDU, and send it to the UE on the wireless interface.
  • a group of MN network element side downlink TNL information is directly sent by the MN network element to the SN network element, which is determined by the SN network element
  • the target TNL information is assigned to each target DRB from a set of TNL information, thereby completing the dual connection in the 3GPP wireless access network
  • the establishment of DRB in the architecture saves the number of messages in the signaling flow required when the SN network element creates or modifies the resources of the QoS flow for the UE, saves the interface burden between the MN and the SN network element, and saves the process Time overhead.
  • the MN network element cannot predict how the SN network element maps the QoS flow to the DRB when initiating the request information, the MN network element can only learn the QoS flow to the DRB when it receives the response information from the SN network element.
  • the TNL information for the downlink data of the DRB sent from the SN network element to the MN network element is allocated to the DRB, and the TNL information is sent to the SN by using the third message.
  • the third piece of information causes additional signaling overhead between the MN network element and the SN network element, and causes an additional processing delay problem.
  • An embodiment of the present invention provides a DRB establishment method.
  • the DRB establishment method is a systematic DRB establishment method, as shown in FIG. 7, including:
  • the MN network element sends request information to the SN network element, and the request information includes information of a set of QoS flows that are terminated at the SN network element and need to be newly created or modified, and a group of master node MN network element side information. Downlink TNL information.
  • the MN network element sends request information to the SN network element, and the request information carries a set of SN terminated information that needs to be newly created and a set of SN terminated information that needs to be modified;
  • a set of QoS flows includes at least one QoS flow.
  • for each QoS flow it includes: QoS flow identity information, QoS parameters of QoS flow level, and QoS parameters of MCG resources available for the QoS flow.
  • the QoS flow identity information includes, but is not limited to, QoS flow ID information or QoS flow sequence number information.
  • the request information also carries a set of downlink TNL information on the network element side of the MN network, and the set of TNL information includes at least one TNL information; in some embodiments, each TNL information includes the TNL identity information; the TNL identity information includes the TNL address Information and / or GTP-TEID information; or the identification of the TNL information; or the sequence number information of the TNL; the sequence number information of the TNL refers to sequential numbering for each TNL.
  • the network element of the SN network determines the mapping relationship between QoS flow and DRB, determines the target DRB according to the mapping relationship between QoS flow and DRB, and the bearer type of DRB, and from the downstream TNL information of a group of MN network element side, for each
  • the target DRB allocates target TNL information and sends the response information to the MN network element.
  • the response information includes sub-information, and the sub-information is used to determine the target TNL information allocated for each target DRB.
  • the network element of the MN network determines the target TNL information allocated to each target DRB according to the sub-information in the response information.
  • the SN network element After receiving the request information from the MN network element, the SN network element determines the mapping relationship between QoS flow and DRB, and determines the target DRB according to the bearer type of the DRB.
  • the target DRB indicates that it is a DRB that needs to allocate TNL information. That is, the bearer type is the SN terminated MCG bearer shown in FIG. 2 or the SN terminated split bearer shown in FIG. 3.
  • the following example illustrates: For example, there are 3 DRBs mapped to QoS flow, which are denoted as DRB1, DRB2, and DRB3.
  • the bearer types of DRB1 and DRB2 are SN terminated MCG bearer, and the bearer type of DRB3 is SN terminated
  • DRB1 and DRB2 are taken as the target DRB, and DRB3 is not taken as the target DRB.
  • the SN network element allocates target TNL information for each target DRB from a group of downlink TNL information on the MN network element side to send the downlink data of the target DRB from the SN network element to the MN network element; for one of them
  • the target DRB, the target TNL information assigned to it, is the TNL information used by the target DRB, and the SN network element sends the downlink data of the target DRB to the MN network element according to the target TNL information.
  • the SN network element can determine the bearer type of the DRB.
  • the PDCP entity of the DRB is located on the SN network element and uses MCG resources, it indicates that the DRB bearer type is The SN terminated MCG bearer shown in Figure 2 or the SN terminated split bearer shown in Figure 3, when the DRB bearer type is SN terminated MCG bearer or SN terminated split bearer, sends downlink data to the MN network according to the TNL information corresponding to the DRB Network element; after determining that the bearer type of the DRB is SN terminated MCG bearer or SN terminated split bearer, the target TNL information can be assigned to the DRB from the downlink TNL information on the network element side of the MN network.
  • the MN network element since the MN network element cannot pre-judge how the SN network element maps QoS flow to DRB when initiating the request information, nor does it know the number of DRBs obtained from the mapping, and each target DRB has a TNL Information, in order to ensure that each target DRB can be assigned TNL information, the number of TNL information carried in the request information sent by the MN network element to the SN network element may be greater than the number of QoS flows, or The number of QoS flows is equal to the number of TNL information in the request information.
  • the core network connected to the access network is a 3GPP 5G core network
  • the user data sent by the core network to the access network is organized into multiple QoS flows.
  • the wireless access network assigns one or more QoS The flow is mapped to a DRB for scheduling and transmission of the radio interface.
  • the SDAP entity at the protocol layer maps multiple QoS flows to two different DRBs, and then submits the data to the PDCP layer to continue processing.
  • the multiple QoS flows shown in Figure 5 are represented by QoS flows, two Different DRBs are represented by DRB IDx and DRB ID. SDAP entities map a set of QoS flows to a set of DRBs, that is, multiple QoS flows are mapped to two different DRBs. These two different DRBs are one. group.
  • the mapping relationship between QoS flow and DRB can be expressed by a combination of DRB ID and a set of QoS flow ID mapped to the DRB.
  • the following table is exemplified in the form of a table For the mapping relationship from QoS flow to DRB, see Table 3 below.
  • Table 3 shows the mapping of QoS flow ID1 to QoS flow ID5 to DRB in a set of QoS flows, where QoS flow ID1 to QoS flow ID3 is mapped to DRB ID1, and QoS flow ID4 to QoS flow ID5 is mapped to DRB ID2.
  • the network element of the SN network also needs to allocate a TNL information for each target DRB from a set of TNL information in the request information.
  • the network element of the SN network allocates a TNL information allocation rule for each target DRB. Including: For one of the target DRBs, arbitrarily select a piece of TNL information from the downlink TNL information on the network element side of the MN network as the target TNL information of the target DRB, and the TNL information corresponding to each target DRB is different; or, In the downstream TNL information on the network element side of the group MN, a TNL information is selected as the target TLB information of the target DRB in a sequential or reverse order according to the order of the TNL information in the TNL information list.
  • the sequence number information can be transmitted through TNL.
  • the order of the information in the TNL information list is reflected; or when each TNL information in the request information includes TNL sequence number information, one is selected from the downstream TNL information on the side of a group of MN network elements in order or in reverse order.
  • the TNL information is used as the target TNL information of the target DRB. For the latter two methods, for example, when the TNL information is allocated in a sequential manner, the TNL information with a sequence number of 1 is assigned to the first target DRB, and the TNL information with a sequence number of 2 is assigned to the second target DRB.
  • the TNL information with a sequence number of 3 is assigned to the third target DRB, and so on; when the TNL information is assigned in a reverse order manner, the TNL information with the sequence number being the last is assigned to the first target DRB, and the sequence number is The penultimate TNL information is allocated to the second target DRB, the TNL information with the penultimate number is allocated to the third target DRB, and so on.
  • the SN network element can notify the MN network element of the target TNL information of each target DRB in an explicit or implicit manner through the sub-information; when notified in a clear manner, the sub-information includes QoS flow and DRB Mapping relationship, and TNL identity information assigned to each target DRB; when notified in an implicit way, the sub-information includes the mapping relationship between QoS flow and DRB, and the MN network element indirectly according to the mapping relationship between QoS flow and DRB Determine the target TNL information for each target DRB.
  • the TNL carried in the request information sent by the MN network element to the SN network element includes identity information of each TNL, and the identity information of the TNL includes TNL address information and / or GTP-TEID information; or the identification of the TNL information; or the sequence number information of the TNL.
  • the SN network element selects the corresponding target TNL information for each target DRB, it also needs to inform the MN network element that the corresponding target TNL information is selected for each target DRB; the SN network element sends the MN network element to the MN network element. Send response information.
  • the response information includes sub-information.
  • the sub-information is used to determine the target TNL information allocated for each target DRB.
  • the sub-information may be identity information that selects the corresponding target TNL information for each target DRB.
  • the MN network element is informed of the TNL information corresponding to each target DRB.
  • the sub-information in the response message includes the identifier of the downstream TNL information on the MN network element side of the target DRB.
  • the identifier of the TNL information is that the SN network element is a group of MN network element side downlinks carried in the request information for the target DRB.
  • the request information indicates the identifier of the downlink TNL information on the network element side of each MN network.
  • the sub-information in the response information includes the sequence number of the downstream TNL information of the MN network element side of the target DRB.
  • the sequence number of the TNL information is a group of MN network element side downstream TNL information carried by the SN network element from the request information.
  • the sequence number of a TNL message selected for the target DRB for example, the sequence of the target TNL information selected for the target DRB in a group of MN network element side downlink TNL information in the request message
  • the sequence number is Nth, and the sequence number of the target TNL information selected for the target DRB is N.
  • the TNL information is characterized by QoS flow ID information, each QoS flow in the request information includes QoS flow ID information, and each QoS flow indicates that there is corresponding TNL information; the sub-information in the response information includes QoS Flow ID information corresponding to the TNL information used by the target DRB. That is, the target TNL information is determined according to the QoS Flow ID information corresponding to the TNL information used by the target DRB.
  • the TNL information corresponding to the target DRB can be distinguished according to the QoS flow ID information;
  • the sub-information in the response information sent by the SN network element to the MN network element includes The mapping relationship between QoS flow and DRB, and the QoS flow ID information corresponding to the selected TNL information; the MN network element can determine the TNL information corresponding to the target DRB according to the QoS flow ID information.
  • the TNL information is characterized by QoS flow ID information.
  • Each QoS flow in the request information includes QoS flow ID information.
  • Each QoS flow indicates that there is corresponding TNL information.
  • the allocation rules for assigning target TNL information to each target DRB include: selecting from all QoS flows mapped to the target DRB the TNL with the smallest QoS flow ID or the largest QoS flow ID. The information is used as the target TNL information of the target DRB.
  • the sub-information in the response information includes the mapping relationship between QoS flow and DRB.
  • the mapping relationship between QoS flow and DRB is characterized by DRB ID and a set of QoS flow ID mapped to the DRB.
  • the MN network element can determine the TNL information corresponding to the target DRB according to the mapping relationship between QoS flow and DRB.
  • the response information sent by the SN network element to the MN network element does not explicitly indicate the target TNL information of the target DRB. Instead, it carries the mapping relationship between QoS flow and DRB, and the mapping relationship between QoS flow and DRB passes
  • the DRB ID and a set of QoS flow IDs mapped to the DRB are characterized to inform the MN network element implicitly.
  • the MN network element determines the smallest QoS flow ID or QoS flow ID of all QoS flows mapped to the target DRB.
  • the TNL information corresponding to the largest QoS flow is used as the target TNL information of the target DRB.
  • the MN network element can obtain the maximum or minimum QoS flow ID of the mapping target DRB through the mapping of DRB and QoS flow and the downstream TNL information of the MN network element side indicated for each QoS flow carried in the request information.
  • the MN-side downlink TNL information corresponding to this maximum or minimum QoS Flow ID.
  • each TNL information in the request information includes TNL sequence number information; an allocation rule for assigning target TNL information to each target DRB from a set of downlink TNL information on the network element side of the MN network includes: for QoS Each DRB to which the flow maps is sequentially numbered, and the TNL information with the same sequence number as that of the target DRB is used as the target TNL information of the target DRB.
  • the sub-information in the response information includes the order of each DRB to which the QoS flow is mapped. ⁇ ⁇ Number information.
  • the target DRB uses the Nth of a group of downlink TNL information of the MN network element side carried in the request information; in this case, The MN network element determines the target TNL information of the target DRB by determining the sequence number of the target DRB in the DRB list in the response information and the sequence number information of each TNL in the request information.
  • the above SN network element informs the MN network element of the target TNL information of each target DRB in an explicit or implicit manner through the sub-information, and the MN network element can determine the target TNL information of the SN network element selected for each target DRB. To achieve the establishment of DRB.
  • the method before the MN network element sends the request information, or after the MN network element sends the request information and before the MN network element receives the response information from the SN network element, the method further includes: MN network When the network element receives the downlink data according to the TNL information in the request information, the network element buffers the downlink data locally until a response message is received. That is, before the MN network element sends the request information, or after the MN network element sends the request information and before the MN network element receives the response information from the SN network element, the MN network element is ready to start to respond to the request information.
  • the TNL information in the network receives the downlink data sent from the network element of the SN network; that is, if the network element of the MN network receives data according to the above-mentioned downlink TNL information of the network element side of the MN network, the network element of the MN network buffers locally until the response information is received and Determine the mapping relationship between downlink TNL information and DRB on the network element side of the MN network.
  • the MN network element after the MN network element receives the response information sent from the SN network element, it further includes: when it is not ready to start receiving downlink data sent from the SN network element according to the TNL information in the request information Next, it is ready to start receiving downlink data sent from the network element of the SN network according to the target TNL information allocated for the target DRB.
  • the MN network element may determine the target TNL information allocated to each target DRB according to the sub-information in the response information. After the sub-information in the response information determines the target TNL information allocated for each target DRB, it further includes: the MN network element releases the resources corresponding to the unallocated TNL information; for the resources corresponding to the unallocated TNL information, each target DRB will not be used, so release it for the rest of the needs.
  • the method further includes: the SN network element sends downlink data to the MN network element according to the target TNL information allocated for the target DRB.
  • the network element of the SN network can transmit the downlink data of the target DRB to the network element of the MN according to the target TNL information of the target DRB.
  • the response information further includes an RRC message sent to the UE; after sending the response information to the MN network element, the method further includes: after receiving the UE feedback RRC message, according to the target TNL information allocated for the target DRB Send downlink data to the network element of the MN network.
  • the SN network element can confirm that the MN network element and the UE are ready to receive data on the MN network element side.
  • the manner of sending downlink data to the network element of the MN according to the target TNL information allocated for the target DRB includes: processing the SDAP entity and the PDCP entity to obtain downlink data packets received from the core network or other network elements.
  • the data packet PDCP PDU is GTP encapsulated, and the GTP tunnel identifier is set to the GTP-TEID in the target TNL information, and / or the transport layer address is set to the transport layer address in the target TNL information.
  • the SN network element sends the data packet PDCP processed by the PDCP entity through the interface between the MN network element and the SN network element, and uses the target DRB on the MN network element side to receive the target TNL information for receiving the downlink data of the target DRB. To the MN network element. The MN network element will continue to perform the RLC and MAC layer protocol processing on the received PDCP and PDU, and send it to the UE on the wireless interface.
  • the method shown in FIG. 8 includes the following steps:
  • the MN network element sends request information to the SN network element.
  • the request information includes a set of QoS flow information and a set of downlink TNL information on the MN network element side.
  • the network element of the SN network determines the mapping relationship between the QoS flow and the DRB according to the request information, determines the bearer type of the DRB, and selects a MN-side downlink TNL information for the DRB whose bearer type is SN terminated MCG bearer or SN term bearer.
  • the SN network element sends response information to the MN network element, the response information carries the mapping relationship between QoS flow and DRB, and explicitly or implicitly indicates the downlink TNL information of the MN network element side of the DRB;
  • the network element of the MN network determines the correspondence between the DRB and the downlink TNL information of the network element side of the MN according to the response information.
  • S805 The network element of the SN network completes the PDCP processing on the data packet whose bearing type is SN terminated MCG bearer or SN terminated split bearer.
  • the network element of the SN network sends the downlink data of the DRB according to the downlink TNL information of the network element side of the MN network selected for the DRB.
  • a group of MN network element side downlink TNL information is directly sent by the MN network element to the SN network element, which is determined by the SN network element
  • the target TNL information is assigned to each target DRB from a set of TNL information, thereby completing the dual connection in the 3GPP wireless access network
  • the establishment of DRB in the architecture saves the number of messages in the signaling flow required when the SN network element creates or modifies the resources of the QoS flow for the UE, saves the interface burden between the MN and the SN network element, and saves the process Time overhead.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • An embodiment of the present invention provides a device for establishing a DRB. As shown in FIG. 9, it includes a first receiving module 901, a processing module 902, and a first sending module 903.
  • the first receiving module 901 is configured to receive request information from network elements of the MN network.
  • the request information includes information of a set of QoS flows that are terminated at the network element of the SN network and need to be newly created or modified, and a group of MNs. Downlink TNL information on the network element side.
  • a processing module 902 is configured to determine a mapping relationship between QoS flow and DRB, determine a target DRB according to the mapping relationship between QoS flow and DRB, and a DRB bearer type, and from the downlink TNL information of a group of MN network element sides, for each The target DRB allocates target TNL information.
  • the first sending module 903 is configured to send response information to a network element of the MN network.
  • the response information includes sub-information, and the sub-information is used to determine target TNL information allocated for each target DRB.
  • the MN network element sends a request message to the first receiving module 901.
  • the request message carries a set of SN terminated information that needs to be newly created (QoS flow to be set up) or a group of SN terminated And QoS flow information that needs to be modified (QoS flow to modify list); a set of QoS flow includes at least one QoS flow; in some embodiments, for each QoS flow, including: QoS flow identity information, QoS flow level QoS parameters, and QoS parameters of MCG resources that can be used for the QoS flow.
  • the QoS flow identity information includes, but is not limited to, QoS flow ID information or QoS flow sequence number information.
  • the request information also carries a set of downlink TNL information on the network element side of the MN network, and the set of TNL information includes at least one TNL information; in some embodiments, each TNL information includes the TNL identity information; the TNL identity information includes the TNL address Information and / or GTP-TEID information; or the identification of the TNL information; or the sequence number information of the TNL; the sequence number information of the TNL refers to sequential numbering for each TNL.
  • the first receiving module 901 After receiving the request information from the MN network element, the first receiving module 901 determines the mapping relationship between QoS flow and DRB, and determines the target DRB according to the bearer type of the DRB; the target DRB indicates that TNL needs to be allocated
  • the DRB of the information that is, the bearer type is the SN terminated MCG bearer shown in FIG. 2 or the SN terminated split bearer shown in FIG. 3.
  • the following example illustrates: For example, there are 3 DRBs mapped to QoS flow, which are denoted as DRB1, DRB2, and DRB3.
  • the bearer types of DRB1 and DRB2 are SN terminated MCG bearer, and the bearer type of DRB3 is SN terminated
  • DRB1 and DRB2 are taken as the target DRB, and DRB3 is not taken as the target DRB.
  • the processing module 902 allocates, from a group of downlink TNL information on the network element side of the MN network, each target DRB with the target TNL information that the downlink data of the target DRB is sent from the first sending module 903 to the network element of the MN network;
  • the target DRB, the target TNL information assigned to it is the TNL information used by the target DRB, and the first sending module 903 sends the downlink data of the target DRB to the network element of the MN according to the target TNL information.
  • the first receiving module 901 can determine the bearer type of the DRB. If the PDCP entity of the DRB is located on the SN network element and uses MCG resources, the DRB is indicated.
  • the bearer type is SN terminated MCG bearer shown in Figure 2 or SN terminated split bearer shown in Figure 3
  • the DRB bearer type is SN terminated MCG bearer or SN terminated split bearer
  • the downlink is transmitted according to the TNL information corresponding to the DRB
  • the data is sent to the network element of the MN network; therefore, after determining that the bearer type of the DRB is SN terminated MCG bearer or SN term split bearer, the target TNL information can be assigned to the DRB from the downlink TNL information on the network element side of the MN network.
  • the MN network element cannot predict how the processing module 902 maps the QoS flow to the DRB when initiating the request information, nor does it know the number of DRBs obtained from the mapping, and each target DRB has a TNL information Therefore, in order to ensure that each target DRB can be assigned TNL information, the number of TNL information carried in the request information sent by the MN network element to the first receiving module 901 may be greater than the number of QoS flows, or carry The number of QoS flows is equal to the number of TNL information in the request information.
  • the core network connected to the access network is a 3GPP 5G core network
  • the user data sent by the core network to the access network is organized into multiple QoS flows.
  • the wireless access network assigns one or more QoS The flow is mapped to a DRB for scheduling and transmission of the radio interface.
  • the SDAP entity at the protocol layer maps multiple QoS flows to two different DRBs, and then submits the data to the PDCP layer to continue processing.
  • the multiple QoS flows shown in Figure 5 are represented by QoS flows, two Different DRBs are represented by DRB IDx and DRB ID. SDAP entities map a set of QoS flows to a set of DRBs, that is, multiple QoS flows are mapped to two different DRBs. These two different DRBs are one. group.
  • the mapping relationship between QoS flow and DRB can be expressed by a combination of DRB ID and a set of QoS flow ID mapped to the DRB.
  • the following table is exemplified in the form of a table For the mapping relationship from QoS flow to DRB, see Table 4 below.
  • Table 4 shows the mapping of QoS ID1 to QoS ID5 to DRB in a set of QoS flows, where QoS ID1 to QoS ID3 is mapped to DRB ID1, and QoS ID4 to QoS ID5 is mapped to DRB ID2.
  • the processing module 902 also needs to allocate one TNL information for each target DRB from a set of TNL information in the request information. In some embodiments, the processing module 902 allocates one TNL information for each target DRB.
  • the allocation rules include: For one of the target DRBs, arbitrarily select a piece of TNL information from the downlink TNL information of the network element side of the MN network as the target TNL information of the target DRB, and the TNL information corresponding to each target DRB is different; or, from a group of MNs In the downstream TNL information on the network element side, a TNL information is selected as the target TLB information of the target DRB in a sequential or reverse order according to the order of the TNL information in the TNL information list.
  • the sequence number information can be obtained through the TNL information in the The arrangement order in the TNL information list is reflected; or when each TNL information in the request information includes TNL sequence number information, a TNL information is selected in a sequence or reverse order from a set of downstream TNL information on the network element side of the MN network Target TNL information as target DRB.
  • a TNL information is selected in a sequence or reverse order from a set of downstream TNL information on the network element side of the MN network Target TNL information as target DRB.
  • the TNL information with a sequence number of 1 is assigned to the first target DRB
  • the TNL information with a sequence number of 2 is assigned to the second target DRB.
  • the TNL information with a sequence number of 3 is assigned to the third target DRB, and so on; when the TNL information is assigned in a reverse order manner, the TNL information with the sequence number being the last is assigned to the first target DRB, and the sequence number is The penultimate TNL information is allocated to the second target DRB, the TNL information with the penultimate number is allocated to the third target DRB, and so on.
  • the first sending module 903 can inform the MN network element of the target TNL information of each target DRB in an explicit or implicit manner through the sub-information; when notified in a clear manner, the sub-information includes QoS flow and The mapping relationship between DRBs and the TNL identity information assigned to each target DRB; when notified in an implicit way, the sub-information includes the mapping relationship between QoS flow and DRB, and the MN network element according to the mapping relationship between QoS flow and DRB Indirectly determine the target TNL information for each target DRB.
  • the following first describes the situation in which the first sending module 903 notifies the MN network element of the target TNL information of each target DRB to which the QoS flow is mapped in a clear manner through the sub-information:
  • the processing module 902 in order that the processing module 902 can distinguish the TNL information corresponding to the target DRB when assigning the target TNL information to each target DRB, the TNL carried in the request information sent by the MN network element to the first receiving module 901
  • the information includes identity information of each TNL, and the identity information of the TNL includes TNL address information and / or GTP-TEID information; or the identification of the TNL information; or the sequence number information of the TNL.
  • the processing module 902 selects the corresponding target TNL information for each target DRB, it also needs to notify the MN network element of the corresponding target TNL information selected for each target DRB; the first sending module 903 sends the MN network element Send response information.
  • the response information includes sub-information.
  • the sub-information is used to determine the target TNL information allocated for each target DRB.
  • the sub-information may be identity information that selects the corresponding target TNL information for each target DRB.
  • the MN network element is informed of the TNL information corresponding to each target DRB.
  • the sub-information in the response information includes the identification of the downstream TNL information of the MN network element side of the target DRB.
  • the identification of the TNL information is the processing module 902 carrying a set of MN network element-side downstream TNL from the request information for the target DRB.
  • the request information indicates the identifier of the downlink TNL information on the network element side of each MN network.
  • the sub-information in the response message includes the sequence number of the downstream TNL information of the MN network element side of the target DRB.
  • the sequence number of the TNL information is a set of downstream TNL information of the network element side of the MN carried by the processing module 902 from the request message.
  • a sequence number of a TNL information selected for the target DRB for example, a sequence number of the target TNL information selected for the target DRB in a group of MN network element side downlink TNL information in the request message Is the Nth one, the sequence number of the target TNL information selected for the target DRB is N.
  • the following describes the situation in which the first sending module 903 notifies the MN network element of the target TNL information of each target DRB in an implicit manner through the sub-information:
  • the TNL information is characterized by QoS flow ID information, each QoS flow in the request information includes QoS flow ID information, and each QoS flow indicates that there is corresponding TNL information; the sub-information in the response information includes QoS Flow ID information corresponding to the TNL information used by the target DRB. That is, the target TNL information is determined according to the QoS Flow ID information corresponding to the TNL information used by the target DRB.
  • the TNL information corresponding to the target DRB can be distinguished according to the QoS flow ID information; the first sending module 903 responds to the MN network element neutron information Including the mapping relationship between QoS flow and DRB, and the QoS flow ID information corresponding to the selected TNL information; the MN network element can determine the TNL information corresponding to the target DRB according to the QoS flow ID information.
  • the TNL information is characterized by QoS flow ID information.
  • Each QoS flow in the request information includes QoS flow ID information.
  • Each QoS flow indicates that there is corresponding TNL information.
  • the allocation rules for assigning target TNL information to each target DRB include: selecting from all QoS flows mapped to the target DRB the TNL with the smallest QoS flow ID or the largest QoS flow ID. The information is used as the target TNL information of the target DRB.
  • the sub-information in the response information includes the mapping relationship between QoS flow and DRB.
  • the mapping relationship between QoS flow and DRB is characterized by DRB ID and a set of QoS flow ID mapped to the DRB.
  • the MN network element can determine the TNL information corresponding to the target DRB according to the mapping relationship between QoS flow and DRB.
  • the response information sent by the first sending module 903 to the MN network element does not explicitly indicate the target TNL information of the target DRB, but instead carries the mapping relationship between QoS flow and DRB, and the mapping relationship between QoS flow and DRB. It is characterized by the DRB ID and a set of QoS flow IDs mapped to the DRB to inform the MN network element implicitly.
  • the MN network element determines the smallest QoS flow ID or QoS flow among all QoS flows mapped to the target DRB.
  • the TNL information corresponding to the QoS with the largest ID is used as the target TNL information of the target DRB.
  • the MN network element can obtain the maximum or minimum QoS flow ID of the target DRB to be mapped through the mapping relationship between DRB and QoS flow and the TNL information of the MN network element side indicated in the request information for each QoS flow.
  • MN-side downlink TNL information corresponding to this maximum or minimum QoS Flow ID.
  • each TNL information in the request information includes TNL sequence number information; an allocation rule for assigning target TNL information to each target DRB from a set of downlink TNL information on the network element side of the MN network includes: for QoS Each DRB to which the flow maps is sequentially numbered, and the TNL information with the same sequence number as that of the target DRB is used as the target TNL information of the target DRB.
  • the sub-information in the response information includes the order of each DRB to which the QoS flow is mapped. ⁇ ⁇ Number information.
  • the target DRB uses the Nth of a group of downlink TNL information of the MN network element side carried in the request information; in this case, The MN network element determines the target TNL information of the target DRB by determining the sequence number of the target DRB in the DRB list in the response information and the sequence number information of each TNL in the request information.
  • the first sending module 903 notifies the MN network element of the target TNL information of each target DRB in an explicit or implicit manner through the sub-information, and the MN network element can determine the target TNL selected by the SN network element for each target DRB. Information to realize the establishment of DRB.
  • the method before the MN network element sends the request information, or after the MN network element sends the request information and before the MN network element receives the response information sent from the first sending module 903, the method further includes: MN When the network element receives downlink data according to the TNL information in the request information, it buffers the downlink data locally until a response message is received. That is, before the MN network element sends the request information, or after the MN network element sends the request information and before the MN network element receives the response information sent from the first sending module 903, the MN network element is ready to start to respond to the request.
  • the TNL information in the message receives the downlink data sent from the SN network element; that is, if the MN network element receives the data according to the downlink TNL information on the MN network element side, the MN network element buffers locally until the response information is received And determine the mapping relationship between downlink TNL information and DRB on the network element side of the MN network.
  • the MN network element after the MN network element receives the response information sent from the first sending module 903, it further includes: not preparing to start receiving the downlink data sent from the first sending module 903 according to the TNL information in the request information. In the case, it is ready to start receiving downlink data sent from the first sending module 903 according to the target TNL information allocated for the target DRB.
  • the MN network element may determine the target TNL information allocated to each target DRB according to the sub-information in the response information, and After determining the target TNL information allocated for each target DRB according to the sub-information in the response information, it further includes: the MN network element releases the resources corresponding to the unallocated TNL information; for the resources corresponding to the unallocated TNL information, each The target DRB will not be used, so it is released for the remaining needs.
  • the method further includes: the first sending module 903 sends downlink data to the MN network element according to the target TNL information allocated for the target DRB. After the target TNL information is allocated for each target DRB, the first sending module 903 may transmit the downlink data of the target DRB to the network element of the MN according to the target TNL information of the target DRB.
  • the response information further includes an RRC message sent to the UE; after sending the response information to the MN network element, the method further includes: after the first receiving module 901 receives the UE feedback RRC message, the first sending module 903 sends downlink data to the MN network element according to the target TNL information allocated for the target DRB. After receiving the RRC feedback message, the processing module 902 can confirm that the MN network element and the UE are ready to receive data on the MN network element side.
  • the manner of sending downlink data to the network element of the MN according to the target TNL information allocated for the target DRB includes: processing the SDAP entity and the PDCP entity to obtain downlink data packets received from the core network or other network elements.
  • the data packet PDCP PDU is GTP encapsulated, and the GTP tunnel identifier is set to the GTP-TEID in the target TNL information, and / or the transport layer address is set to the transport layer address in the target TNL information.
  • the SN network element sends the data packet PDCP processed by the PDCP entity through the interface between the MN network element and the SN network element, and uses the target DRB on the MN network element side to receive the target TNL information for receiving the downlink data of the target DRB. To the MN network element. The MN network element will continue to perform the RLC and MAC layer protocol processing on the received PDCP and PDU, and send it to the UE on the wireless interface.
  • a group of MN network element side downlink TNL information is directly sent by the MN network element to the first receiving module 901, and the processing module 902 determines the After mapping the QoS flow to DRB and determining the target DRB according to the bearer type of the DRB, the target TNL information is assigned to each target DRB from a set of TNL information, thereby completing the dual connection in the 3GPP wireless access network
  • the establishment of DRB in the architecture saves the number of messages in the signaling flow required when creating or modifying QoS flow resources for the UE, saves the interface burden between the MN and SN network elements, and saves the process time overhead.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • An embodiment of the present invention provides a device for establishing a DRB. As shown in FIG. 10, it includes a second sending module 1001, a second receiving module 1002, and a determining module 1003.
  • the second sending module 1001 is configured to send request information to the network element of the SN network.
  • the request information includes information of a set of QoS flows that are terminated at the network element of the SN network and need to be newly created or modified, and a group of MN network element of the master node. Downlink TNL information on the side.
  • the second receiving module 1002 is configured to receive response information sent from the network element of the SN network.
  • the response information includes sub-information, and the sub-information is used to determine target TNL information allocated for each target DRB in the DRB mapped to the QoS flow.
  • the DRB is determined according to the bearer type of the DRB.
  • a determining module 1003 is configured to determine target TNL information allocated to each target DRB according to the sub-information in the response information.
  • the second sending module 1001 sends request information to the SN network element.
  • the request information carries a set of SN terminated information that needs to be newly created and a set of SN terminated information that needs to be modified.
  • a set of QoS flows includes at least one QoS flow; in some embodiments, for each QoS flow, including: QoS flow identity information, QoS flow level QoS parameters, and QoS parameters of MCG resources available for the QoS flow .
  • the QoS flow identity information includes, but is not limited to, QoS flow ID information or QoS flow sequence number information.
  • the request information also carries a set of downlink TNL information on the network element side of the MN network, and the set of TNL information includes at least one TNL information; in some embodiments, each TNL information includes the TNL identity information; the TNL identity information includes the TNL address Information and / or GTP-TEID information; or the identification of the TNL information; or the sequence number information of the TNL; the sequence number information of the TNL refers to sequential numbering for each TNL.
  • the network element of the SN network After receiving the request information from the second sending module 1001, the network element of the SN network determines the mapping relationship between QoS flow and DRB, and determines the target DRB according to the bearer type of the DRB.
  • the target DRB indicates that it is the DRB that needs to allocate TNL information. That is, the bearer type is the SN terminated MCG bearer shown in FIG. 2 or the SN terminated split bearer shown in FIG. 3.
  • the following example illustrates: For example, there are 3 DRBs mapped to QoS flow, which are denoted as DRB1, DRB2, and DRB3.
  • the bearer types of DRB1 and DRB2 are SN terminated MCG bearer, and the bearer type of DRB3 is SN terminated
  • DRB1 and DRB2 are taken as the target DRB, and DRB3 is not taken as the target DRB.
  • the SN network element allocates target TNL information for each target DRB from a group of downlink TNL information on the MN network element side to send the downlink data of the target DRB from the SN network element to the MN network element; for one of them
  • the target DRB, the target TNL information allocated for it, is the TNL information used by the target DRB, and the network element of the SN network sends the downlink data of the target DRB to the second receiving module 1002 according to the target TNL information.
  • the network element of the SN network can determine the bearer type of the DRB. If the PDCP entity of the DRB is located in the network element of the SN network and uses MCG resources, it indicates the bearer type of the DRB.
  • the downlink data is sent to the MN according to the TLB information corresponding to the DRB.
  • Network network elements after determining that the bearer type of the DRB is SN terminated MCG bearer or SN terminated split bearer, the target TNL information can be assigned to the DRB from the downlink TNL information on the side of the MN network element.
  • the second sending module 1001 since the second sending module 1001 cannot predict how the SN network element maps the QoS flow to the DRB when initiating the request information, nor does it know the number of DRBs obtained from the mapping, and each target DRB has one TNL information, so in order to ensure that each target DRB can be assigned TNL information, the number of TNL information carried in the request information sent by the second sending module 1001 to the network element of the SN is greater than the number of QoS flows. Or the number of QoS flows carried is equal to the number of TNL information in the request information.
  • the core network connected to the access network is a 3GPP 5G core network
  • the user data sent by the core network to the access network is organized into multiple QoS flows.
  • the wireless access network assigns one or more QoS The flow is mapped to a DRB for scheduling and transmission of the radio interface.
  • the SDAP entity at the protocol layer maps multiple QoS flows to two different DRBs, and then submits the data to the PDCP layer to continue processing.
  • the multiple QoS flows shown in Figure 5 are represented by QoS flows, two Different DRBs are represented by DRB ID and DRB ID.
  • SDAP protocol entities map a set of QoS flows to a set of DRBs, that is, multiple QoS flows are mapped to two different DRBs. These two different DRBs are One group.
  • the mapping relationship between QoS flow and DRB can be expressed by a combination of DRB ID and a set of QoS flow ID mapped to the DRB.
  • the following table is exemplified in the form of a table For the mapping relationship between QoS flow and DRB, see Table 5 below.
  • Table 5 shows a set of QoS flow ID1 to QoS ID1 to IDB mapping to DRB, where QoS flow ID1 to QoS ID3 is mapped to DRB ID1, QoS flow ID4 to QoS ID4 is mapped to DRB ID2.
  • the network element of the SN network also needs to allocate a TNL information for each target DRB from a set of TNL information in the request information.
  • the network element of the SN network allocates a TNL information allocation rule for each target DRB. Including: For one of the target DRBs, arbitrarily select a piece of TNL information from the downlink TNL information on the network element side of the MN network as the target TNL information of the target DRB, and the TNL information corresponding to each target DRB is different; or, In the downstream TNL information on the network element side of the group MN, a TNL information is selected as the target TLB information of the target DRB in a sequential or reverse order according to the order of the TNL information in the TNL information list.
  • the sequence number information can be transmitted through TNL.
  • the order of the information in the TNL information list is reflected; or when each TNL information in the request information includes TNL sequence number information, one is selected from the downstream TNL information on the side of a group of MN network elements in order or in reverse order.
  • the TNL information is used as the target TNL information of the target DRB. For the latter two methods, for example, when the TNL information is allocated in a sequential manner, the TNL information with a sequence number of 1 is assigned to the first target DRB, and the TNL information with a sequence number of 2 is assigned to the second target DRB.
  • the TNL information with a sequence number of 3 is assigned to the third target DRB, and so on; when the TNL information is assigned in a reverse order manner, the TNL information with the sequence number being the last is assigned to the first target DRB, and the sequence number is The penultimate TNL information is allocated to the second target DRB, the TNL information with the penultimate number is allocated to the third target DRB, and so on.
  • the SN network element can notify the determining module 1003 of the target TNL information of each target DRB in a clear or implicit manner through the sub-information; when notified in a clear manner, the sub-information includes the QoS flow and the DRB. Mapping relationship, and TNL identity information allocated for each target DRB; when notified in an implicit way, the sub-information includes the mapping relationship between QoS flow and DRB, and the determining module 1003 indirectly determines each Target TNL information for each target DRB.
  • the request information carried by the second sending module 1001 to the SN network element carries
  • the TNL information includes identity information of each TNL, and the identity information of the TNL includes TNL address information and / or GTP-TEID information; or the identification of the TNL information; or the sequence number information of the TNL.
  • the SN network element selects the corresponding target TNL information for each target DRB, it also needs to notify the determination module 1003 of the corresponding target TNL information selected for each target DRB; the SN network network element sends the second receiving module 1002 Send response information.
  • the response information includes sub-information.
  • the sub-information is used to determine the target TNL information allocated for each target DRB.
  • the sub-information may be identity information that selects the corresponding target TNL information for each target DRB.
  • the notification determining module 1003 has TNL information corresponding to each target DRB.
  • the sub-information in the response message includes the identifier of the downstream TNL information on the MN network element side of the target DRB.
  • the identifier of the TNL information is that the SN network element is a group of MN network element side downlinks carried in the request information for the target DRB.
  • the request information indicates the identifier of the downlink TNL information on the network element side of each MN network.
  • the sub-information in the response information includes the sequence number of the downstream TNL information of the MN network element side of the target DRB.
  • the sequence number of the TNL information is a group of MN network element side downstream TNL information carried by the SN network element from the request information.
  • the sequence number of a TNL message selected for the target DRB for example, the sequence of the target TNL information selected for the target DRB in a group of MN network element side downlink TNL information in the request message
  • the sequence number is Nth, and the sequence number of the target TNL information selected for the target DRB is N.
  • the TNL information is characterized by QoS flow ID information, each QoS flow in the request information includes QoS flow ID information, and each QoS flow indicates that there is corresponding TNL information; the sub-information in the response information includes QoS Flow ID information corresponding to the TNL information used by the target DRB. That is, the target TNL information is determined according to the QoS Flow ID information corresponding to the TNL information used by the target DRB.
  • the TNL information corresponding to the target DRB can be distinguished according to the QoS flow ID information; the neutron information in the response information sent by the SN network element to the second receiving module 1002 Including the mapping relationship between QoS flow and DRB, and the QoS flow ID information corresponding to the selected TNL information; the determination module 1003 can determine the TNL information corresponding to the target DRB according to the QoS flow ID information.
  • the TNL information is characterized by QoS flow ID information.
  • Each QoS flow in the request information includes QoS flow ID information.
  • Each QoS flow indicates that there is corresponding TNL information.
  • the allocation rules for assigning target TNL information to each target DRB include: selecting from all QoS flows mapped to the target DRB the TNL with the smallest QoS flow ID or the largest QoS flow ID. The information is used as the target TNL information of the target DRB.
  • the sub-information in the response information includes the mapping relationship between QoS flow and DRB.
  • the mapping relationship between QoS flow and DRB is characterized by DRB ID and a set of QoS flow ID mapped to the DRB.
  • the MN network element can determine the TNL information corresponding to the target DRB according to the mapping relationship between QoS flow and DRB.
  • the response information sent by the network element of the SN network to the second receiving module 1002 does not explicitly indicate the target TNL information of the target DRB. Instead, it carries the mapping relationship between QoS flow and DRB, and the mapping relationship between QoS flow and DRB. It is characterized by the DRB ID and a set of QoS flow IDs mapped to the DRB, and the determination module 1003 is implicitly notified.
  • the determination module 1003 determines that the QoS flow ID of all the QoS flows mapped to the target DRB is the smallest or the QoS flow ID is the largest
  • the TNL information corresponding to the QoS flow is used as the target TNL information of the target DRB.
  • the determination module 1003 can obtain the maximum or minimum QoS flow ID of the mapping target DRB through the mapping relationship between the DRB and the QoS flow and the downstream TNL information of the MN network element side indicated in the request information for each QoS flow.
  • the MN-side downlink TNL information corresponding to this maximum or minimum QoS Flow ID is the maximum or minimum QoS Flow ID.
  • each TNL information in the request information includes TNL sequence number information; an allocation rule for assigning target TNL information to each target DRB from a set of downlink TNL information on the network element side of the MN network includes: for QoS Each DRB to which the flow maps is sequentially numbered, and the TNL information with the same sequence number as that of the target DRB is used as the target TNL information of the target DRB.
  • the sub-information in the response information includes the order of each DRB to which the QoS flow is mapped. ⁇ ⁇ Number information.
  • the target DRB uses the Nth of a group of downlink TNL information of the MN network element side carried in the request information; in this case, The determining module 1003 determines the target TNL information of the target DRB by determining the sequence number of the target DRB in the DRB list in the response information and the sequence number information of each TNL in the request information.
  • the above-mentioned SN network element informs the determining module 1003 of the target TNL information of each target DRB in a clear or implicit manner through the sub-information.
  • the determining module 1003 can determine the target TNL information of the SN network element selected for each target DRB. The establishment of DRB.
  • the method before the second sending module 1001 sends the request information, or after the second sending module 1001 sends the request information and before the second receiving module 1002 receives the response information sent from the SN network element, the method further includes: : In the case where downlink data is received according to the TNL information in the request information, the downlink data is buffered locally until a response message is received.
  • the second receiving module 1002 prepares Start receiving downlink data sent from the SN network element according to the TNL information in the request message; that is, if the second receiving module 1002 receives data according to the above-mentioned downlink TNL information of the MN network element side, it is buffered locally until the response information is received And determine the mapping relationship between downlink TNL information and DRB on the network element side of the MN network.
  • the second receiving module 1002 after the second receiving module 1002 receives the response information sent from the SN network element, it further includes: not preparing to start receiving downlink data sent from the SN network element according to the TNL information in the request information. In this case, the second receiving module 1002 is ready to start receiving downlink data sent from the network element of the SN network according to the target TNL information allocated for the target DRB.
  • the second receiving module 1002 can determine the target TNL information allocated to each target DRB according to the sub-information in the response information.
  • the module 1003 determines the target TNL information allocated for each target DRB according to the sub-information in the response information, it further includes: releasing the resources corresponding to the unallocated TNL information; for the resources corresponding to the unallocated TNL information, each target DRB Will not be used, so release it for the rest of the needs.
  • the method further includes: the SN network element sends downlink data to the second receiving module 1002 according to the target TNL information allocated for the target DRB.
  • the network element of the SN network can transmit the downlink data of the target DRB to the second receiving module 1002 according to the target TNL information of the target DRB.
  • the response information further includes an RRC message sent to the UE; after sending the response information to the second receiving module 1002, the method further includes: after receiving the UE feedback RRC message, according to the target TNL allocated for the target DRB The information sends downlink data to the second receiving module 1002.
  • the network element of the SN network may confirm that the second receiving module 1002 and the UE are ready to receive data on the network element side of the MN network.
  • the manner for sending downlink data to the second receiving module 1002 according to the target TNL information allocated for the target DRB includes: after processing the SDAP entity and the PDCP entity for the downlink data packets received from the core network or other network elements.
  • the obtained data packet PDCP PDU is encapsulated by GTP, and the GTP tunnel identifier is set to the GTP-TEID in the target TNL information, and / or the transport layer address is set to the transport layer address in the target TNL information.
  • the SN network element sends the data packet PDCP processed by the PDCP entity through the interface between the MN network element and the SN network element, and uses the target DRB on the MN network element side to receive the target TNL information for receiving the downlink data of the target DRB. Go to the second receiving module 1002.
  • the MN network element will continue to perform the RLC and MAC layer protocol processing on the received PDCP and PDU, and send it to the UE on the wireless interface.
  • the second sending module 1001 directly sends a set of downlink TNL information on the side of the MN network element to the SN network element. After determining the mapping relationship between QoS flow and DRB, and after determining the target DRB according to the bearer type of the DRB, the target TNL information is assigned to each target DRB from a set of TNL information, thereby completing the dual-connection in the 3GPP wireless access network.
  • the establishment of DRB in the connection architecture saves the number of messages in the signaling flow required when the SN network element creates or modifies QoS resources for the UE, saves the interface burden between the MN and the SN network element, and saves The time overhead of the process.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • An embodiment of the present invention provides a DRB establishment system, as shown in FIG. 11, including a MN network element 1101 and an SN network element 1102.
  • the MN network element 1101 is used to send request information to the SN network element 1102.
  • the request information includes information about a set of QoS flows that are terminated at the SN network element 1102 and need to be created or modified, and a group of MN network elements.
  • the downlink TNL information on the side of 1101 and the target TNL information allocated for each target DRB are determined according to the sub information in the response information sent by the network element 1102 of the SN network.
  • the SN network element 1102 is used to determine the mapping relationship between QoS flow and DRB, and determine the target DRB according to the mapping relationship between QoS flow and DRB and the type of DRB bearer, and from the downlink TNL information of a group of MN network element 1101 Assign target TNL information to each target DRB, and send response information to the MN network element 1101.
  • the response information includes sub-information, and the sub-information is used to determine the target TNL information allocated for each target DRB.
  • the MN network element 1101 sends request information to the SN network element 1102, and the request information carries a set of SN terminated information that needs to be newly created or a set of QoS terminated and needs to be modified.
  • Information; a set of QoS flows includes at least one QoS flow; in some embodiments, for each QoS flow, includes: QoS flow identity information, QoS flow level QoS parameters, and QoS for MCG resources available for the QoS flow parameter.
  • the QoS flow identity information includes, but is not limited to, QoS flow ID information or QoS flow sequence number information.
  • the request information also carries a set of downlink TNL information on the network element 1101 side of the MN network.
  • the set of TNL information includes at least one TNL information.
  • each TNL information includes TNL identity information; the TNL identity information includes TNL The address information and / or GTP-TEID information; or the identification of the TNL information; or the sequence number information of the TNL; the sequence number information of the TNL refers to sequential numbering for each TNL.
  • the SN network element 1102 After receiving the request information from the MN network element 1101, the SN network element 1102 determines the mapping relationship between QoS flow and DRB, and determines the target DRB according to the bearer type of the DRB; the target DRB indicates that TNL information needs to be allocated DRB, that is, the bearer type is SN terminated MCG bearer shown in FIG. 2 or SN terminated split bearer shown in FIG. 3.
  • the following example illustrates: For example, there are 3 DRBs mapped to QoS flow, which are denoted as DRB1, DRB2, and DRB3.
  • the bearer types of DRB1 and DRB2 are SN terminated MCG bearer, and the bearer type of DRB3 is SN terminated
  • DRB1 and DRB2 are taken as the target DRB, and DRB3 is not taken as the target DRB.
  • the SN network element 1102 allocates each target DRB from the downlink TNL information on the side of the MN network element 1101 to the target TLB information of the target DRB and sends the downlink data of the target DRB from the SN network element 1102 to the MN network element 1101.
  • the target TNL information assigned to it is the TNL information used by the target DRB
  • the SN network element 1102 sends the downlink data of the target DRB to the MN network element 1101 according to the target TNL information.
  • the SN network element 1102 can determine the bearer type of the DRB.
  • the PDCP entity of the DRB is located in the SN network element 1102 and uses MCG resources, it indicates that the DRB is
  • the bearer type is SN terminated MCG bearer shown in Figure 2 or SN terminated split bearer shown in Figure 3
  • the DRB bearer type is SN terminated MCG bearer or SN terminated split bearer
  • the downlink data is transmitted according to the TNL information corresponding to the DRB To the MN network element 1101; so after determining that the bearer type of the DRB is SN terminated MCG bearer or SN term split bearer, the target TNL information can be assigned to the DRB from the downlink TNL information on the set of MN network element 1101 .
  • the MN network element 1101 since the MN network element 1101 cannot predict how the SN network element 1102 maps the QoS flow to the DRB when initiating the request information, nor does it know the number of DRBs obtained from the mapping, and each target DRB has One TNL message, so in order to ensure that each target DRB can be assigned TNL information, the number of TNL information carried in the request message sent by MN network element 1101 to SN network element 1102 may be greater than the number of QoS flows The number or the number of QoS flows carried is equal to the number of TNL information in the request information.
  • the core network connected to the access network is a 3GPP 5G core network
  • the user data sent by the core network to the access network is organized into multiple QoS flows.
  • the wireless access network assigns one or more QoS The flow is mapped to a DRB for scheduling and transmission of the radio interface.
  • the SDAP entity at the protocol layer maps multiple QoS flows to two different DRBs, and then submits the data to the PDCP layer to continue processing.
  • the multiple QoS flows shown in Figure 5 are represented by QoS flows, two Different DRBs are represented by DRB IDx and DRB ID. SDAP entities map a set of QoS flows to a set of DRBs, that is, multiple QoS flows are mapped to two different DRBs. These two different DRBs are one. group.
  • the mapping relationship between QoS flow and DRB can be expressed by a combination of DRB ID and a set of QoS flow ID mapped to the DRB.
  • the following table is exemplified in the form of a table For the mapping relationship between QoS flow and DRB, see Table 6 below.
  • Table 6 shows the mapping of QoS flow ID1 to QoS flow ID5 to DRB in a set of QoS flows, where QoS flow ID1 to QoS flow ID3 is mapped to DRB ID1, and QoS flow ID4 to QoS flow ID5 is mapped to DRB ID2.
  • the SN network element 1102 also needs to allocate a TNL information for each target DRB from a set of TNL information in the request information.
  • the SN network element 1102 allocates a TNL information for each target DRB.
  • the allocation rules include: for one of the target DRBs, randomly selecting one of the TNL information from a group of downlink TNL information on the network element 1101 side of the MN network as the target TNL information of the target DRB, each target DRB corresponds to a different TNL information; or
  • a TNL information is selected as the target TLB information of the target DRB in the order or reverse order, that is, the sequence number information It can be reflected by the order of the TNL information in the TNL information list; or when each TNL information in the request information includes the TNL sequence number information, the downlink TNL information from the set of MN network element 1101 is in order or reverse order
  • the TNL information with a sequence number of 1 is assigned to the first target DRB
  • the TNL information with a sequence number of 2 is assigned to the second target DRB
  • the TNL information with a sequence number of 3 is assigned to the third target DRB, and so on;
  • the TNL information with the sequence number being the last is assigned to the first target DRB, and the sequence number is
  • the TNL information with the penultimate number is allocated to the second target DRB
  • the TNL information with the penultimate number is allocated to the third target DRB, and so on.
  • the SN network element 1102 can inform the MN network element 1101 of the target TNL information of each target DRB in a clear or implicit manner through the sub-information; when notified in a clear manner, the sub-information includes QoS flow Mapping relationship with DRB, and TNL identity information assigned to each target DRB; when notified in an implicit manner, the sub-information includes the mapping relationship between QoS flow and DRB. MN network element 1101 according to the QoS flow and DRB The mapping relationship indirectly determines the target TNL information of each target DRB.
  • the request information sent by the MN network element 1101 to the SN network element 1102 is The TNL information carried includes identity information of each TNL.
  • the identity information of the TNL includes TNL address information and / or GTP-TEID information; or the identification of the TNL information; or the sequence number information of the TNL.
  • the network network element 1101 sends response information.
  • the response information includes sub-information.
  • the sub-information is used to determine the target TNL information allocated for each target DRB.
  • the sub-information may be identity information for selecting the corresponding target TNL information for each target DRB. That is, the MN network element 1101 is explicitly notified of the TNL information corresponding to each target DRB.
  • the sub-information in the response message includes the identification of the downstream TNL information of the MN network element 1101 on the target DRB.
  • the identification of the TNL information is the SN network element 1102 and the set of MN network elements carried in the request information by the target DRB.
  • the request information indicates the identifier of the downstream TNL information on the 1101 side of each MN network element.
  • the sub-information in the response message includes the sequence number of the downstream TNL information of the MN network element 1101 on the target DRB.
  • the sequence number of the TNL information is a group of MN network elements 1101 carried by the SN network element 1102 from the request Among the sequence numbers in the downlink TNL information, the sequence number of a TNL information selected for the target DRB.
  • the target TNL information selected for the target DRB is in a set of MN network element 1101 on the downlink TNL.
  • the sequence number in the message is Nth, and the sequence number of the target TNL information selected for the target DRB is N.
  • the TNL information is characterized by QoS flow ID information, each QoS flow in the request information includes QoS flow ID information, and each QoS flow indicates that there is corresponding TNL information; the sub-information in the response information includes QoS Flow ID information corresponding to the TNL information used by the target DRB. That is, the target TNL information is determined according to the QoS Flow ID information corresponding to the TNL information used by the target DRB.
  • the TNL information corresponding to the target DRB can be distinguished according to the QoS flow ID information; the response information neutron sent by the SN network element 1102 to the MN network element 1101
  • the information includes the mapping relationship between QoS flow and DRB, and the QoS flow ID information corresponding to the selected TNL information.
  • the MN network element 1101 can determine the TNL information corresponding to the target DRB according to the QoS flow ID information.
  • the TNL information is characterized by QoS flow ID information.
  • Each QoS flow in the request information includes QoS flow ID information.
  • Each QoS flow indicates that there is corresponding TNL information.
  • the allocation rule of the target TNL information for each target DRB in the downlink TNL information on the element 1101 side includes: selecting the corresponding QoS flow with the smallest QoS flow ID or the largest QoS flow ID from all QoS flows mapped to the target DRB.
  • the TNL information is used as the target TNL information of the target DRB.
  • the sub-information in the response information includes the mapping relationship between QoS flow and DRB.
  • the mapping relationship between QoS flow and DRB is characterized by the DRB ID and a set of QoS flow IDs mapped to the DRB.
  • the MN network element 1101 can determine the TNL information corresponding to the target DRB according to the mapping relationship between QoS flow and DRB.
  • the response information sent by the network element 1102 of the SN network to the network element 1101 of the MN does not explicitly indicate the target TNL information of the target DRB. Instead, it carries the mapping relationship between QoS flow and DRB.
  • the relationship is characterized by the DRB ID and a set of QoS flow IDs mapped to the DRB.
  • the MN network element 1101 is implicitly notified.
  • the MN network element 1101 determines that the QoS flow ID is the smallest among all QoS flows mapped to the target DRB. Or, the TNL information corresponding to the QoS flow with the largest QoS ID is used as the target TNL information of the target DRB.
  • the MN network element 1101 can obtain the maximum or minimum QoS flow ID of the mapping target DRB through the mapping of DRB and QoS flow and the downstream TNL information of the MN network element 1101 indicated in the request information for each QoS flow. And MN-side downlink TNL information corresponding to this maximum or minimum QoS Flow ID.
  • each TNL information in the request information includes TNL sequence number information; an allocation rule for assigning target TNL information to each target DRB from a set of downlink TNL information on the side of the network element 1101 of the MN network includes: Each DRB to which the QoS flow is mapped is sequentially numbered, and the TNL information with the same sequence number as that of the target DRB is used as the target TNL information of the target DRB.
  • the sub-information in the response information includes each DRB to which the QoS flow is mapped. Sequence number information.
  • the target DRB uses the Nth of the group of MN network element 1101 downlink TNL information carried in the request information; in this case The MN network element 1101 determines the target TNL information of the target DRB by determining the sequence number of the target DRB in the DRB list in the response information and the sequence number information of each TNL in the request information.
  • the SN network element 1102 mentioned above informs the MN network element 1101 of the target TNL information of each target DRB in an explicit or implicit manner through the sub-information, and the MN network element 1101 can determine that the SN network element 1102 selects for each target DRB.
  • the target TNL information is used to achieve the establishment of DRB.
  • the MN network element 1101 before the MN network element 1101 sends the request information, or after the MN network element 1101 sends the request information and before the MN network element 1101 receives the response information from the SN network element 1102, Including: if the MN network element 1101 receives the downlink data according to the TNL information in the request information, it buffers the downlink data locally until a response message is received.
  • the MN network element 1101 Before the MN network element 1101 sends the request information, or after the MN network element 1101 sends the request information and before the MN network element 1101 receives the response information from the SN network element 1102, the MN network element 1101 It is ready to start receiving downlink data sent from the SN network element 1102 according to the TNL information in the request information; that is, if the MN network element 1101 receives data according to the downlink TNL information on the MN network element 1101 side, the MN network element 1101 buffers Locally, until the response information is received and the mapping relationship between the downlink TNL information and the DRB on the network element 1101 side of the MN network is determined.
  • the MN network element 1101 after the MN network element 1101 receives the response information sent from the SN network element 1102, it further includes: not preparing to start receiving the downlink sent from the SN network element 1102 according to the TNL information in the request information. In the case of data, it is ready to start receiving downlink data sent from the SN network element 1102 according to the target TNL information allocated for the target DRB.
  • the MN network element 1101 can determine the target TNL information allocated for each target DRB according to the sub-information in the response information. After the element 1101 determines the target TNL information allocated for each target DRB according to the sub-information in the response information, it further includes: the MN network element 1101 releases the resources corresponding to the unallocated TNL information; and the resources corresponding to the unallocated TNL information , Each target DRB will not be used, so release it for the remaining needs.
  • the method further includes: the SN network element 1102 sends downlink data to the MN network element 1101 according to the target TNL information allocated for the target DRB.
  • the network element 1102 of the SN network may transmit the downlink data of the target DRB to the network element 1101 of the MN according to the target TNL information of the target DRB.
  • the response information further includes an RRC message sent to the UE; after sending the response information to the MN network element 1101, the method further includes: after receiving the UE feedback RRC message, according to the target TNL allocated for the target DRB The information sends downlink data to the network element 1101 of the MN network.
  • the SN network element 1102 can confirm that the MN network element 1101 and the UE are ready to receive data on the MN network element 1101 side.
  • the manner of sending downlink data to the MN network element 1101 according to the target TNL information allocated for the target DRB includes: after processing the SDAP entity and the PDCP entity of the downlink data packets received from the core network or other network elements
  • the obtained data packet PDCP PDU is encapsulated by the GTP protocol, and the GTP tunnel identifier is set to the GTP-TEID in the target TNL information, and / or the transport layer address is set to the transport layer address in the target TNL information.
  • the SN network element 1102 passes the data packet PDCP processed by the PDCP entity through the interface between the MN network element 1101 and the SN network element 1102, and uses the target DRB on the MN network element 1101 side to receive downlink data of the target DRB.
  • the target TNL information is sent to the network element 1101 of the MN network.
  • the MN network element 1101 continues to perform the RLC and MAC layer protocol processing on the received PDCP PDU, and sends it to the UE on the wireless interface.
  • the method shown in FIG. 8 includes the following steps:
  • the MN network element 1101 sends request information to the SN network element 1102.
  • the request information includes a set of QoS flow information and a set of MN network element 1101 downlink TNL information.
  • the network element 1102 of the SN network determines the mapping relationship between QoS flow and DRB according to the request information, determines the bearer type of the DRB, and selects a MN-side downlink TNL information for the DRB whose bearer type is SN terminated MCG bearer or SN term bearer.
  • the SN network element 1102 sends response information to the MN network element 1101.
  • the response information carries the mapping relationship between QoS flow and DRB, and explicitly or implicitly indicates the downlink TNL information of the MN network element 1101 side of the DRB.
  • the MN network element 1101 determines the correspondence between the DRB and the downlink TNL information on the MN network element 1101 side according to the response information.
  • the network element 1102 of the SN network completes the PDCP processing on the data packet with a bearing type of MCG bearer or SN term bearer.
  • the network element 1102 of the SN network sends downlink data of the DRB according to the downlink TNL information of the network element 1101 side of the MN network selected for the DRB.
  • the MN network element 1101 directly sends a set of downlink TNL information on the MN network element 1101 side to the SN network element 1102, and the SN network element Element 1102 determines the mapping relationship between QoS flow and DRB, and determines the target DRB according to the bearer type of DRB, and then assigns target TNL information to each target DRB from a set of TNL information, thereby completing the wireless access in 3GPP.
  • the establishment of DRB in the dual connection architecture of the network saves the number of messages in the signaling flow required when the SN network element 1102 creates or modifies QoS resources for the UE, and saves the interface between the MN and the SN network element 1102 Burden and saves time overhead of the process.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • An embodiment of the present invention further provides a secondary node. As shown in FIG. 12, it includes a first processor 1201, a first memory 1202, and a first communication bus 1203.
  • the first communication bus 1203 is used to implement the first processing. Connection and communication between the processor 1201 and the first memory 1202; the first processor 1201 is configured to execute one or more computer programs stored in the first memory 1202 to implement the DRB establishment method in the first embodiment.
  • An embodiment of the present invention further provides a master node.
  • the master node includes a second processor 1301, a second memory 1302, and a second communication bus 1303.
  • the second communication bus 1303 is configured to implement a second process. Connection and communication between the processor 1301 and the second memory 1302; the second processor 1301 is configured to execute one or more computer programs stored in the second memory 1302 to implement the DRB establishment method in the second embodiment described above.
  • An embodiment of the present invention further provides a DRB establishment system. As shown in FIG. 14, it includes a third processor 1401, a third memory 1402, and a third communication bus 1403.
  • the third communication bus 1403 is used to implement the third The connection and communication between the processor 1401 and the third memory 1402; the third processor 1401 is configured to execute one or more computer programs stored in the third memory 1402 to implement the DRB establishment method in the third embodiment.
  • An embodiment of the present invention also provides a computer-readable storage medium included in any method or technology for storing information such as computer-readable instructions, data structures, computer program modules, or other data.
  • Computer-readable storage media include, but are not limited to, RAM (Random Access Memory), ROM (Read-Only Memory, Read-Only Memory), EEPROM (Electrically Erasable, Programmable, Read-Only Memory, and Erasable Programmable Read-Only Memory) ), Flash memory or other memory technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic box, magnetic tape, disk storage or other magnetic storage devices, Or any other medium that can be used to store desired information and can be accessed by a computer.
  • the computer-readable storage medium in this embodiment may be used to store one or more computer programs, and the stored one or more computer programs may be executed by a processor to implement the foregoing first embodiment, and / or the second embodiment, and / Or at least one step of the DRB establishment method in the third embodiment.
  • This embodiment also provides a computer program, which can be distributed on a computer-readable medium and executed by a computable device to implement the first embodiment, and / or the second embodiment, and / or the third embodiment. At least one step of the DRB establishment method in; and in some cases, at least one step shown or described may be performed in an order different from that described in the above embodiments.
  • This embodiment also provides a computer program product including a computer-readable device, where the computer-readable device stores the computer program as shown above.
  • the computer-readable device in this embodiment may include a computer-readable storage medium as shown above.
  • a communication medium typically contains computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium. Therefore, this application is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种DRB建立方法、装置、系统、辅节点及主节点,所述方法包括:主节点向辅节点发送请求信息,包括终结在辅节点的且需要新建或需要修改的一组QoS flow的信息,和一组主节点侧的下行TNL信息;辅节点根据请求信息确定QoS flow到DRB的映射关系,根据QoS flow到DRB的映射关系和DRB的承载类型确定出目标DRB,并从一组主节点侧的下行TNL信息中为每个目标DRB分配目标TNL信息,并将响应信息发送给主节点,响应信息包括子信息,子信息用于确定为每个目标DRB分配的目标TNL信息;主节点根据响应信息中的子信息确定为每个目标DRB分配的目标TNL信息。

Description

DRB建立方法、装置、系统、辅节点及主节点
本申请要求在2018年08月09日提交中国专利局、申请号为201810904443.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及但不限于通信领域,具体而言,涉及但不限于一种DRB(Data Radio Bearer,数据无线承载)建立方法、装置、系统、辅节点及主节点。
背景技术
在3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)系统中,存在一种DC(Dual Connection,双连接)的连接模式,在DC模式下,UE(User Equipment,用户设备)同时和两个不同网络网元间建立无线连接,其中一个网络网元称为该UE的MN(Master Node,主节点)网络网元,另一个网络网元称为SN(Secondary Node,辅节点)网络网元;网络为UE在MN网络网元下配置的一组小区配置的无线资源称为MCG(Mater Cell Group,主单元组)配置,在SN网元下配置的一组小区配置的无线资源称为SCG(Secondary Cell Group,辅单元组)配置。网络为了UE可使用MN网络网元和SN网络网元的资源为UE建立DRB。
在相关技术的3GPP讨论中,如果接入网连接的核心网为3GPP第五代移动通信系统(the 5th Generation mobile communication system,5G)核心网(5GC),核心网发送给接入网的用户数据被组织为多个QoS flow(服务质量流),在3GPP 5G新无线(New Radio,NR)架构中,无线接入网将一个或多个QoS flow映射到一个DRB以进行无线接口的调度和传输。参见图1所示的方法,用于实现在DC架构下,完成QoS flow到DRB的映射以及在MN网络网元和SN网络网元上为DRB分配资源,在图1所示的方法中,包括以下步骤:
S101:MN网络网元向SN网络网元发送请求信息,请求信息中指示需要使用SN网络网元资源的一组QoS flow的信息,包括QoS flow ID和MCG资源信息。
S102:SN网络网元接收到上述请求信息后,确定QoS flow到DRB的映射,即确定哪些QoS flow映射到一个DRB,并确定DRB的承载类型。
S103:SN网络网元将QoS flow到DRB的映射关系和DRB的承载类型在随后的响应消息中发送给MN网络网元。
S104:在该DRB的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)实体位于SN网络网元,且使用MCG资源的情况下,也即DRB的承载类型为辅节点终结的主单元组承载(SN terminated MCG bearer)或辅节点终结的分离承载(SN terminated split bearer)时,则MN网络网元为每个DRB分配一个用于接收从SN网络网元发送的该DRB下行数据的TNL(Transport Network Layer,传输层)信息,并用一个独立的第三条信息将每个DRB的TNL信息发送给SN网络网元,第三条信息包括DRB标识(Identifier,ID)和DRB对应的TNL信息。
在上述的相关技术中,因为MN网络网元在发起请求信息时不能预判SN网络网元如何映射QoS flow到DRB,因此MN网络网元只能在接收到SN网络网元的响应信息,得知QoS flow到DRB的映射关系后,再为DRB分配用于从SN网络网元发送到MN网络网元的该DRB的下行数据的TNL信息,并用第三条信息将此TNL信息发送给SN;此种方式由于上述第三条信息,导致了额外的MN网络网元和SN网络网元间信令开销,并导致了额外的处理延时。
发明内容
本发明实施例提供的DRB建立方法、装置、系统、辅节点及主节点,解决了MN网络网元在发起请求信息时不能预判SN网络网元如何映射QoS flow到DRB,因此MN网络网元只能在接收到SN网络网元的响应信息,得知QoS flow到DRB的映射关系后,再为DRB分配用于从SN网络网元发送到MN网络网元的该DRB的下行数据的TNL信息,并用第三条信息将此TNL信息发送给SN;此种方式由于上述第三条信息,导致了额外的MN网络网元和SN网络网元间信令开销,并导致了额外的处理延时的问题。
本发明实施例提供一种DRB建立方法,包括:
接收从主节点发来的请求信息,所述请求信息包括终结在辅节点的且需要新建或需要修改的一组QoS flow的信息,以及一组所述主节点侧的下行TNL信息;
确定QoS flow到DRB的映射关系,根据QoS flow到DRB的映射关系以及DRB的承载类型确定出目标DRB,以及从所述一组所述主节点侧的下行TNL信息中为每个目标DRB分配目标TNL信息;
将响应信息发送给所述主节点,所述响应信息包括子信息,所述子信息用于确定为每个目标DRB分配的目标TNL信息。
本发明实施例还提供一种DRB建立装置,包括:
第一接收模块,用于接收从主节点发来的请求信息,所述请求信息包括终结在辅节点的且需要新建或需要修改的一组QoS flow的信息,以及一组所述主节点侧的下行TNL信息;
处理模块,用于确定QoS flow到DRB的映射关系,根据QoS flow到DRB的映射关系以及DRB的承载类型确定出目标DRB,以及从所述一组所述主节点侧的下行TNL信息中为每个目标DRB分配目标TNL信息;
第一发送模块,用于将响应信息发送给所述主节点,所述响应信息包括子信息,所述子信息用于确定为每个目标DRB分配的目标TNL信息。
本发明实施例还提供一种辅节点,包括第一处理器、第一存储器和第一通信总线;
所述第一通信总线用于实现所述第一处理器和第一存储器之间的连接通信;
所述第一处理器用于执行所述第一存储器中存储的一个或者多个程序,以实现如上述所述的DRB建立方法。
本发明实施例还提供一种DRB建立方法,包括:
向辅节点发送请求信息,所述请求信息包括终结在所述辅节点的且需要新建或需要修改的一组QoS flow的信息,以及一组主节点侧的下行TNL信息;
接收从所述辅节点发来的响应信息,所述响应信息包括子信息,所述子信息用于确定为QoS flow映射到的DRB中每个目标DRB分配的目标TNL信息,所述目标DRB根据DRB的承载类型确定;
根据所述响应信息中的子信息确定为每个目标DRB分配的目标TNL信息。
本发明实施例还提供一种DRB建立装置,包括:
第二发送模块,用于向辅节点发送请求信息,所述请求信息包括终结在所述辅节点的且需要新建或需要修改的一组QoS flow的信息,以及一组主节点主节点侧的下行TNL信息;
第二接收模块,用于接收从所述辅节点发来的响应信息,所述响应信息包括子信息,所述子信息用于确定为QoS flow映射到的DRB中每个目标DRB分配的目标TNL信息,所述目标DRB根据DRB的承载类型确定;
确定模块,用于根据所述响应信息中的子信息确定为每个目标DRB分配的目标TNL信息。
本发明实施例还提供一种主节点,包括第二处理器、第二存储器和第二通信总线;
所述第二通信总线用于实现所述第二处理器和第二存储器之间的连接通信;
所述第二处理器用于执行所述第二存储器中存储的一个或者多个程序,以实现如上述所述的DRB建立方法。
本发明实施例还提供一种DRB建立方法,包括:
主节点向辅节点发送请求信息,所述请求信息包括终结在所述辅节点的且需要新建或需要修改的一组QoS flow的信息,以及一组所述主节点侧的下行TNL信息;
所述辅节点确定QoS flow到DRB的映射关系,根据QoS flow到DRB的映射关系以及DRB的承载类型确定出目标DRB,以及从所述一组所述主节点侧的下行TNL信息中为每个目标DRB分配目标TNL信息,并将响应信息发送给所述主节点,所述响应信息包括子信息,所述子信息用于确定为每个目标DRB分配的目标TNL信息;
所述主节点根据所述响应信息中的子信息确定为每个目标DRB分配的目标TNL信息。
本发明实施例还提供一种DRB建立系统,包括:主节点和辅节点,
所述主节点,用于向所述辅节点发送请求信息,所述请求信息包括终结在所述辅节点的且需要新建或需要修改的一组QoS flow的信息,以及一组所述主节点侧的下行TNL信息,并根据所述辅节点发来的所述响应信息中的子信息确定为每个目标DRB分配的目标TNL信息;
所述辅节点,用于确定QoS flow到DRB的映射关系,根据QoS flow到DRB的映射关系以及DRB的承载类型确定出目标DRB,以及从所述一组所述主节点侧的下行TNL信息中为每个目标DRB分配目标TNL信息,并将响应信息发送给所述主节点,所述响应信息包括子信息,所述子信息用于确定为每个目标DRB分配的目标TNL信息。
本发明实施例还提供一种DRB建立系统,包括第三处理器、第三存储器和第三通信总线;
所述第三通信总线用于实现所述第三处理器和第三存储器之间的连接通信;
所述第三处理器用于执行所述第三存储器中存储的一个或者多个程序,以实现如上述所述的DRB建立方法。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质 存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如上述所述的任一个所述的DRB建立方法。
根据本发明实施例提供的DRB建立方法、装置、系统、辅节点及主节点,主节点向辅节点发送请求信息,请求信息包括终结在辅节点的且需要新建或修改的一组QoS flow的信息,以及一组主节点侧的下行TNL信息;辅节点确定QoS flow到DRB的映射关系,根据DRB的承载类型确定出目标DRB,以及从一组主节点侧的下行TNL信息中为每个目标DRB分配目标TNL信息,并将响应信息发送给主节点,响应信息包括子信息,子信息用于确定为每个目标DRB分配的目标TNL信息;主节点根据响应信息中的子信息确定为每个目标DRB分配的目标TNL信息;在某些实施过程中,由主节点将一组主节点侧的下行TNL信息直接发送给辅节点,由辅节点在确定了QoS flow到DRB的映射关系、以及根据DRB的承载类型确定出目标DRB之后,从一组TNL信息中为每个目标DRB分配目标TNL信息,由此完成DRB的建立,节省了在辅节点为UE新建或修改QoS flow的资源时所需要的信令流程的消息数量,节省了主节点和辅节点间的接口负担,并节省了流程的时间开销。
附图说明
图1为相关技术的连接到5GC的DRB建立或修改的流程示意图;
图2为本发明实施例一的DRB承载类型为SN terminated MCG bearer的示意图;
图3为本发明实施例一的DRB承载类型为SN terminated split bearer的示意图;
图4为本发明实施例一的SN网络网元侧的DRB建立方法的流程示意图;
图5为本发明实施例一的5G NR中QoS flow到DRB的映射的示意图;
图6为本发明实施例二的MN网络网元侧的DRB建立方法的流程示意图;
图7为本发明实施例三的系统的DRB建立方法的第一流程示意图;
图8为本发明实施例三的系统的DRB建立方法的第二流程示意图;
图9为本发明实施例四的DRB建立装置的第一结构示意图;
图10为本发明实施例五的DRB建立装置的第二结构示意图;
图11为本发明实施例六的DRB建立系统的第一结构示意图;
图12为本发明实施例七的辅节点的结构示意图;
图13为本发明实施例七的主节点的结构示意图;
图14为本发明实施例七的DRB建立系统的第二结构示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
实施例一:
在3GPP接入网双连接架构中,UE同时和MN网络网元(也即主节点)、SN网络网元(也即辅节点)建立无线连接,网络为UE在MN网络网元下配置的一组小区配置的无线资源称为MCG配置,在SN网元下配置的一组小区配置的无线资源称为SCG配置。网络为了UE可使用MN网络网元和SN网络网元的资源为UE建立DRB,根据DRB的协议层实体在两个网络网元间的不同分布,DRB的类型包括:主节点终结的主单元组承载(MN terminated MCG bearer),主节点终结的辅单元组承载(MN terminated SCG bearer),主节点终结的分离承载(MN terminated splite bearer),辅节点终结的主单元组承载(SN terminated MCG bearer),辅节点终结的辅单元组承载(SN terminated SCG bearer)以及辅节点终结的分离承载(SN terminated split bearer)。其中,如图2所示,SN terminated MCG bearer是指该DRB的PDCP协议实体建立在SN网络网元,RLC(Radio Link Control,无线链路层控制)协议实体和MAC(Medium Access Control,介质访问控制)协议实体建立在MN网络网元的一种无线承载形式;如图3所示,SN terminated split bearer是指该DRB的PDCP协议实体建立在SN网络网元,在MN和SN两个网络网元中分别建立有DRB的RLC协议实体和MAC协议实体的一种无线承载形式。
为了解决因为MN网络网元在发起请求信息时不能预判SN网络网元如何映射QoS flow到DRB,因此MN网络网元只能在接收到SN网络网元的响应信息,得知QoS flow到DRB的映射关系后,再为DRB分配用于从SN网络网元发送到MN网络网元的该DRB的下行数据的TNL信息,并用第三条信息将此TNL信息发送给SN;此种方式由于上述第三条信息,导致了额外的MN网络网元和SN网络网元间信令开销,并导致了额外的处理延时的问题,本发明实施例提供一种DRB建立方法,本实施例提供的DRB建立方法是SN网络网元(也即辅节点)侧的DRB建立方法,请参见图4所示,包括:
S401:接收从MN网络网元(也即主节点)发来的请求信息,请求信息包括终结在(也即terminated in)SN网络网元且需要新建或需要修改的一组QoS flow的信息,以及一组MN网络网元侧的下行TNL信息。
在本发明实施例中,由MN网络网元向SN网络网元发送请求信息,请求信 息携带一组SN terminated且需要新建的QoS flow的信息(QoS flow to be setup list)或一组SN terminated且需要修改的QoS flow的信息(QoS flow to be modified list);一组QoS flow中包括至少一个QoS flow;在一些实施例中,对于每个QoS flow,包括:QoS flow身份信息、QoS flow级别的QoS参数、以及可用于该QoS flow的MCG资源的QoS参数。QoS flow身份信息包括但不限于QoS flow ID信息、或者QoS flow的顺序号信息。
请求信息还携带一组MN网络网元侧的下行TNL信息,一组TNL信息中包括至少一个TNL信息;在一些实施例中,每个TNL信息包括TNL的身份信息;TNL的身份信息包括传输层地址TNL address信息和/或通用分组无线服务隧道协议-隧道标识(General Packet Radio Service Tunnelling Protocol-Tunnel Endpoint Identifier,GTP-TEID)信息;或者TNL信息的标识(TNL information index);或者TNL的顺序号信息;TNL的顺序号信息是指为每个TNL进行顺序编号。
S402:确定QoS flow到DRB的映射关系,根据QoS flow到DRB的映射关系以及DRB的承载类型确定出目标DRB,以及从一组MN网络网元侧的下行TNL信息中为每个目标DRB分配目标TNL信息。
SN网络网元在接收到从MN网络网元发来的请求信息之后,确定QoS flow到DRB的映射关系,并根据DRB的承载类型确定出目标DRB;目标DRB表明是需要分配TNL信息的DRB,也即承载类型是图2所示的SN terminated MCG bearer或图3所示的SN terminated split bearer。为便于理解,以下举例说明:例如QoS flow映射到的DRB有3个,分别记为DRB1、DRB2和DRB3,其中,DRB1和DRB2的承载类型均是SN terminated MCG bearer,DRB3的承载类型是SN terminated SCG bearer,则将DRB1和DRB2作为目标DRB,DRB3不作为目标DRB。
并且SN网络网元从一组MN网络网元侧的下行TNL信息中为每个目标DRB分配将该目标DRB的下行数据从SN网络网元发送到MN网络网元的目标TNL信息;对于其中一个目标DRB,为其分配的目标TNL信息,是该目标DRB使用的TNL信息,SN网络网元根据该目标TNL信息将该目标DRB的下行数据发送到MN网络网元。SN网络网元在接收到从MN网络网元发来的请求信息之后,可以确定DRB的承载类型(bearer type);如果DRB的PDCP实体位于SN网络网元,且使用MCG资源,则表明该DRB的承载类型为图2所示的SN terminated MCG bearer或图3所示的SN terminated split bearer,在DRB的承载类型为SN terminated MCG bearer或SN terminated split bearer时,是根据DRB对应的TNL信息发送下行数据到MN网络网元;所以在确定了DRB的承载类 型为SN terminated MCG bearer或SN terminated split bearer之后,便可以从一组MN网络网元侧的下行TNL信息中为该DRB分配目标TNL信息。
S403:将响应信息发送给MN网络网元,响应信息包括子信息,子信息用于确定为每个目标DRB分配的目标TNL信息。
在一些实施例中,由于MN网络网元在发起请求信息时不能预判SN网络网元如何映射QoS flow到DRB,也不知道映射得到的DRB的个数,而每个目标DRB都有一个TNL信息,所以为了保证每个目标DRB都能分配到TNL信息,可以是在MN网络网元向SN网络网元发送的请求信息中,携带的TNL信息的个数大于QoS flow的个数,或者携带的QoS flow的个数与请求信息中TNL信息的个数相等。
当接入网连接的核心网为3GPP 5G核心网时,核心网发送给接入网的用户数据被组织为多个QoS flow,在3GPP 5G NR架构中,无线接入网将一个或多个QoS flow映射到一个DRB以进行无线接口的调度和传输。例如,如图5所示,协议层业务数据适应协议(Service Data Adaptation Protocol,SDAP)实体将多个QoS flow映射到两个不同的DRB之后,将数据递交到PDCP层继续处理,图5所示的多个QoS flow用QoS flows表示,两个不同的DRB分别用DRB ID x和DRB ID y表示,SDAP实体映射一组QoS flow为一组DRB,也即是将多个QoS flow映射为两个不同的DRB,这两个不同的DRB为一组。
在一些实施例中,QoS flow到DRB的映射关系可以以DRB ID以及一组映射到该DRB的QoS flow ID的组合进行表达,在一些实施例中,为了便于理解,以下以表格的形式例举QoS flow到DRB的映射关系,参见下表1。
表1
Figure PCTCN2019100043-appb-000001
表1的示例中,示出了一组QoS flow中的QoS flow ID1至QoS flow ID5到DRB的映射,其中,QoS flow ID1至QoS flow ID3映射到DRB ID1,QoS flow ID4 至QoS flow ID5映射到DRB ID2。
SN网络网元还需从请求信息中的一组TNL信息中为每个目标DRB各自分配一个TNL信息;在一些实施例中,SN网络网元为每个目标DRB各自分配一个TNL信息的分配规则包括:对于其中一个目标DRB,从一组MN网络网元侧的下行TNL信息中任意选择出一个TNL信息作为该目标DRB的目标TNL信息,每个目标DRB对应的TNL信息不同;或者,从一组MN网络网元侧的下行TNL信息中根据TNL信息在TNL信息列表(list)中的排列顺序以顺序或者逆序的方式选择出一个TNL信息作为目标DRB的目标TNL信息,也即顺序号信息可以是通过TNL信息在TNL信息list中的排列顺序体现的;或者当请求信息中每个TNL信息包括TNL顺序号信息时,从一组MN网络网元侧的下行TNL信息中按照顺序或者逆序的方式选择出一个TNL信息作为目标DRB的目标TNL信息。对于后两种方式,例如当按照顺序的方式分配TNL信息时,将顺序号为1的TNL信息分配给第一个目标DRB,将顺序号为2的TNL信息分配给第二个目标DRB,将顺序号为3的TNL信息分配给第三个目标DRB,以此类推;当按照逆序的方式分配TNL信息时,将顺序号为最后一个的TNL信息分配给第一个目标DRB,将顺序号为倒数第二个的TNL信息分配给第二个目标DRB,将顺序号为倒数第三个的TNL信息分配给第三个目标DRB,以此类推。
在一些实施例中,SN网络网元通过子信息可以以明确或隐式的方式告知MN网络网元每个目标DRB的目标TNL信息;当以明确的方式告知时,子信息包括QoS flow与DRB的映射关系,以及为每个目标DRB分配的TNL的身份信息;当以隐式的方式告知时,子信息包括QoS flow与DRB的映射关系,MN网络网元根据QoS flow与DRB的映射关系间接确定每个目标DRB的目标TNL信息。
以下先对SN网络网元通过子信息以明确的方式告知MN网络网元QoS flow映射到的每个目标DRB的目标TNL信息的情况进行说明:
在一些实施例中,为了使SN网络网元在为每个目标DRB分配目标TNL信息时能区分开目标DRB对应的TNL信息,MN网络网元向SN网络网元发送的请求信息中携带的TNL信息包括每个TNL的身份信息,TNL的身份信息包括TNL address信息和/或GTP-TEID信息;或者TNL信息的标识;或者TNL的顺序号信息。SN网络网元在为每个目标DRB选择出了对应的目标TNL信息之后,还需将为每个目标DRB选择出对应的目标TNL信息告知MN网络网元;SN网络网元向MN网络网元发送响应信息,在响应信息包括子信息,子信息用于确定为每个目标DRB分配的目标TNL信息;子信息可以是为每个目标DRB选择出对应的目标TNL信息的身份信息,也即明确的告知MN网络网元每个目标 DRB对应的TNL信息。
例如,响应信息中子信息包含目标DRB的MN网络网元侧下行TNL信息的标识,该TNL信息的标识为SN网络网元为该目标DRB从请求信息中携带的一组MN网络网元侧下行TNL信息中选定的一个TNL信息的标识,此时,请求信息中,指示了每个MN网络网元侧下行TNL信息的标识。
再例如,响应信息中子信息包含目标DRB的MN网络网元侧下行TNL信息的顺序号,该TNL信息的顺序号为SN网络网元从请求信息中携带的一组MN网络网元侧下行TNL信息中的顺序号中,为该目标DRB选定的一个TNL信息的顺序号,例如为该目标DRB选定的目标TNL信息在请求信息中的一组MN网络网元侧下行TNL信息中的顺序号中排列为第N个,则为该目标DRB选定的目标TNL信息的顺序号为N。
以下对SN网络网元通过子信息以隐式的方式告知MN网络网元每个目标DRB的目标TNL信息的情况进行说明:
在一些实施例中,TNL信息通过QoS flow ID信息进行表征,请求信息中的每个QoS flow包括QoS flow ID信息,每个QoS flow指示有一个与之对应的TNL信息;响应信息中子信息包括目标DRB使用的TNL信息所对应的QoS Flow ID信息。也即根据目标DRB使用的TNL信息所对应的QoS Flow ID信息确定目标TNL信息。在每个QoS flow ID信息有一个与之对应的TNL信息的前提下,可以根据QoS flow ID信息区分目标DRB对应的TNL信息;SN网络网元向MN网络网元发送的响应信息中子信息包括QoS flow到DRB的映射关系,以及选定的TNL信息所对应的QoS flow ID信息;MN网络网元根据QoS flow ID信息便可确定目标DRB对应的TNL信息。
在一些实施例中,TNL信息通过QoS flow ID信息进行表征,请求信息中的每个QoS flow包括QoS flow ID信息,每个QoS flow指示有一个与之对应的TNL信息;从一组MN网络网元侧的下行TNL信息中为每个目标DRB分配目标TNL信息的分配规则包括:从映射到该目标DRB的所有QoS flow中选择出QoS flow ID最小或QoS flow ID最大的QoS flow所对应的TNL信息作为该目标DRB的目标TNL信息;响应信息中的子信息包括QoS flow到DRB的映射关系,QoS flow到DRB的映射关系通过DRB ID以及映射到该DRB的一组QoS flow ID进行表征。MN网络网元在接收到响应信息之后,根据QoS flow到DRB的映射关系,便可以确定出目标DRB对应的TNL信息。此种方式SN网络网元向MN网络网元发送的响应信息中,没有明确的指示目标DRB的目标TNL信息,而是通过携带QoS flow到DRB的映射关系,其中,QoS flow到DRB的映射关系通过DRB ID以及映射到该DRB的一组QoS flow ID进行表征,以隐式的方式告 知MN网络网元,MN网络网元通过确定映射到目标DRB的所有QoS flow中QoS flow ID最小或QoS flow ID最大的QoS flow所对应的TNL信息作为该目标DRB的目标TNL信息。MN网络网元可通过DRB与QoS flow的映射关系以及请求信息中携带的为每个QoS Flow指示的MN网络网元侧下行TNL信息,可以获知映射目标DRB的最大或最小的QoS Flow ID,以及与此最大或最小QoS Flow ID相对应的MN侧下行TNL信息。
在一些实施例中,请求信息中的每个TNL信息包括TNL的顺序号信息;从一组MN网络网元侧的下行TNL信息中为每个目标DRB分配目标TNL信息的分配规则包括:为QoS flow映射到的每个DRB进行顺序编号,将顺序号与目标DRB的顺序号相同的TNL信息作为该目标DRB的目标TNL信息;响应信息中的子信息包括QoS flow映射到的每个DRB的顺序号信息。如果目标DRB在响应信息中携带的DRB列表中的顺序号为N,则该目标DRB使用请求信息中携带的一组MN网络网元侧下行TNL信息中的第N个;在这种情况下,MN网络网元通过确定该目标DRB在响应信息中DRB列表中的顺序号,以及请求信息中的每个TNL的顺序号信息,确定该目标DRB的目标TNL信息。
上述SN网络网元通过子信息以明确或隐式的方式告知MN网络网元每个目标DRB的目标TNL信息,MN网络网元便可确定SN网络网元为每个目标DRB选择的目标TNL信息,实现DRB的建立。
在一些实施例中,在MN网络网元发送请求信息之前,或在MN网络网元发送请求信息之后且在MN网络网元接收从SN网络网元发来的响应信息之前,还包括:MN网络网元在根据请求信息中的TNL信息接收到下行数据的情况下,则将下行数据缓冲在本地,直到接收到响应消息。也即在MN网络网元发送请求信息之前,或在MN网络网元发送请求信息之后且在MN网络网元接收从SN网络网元发来的响应信息之前,MN网络网元准备开始根据请求信息中的TNL信息接收从SN网络网元发送的下行数据;即如果MN网络网元根据上述MN网络网元侧下行TNL信息接收到数据,则MN网络网元缓冲在本地,直到接收到响应信息并确定MN网络网元侧下行TNL信息和DRB的映射关系。
在一些实施例中,在MN网络网元接收从SN网络网元发来的响应信息之后,还包括:在没有准备开始根据请求信息中的TNL信息接收从SN网络网元发送的下行数据的情况下,则准备开始根据为目标DRB分配的目标TNL信息接收从SN网络网元发送的下行数据。
在一些实施例中,MN网络网元在接收到SN网络网元发来的响应信息之后,便可根据响应信息中子信息确定为每个目标DRB分配的目标TNL信息,在MN网络网元根据响应信息中的子信息确定为每个目标DRB分配的目标TNL信息 之后,还包括:MN网络网元将未分配的TNL信息对应的资源释放;对于未分配的TNL信息对应的资源,每个目标DRB都不会使用到,所以将其释放掉,以供其余需要的使用。
在一些实施例中,在S403将响应信息发送给MN网络网元之后,还包括:SN网络网元根据为目标DRB分配的目标TNL信息发送下行数据到MN网络网元。在为每个目标DRB分配好目标TNL信息之后,SN网络网元便可以根据目标DRB的目标TNL信息将该目标DRB的下行数据传输到MN网络网元。
在一些实施例中,响应信息还包括发送给UE的RRC(Radio Resource Control,无线资源控制)消息;在S403将响应信息发送给MN网络网元之后,还包括:在接收到UE反馈RRC消息后,根据为目标DRB分配的目标TNL信息发送下行数据到MN网络网元。在接收到RRC反馈消息后,SN网络网元可以确认MN网络网元以及UE已经准备好在MN网络网元侧接收数据。
在一些实施例中,根据为目标DRB分配的目标TNL信息发送下行数据到MN网络网元的方式包括:将从核心网或其它网元接收到的下行数据包进行SDAP实体和PDCP实体处理后得到的数据包PDCP协议数据单元(Protocol Data Unit,PDU),经过GTP协议封装,且将GTP隧道标识设置为目标TNL信息中的GTP-TEID,和/或将传输层地址设置为目标TNL信息中的传输层地址。
SN网络网元将经过PDCP实体处理过的数据包PDCP PDU通过MN网络网元和SN网络网元间接口,使用目标DRB在MN网络网元侧用于接收该目标DRB下行数据的目标TNL信息发送到MN网络网元。MN网络网元将接收到的PDCP PDU继续进行RLC和MAC层协议处理,并在无线接口发送给UE。
通过本发明实施例提供的DRB建立方法,在某些实施过程中,由MN网络网元将一组MN网络网元侧的下行TNL信息直接发送给SN网络网元,由SN网络网元在确定了QoS flow到DRB的映射关系、以及根据DRB的承载类型确定出目标DRB之后,从一组TNL信息中为每个目标DRB分配目标TNL信息,由此完成在3GPP的无线接入网的双连接架构中DRB的建立,节省了在SN网络网元为UE新建或修改QoS flow的资源时所需要的信令流程的消息数量,节省了MN和SN网络网元间的接口负担,并节省了流程的时间开销。
实施例二:
为了解决因为MN网络网元在发起请求信息时不能预判SN网络网元如何映射QoS flow到DRB,因此MN网络网元只能在接收到SN网络网元的响应信息,得知QoS flow到DRB的映射关系后,再为DRB分配用于从SN网络网元发送 到MN网络网元的该DRB的下行数据的TNL信息,并用第三条信息将此TNL信息发送给SN;此种方式由于上述第三条信息,导致了额外的MN网络网元和SN网络网元间信令开销,并导致了额外的处理延时的问题,本发明实施例提供一种DRB建立方法,本实施例提供的DRB建立方法是MN网络网元侧的DRB建立方法,请参见图6所示,包括:
S601:向SN网络网元发送请求信息,请求信息包括终结在SN网络网元的且需要新建或需要修改的一组QoS flow的信息,以及一组MN网络网元侧的下行TNL信息。
在本发明实施例中,由MN网络网元向SN网络网元发送请求信息,请求信息携带一组SN terminated且需要新建的QoS flow的信息或一组SN terminated且需要修改的QoS flow的信息;一组QoS flow中包括至少一个QoS flow;在一些实施例中,对于每个QoS flow,包括:QoS flow身份信息、QoS flow级别的QoS参数、以及可用于该QoS flow的MCG资源的QoS参数。QoS flow身份信息包括但不限于QoS flow ID信息、或者QoS flow的顺序号信息。
请求信息还携带一组MN网络网元侧的下行TNL信息,一组TNL信息中包括至少一个TNL信息;在一些实施例中,每个TNL信息包括TNL的身份信息;TNL的身份信息包括TNL address信息和/或GTP-TEID信息;或者TNL信息的标识;或者TNL的顺序号信息;TNL的顺序号信息是指为每个TNL进行顺序编号。
S602:接收从SN网络网元发来的响应信息,响应信息包括子信息,子信息用于确定为QoS flow映射到的DRB中每个目标DRB分配的目标TNL信息,目标DRB根据DRB的承载类型确定。
S603:根据响应信息中的子信息确定为每个目标DRB分配的目标TNL信息。
SN网络网元在接收到从MN网络网元发来的请求信息之后,确定QoS flow到DRB的映射关系,并根据DRB的承载类型确定出目标DRB;目标DRB表明是需要分配TNL信息的DRB,也即承载类型是图2所示的SN terminated MCG bearer或图3所示的SN terminated split bearer。为便于理解,以下举例说明:例如QoS flow映射到的DRB有3个,分别记为DRB1、DRB2和DRB3,其中,DRB1和DRB2的承载类型均是SN terminated MCG bearer,DRB3的承载类型是SN terminated SCG bearer,则将DRB1和DRB2作为目标DRB,DRB3不作为目标DRB。
并且SN网络网元从一组MN网络网元侧的下行TNL信息中为每个目标 DRB分配将该目标DRB的下行数据从SN网络网元发送到MN网络网元的目标TNL信息;对于其中一个目标DRB,为其分配的目标TNL信息,是该目标DRB使用的TNL信息,SN网络网元根据该目标TNL信息将该目标DRB的下行数据发送到MN网络网元。SN网络网元在接收到从MN网络网元发来的请求信息之后,可以确定DRB的承载类型;如果DRB的PDCP实体位于SN网络网元,且使用MCG资源,则表明该DRB的承载类型为图2所示的SN terminated MCG bearer或图3所示的SN terminated split bearer,在DRB的承载类型为SN terminated MCG bearer或SN terminated split bearer时,是根据DRB对应的TNL信息发送下行数据到MN网络网元;所以在确定了DRB的承载类型为SN terminated MCG bearer或SN terminated split bearer之后,便可以从一组MN网络网元侧的下行TNL信息中为该DRB分配目标TNL信息。
在一些实施例中,由于MN网络网元在发起请求信息时不能预判SN网络网元如何映射QoS flow到DRB,也不知道映射得到的DRB的个数,而每个目标DRB都有一个TNL信息,所以为了保证每个目标DRB都能分配到TNL信息,可以是在MN网络网元向SN网络网元发送的请求信息中,携带的TNL信息的个数大于QoS flow的个数,或者携带的QoS flow的个数与请求信息中TNL信息的个数相等。
当接入网连接的核心网为3GPP 5G核心网时,核心网发送给接入网的用户数据被组织为多个QoS flow,在3GPP 5G NR架构中,无线接入网将一个或多个QoS flow映射到一个DRB以进行无线接口的调度和传输。例如,如图5所示协议层SDAP实体将多个QoS flow映射到两个不同的DRB之后,将数据递交到PDCP层继续处理,图5所示的多个QoS flow用QoS flows表示,两个不同的DRB分别用DRB ID x和DRB ID y表示,SDAP协议实体映射一组QoS flow为一组DRB,也即是将多个QoS flow映射为两个不同的DRB,这两个不同的DRB为一组。
在一些实施例中,QoS flow到DRB的映射关系可以以DRB ID以及一组映射到该DRB的QoS flow ID的组合进行表达,在一些实施例中,为了便于理解,以下以表格的形式例举QoS flow到DRB的映射关系,参见下表2。
表2
Figure PCTCN2019100043-appb-000002
Figure PCTCN2019100043-appb-000003
表2的示例中,示出了一组QoS flow中的QoS flow ID1至QoS flow ID5到DRB的映射,其中,QoS flow ID1至QoS flow ID3映射到DRB ID1,QoS flow ID4至QoS flow ID5映射到DRB ID2。
SN网络网元还需从请求信息中的一组TNL信息中为每个目标DRB各自分配一个TNL信息;在一些实施例中,SN网络网元为每个目标DRB各自分配一个TNL信息的分配规则包括:对于其中一个目标DRB,从一组MN网络网元侧的下行TNL信息中任意选择出一个TNL信息作为该目标DRB的目标TNL信息,每个目标DRB对应的TNL信息不同;或者,从一组MN网络网元侧的下行TNL信息中根据TNL信息在TNL信息列表中的排列顺序以顺序或者逆序的方式选择出一个TNL信息作为目标DRB的目标TNL信息,也即顺序号信息可以是通过TNL信息在TNL信息list中的排列顺序体现的;或者当请求信息中每个TNL信息包括TNL顺序号信息时,从一组MN网络网元侧的下行TNL信息中按照顺序或者逆序的方式选择出一个TNL信息作为目标DRB的目标TNL信息。对于后两种方式,例如当按照顺序的方式分配TNL信息时,将顺序号为1的TNL信息分配给第一个目标DRB,将顺序号为2的TNL信息分配给第二个目标DRB,将顺序号为3的TNL信息分配给第三个目标DRB,以此类推;当按照逆序的方式分配TNL信息时,将顺序号为最后一个的TNL信息分配给第一个目标DRB,将顺序号为倒数第二个的TNL信息分配给第二个目标DRB,将顺序号为倒数第三个的TNL信息分配给第三个目标DRB,以此类推。
在一些实施例中,SN网络网元通过子信息可以以明确或隐式的方式告知MN网络网元每个目标DRB的目标TNL信息;当以明确的方式告知时,子信息包括QoS flow与DRB的映射关系,以及为每个目标DRB分配的TNL的身份信息;当以隐式的方式告知时,子信息包括QoS flow与DRB的映射关系,MN网络网元根据QoS flow与DRB的映射关系间接确定每个目标DRB的目标TNL信息。
以下先对SN网络网元通过子信息以明确的方式告知MN网络网元QoS flow映射到的每个目标DRB的目标TNL信息的情况进行说明:
在一些实施例中,为了使SN网络网元在为每个目标DRB分配目标TNL信 息时能区分开目标DRB对应的TNL信息,MN网络网元向SN网络网元发送的请求信息中携带的TNL信息包括每个TNL的身份信息,TNL的身份信息包括TNL address信息和/或GTP-TEID信息;或者TNL信息的标识;或者TNL的顺序号信息。SN网络网元在为每个目标DRB选择出了对应的目标TNL信息之后,还需将为每个目标DRB选择出对应的目标TNL信息告知MN网络网元;SN网络网元向MN网络网元发送响应信息,在响应信息包括子信息,子信息用于确定为每个目标DRB分配的目标TNL信息;子信息可以是为每个目标DRB选择出对应的目标TNL信息的身份信息,也即明确的告知MN网络网元每个目标DRB对应的TNL信息。
例如,响应信息中子信息包含目标DRB的MN网络网元侧下行TNL信息的标识,该TNL信息的标识为SN网络网元为该目标DRB从请求信息中携带的一组MN网络网元侧下行TNL信息中选定的一个TNL信息的标识,此时,请求信息中,指示了每个MN网络网元侧下行TNL信息的标识。
再例如,响应信息中子信息包含目标DRB的MN网络网元侧下行TNL信息的顺序号,该TNL信息的顺序号为SN网络网元从请求信息中携带的一组MN网络网元侧下行TNL信息中的顺序号中,为该目标DRB选定的一个TNL信息的顺序号,例如为该目标DRB选定的目标TNL信息在请求信息中的一组MN网络网元侧下行TNL信息中的顺序号中排列为第N个,则为该目标DRB选定的目标TNL信息的顺序号为N。
以下对SN网络网元通过子信息以隐式的方式告知MN网络网元每个目标DRB的目标TNL信息的情况进行说明:
在一些实施例中,TNL信息通过QoS flow ID信息进行表征,请求信息中的每个QoS flow包括QoS flow ID信息,每个QoS flow指示有一个与之对应的TNL信息;响应信息中子信息包括目标DRB使用的TNL信息所对应的QoS Flow ID信息。也即根据目标DRB使用的TNL信息所对应的QoS Flow ID信息确定目标TNL信息。在每个QoS flow ID信息有一个与之对应的TNL信息的前提下,可以根据QoS flow ID信息区分目标DRB对应的TNL信息;SN网络网元向MN网络网元发送的响应信息中子信息包括QoS flow到DRB的映射关系,以及选定的TNL信息所对应的QoS flow ID信息;MN网络网元根据QoS flow ID信息便可确定目标DRB对应的TNL信息。
在一些实施例中,TNL信息通过QoS flow ID信息进行表征,请求信息中的每个QoS flow包括QoS flow ID信息,每个QoS flow指示有一个与之对应的TNL信息;从一组MN网络网元侧的下行TNL信息中为每个目标DRB分配目标TNL信息的分配规则包括:从映射到该目标DRB的所有QoS flow中选择出QoS flow  ID最小或QoS flow ID最大的QoS flow所对应的TNL信息作为该目标DRB的目标TNL信息;响应信息中的子信息包括QoS flow到DRB的映射关系,QoS flow到DRB的映射关系通过DRB ID以及映射到该DRB的一组QoS flow ID进行表征。MN网络网元在接收到响应信息之后,根据QoS flow到DRB的映射关系,便可以确定出目标DRB对应的TNL信息。此种方式SN网络网元向MN网络网元发送的响应信息中,没有明确的指示目标DRB的目标TNL信息,而是通过携带QoS flow到DRB的映射关系,其中QoS flow到DRB的映射关系通过DRB ID以及映射到该DRB的一组QoS flow ID进行表征,以隐式的方式告知MN网络网元,MN网络网元通过确定映射到目标DRB的所有QoS flow中QoS flow ID最小或QoS flow ID最大的QoS flow所对应的TNL信息作为该目标DRB的目标TNL信息。MN网络网元可通过DRB与QoS flow的映射关系以及请求信息中携带的为每个QoS Flow指示的MN网络网元侧下行TNL信息,可以获知映射目标DRB的最大或最小的QoS Flow ID,以及与此最大或最小QoS Flow ID相对应的MN侧下行TNL信息。
在一些实施例中,请求信息中的每个TNL信息包括TNL的顺序号信息;从一组MN网络网元侧的下行TNL信息中为每个目标DRB分配目标TNL信息的分配规则包括:为QoS flow映射到的每个DRB进行顺序编号,将顺序号与目标DRB的顺序号相同的TNL信息作为该目标DRB的目标TNL信息;响应信息中的子信息包括QoS flow映射到的每个DRB的顺序号信息。如果目标DRB在响应信息中携带的DRB列表中的顺序号为N,则该目标DRB使用请求信息中携带的一组MN网络网元侧下行TNL信息中的第N个;在这种情况下,MN网络网元通过确定该目标DRB在响应信息中DRB列表中的顺序号,以及请求信息中的每个TNL的顺序号信息,确定该目标DRB的目标TNL信息。
上述SN网络网元通过子信息以明确或隐式的方式告知MN网络网元每个目标DRB的目标TNL信息,MN网络网元便可确定SN网络网元为每个目标DRB选择的目标TNL信息,实现DRB的建立。
在一些实施例中,在MN网络网元发送请求信息之前,或在MN网络网元发送请求信息之后且在MN网络网元接收从SN网络网元发来的响应信息之前,还包括:MN网络网元在根据请求信息中的TNL信息接收到下行数据的情况下,则将下行数据缓冲在本地,直到接收到响应消息。也即在MN网络网元发送请求信息之前,或在MN网络网元发送请求信息之后且在MN网络网元接收从SN网络网元发来的响应信息之前,MN网络网元准备开始根据请求信息中的TNL信息接收从SN网络网元发送的下行数据;即如果MN网络网元根据上述MN网络网元侧下行TNL信息接收到数据,则MN网络网元缓冲在本地,直到接收到响应信息并确定MN网络网元侧下行TNL信息和DRB的映射关系。
在一些实施例中,在MN网络网元接收从SN网络网元发来的响应信息之后,还包括:在没有准备开始根据请求信息中的TNL信息接收从SN网络网元发送的下行数据的情况下,则准备开始根据为目标DRB分配的目标TNL信息接收从SN网络网元发送的下行数据。
在一些实施例中,MN网络网元在接收到SN网络网元发来的响应信息之后,便可根据响应信息中子信息确定为每个目标DRB分配的目标TNL信息,在MN网络网元根据响应信息中的子信息确定为每个目标DRB分配的目标TNL信息之后,还包括:MN网络网元将未分配的TNL信息对应的资源释放;对于未分配的TNL信息对应的资源,每个目标DRB都不会使用到,所以将其释放掉,以供其余需要的使用。
在一些实施例中,在将响应信息发送给MN网络网元之后,还包括:SN网络网元根据为目标DRB分配的目标TNL信息发送下行数据到MN网络网元。在为每个目标DRB分配好目标TNL信息之后,SN网络网元便可以根据目标DRB的目标TNL信息将该目标DRB的下行数据传输到MN网络网元。
在一些实施例中,响应信息还包括发送给UE的RRC消息;在将响应信息发送给MN网络网元之后,还包括:在接收到UE反馈RRC消息后,根据为目标DRB分配的目标TNL信息发送下行数据到MN网络网元。在接收到RRC反馈消息后,SN网络网元可以确认MN网络网元以及UE已经准备好在MN网络网元侧接收数据。
在一些实施例中,根据为目标DRB分配的目标TNL信息发送下行数据到MN网络网元的方式包括:将从核心网或其它网元接收到的下行数据包进行SDAP实体和PDCP实体处理后得到的数据包PDCP PDU,经过GTP封装,且将GTP隧道标识设置为目标TNL信息中的GTP-TEID,和/或将传输层地址设置为目标TNL信息中的传输层地址。
SN网络网元将经过PDCP实体处理过的数据包PDCP PDU通过MN网络网元和SN网络网元间接口,使用目标DRB在MN网络网元侧用于接收该目标DRB下行数据的目标TNL信息发送到MN网络网元。MN网络网元将接收到的PDCP PDU继续进行RLC和MAC层协议处理,并在无线接口发送给UE。
通过本发明实施例提供的DRB建立方法,在某些实施过程中,由MN网络网元将一组MN网络网元侧的下行TNL信息直接发送给SN网络网元,由SN网络网元在确定了QoS flow到DRB的映射关系、以及根据DRB的承载类型确定出目标DRB之后,从一组TNL信息中为每个目标DRB分配目标TNL信息,由此完成在3GPP的无线接入网的双连接架构中DRB的建立,节省了在SN网络网元为UE新建或修改QoS flow的资源时所需要的信令流程的消息数量,节 省了MN和SN网络网元间的接口负担,并节省了流程的时间开销。
实施例三:
为了解决因为MN网络网元在发起请求信息时不能预判SN网络网元如何映射QoS flow到DRB,因此MN网络网元只能在接收到SN网络网元的响应信息,得知QoS flow到DRB的映射关系后,再为DRB分配用于从SN网络网元发送到MN网络网元的该DRB的下行数据的TNL信息,并用第三条信息将此TNL信息发送给SN;此种方式由于上述第三条信息,导致了额外的MN网络网元和SN网络网元间信令开销,并导致了额外的处理延时的问题,本发明实施例提供一种DRB建立方法,本实施例提供的DRB建立方法是系统的DRB建立方法,请参见图7所示,包括:
S701:MN网络网元向SN网络网元发送请求信息,请求信息包括终结在SN网络网元的且需要新建或需要修改的一组QoS flow的信息,以及一组主节点MN网络网元侧的下行TNL信息。
在本发明实施例中,由MN网络网元向SN网络网元发送请求信息,请求信息携带一组SN terminated且需要新建的QoS flow的信息或一组SN terminated且需要修改的QoS flow的信息;一组QoS flow中包括至少一个QoS flow;在一些实施例中,对于每个QoS flow,包括:QoS flow身份信息、QoS flow级别的QoS参数、以及可用于该QoS flow的MCG资源的QoS参数。QoS flow身份信息包括但不限于QoS flow ID信息、或者QoS flow的顺序号信息。
请求信息还携带一组MN网络网元侧的下行TNL信息,一组TNL信息中包括至少一个TNL信息;在一些实施例中,每个TNL信息包括TNL的身份信息;TNL的身份信息包括TNL address信息和/或GTP-TEID信息;或者TNL信息的标识;或者TNL的顺序号信息;TNL的顺序号信息是指为每个TNL进行顺序编号。
S702:SN网络网元确定QoS flow到DRB的映射关系,根据QoS flow到DRB的映射关系以及DRB的承载类型确定出目标DRB,以及从一组MN网络网元侧的下行TNL信息中为每个目标DRB分配目标TNL信息,并将响应信息发送给MN网络网元,响应信息包括子信息,子信息用于确定为每个目标DRB分配的目标TNL信息。
S703:MN网络网元根据响应信息中的子信息确定为每个目标DRB分配的目标TNL信息。
SN网络网元在接收到从MN网络网元发来的请求信息之后,确定QoS flow 到DRB的映射关系,并根据DRB的承载类型确定出目标DRB;目标DRB表明是需要分配TNL信息的DRB,也即承载类型是图2所示的SN terminated MCG bearer或图3所示的SN terminated split bearer。为便于理解,以下举例说明:例如QoS flow映射到的DRB有3个,分别记为DRB1、DRB2和DRB3,其中,DRB1和DRB2的承载类型均是SN terminated MCG bearer,DRB3的承载类型是SN terminated SCG bearer,则将DRB1和DRB2作为目标DRB,DRB3不作为目标DRB。
并且SN网络网元从一组MN网络网元侧的下行TNL信息中为每个目标DRB分配将该目标DRB的下行数据从SN网络网元发送到MN网络网元的目标TNL信息;对于其中一个目标DRB,为其分配的目标TNL信息,是该目标DRB使用的TNL信息,SN网络网元根据该目标TNL信息将该目标DRB的下行数据发送到MN网络网元。SN网络网元在接收到从MN网络网元发来的请求信息之后,可以确定DRB的承载类型;如果DRB的PDCP实体位于SN网络网元,且使用MCG资源,则表明该DRB的承载类型为图2所示的SN terminated MCG bearer或图3所示的SN terminated split bearer,在DRB的承载类型为SN terminated MCG bearer或SN terminated split bearer时,是根据DRB对应的TNL信息发送下行数据到MN网络网元;所以在确定了DRB的承载类型为SN terminated MCG bearer或SN terminated split bearer之后,便可以从一组MN网络网元侧的下行TNL信息中为该DRB分配目标TNL信息。
在一些实施例中,由于MN网络网元在发起请求信息时不能预判SN网络网元如何映射QoS flow到DRB,也不知道映射得到的DRB的个数,而每个目标DRB都有一个TNL信息,所以为了保证每个目标DRB都能分配到TNL信息,可以是在MN网络网元向SN网络网元发送的请求信息中,携带的TNL信息的个数大于QoS flow的个数,或者携带的QoS flow的个数与请求信息中TNL信息的个数相等。
当接入网连接的核心网为3GPP 5G核心网时,核心网发送给接入网的用户数据被组织为多个QoS flow,在3GPP 5G NR架构中,无线接入网将一个或多个QoS flow映射到一个DRB以进行无线接口的调度和传输。例如,如图5所示协议层SDAP实体将多个QoS flow映射到两个不同的DRB之后,将数据递交到PDCP层继续处理,图5所示的多个QoS flow用QoS flows表示,两个不同的DRB分别用DRB ID x和DRB ID y表示,SDAP实体映射一组QoS flow为一组DRB,也即是将多个QoS flow映射为两个不同的DRB,这两个不同的DRB为一组。
在一些实施例中,QoS flow到DRB的映射关系可以以DRB ID以及一组映 射到该DRB的QoS flow ID的组合进行表达,在一些实施例中,为了便于理解,以下以表格的形式例举QoS flow到DRB的映射关系,参见下表3。
表3
Figure PCTCN2019100043-appb-000004
表3的示例中,示出了一组QoS flow中的QoS flow ID1至QoS flow ID5到DRB的映射,其中,QoS flow ID1至QoS flow ID3映射到DRB ID1,QoS flow ID4至QoS flow ID5映射到DRB ID2。
SN网络网元还需从请求信息中的一组TNL信息中为每个目标DRB各自分配一个TNL信息;在一些实施例中,SN网络网元为每个目标DRB各自分配一个TNL信息的分配规则包括:对于其中一个目标DRB,从一组MN网络网元侧的下行TNL信息中任意选择出一个TNL信息作为该目标DRB的目标TNL信息,每个目标DRB对应的TNL信息不同;或者,从一组MN网络网元侧的下行TNL信息中根据TNL信息在TNL信息列表中的排列顺序以顺序或者逆序的方式选择出一个TNL信息作为目标DRB的目标TNL信息,也即顺序号信息可以是通过TNL信息在TNL信息list中的排列顺序体现的;或者当请求信息中每个TNL信息包括TNL顺序号信息时,从一组MN网络网元侧的下行TNL信息中按照顺序或者逆序的方式选择出一个TNL信息作为目标DRB的目标TNL信息。对于后两种方式,例如当按照顺序的方式分配TNL信息时,将顺序号为1的TNL信息分配给第一个目标DRB,将顺序号为2的TNL信息分配给第二个目标DRB,将顺序号为3的TNL信息分配给第三个目标DRB,以此类推;当按照逆序的方式分配TNL信息时,将顺序号为最后一个的TNL信息分配给第一个目标DRB,将顺序号为倒数第二个的TNL信息分配给第二个目标DRB,将顺序号为倒数第三个的TNL信息分配给第三个目标DRB,以此类推。
在一些实施例中,SN网络网元通过子信息可以以明确或隐式的方式告知MN网络网元每个目标DRB的目标TNL信息;当以明确的方式告知时,子信息 包括QoS flow与DRB的映射关系,以及为每个目标DRB分配的TNL的身份信息;当以隐式的方式告知时,子信息包括QoS flow与DRB的映射关系,MN网络网元根据QoS flow与DRB的映射关系间接确定每个目标DRB的目标TNL信息。
以下先对SN网络网元通过子信息以明确的方式告知MN网络网元QoS flow映射到的每个目标DRB的目标TNL信息的情况进行说明:
在一些实施例中,为了使SN网络网元在为每个目标DRB分配目标TNL信息时能区分开目标DRB对应的TNL信息,MN网络网元向SN网络网元发送的请求信息中携带的TNL信息包括每个TNL的身份信息,TNL的身份信息包括TNL address信息和/或GTP-TEID信息;或者TNL信息的标识;或者TNL的顺序号信息。SN网络网元在为每个目标DRB选择出了对应的目标TNL信息之后,还需将为每个目标DRB选择出对应的目标TNL信息告知MN网络网元;SN网络网元向MN网络网元发送响应信息,在响应信息包括子信息,子信息用于确定为每个目标DRB分配的目标TNL信息;子信息可以是为每个目标DRB选择出对应的目标TNL信息的身份信息,也即明确的告知MN网络网元每个目标DRB对应的TNL信息。
例如,响应信息中子信息包含目标DRB的MN网络网元侧下行TNL信息的标识,该TNL信息的标识为SN网络网元为该目标DRB从请求信息中携带的一组MN网络网元侧下行TNL信息中选定的一个TNL信息的标识,此时,请求信息中,指示了每个MN网络网元侧下行TNL信息的标识。
再例如,响应信息中子信息包含目标DRB的MN网络网元侧下行TNL信息的顺序号,该TNL信息的顺序号为SN网络网元从请求信息中携带的一组MN网络网元侧下行TNL信息中的顺序号中,为该目标DRB选定的一个TNL信息的顺序号,例如为该目标DRB选定的目标TNL信息在请求信息中的一组MN网络网元侧下行TNL信息中的顺序号中排列为第N个,则为该目标DRB选定的目标TNL信息的顺序号为N。
以下对SN网络网元通过子信息以隐式的方式告知MN网络网元每个目标DRB的目标TNL信息的情况进行说明:
在一些实施例中,TNL信息通过QoS flow ID信息进行表征,请求信息中的每个QoS flow包括QoS flow ID信息,每个QoS flow指示有一个与之对应的TNL信息;响应信息中子信息包括目标DRB使用的TNL信息所对应的QoS Flow ID信息。也即根据目标DRB使用的TNL信息所对应的QoS Flow ID信息确定目标TNL信息。在每个QoS flow ID信息有一个与之对应的TNL信息的前提下,可以根据QoS flow ID信息区分目标DRB对应的TNL信息;SN网络网元向MN 网络网元发送的响应信息中子信息包括QoS flow到DRB的映射关系,以及选定的TNL信息所对应的QoS flow ID信息;MN网络网元根据QoS flow ID信息便可确定目标DRB对应的TNL信息。
在一些实施例中,TNL信息通过QoS flow ID信息进行表征,请求信息中的每个QoS flow包括QoS flow ID信息,每个QoS flow指示有一个与之对应的TNL信息;从一组MN网络网元侧的下行TNL信息中为每个目标DRB分配目标TNL信息的分配规则包括:从映射到该目标DRB的所有QoS flow中选择出QoS flow ID最小或QoS flow ID最大的QoS flow所对应的TNL信息作为该目标DRB的目标TNL信息;响应信息中的子信息包括QoS flow到DRB的映射关系,QoS flow到DRB的映射关系通过DRB ID以及映射到该DRB的一组QoS flow ID进行表征。MN网络网元在接收到响应信息之后,根据QoS flow到DRB的映射关系,便可以确定出目标DRB对应的TNL信息。此种方式SN网络网元向MN网络网元发送的响应信息中,没有明确的指示目标DRB的目标TNL信息,而是通过携带QoS flow到DRB的映射关系,其中QoS flow到DRB的映射关系通过DRB ID以及映射到该DRB的一组QoS flow ID进行表征,以隐式的方式告知MN网络网元,MN网络网元通过确定映射到目标DRB的所有QoS flow中QoS flow ID最小或QoS flow ID最大的QoS flow所对应的TNL信息作为该目标DRB的目标TNL信息。MN网络网元可通过DRB与QoS flow的映射以及请求信息中携带的为每个QoS Flow指示的MN网络网元侧下行TNL信息,可以获知映射目标DRB的最大或最小的QoS Flow ID,以及与此最大或最小QoS Flow ID相对应的MN侧下行TNL信息。
在一些实施例中,请求信息中的每个TNL信息包括TNL的顺序号信息;从一组MN网络网元侧的下行TNL信息中为每个目标DRB分配目标TNL信息的分配规则包括:为QoS flow映射到的每个DRB进行顺序编号,将顺序号与目标DRB的顺序号相同的TNL信息作为该目标DRB的目标TNL信息;响应信息中的子信息包括QoS flow映射到的每个DRB的顺序号信息。如果目标DRB在响应信息中携带的DRB列表中的顺序号为N,则该目标DRB使用请求信息中携带的一组MN网络网元侧下行TNL信息中的第N个;在这种情况下,MN网络网元通过确定该目标DRB在响应信息中DRB列表中的顺序号,以及请求信息中的每个TNL的顺序号信息,确定该目标DRB的目标TNL信息。
上述SN网络网元通过子信息以明确或隐式的方式告知MN网络网元每个目标DRB的目标TNL信息,MN网络网元便可确定SN网络网元为每个目标DRB选择的目标TNL信息,实现DRB的建立。
在一些实施例中,在MN网络网元发送请求信息之前,或在MN网络网元 发送请求信息之后且在MN网络网元接收从SN网络网元发来的响应信息之前,还包括:MN网络网元在根据请求信息中的TNL信息接收到下行数据的情况下,则将下行数据缓冲在本地,直到接收到响应消息。也即在MN网络网元发送请求信息之前,或在MN网络网元发送请求信息之后且在MN网络网元接收从SN网络网元发来的响应信息之前,MN网络网元准备开始根据请求信息中的TNL信息接收从SN网络网元发送的下行数据;即如果MN网络网元根据上述MN网络网元侧下行TNL信息接收到数据,则MN网络网元缓冲在本地,直到接收到响应信息并确定MN网络网元侧下行TNL信息和DRB的映射关系。
在一些实施例中,在MN网络网元接收从SN网络网元发来的响应信息之后,还包括:在没有准备开始根据请求信息中的TNL信息接收从SN网络网元发送的下行数据的情况下,则准备开始根据为目标DRB分配的目标TNL信息接收从SN网络网元发送的下行数据。
在一些实施例中,MN网络网元在接收到SN网络网元发来的响应信息之后,便可根据响应信息中子信息确定为每个目标DRB分配的目标TNL信息,在MN网络网元根据响应信息中的子信息确定为每个目标DRB分配的目标TNL信息之后,还包括:MN网络网元将未分配的TNL信息对应的资源释放;对于未分配的TNL信息对应的资源,每个目标DRB都不会使用到,所以将其释放掉,以供其余需要的使用。
在一些实施例中,在将响应信息发送给MN网络网元之后,还包括:SN网络网元根据为目标DRB分配的目标TNL信息发送下行数据到MN网络网元。在为每个目标DRB分配好目标TNL信息之后,SN网络网元便可以根据目标DRB的目标TNL信息将该目标DRB的下行数据传输到MN网络网元。
在一些实施例中,响应信息还包括发送给UE的RRC消息;在将响应信息发送给MN网络网元之后,还包括:在接收到UE反馈RRC消息后,根据为目标DRB分配的目标TNL信息发送下行数据到MN网络网元。在接收到RRC反馈消息后,SN网络网元可以确认MN网络网元以及UE已经准备好在MN网络网元侧接收数据。
在一些实施例中,根据为目标DRB分配的目标TNL信息发送下行数据到MN网络网元的方式包括:将从核心网或其它网元接收到的下行数据包进行SDAP实体和PDCP实体处理后得到的数据包PDCP PDU,经过GTP封装,且将GTP隧道标识设置为目标TNL信息中的GTP-TEID,和/或将传输层地址设置为目标TNL信息中的传输层地址。
SN网络网元将经过PDCP实体处理过的数据包PDCP PDU通过MN网络网元和SN网络网元间接口,使用目标DRB在MN网络网元侧用于接收该目标 DRB下行数据的目标TNL信息发送到MN网络网元。MN网络网元将接收到的PDCP PDU继续进行RLC和MAC层协议处理,并在无线接口发送给UE。
参见图8所示的方法,在图8所示的方法中,包括以下步骤:
S801:MN网络网元向SN网络网元发送请求信息,请求信息中包括一组QoS flow的信息以及一组MN网络网元侧下行TNL信息。
S802:SN网络网元根据请求信息确定QoS flow到DRB的映射关系,确定DRB的承载类型,为承载类型为SN terminated MCG bearer或SN terminated split bearer的DRB选择一个MN侧下行TNL信息。
S803:SN网络网元向MN网络网元发送响应信息,响应信息携带QoS flow到DRB的映射关系,明确或隐式的指示DRB的MN网络网元侧下行TNL信息;
S804:MN网络网元根据响应信息确定DRB与MN网络网元侧下行TNL信息的对应关系。
S805:SN网络网元对承载类型为SN terminated MCG bearer或SN terminated split bearer的数据包,完成PDCP处理。
S806:SN网络网元根据为DRB选择的MN网络网元侧下行TNL信息发送DRB的下行数据。
通过本发明实施例提供的DRB建立方法,在某些实施过程中,由MN网络网元将一组MN网络网元侧的下行TNL信息直接发送给SN网络网元,由SN网络网元在确定了QoS flow到DRB的映射关系、以及根据DRB的承载类型确定出目标DRB之后,从一组TNL信息中为每个目标DRB分配目标TNL信息,由此完成在3GPP的无线接入网的双连接架构中DRB的建立,节省了在SN网络网元为UE新建或修改QoS flow的资源时所需要的信令流程的消息数量,节省了MN和SN网络网元间的接口负担,并节省了流程的时间开销。
实施例四:
本发明实施例提供一种DRB建立装置,请参见图9所示,包括第一接收模块901、处理模块902和第一发送模块903,
其中,第一接收模块901,用于接收从MN网络网元发来的请求信息,请求信息包括终结在SN网络网元的且需要新建或需要修改的一组QoS flow的信息,以及一组MN网络网元侧的下行TNL信息。
处理模块902,用于确定QoS flow到DRB的映射关系,根据QoS flow到DRB的映射关系以及DRB的承载类型确定出目标DRB,以及从一组MN网络 网元侧的下行TNL信息中为每个目标DRB分配目标TNL信息。
第一发送模块903,用于将响应信息发送给MN网络网元,响应信息包括子信息,子信息用于确定为每个目标DRB分配的目标TNL信息。
在本发明实施例中,由MN网络网元向第一接收模块901发送请求信息,请求信息携带一组SN terminated且需要新建的QoS flow的信息(QoS flow to be setup list)或一组SN terminated且需要修改的QoS flow的信息(QoS flow to be modified list);一组QoS flow中包括至少一个QoS flow;在一些实施例中,对于每个QoS flow,包括:QoS flow身份信息、QoS flow级别的QoS参数、以及可用于该QoS flow的MCG资源的QoS参数。QoS flow身份信息包括但不限于QoS flow ID信息、或者QoS flow的顺序号信息。
请求信息还携带一组MN网络网元侧的下行TNL信息,一组TNL信息中包括至少一个TNL信息;在一些实施例中,每个TNL信息包括TNL的身份信息;TNL的身份信息包括TNL address信息和/或GTP-TEID信息;或者TNL信息的标识;或者TNL的顺序号信息;TNL的顺序号信息是指为每个TNL进行顺序编号。
第一接收模块901在接收到从MN网络网元发来的请求信息之后,处理模块902确定QoS flow到DRB的映射关系,并根据DRB的承载类型确定出目标DRB;目标DRB表明是需要分配TNL信息的DRB,也即承载类型是图2所示的SN terminated MCG bearer或图3所示的SN terminated split bearer。为便于理解,以下举例说明:例如QoS flow映射到的DRB有3个,分别记为DRB1、DRB2和DRB3,其中,DRB1和DRB2的承载类型均是SN terminated MCG bearer,DRB3的承载类型是SN terminated SCG bearer,则将DRB1和DRB2作为目标DRB,DRB3不作为目标DRB。
并且处理模块902从一组MN网络网元侧的下行TNL信息中为每个目标DRB分配将该目标DRB的下行数据从第一发送模块903发送到MN网络网元的目标TNL信息;对于其中一个目标DRB,为其分配的目标TNL信息,是该目标DRB使用的TNL信息,第一发送模块903根据该目标TNL信息将该目标DRB的下行数据发送到MN网络网元。第一接收模块901在接收到从MN网络网元发来的请求信息之后,处理模块902可以确定DRB的承载类型;如果DRB的PDCP实体位于SN网络网元,且使用MCG资源,则表明该DRB的承载类型为图2所示的SN terminated MCG bearer或图3所示的SN terminated split bearer,在DRB的承载类型为SN terminated MCG bearer或SN terminated split bearer时,是根据DRB对应的TNL信息发送下行数据到MN网络网元;所以在确定了DRB的承载类型为SN terminated MCG bearer或SN terminated split bearer 之后,便可以从一组MN网络网元侧的下行TNL信息中为该DRB分配目标TNL信息。
在一些实施例中,由于MN网络网元在发起请求信息时不能预判处理模块902如何映射QoS flow到DRB,也不知道映射得到的DRB的个数,而每个目标DRB都有一个TNL信息,所以为了保证每个目标DRB都能分配到TNL信息,可以是在MN网络网元向第一接收模块901发送的请求信息中,携带的TNL信息的个数大于QoS flow的个数,或者携带的QoS flow的个数与请求信息中TNL信息的个数相等。
当接入网连接的核心网为3GPP 5G核心网时,核心网发送给接入网的用户数据被组织为多个QoS flow,在3GPP 5G NR架构中,无线接入网将一个或多个QoS flow映射到一个DRB以进行无线接口的调度和传输。例如,如图5所示协议层SDAP实体将多个QoS flow映射到两个不同的DRB之后,将数据递交到PDCP层继续处理,图5所示的多个QoS flow用QoS flows表示,两个不同的DRB分别用DRB ID x和DRB ID y表示,SDAP实体映射一组QoS flow为一组DRB,也即是将多个QoS flow映射为两个不同的DRB,这两个不同的DRB为一组。
在一些实施例中,QoS flow到DRB的映射关系可以以DRB ID以及一组映射到该DRB的QoS flow ID的组合进行表达,在一些实施例中,为了便于理解,以下以表格的形式例举QoS flow到DRB的映射关系,参见下表4。
表4
Figure PCTCN2019100043-appb-000005
表4的示例中,示出了一组QoS flow中的QoS flow ID1至QoS flow ID5到DRB的映射,其中,QoS flow ID1至QoS flow ID3映射到DRB ID1,QoS flow ID4至QoS flow ID5映射到DRB ID2。
处理模块902还需从请求信息中的一组TNL信息中为每个目标DRB各自 分配一个TNL信息;在一些实施例中,处理模块902为每个目标DRB各自分配一个TNL信息的分配规则包括:对于其中一个目标DRB,从一组MN网络网元侧的下行TNL信息中任意选择出一个TNL信息作为该目标DRB的目标TNL信息,每个目标DRB对应的TNL信息不同;或者,从一组MN网络网元侧的下行TNL信息中根据TNL信息在TNL信息列表中的排列顺序以顺序或者逆序的方式选择出一个TNL信息作为目标DRB的目标TNL信息,也即顺序号信息可以是通过TNL信息在TNL信息list中的排列顺序体现的;或者当请求信息中每个TNL信息包括TNL顺序号信息时,从一组MN网络网元侧的下行TNL信息中按照顺序或者逆序的方式选择出一个TNL信息作为目标DRB的目标TNL信息。对于后两种方式,例如当按照顺序的方式分配TNL信息时,将顺序号为1的TNL信息分配给第一个目标DRB,将顺序号为2的TNL信息分配给第二个目标DRB,将顺序号为3的TNL信息分配给第三个目标DRB,以此类推;当按照逆序的方式分配TNL信息时,将顺序号为最后一个的TNL信息分配给第一个目标DRB,将顺序号为倒数第二个的TNL信息分配给第二个目标DRB,将顺序号为倒数第三个的TNL信息分配给第三个目标DRB,以此类推。
在一些实施例中,第一发送模块903通过子信息可以以明确或隐式的方式告知MN网络网元每个目标DRB的目标TNL信息;当以明确的方式告知时,子信息包括QoS flow与DRB的映射关系,以及为每个目标DRB分配的TNL的身份信息;当以隐式的方式告知时,子信息包括QoS flow与DRB的映射关系,MN网络网元根据QoS flow与DRB的映射关系间接确定每个目标DRB的目标TNL信息。
以下先对第一发送模块903通过子信息以明确的方式告知MN网络网元QoS flow映射到的每个目标DRB的目标TNL信息的情况进行说明:
在一些实施例中,为了使处理模块902在为每个目标DRB分配目标TNL信息时能区分开目标DRB对应的TNL信息,MN网络网元向第一接收模块901发送的请求信息中携带的TNL信息包括每个TNL的身份信息,TNL的身份信息包括TNL address信息和/或GTP-TEID信息;或者TNL信息的标识;或者TNL的顺序号信息。处理模块902在为每个目标DRB选择出了对应的目标TNL信息之后,还需将为每个目标DRB选择出对应的目标TNL信息告知MN网络网元;第一发送模块903向MN网络网元发送响应信息,在响应信息包括子信息,子信息用于确定为每个目标DRB分配的目标TNL信息;子信息可以是为每个目标DRB选择出对应的目标TNL信息的身份信息,也即明确的告知MN网络网元每个目标DRB对应的TNL信息。
例如,响应信息中子信息包含目标DRB的MN网络网元侧下行TNL信息 的标识,该TNL信息的标识为处理模块902为该目标DRB从请求信息中携带的一组MN网络网元侧下行TNL信息中选定的一个TNL信息的标识,此时,请求信息中,指示了每个MN网络网元侧下行TNL信息的标识。
再例如,响应信息中子信息包含目标DRB的MN网络网元侧下行TNL信息的顺序号,该TNL信息的顺序号为处理模块902从请求信息中携带的一组MN网络网元侧下行TNL信息中的顺序号中,为该目标DRB选定的一个TNL信息的顺序号,例如为该目标DRB选定的目标TNL信息在请求信息中的一组MN网络网元侧下行TNL信息中的顺序号中排列为第N个,则为该目标DRB选定的目标TNL信息的顺序号为N。
以下对第一发送模块903通过子信息以隐式的方式告知MN网络网元每个目标DRB的目标TNL信息的情况进行说明:
在一些实施例中,TNL信息通过QoS flow ID信息进行表征,请求信息中的每个QoS flow包括QoS flow ID信息,每个QoS flow指示有一个与之对应的TNL信息;响应信息中子信息包括目标DRB使用的TNL信息所对应的QoS Flow ID信息。也即根据目标DRB使用的TNL信息所对应的QoS Flow ID信息确定目标TNL信息。在每个QoS flow ID信息有一个与之对应的TNL信息的前提下,可以根据QoS flow ID信息区分目标DRB对应的TNL信息;第一发送模块903向MN网络网元发送的响应信息中子信息包括QoS flow到DRB的映射关系,以及选定的TNL信息所对应的QoS flow ID信息;MN网络网元根据QoS flow ID信息便可确定目标DRB对应的TNL信息。
在一些实施例中,TNL信息通过QoS flow ID信息进行表征,请求信息中的每个QoS flow包括QoS flow ID信息,每个QoS flow指示有一个与之对应的TNL信息;从一组MN网络网元侧的下行TNL信息中为每个目标DRB分配目标TNL信息的分配规则包括:从映射到该目标DRB的所有QoS flow中选择出QoS flow ID最小或QoS flow ID最大的QoS flow所对应的TNL信息作为该目标DRB的目标TNL信息;响应信息中的子信息包括QoS flow到DRB的映射关系,QoS flow到DRB的映射关系通过DRB ID以及映射到该DRB的一组QoS flow ID进行表征。MN网络网元在接收到响应信息之后,根据QoS flow到DRB的映射关系,便可以确定出目标DRB对应的TNL信息。此种方式第一发送模块903向MN网络网元发送的响应信息中,没有明确的指示目标DRB的目标TNL信息,而是通过携带QoS flow到DRB的映射关系,其中QoS flow到DRB的映射关系通过DRB ID以及映射到该DRB的一组QoS flow ID进行表征,以隐式的方式告知MN网络网元,MN网络网元通过确定映射到目标DRB的所有QoS flow中QoS flow ID最小或QoS flow ID最大的QoS flow所对应的TNL信息作为该目标 DRB的目标TNL信息。MN网络网元可通过DRB与QoS flow的映射关系以及请求信息中携带的为每个QoS Flow指示的MN网络网元侧下行TNL信息,可以获知映射目标DRB的最大或最小的QoS Flow ID,以及与此最大或最小QoS Flow ID相对应的MN侧下行TNL信息。
在一些实施例中,请求信息中的每个TNL信息包括TNL的顺序号信息;从一组MN网络网元侧的下行TNL信息中为每个目标DRB分配目标TNL信息的分配规则包括:为QoS flow映射到的每个DRB进行顺序编号,将顺序号与目标DRB的顺序号相同的TNL信息作为该目标DRB的目标TNL信息;响应信息中的子信息包括QoS flow映射到的每个DRB的顺序号信息。如果目标DRB在响应信息中携带的DRB列表中的顺序号为N,则该目标DRB使用请求信息中携带的一组MN网络网元侧下行TNL信息中的第N个;在这种情况下,MN网络网元通过确定该目标DRB在响应信息中DRB列表中的顺序号,以及请求信息中的每个TNL的顺序号信息,确定该目标DRB的目标TNL信息。
上述第一发送模块903通过子信息以明确或隐式的方式告知MN网络网元每个目标DRB的目标TNL信息,MN网络网元便可确定SN网络网元为每个目标DRB选择的目标TNL信息,实现DRB的建立。
在一些实施例中,在MN网络网元发送请求信息之前,或在MN网络网元发送请求信息之后且在MN网络网元接收从第一发送模块903发来的响应信息之前,还包括:MN网络网元在根据请求信息中的TNL信息接收到下行数据的情况下,则将下行数据缓冲在本地,直到接收到响应消息。也即在MN网络网元发送请求信息之前,或在MN网络网元发送请求信息之后且在MN网络网元接收从第一发送模块903发来的响应信息之前,MN网络网元准备开始根据请求信息中的TNL信息接收从SN网络网元发送的下行数据;即如果MN网络网元根据上述MN网络网元侧下行TNL信息接收到数据,则MN网络网元缓冲在本地,直到接收到响应信息并确定MN网络网元侧下行TNL信息和DRB的映射关系。
在一些实施例中,在MN网络网元接收从第一发送模块903发来的响应信息之后,还包括:在没有准备开始根据请求信息中的TNL信息接收从第一发送模块903发送的下行数据的情况下,则准备开始根据为目标DRB分配的目标TNL信息接收从第一发送模块903发送的下行数据。
在一些实施例中,MN网络网元在接收到第一发送模块903发来的响应信息之后,便可根据响应信息中子信息确定为每个目标DRB分配的目标TNL信息,在MN网络网元根据响应信息中的子信息确定为每个目标DRB分配的目标TNL信息之后,还包括:MN网络网元将未分配的TNL信息对应的资源释放;对于 未分配的TNL信息对应的资源,每个目标DRB都不会使用到,所以将其释放掉,以供其余需要的使用。
在一些实施例中,在将响应信息发送给MN网络网元之后,还包括:第一发送模块903根据为目标DRB分配的目标TNL信息发送下行数据到MN网络网元。在为每个目标DRB分配好目标TNL信息之后,第一发送模块903便可以根据目标DRB的目标TNL信息将该目标DRB的下行数据传输到MN网络网元。
在一些实施例中,响应信息还包括发送给UE的RRC消息;在将响应信息发送给MN网络网元之后,还包括:在第一接收模块901接收到UE反馈RRC消息后,第一发送模块903根据为目标DRB分配的目标TNL信息发送下行数据到MN网络网元。在接收到RRC反馈消息后,处理模块902可以确认MN网络网元以及UE已经准备好在MN网络网元侧接收数据。
在一些实施例中,根据为目标DRB分配的目标TNL信息发送下行数据到MN网络网元的方式包括:将从核心网或其它网元接收到的下行数据包进行SDAP实体和PDCP实体处理后得到的数据包PDCP PDU,经过GTP封装,且将GTP隧道标识设置为目标TNL信息中的GTP-TEID,和/或将传输层地址设置为目标TNL信息中的传输层地址。
SN网络网元将经过PDCP实体处理过的数据包PDCP PDU通过MN网络网元和SN网络网元间接口,使用目标DRB在MN网络网元侧用于接收该目标DRB下行数据的目标TNL信息发送到MN网络网元。MN网络网元将接收到的PDCP PDU继续进行RLC和MAC层协议处理,并在无线接口发送给UE。
通过本发明实施例提供的DRB建立装置,在某些实施过程中,由MN网络网元将一组MN网络网元侧的下行TNL信息直接发送给第一接收模块901,由处理模块902在确定了QoS flow到DRB的映射关系、以及根据DRB的承载类型确定出目标DRB之后,从一组TNL信息中为每个目标DRB分配目标TNL信息,由此完成在3GPP的无线接入网的双连接架构中DRB的建立,节省了为UE新建或修改QoS flow的资源时所需要的信令流程的消息数量,节省了MN和SN网络网元间的接口负担,并节省了流程的时间开销。
实施例五:
本发明实施例提供一种DRB建立装置,请参见图10所示,包括第二发送模块1001、第二接收模块1002和确定模块模块1003,
第二发送模块1001,用于向SN网络网元发送请求信息,请求信息包括终 结在SN网络网元的且需要新建或需要修改的一组QoS flow的信息,以及一组主节点MN网络网元侧的下行TNL信息。
第二接收模块1002,用于接收从SN网络网元发来的响应信息,响应信息包括子信息,子信息用于确定为QoS flow映射到的DRB中每个目标DRB分配的目标TNL信息,目标DRB根据DRB的承载类型确定。
确定模块1003,用于根据响应信息中的子信息确定为每个目标DRB分配的目标TNL信息。
在本发明实施例中,由第二发送模块1001向SN网络网元发送请求信息,请求信息携带一组SN terminated且需要新建的QoS flow的信息或一组SN terminated且需要修改的QoS flow的信息;一组QoS flow中包括至少一个QoS flow;在一些实施例中,对于每个QoS flow,包括:QoS flow身份信息、QoS flow级别的QoS参数、以及可用于该QoS flow的MCG资源的QoS参数。QoS flow身份信息包括但不限于QoS flow ID信息、或者QoS flow的顺序号信息。
请求信息还携带一组MN网络网元侧的下行TNL信息,一组TNL信息中包括至少一个TNL信息;在一些实施例中,每个TNL信息包括TNL的身份信息;TNL的身份信息包括TNL address信息和/或GTP-TEID信息;或者TNL信息的标识;或者TNL的顺序号信息;TNL的顺序号信息是指为每个TNL进行顺序编号。
SN网络网元在接收到从第二发送模块1001发来的请求信息之后,确定QoS flow到DRB的映射关系,并根据DRB的承载类型确定出目标DRB;目标DRB表明是需要分配TNL信息的DRB,也即承载类型是图2所示的SN terminated MCG bearer或图3所示的SN terminated split bearer。为便于理解,以下举例说明:例如QoS flow映射到的DRB有3个,分别记为DRB1、DRB2和DRB3,其中,DRB1和DRB2的承载类型均是SN terminated MCG bearer,DRB3的承载类型是SN terminated SCG bearer,则将DRB1和DRB2作为目标DRB,DRB3不作为目标DRB。
并且SN网络网元从一组MN网络网元侧的下行TNL信息中为每个目标DRB分配将该目标DRB的下行数据从SN网络网元发送到MN网络网元的目标TNL信息;对于其中一个目标DRB,为其分配的目标TNL信息,是该目标DRB使用的TNL信息,SN网络网元根据该目标TNL信息将该目标DRB的下行数据发送到第二接收模块1002。SN网络网元在接收到从第二发送模块1001发来的请求信息之后,可以确定DRB的承载类型;如果DRB的PDCP实体位于SN网络网元,且使用MCG资源,则表明该DRB的承载类型为图2所示的SN terminated MCG bearer或图3所示的SN terminated split bearer,在DRB的承载 类型为SN terminated MCG bearer或SN terminated split bearer时,是根据DRB对应的TNL信息发送下行数据到MN网络网元;所以在确定了DRB的承载类型为SN terminated MCG bearer或SN terminated split bearer之后,便可以从一组MN网络网元侧的下行TNL信息中为该DRB分配目标TNL信息。
在一些实施例中,由于第二发送模块1001在发起请求信息时不能预判SN网络网元如何映射QoS flow到DRB,也不知道映射得到的DRB的个数,而每个目标DRB都有一个TNL信息,所以为了保证每个目标DRB都能分配到TNL信息,可以是在第二发送模块1001向SN网络网元发送的请求信息中,携带的TNL信息的个数大于QoS flow的个数,或者携带的QoS flow的个数与请求信息中TNL信息的个数相等。
当接入网连接的核心网为3GPP 5G核心网时,核心网发送给接入网的用户数据被组织为多个QoS flow,在3GPP 5G NR架构中,无线接入网将一个或多个QoS flow映射到一个DRB以进行无线接口的调度和传输。例如,如图5所示协议层SDAP实体将多个QoS flow映射到两个不同的DRB之后,将数据递交到PDCP层继续处理,图5所示的多个QoS flow用QoS flows表示,两个不同的DRB分别用DRB ID x和DRB ID y表示,SDAP协议实体映射一组QoS flow为一组DRB,也即是将多个QoS flow映射为两个不同的DRB,这两个不同的DRB为一组。
在一些实施例中,QoS flow到DRB的映射关系可以以DRB ID以及一组映射到该DRB的QoS flow ID的组合进行表达,在一些实施例中,为了便于理解,以下以表格的形式例举QoS flow到DRB的映射关系,参见下表5。
表5
Figure PCTCN2019100043-appb-000006
表5的示例中,示出了一组QoS flow中的QoS flow ID1至QoS flow ID5到DRB的映射,其中QoS flow ID1至QoS flow ID3映射到DRB ID1,QoS flow ID4 至QoS flow ID5映射到DRB ID2。
SN网络网元还需从请求信息中的一组TNL信息中为每个目标DRB各自分配一个TNL信息;在一些实施例中,SN网络网元为每个目标DRB各自分配一个TNL信息的分配规则包括:对于其中一个目标DRB,从一组MN网络网元侧的下行TNL信息中任意选择出一个TNL信息作为该目标DRB的目标TNL信息,每个目标DRB对应的TNL信息不同;或者,从一组MN网络网元侧的下行TNL信息中根据TNL信息在TNL信息列表中的排列顺序以顺序或者逆序的方式选择出一个TNL信息作为目标DRB的目标TNL信息,也即顺序号信息可以是通过TNL信息在TNL信息list中的排列顺序体现的;或者当请求信息中每个TNL信息包括TNL顺序号信息时,从一组MN网络网元侧的下行TNL信息中按照顺序或者逆序的方式选择出一个TNL信息作为目标DRB的目标TNL信息。对于后两种方式,例如当按照顺序的方式分配TNL信息时,将顺序号为1的TNL信息分配给第一个目标DRB,将顺序号为2的TNL信息分配给第二个目标DRB,将顺序号为3的TNL信息分配给第三个目标DRB,以此类推;当按照逆序的方式分配TNL信息时,将顺序号为最后一个的TNL信息分配给第一个目标DRB,将顺序号为倒数第二个的TNL信息分配给第二个目标DRB,将顺序号为倒数第三个的TNL信息分配给第三个目标DRB,以此类推。
在一些实施例中,SN网络网元通过子信息可以以明确或隐式的方式告知确定模块1003每个目标DRB的目标TNL信息;当以明确的方式告知时,子信息包括QoS flow与DRB的映射关系,以及为每个目标DRB分配的TNL的身份信息;当以隐式的方式告知时,子信息包括QoS flow与DRB的映射关系,确定模块1003根据QoS flow与DRB的映射关系间接确定每个目标DRB的目标TNL信息。
以下先对SN网络网元通过子信息以明确的方式告知MN网络网元QoS flow映射到的每个目标DRB的目标TNL信息的情况进行说明:
在一些实施例中,为了使SN网络网元在为每个目标DRB分配目标TNL信息时能区分开目标DRB对应的TNL信息,第二发送模块1001向SN网络网元发送的请求信息中携带的TNL信息包括每个TNL的身份信息,TNL的身份信息包括TNL address信息和/或GTP-TEID信息;或者TNL信息的标识;或者TNL的顺序号信息。SN网络网元在为每个目标DRB选择出了对应的目标TNL信息之后,还需将为每个目标DRB选择出对应的目标TNL信息告知确定模块1003;SN网络网元向第二接收模块1002发送响应信息,在响应信息包括子信息,子信息用于确定为每个目标DRB分配的目标TNL信息;子信息可以是为每个目标DRB选择出对应的目标TNL信息的身份信息,也即明确的告知确定模块1003 每个目标DRB对应的TNL信息。
例如,响应信息中子信息包含目标DRB的MN网络网元侧下行TNL信息的标识,该TNL信息的标识为SN网络网元为该目标DRB从请求信息中携带的一组MN网络网元侧下行TNL信息中选定的一个TNL信息的标识,此时,请求信息中,指示了每个MN网络网元侧下行TNL信息的标识。
再例如,响应信息中子信息包含目标DRB的MN网络网元侧下行TNL信息的顺序号,该TNL信息的顺序号为SN网络网元从请求信息中携带的一组MN网络网元侧下行TNL信息中的顺序号中,为该目标DRB选定的一个TNL信息的顺序号,例如为该目标DRB选定的目标TNL信息在请求信息中的一组MN网络网元侧下行TNL信息中的顺序号中排列为第N个,则为该目标DRB选定的目标TNL信息的顺序号为N。
以下对SN网络网元通过子信息以隐式的方式告知确定模块1003每个目标DRB的目标TNL信息的情况进行说明:
在一些实施例中,TNL信息通过QoS flow ID信息进行表征,请求信息中的每个QoS flow包括QoS flow ID信息,每个QoS flow指示有一个与之对应的TNL信息;响应信息中子信息包括目标DRB使用的TNL信息所对应的QoS Flow ID信息。也即根据目标DRB使用的TNL信息所对应的QoS Flow ID信息确定目标TNL信息。在每个QoS flow ID信息有一个与之对应的TNL信息的前提下,可以根据QoS flow ID信息区分目标DRB对应的TNL信息;SN网络网元向第二接收模块1002发送的响应信息中子信息包括QoS flow到DRB的映射关系,以及选定的TNL信息所对应的QoS flow ID信息;确定模块1003根据QoS flow ID信息便可确定目标DRB对应的TNL信息。
在一些实施例中,TNL信息通过QoS flow ID信息进行表征,请求信息中的每个QoS flow包括QoS flow ID信息,每个QoS flow指示有一个与之对应的TNL信息;从一组MN网络网元侧的下行TNL信息中为每个目标DRB分配目标TNL信息的分配规则包括:从映射到该目标DRB的所有QoS flow中选择出QoS flow ID最小或QoS flow ID最大的QoS flow所对应的TNL信息作为该目标DRB的目标TNL信息;响应信息中的子信息包括QoS flow到DRB的映射关系,QoS flow到DRB的映射关系通过DRB ID以及映射到该DRB的一组QoS flow ID进行表征。MN网络网元在接收到响应信息之后,根据QoS flow到DRB的映射关系,便可以确定出目标DRB对应的TNL信息。此种方式SN网络网元向第二接收模块1002发送的响应信息中,没有明确的指示目标DRB的目标TNL信息,而是通过携带QoS flow到DRB的映射关系,其中QoS flow到DRB的映射关系通过DRB ID以及映射到该DRB的一组QoS flow ID进行表征,以隐式的方式 告知确定模块1003,确定模块1003通过确定映射到目标DRB的所有QoS flow中QoS flow ID最小或QoS flow ID最大的QoS flow所对应的TNL信息作为该目标DRB的目标TNL信息。确定模块1003可通过DRB与QoS flow的映射关系以及请求信息中携带的为每个QoS Flow指示的MN网络网元侧下行TNL信息,可以获知映射目标DRB的最大或最小的QoS Flow ID,以及与此最大或最小QoS Flow ID相对应的MN侧下行TNL信息。
在一些实施例中,请求信息中的每个TNL信息包括TNL的顺序号信息;从一组MN网络网元侧的下行TNL信息中为每个目标DRB分配目标TNL信息的分配规则包括:为QoS flow映射到的每个DRB进行顺序编号,将顺序号与目标DRB的顺序号相同的TNL信息作为该目标DRB的目标TNL信息;响应信息中的子信息包括QoS flow映射到的每个DRB的顺序号信息。如果目标DRB在响应信息中携带的DRB列表中的顺序号为N,则该目标DRB使用请求信息中携带的一组MN网络网元侧下行TNL信息中的第N个;在这种情况下,确定模块1003通过确定该目标DRB在响应信息中DRB列表中的顺序号,以及请求信息中的每个TNL的顺序号信息,确定该目标DRB的目标TNL信息。
上述SN网络网元通过子信息以明确或隐式的方式告知确定模块1003每个目标DRB的目标TNL信息,确定模块1003便可确定SN网络网元为每个目标DRB选择的目标TNL信息,实现DRB的建立。
在一些实施例中,在第二发送模块1001发送请求信息之前,或在第二发送模块1001发送请求信息之后且在第二接收模块1002接收从SN网络网元发来的响应信息之前,还包括:在根据请求信息中的TNL信息接收到下行数据的情况下,则将下行数据缓冲在本地,直到接收到响应消息。也即在第二发送模块1001发送请求信息之前,或在第二发送模块1001发送请求信息之后且在第二接收模块1002接收从SN网络网元发来的响应信息之前,第二接收模块1002准备开始根据请求信息中的TNL信息接收从SN网络网元发送的下行数据;即如果第二接收模块1002根据上述MN网络网元侧下行TNL信息接收到数据,则缓冲在本地,直到接收到响应信息并确定MN网络网元侧下行TNL信息和DRB的映射关系。
在一些实施例中,在第二接收模块1002接收从SN网络网元发来的响应信息之后,还包括:在没有准备开始根据请求信息中的TNL信息接收从SN网络网元发送的下行数据的情况下,则第二接收模块1002准备开始根据为目标DRB分配的目标TNL信息接收从SN网络网元发送的下行数据。
在一些实施例中,第二接收模块1002在接收到SN网络网元发来的响应信息之后,确定模块1003便可根据响应信息中子信息确定为每个目标DRB分配 的目标TNL信息,在确定模块1003根据响应信息中的子信息确定为每个目标DRB分配的目标TNL信息之后,还包括:将未分配的TNL信息对应的资源释放;对于未分配的TNL信息对应的资源,每个目标DRB都不会使用到,所以将其释放掉,以供其余需要的使用。
在一些实施例中,在将响应信息发送给第二接收模块1002之后,还包括:SN网络网元根据为目标DRB分配的目标TNL信息发送下行数据到第二接收模块1002。在为每个目标DRB分配好目标TNL信息之后,SN网络网元便可以根据目标DRB的目标TNL信息将该目标DRB的下行数据传输到第二接收模块1002。
在一些实施例中,响应信息还包括发送给UE的RRC消息;在将响应信息发送给第二接收模块1002之后,还包括:在接收到UE反馈RRC消息后,根据为目标DRB分配的目标TNL信息发送下行数据到第二接收模块1002。在接收到RRC反馈消息后,SN网络网元可以确认第二接收模块1002以及UE已经准备好在MN网络网元侧接收数据。
在一些实施例中,根据为目标DRB分配的目标TNL信息发送下行数据到第二接收模块1002的方式包括:将从核心网或其它网元接收到的下行数据包进行SDAP实体和PDCP实体处理后得到的数据包PDCP PDU,经过GTP封装,且将GTP隧道标识设置为目标TNL信息中的GTP-TEID,和/或将传输层地址设置为目标TNL信息中的传输层地址。
SN网络网元将经过PDCP实体处理过的数据包PDCP PDU通过MN网络网元和SN网络网元间接口,使用目标DRB在MN网络网元侧用于接收该目标DRB下行数据的目标TNL信息发送到第二接收模块1002。MN网络网元将接收到的PDCP PDU继续进行RLC和MAC层协议处理,并在无线接口发送给UE。
通过本发明实施例提供的DRB建立装置,在某些实施过程中,由第二发送模块1001将一组MN网络网元侧的下行TNL信息直接发送给SN网络网元,由SN网络网元在确定了QoS flow到DRB的映射关系、以及根据DRB的承载类型确定出目标DRB之后,从一组TNL信息中为每个目标DRB分配目标TNL信息,由此完成在3GPP的无线接入网的双连接架构中DRB的建立,节省了在SN网络网元为UE新建或修改QoS flow的资源时所需要的信令流程的消息数量,节省了MN和SN网络网元间的接口负担,并节省了流程的时间开销。
实施例六:
本发明实施例提供一种DRB建立系统,请参见图11所示,包括MN网络 网元1101和SN网络网元1102,
MN网络网元1101,用于向SN网络网元1102发送请求信息,请求信息包括终结在SN网络网元1102的且需要新建或需要修改的一组QoS flow的信息,以及一组MN网络网元1101侧的下行TNL信息,并根据SN网络网元1102发来的响应信息中的子信息确定为每个目标DRB分配的目标TNL信息。
SN网络网元1102,用于确定QoS flow到DRB的映射关系,根据QoS flow到DRB的映射关系以及DRB的承载类型确定出目标DRB,以及从一组MN网络网元1101侧的下行TNL信息中为每个目标DRB分配目标TNL信息,并将响应信息发送给MN网络网元1101,响应信息包括子信息,子信息用于确定为每个目标DRB分配的目标TNL信息。
在本发明实施例中,由MN网络网元1101向SN网络网元1102发送请求信息,请求信息携带一组SN terminated且需要新建的QoS flow的信息或一组SN terminated且需要修改的QoS flow的信息;一组QoS flow中包括至少一个QoS flow;在一些实施例中,对于每个QoS flow,包括:QoS flow身份信息、QoS flow级别的QoS参数、以及可用于该QoS flow的MCG资源的QoS参数。QoS flow身份信息包括但不限于QoS flow ID信息、或者QoS flow的顺序号信息。
请求信息还携带一组MN网络网元1101侧的下行TNL信息,一组TNL信息中包括至少一个TNL信息;在一些实施例中,每个TNL信息包括TNL的身份信息;TNL的身份信息包括TNL address信息和/或GTP-TEID信息;或者TNL信息的标识;或者TNL的顺序号信息;TNL的顺序号信息是指为每个TNL进行顺序编号。
SN网络网元1102在接收到从MN网络网元1101发来的请求信息之后,确定QoS flow到DRB的映射关系,并根据DRB的承载类型确定出目标DRB;目标DRB表明是需要分配TNL信息的DRB,也即承载类型是图2所示的SN terminated MCG bearer或图3所示的SN terminated split bearer。为便于理解,以下举例说明:例如QoS flow映射到的DRB有3个,分别记为DRB1、DRB2和DRB3,其中,DRB1和DRB2的承载类型均是SN terminated MCG bearer,DRB3的承载类型是SN terminated SCG bearer,则将DRB1和DRB2作为目标DRB,DRB3不作为目标DRB。
并且SN网络网元1102从一组MN网络网元1101侧的下行TNL信息中为每个目标DRB分配将该目标DRB的下行数据从SN网络网元1102发送到MN网络网元1101的目标TNL信息;对于其中一个目标DRB,为其分配的目标TNL信息,是该目标DRB使用的TNL信息,SN网络网元1102根据该目标TNL信息将该目标DRB的下行数据发送到MN网络网元1101。SN网络网元1102在 接收到从MN网络网元1101发来的请求信息之后,可以确定DRB的承载类型;如果DRB的PDCP实体位于SN网络网元1102,且使用MCG资源,则表明该DRB的承载类型为图2所示的SN terminated MCG bearer或图3所示的SN terminated split bearer,在DRB的承载类型为SN terminated MCG bearer或SN terminated split bearer时,是根据DRB对应的TNL信息发送下行数据到MN网络网元1101;所以在确定了DRB的承载类型为SN terminated MCG bearer或SN terminated split bearer之后,便可以从一组MN网络网元1101侧的下行TNL信息中为该DRB分配目标TNL信息。
在一些实施例中,由于MN网络网元1101在发起请求信息时不能预判SN网络网元1102如何映射QoS flow到DRB,也不知道映射得到的DRB的个数,而每个目标DRB都有一个TNL信息,所以为了保证每个目标DRB都能分配到TNL信息,可以是在MN网络网元1101向SN网络网元1102发送的请求信息中,携带的TNL信息的个数大于QoS flow的个数,或者携带的QoS flow的个数与请求信息中TNL信息的个数相等。
当接入网连接的核心网为3GPP 5G核心网时,核心网发送给接入网的用户数据被组织为多个QoS flow,在3GPP 5G NR架构中,无线接入网将一个或多个QoS flow映射到一个DRB以进行无线接口的调度和传输。例如,如图5所示协议层SDAP实体将多个QoS flow映射到两个不同的DRB之后,将数据递交到PDCP层继续处理,图5所示的多个QoS flow用QoS flows表示,两个不同的DRB分别用DRB ID x和DRB ID y表示,SDAP实体映射一组QoS flow为一组DRB,也即是将多个QoS flow映射为两个不同的DRB,这两个不同的DRB为一组。
在一些实施例中,QoS flow到DRB的映射关系可以以DRB ID以及一组映射到该DRB的QoS flow ID的组合进行表达,在一些实施例中,为了便于理解,以下以表格的形式例举QoS flow到DRB的映射关系,参见下表6。
表6
Figure PCTCN2019100043-appb-000007
Figure PCTCN2019100043-appb-000008
表6的示例中,示出了一组QoS flow中的QoS flow ID1至QoS flow ID5到DRB的映射,其中,QoS flow ID1至QoS flow ID3映射到DRB ID1,QoS flow ID4至QoS flow ID5映射到DRB ID2。
SN网络网元1102还需从请求信息中的一组TNL信息中为每个目标DRB各自分配一个TNL信息;在一些实施例中,SN网络网元1102为每个目标DRB各自分配一个TNL信息的分配规则包括:对于其中一个目标DRB,从一组MN网络网元1101侧的下行TNL信息中任意选择出一个TNL信息作为该目标DRB的目标TNL信息,每个目标DRB对应的TNL信息不同;或者,从一组MN网络网元1101侧的下行TNL信息中根据TNL信息在TNL信息列表中的排列顺序以顺序或者逆序的方式选择出一个TNL信息作为目标DRB的目标TNL信息,也即顺序号信息可以是通过TNL信息在TNL信息list中的排列顺序体现的;或者当请求信息中每个TNL信息包括TNL顺序号信息时,从一组MN网络网元1101侧的下行TNL信息中按照顺序或者逆序的方式选择出一个TNL信息作为目标DRB的目标TNL信息。对于后两种方式,例如当按照顺序的方式分配TNL信息时,将顺序号为1的TNL信息分配给第一个目标DRB,将顺序号为2的TNL信息分配给第二个目标DRB,将顺序号为3的TNL信息分配给第三个目标DRB,以此类推;当按照逆序的方式分配TNL信息时,将顺序号为最后一个的TNL信息分配给第一个目标DRB,将顺序号为倒数第二个的TNL信息分配给第二个目标DRB,将顺序号为倒数第三个的TNL信息分配给第三个目标DRB,以此类推。
在一些实施例中,SN网络网元1102通过子信息可以以明确或隐式的方式告知MN网络网元1101每个目标DRB的目标TNL信息;当以明确的方式告知时,子信息包括QoS flow与DRB的映射关系,以及为每个目标DRB分配的TNL的身份信息;当以隐式的方式告知时,子信息包括QoS flow与DRB的映射关系,MN网络网元1101根据QoS flow与DRB的映射关系间接确定每个目标DRB的目标TNL信息。
以下先对SN网络网元1102通过子信息以明确的方式告知MN网络网元1101QoS flow映射到的每个目标DRB的目标TNL信息的情况进行说明:
在一些实施例中,为了使SN网络网元1102在为每个目标DRB分配目标TNL信息时能区分开目标DRB对应的TNL信息,MN网络网元1101向SN网络网元1102发送的请求信息中携带的TNL信息包括每个TNL的身份信息,TNL的身份信息包括TNL address信息和/或GTP-TEID信息;或者TNL信息的标识; 或者TNL的顺序号信息。SN网络网元1102在为每个目标DRB选择出了对应的目标TNL信息之后,还需将为每个目标DRB选择出对应的目标TNL信息告知MN网络网元1101;SN网络网元1102向MN网络网元1101发送响应信息,在响应信息包括子信息,子信息用于确定为每个目标DRB分配的目标TNL信息;子信息可以是为每个目标DRB选择出对应的目标TNL信息的身份信息,也即明确的告知MN网络网元1101每个目标DRB对应的TNL信息。
例如,响应信息中子信息包含目标DRB的MN网络网元1101侧下行TNL信息的标识,该TNL信息的标识为SN网络网元1102为该目标DRB从请求信息中携带的一组MN网络网元1101侧下行TNL信息中选定的一个TNL信息的标识,此时,请求信息中,指示了每个MN网络网元1101侧下行TNL信息的标识。
再例如,响应信息中子信息包含目标DRB的MN网络网元1101侧下行TNL信息的顺序号,该TNL信息的顺序号为SN网络网元1102从请求信息中携带的一组MN网络网元1101侧下行TNL信息中的顺序号中,为该目标DRB选定的一个TNL信息的顺序号,例如为该目标DRB选定的目标TNL信息在请求信息中的一组MN网络网元1101侧下行TNL信息中的顺序号中排列为第N个,则为该目标DRB选定的目标TNL信息的顺序号为N。
以下对SN网络网元1102通过子信息以隐式的方式告知MN网络网元1101每个目标DRB的目标TNL信息的情况进行说明:
在一些实施例中,TNL信息通过QoS flow ID信息进行表征,请求信息中的每个QoS flow包括QoS flow ID信息,每个QoS flow指示有一个与之对应的TNL信息;响应信息中子信息包括目标DRB使用的TNL信息所对应的QoS Flow ID信息。也即根据目标DRB使用的TNL信息所对应的QoS Flow ID信息确定目标TNL信息。在每个QoS flow ID信息有一个与之对应的TNL信息的前提下,可以根据QoS flow ID信息区分目标DRB对应的TNL信息;SN网络网元1102向MN网络网元1101发送的响应信息中子信息包括QoS flow到DRB的映射关系,以及选定的TNL信息所对应的QoS flow ID信息;MN网络网元1101根据QoS flow ID信息便可确定目标DRB对应的TNL信息。
在一些实施例中,TNL信息通过QoS flow ID信息进行表征,请求信息中的每个QoS flow包括QoS flow ID信息,每个QoS flow指示有一个与之对应的TNL信息;从一组MN网络网元1101侧的下行TNL信息中为每个目标DRB分配目标TNL信息的分配规则包括:从映射到该目标DRB的所有QoS flow中选择出QoS flow ID最小或QoS flow ID最大的QoS flow所对应的TNL信息作为该目标DRB的目标TNL信息;响应信息中的子信息包括QoS flow到DRB的映射关系, QoS flow到DRB的映射关系通过DRB ID以及映射到该DRB的一组QoS flow ID进行表征。MN网络网元1101在接收到响应信息之后,根据QoS flow到DRB的映射关系,便可以确定出目标DRB对应的TNL信息。此种方式SN网络网元1102向MN网络网元1101发送的响应信息中,没有明确的指示目标DRB的目标TNL信息,而是通过携带QoS flow到DRB的映射关系,其中QoS flow到DRB的映射关系通过DRB ID以及映射到该DRB的一组QoS flow ID进行表征,以隐式的方式告知MN网络网元1101,MN网络网元1101通过确定映射到目标DRB的所有QoS flow中QoS flow ID最小或QoS flow ID最大的QoS flow所对应的TNL信息作为该目标DRB的目标TNL信息。MN网络网元1101可通过DRB与QoS flow的映射以及请求信息中携带的为每个QoS Flow指示的MN网络网元1101侧下行TNL信息,可以获知映射目标DRB的最大或最小的QoS Flow ID,以及与此最大或最小QoS Flow ID相对应的MN侧下行TNL信息。
在一些实施例中,请求信息中的每个TNL信息包括TNL的顺序号信息;从一组MN网络网元1101侧的下行TNL信息中为每个目标DRB分配目标TNL信息的分配规则包括:为QoS flow映射到的每个DRB进行顺序编号,将顺序号与目标DRB的顺序号相同的TNL信息作为该目标DRB的目标TNL信息;响应信息中的子信息包括QoS flow映射到的每个DRB的顺序号信息。如果目标DRB在响应信息中携带的DRB列表中的顺序号为N,则该目标DRB使用请求信息中携带的一组MN网络网元1101侧下行TNL信息中的第N个;在这种情况下,MN网络网元1101通过确定该目标DRB在响应信息中DRB列表中的顺序号,以及请求信息中的每个TNL的顺序号信息,确定该目标DRB的目标TNL信息。
上述SN网络网元1102通过子信息以明确或隐式的方式告知MN网络网元1101每个目标DRB的目标TNL信息,MN网络网元1101便可确定SN网络网元1102为每个目标DRB选择的目标TNL信息,实现DRB的建立。
在一些实施例中,在MN网络网元1101发送请求信息之前,或在MN网络网元1101发送请求信息之后且在MN网络网元1101接收从SN网络网元1102发来的响应信息之前,还包括:MN网络网元1101在根据请求信息中的TNL信息接收到下行数据的情况下,则将下行数据缓冲在本地,直到接收到响应消息。也即在MN网络网元1101发送请求信息之前,或在MN网络网元1101发送请求信息之后且在MN网络网元1101接收从SN网络网元1102发来的响应信息之前,MN网络网元1101准备开始根据请求信息中的TNL信息接收从SN网络网元1102发送的下行数据;即如果MN网络网元1101根据上述MN网络网元1101侧下行TNL信息接收到数据,则MN网络网元1101缓冲在本地,直到接收到响应信息并确定MN网络网元1101侧下行TNL信息和DRB的映射关系。
在一些实施例中,在MN网络网元1101接收从SN网络网元1102发来的响应信息之后,还包括:在没有准备开始根据请求信息中的TNL信息接收从SN网络网元1102发送的下行数据的情况下,则准备开始根据为目标DRB分配的目标TNL信息接收从SN网络网元1102发送的下行数据。
在一些实施例中,MN网络网元1101在接收到SN网络网元1102发来的响应信息之后,便可根据响应信息中子信息确定为每个目标DRB分配的目标TNL信息,在MN网络网元1101根据响应信息中的子信息确定为每个目标DRB分配的目标TNL信息之后,还包括:MN网络网元1101将未分配的TNL信息对应的资源释放;对于未分配的TNL信息对应的资源,每个目标DRB都不会使用到,所以将其释放掉,以供其余需要的使用。
在一些实施例中,在将响应信息发送给MN网络网元1101之后,还包括:SN网络网元1102根据为目标DRB分配的目标TNL信息发送下行数据到MN网络网元1101。在为每个目标DRB分配好目标TNL信息之后,SN网络网元1102便可以根据目标DRB的目标TNL信息将该目标DRB的下行数据传输到MN网络网元1101。
在一些实施例中,响应信息还包括发送给UE的RRC消息;在将响应信息发送给MN网络网元1101之后,还包括:在接收到UE反馈RRC消息后,根据为目标DRB分配的目标TNL信息发送下行数据到MN网络网元1101。在接收到RRC反馈消息后,SN网络网元1102可以确认MN网络网元1101以及UE已经准备好在MN网络网元1101侧接收数据。
在一些实施例中,根据为目标DRB分配的目标TNL信息发送下行数据到MN网络网元1101的方式包括:将从核心网或其它网元接收到的下行数据包进行SDAP实体和PDCP实体处理后得到的数据包PDCP PDU,经过GTP协议封装,且将GTP隧道标识设置为目标TNL信息中的GTP-TEID,和/或将传输层地址设置为目标TNL信息中的传输层地址。
SN网络网元1102将经过PDCP实体处理过的数据包PDCP PDU通过MN网络网元1101和SN网络网元1102间接口,使用目标DRB在MN网络网元1101侧用于接收该目标DRB下行数据的目标TNL信息发送到MN网络网元1101。MN网络网元1101将接收到的PDCP PDU继续进行RLC和MAC层协议处理,并在无线接口发送给UE。
参见图8所示的方法,在图8所示的方法中,包括以下步骤:
S801:MN网络网元1101向SN网络网元1102发送请求信息,请求信息中包括一组QoS flow的信息以及一组MN网络网元1101侧下行TNL信息。
S802:SN网络网元1102根据请求信息确定QoS flow到DRB的映射关系,确定DRB的承载类型,为承载类型为SN terminated MCG bearer或SN terminated split bearer的DRB选择一个MN侧下行TNL信息。
S803:SN网络网元1102向MN网络网元1101发送响应信息,响应信息携带QoS flow到DRB的映射关系,明确或隐式的指示DRB的MN网络网元1101侧下行TNL信息。
S804:MN网络网元1101根据响应信息确定DRB与MN网络网元1101侧下行TNL信息的对应关系。
S805:SN网络网元1102对承载类型为SN terminated MCG bearer或SN terminated split bearer的数据包,完成PDCP处理。
S806:SN网络网元1102根据为DRB选择的MN网络网元1101侧下行TNL信息发送DRB的下行数据。
通过本发明实施例提供的DRB建立系统,在某些实施过程中,由MN网络网元1101将一组MN网络网元1101侧的下行TNL信息直接发送给SN网络网元1102,由SN网络网元1102在确定了QoS flow到DRB的映射关系、以及根据DRB的承载类型确定出目标DRB之后,从一组TNL信息中为每个目标DRB分配目标TNL信息,由此完成在3GPP的无线接入网的双连接架构中DRB的建立,节省了在SN网络网元1102为UE新建或修改QoS flow的资源时所需要的信令流程的消息数量,节省了MN和SN网络网元1102间的接口负担,并节省了流程的时间开销。
实施例七:
本发明实施例还提供了一种辅节点,参见图12所示,其包括第一处理器1201、第一存储器1202及第一通信总线1203,其中:第一通信总线1203用于实现第一处理器1201和第一存储器1202之间的连接通信;第一处理器1201用于执行第一存储器1202中存储的一个或者多个计算机程序,以实现上述实施例一中的DRB建立方法。
本发明实施例还提供了一种主节点,参见图13所示,其包括第二处理器1301、第二存储器1302及第二通信总线1303,其中:第二通信总线1303用于实现第二处理器1301和第二存储器1302之间的连接通信;第二处理器1301用于执行第二存储器1302中存储的一个或者多个计算机程序,以实现上述实施例二中的DRB建立方法。
本发明实施例还提供了一种DRB建立系统,参见图14所示,其包括第三 处理器1401、第三存储器1402及第三通信总线1403,其中:第三通信总线1403用于实现第三处理器1401和第三存储器1402之间的连接通信;第三处理器1401用于执行第三存储器1402中存储的一个或者多个计算机程序,以实现上述实施例三中的DRB建立方法。
本发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
本实施例中的计算机可读存储介质可用于存储一个或者多个计算机程序,其存储的一个或者多个计算机程序可被处理器执行,以实现上述实施例一、和/或实施例二、和/或实施例三中的DRB建立方法的至少一个步骤。
本实施例还提供了一种计算机程序,该计算机程序可以分布在计算机可读介质上,由可计算装置来执行,以实现上述实施例一、和/或实施例二、和/或实施例三中的DRB建立方法的至少一个步骤;并且在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
本实施例还提供了一种计算机程序产品,包括计算机可读装置,该计算机可读装置上存储有如上所示的计算机程序。本实施例中该计算机可读装置可包括如上所示的计算机可读存储介质。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本申请不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本发明实施例所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (35)

  1. 一种数据无线承载DRB建立方法,包括:
    接收主节点发送的请求信息,所述请求信息包括终结在辅节点的待新建的一组服务质量流QoS flow或终结在辅节点的待修改的一组QoS flow的信息,以及一组所述主节点侧的下行传输层TNL信息;
    确定QoS flow到DRB的映射关系,根据所述QoS flow到DRB的映射关系以及DRB的承载类型确定出目标DRB,以及从所述一组所述主节点侧的下行TNL信息中为每个目标DRB分配目标TNL信息;
    将响应信息发送给所述主节点,所述响应信息包括子信息,所述子信息用于确定为所述每个目标DRB分配的目标TNL信息。
  2. 如权利要求1所述的方法,其中,所述请求信息中QoS flow的个数与所述请求信息中TNL信息的个数相等。
  3. 如权利要求1所述的方法,其中,所述TNL信息包括传输层地址和通用分组无线服务隧道协议-隧道标识GTP-TEID中的至少之一;或者TNL信息的标识;或者TNL的顺序号。
  4. 如权利要求1所述的方法,其中,所述TNL信息通过QoS flow标识ID进行表征,所述请求信息中的每个QoS flow包括QoS flow ID,所述每个QoS flow指示有与所述每个QoS flow对应的TNL信息;所述响应信息中的子信息包括为所述目标DRB分配的目标TNL信息所对应的QoS flow ID。
  5. 如权利要求1至4任一项所述的方法,其中,所述从所述一组所述主节点侧的下行TNL信息中为每个目标DRB分配目标TNL信息包括:从所述一组所述主节点侧的下行TNL信息中任意选择出一个TNL信息作为所述目标DRB中一个目标DRB的目标TNL信息;或者,从所述一组所述主节点侧的下行TNL信息中根据TNL信息在TNL信息列表中的排列顺序以顺序或者逆序的方式选择出一个TNL信息作为所述目标DRB中一个目标DRB的目标TNL信息。
  6. 如权利要求1所述的方法,其中,所述TNL信息通过QoS flow ID进行表征,所述请求信息中的每个QoS flow包括QoS flow ID,所述每个QoS flow指示有与所述每个QoS flow对应的TNL信息;所述从所述一组所述主节点侧的下行TNL信息中为每个目标DRB分配目标TNL信息包括:从映射到所述目标DRB中一个目标DRB的所有QoS flow中选择出QoS flow ID最小或QoS flow ID最大的QoS flow所对应的TNL信息作为所述一个目标DRB的目标TNL信息;所述响应信息中的子信息包括所述QoS flow到DRB的映射关系,所述QoS flow到DRB的映射关系通过DRB ID以及映射到DRB的一组QoS flow ID进行表征。
  7. 如权利要求1所述的方法,其中,所述请求信息中的每个TNL信息包括TNL的顺序号;所述从所述一组所述主节点侧的下行TNL信息中为每个目标DRB分配目标TNL信息包括:为QoS flow映射到的每个目标DRB进行顺序编号,得到所述每个目标DRB的顺序号,将与所述每个目标DRB的顺序号相同的TNL的顺序号对应的TNL信息作为所述每个目标DRB的目标TNL信息;所述响应信息中的子信息包括所述QoS flow映射到的每个DRB的顺序号。
  8. 如权利要求1至7任一项所述的方法,在所述将响应信息发送给所述主节点之后,还包括:根据为所述目标DRB分配的目标TNL信息向所述主节点发送下行数据。
  9. 如权利要求8所述的方法,其中,所述根据为所述目标DRB分配的目标TNL信息向所述主节点发送下行数据包括:将从核心网或其它网元接收到的下行数据包进行业务数据适应协议SDAP实体和分组数据汇聚协议PDCP实体处理后得到的数据包PDCP协议数据单元PDU,进行GTP封装并执行以下操作中的至少之一:将进行GTP封装后的数据包PDCP PDU的GTP隧道标识设置为所述目标TNL信息中的GTP-TEID;将进行GTP封装后的数据包PDCP PDU的传输层地址设置为所述目标TNL信息中的传输层地址。
  10. 一种数据无线承载DRB建立方法,包括:
    向辅节点发送请求信息,所述请求信息包括终结在所述辅节点的待新建的一组服务质量流QoS flow或终结在所述辅节点的待修改的一组QoS flow的信息,以及一组主节点侧的下行传输层TNL信息;
    接收所述辅节点发送的响应信息,所述响应信息包括子信息,所述子信息用于确定为QoS flow映射到的目标DRB中每个目标DRB分配的目标TNL信息,所述目标DRB根据DRB的承载类型确定;
    根据所述响应信息中的子信息确定为每个目标DRB分配的目标TNL信息。
  11. 如权利要求10所述的方法,其中,所述请求信息中QoS flow的个数与所述请求信息中TNL信息的个数相等。
  12. 如权利要求10所述的方法,其中,所述TNL信息包括传输层地址和通用分组无线服务隧道协议-隧道标识GTP-TEID中的至少之一;或者TNL信息的标识;或者TNL的顺序号。
  13. 如权利要求10所述的方法,其中,所述TNL信息通过QoS flow标识ID进行表征,所述请求信息中的每个QoS flow包括QoS flow ID,所述每个QoS flow指示有与所述每个QoS flow对应的TNL信息;所述响应信息中的子信息包括为所述目标DRB分配的TNL信息所对应的QoS flow ID。
  14. 如权利要求10所述的方法,其中,所述TNL信息通过QoS flow ID进行表征,所述请求信息中的每个QoS flow包括QoS flow ID,所述每个QoS flow指示有与所述每个QoS flow对应的TNL信息;所述响应信息中的子信息包括QoS flow到DRB的映射关系,所述QoS flow到DRB的映射关系通过DRB ID以及映射到该DRB的一组QoS flow ID进行表征;所述根据所述响应信息中的子信息确定为每个目标DRB分配的目标TNL信息包括:将映射到每个目标DRB的所有QoS flow中QoS flow ID最小或QoS flow ID最大的QoS flow所对应的TNL信息作为所述每个目标DRB的目标TNL信息。
  15. 如权利要求10所述的方法,其中,所述请求信息中的每个TNL信息包括TNL的顺序号;所述响应信息中的子信息包括所述QoS flow映射到的每个DRB的顺序号;所述根据所述响应信息中的子信息确定为每个目标DRB分配的目标TNL信息包括:将与每个目标DRB的顺序号相同的TNL的顺序号对应的TNL信息作为所述每个目标DRB的目标TNL信息。
  16. 如权利要求10至15任一项所述的方法,在所述接收所述辅节点发送的响应信息之前,还包括:在根据所述请求信息中的TNL信息接收到下行数据的情况下,将所述下行数据缓冲在本地,直到接收到所述辅节点发送的响应消息。
  17. 如权利要求16所述的方法,在所述接收所述辅节点发送的响应信息之后,还包括:在没有根据所述请求信息中的TNL信息接收从所述辅节点发送的下行数据的情况下,根据为所述目标DRB分配的目标TNL信息接收所述辅节点发送的下行数据。
  18. 如权利要求10至15任一项所述的方法,在所述根据所述响应信息中的子信息确定为所述每个目标DRB分配的目标TNL信息之后,还包括:将未分配的TNL信息对应的资源释放。
  19. 一种数据无线承载DRB建立方法,包括:
    主节点向辅节点发送请求信息,所述请求信息包括终结在所述辅节点的待新建的一组服务质量流QoS flow或终结在所述辅节点的待修改的一组QoS flow的信息,以及一组所述主节点侧的下行传输层TNL信息;
    所述辅节点确定QoS flow到DRB的映射关系,根据所述QoS flow到DRB的映射关系以及DRB的承载类型确定出目标DRB,以及从所述一组所述主节点侧的下行TNL信息中为每个目标DRB分配目标TNL信息,并将响应信息发送给所述主节点,所述响应信息包括子信息,所述子信息用于确定为所述每个目标DRB分配的目标TNL信息;
    所述主节点根据所述响应信息中的子信息确定为每个目标DRB分配的目标TNL信息。
  20. 如权利要求19所述的方法,其中,所述请求信息中QoS flow的个数与所述请求信息中TNL信息的个数相等。
  21. 如权利要求19所述的方法,其中,所述TNL信息包括传输层地址和通用分组无线服务隧道协议-隧道标识GTP-TEID中的至少之一;或者TNL信息的标识;或者TNL的顺序号。
  22. 如权利要求19所述的方法,其中,所述TNL信息通过QoS flow标识ID进行表征,所述请求信息中的每个QoS flow包括QoS flow ID,所述每个QoS flow指示有一个与所述每个QoS flow对应的TNL信息;所述响应信息中的子信息包括为所述目标DRB分配的目标TNL信息所对应的QoS flow ID。
  23. 如权利要求19所述的方法,其中,所述TNL信息通过QoS flow ID进行表征,所述请求信息中的每个QoS flow包括QoS flow ID,所述每个QoS flow指示有与所述每个QoS flow对应的TNL信息;所述从所述一组所述主节点侧的下行TNL信息中为每个目标DRB分配目标TNL信息包括:从映射到所述目标DRB中一个目标DRB的所有QoS flow中选择出QoS flow ID最小或QoS flow ID最大的QoS flow所对应的TNL信息作为所述一个目标DRB的目标TNL信息;所述响应信息中的子信息包括所述QoS flow到DRB的映射关系,所述QoS flow到DRB的映射关系通过DRB ID以及映射到DRB的一组QoS flow ID进行表征。
  24. 如权利要求19所述的方法,其中,所述请求信息中的每个TNL信息包括TNL的顺序号;所述从所述一组所述主节点侧的下行TNL信息中为每个目标DRB分配目标TNL信息包括:为QoS flow映射到的每个目标DRB进行顺序编号,得到所述每个目标DRB的顺序号,将与所述每个目标DRB的顺序号相同的TNL的顺序号对应的TNL信息作为所述每个目标DRB的目标TNL信息;所述响应信息中的子信息包括所述QoS flow映射到的每个DRB的顺序号。
  25. 如权利要求19至22任一项所述的方法,其中,所述从所述一组所述主节点侧的下行TNL信息中为每个目标DRB分配目标TNL信息包括:从所述一组所述主节点侧的下行TNL信息中任意选择出一个TNL信息作为所述目标DRB中一个目标DRB的目标TNL信息;或者,从所述一组所述主节点侧的下行TNL信息中根据TNL信息在TNL信息列表中的排列顺序以顺序或者逆序的方式选择出一个TNL信息作为所述目标DRB中一个目标DRB的目标TNL信息。
  26. 如权利要求19至24任一项所述的方法,在所述将响应信息发送给 所述主节点之后,还包括:所述辅节点根据为所述目标DRB分配的目标TNL信息向所述主节点发送下行数据。
  27. 如权利要求26所述的方法,其中,所述根据为所述目标DRB分配的目标TNL信息向所述主节点发送下行数据包括:将从核心网或其它网元接收到的下行数据包进行业务数据适应协议SDAP实体和分组数据汇聚协议PDCP实体处理后得到的数据包PDCP协议数据单元PDU,进行GTP封装并执行以下操作中的至少之一:将进行GTP封装后的数据包PDCP PDU的GTP隧道标识设置为所述目标TNL信息中的GTP-TEID;将进行GTP封装后的数据包PDCP PDU的传输层地址设置为所述目标TNL信息中的传输层地址。
  28. 如权利要求19至24任一项所述的方法,在所述主节点根据所述响应信息中的子信息确定为每个目标DRB分配的目标TNL信息之后,还包括:所述主节点将未分配的TNL信息对应的资源释放。
  29. 一种数据无线承载DRB建立装置,包括:
    第一接收模块,设置为接收主节点发送的请求信息,所述请求信息包括终结在辅节点的待新建的一组服务质量流QoS flow或终结在辅节点的待修改的一组QoS flow的信息,以及一组所述主节点侧的下行传输层TNL信息;
    处理模块,设置为确定QoS flow到DRB的映射关系,根据所述QoS flow到DRB的映射关系以及DRB的承载类型确定出目标DRB,以及从所述一组所述主节点侧的下行TNL信息中为每个目标DRB分配目标TNL信息;
    第一发送模块,设置为将响应信息发送给所述主节点,所述响应信息包括子信息,所述子信息用于确定为每个目标DRB分配的目标TNL信息。
  30. 一种数据无线承载DRB建立装置,包括:
    第二发送模块,设置为向辅节点发送请求信息,所述请求信息包括终结在所述辅节点的待新建的一组服务质量流QoS flow或终结在所述辅节点的待修改的一组QoS flow的信息,以及一组主节点主节点侧的下行传输层TNL信息;
    第二接收模块,设置为接收所述辅节点发送的响应信息,所述响应信息包括子信息,所述子信息用于确定为QoS flow映射到的DRB中每个目标DRB分配的目标TNL信息,目标DRB根据DRB的承载类型确定;
    确定模块,设置为根据所述响应信息中的子信息确定为每个目标DRB分配的目标TNL信息。
  31. 一种数据无线承载DRB建立系统,包括:主节点和辅节点,
    所述主节点,设置为向所述辅节点发送请求信息,所述请求信息包括终结 在所述辅节点的待新建的一组服务质量流QoS flow或终结在所述辅节点的待修改的一组QoS flow的信息,以及一组所述主节点侧的下行传输层TNL信息;
    所述辅节点,设置为确定QoS flow到DRB的映射关系,根据所述QoS flow到DRB的映射关系和DRB的承载类型确定出目标DRB,以及从所述一组所述主节点侧的下行TNL信息中为每个目标DRB分配目标TNL信息,并将所述响应信息发送给所述主节点,所述响应信息包括子信息,所述子信息用于确定为每个目标DRB分配的目标TNL信息;
    所述主节点,还设置为根据所述辅节点发送的所述响应信息中的子信息确定为所述每个目标DRB分配的目标TNL信息。
  32. 一种辅节点,包括第一处理器、第一存储器和第一通信总线;
    所述第一通信总线设置为实现所述第一处理器和所述第一存储器之间的连接通信;
    所述第一处理器设置为执行所述第一存储器中存储的至少一个程序,以实现如权利要求1至9任一项所述数据无线承载DRB建立方法。
  33. 一种主节点,包括第二处理器、第二存储器和第二通信总线;
    所述第二通信总线设置为实现所述第二处理器和所述第二存储器之间的连接通信;
    所述第二处理器设置为执行所述第二存储器中存储的至少一个程序,以实现如权利要求10至18任一项所述数据无线承载DRB建立方法。
  34. 一种数据无线承载DRB建立系统,包括第三处理器、第三存储器和第三通信总线;
    所述第三通信总线设置为实现所述第三处理器和所述第三存储器之间的连接通信;
    所述第三处理器设置为执行所述第三存储器中存储的至少一个程序,以实现如权利要求19至28任一项所述数据无线承载DRB建立方法。
  35. 一种计算机可读存储介质,存储有至少一个程序,所述至少一个程序可被至少一个处理器执行,以实现如权利要求1至28中任一项所述的数据无线承载DRB建立方法。
PCT/CN2019/100043 2018-08-09 2019-08-09 Drb建立方法、装置、系统、辅节点及主节点 WO2020030137A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810904443.1 2018-08-09
CN201810904443.1A CN110536476B (zh) 2018-08-09 2018-08-09 Drb建立方法、装置、系统、辅节点及主节点

Publications (1)

Publication Number Publication Date
WO2020030137A1 true WO2020030137A1 (zh) 2020-02-13

Family

ID=68657376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100043 WO2020030137A1 (zh) 2018-08-09 2019-08-09 Drb建立方法、装置、系统、辅节点及主节点

Country Status (2)

Country Link
CN (1) CN110536476B (zh)
WO (1) WO2020030137A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203071A1 (en) * 2022-04-20 2023-10-26 Nokia Technologies Oy Machine learning in beam selection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107493590A (zh) * 2017-06-15 2017-12-19 罗德祥 数据传输方法及装置、基站及计算机可读存储介质
CN108156633A (zh) * 2016-12-06 2018-06-12 中兴通讯股份有限公司 数据流重映射方法及装置和用户设备、ran设备
CN108377567A (zh) * 2016-11-01 2018-08-07 北京三星通信技术研究有限公司 一种在5g架构下建立双连接传输数据的方法、装置和系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2903386A1 (en) * 2014-01-29 2015-08-05 Alcatel Lucent Methode and device for establishing a dual connectivity between a user equipment and a MeNB and a SeNB, by providing the user equipment history information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108377567A (zh) * 2016-11-01 2018-08-07 北京三星通信技术研究有限公司 一种在5g架构下建立双连接传输数据的方法、装置和系统
CN108156633A (zh) * 2016-12-06 2018-06-12 中兴通讯股份有限公司 数据流重映射方法及装置和用户设备、ran设备
CN107493590A (zh) * 2017-06-15 2017-12-19 罗德祥 数据传输方法及装置、基站及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION: "Discussion on the QoS aspects for MR-DC", 3GPP TSG-RAN WG2 MEETING #103, R2-1811736, 24 August 2018 (2018-08-24), XP051521375 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203071A1 (en) * 2022-04-20 2023-10-26 Nokia Technologies Oy Machine learning in beam selection
US11870528B2 (en) 2022-04-20 2024-01-09 Nokia Technologies Oy Machine learning in beam selection

Also Published As

Publication number Publication date
CN110536476B (zh) 2023-03-28
CN110536476A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
KR102220436B1 (ko) 데이터 처리를 구현하기 위한 방법, 네트워크 디바이스 및 시스템, 및 저장 매체
CN108810903B (zh) 一种数据传输配置及数据传输方法和装置
EP3723416A1 (en) Session processing method and apparatus
KR102364595B1 (ko) 통신 방법 및 통신 디바이스
EP3637846B1 (en) Method and device for use in configuring novel quality of service architecture in dual connectivity system
WO2020030109A1 (zh) 信息传输方法及装置、存储介质和电子装置
CN110741701B (zh) 数据无线承载标识的获取方法和基站
CN110831094B (zh) 一种数据传输通道的处理方法及装置
US11805521B2 (en) Bearer mapping method for wireless backhaul node, wireless backhaul node and donor base station
CN109246173B (zh) 会话操作的控制方法及装置
WO2020034971A1 (zh) 分配ebi的方法和装置
WO2018201878A1 (zh) 承载配置确定、信息发送方法及装置、主基站和辅基站
US20120082110A1 (en) Method and terminal for transmitting service data
EP4216493A1 (en) Session processing method and apparatus
CN110536484B (zh) 多连接系统中的数据无线承载控制方法、装置和系统
CN101527935B (zh) 一种资源调度中的处理方法及装置
WO2020030137A1 (zh) Drb建立方法、装置、系统、辅节点及主节点
WO2018223304A1 (zh) 一种数据传输的方法和装置
CN111565391B (zh) 一种通信方法及装置
JP7344220B2 (ja) アドレス割当方法および装置、コアネットワーク、ノード、ネットワークシステムならびに媒体
WO2019214553A1 (zh) 一种进行资源分配的方法和装置
JP3994046B2 (ja) リソース割当制御装置、リソース割当制御方法、及び移動通信システム
WO2018188447A1 (zh) 一种ip地址配置方法及装置
WO2021104384A1 (zh) Ftp上下行业务同传方法、系统、网络设备及存储介质
WO2018085994A1 (zh) 融合控制器选择方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19846286

Country of ref document: EP

Kind code of ref document: A1