WO2019214553A1 - 一种进行资源分配的方法和装置 - Google Patents
一种进行资源分配的方法和装置 Download PDFInfo
- Publication number
- WO2019214553A1 WO2019214553A1 PCT/CN2019/085574 CN2019085574W WO2019214553A1 WO 2019214553 A1 WO2019214553 A1 WO 2019214553A1 CN 2019085574 W CN2019085574 W CN 2019085574W WO 2019214553 A1 WO2019214553 A1 WO 2019214553A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- logical channel
- mdbv
- resource allocation
- flow
- network side
- Prior art date
Links
- 238000013468 resource allocation Methods 0.000 title claims abstract description 376
- 238000000034 method Methods 0.000 title claims abstract description 83
- 230000005540 biological transmission Effects 0.000 claims abstract description 56
- 238000013507 mapping Methods 0.000 claims description 196
- 230000008569 process Effects 0.000 claims description 16
- 230000006978 adaptation Effects 0.000 claims description 3
- 102100022734 Acyl carrier protein, mitochondrial Human genes 0.000 claims 24
- 101000678845 Homo sapiens Acyl carrier protein, mitochondrial Proteins 0.000 claims 24
- 239000010410 layer Substances 0.000 description 223
- 238000012545 processing Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000004590 computer program Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/52—Allocation or scheduling criteria for wireless resources based on load
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/56—Allocation or scheduling criteria for wireless resources based on priority criteria
Definitions
- the present invention relates to the field of wireless communication technologies, and in particular, to a method and apparatus for performing resource allocation.
- the core network configures the QoS (Quality of Service) profile for each Flow.
- the RAN Radio Access Network
- the RAN performs QoS management based on the QoS profile configured by the core network for each Flow.
- One parameter in the QoS profile is 5QI (5G QoS Identifier, the fifth generation mobile communication system service quality identifier).
- MDBV Maximum Data Burst Volume
- the 5G NR system mainly supports three types of services: the first is eMBB (enhanced Mobile Broadband) service, the second is mMTC (massive machine type communication) service, and the third is URLLC. (Ultra-Reliable and Low Latency Communications) business.
- the URLLC service has a relatively high latency requirement, so it is also generally called a Delay-Sensed GBR (Guaranteed Bit Rate) service.
- the 5QI generally includes the MDBV parameter.
- the MDBV indicates that the 5G access network needs to process the maximum data of a Flow within the time range of the PDB (Packet Delay Budget). Quantity, and 5QI can be standardized or non-standardized.
- the present invention provides a method and apparatus for resource allocation, which solves the problem that the resource allocation method based on MDBV data transmission in the 5G system in the prior art has no clear solution.
- the terminal determines that the logical channel is used for the sliding window of the MDBV control and the MDBV corresponding to the logical channel; and then the resource allocation is performed for the logical channel according to the determined MDBV and the sliding window for the MDBV control.
- the terminal first determines the MDBV corresponding to the logical channel and the sliding window for the MDBV control, and allocates resources for the logical channel according to the determined MDBV and the sliding window for the MDBV control.
- resources for data transmission are allocated according to a sliding window for MDBV control, which ensures that the amount of data sent by each QoS Flow does not exceed the MDBV limit, thereby avoiding delay sensitivity when the system load is heavy.
- the business seizes resources of other businesses.
- the terminal needs to determine that the logical channel setup is complete before determining that the logical channel is used for the sliding window of the MDBV control and the MDBV corresponding to the logical channel; and/or that the network-side device needs to be sent based on the MDBV.
- the MDBV corresponding to the logical channel is determined at the MAC (Medium Access Control) layer. If the Flow and the logical channel adopt 1:1 mapping, the terminal corresponds to Flow. MDBV as the MDBV corresponding to the logical channel; or
- the terminal device uses the sum of the MDBVs corresponding to the flows that can be mapped to the logical channel as the MDBV corresponding to the logical channel according to the mapping relationship between the flow and the logical channel; or
- the terminal device will use the sum of the MDBVs corresponding to the flows actually mapped to the logical channel as the MDBV corresponding to the logical channel according to the flow and logical channel mapping relationship;
- the M is a positive integer.
- the MDBV corresponding to the logical channel is determined according to different situations, so that the resource allocation is ensured when the resource is allocated, and the delay sensitive service is prevented from preempting resources of other services.
- the terminal that determines the MDBV corresponding to the logical channel through the MAC layer needs to notify the MAC through a Service Data Adaptation Protocol (SDAP) or a Radio Resource Control (RRC) layer. Mapping between layer Flow and logical channel; or,
- the MDBV corresponding to the MAC layer logical channel is notified through the SDAP layer.
- the terminal since the terminal is the MDBV corresponding to the logical channel determined by the MAC layer, but the MAC layer does not know the corresponding mapping relationship, multiple ways of notifying the MAC layer are introduced, which is more diverse and guaranteed.
- the terminal can determine the MDBV corresponding to the logical channel at the MAC layer.
- the length of the sliding window for the MDBV control is a PDB corresponding to the logical channel
- the terminal determines the PDB corresponding to the logical channel by:
- the PDB is used as a PDB (Program Base File) corresponding to the logical channel. And determining that the sliding window for the MDBV control corresponding to the object is (N-PDB, N), where N is the scheduling moment.
- the length of the sliding window for the MDBV control is the PDB corresponding to the logical channel
- the sliding window for the MDBV control corresponding to the logical channel is determined according to the determined length of the sliding window for the MDBV control
- the terminal sorts the logical channels with available PBR cards and has data transmission requirements, sorts the logical channel priorities in descending order, and then performs the first round of resource allocation for each logical channel based on PBR, and updates each of them simultaneously.
- the amount of data that can be allocated in the sliding window corresponding to the logical channel needs to be updated to be MDBV and The difference between the amount of data of the resource that has been allocated to the logical channel in the sliding window corresponding to the current time;
- the terminal After determining that there are remaining resources, the terminal performs a second round of resource allocation in descending order of logical channel priority for all logical channels having data transmission requirements:
- the logical channel allows the amount of data to be allocated in the second round of resource allocation process to take the logical channel for the amount of data that can be allocated resources and the logical channel in the sliding window of the MDBV control
- the terminal sorts logical channels with available PBR tokens and data transmission requirements according to logical channel priority descending order, and then performs first round resource allocation on each logical channel based on PBR, and updates each logic simultaneously.
- the amount of data that can be allocated in the sliding window corresponding to the logical channel needs to be updated to be MDBV and current. The difference between the amount of data of the resource that has been allocated to the logical channel in the sliding window corresponding to the time;
- the terminal After determining that there are remaining resources, the terminal performs a second round of resource allocation in descending order of logical channel priority for all logical channels having data transmission requirements:
- the logical channel allows the amount of data to be allocated in the second round of resource allocation process to take the logical channel for the amount of data that can be allocated resources and the logical channel in the sliding window of the MDBV control If the logical channel currently required to be allocated is a logical channel that does not have an MDBV requirement and includes a GBR (Guarantee Bit Rate) service, then a smaller value of the current amount of data to be transmitted is allocated to the logical channel; The terminal performs resource allocation on the logical channel;
- GBR Guardantee Bit Rate
- the amount of data that can be allocated resources in the sliding window for the MDBV control corresponding to the logical channel is that the MDBV corresponding to the logical channel and the sliding window for the MDBV control corresponding to the logical channel have been The difference in the amount of data of the allocated resource.
- resource allocation when performing resource allocation, is performed in different manners for a logical channel without MDBV requirements and a logical channel having MDBV requirements, further ensuring that the amount of data sent by each QoS Flow does not exceed MDBV. Restrictions, so that delay-sensitive services can seize resources of other services when the system is heavily loaded.
- the network side device determines an MDBV corresponding to the resource allocation object and a sliding window for the MDBV control, and then performs resource allocation for the resource allocation object according to the determined MDBV and the sliding window for the MDBV control; If the uplink resource allocation is performed, the resource allocation target is a logical channel group; and when downlink resource allocation is performed, the resource allocation object is a logical channel.
- the network side device determines the MDBV corresponding to the resource allocation object and the sliding window for the MDBV control, it is required to determine that the logical channel establishment is completed; and/or determine that the resource allocation needs to be performed based on the MDBV according to the system load.
- the network side device determines that the resource allocation needs to be performed based on the MDBV according to the system load, and notifies the terminal that the resource allocation needs to be performed based on the MDBV.
- the network side device determines the MDBV corresponding to the logical channel according to the mapping relationship between the flow and the logical channel;
- the network side device determines the MDBV corresponding to the logical channel according to the mapping relationship between the flow and the logical channel, and uses the sum of the MDBVs corresponding to the logical channels in the same logical channel group as the MDBV corresponding to the logical channel group; or,
- the network side device uses the MDBV corresponding to the logical channel reported by the terminal as the MDBV corresponding to the logical channel group; or if the uplink resource allocation is performed, the network side device receives the corresponding logical channel group reported by the terminal. MDBV.
- the network side device uses the MDBV corresponding to the Flow as the MDBV corresponding to the logical channel;
- the network side device uses, according to the mapping relationship between the flow and the logical channel, the sum of the MDBVs corresponding to the flows that can be mapped to the logical channel as the MDBV corresponding to the logical channel; or ,
- the network side device will use the sum of the MDBVs corresponding to the Flows actually mapped to the logical channel as the MDBV corresponding to the logical channel according to the Flow and logical channel mapping relationship; , M is a positive integer. And determining, at the MAC layer, the MDBV corresponding to the resource allocation object.
- the network side device needs to notify the mapping relationship between the MAC layer Flow and the logical channel through the SDAP or the RRC layer before the MAC layer determines the MDBV corresponding to the resource allocation object; or
- the network side device notifies the mapping relationship between the MAC layer Flow and the logical channel and the MDBV corresponding to the QFI through the SDAP or the RRC layer; or
- the network side device notifies the MDBV corresponding to the MAC layer logical channel through the SDAP or the RRC layer; or
- the network side device notifies the MAC layer to actually map to the flow of the logical channel through the SDAP layer; or the network side device notifies the MAC layer to actually map to the flow channel of the logical channel and the MDBV corresponding to the QFI through the SDAP layer; or
- the network side device notifies the MDBV corresponding to the MAC layer logical channel through the SDAP layer.
- the length of the sliding window for the MDBV control is a PDB corresponding to the logical channel
- the length of the sliding window for the MDBV control is the PDB corresponding to the logical channel group.
- the network side device may determine the PDB corresponding to the logical channel by:
- the network side device determines, according to a mapping relationship between the flow and the logical channel, a 5QI corresponding to all flows that are mapped to the logical channel or a 5QI corresponding to all flows that are actually mapped to the logical channel; and finally, according to the 5QI corresponding to the Flow.
- the largest PDB is determined as the PDB corresponding to the logical channel.
- the network side device determines the sliding window for the MDBV control corresponding to the resource allocation object, if the downlink resource allocation is performed, the network side device determines that the sliding window for the MDBV control corresponding to the resource allocation object is (N- PDB, N], where N is the scheduling moment, and the PDB corresponding to the logical channel group is determined in the following manner:
- the network side device determines a sliding window corresponding to the resource allocation object, including:
- the network side device determines that the sliding window for the MDBV control corresponding to the resource allocation object is (N-PDB, N), where N is the scheduling time.
- the network side device uses, as the logic, a difference between a data volume corresponding to the MDBV corresponding to the logical channel and the allocated resource in the sliding window for MDBV control.
- the channel is capable of allocating the amount of data of the resource; then the resource allocation is performed for the logical channel according to the minimum value between the amount of data that can be allocated by the logical channel and the actual amount of data to be transmitted of the current logical channel.
- the network side device uses, as the difference between the MDBV corresponding to the logical channel group and the data amount of the allocated resource in the sliding window for the MDBV control corresponding to the logical channel group.
- the logical channel is capable of allocating the amount of data of the resource, and performing resource allocation for the logical channel group according to a minimum value between the amount of data that the logical channel group can allocate resources and the actual amount of data to be transmitted of the current logical channel group.
- a third aspect is a terminal for performing resource allocation, the terminal comprising a processor, a memory, and a transceiver;
- the processor is configured to read a program in the memory and execute:
- a network side device that performs resource allocation, where the network side device includes a processor, a memory, and a transceiver;
- the processor is configured to read a program in the memory and execute:
- Determining a MDBV corresponding to the resource allocation object and a sliding window for the MDBV control Determining a MDBV corresponding to the resource allocation object and a sliding window for the MDBV control; performing resource allocation for the resource allocation object according to the determined MDBV and the sliding window for MDBV control; wherein, if uplink resource allocation is performed, Then, the resource allocation object is a logical channel group; if downlink resource allocation is performed, the resource allocation object is a logical channel.
- a terminal for performing resource allocation includes:
- a first determining module configured to determine a sliding window for the MDBV control and an MDBV corresponding to the logical channel
- a first allocation module configured to perform resource allocation for the logical channel according to the determined MDBV and the sliding window for MDBV control.
- a network side device that performs resource allocation, where the network side device includes:
- a second determining module configured to determine an MDBV corresponding to the resource allocation object and a sliding window for the MDBV control
- a second allocation module configured to perform resource allocation for the resource allocation object according to the determined MDBV and the sliding window for MDBV control; wherein, if uplink resource allocation is performed, the resource allocation object is a logical channel Group; if downlink resource allocation is performed, the resource allocation object is a logical channel.
- FIG. 1 is a schematic diagram of a system for performing resource allocation according to an embodiment of the present invention
- FIG. 2 is a schematic flowchart of a complete method for resource allocation of downlink resources according to an embodiment of the present invention
- FIG. 3 is a schematic flowchart of a complete method for performing resource allocation on a terminal side of an uplink resource according to an embodiment of the present invention
- FIG. 4 is a schematic flowchart of a complete method for performing resource allocation on a network device side of an uplink resource according to an embodiment of the present invention
- FIG. 5 is a schematic structural diagram of a terminal for performing resource allocation according to an embodiment of the present invention.
- FIG. 6 is a schematic structural diagram of a network side device for performing resource allocation according to an embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of another terminal for performing resource allocation according to an embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of another network side device for performing resource allocation according to an embodiment of the present invention.
- FIG. 9 is a schematic flowchart of a method for performing resource allocation according to an embodiment of the present invention.
- FIG. 10 is a schematic flowchart of another method for performing resource allocation according to an embodiment of the present invention.
- the core network configures the QoS profile for each flow for the 5G NR system.
- the RAN performs QoS management based on the QoS profile configured by the core network for each Flow.
- One parameter in the QoS profile is 5QI
- MDBV is a parameter included in 5QI.
- the terminal first determines the MDBV corresponding to the object and the sliding window for the MDBV control, and allocates resources according to the determined MDBV and the sliding window for the MDBV control.
- the data transmission resource is allocated according to the current sliding window, so that the amount of data sent by each QoS Flow does not exceed the MDBV limit, thereby preventing the delay-sensitive service from being preempted when the system load is heavy. Resources for other businesses.
- an embodiment of the present invention provides a system for performing resource allocation, where the system includes: a terminal 100 and a network side device 101.
- the terminal 100 is mainly configured to determine a sliding window for the MDBV control and an MDBV corresponding to the logical channel, and perform resource allocation for the logical channel according to the determined MDBV and the sliding window for the MDBV control.
- the network side device 101 is mainly configured to determine an MDBV corresponding to the resource allocation object and a sliding window for the MDBV control; and allocate resources for the resource allocation object according to the determined MDBV and the sliding window for the MDBV control; wherein, if the uplink resource is performed For allocation, the resource allocation object is a logical channel group; if downlink resource allocation is performed, the resource allocation object is a logical channel.
- the terminal and the network side device first determine the corresponding MDBV and the sliding window for the MDBV control, and perform resource allocation according to the determined MDBV and the sliding window for the MDBV control.
- resources for data transmission are allocated according to a sliding window for MDBV control, which ensures that the amount of data sent by each QoS Flow does not exceed the MDBV limit, thereby avoiding delay sensitivity when the system load is heavy.
- the business seizes resources of other businesses.
- the following uses the downlink resources as an example to describe the system for resource allocation.
- Method 1 Resource allocation for downlink resources:
- the network side device determines that the logical channel establishment is completed and/or the network side device determines that the resource allocation needs to be performed based on the MDBV according to the system load, the network side device determines the MDBV corresponding to the logical channel and is used for the MDBV control. Sliding window.
- the MDBV corresponding to the logical channel determined by the network side device is different.
- the MDBV corresponding to the logical channel determined by the network side device is different.
- the first case if the Flow and the logical channel adopt 1:1 mapping, the network side device will use the MDBV corresponding to the Flow as the MDBV corresponding to the logical channel;
- the 1:1 scale mapping used by the Flow and the logical channel is that only one logical channel only maps one Flow.
- the MDBV of the Flow is used as the MDBV corresponding to the logical channel.
- the second case if the flow and the logical channel adopt the M:1 scale mapping, the network side device obtains the MDBV corresponding to the flow corresponding to the flow of the logical channel according to the mapping relationship between the flow and the logical channel, and the MDBV corresponding to the logical channel, where M is a positive integer.
- the flow and logical channels adopt a 6:1 scale mapping.
- 6 flows are mapped to the same logical channel, and the network side device adds the MDBVs corresponding to the 6 flows, and the sum of the MDBVs is used as the logical channel.
- MDBV 6:1 scale mapping
- the third case if the flow and the logical channel adopt the M:1 scale mapping, the network side device uses the sum of the MDBV corresponding to the Flow actually mapped to the logical channel in the Flow and logical channel mapping relationship as the MDBV corresponding to the logical channel.
- M is a positive integer.
- the flow and logical channels adopt a 6:1 scale mapping.
- the actual mapping rule there should be M flows mapped to the same logical channel at this time, but only three flows are mapped to the same logical channel.
- the network side device adds the MDBVs corresponding to the three Flows, and the sum of the MDBVs is the MDBV corresponding to the logical channel.
- the network side device determines the MDBV corresponding to the logical channel at the MAC layer root, but the MAC layer does not know the mapping relationship between the flow and the logical channel and the MDBV corresponding to the logical channel, the MAC layer needs to be notified in advance, and the network side device can be in the MAC.
- the layer determines the MDBV corresponding to the logical channel, and specifically can notify the MAC layer in the following manner.
- the network side device notifies the MAC layer Flow and the logical channel mapping relationship through the SDAP or the RRC layer;
- the flow is represented by QFI.
- the MAC layer determines the MDBV corresponding to each Flow according to the correspondence between the QFI and the 5QI identifier stored by the MAC layer and the correspondence between the 5QI and the MDBV. Finally, the MDBVs corresponding to the Flows mapped to the logical channels are added to obtain the MDBVs corresponding to the logical channels.
- the network side device notifies the mapping relationship between the MAC layer Flow and the logical channel and the MDBV corresponding to the QFI through the SDAP or the RRC layer.
- the network side device can know the flow mapped to the logical channel according to the mapping relationship between the flow and the logical channel, and then find the corresponding corresponding to each flow according to the MDBV corresponding to the QFI.
- the MDBV finally adds the MDBVs corresponding to the Flows mapped to the logical channels to obtain the MDBVs corresponding to the logical channels.
- the network side device notifies the MDBV corresponding to the MAC layer logical channel through the SDAP or the RRC layer.
- the network side device can directly determine the MDBV corresponding to the logical channel according to the SDAP or RRC layer notification.
- the network side device notifies the MAC layer to actually map to the Flow of the logical channel through the SDAP layer.
- the network side device notifies the MAC layer to actually map to the flow of the logical channel through the SDAP, and the flow is represented by QFI.
- the MAC layer determines the MDBV corresponding to each flow according to the correspondence between the QFI and the 5QI identifier stored by the MAC layer and the correspondence between the 5QI and the MDBV. . Finally, the MDBVs corresponding to the Flows mapped to the logical channels are added to obtain the MDBVs corresponding to the logical channels.
- the network side device notifies the MAC layer to actually map to the flow of the logical channel and the MDBV corresponding to the QFI through the SDAP layer.
- the network side device finds the MDBV corresponding to the Flow mapped to the logical channel according to the MDBV corresponding to the QFI, and finally maps the flow actually mapped to the logical channel.
- the corresponding MDBVs are added to obtain the MDBV corresponding to the logical channel.
- the network side device notifies the MDBV corresponding to the MAC layer logical channel through the SDAP layer.
- the network side device can directly determine the MDBV corresponding to the logical channel according to the SDAP layer notification.
- the network side device uses the PDB corresponding to the logical channel as the length of the sliding window corresponding to the logical channel for the MDBV control, and the sliding window for the MDBV control is (N-PDB, N), where N is the scheduling moment, and the PDB is the MDBV sliding window length corresponding to the logical channel.
- the PDB is determined as follows:
- the network side device determines, according to the mapping relationship between the flow and the logical channel, the 5QI corresponding to all the flows of the logical channel that can be mapped or the 5QI corresponding to all the flows that are actually mapped to the logical channel. Finally, the maximum PDB is determined from the 5QI corresponding to the Flow. The PDB corresponding to the logical channel.
- the network side device first determines that the logical channels that can be mapped to the logical channel group or are actually mapped to the logical channel group are the logical channels 1, 2, 3, and 4, and then the network side device determines that the logical channels 1, 2, 3, and 4 correspond to
- the 5QI corresponding to the Flow is determined from the determined 5QI corresponding to the Flow, and the largest PDB is determined as the PDB corresponding to the logical channel group according to the standardized 5QI table of the 3GPP.
- the resource allocation is performed for the logical channel according to the determined MDBV and the sliding window for the MDBV control.
- an optional implementation manner is: the difference between the data amount of the MDBV corresponding to the logical channel and the allocated resource in the sliding window for the MDBV control is used as the data that the logical channel can allocate resources. the amount.
- the network side device further determines, according to the minimum amount of data between the amount of data that the logical channel can allocate resources and the actual amount of data to be transmitted of the current logical channel.
- the logical channel performs resource allocation.
- the network side device preferentially allocates resources for the data required to meet the MDBV corresponding to the logical channel. If there are remaining resources, the network side device according to the logical channel.
- the amount of data that can be allocated resources is a data allocation resource that does not satisfy the MDBV requirement corresponding to the logical channel group.
- the embodiment of the present invention provides a schematic flowchart of a complete method for resource allocation for downlink resources.
- Step 200 The network side device determines that the logical channel establishment is completed, and/or the network side device determines, according to the system load, that resource allocation needs to be performed based on the MDBV.
- Step 201 The network side device determines, by using a MAC layer, an MDBV corresponding to the logical channel.
- Step 202 The network side device uses the PDB corresponding to the logical channel as the length of the sliding window corresponding to the logical channel for the MDBV control, and determines that the sliding window for the MDBV control is (N-PDB, N);
- Step 203 The network side device uses, as the data channel, the difference between the data amount of the MDBV corresponding to the logical channel and the data amount of the allocated resource in the sliding window for the MDBV control;
- Step 204 The network side device allocates resources for the logical channel according to the amount of data that the logical channel can allocate resources.
- the network side device When the resource allocation is performed on the uplink resource, the network side device needs to allocate uplink resources for different terminals.
- the network side device determines that the logical channel establishment is completed and/or the network side device determines that the resource allocation needs to be performed based on the MDBV according to the system load, the logical channel is determined.
- the group corresponds to the MDBV and the sliding window for MDBV control.
- the network side device can determine the MDBV corresponding to the logical channel group in the following centralized manner:
- the network side device determines the MDBV corresponding to the logical channel according to the mapping relationship between the flow and the logical channel, and uses the sum of the MDBVs corresponding to the logical channels in the same logical channel group as the MDBV corresponding to the logical channel group.
- the network side device determines the MDBV corresponding to the logical channels 1, 2, and 3 according to the mapping relationship between the flow and the logical channel, and the logical channels 1 and 2 are in the same logical channel group 1, and the network side device sets the logical channel 1
- the sum of the corresponding MDBVs of 2 is the MDBV corresponding to the logical channel group 1.
- the MDBV corresponding to the logical channel determined by the network device is different. The following describes different situations:
- the first case if the Flow and the logical channel adopt a 1:1 scale mapping, the network side device will use the MDBV corresponding to the Flow as the MDBV corresponding to the logical channel;
- the 1:1 scale mapping used by the Flow and the logical channel is that only one logical channel only maps one Flow.
- the MDBV of the Flow is used as the MDBV corresponding to the logical channel.
- the second case if the flow and the logical channel adopt the M:1 scale mapping, the network side device uses the sum of the MDBVs corresponding to the Flows that can be mapped to the logical channel as the MDBV corresponding to the logical channel according to the mapping relationship between the flow and the logical channel.
- M is a positive integer.
- the flow and logical channels adopt a 6:1 scale mapping.
- 6 flows are mapped to the same logical channel, and the network side device adds the MDBVs corresponding to the 6 flows, and the sum of the MDBVs is used as the logical channel.
- MDBV 6:1 scale mapping
- the third case if the Flow and the logical channel adopt the M:1 scale mapping, the network side device will use the sum of the MDBVs corresponding to the Flow actually mapped to the logical channel according to the Flow and logical channel mapping relationship.
- M is a positive integer.
- the flow and logical channels adopt a 6:1 scale mapping.
- the network side device adds the MDBVs corresponding to the three Flows, and the sum of the MDBVs is the MDBV corresponding to the logical channel.
- the network side device receives the sum of the MDBVs corresponding to the logical channels reported by the terminal, and uses the sum of the MDBVs corresponding to the reported logical channels as the MDBV corresponding to the logical channel group.
- the network side device will receive the sum of the MDBVs corresponding to the logical channels 1, 2, and 3 reported by the receiving end, and the logical channels 1, 2, and 3 are in the same logical channel group 1, and the logical channel 1 to be reported by the network side device at this time.
- the sum of the MDBVs corresponding to 2 and 3 is the MDBV corresponding to the logical channel group 1.
- the network side device receives the MDBV corresponding to the logical channel group reported by the terminal, and then uses the MDBV corresponding to the reported logical channel group as the MDBV corresponding to the logical channel group.
- the terminal reports the sum of the MDBVs corresponding to the logical channels 1, 2, and 3 in the same logical channel group 1 to the network side device, and the sum of the MDBVs corresponding to the same logical channel group 1 reported by the network side device at this time.
- the MDBV corresponding to logical channel group 1 1.
- the MAC layer Since the network side device determines the MDBV corresponding to the logical channel group at the MAC layer, the MAC layer does not know the mapping relationship between the Flow and the logical channel and the MDBV corresponding to the logical channel, so the MAC layer needs to be notified in advance.
- the RRC layer since the MAC layer does not know the mapping relationship between the logical channel and the logical channel group when performing uplink allocation of resources, the RRC layer also needs to notify the mapping relationship between the logical layer and the logical channel group of the MAC layer, so that the network side device can be in the MAC.
- the layer determines the MDBV corresponding to the logical channel group, and specifically can notify the MAC layer in the following manner.
- the network side device notifies the MAC layer Flow and the logical channel mapping relationship through the SDAP or the RRC layer.
- the flow is represented by QFI.
- the MAC layer determines the MDBV corresponding to each Flow according to the correspondence between the QFI and the 5QI identifier stored by the MAC layer and the correspondence between the 5QI and the MDBV. Finally, the MDBVs corresponding to the Flows mapped to the logical channels are added to obtain the MDBVs corresponding to the logical channels.
- the MAC layer determines the sum of the MDBVs of all the logical channels mapped to the logical channel group as the MDBV of the logical channel group according to the mapping relationship between the logical channel and the logical channel group.
- the network side device notifies the mapping relationship between the MAC layer Flow and the logical channel and the MDBV corresponding to the QFI through the SDAP or the RRC layer.
- the network side device can know the flow mapped to the logical channel according to the mapping relationship between the flow and the logical channel, and then find the corresponding corresponding to each flow according to the MDBV corresponding to the QFI.
- the MDBV finally adds the MDBVs corresponding to the Flows mapped to the logical channels to obtain the MDBVs corresponding to the logical channels.
- the MAC layer determines the sum of the MDBVs of all the logical channels mapped to the logical channel group as the MDBV of the logical channel group according to the mapping relationship between the logical channel and the logical channel group.
- the network side device notifies the MDBV corresponding to the MAC layer logical channel through the SDAP or the RRC layer.
- the network side device can directly determine the MDBV corresponding to the logical channel according to the SDAP or RRC layer notification.
- the MAC layer determines the sum of the MDBVs of all the logical channels mapped to the logical channel group as the MDBV of the logical channel group according to the mapping relationship between the logical channel and the logical channel group.
- the network side device notifies the MAC layer to actually map to the Flow of the logical channel through the SDAP layer.
- An interaction information is required between the terminal SDAP and the network side SDAP, so that the network side device learns the flow information that the network device of the terminal side device actually maps to the logical channel through the SDAP layer.
- the network side SDAP notifies the MAC layer to actually map to the flow of the logical channel, and the flow is represented by QFI.
- the MAC layer determines the MDBV corresponding to each Flow according to the correspondence between the QFI and the 5QI identifier stored by the MAC layer and the correspondence between the 5QI and the MDBV. Finally, the MDBVs corresponding to the Flows mapped to the logical channels are added to obtain the MDBVs corresponding to the logical channels.
- the network side device notifies the MAC layer to actually map to the flow of the logical channel and the MDBV corresponding to the QFI through the SDAP layer.
- An interaction information is required between the terminal SDAP and the network side SDAP, so that the network side device learns the flow information that the network device of the terminal side device actually maps to the logical channel through the SDAP layer.
- the network side SDAP notifies the MAC layer to actually map to the flow of the logical channel.
- the network side device finds the mapping to the logic according to the MDBV corresponding to the QFI.
- the MDBV corresponding to the Flow of the channel is finally added to the MDBV corresponding to the Flow that is actually mapped to the logical channel, and the MDBV corresponding to the logical channel is obtained.
- the network side device notifies the MDBV corresponding to the MAC layer logical channel through the SDAP layer.
- An interaction information is required between the terminal SDAP and the network side SDAP, so that the network side device learns the flow information that the network device of the terminal side device actually maps to the logical channel through the SDAP layer.
- the network side SDAP layer determines the MDBV corresponding to the logical channel according to the mapping relationship between the actual Flow and the logical channel, and the MAC layer can directly determine the MDBV corresponding to the logical channel according to the SDAP layer notification.
- the above method of notifying the MAC layer may use one of the methods separately, or may use multiple methods at the same time.
- the network side device uses the PDB corresponding to the logical channel group as the length of the sliding window for the MDBV control, and determines the logical channel group corresponding to the MDBV control.
- the sliding window is (N-PDB, N), where N is the scheduling moment, and the PDB is determined as follows:
- the network side device determines, according to the mapping relationship between the flow and the logical channel, the 5QI corresponding to all the flows corresponding to the logical channel group or the 5QI corresponding to all the flows actually mapped to the logical channel group, and finally determines the largest PDB according to the 5QI corresponding to the Flow. As the PDB corresponding to the logical channel group.
- the network side device first determines that the logical channels that can be mapped to the logical channel group or are actually mapped to the logical channel group are the logical channels 1, 2, 3, and 4, and then the network side device determines that the logical channels 1, 2, 3, and 4 correspond to The 5QI corresponding to the Flow further determines the largest PDB as the PDB corresponding to the logical channel group from the determined 5QI corresponding to the Flow.
- the resource allocation is performed for the logical channel group according to the determined MDBV and the sliding window for the MDBV control.
- an optional implementation manner is: the network side device can allocate the resource as the logical channel group by using the difference between the MDBV corresponding to the logical channel group and the data amount of the allocated resource in the sliding window for the MDBV control. The amount of data.
- the MDBV corresponding to the logical channel is 200 bits
- the data amount of the allocated resources in the sliding window for the MDBV control is 100 bits
- the difference is (100 bits)
- the network side device After obtaining the amount of data that the logical channel group can allocate the resource, the network side device is configured according to a minimum value between the data amount of the logical channel group capable of allocating resources and the current logical channel group actually to be transmitted.
- the logical channel group performs resource allocation.
- the network side device preferentially allocates resources for the data required to meet the MDBV corresponding to the logical channel group, and if there are remaining resources, the network side device Then, according to the data channel group that is actually to be transmitted but does not satisfy the MDBV requirement corresponding to the logical channel group, the resource is allocated.
- the network side device allocates resources to different terminals
- the allocated resources are notified to the terminal, and the terminal needs to perform resource allocation on the logical channel based on the resources allocated by the network side, so when the terminal determines that the logical channel is established and/or received.
- the terminal determines the sliding window corresponding to the MDBV control and the MDBV corresponding to the logical channel.
- the terminal determines the MDBV corresponding to the logical channel at the MAC layer, there are several different situations in the mapping relationship between the flow and the logical channel. Therefore, the MDBV corresponding to the logical channel determined by the terminal is different, and the following describes different situations. :
- the first case if the Flow and the logical channel adopt a 1:1 ratio mapping, the terminal will use the MDBV corresponding to the Flow as the MDBV corresponding to the logical channel;
- the Flow and the logical channel adopt a 1:1 ratio mapping.
- the terminal uses the MDBV of the Flow as the MDBV corresponding to the logical channel.
- the second case if the flow and the logical channel adopt the M:1 scale mapping, the terminal uses the sum of the MDBVs corresponding to the Flows that can be mapped to the logical channel as the MDBV corresponding to the logical channel according to the mapping relationship between the flow and the logical channel; , M is a positive integer.
- the flow and logical channels adopt a 6:1 scale mapping.
- 6 flows are mapped to the same logical channel, and the terminal adds the MDBVs corresponding to the 6 flows, and the sum of the MDBVs is used as the MDBV corresponding to the logical channel. .
- the terminal uses the sum of the MDBVs corresponding to the Flows actually mapped to the logical channel as the logical channel according to the flow and logical channel mapping relationship.
- MDBV where M is a positive integer.
- the flow and logical channels adopt a 6:1 scale mapping.
- the actual mapping rule there should be 6 flows mapped to the same logical channel at this time, but only three flows are mapped to the same logical channel.
- the MDBVs corresponding to the three Flows are added, and the sum of the MDBVs is taken as the MDBV corresponding to the logical channel.
- the terminal determines the MDBV corresponding to the logical channel at the MAC layer, but the MAC layer does not know the mapping relationship between the MDBV corresponding to the logical channel and the flow and the logical channel, it is necessary to introduce an inter-layer interaction mechanism to notify the MAC layer that the terminal can be in the MAC layer.
- the MDBV corresponding to the logical channel is determined, and the MAC layer may be notified in the following manner.
- the terminal notifies the medium access control MAC layer Flow and the logical channel mapping relationship through the service data adaptation layer SDAP or the radio resource control RRC layer.
- the flow is represented by QFI.
- the MAC layer determines the MDBV corresponding to each Flow according to the correspondence between the QFI and the 5QI identifier stored by the MAC layer and the correspondence between the 5QI and the MDBV. Finally, the MDBVs corresponding to the Flows mapped to the logical channels are added to obtain the MDBVs corresponding to the logical channels.
- the terminal notifies the mapping relationship between the MAC layer Flow and the logical channel and the MDBV corresponding to the QFI through the SDAP or the RRC layer.
- the terminal can know the flow mapped to the logical channel according to the mapping relationship between the flow and the logical channel, and then find the MDBV corresponding to each flow according to the MDBV corresponding to the QFI. Finally, the MDBVs corresponding to the Flows mapped to the logical channels are added to obtain the MDBVs corresponding to the logical channels.
- the terminal notifies the MDBV corresponding to the logical channel of the MAC layer through the SDAP or the RRC layer.
- the MAC can directly obtain the MDBV corresponding to the logical channel according to the notification.
- the MDBV is the sum of MDBVs corresponding to Flows that can be mapped to the logical channel.
- the terminal notifies the MAC layer to actually map to the Flow of the logical channel through the SDAP layer.
- the MDBV corresponding to the Flow mapped to the logical channel is found according to the MDBV corresponding to the QFI, and finally the MDBV corresponding to the Flow mapped to the logical channel is actually mapped. Add together to get the MDBV corresponding to the logical channel.
- the terminal notifies the MAC layer to actually map to the flow of the logical channel and the MDBV corresponding to the QFI through the SDAP layer.
- the MDBV corresponding to the Flow mapped to the logical channel is found according to the MDBV corresponding to the QFI, and finally the MDBV corresponding to the Flow mapped to the logical channel is actually mapped. Add together to get the MDBV corresponding to the logical channel.
- the terminal device notifies the MDBV corresponding to the logical channel of the MAC layer through the SDAP layer.
- the MAC layer can directly obtain the MDBV corresponding to the logical channel according to the notification.
- the MDBV is the sum of the MDBVs corresponding to the Flows actually mapped to the logical channel.
- the terminal uses the PDB corresponding to the logical channel as the length of the MDBV sliding window corresponding to the logical channel, and determines that the sliding window for the MDBV control is (N-PDB, N). , where N is the scheduling moment, and the PDB is determined as follows:
- the terminal determines the 5QI corresponding to all flows that can be mapped to the logical channel group or the 5QIs corresponding to all the flows that are actually mapped to the logical channel group according to the mapping relationship between the flow and the logical channel, and finally determines the largest PDB according to the 5QI corresponding to the Flow as the logic.
- the PDB corresponding to the channel group determines the 5QI corresponding to all flows that can be mapped to the logical channel group or the 5QIs corresponding to all the flows that are actually mapped to the logical channel group according to the mapping relationship between the flow and the logical channel, and finally determines the largest PDB according to the 5QI corresponding to the Flow as the logic.
- the PDB corresponding to the channel group is the largest PDB according to the 5QI corresponding to the Flow as the logic.
- the terminal first determines that the logical channel that can be mapped or the actually mapped logical channel is the logical channel 1, 2, 3, and 4, and then the field determines the 5QI corresponding to the Flow corresponding to the logical channels 1, 2, 3, and 4, and then determines from The 5QI corresponding to the outgoing Flow determines the largest PDB as the PDB corresponding to the logical channel.
- the terminal After the terminal determines the MDBV corresponding to the logical channel and the sliding window for the MDBV control, the terminal allocates resources for the logical channel according to the determined MDBV and the sliding window for the MDBV control.
- An optional implementation manner is:
- the terminal first sorts the logical channels with available PBR tokens and data transmission requirements in descending order of logical channel priority, and then the terminal sequentially allocates the first round of resources based on PBR for each logical channel, and updates each logic simultaneously.
- the data amount of the resource that can be allocated in the sliding window for the MDBV control corresponding to the logical channel is the MDBV corresponding to the logical channel and the allocated resource in the sliding window for the MDBV control corresponding to the logical channel. The difference in the amount of data.
- the data amount of the allocated resources in the MDBV corresponding to the logical channel is 200 bits
- the second round of resource allocation is performed on all logical channels having data transmission requirements in descending order of logical channel priority, specifically:
- the amount of data that the logical channel allows to allocate resources in the second round of resource allocation process takes the amount of data that can be allocated resources in the sliding window of the MDBV control and the amount of data to be transmitted in the logical channel.
- the resource allocation is performed on the logical channel;
- the terminal determines that there is a logical channel required by the MDBV, and at this time, the data amount of the resource that can be allocated in the sliding window for the MDBV control corresponding to the logical channel is 40 bits, and the logical channel can be allocated in the sliding window of the MDBV control.
- the amount of data of the resource is 60 bits.
- the terminal takes a smaller value (40 bits) between the two to allocate resources to the logical channel.
- the terminal has two ways to allocate resources.
- the terminal allocates resources to the logical channel according to the amount of data to be transmitted by the logical channel:
- the amount of data to be transmitted on the logical channel is 600 bits, and the terminal allocates resources according to the 600 bits.
- Another way is: if the logical channel that needs to be allocated before is a logical channel that does not have an MDBV requirement and includes a GBR service, the terminal allocates resources to the logical channel according to the amount of data to be transmitted by the logical channel.
- the amount of data to be transmitted on the logical channel is 600 bits
- the logical channel that needs to be allocated is a logical channel that includes the GBR service.
- the terminal allocates resources only to the logical channel according to the 600 bits.
- the remaining to-be-transmitted data is allocated in descending order of all logical channels having data transmission requirements until the resources are exhausted or all logical channels are Resources are allocated for the data to be transmitted.
- the embodiment of the present invention provides a schematic flowchart of a complete method for performing resource allocation on an uplink side of an uplink resource.
- Step 300 The terminal needs to determine that the logical channel is established and/or receives a notification that the network side device needs to perform resource allocation based on the MDBV.
- Step 301 The terminal determines, by using a MAC layer, an MDBV corresponding to the logical channel.
- Step 302 The terminal uses the PDB corresponding to the logical channel as the length of the MDBV sliding window corresponding to the logical channel, and determines that the sliding window for the MDBV control is (N-PDB, N);
- Step 303 The terminal sorts logical channels having available PBR tokens and having data transmission requirements in descending order of logical channel priorities.
- Step 304 The terminal sequentially performs a first round of resource allocation based on the PBR for each logical channel, and simultaneously updates the number of tokens in the PBR token bucket corresponding to each logical channel.
- Step 305 After completing the PBR-based resource allocation on the logical channel required by the MDBV, the terminal updates the data amount of the resource that can be allocated in the sliding window corresponding to the logical channel.
- Step 306 after the terminal determines that there are remaining resources that can be allocated, it is determined whether the logical channel that needs to be allocated currently has a logical channel required by the MDBV, if yes, step 307 is performed; otherwise, step 308 is performed;
- Step 307 The terminal fetches the logical channel for the MDBV controlled MDBV sliding window, the amount of data that can be allocated resources, and the smaller value of the data volume to be transmitted by the logical channel, and allocates resources to the logical channel.
- Step 308 The terminal allocates resources to the logical channel according to the amount of data to be transmitted by the logical channel, or the logical channel that needs to be allocated before is a logical channel that does not have an MDBV requirement and includes a GBR service, and the data to be transmitted according to the logical channel.
- Step 309 The terminal determines that there are remaining resources, and performs resource allocation on the remaining data to be transmitted in descending order of all logical channels having data transmission requirements.
- the embodiment of the present invention provides a schematic flowchart of a complete method for performing resource allocation on a network side device for uplink resources.
- Step 400 The network side device determines that the logical channel establishment is complete and/or the network side device determines that the resource allocation needs to be performed based on the MDBV according to the system load, and notifies the terminal to determine, according to the system load, that the resource allocation needs to be performed based on the MDBV.
- Step 401 The network side device determines, by using a MAC layer, an MDBV corresponding to the logical channel group.
- Step 402 The network side device uses the PDB corresponding to the logical channel group as the length of the sliding window corresponding to the logical channel group for the MDBV control, and determines that the sliding window for the MDBV control is (N-PDB, N);
- Step 403 The network side device uses, as the logical channel group, the data amount of the resource that can be allocated by the logical channel group, the difference between the MDBV corresponding to the logical channel group and the data amount of the allocated resource in the sliding window for the MDBV control;
- Step 404 The network side device preferentially allocates resources for data required to meet the MDBV corresponding to the logical channel group.
- Step 405 The network side device determines that there are remaining resources. If the step 406 is performed, the resource allocation is ended.
- Step 406 The network side device further allocates resources according to the data amount that the logical channel group can allocate resources according to the MDBV requirements that do not satisfy the logical channel group.
- the terminal includes a processor 500, a memory 501, and a transceiver 502;
- the processor 500 is configured to read a program in the memory and execute:
- processor 500 is further configured to:
- the processor 500 is specifically configured to:
- the MDBV corresponding to the logical channel is determined according to the mapping relationship between the Flow and the logical channel.
- processor 500 is further configured to:
- the MDBV corresponding to the Flow is used as the MDBV corresponding to the logical channel;
- the Flow and the logical channel adopt the M:1 mapping
- the sum of the MDBVs corresponding to the Flows that can be mapped to the logical channels is used as the MDBV corresponding to the logical channel according to the mapping relationship between the Flow and the logical channel; or
- the Flow and the logical channel adopt the M:1 mapping
- the sum of the MDBVs corresponding to the Flows actually mapped to the logical channel is used as the MDBV corresponding to the logical channel according to the Flow and logical channel mapping relationship; wherein the M is A positive integer.
- the processor 500 is specifically configured to:
- the MDBV corresponding to the logical channel is determined at the MAC layer.
- processor 500 is further configured to:
- the mapping relationship between the MAC layer Flow and the logical channel is notified through the SDAP or the RRC layer; or
- the MDBV corresponding to the MAC layer logical channel is notified through the SDAP layer.
- the length of the sliding window for the MDBV control is a PDB corresponding to the logical channel.
- the processor 500 is specifically configured to: determine, by using the following manner, a PDB corresponding to the logical channel:
- the processor 500 is specifically configured to:
- the sliding window for the MDBV control corresponding to the logical channel is determined to be (N-PDB, N), where N is the scheduling moment.
- processor 500 is further configured to:
- the logical channels with available PBR tokens and data transmission requirements are sorted in descending order of logical channel priority, and then the first round of resource allocation is performed on each logical channel based on PBR, and the corresponding corresponding to each logical channel is updated.
- the amount of data that can be allocated in the sliding window corresponding to the logical channel needs to be updated to be the MDBV and the current time.
- the logical channel allows the amount of data to be allocated in the second round of resource allocation process to take the logical channel for the amount of data that can be allocated resources and the logical channel in the sliding window of the MDBV control
- Logical channel for resource allocation
- processor 500 is further configured to:
- the remaining to-be-transmitted data is allocated in descending order of all logical channels having data transmission requirements until resources are exhausted or resources of all logical channels to be transmitted are allocated.
- processor 500 is further configured to:
- the logical channels with available PBR tokens and data transmission requirements are sorted in descending order of logical channel priority, and then the first round of resource allocation is performed on each logical channel based on PBR, and the PBR order corresponding to each logical channel is updated at the same time.
- the data volume of the resource that can be allocated in the sliding window corresponding to the logical channel is updated to be the MDBV and the sliding window corresponding to the current time.
- the logical channel allows the amount of data to be allocated in the second round of resource allocation process to take the logical channel for the amount of data that can be allocated resources and the logical channel in the sliding window of the MDBV control
- the smaller of the data to be transmitted the resource allocation is performed on the logical channel; if the logical channel that needs to be allocated is a logical channel that does not have an MDBV requirement and includes a GBR service, resource allocation is performed on the logical channel;
- processor 500 is further configured to:
- the remaining to-be-transmitted is in descending order of logical channel priorities for all data transmission requirements.
- the data is allocated for resources until the resources are exhausted or the resources to be transmitted of all logical channels are allocated resources.
- the amount of data that can be allocated resources in the MDBV sliding window for the MDBV control corresponding to the logical channel is the MDBV corresponding to the logical channel and the sliding for the MDBV control corresponding to the logical channel.
- the difference in the amount of data for the allocated resources in the window is the MDBV corresponding to the logical channel and the sliding for the MDBV control corresponding to the logical channel.
- the processor 500 is responsible for managing the bus architecture and general processing, and the memory 501 can store data used by the processor 500 when performing operations.
- the transceiver 502 is configured to receive and transmit data under the control of the processor 500.
- the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 500 and various circuits of memory represented by memory 501.
- the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
- the bus interface provides an interface.
- the processor 500 is responsible for managing the bus architecture and general processing, and the memory 501 can store data used by the processor 500 when performing operations.
- the flow disclosed in the embodiment of the present invention may be applied to the processor 500 or implemented by the processor 500.
- each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 500 or an instruction in the form of software.
- the processor 500 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, which can be implemented or executed in an embodiment of the invention.
- a general purpose processor can be a microprocessor or any conventional processor or the like.
- the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
- the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
- the storage medium is located in the memory 51, and the processor 500 reads the information in the memory 501 and completes the steps of the signal processing flow in conjunction with its hardware.
- a network side device for performing resource allocation where the network side device includes a processor 600, a memory 601, and a transceiver 602;
- the processor 600 is configured to read a program in the memory and execute:
- Determining a MDBV corresponding to the resource allocation object and a sliding window for the MDBV control Determining a MDBV corresponding to the resource allocation object and a sliding window for the MDBV control; performing resource allocation for the resource allocation object according to the determined MDBV and the sliding window for MDBV control; wherein, if uplink resource allocation is performed, Then, the resource allocation object is a logical channel group; if downlink resource allocation is performed, the resource allocation object is a logical channel.
- processor 600 is further configured to:
- processor 600 is further configured to:
- the uplink resource allocation is performed, it is determined according to the system load that the resource allocation needs to be performed based on the MDBV, and the terminal is notified to perform resource allocation based on the MDBV.
- processor 600 is specifically configured to:
- the MDBV corresponding to the logical channel is determined according to the mapping relationship between the flow and the logical channel; or if the uplink resource allocation is performed, the MDBV corresponding to the logical channel is determined according to the mapping relationship between the flow and the logical channel, and the same logical channel group is The sum of the MDBVs corresponding to the logical channels is the MDBV corresponding to the logical channel group; or if the uplink resource allocation is performed, the sum of the MDBVs corresponding to the logical channels reported by the terminal is used as the MDBV corresponding to the logical channel group; or if the uplink resource allocation is performed, the receiving is performed. The MDBV corresponding to the logical channel group reported by the terminal.
- processor 600 is specifically configured to:
- the MDBV corresponding to the Flow is used as the MDBV corresponding to the logical channel;
- the Flow and the logical channel adopt the M:1 mapping
- the sum of the MDBVs corresponding to the Flows that can be mapped to the logical channels is used as the MDBV corresponding to the logical channel according to the mapping relationship between the Flow and the logical channel; or
- the Flow and the logical channel adopt the M:1 mapping
- the sum of the MDBVs corresponding to the Flows actually mapped to the logical channel is used as the MDBV corresponding to the logical channel according to the Flow and logical channel mapping relationship; wherein the M is A positive integer.
- processor 600 is specifically configured to:
- the MDBV corresponding to the resource allocation object is determined at the MAC layer.
- the processor is further configured to:
- the MAC layer Before the MAC layer determines the MDBV corresponding to the resource allocation object, notifying the mapping relationship between the MAC layer Flow and the logical channel through the SDAP or the RRC layer; or
- the MDBV corresponding to the MAC layer logical channel is notified through the SDAP layer.
- processor 600 is further configured to:
- the mapping relationship between the MAC layer logical channel and the logical channel group is notified by the RRC layer.
- the length of the sliding window for the MDBV control is a PDB corresponding to the logical channel; or if the uplink resource allocation is performed, the length of the sliding window for the MDBV control is a logical channel group. Corresponding PDB.
- the processor 600 is specifically configured to: determine, by using the following manner, a PDB corresponding to the logical channel:
- processor 600 is specifically configured to:
- the sliding window for the MDBV control corresponding to the resource allocation object is (N-PDB, N), where N is the scheduling moment, and the PDB is the length of the MDBV sliding window corresponding to the logical channel.
- the processor 600 is specifically configured to: determine, by using the following manner, a PDB corresponding to the logical channel group:
- Determining a logical channel that can be mapped to a logical channel group or actually mapped to a logical channel group, and determining, according to a mapping relationship between the flow and the logical channel, a 5QI corresponding to all flows that can be mapped to the logical channel group or actually mapping to the logical channel group The 5QI corresponding to all the flows of the flows; determining the largest PDB as the PDB corresponding to the logical channel group according to the 5QI corresponding to the Flow.
- processor 600 is specifically configured to:
- the sliding window for the MDBV control corresponding to the resource allocation object is (N-PDB, N), where N is the scheduling moment, and the PDB is the length of the MDBV sliding window corresponding to the logical channel group.
- processor 600 is specifically configured to:
- the difference between the MDBV corresponding to the logical channel and the data amount of the allocated resource in the sliding window for MDBV control is used as the data amount of the logical channel capable of allocating resources; according to the logic
- the minimum value between the amount of data that the channel can allocate resources and the amount of data that the current logical channel actually needs to transmit is resource allocation for the logical channel.
- processor 600 is specifically configured to:
- the difference between the MDBV corresponding to the logical channel group and the data amount of the allocated resources in the sliding window for the MDBV control corresponding to the logical channel group can be allocated as the logical channel.
- the processor 600 is responsible for managing the bus architecture and general processing, and the memory 601 can store data used by the processor 600 in performing operations.
- the transceiver 602 is configured to receive and transmit data under the control of the processor 600.
- the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 600 and various circuits of memory represented by memory 601.
- the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
- the bus interface provides an interface.
- the processor 600 is responsible for managing the bus architecture and general processing, and the memory 601 can store data used by the processor 600 in performing operations.
- the flow disclosed in the embodiment of the present invention may be applied to the processor 600 or implemented by the processor 600.
- each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 600 or an instruction in the form of software.
- the processor 600 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can be implemented or executed in an embodiment of the invention.
- a general purpose processor can be a microprocessor or any conventional processor or the like.
- the steps of the method disclosed in connection with the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
- the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
- the storage medium is located in the memory 601, and the processor 600 reads the information in the memory 601 and completes the steps of the signal processing flow in conjunction with its hardware.
- a terminal for performing resource allocation according to an embodiment of the present invention includes:
- a first determining module 700 configured to determine a sliding window for the MDBV control and an MDBV corresponding to the logical channel
- the first allocating module 701 is configured to perform resource allocation for the logical channel according to the determined MDBV and the sliding window for MDBV control.
- the first determining module 700 is further configured to:
- the first determining module 700 is specifically configured to:
- the MDBV corresponding to the logical channel is determined according to the mapping relationship between the Flow and the logical channel.
- the first determining module 700 is further configured to:
- the MDBV corresponding to the Flow is used as the MDBV corresponding to the logical channel;
- the Flow and the logical channel adopt the M:1 mapping
- the sum of the MDBVs corresponding to the Flows that can be mapped to the logical channels is used as the MDBV corresponding to the logical channel according to the mapping relationship between the Flow and the logical channel; or
- the Flow and the logical channel adopt the M:1 mapping
- the sum of the MDBVs corresponding to the Flows actually mapped to the logical channel is used as the MDBV corresponding to the logical channel according to the Flow and logical channel mapping relationship; wherein the M is A positive integer.
- the first determining module 700 is specifically configured to:
- the MDBV corresponding to the logical channel is determined at the MAC layer.
- the first determining module 700 is further configured to:
- the mapping relationship between the MAC layer Flow and the logical channel is notified through the SDAP or the RRC layer; or
- the MAC layer is notified by the SDAP layer to actually map to the flow channel and the MDBV corresponding to the QFI; or the SDAP layer is used to notify the MDBV corresponding to the MAC layer logical channel.
- the length of the sliding window for the MDBV control is a PDB corresponding to the logical channel.
- the first determining module 700 is specifically configured to: determine, by using the following manner, a PDB corresponding to the logical channel:
- the first determining module 700 is specifically configured to:
- the sliding window for the MDBV control corresponding to the logical channel is determined to be (N-PDB, N), where N is the scheduling moment.
- the first allocating module 701 is further configured to:
- the logical channels with available PBR tokens and data transmission requirements are sorted in descending order of logical channel priority, and then the first round of resource allocation is performed on each logical channel based on PBR, and the corresponding corresponding to each logical channel is updated.
- the amount of data that can be allocated in the sliding window corresponding to the logical channel needs to be updated to be the MDBV and the current time.
- the logical channel allows the amount of data to be allocated in the second round of resource allocation process to take the logical channel for the amount of data that can be allocated resources and the logical channel in the sliding window of the MDBV control
- Logical channel for resource allocation
- the first allocating module 701 is further configured to:
- the remaining to-be-transmitted data is allocated in descending order of all logical channels having data transmission requirements until resources are exhausted or resources of all logical channels to be transmitted are allocated.
- the first allocating module 701 is further configured to:
- the logical channels with available PBR tokens and data transmission requirements are sorted in descending order of logical channel priority, and then the first round of resource allocation is performed on each logical channel based on PBR, and the PBR order corresponding to each logical channel is updated at the same time.
- the data volume of the resource that can be allocated in the sliding window corresponding to the logical channel is updated to be the MDBV and the sliding window corresponding to the current time.
- the logical channel allows the amount of data to be allocated in the second round of resource allocation process to take the logical channel for the amount of data that can be allocated resources and the logical channel in the sliding window of the MDBV control
- the smaller of the data to be transmitted the resource allocation is performed on the logical channel; if the logical channel that needs to be allocated is a logical channel that does not have an MDBV requirement and includes a GBR service, resource allocation is performed on the logical channel;
- the first allocating module 701 is further configured to:
- the remaining to-be-transmitted data is allocated in descending order of all logical channels having data transmission requirements until resources are exhausted or resources of all logical channels to be transmitted are allocated.
- the amount of data that can be allocated resources in the MDBV sliding window for the MDBV control corresponding to the logical channel is the MDBV corresponding to the logical channel and the sliding for the MDBV control corresponding to the logical channel.
- the difference in the amount of data for the allocated resources in the window is the MDBV corresponding to the logical channel and the sliding for the MDBV control corresponding to the logical channel.
- a network side device for performing resource allocation includes:
- a second determining module 800 configured to determine an MDBV corresponding to the resource allocation object and a sliding window for the MDBV control
- a second allocation module 801 configured to perform resource allocation for the resource allocation object according to the determined MDBV and the sliding window for MDBV control; wherein, if uplink resource allocation is performed, the resource allocation object is logic a channel group; if downlink resource allocation is performed, the resource allocation object is a logical channel.
- the second determining module 800 is further configured to:
- the second determining module 800 is further configured to:
- the notification terminal needs to perform resource allocation based on the MDBV.
- the second determining module 800 is specifically configured to:
- the MDBV corresponding to the logical channel is determined according to the mapping relationship between the flow and the logical channel;
- the MDBV corresponding to the logical channel is determined according to the mapping relationship between the flow and the logical channel, and the sum of the MDBVs corresponding to the logical channels in the same logical channel group is used as the MDBV corresponding to the logical channel group; or
- the uplink resource allocation is performed, the sum of the MDBVs corresponding to the logical channels reported by the terminal is used as the MDBV corresponding to the logical channel group; or if the uplink resource allocation is performed, the MDBV corresponding to the logical channel group reported by the terminal is received.
- the second determining module 800 is specifically configured to:
- the MDBV corresponding to the Flow is used as the MDBV corresponding to the logical channel;
- the Flow and the logical channel adopt the M:1 mapping
- the sum of the MDBVs corresponding to the Flows that can be mapped to the logical channels is used as the MDBV corresponding to the logical channel according to the mapping relationship between the Flow and the logical channel; or
- the Flow and the logical channel adopt the M:1 mapping
- the sum of the MDBVs corresponding to the Flows actually mapped to the logical channel is used as the MDBV corresponding to the logical channel according to the Flow and logical channel mapping relationship; wherein the M is A positive integer.
- the second determining module 800 is specifically configured to:
- the MDBV corresponding to the resource allocation object is determined at the MAC layer.
- the second determining module 800 is further configured to:
- the MAC layer Before the MAC layer determines the MDBV corresponding to the resource allocation object, notifying the mapping relationship between the MAC layer Flow and the logical channel through the SDAP or the RRC layer; or
- the MDBV corresponding to the MAC layer logical channel is notified through the SDAP layer.
- the length of the sliding window for the MDBV control is a PDB corresponding to the logical channel; or if the uplink resource allocation is performed, the length of the sliding window for the MDBV control is a logical channel group. Corresponding PDB.
- the second determining module 800 is further configured to:
- the mapping relationship between the MAC layer logical channel and the logical channel group is notified by the RRC layer.
- the second determining module 800 is specifically configured to: determine, by using the following manner, a PDB corresponding to the logical channel:
- the second determining module 800 is specifically configured to:
- the sliding window for the MDBV control corresponding to the resource allocation object is (N-PDB, N), where N is the scheduling moment, and the PDB is the length of the MDBV sliding window corresponding to the logical channel.
- the second determining module 800 is specifically configured to: determine, by using the following manner, a PDB corresponding to the logical channel group:
- Determining a logical channel that can be mapped to a logical channel group or actually mapped to a logical channel group, and determining, according to a mapping relationship between the flow and the logical channel, a 5QI corresponding to all flows that can be mapped to the logical channel group or actually mapping to the logical channel group The 5QI corresponding to all the flows of the flows; determining the largest PDB as the PDB corresponding to the logical channel group according to the 5QI corresponding to the Flow.
- the second determining module 800 is specifically configured to:
- the sliding window for the MDBV control corresponding to the resource allocation object is (N-PDB, N), where N is the scheduling moment, and the PDB is the length of the MDBV sliding window corresponding to the logical channel group.
- the second allocation module 801 is specifically configured to:
- the difference between the MDBV corresponding to the logical channel and the data amount of the allocated resource in the sliding window for MDBV control is used as the data amount of the logical channel capable of allocating resources; according to the logic
- the minimum value between the amount of data that the channel can allocate resources and the amount of data that the current logical channel actually needs to transmit is resource allocation for the logical channel.
- the second allocation module 801 is specifically configured to:
- the difference between the MDBV corresponding to the logical channel group and the data amount of the allocated resources in the sliding window for the MDBV control corresponding to the logical channel group can be allocated as the logical channel.
- a method for performing resource allocation according to an embodiment of the present invention includes:
- Step 900 the terminal determines that the logical channel is used for the sliding window of the MDBV control and the MDBV corresponding to the logical channel;
- Step 901 The terminal performs resource allocation for the logical channel according to the determined MDBV and the sliding window for MDBV control.
- the terminal before the determining, by the terminal, the logical channel for the sliding window of the MDBV control and the MDBV corresponding to the logical channel, the terminal further includes:
- the terminal determines that the logical channel establishment is complete; and/or,
- the terminal receives the notification that the network side device needs to perform resource allocation based on the MDBV.
- the terminal determines the MDBV corresponding to the logical channel, including:
- the terminal determines the MDBV corresponding to the logical channel according to the mapping relationship between the Flow and the logical channel.
- the terminal determines, according to the mapping relationship between the flow and the logical channel, the MDBV corresponding to the logical channel, including:
- the terminal uses the MDBV corresponding to the Flow as the MDBV corresponding to the logical channel;
- the terminal device uses the sum of the MDBVs corresponding to the flows that can be mapped to the logical channel as the MDBV corresponding to the logical channel according to the mapping relationship between the flow and the logical channel; or
- the terminal device will use the sum of the MDBVs corresponding to the flows actually mapped to the logical channel as the MDBV corresponding to the logical channel according to the flow and logical channel mapping relationship;
- the M is a positive integer.
- the terminal determines the MDBV corresponding to the logical channel, including:
- the terminal determines an MDBV corresponding to the logical channel at the MAC layer.
- the terminal before the determining, by the MAC layer, the MDBV corresponding to the logical channel, the terminal further includes:
- the terminal notifies the mapping relationship between the MAC layer Flow and the logical channel through the SDAP or the RRC layer; or
- the terminal notifies the mapping relationship between the MAC layer Flow and the logical channel and the MDBV corresponding to the QFI through the SDAP or the RRC layer; or
- the terminal notifies the MDBV corresponding to the logical channel of the MAC layer through the SDAP or the RRC layer; or
- the terminal notifies the MAC layer to actually map to the flow of the logical channel through the SDAP layer;
- the terminal notifies the MAC layer to actually map to the flow of the logical channel and the MDBV corresponding to the QFI through the SDAP layer; or
- the terminal device notifies the MDBV corresponding to the MAC layer logical channel through the SDAP layer.
- the length of the sliding window for the MDBV control is a PDB corresponding to the logical channel.
- the terminal determines, according to the following manner, a PDB corresponding to the logical channel:
- the terminal determines, according to the 5QI corresponding to the Flow, the largest PDB as the PDB corresponding to the logical channel.
- the terminal determines a sliding window corresponding to the logical channel, including:
- the terminal determines that the sliding window for the MDBV control corresponding to the logical channel is (N-PDB, N), where N is the scheduling moment.
- the terminal allocates resources for the logical channel according to the determined MDBV and the sliding window for MDBV control, including:
- the terminal sorts logical channels with available PBR tokens and data transmission requirements according to logical channel priority descending order, and then performs first round resource allocation on each logical channel based on PBR, and updates each logic simultaneously.
- the amount of data that can be allocated in the sliding window corresponding to the logical channel needs to be updated to be MDBV and current. The difference between the amount of data of the resource that has been allocated to the logical channel in the sliding window corresponding to the time;
- the terminal After determining that there are remaining resources, the terminal performs a second round of resource allocation in descending order of logical channel priority for all logical channels having data transmission requirements:
- the logical channel allows the amount of data to be allocated in the second round of resource allocation process to take the logical channel for the amount of data that can be allocated resources and the logical channel in the sliding window of the MDBV control
- the terminal after the terminal performs the second round of resource allocation in descending order of logical channel priority for all logical channels that have data transmission requirements, the terminal further includes:
- the remaining to-be-transmitted data is allocated according to the logical channel priority descending order of all data transmission requirements until the resources are exhausted or the resources to be transmitted of all logical channels are allocated resources.
- the terminal allocates resources to the logical channel according to the determined MDBV and the sliding window for MDBV control, and further includes:
- the terminal sorts logical channels with available PBR tokens and data transmission requirements according to logical channel priority descending order, and then performs first round resource allocation on each logical channel based on PBR, and updates each logic simultaneously.
- the amount of data that can be allocated in the sliding window corresponding to the logical channel needs to be updated to be MDBV and current. The difference between the amount of data of the resource that has been allocated to the logical channel in the sliding window corresponding to the time;
- the terminal After determining that there are remaining resources, the terminal performs a second round of resource allocation in descending order of logical channel priority for all logical channels having data transmission requirements:
- the logical channel allows the amount of data to be allocated in the second round of resource allocation process to take the logical channel for the amount of data that can be allocated resources and the logical channel in the sliding window of the MDBV control
- the terminal after the terminal performs the second round of resource allocation in descending order of logical channel priority for all logical channels that have data transmission requirements, the terminal further includes:
- the remaining to-be-transmitted data is allocated according to the logical channel priority descending order of all data transmission requirements until the resources are exhausted or the resources to be transmitted of all logical channels are allocated resources.
- the amount of data that can be allocated resources in the MDBV sliding window for the MDBV control corresponding to the logical channel is the MDBV corresponding to the logical channel and the sliding for the MDBV control corresponding to the logical channel.
- the difference in the amount of data for the allocated resources in the window is the MDBV corresponding to the logical channel and the sliding for the MDBV control corresponding to the logical channel.
- an embodiment of the present invention provides a method for resource allocation, where the method includes:
- Step 1000 The network side device determines an MDBV corresponding to the resource allocation object and a sliding window for the MDBV control.
- Step 1001 The network side device performs resource allocation for the resource allocation object according to the determined MDBV and the sliding window for MDBV control.
- the resource allocation target is a logical channel group; and when downlink resource allocation is performed, the resource allocation object is a logical channel.
- the network side device determines the MDBV corresponding to the resource allocation object and the sliding window for the MDBV control, the network side device further includes:
- the network side device determines that the logical channel establishment is completed; and/or,
- the network side device determines that resource allocation needs to be performed based on the MDBV according to the system load.
- the method further includes:
- the network side device determines that the resource allocation needs to be performed based on the MDBV according to the system load, and notifies the terminal that the resource allocation needs to be performed based on the MDBV.
- the network side device determines the MDBV corresponding to the resource allocation object, including:
- the network side device determines the MDBV corresponding to the logical channel according to the mapping relationship between the flow and the logical channel;
- the network side device determines the MDBV corresponding to the logical channel according to the mapping relationship between the flow and the logical channel, and uses the sum of the MDBVs corresponding to the logical channels in the same logical channel group as the MDBV corresponding to the logical channel group; or ,
- the network side device uses the sum of the MDBVs corresponding to the logical channels reported by the terminal as the MDBV corresponding to the logical channel group; or
- the network side device receives the MDBV corresponding to the logical channel group reported by the terminal.
- the network side device determines, according to the mapping relationship between the flow and the logical channel, the MDBV corresponding to the logical channel, including:
- the network side device uses the MDBV corresponding to the Flow as the MDBV corresponding to the logical channel;
- the network side device uses, according to the mapping relationship between the flow and the logical channel, the sum of the MDBVs corresponding to the flows that can be mapped to the logical channel as the MDBV corresponding to the logical channel; or ,
- the network side device will use the sum of the MDBVs corresponding to the Flows actually mapped to the logical channel as the MDBV corresponding to the logical channel according to the Flow and logical channel mapping relationship; , M is a positive integer.
- the network side device determines the MDBV corresponding to the resource allocation object, including:
- the network side device determines, at the MAC layer, an MDBV corresponding to the resource allocation object.
- the network side device before the determining, by the MAC layer, the MDBV corresponding to the resource allocation object, the network side device further includes:
- the network side device notifies the mapping relationship between the MAC layer Flow and the logical channel through the SDAP or the RRC layer; or
- the network side device notifies the mapping relationship between the MAC layer Flow and the logical channel and the MDBV corresponding to the QFI through the SDAP or the RRC layer; or
- the network side device notifies the MDBV corresponding to the MAC layer logical channel through the SDAP or the RRC layer; or
- the network side device notifies the MAC layer to actually map to the flow of the logical channel through the SDAP layer; or
- the network side device notifies the MAC layer to actually map to the flow of the logical channel and the MDBV corresponding to the QFI through the SDAP layer; or
- the network side device notifies the MDBV corresponding to the MAC layer logical channel through the SDAP layer.
- the method further includes:
- the network side device notifies the mapping relationship between the MAC layer logical channel and the logical channel group through the RRC layer.
- the length of the sliding window used for the MDBV control is a PDB corresponding to the logical channel
- the length of the sliding window for the MDBV control is the PDB corresponding to the logical channel group.
- the network side device determines, according to the following manner, a PDB corresponding to the logical channel:
- the network side device determines, according to a mapping relationship between the flow and the logical channel, a 5QI corresponding to all flows that can be mapped to the logical channel or a 5QI corresponding to all flows that are actually mapped to the logical channel;
- the network side device determines, according to the 5QI corresponding to the Flow, the largest PDB as the PDB corresponding to the logical channel.
- the network side device determines a sliding window corresponding to the resource allocation object, including:
- the network side device determines that the sliding window for the MDBV control corresponding to the resource allocation object is (N-PDB, N), where N is a scheduling moment, and the PDB is an MDBV sliding window corresponding to the logical channel. length.
- the network side device determines, according to the following manner, the PDB corresponding to the logical channel group:
- the network side device determines, according to the 5QI corresponding to the Flow, the largest PDB as the PDB corresponding to the logical channel group.
- the network side device determines a sliding window corresponding to the resource allocation object, including:
- the network side device determines that the sliding window for the MDBV control corresponding to the resource allocation object is (N-PDB, N), where N is the scheduling moment, and the PDB is the MDBV sliding corresponding to the logical channel group. The length of the window.
- the network side device performs resource allocation for the resource allocation object according to the determined MDBV and the sliding window for MDBV control, including:
- the network side device uses the difference between the MDBV corresponding to the logical channel and the data amount of the allocated resource in the sliding window for MDBV control as the data amount that the logical channel can allocate resources. ;
- the network side device performs resource allocation on the logical channel according to a minimum value between a data amount that the logical channel can allocate resources and a current data volume to be transmitted.
- the network side device performs resource allocation for the resource allocation object according to the determined sliding window for the MDBV control and the MDBV, including:
- the network side device uses, as the difference between the MDBV corresponding to the logical channel group and the data amount of the allocated resource in the sliding window for the MDBV control corresponding to the logical channel group.
- the network side device performs resource allocation for the logical channel group according to a minimum value between a data amount that the logical channel group can allocate resources and an actual data volume to be transmitted of the current logical channel group.
- the application can also be implemented in hardware and/or software (including firmware, resident software, microcode, etc.). Still further, the application can take the form of a computer program product on a computer usable or computer readable storage medium having computer usable or computer readable program code embodied in a medium for use by an instruction execution system or Used in conjunction with the instruction execution system.
- a computer usable or computer readable medium can be any medium that can contain, store, communicate, communicate, or transport a program for use by an instruction execution system, apparatus or device, or in conjunction with an instruction execution system, Used by the device or device.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种进行资源分配的方法和装置,用以解决现有技术中5G系统中基于MDBV数据传输的资源分配方法尚没有明确的解决方案的问题。在本发明实施例中,终端和网络侧设备首先确定对应的MDBV和用于MDBV控制的滑动窗口,以及会根据确定的MDBV和用于MDBV控制的滑动窗口进行资源分配。由于本发明实施例中是根据用于MDBV控制的滑动窗口对数据传输的资源进行分配,保证了每个QoS Flow发送的数据量不超过MDBV限制,从而避免在系统负荷较重时,时延敏感业务抢占其他业务的资源。
Description
本申请要求在2018年5月9日提交中国专利局、申请号为201810438209.4、发明名称为“一种进行资源分配的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及无线通信技术领域,特别涉及一种进行资源分配的方法和装置。
对于5G NR(New Radio,新空口)系统,核心网会为每个Flow(流)配置的QoS(Quality of Service,业务质量)Profile(属性)。RAN(Radio Access Network,接入网)基于核心网为每个Flow配置的QoS Profile进行QoS管理。QoS profile中的一个参数是5QI(5G QoS Identifier,第五代移动通信系统业务质量标识)。MDBV(Maximum Data Burst Volume,最大数据突发容量)是5QI包含的一个参数。而5G NR系统主要支持三类业务:第一种是eMBB(enhanced Mobile Broadband,增强型宽带通信)业务,第二种为mMTC(massive Machine Type Communications,大量机器类型通信)业务,第三种是URLLC(Ultra-Reliable and Low Latency Communications,高可靠低时延通信)业务。
其中,URLLC业务对时延要求比较高,因此一般也称为时延敏感GBR(Guaranteed Bit Rate,保证比特率)业务。对于这类业务,核心网基于Flow定义QoS profile时,5QI中一般会包含MDBV参数,其中,MDBV表示PDB(Packet Delay Budget,包延迟预算)时间范围内5G接入网需要处理一个Flow的最大数据量,并且5QI可以是标准化的,也可以是非标准化的。
但是,现有技术中对于5G系统,如何进行基于MDBV数据传输的资源分配方法尚没有明确的解决方案。
发明内容
本发明提供一种进行资源分配的方法和装置,用以解决现有技术中5G系统中基于MDBV数据传输的资源分配方法尚没有明确的解决方案的问题。
第一方面,终端确定逻辑信道用于MDBV控制的滑动窗口和逻辑信道对应的MDBV;之后根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述逻辑信道进行资源分配。
在本发明实施例中,终端首先确定逻辑信道对应的MDBV和用于MDBV控制的滑动窗口,以及会根据确定的MDBV和用于MDBV控制的滑动窗口为逻辑信道进行资源分配。由于本发明实施例中是根据用于MDBV控制的滑动窗口对数据传输的资源进行分配,保证了每个QoS Flow发送的数据量不超过MDBV限制,从而避免在系统负荷较重时,时延敏感业务抢占其他业务的资源。
在一些具体的实施中,所述终端在确定逻辑信道用于MDBV控制的滑动窗口和逻辑信道对应的MDBV之前,需要确定逻辑信道建立完成;和/或接收到网络侧设备发送的需要基于MDBV进行资源分配的通知,以及根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV。
其中,在一些具体点的实施中,终是端在MAC(Medium Access Control,媒体接入控制)层确定逻辑信道对应的MDBV,若Flow和逻辑信道采用1:1映射,所述终端将Flow对应的MDBV作为所述逻辑信道对应的MDBV;或,
若Flow和逻辑信道采用M:1映射,所述终端设备根据Flow和逻辑信道的映射关系,将能够映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;或,
若Flow和逻辑信道采用M:1映射,所述终端设备将根据Flow和逻辑信道映射关系,将实际映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;其中,所述M为正整数。
在本发明实施例中,由于是根据不同的情况确定逻辑信道对应的MDBV, 这样在资源分配的时候保证了资源分配的合理话,避免了时延敏感业务抢占其他业务的资源。
在一些具体的实施中,在终端通过MAC层确定逻辑信道对应的MDBV之前述终端需要通过SDAP(Service Data Adaptation Protocol,业务数据适配层)或RRC(Radio Resource Control,无线资源控制)层通知MAC层Flow和逻辑信道的映射关系;或,
通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系以及QFI(QoS Flow Identifier,业务质量流标识)对应的MDBV;或,
通过SDAP或RRC层通知MAC层逻辑信道对应的MDBV;或,
通过SDAP层通知MAC层实际映射到逻辑信道的Flow;或,
通过SDAP层通知MAC层实际映射到逻辑信道的Flow和QFI对应的MDBV;或,
通过SDAP层通知MAC层逻辑信道对应的MDBV。
在本发明实施例中,由于终端是在MAC层确定的逻辑信道对应的MDBV,但是MAC层并不知道相应的映射关系,因此引入了多种通知MAC层的方式,更加的多样化,以及保证终端可以在MAC层确定逻辑信道对应的MDBV。
在一些具体的实施中,所述用于MDBV控制的滑动窗口的长度为逻辑信道对应的PDB,而所述终端通过下列方式确定逻辑信道对应的PDB:
所述终端根据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道的所有Flow对应的5QI或实际映射到所述逻辑信道的所有Flow对应的5QI,并根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道对应的PDB(Program Database File,数据包时延预算)。以及确定对象对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻。
在本发明实施例中,由于用于MDBV控制的滑动窗口的长度为逻辑信道对应的PDB,以及根据确定的用于MDBV控制的滑动窗口的长度确定逻辑信道对应的用于MDBV控制的滑动窗口,充分保证了后续根据逻辑信道对应的用于MDBV控制的滑动窗口分配资源时,每个QoS Flow发送的数据量不超 过MDBV限制,从而避免在系统负荷较重时,时延敏感业务抢占其他业务的资源。
在一些具体的实施,在进行分配资源时,对于有MDBV要求的逻辑信道:
1:所述终端对有可用PBR牌且有数据传输需求的逻辑信道按,照逻辑信道优先级降序顺序进行排序,然后依次对每个逻辑信道基于PBR进行第一轮资源分配,同时更新每个逻辑信道对应的PBR令牌桶中令牌个数,同时对有MDBV要求的逻辑信道,完成基于PBR的资源分配后,需要更新该逻辑信道对应的滑动窗口内可以分配资源的数据量为MDBV和当前时刻对应的滑动窗口内该逻辑信道已经分配了资源的数据量之差;
2:所述终端在确定还有剩余资源后,对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配:
对于有MDBV要求的逻辑信道,在第二轮资源分配过程中所述逻辑信道允许分配资源的数据量取所述逻辑信道用于MDBV控制的滑动窗口内能够分配资源的数据量和所述逻辑信道当前待传输的数据量中较小值,对所述逻辑信道进行资源分配;若当前需要分配的逻辑信道是没有MDBV要求的逻辑信道,则所述终端根据所述逻辑信道当前待传输的数据量对所述逻辑信道进行资源分配;
3:如果所述终端确定还有剩余资源,按对所有有数据传输需求的逻辑信道优先级降序顺序对剩余待传输数据进行资源分配,直到资源耗尽或者所有逻辑信道的待传输数据都分配了资源。
以及在进行分配资源时,对于没有MDBV要求的逻辑信道:
1:所述终端对有可用PBR令牌且有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行排序,然后依次对每个逻辑信道基于PBR进行第一轮资源分配,同时更新每个逻辑信道对应的PBR令牌桶中令牌个数,同时对有MDBV要求的逻辑信道,完成基于PBR的资源分配后,需要更新该逻辑信道对应的滑动窗口内可以分配资源的数据量为MDBV和当前时刻对应的滑动窗口内该逻辑信道已经分配了资源的数据量之差;
2:所述终端在确定还有剩余资源后,对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配:
对于有MDBV要求的逻辑信道,在第二轮资源分配过程中所述逻辑信道允许分配资源的数据量取所述逻辑信道用于MDBV控制的滑动窗口内能够分配资源的数据量和所述逻辑信道当前待传输的数据量中较小值,对所述逻辑信道进行资源分配;若当前需要分配的逻辑信道是没有MDBV要求,且包含GBR(Guarantee Bit Rate,保证比特速率)业务的逻辑信道,则所述终端对所述逻辑信道进行资源分配;
3:如果所述终端确定还有剩余资源,按对所有有数据传输需求的逻辑信道优先级降序顺序对剩余待传输数据进行资源分配,直到资源耗尽或者所有逻辑信道的待传输数据都分配了资源。
其中,所述逻辑信道对应的所述用于MDBV控制的滑动窗口内能够分配资源的数据量为所述逻辑信道对应的MDBV与所述逻辑信道对应的所述用于MDBV控制的滑动窗口内已分配的资源的数据量的差值。
在本发明实施例中,以及在进行分配资源时,针对对于没有MDBV要求的逻辑信道和有MDBV要求的逻辑信道采用不同的方式进行资源分配,进一步保证每个QoS Flow发送的数据量不超过MDBV限制,从而避免在系统负荷较重时,时延敏感业务抢占其他业务的资源。
第二方面,网络侧设备确定资源分配对象对应的MDBV和用于MDBV控制的滑动窗口,之后根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述资源分配对象进行资源分配;其中,若进行上行资源分配,则所述资源分配对象为逻辑信道组;若进行下行资源分配,则所述资源分配对象为逻辑信道。
在一些具体的实施中,所述网络侧设备确定资源分配对象对应的MDBV和用于MDBV控制的滑动窗口之前,需要确定逻辑信道建立完成;和/或根据系统负荷确定需要基于MDBV进行资源分配。
其中,若进行上行资源分配,所述网络侧设备根据系统负荷确定需要基 于MDBV进行资源分配之后,通知终端需要基于MDBV进行资源分配。
在一些具体的实施中,若进行下行资源分配,所述网络侧设备根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV;
或若进行上行资源分配,所述网络侧设备根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV,并将同一逻辑信道组内的逻辑信道对应的MDBV之和作为逻辑信道组对应的MDBV;或,
若进行上行资源分配,所述网络侧设备将终端上报的逻辑信道对应的MDBV之和作为逻辑信道组对应的MDBV;或若进行上行资源分配,所述网络侧设备接收终端上报的逻辑信道组对应的MDBV。
其中,若Flow和逻辑信道采用1:1映射,所述网络侧设备将Flow对应的MDBV作为所述逻辑信道对应的MDBV;或,
若Flow和逻辑信道采用M:1映射,所述网络侧设备根据Flow和逻辑信道的映射关系,将能够映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;或,
若Flow和逻辑信道采用M:1映射,所述网络侧设备将根据Flow和逻辑信道映射关系,将实际映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;其中,所述M为正整数。并且在MAC层确定资源分配对象对应的MDBV。
但是,所述网络侧设备在MAC层确定资源分配对象对应的MDBV之前,需要通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系;或,
所述网络侧设备通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系以及QFI对应的MDBV;或,
所述网络侧设备通过SDAP或RRC层通知MAC层逻辑信道对应的MDBV;或,
所述网络侧设备通过SDAP层通知MAC层实际映射到逻辑信道的Flow;或所述网络侧设备通过SDAP层通知MAC层实际映射到逻辑信道的Flow和QFI对应的MDBV;或,
所述网络侧设备通过SDAP层通知MAC层逻辑信道对应的MDBV。
在一些具体的实施中,若进行下行资源分配,所述用于MDBV控制的滑动窗口的长度为逻辑信道对应的PDB;
或若进行上行资源分配,所述用于MDBV控制的滑动窗口的长度为逻辑信道组对应的PDB。
其中,所述网络侧设备可以通过下列方式确定逻辑信道对应的PDB:
所述网络侧设备根据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道的所有Flow对应的5QI或实际映射到所述逻辑信道的所有Flow对应的5QI;最后根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道对应的PDB。
以及在所述网络侧设备确定资源分配对象对应的用于MDBV控制的滑动窗口时,若进行下行资源分配,所述网络侧设备确定资源分配对象对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻,并通过下列方式确定逻辑信道组对应的PDB:
网络侧设备确定能够映射到逻辑信道组或者实际映射到逻辑信道组的逻辑信道,根据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道组的所有Flow对应的5QI或实际映射到所述逻辑信道组的所有Flow对应的5QI,最后根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道组对应的PDB。
其中,所述网络侧设备确定资源分配对象对应的滑动窗口,包括:
若进行上行资源分配,所述网络侧设备确定资源分配对象对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻。
在一些具体的实施中,若进行下行资源分配,所述网络侧设备将所述逻辑信道对应的MDBV与所述用于MDBV控制的滑动窗口内已分配的资源的数据量之差作为所述逻辑信道能够分配资源的数据量;之后根据所述逻辑信道能够分配资源的数据量和当前逻辑信道实际待传输数据量两者之间的最小值为所述逻辑信道进行资源分配。
若进行上行资源分配,所述网络侧设备将所述逻辑信道组对应的MDBV与所述逻辑信道组对应的所述用于MDBV控制的滑动窗口内已分配的资源的数据量的差值作为所述逻辑信道能够分配资源的数据量,并根据所述逻辑信道组能够分配资源的数据量和当前逻辑信道组实际待传输数据量两者之间的最小值为所述逻辑信道组进行资源分配。
第三方面,一种进行资源分配的的终端,该终端包括处理器、存储器和收发机;
其中,处理器,用于读取存储器中的程序并执行:
确定逻辑信道用于MDBV控制的滑动窗口和逻辑信道对应的MDBV;根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述逻辑信道进行资源分配。
第四方面,一种进行资源分配的的网络侧设备,该网络侧设备包括处理器、存储器和收发机;
其中,处理器,用于读取存储器中的程序并执行:
确定资源分配对象对应的MDBV和用于MDBV控制的滑动窗口;根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述资源分配对象进行资源分配;其中,若进行上行资源分配,则所述资源分配对象为逻辑信道组;若进行下行资源分配,则所述资源分配对象为逻辑信道。
第五方面,一种进行资源分配的的终端,,该终端包括;
第一确定模块,用于确定逻辑信道用于MDBV控制的滑动窗口和逻辑信道对应的MDBV;
第一分配模块,用于根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述逻辑信道进行资源分配。
第六方面,一种进行资源分配的的网络侧设备,该网络侧设备包括;
第二确定模块,用于确定资源分配对象对应的MDBV和用于MDBV控制的滑动窗口;
第二分配模块,用于根据确定的所述MDBV和所述用于MDBV控制的 滑动窗口为所述资源分配对象进行资源分配;其中,若进行上行资源分配,则所述资源分配对象为逻辑信道组;若进行下行资源分配,则所述资源分配对象为逻辑信道。
另外,第二方面至第六方面中任一一种实现方式所带来的技术效果可参见第一方面中实现方式所带来的技术效果,此处不再赘述。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一种进行资源分配的系统示意图;
图2为本发明实施例下行资源进行资源分配的完整方法流程示意图;
图3为本发明实施例上行资源进行资源分配终端侧的完整方法流程示意图;
图4为本发明实施例上行资源进行资源分配网络设备侧的完整方法流程示意图;
图5为本发明实施例一种进行资源分配的的终端结构示意图;
图6为本发明实施例一种进行资源分配的的网络侧设备结构示意图;
图7为本发明实施例另一种进行资源分配的的终端结构示意图;
图8为本发明实施例另一种进行资源分配的的网络侧设备结构示意图;
图9为本发明实施例一种进行资源分配的方法流程示意图;
图10为本发明实施例另一种进行资源分配的方法流程示意图。
本发明实施例应用于5G NR系统中MDBV数据传输的应用场景中,对于5G NR系统,核心网会为每个Flow配置的QoS Profile。RAN基于核心网为每个Flow配置的QoS Profile进行QoS管理。QoS profile中的一个参数是5QI, 而MDBV是5QI包含的一个参数。在本发明实施例中,终端首先确定对象对应的MDBV和用于MDBV控制的滑动窗口,以及会根据确定的MDBV和用于MDBV控制的滑动窗口为对象进行资源分配。由于本发明实施例中是根据当前到的滑动窗口对数据传输的资源进行分配,保证了每个QoS Flow发送的数据量不超过MDBV限制,从而避免在系统负荷较重时,时延敏感业务抢占其他业务的资源。
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供一种进行资源分配的系统,该系统包括:终端100和网络侧设备101。
终端100,主要用于确定逻辑信道用于MDBV控制的滑动窗口和逻辑信道对应的MDBV;根据确定的MDBV和用于MDBV控制的滑动窗口为逻辑信道进行资源分配。
网络侧设备101,主要用于确定资源分配对象对应的MDBV和用于MDBV控制的滑动窗口;根据确定的MDBV和用于MDBV控制的滑动窗口为资源分配对象进行资源分配;其中,若进行上行资源分配,则资源分配对象为逻辑信道组;若进行下行资源分配,则资源分配对象为逻辑信道。
在本发明实施例中,终端和网络侧设备首先确定对应的MDBV和用于MDBV控制的滑动窗口,以及会根据确定的MDBV和用于MDBV控制的滑动窗口进行资源分配。由于本发明实施例中是根据用于MDBV控制的滑动窗口对数据传输的资源进行分配,保证了每个QoS Flow发送的数据量不超过MDBV限制,从而避免在系统负荷较重时,时延敏感业务抢占其他业务的资源。
下面以上、下行资源为例对进行资源分配的系统进行描述。
方式一、对下行资源进行资源分配:
当对下行资源进行资源分配时,网络侧设备在确定逻辑信道建立完成和/或网络侧设备根据系统负荷确定需要基于MDBV进行资源分配之后,网络侧设备确定逻辑信道对应的MDBV和用于MDBV控制的滑动窗口。
其中,网络侧设备是在MAC层确定逻辑信道对应的MDBV时,由于Flow和逻辑信道的映射关系会存在几种不同的情况,因此网络侧设备确定的逻辑信道对应的MDBV也会不同,下面针对不同的情况进行说明:
第一种情况:若Flow和逻辑信道采用1:1映射,此时网络侧设备会将Flow对应的MDBV作为逻辑信道对应的MDBV;
比如,Flow和逻辑信道采用的1:1比例映射,此时只有1个逻辑信道只会映射1个Flow,此时这个Flow的MDBV则作为逻辑信道对应的MDBV。
第二种情况:若Flow和逻辑信道采用M:1比例映射,网络侧设备将根据Flow和逻辑信道的映射关系得到映射到逻辑信道的Flow对应的MDBV之和作为逻辑信道对应的MDBV,其中,M为正整数。
比如,Flow和逻辑信道采用6:1的比例映射,此时会有6个Flow映射到同一个逻辑信道,网络侧设备则将6个Flow对应的MDBV相加,将MDBV之和作为逻辑信道对应的MDBV。
第三种情况:若Flow和逻辑信道采用M:1比例映射,此时网络侧设备则将Flow和逻辑信道映射关系中实际映射到逻辑信道的Flow对应的MDBV之和作为逻辑信道对应的MDBV,其中,M为正整数。
比如,Flow和逻辑信道采用6:1的比例映射,按照实际的映射规则此时应该会有M个Flow映射到同一个逻辑信道,但实际上只有3个Flow映射到同一个逻辑信道,此时网络侧设备则将3个Flow对应的MDBV相加,将MDBV之和作为逻辑信道对应的MDBV。
由于网络侧设备是在MAC层根确定逻辑信道对应的MDBV,但是MAC层并不知道Flow和逻辑信道的映射关系以及逻辑信道对应的MDBV,因此需要提前通知MAC层,网络侧设备才可以在MAC层确定逻辑信道对应的MDBV,具体可以采用下面的方式通知MAC层。
(1)、网络侧设备通过SDAP或RRC层通知MAC层Flow和逻辑信道映射关系;
网络侧设备通知MAC层Flow和逻辑信道映射关系时Flow以QFI表示,MAC层根据自身存储的QFI和5QI标识的对应关系,以及5QI和MDBV的对应关系确定每个Flow对应的MDBV。最后,将映射到逻辑信道的Flow对应的MDBV相加,得到逻辑信道对应的MDBV。
(2)、网络侧设备通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系以及QFI对应的MDBV。
在MAC层已知Flow和逻辑信道的映射关系和QFI对应的MDBV后,网络侧设备根据Flow和逻辑信道的映射关系可知映射到逻辑信道的Flow,再根据QFI对应的MDBV找到每个Flow对应的MDBV,最后将映射到逻辑信道的Flow对应的MDBV相加,得到逻辑信道对应的MDBV。
(3)、所述网络侧设备通过SDAP或RRC层通知MAC层逻辑信道对应的MDBV。
这种情况下,网络侧设备根据SDAP或RRC层通知就可以直接确定出逻辑信道对应的MDBV。
(4)、所述网络侧设备通过SDAP层通知MAC层实际映射到逻辑信道的Flow。
网络侧设备通过SDAP通知MAC层实际映射到该逻辑信道的Flow,Flow以QFI表示,MAC层根据自身存储的QFI和5QI标识的对应关系,以及5QI和MDBV的对应关系确定每个Flow对应的MDBV。最后,将映射到逻辑信道的Flow对应的MDBV相加,得到逻辑信道对应的MDBV。
(5)、所述网络侧设备通过SDAP层通知MAC层实际映射到逻辑信道的Flow和QFI对应的MDBV。
在MAC层已知实际映射到逻辑信道的Flow和QFI对应的MDBV后,网络侧设备根据QFI对应的MDBV找到每个际映射到逻辑信道的Flow对应的MDBV,最后将实际映射到逻辑信道的Flow对应的MDBV相加,得到逻 辑信道对应的MDBV。
(6)、所述网络侧设备通过SDAP层通知MAC层逻辑信道对应的MDBV。
网络侧设备根据SDAP层通知就可以直接确定出逻辑信道对应的MDBV。
这里需要说明的是:在通知MAC层时可以采用上述方式中的一种方式,也可以同时使用多种方式。
相应的,当网络侧设备确定出将逻辑信道对应的MDBV以后,网络侧设备将逻辑信道对应的PDB作为逻辑信道对应的用于MDBV控制的滑动窗口的长度,并且用于MDBV控制的滑动窗口为(N-PDB,N],其中这里的N为调度时刻,PDB为逻辑信道对应的MDBV滑动窗口长度。其中,PDB确定方式如下:
网络侧设备根据Flow和逻辑信道的映射关系确定能够映射的逻辑信道的所有Flow对应的5QI或实际映射到逻辑信道的所有Flow对应的5QI;最后从所述Flow对应的5QI确定出最大的PDB作为逻辑信道对应的PDB。
比如,网络侧设备首先确定能够映射到逻辑信道组或者实际映射到逻辑信道组的逻辑信道为逻辑信道1、2、3、4,之后网络侧设备确定出逻辑信道1、2、3、4对应的Flow对应的5QI,再从确定出的Flow对应的5QI中根据3GPP的标准化5QI表确定出最大的PDB作为所述逻辑信道组对应的PDB。
当网络侧设备确定出逻辑信道对应的MDBV和用于MDBV控制的滑动窗口之后,则根据确定的MDBV和用于MDBV控制的滑动窗口为逻辑信道进行资源分配。
在具体的实施中,一种可选的实施方式是:网络侧设备将逻辑信道对应的MDBV与用于MDBV控制的滑动窗口内已分配的资源的数据量之差作为逻辑信道能够分配资源的数据量。
相应的,在得到作为逻辑信道能够分配资源的数据量之后,网络侧设备再根据所述逻辑信道能够分配资源的数据量和当前逻辑信道实际待传输数据量两者之间的最小值为所述逻辑信道进行资源分配。
比如,若逻辑信道能够分配资源的数据量小于逻辑信道需要的数据量, 则网络侧设备优先为满足逻辑信道对应的MDBV要求的数据分配资源,若还存在剩余资源,网络侧设备再根据逻辑信道能够分配资源的数据量为不满足逻辑信道组对应的MDBV要求的数据分配资源。
如图2所示,本发明实施例提供对下行资源进行资源分配的完整方法流程示意图。
步骤200、网络侧设备确定逻辑信道建立完成和/或网络侧设备根据系统负荷确定需要基于MDBV进行资源分配;
步骤201、网络侧设备是通过MAC层确定逻辑信道对应的MDBV;
步骤202、网络侧设备将逻辑信道对应的PDB作为逻辑信道对应的用于MDBV控制的滑动窗口的长度,确定用于MDBV控制的滑动窗口为(N-PDB,N];
步骤203、网络侧设备将逻辑信道对应的MDBV与用于MDBV控制的滑动窗口内已分配的资源的数据量之差作为逻辑信道能够分配资源的数据量;
步骤204、网络侧设备再根据逻辑信道能够分配资源的数据量为逻辑信道分配资源。
方式二、对上行资源进行资源分配:
当对上行资源进行资源分配时,网络侧设备需要为不同终端分配上行资源,当网络侧设备确定逻辑信道建立完成和/或网络侧设备根据系统负荷确定需要基于MDBV进行资源分配之后,确定逻辑信道组对应的MDBV和用于MDBV控制的滑动窗口。
其中,网络侧设备可以采用下列集中方式确定逻辑信道组对应的MDBV:
1、网络侧设备根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV,并将同一逻辑信道组内的逻辑信道对应的MDBV之和作为逻辑信道组对应的MDBV。
比如,网络侧设备根据Flow和逻辑信道的映射关系确定出了逻辑信道1、2、3对应的MDBV,而逻辑信道1、2处于同一逻辑信道组1内,此时网络侧设备将逻辑信道1、2对应的MDBV之和作为该逻辑信道组1对应的MDBV。
但是由于Flow和逻辑信道的映射关系会存在几种不同的情况,因此网络侧设备确定的逻辑信道对应的MDBV也会不同,下面针对不同的情况进行说明:
第一种情况:若Flow和逻辑信道采用1:1比例映射,此时网络侧设备会将Flow对应的MDBV作为逻辑信道对应的MDBV;
比如,Flow和逻辑信道采用的1:1比例映射,此时只有1个逻辑信道只会映射1个Flow,此时这个Flow的MDBV则作为逻辑信道对应的MDBV。
第二种情况:若Flow和逻辑信道采用M:1比例映射,网络侧设备根据Flow和逻辑信道的映射关系,将能够映射到逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;其中,M为正整数。
比如,Flow和逻辑信道采用6:1的比例映射,此时会有6个Flow映射到同一个逻辑信道,网络侧设备则将6个Flow对应的MDBV相加,将MDBV之和作为逻辑信道对应的MDBV。
第三种情况:若Flow和逻辑信道采用M:1比例映射,此时网络侧设备将将根据Flow和逻辑信道映射关系,将实际映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV。其中,M为正整数。
比如,Flow和逻辑信道采用6:1的比例映射,按照实际的映射规则此时应该会有6个Flow映射到同一个逻辑信道,但实际上只有3个Flow映射到同一个逻辑信道,此时网络侧设备则将3个Flow对应的MDBV相加,将MDBV之和作为逻辑信道对应的MDBV。
2、网络侧设备接收终端上报的逻辑信道对应的MDBV之和,将上报的逻辑信道对应的MDBV之和作为逻辑信道组对应的MDBV。
比如,网络侧设备会接收端上报的逻辑信道1、2、3对应的MDBV之和,逻辑信道1、2、3处于同一逻辑信道组1内,此时网络侧设备将上报的逻辑信道1、2、3对应的MDBV之和作为逻辑信道组1对应的MDBV。
3、网络侧设备接收终端上报的逻辑信道组对应的MDBV,之后将上报的逻辑信道组对应的MDBV上作为逻辑信道组对应的MDBV。
比如,终端会将处于同一逻辑信道组1内的逻辑信道1、2、3对应的MDBV之和上报至网络侧设备,此时网络侧设备将上报的处于同一逻辑信道组1对应的MDBV之和作为逻辑信道组1对应的MDBV。
由于网络侧设备是在MAC层确定逻辑信道组对应的MDBV,MAC层并不知道Flow和逻辑信道的映射关系以及逻辑信道对应的MDBV,因此需要提前通知MAC层。
此外,由于进行上行分配资源时,MAC层是不知道逻辑信道和逻辑信道组的映射关系,因此RRC层还需要通知MAC层逻辑信道和逻辑信道组的映射关系,这样网络侧设备才可以在MAC层确定逻辑信道组对应的MDBV,具体可以采用下面的方式通知MAC层。
(1)、网络侧设备通过SDAP或RRC层通知MAC层Flow和逻辑信道映射关系。
网络侧设备通知MAC层Flow和逻辑信道映射关系时Flow以QFI表示,MAC层根据自身存储的QFI和5QI标识的对应关系,以及5QI和MDBV的对应关系确定每个Flow对应的MDBV。最后,将映射到逻辑信道的Flow对应的MDBV相加,得到逻辑信道对应的MDBV。
然后MAC层再根据逻辑信道和逻辑信道组的映射关系,确定映射到该逻辑信道组的所有逻辑信道的MDBV之和作为逻辑信道组的MDBV。
(2)、网络侧设备通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系以及QFI对应的MDBV。
在MAC层已知Flow和逻辑信道的映射关系和QFI对应的MDBV后,网络侧设备根据Flow和逻辑信道的映射关系可知映射到逻辑信道的Flow,再根据QFI对应的MDBV找到每个Flow对应的MDBV,最后将映射到逻辑信道的Flow对应的MDBV相加,得到逻辑信道对应的MDBV。
然后MAC层再根据逻辑信道和逻辑信道组的映射关系,确定映射到该逻辑信道组的所有逻辑信道的MDBV之和作为逻辑信道组的MDBV。
(3)、所述网络侧设备通过SDAP或RRC层通知MAC层逻辑信道对应 的MDBV。
这种情况下,网络侧设备根据SDAP或RRC层通知就可以直接确定出逻辑信道对应的MDBV。
然后MAC层再根据逻辑信道和逻辑信道组的映射关系,确定映射到该逻辑信道组的所有逻辑信道的MDBV之和作为逻辑信道组的MDBV。
(4)、所述网络侧设备通过SDAP层通知MAC层实际映射到逻辑信道的Flow。
终端SDAP和网络侧SDAP之间需要交互信息,让网络侧设备获知终端侧设备网络侧设备通过SDAP层实际映射到该逻辑信道的Flow信息。
然后网络侧SDAP通知MAC层实际映射到该逻辑信道的Flow,Flow以QFI表示,MAC层根据自身存储的QFI和5QI标识的对应关系,以及5QI和MDBV的对应关系确定每个Flow对应的MDBV。最后,将映射到逻辑信道的Flow对应的MDBV相加,得到逻辑信道对应的MDBV。
(5)、所述网络侧设备通过SDAP层通知MAC层实际映射到逻辑信道的Flow和QFI对应的MDBV。
终端SDAP和网络侧SDAP之间需要交互信息,让网络侧设备获知终端侧设备网络侧设备通过SDAP层实际映射到该逻辑信道的Flow信息。
然后网络侧SDAP通知MAC层实际映射到该逻辑信道的Flow,在MAC层已知实际映射到逻辑信道的Flow和QFI对应的MDBV后,网络侧设备根据QFI对应的MDBV找到每个际映射到逻辑信道的Flow对应的MDBV,最后将实际映射到逻辑信道的Flow对应的MDBV相加,得到逻辑信道对应的MDBV。
(6)、所述网络侧设备通过SDAP层通知MAC层逻辑信道对应的MDBV。
终端SDAP和网络侧SDAP之间需要交互信息,让网络侧设备获知终端侧设备网络侧设备通过SDAP层实际映射到该逻辑信道的Flow信息。
然后网络侧SDAP层根据实际Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV,MAC层根据SDAP层通知就可以直接确定出逻辑信道对应的 MDBV。
这里需要说明的是:上面通知MAC层的方式可以单独使用其中的一种方式,也可以同时使用多种方式。
相应的,当网络侧设备确定出将逻辑信道组对应的MDBV之后,网络侧设备将逻辑信道组对应的PDB作为用于MDBV控制的滑动窗口的长度,并且确定逻辑信道组对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻,而PDB确定方式如下:
网络侧设备根据Flow和逻辑信道的映射关系确定能够映射到逻辑信道组的所有Flow对应的5QI或实际映射到所述逻辑信道组的所有Flow对应的5QI,最后根据Flow对应的5QI确定最大的PDB作为逻辑信道组对应的PDB。
比如,网络侧设备首先确定能够映射到逻辑信道组或者实际映射到逻辑信道组的逻辑信道为逻辑信道1、2、3、4,之后网络侧设备确定出逻辑信道1、2、3、4对应的Flow对应的5QI,再从确定出的Flow对应的5QI确定出最大的PDB作为所述逻辑信道组对应的PDB。
当网络侧设备确定出逻辑信道组对应的MDBV和用于MDBV控制的滑动窗口之后,根据确定的MDBV和用于MDBV控制的滑动窗口为逻辑信道组进行资源分配。
在具体的实施中,一种可选的实施方式是:网络侧设备将逻辑信道组对应的MDBV与用于MDBV控制的滑动窗口内已分配的资源的数据量之差作为逻辑信道组能够分配资源的数据量。
比如,逻辑信道对应的MDBV为200比特,用于MDBV控制的滑动窗口内已分配的资源的数据量为100比特,此时将二者做差(200-100=100比特),将该差值(100比特)作为逻辑信道能够分配资源的数据量。
当得到逻辑信道组能够分配资源的数据量之后,所述网络侧设备根据所述逻辑信道组能够分配资源的数据量和当前逻辑信道组实际待传输数据量两者之间的最小值为所述逻辑信道组进行资源分配。
比如,若逻辑信道组能够分配资源的数据量小于逻辑信道组实际待传输 数据量,则网络侧设备优先为满足逻辑信道组对应的MDBV要求的数据分配资源,若还存在剩余资源,网络侧设备再根据逻辑信道组实际待传输但是不满足逻辑信道组对应的MDBV要求的数据分配资源。
相应的,当网络侧设备为不同终端分配的资源之后,将分配的资源通知至终端,终端需要基于网络侧分配的资源对逻辑信道进行资源分配,因此当终端确定逻辑信道建立完成和/或接收到网络侧设备发送的需要基于MDBV进行资源分配的通知之后,终端确定用于MDBV控制的滑动窗口和逻辑信道对应的MDBV。
其中,终端在MAC层确定逻辑信道对应的MDBV时,由于Flow和逻辑信道的映射关系会存在几种不同的情况,因此终端确定的逻辑信道对应的MDBV也会不同,下面针对不同的情况进行说明:
第一种情况:若Flow和逻辑信道采用1:1比例映射,此时终端会将Flow对应的MDBV作为逻辑信道对应的MDBV;
比如,Flow和逻辑信道采用1:1的比例映射,此时终端会将Flow的MDBV作为逻辑信道对应的MDBV。
第二种情况:若Flow和逻辑信道采用M:1比例映射,终端根据Flow和逻辑信道的映射关系,将能够映射到逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;其中,M为正整数。
比如,Flow和逻辑信道采用6:1的比例映射,此时会有6个Flow映射到同一个逻辑信道,终端则将6个Flow对应的MDBV相加,将MDBV之和作为逻辑信道对应的MDBV。
第三种情况:若Flow和逻辑信道采用M:1比例映射,此时终端根据Flow和逻辑信道映射关系,将实际映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV,其中,M为正整数。
比如,Flow和逻辑信道采用6:1的比例映射,按照实际的映射规则此时应该会有6个Flow映射到同一个逻辑信道,但实际上只有3个Flow映射到同一个逻辑信道,此时中的则将3个Flow对应的MDBV相加,将MDBV之 和作为逻辑信道对应的MDBV。
由于终端是在MAC层确定逻辑信道对应的MDBV,但是MAC层并不知道逻辑信道对应的MDBV以及Flow和逻辑信道的映射关系,因此需要引入层间交互机制通知MAC层,终端才可以在MAC层确定逻辑信道对应的MDBV,具体可以采用下面的方式通知MAC层。
(1)、终端通过业务数据适配层SDAP或无线资源控制RRC层通知媒体接入控制MAC层Flow和逻辑信道的映射关系。
终端SDAP或者RRC通知MAC层Flow和逻辑信道映射关系时Flow以QFI表示,MAC层根据自身存储的QFI和5QI标识的对应关系,以及5QI和MDBV的对应关系确定每个Flow对应的MDBV。最后,将映射到逻辑信道的Flow对应的MDBV相加,得到逻辑信道对应的MDBV。
(2)、终端通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系以及QFI对应的MDBV。
在MAC层已知Flow和逻辑信道的映射关系和QFI对应的MDBV后,终端根据Flow和逻辑信道的映射关系可知映射到逻辑信道的Flow,再根据QFI对应的MDBV找到每个Flow对应的MDBV,最后将映射到逻辑信道的Flow对应的MDBV相加,得到逻辑信道对应的MDBV。
(3)、终端通过SDAP或RRC层通知MAC层逻辑信道对应的MDBV。
MAC直接根据该通知就可以得到逻辑信道对应的MDBV。该MDBV为能够映射到该逻辑信道的Flow对应的MDBV之和。
(4)、终端通过SDAP层通知MAC层实际映射到逻辑信道的Flow。
在MAC层已知实际映射到逻辑信道的Flow和QFI对应的MDBV后,根据QFI对应的MDBV找到每个际映射到逻辑信道的Flow对应的MDBV,最后将实际映射到逻辑信道的Flow对应的MDBV相加,得到逻辑信道对应的MDBV。
(5)、所述终端通过SDAP层通知MAC层实际映射到逻辑信道的Flow和QFI对应的MDBV。
在MAC层已知实际映射到逻辑信道的Flow和QFI对应的MDBV后,根据QFI对应的MDBV找到每个际映射到逻辑信道的Flow对应的MDBV,最后将实际映射到逻辑信道的Flow对应的MDBV相加,得到逻辑信道对应的MDBV。
(6)、终端备通过SDAP层通知MAC层逻辑信道对应的MDBV。
MAC层直接根据该通知就可以得到逻辑信道对应的MDBV。该MDBV为实际映射到该逻辑信道的Flow对应的MDBV之和。
这里需要说明的是:上面两种通知MAC层的方式可以单独使用其中的一种方式,也可以同时使用两种方式。
相应的,当终端确定出将逻辑信道对应的MDBV以后,终端将逻辑信道对应的PDB作为逻辑信道对应的MDBV滑动窗口的长度,并确定用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻,而PDB确定方式如下:
终端根据Flow和逻辑信道的映射关系确定能够映射到逻辑信道组的所有Flow对应的5QI或实际映射到所述逻辑信道组的所有Flow对应的5QI,最后根据Flow对应的5QI确定最大的PDB作为逻辑信道组对应的PDB。
比如,终端首先确定能够映射的逻辑信道或者实际映射的逻辑信道为逻辑信道1、2、3、4,之后字段确定出逻辑信道1、2、3、4对应的Flow对应的5QI,再从确定出的Flow对应的5QI确定出最大的PDB作为所述逻辑信道对应的PDB。
当终端确定出逻辑信道对应的MDBV和用于MDBV控制的滑动窗口之后,终端根据确定的MDBV和用于MDBV控制的滑动窗口为逻辑信道进行资源分配,一种可选的实施方式为:
1:终端首先对有可用PBR令牌且有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行排序,然后终端依次对每个逻辑信道基于PBR进行第一轮资源分配,同时更新每个逻辑信道对应的PBR令牌桶中令牌个数,同时对有MDBV要求的逻辑信道完成基于PBR的资源分配后,更新逻辑信道对应的滑动窗口内可以分配资源的数据量。
其中,这里的逻辑信道对应的用于MDBV控制的滑动窗口内可以分配资源的数据量为逻辑信道对应的MDBV与所述逻辑信道对应的所述用于MDBV控制的滑动窗口内已分配的资源的数据量的差值。
比如,逻辑信道对应的MDBV内已分配的资源的数据量为200比特,逻辑信道对应的用于MDBV控制的滑动窗口内已分配的资源的数据量为100比特,此时将二者做差(200-100=100比特),将为差(100比特)作为逻辑信道对应的用于MDBV控制的滑动窗口内能够分配资源的数据量。
2:当终端确定有剩余能够分配的资源后,对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配,具体为:
对于有MDBV要求的逻辑信道,在第二轮资源分配过程中逻辑信道允许分配资源的数据量取逻辑信道用于MDBV控制的滑动窗口内能够分配资源的数据量和逻辑信道当前待传输的数据量中较小值,对所述逻辑信道进行资源分配;
比如,终端确定有MDBV要求的逻辑信道,而此时逻辑信道对应的用于MDBV控制的滑动窗口内能够分配的资源的数据量为40比特,逻辑信道用于MDBV控制的滑动窗口内能够分配的资源的数据量为60比特,此时终端取二者之间的较小值(40比特)对逻辑信道进行资源分配。
若终端当前需要分配的逻辑信道是没有MDBV要求的逻辑信道,则终端存在两种方式分配资源。
一种方式为:终端根据逻辑信道当前待传输的数据量对逻辑信道进行资源分配:
比如,逻辑信道当前待传输的数据量为600比特,此时终端就根据这600比特进行资源分配。
另一种方式为:若前需要分配的逻辑信道是没有MDBV要求,且包含GBR业务的逻辑信道,则终端根据逻辑信道当前待传输的数据量对逻辑信道进行资源分配。
比如,逻辑信道当前待传输的数据量为600比特,并且当前需要分配的 逻辑信道是包含GBR业务的逻辑信道,此时终端就根据这600比特仅对逻辑信道进行资源分配。
3:在进行第二轮分配之后,如果终端确定还有剩余资源,按对所有有数据传输需求的逻辑信道优先级降序顺序对剩余待传输数据进行资源分配,直到资源耗尽或者所有逻辑信道的待传输数据都分配了资源。
如图3所示,本发明实施例提供对上行资源进行资源分配终端侧的完整方法流程示意图。
步骤300、终端需要确定逻辑信道建立完成和/或接收到网络侧设备发送的需要基于MDBV进行资源分配的通知;
步骤301、终端通过MAC层确定逻辑信道对应的MDBV;
步骤302、终端将逻辑信道对应的PDB作为逻辑信道对应的MDBV滑动窗口的长度,并确定用于MDBV控制的滑动窗口为(N-PDB,N];
步骤303、终端对有可用PBR令牌且有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行排序;
步骤304、终端依次对每个逻辑信道基于PBR进行第一轮资源分配,同时更新每个逻辑信道对应的PBR令牌桶中令牌个数;
步骤305、终端对有MDBV要求的逻辑信道完成基于PBR的资源分配后,更新逻辑信道对应的滑动窗口内可以分配资源的数据量;
步骤306、终端确定有剩余能够分配的资源后,判断当前需要分配的逻辑信道是否具有MDBV要求的逻辑信道,若是执行步骤307;否则执行步骤308;
步骤307、终端取逻辑信道用于MDBV控制的MDBV滑动窗口内能够分配资源的数据量和逻辑信道当前待传输的数据量中较小值,对所述逻辑信道进行资源分配;
步骤308、终端根据逻辑信道当前待传输的数据量对所述逻辑信道进行资源分配,或前需要分配的逻辑信道是没有MDBV要求,且包含GBR业务的逻辑信道,根据逻辑信道当前待传输的数据量对逻辑信道进行资源分配;
步骤309、终端确定还有剩余资源,按对所有有数据传输需求的逻辑信道 优先级降序顺序对剩余待传输数据进行资源分配。
如图4所示,本发明实施例提供对上行资源进行资源分配网络侧设备的完整方法流程示意图。
步骤400、网络侧设备确定逻辑信道建立完成和/或网络侧设备根据系统负荷确定需要基于MDBV进行资源分配,并通知终端根据系统负荷确定需要基于MDBV进行资源分配;
步骤401、网络侧设备通过MAC层确定逻辑信道组对应的MDBV;
步骤402、网络侧设备将逻辑信道组对应的PDB作为逻辑信道组对应的用于MDBV控制的滑动窗口的长度,并且确定用于MDBV控制的滑动窗口为(N-PDB,N];
步骤403、网络侧设备将逻辑信道组对应的MDBV与用于MDBV控制的滑动窗口内已分配的资源的数据量之差作为逻辑信道组能够分配资源的数据量;
步骤404、网络侧设备优先为满足逻辑信道组对应的MDBV要求的数据分配资源;
步骤405、网络侧设备判断存在剩余资源,若是执行步骤406,否则结束资源分配;
步骤406、网络侧设备再根据逻辑信道组能够分配资源的数据量为不满足逻辑信道组对应的MDBV要求的数据分配资源。
如图5所示,本发明实施例一种进行资源分配的的终端,该终端包括处理器500、存储器501和收发机502;
其中,处理器500,用于读取存储器中的程序并执行:
确定逻辑信道用于MDBV控制的滑动窗口和逻辑信道对应的MDBV;根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述逻辑信道进行资源分配。
可选的,所述处理器500还用于:
在确定逻辑信道用于MDBV控制的滑动窗口和逻辑信道对应的MDBV 之前确定逻辑信道建立完成;和/或接收到网络侧设备发送的需要基于MDBV进行资源分配的通知。
可选的,所述处理器500具体用于:
根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV。
可选的,所述处理器500还用于:
若Flow和逻辑信道采用1:1映射,将Flow对应的MDBV作为所述逻辑信道对应的MDBV;或,
若Flow和逻辑信道采用M:1映射,根据Flow和逻辑信道的映射关系,将能够映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;或,
若Flow和逻辑信道采用M:1映射,将根据Flow和逻辑信道映射关系,将实际映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;其中,所述M为正整数。
可选的,所述处理器500具体用于:
在MAC层确定逻辑信道对应的MDBV。
可选的,所述处理器500还用于:
在通过MAC层确定逻辑信道对应的MDBV之前,通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系;或,
通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系以及QFI对应的MDBV;或,
通过SDAP或RRC层通知MAC层逻辑信道对应的MDBV;或,
通过SDAP层通知MAC层实际映射到逻辑信道的Flow;或,
通过SDAP层通知MAC层实际映射到逻辑信道的Flow和QFI对应的MDBV;或,
通过SDAP层通知MAC层逻辑信道对应的MDBV。
可选的,所述用于MDBV控制的滑动窗口的长度为逻辑信道对应的PDB。
可选的,所述处理器500具体用于:通过下列方式确定逻辑信道对应的 PDB:
根据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道的所有Flow对应的5QI或实际映射到所述逻辑信道的所有Flow对应的5QI;
根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道对应的PDB。
可选的,所述处理器500具体用于:
确定逻辑信道对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻。
可选的,所述处理器500还用于:
1:对有可用PBR令牌且有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行排序,然后依次对每个逻辑信道基于PBR进行第一轮资源分配,同时更新每个逻辑信道对应的PBR令牌桶中令牌个数,同时对有MDBV要求的逻辑信道,完成基于PBR的资源分配后,需要更新该逻辑信道对应的滑动窗口内可以分配资源的数据量为MDBV和当前时刻对应的滑动窗口内该逻辑信道已经分配了资源的数据量之差;
2:在确定还有剩余资源后,对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配:
对于有MDBV要求的逻辑信道,在第二轮资源分配过程中所述逻辑信道允许分配资源的数据量取所述逻辑信道用于MDBV控制的滑动窗口内能够分配资源的数据量和所述逻辑信道当前待传输的数据量中较小值,对所述逻辑信道进行资源分配;若当前需要分配的逻辑信道是没有MDBV要求的逻辑信道,则根据所述逻辑信道当前待传输的数据量对所述逻辑信道进行资源分配;
可选的,所述处理器500还用于:
如果确定还有剩余资源,按对所有有数据传输需求的逻辑信道优先级降序顺序对剩余待传输数据进行资源分配,直到资源耗尽或者所有逻辑信道的待传输数据都分配了资源。
可选的,所述处理器500还用于:
1:可用PBR令牌且有数据传输需求的逻辑信道按照逻辑信道优先级降序 顺序进行排序,然后依次对每个逻辑信道基于PBR进行第一轮资源分配,同时更新每个逻辑信道对应的PBR令牌桶中令牌个数,同时对有MDBV要求的逻辑信道,完成基于PBR的资源分配后,需要更新该逻辑信道对应的滑动窗口内可以分配资源的数据量为MDBV和当前时刻对应的滑动窗口内该逻辑信道已经分配了资源的数据量之差;
2:在确定还有剩余资源后,对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配:
对于有MDBV要求的逻辑信道,在第二轮资源分配过程中所述逻辑信道允许分配资源的数据量取所述逻辑信道用于MDBV控制的滑动窗口内能够分配资源的数据量和所述逻辑信道当前待传输的数据量中较小值,对所述逻辑信道进行资源分配;若当前需要分配的逻辑信道是没有MDBV要求,且包含GBR业务的逻辑信道,则对所述逻辑信道进行资源分配;
可选的,所述处理器500还用于:
在对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配之后,如果确定还有剩余资源,按对所有有数据传输需求的逻辑信道优先级降序顺序对剩余待传输数据进行资源分配,直到资源耗尽或者所有逻辑信道的待传输数据都分配了资源。
可选的,所述逻辑信道对应的所述用于MDBV控制的MDBV滑动窗口内能够分配资源的数据量为所述逻辑信道对应的MDBV与所述逻辑信道对应的所述用于MDBV控制的滑动窗口内已分配的资源的数据量的差值。
处理器500负责管理总线架构和通常的处理,存储器501可以存储处理器500在执行操作时所使用的数据。收发机502用于在处理器500的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器501代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步 描述。总线接口提供接口。处理器500负责管理总线架构和通常的处理,存储器501可以存储处理器500在执行操作时所使用的数据。
本发明实施例揭示的流程,可以应用于处理器500中,或者由处理器500实现。在实现过程中,信号处理流程的各步骤可以通过处理器500中的硬件的集成逻辑电路或者软件形式的指令完成。处理器500可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器51,处理器500读取存储器501中的信息,结合其硬件完成信号处理流程的步骤。
如图6所示,本发明实施例一种进行资源分配的的网络侧设备,该网络侧设备包括处理器600、存储器601和收发机602;
其中,处理器600,用于读取存储器中的程序并执行:
确定资源分配对象对应的MDBV和用于MDBV控制的滑动窗口;根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述资源分配对象进行资源分配;其中,若进行上行资源分配,则所述资源分配对象为逻辑信道组;若进行下行资源分配,则所述资源分配对象为逻辑信道。
可选的,所述处理器600还用于:
在确定资源分配对象对应的MDBV和用于MDBV控制的滑动窗口之前,确定逻辑信道建立完成;和/或根据系统负荷确定需要基于MDBV进行资源分配。
可选的,所述处理器600还用于:
若进行上行资源分配,根据系统负荷确定需要基于MDBV进行资源分配 之后,通知终端需要基于MDBV进行资源分配。
可选的,所述处理器600具体用于:
若进行下行资源分配,根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV;或若进行上行资源分配,根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV,并将同一逻辑信道组内的逻辑信道对应的MDBV之和作为逻辑信道组对应的MDBV;或若进行上行资源分配,将终端上报的逻辑信道对应的MDBV之和作为逻辑信道组对应的MDBV;或若进行上行资源分配,接收终端上报的逻辑信道组对应的MDBV。
可选的,所述处理器600具体用于:
若Flow和逻辑信道采用1:1映射,将Flow对应的MDBV作为所述逻辑信道对应的MDBV;或,
若Flow和逻辑信道采用M:1映射,根据Flow和逻辑信道的映射关系,将能够映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;或,
若Flow和逻辑信道采用M:1映射,将根据Flow和逻辑信道映射关系,将实际映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;其中,所述M为正整数。
可选的,所述处理器600具体用于:
在MAC层确定资源分配对象对应的MDBV。
可选的,所述处理器还用于:
在MAC层确定资源分配对象对应的MDBV之前,通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系;或,
通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系以及QFI对应的MDBV;或,
通过SDAP或RRC层通知MAC层逻辑信道对应的MDBV;或通过SDAP层通知MAC层实际映射到逻辑信道的Flow;或,
通过SDAP层通知MAC层实际映射到逻辑信道的Flow和QFI对应的 MDBV;或,
通过SDAP层通知MAC层逻辑信道对应的MDBV。
可选的,所述处理器600还用于:
如果所述资源分配对象是逻辑信道组,通过所述RRC层通知MAC层逻辑信道和逻辑信道组的映射关系。
可选的,若进行下行资源分配,所述用于MDBV控制的滑动窗口的长度为逻辑信道对应的PDB;或若进行上行资源分配,所述用于MDBV控制的滑动窗口的长度为逻辑信道组对应的PDB。
可选的,所述处理器600具体用于:通过下列方式确定逻辑信道对应的PDB:
根据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道的所有Flow对应的5QI或实际映射到所述逻辑信道的所有Flow对应的5QI;根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道对应的PDB。
可选的,所述处理器600具体用于:
若进行下行资源分配,确定资源分配对象对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻,PDB为所述逻辑信道对应的MDBV滑动窗口长度。
可选的,所述处理器600具体用于:通过下列方式确定逻辑信道组对应的PDB:
确定能够映射到逻辑信道组或者实际映射到逻辑信道组的逻辑信道,根据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道组的所有Flow对应的5QI或实际映射到所述逻辑信道组的所有Flow对应的5QI;根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道组对应的PDB。
可选的,所述处理器600具体用于:
若进行上行资源分配,确定资源分配对象对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻,PDB为所述逻辑信道组对应的MDBV滑动窗口长度。
可选的,所述处理器600具体用于:
若进行下行资源分配,将所述逻辑信道对应的MDBV与所述用于MDBV控制的滑动窗口内已分配的资源的数据量之差作为所述逻辑信道能够分配资源的数据量;根据所述逻辑信道能够分配资源的数据量和当前逻辑信道实际待传输数据量两者之间的最小值为所述逻辑信道进行资源分配。
可选的,所述处理器600具体用于:
若进行上行资源分配,将所述逻辑信道组对应的MDBV与所述逻辑信道组对应的所述用于MDBV控制的滑动窗口内已分配的资源的数据量的差值作为所述逻辑信道能够分配资源的数据量;根据所述逻辑信道组能够分配资源的数据量和当前逻辑信道组实际待传输数据量两者之间的最小值为所述逻辑信道组进行资源分配。
处理器600负责管理总线架构和通常的处理,存储器601可以存储处理器600在执行操作时所使用的数据。收发机602用于在处理器600的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器601代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器600负责管理总线架构和通常的处理,存储器601可以存储处理器600在执行操作时所使用的数据。
本发明实施例揭示的流程,可以应用于处理器600中,或者由处理器600实现。在实现过程中,信号处理流程的各步骤可以通过处理器600中的硬件的集成逻辑电路或者软件形式的指令完成。处理器600可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体 现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器601,处理器600读取存储器601中的信息,结合其硬件完成信号处理流程的步骤。
如图7所示,本发明实施例一种进行资源分配的的终端,该终端包括;
第一确定模块700,用于确定逻辑信道用于MDBV控制的滑动窗口和逻辑信道对应的MDBV;
第一分配模块701,用于根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述逻辑信道进行资源分配。
可选的,所述第一确定模块700还用于:
在确定逻辑信道用于MDBV控制的滑动窗口和逻辑信道对应的MDBV之前确定逻辑信道建立完成;和/或接收到网络侧设备发送的需要基于MDBV进行资源分配的通知。
可选的,所第一确定模块700具体用于:
根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV。
可选的,所述第一确定模块700还用于:
若Flow和逻辑信道采用1:1映射,将Flow对应的MDBV作为所述逻辑信道对应的MDBV;或,
若Flow和逻辑信道采用M:1映射,根据Flow和逻辑信道的映射关系,将能够映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;或,
若Flow和逻辑信道采用M:1映射,将根据Flow和逻辑信道映射关系,将实际映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;其中,所述M为正整数。
可选的,所述第一确定模块700具体用于:
在MAC层确定逻辑信道对应的MDBV。
可选的,所述第一确定模块700还用于:
在通过MAC层确定逻辑信道对应的MDBV之前,通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系;或,
通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系以及QFI对应的MDBV;或,
通过SDAP或RRC层通知MAC层逻辑信道对应的MDBV;或,
通过SDAP层通知MAC层实际映射到逻辑信道的Flow;或,
通过SDAP层通知MAC层实际映射到逻辑信道的Flow和QFI对应的MDBV;或通过SDAP层通知MAC层逻辑信道对应的MDBV。
可选的,所述用于MDBV控制的滑动窗口的长度为逻辑信道对应的PDB。
可选的,所述第一确定模块700具体用于:通过下列方式确定逻辑信道对应的PDB:
根据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道的所有Flow对应的5QI或实际映射到所述逻辑信道的所有Flow对应的5QI;
根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道对应的PDB。
可选的,所述第一确定模块700具体用于:
确定逻辑信道对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻。
可选的,所述第一分配模块701还用于:
1:对有可用PBR令牌且有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行排序,然后依次对每个逻辑信道基于PBR进行第一轮资源分配,同时更新每个逻辑信道对应的PBR令牌桶中令牌个数,同时对有MDBV要求的逻辑信道,完成基于PBR的资源分配后,需要更新该逻辑信道对应的滑动窗口内可以分配资源的数据量为MDBV和当前时刻对应的滑动窗口内该逻辑信道已经分配了资源的数据量之差;
2:在确定还有剩余资源后,对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配:
对于有MDBV要求的逻辑信道,在第二轮资源分配过程中所述逻辑信道允许分配资源的数据量取所述逻辑信道用于MDBV控制的滑动窗口内能够分配资源的数据量和所述逻辑信道当前待传输的数据量中较小值,对所述逻辑信道进行资源分配;若当前需要分配的逻辑信道是没有MDBV要求的逻辑信道,则根据所述逻辑信道当前待传输的数据量对所述逻辑信道进行资源分配;
可选的,所述第一分配模块701还用于:
如果确定还有剩余资源,按对所有有数据传输需求的逻辑信道优先级降序顺序对剩余待传输数据进行资源分配,直到资源耗尽或者所有逻辑信道的待传输数据都分配了资源。
可选的,所述第一分配模块701还用于:
1:可用PBR令牌且有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行排序,然后依次对每个逻辑信道基于PBR进行第一轮资源分配,同时更新每个逻辑信道对应的PBR令牌桶中令牌个数,同时对有MDBV要求的逻辑信道,完成基于PBR的资源分配后,需要更新该逻辑信道对应的滑动窗口内可以分配资源的数据量为MDBV和当前时刻对应的滑动窗口内该逻辑信道已经分配了资源的数据量之差;
2:在确定还有剩余资源后,对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配:
对于有MDBV要求的逻辑信道,在第二轮资源分配过程中所述逻辑信道允许分配资源的数据量取所述逻辑信道用于MDBV控制的滑动窗口内能够分配资源的数据量和所述逻辑信道当前待传输的数据量中较小值,对所述逻辑信道进行资源分配;若当前需要分配的逻辑信道是没有MDBV要求,且包含GBR业务的逻辑信道,则对所述逻辑信道进行资源分配;
可选的,所述第一分配模块701还用于:
如果确定还有剩余资源,按对所有有数据传输需求的逻辑信道优先级降序顺序对剩余待传输数据进行资源分配,直到资源耗尽或者所有逻辑信道的待传输数据都分配了资源。
可选的,所述逻辑信道对应的所述用于MDBV控制的MDBV滑动窗口内能够分配资源的数据量为所述逻辑信道对应的MDBV与所述逻辑信道对应的所述用于MDBV控制的滑动窗口内已分配的资源的数据量的差值。
如图8所示,本发明实施例一种进行资源分配的的网络侧设备,该网络侧设备包括;
第二确定模块800,用于确定资源分配对象对应的MDBV和用于MDBV控制的滑动窗口;
第二分配模块801,用于根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述资源分配对象进行资源分配;其中,若进行上行资源分配,则所述资源分配对象为逻辑信道组;若进行下行资源分配,则所述资源分配对象为逻辑信道。
可选的,所述第二确定模块800还用于:
在确定资源分配对象对应的MDBV和用于MDBV控制的滑动窗口之前,确定逻辑信道建立完成;和/或根据系统负荷确定需要基于MDBV进行资源分配。
可选的,所述第二确定模块800还用于:
若进行上行资源分配,根据系统负荷确定需要基于MDBV进行资源分配之后,通知终端需要基于MDBV进行资源分配。
可选的,所述第二确定模块800具体用于:
若进行下行资源分配,根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV;或,
若进行上行资源分配,根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV,并将同一逻辑信道组内的逻辑信道对应的MDBV之和作为逻辑信道组对应的MDBV;或,
若进行上行资源分配,将终端上报的逻辑信道对应的MDBV之和作为逻辑信道组对应的MDBV;或若进行上行资源分配,接收终端上报的逻辑信道组对应的MDBV。
可选的,所述第二确定模块800具体用于:
若Flow和逻辑信道采用1:1映射,将Flow对应的MDBV作为所述逻辑信道对应的MDBV;或,
若Flow和逻辑信道采用M:1映射,根据Flow和逻辑信道的映射关系,将能够映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;或,
若Flow和逻辑信道采用M:1映射,将根据Flow和逻辑信道映射关系,将实际映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;其中,所述M为正整数。
可选的,所述第二确定模块800具体用于:
在MAC层确定资源分配对象对应的MDBV。
可选的,所述第二确定模块800还用于:
在MAC层确定资源分配对象对应的MDBV之前,通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系;或,
通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系以及QFI对应的MDBV;或,
通过SDAP或RRC层通知MAC层逻辑信道对应的MDBV;或,
通过SDAP层通知MAC层实际映射到逻辑信道的Flow;或,
通过SDAP层通知MAC层实际映射到逻辑信道的Flow和QFI对应的MDBV;或,
通过SDAP层通知MAC层逻辑信道对应的MDBV。
可选的,若进行下行资源分配,所述用于MDBV控制的滑动窗口的长度为逻辑信道对应的PDB;或若进行上行资源分配,所述用于MDBV控制的滑动窗口的长度为逻辑信道组对应的PDB。
可选的,所述第二确定模块800还用于:
如果所述资源分配对象是逻辑信道组,通过所述RRC层通知MAC层逻辑信道和逻辑信道组的映射关系。
可选的,所述第二确定模块800具体用于:通过下列方式确定逻辑信道对应的PDB:
根据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道的所有Flow对应的5QI或实际映射到所述逻辑信道的所有Flow对应的5QI;根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道对应的PDB。
可选的,所述第二确定模块800具体用于:
若进行下行资源分配,确定资源分配对象对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻,PDB为所述逻辑信道对应的MDBV滑动窗口长度。
可选的,所述第二确定模块800具体用于:通过下列方式确定逻辑信道组对应的PDB:
确定能够映射到逻辑信道组或者实际映射到逻辑信道组的逻辑信道,根据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道组的所有Flow对应的5QI或实际映射到所述逻辑信道组的所有Flow对应的5QI;根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道组对应的PDB。
可选的,所述第二确定模块800具体用于:
若进行上行资源分配,确定资源分配对象对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻,PDB为所述逻辑信道组对应的MDBV滑动窗口长度。
可选的,所述第二分配模块801具体用于:
若进行下行资源分配,将所述逻辑信道对应的MDBV与所述用于MDBV控制的滑动窗口内已分配的资源的数据量之差作为所述逻辑信道能够分配资源的数据量;根据所述逻辑信道能够分配资源的数据量和当前逻辑信道实际待传输数据量两者之间的最小值为所述逻辑信道进行资源分配。
可选的,所述第二分配模块801具体用于:
若进行上行资源分配,将所述逻辑信道组对应的MDBV与所述逻辑信道组对应的所述用于MDBV控制的滑动窗口内已分配的资源的数据量的差值作 为所述逻辑信道能够分配资源的数据量;根据所述逻辑信道组能够分配资源的数据量和当前逻辑信道组实际待传输数据量两者之间的最小值为所述逻辑信道组进行资源分配。
如图9所示,本发明实施例一种进行资源分配的方法,该方法包括:
步骤900、终端确定逻辑信道用于MDBV控制的滑动窗口和逻辑信道对应的MDBV;
步骤901、所述终端根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述逻辑信道进行资源分配。
可选的,所述终端确定逻辑信道用于MDBV控制的滑动窗口和逻辑信道对应的MDBV之前,还包括:
所述终端确定逻辑信道建立完成;和/或,
所述终端接收到网络侧设备发送的需要基于MDBV进行资源分配的通知。
可选的,所述终端确定逻辑信道对应的MDBV,包括:
所述终端根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV。
可选的,所述终端根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV,包括:
若Flow和逻辑信道采用1:1映射,所述终端将Flow对应的MDBV作为所述逻辑信道对应的MDBV;或,
若Flow和逻辑信道采用M:1映射,所述终端设备根据Flow和逻辑信道的映射关系,将能够映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;或,
若Flow和逻辑信道采用M:1映射,所述终端设备将根据Flow和逻辑信道映射关系,将实际映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;其中,所述M为正整数。
可选的,所述终端确定逻辑信道对应的MDBV,包括:
所述终端在MAC层确定逻辑信道对应的MDBV。
可选的,所述终端通过MAC层确定逻辑信道对应的MDBV之前,还包 括:
所述终端通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系;或,
所述终端通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系以及QFI对应的MDBV;或,
所述终端通过SDAP或RRC层通知MAC层逻辑信道对应的MDBV;或,
所述终端通过SDAP层通知MAC层实际映射到逻辑信道的Flow;或,
所述终端通过SDAP层通知MAC层实际映射到逻辑信道的Flow和QFI对应的MDBV;或,
所述终端备通过SDAP层通知MAC层逻辑信道对应的MDBV。
可选的,所述用于MDBV控制的滑动窗口的长度为逻辑信道对应的PDB。
可选的,所述终端通过下列方式确定逻辑信道对应的PDB:
所述终端根据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道的所有Flow对应的5QI或实际映射到所述逻辑信道的所有Flow对应的5QI;
所述终端根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道对应的PDB。
可选的,所述终端确定逻辑信道对应的滑动窗口,包括:
所述终端确定逻辑信道对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻。
可选的,所述终端根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述逻辑信道进行资源分配,包括:
1:所述终端对有可用PBR令牌且有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行排序,然后依次对每个逻辑信道基于PBR进行第一轮资源分配,同时更新每个逻辑信道对应的PBR令牌桶中令牌个数,同时对有MDBV要求的逻辑信道,完成基于PBR的资源分配后,需要更新该逻辑信道对应的滑动窗口内可以分配资源的数据量为MDBV和当前时刻对应的滑动窗口内该逻辑信道已经分配了资源的数据量之差;
2:所述终端在确定还有剩余资源后,对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配:
对于有MDBV要求的逻辑信道,在第二轮资源分配过程中所述逻辑信道允许分配资源的数据量取所述逻辑信道用于MDBV控制的滑动窗口内能够分配资源的数据量和所述逻辑信道当前待传输的数据量中较小值,对所述逻辑信道进行资源分配;若当前需要分配的逻辑信道是没有MDBV要求的逻辑信道,则所述终端根据所述逻辑信道当前待传输的数据量对所述逻辑信道进行资源分配;
可选的,所述终端对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配之后,还包括:
如果所述终端确定还有剩余资源,按对所有有数据传输需求的逻辑信道优先级降序顺序对剩余待传输数据进行资源分配,直到资源耗尽或者所有逻辑信道的待传输数据都分配了资源。
可选的,所述终端根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述逻辑信道进行资源分配,还包括:
1:所述终端对有可用PBR令牌且有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行排序,然后依次对每个逻辑信道基于PBR进行第一轮资源分配,同时更新每个逻辑信道对应的PBR令牌桶中令牌个数,同时对有MDBV要求的逻辑信道,完成基于PBR的资源分配后,需要更新该逻辑信道对应的滑动窗口内可以分配资源的数据量为MDBV和当前时刻对应的滑动窗口内该逻辑信道已经分配了资源的数据量之差;
2:所述终端在确定还有剩余资源后,对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配:
对于有MDBV要求的逻辑信道,在第二轮资源分配过程中所述逻辑信道允许分配资源的数据量取所述逻辑信道用于MDBV控制的滑动窗口内能够分配资源的数据量和所述逻辑信道当前待传输的数据量中较小值,对所述逻辑信道进行资源分配;若当前需要分配的逻辑信道是没有MDBV要求,且包含 GBR业务的逻辑信道,则所述终端对所述逻辑信道进行资源分配;
可选的,所述终端对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配之后,还包括:
如果所述终端确定还有剩余资源,按对所有有数据传输需求的逻辑信道优先级降序顺序对剩余待传输数据进行资源分配,直到资源耗尽或者所有逻辑信道的待传输数据都分配了资源。
可选的,所述逻辑信道对应的所述用于MDBV控制的MDBV滑动窗口内能够分配资源的数据量为所述逻辑信道对应的MDBV与所述逻辑信道对应的所述用于MDBV控制的滑动窗口内已分配的资源的数据量的差值。
如图10所示,本发明实施例一种进行资源分配的方法,该方法包括:
步骤1000、网络侧设备确定资源分配对象对应的MDBV和用于MDBV控制的滑动窗口;
步骤1001、所述网络侧设备根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述资源分配对象进行资源分配;
其中,若进行上行资源分配,则所述资源分配对象为逻辑信道组;若进行下行资源分配,则所述资源分配对象为逻辑信道。
可选的,所述网络侧设备确定资源分配对象对应的MDBV和用于MDBV控制的滑动窗口之前,还包括:
所述网络侧设备确定逻辑信道建立完成;和/或,
所述网络侧设备根据系统负荷确定需要基于MDBV进行资源分配。
可选的,该方法还包括:
若进行上行资源分配,所述网络侧设备根据系统负荷确定需要基于MDBV进行资源分配之后,通知终端需要基于MDBV进行资源分配。
可选的,所述网络侧设备确定资源分配对象对应的MDBV,包括:
若进行下行资源分配,所述网络侧设备根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV;或,
若进行上行资源分配,所述网络侧设备根据Flow和逻辑信道的映射关系 确定逻辑信道对应的MDBV,并将同一逻辑信道组内的逻辑信道对应的MDBV之和作为逻辑信道组对应的MDBV;或,
若进行上行资源分配,所述网络侧设备将终端上报的逻辑信道对应的MDBV之和作为逻辑信道组对应的MDBV;或,
若进行上行资源分配,所述网络侧设备接收终端上报的逻辑信道组对应的MDBV。
可选的,所述网络侧设备根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV,包括:
若Flow和逻辑信道采用1:1映射,所述网络侧设备将Flow对应的MDBV作为所述逻辑信道对应的MDBV;或,
若Flow和逻辑信道采用M:1映射,所述网络侧设备根据Flow和逻辑信道的映射关系,将能够映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;或,
若Flow和逻辑信道采用M:1映射,所述网络侧设备将根据Flow和逻辑信道映射关系,将实际映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;其中,所述M为正整数。
可选的,所述网络侧设备确定资源分配对象对应的MDBV,包括:
所述网络侧设备在MAC层确定资源分配对象对应的MDBV。
可选的,所述网络侧设备在MAC层确定资源分配对象对应的MDBV之前,还包括:
所述网络侧设备通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系;或,
所述网络侧设备通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系以及QFI对应的MDBV;或,
所述网络侧设备通过SDAP或RRC层通知MAC层逻辑信道对应的MDBV;或,
所述网络侧设备通过SDAP层通知MAC层实际映射到逻辑信道的Flow; 或,
所述网络侧设备通过SDAP层通知MAC层实际映射到逻辑信道的Flow和QFI对应的MDBV;或,
所述网络侧设备通过SDAP层通知MAC层逻辑信道对应的MDBV。
可选的,如果所述资源分配对象是逻辑信道组,所述方法还包括:
所述网络侧设备通过所述RRC层通知MAC层逻辑信道和逻辑信道组的映射关系。
可选的,若进行下行资源分配,所述用于MDBV控制的滑动窗口的长度为逻辑信道对应的PDB;或,
若进行上行资源分配,所述用于MDBV控制的滑动窗口的长度为逻辑信道组对应的PDB。
可选的,所述网络侧设备通过下列方式确定逻辑信道对应的PDB:
所述网络侧设备根据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道的所有Flow对应的5QI或实际映射到所述逻辑信道的所有Flow对应的5QI;
所述网络侧设备根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道对应的PDB。
可选的,所述网络侧设备确定资源分配对象对应的滑动窗口,包括:
若进行下行资源分配,所述网络侧设备确定资源分配对象对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻,PDB为所述逻辑信道对应的MDBV滑动窗口长度。
可选的,所述网络侧设备通过下列方式确定逻辑信道组对应的PDB:
所述网络侧设备确定能够映射到逻辑信道组或者实际映射到逻辑信道组的逻辑信道,根据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道组的所有Flow对应的5QI或实际映射到所述逻辑信道组的所有Flow对应的5QI;
所述网络侧设备根据所述Flow对应的5QI确定最大的PDB作为所述逻 辑信道组对应的PDB。
可选的,所述网络侧设备确定资源分配对象对应的滑动窗口,包括:
若进行上行资源分配,所述网络侧设备确定资源分配对象对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻,PDB为所述逻辑信道组对应的MDBV滑动窗口长度。
可选的,所述网络侧设备根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述资源分配对象进行资源分配,包括:
若进行下行资源分配,所述网络侧设备将所述逻辑信道对应的MDBV与所述用于MDBV控制的滑动窗口内已分配的资源的数据量之差作为所述逻辑信道能够分配资源的数据量;
所述网络侧设备根据所述逻辑信道能够分配资源的数据量和当前逻辑信道实际待传输数据量两者之间的最小值为所述逻辑信道进行资源分配。
可选的,所述网络侧设备根据确定的所述用于MDBV控制的滑动窗口和所述MDBV为所述资源分配对象进行资源分配,包括:
若进行上行资源分配,所述网络侧设备将所述逻辑信道组对应的MDBV与所述逻辑信道组对应的所述用于MDBV控制的滑动窗口内已分配的资源的数据量的差值作为所述逻辑信道能够分配资源的数据量;
所述网络侧设备根据所述逻辑信道组能够分配资源的数据量和当前逻辑信道组实际待传输数据量两者之间的最小值为所述逻辑信道组进行资源分配。
以上参照示出根据本申请实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实 施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行系统、装置或设备使用,或结合指令执行系统、装置或设备使用。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (60)
- 一种进行资源分配的方法,其特征在于,该方法包括:终端确定逻辑信道用于最大数据突发容量MDBV控制的滑动窗口和逻辑信道对应的MDBV;所述终端根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述逻辑信道进行资源分配。
- 如权利要求1所述的方法,其特征在于,所述终端确定逻辑信道用于MDBV控制的滑动窗口和逻辑信道对应的MDBV之前,还包括:所述终端确定逻辑信道建立完成;和/或,所述终端接收到网络侧设备发送的需要基于MDBV进行资源分配的通知。
- 如权利要求1所述的方法,其特征在于,所述终端确定逻辑信道对应的MDBV,包括:所述终端根据流Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV。
- 如权利要求3所述的方法,其特征在于,所述终端根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV,包括:若Flow和逻辑信道采用1:1映射,所述终端将Flow对应的MDBV作为所述逻辑信道对应的MDBV;或,若Flow和逻辑信道采用M:1映射,所述终端设备根据Flow和逻辑信道的映射关系,将能够映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;或,若Flow和逻辑信道采用M:1映射,所述终端设备将根据Flow和逻辑信道映射关系,将实际映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;其中,所述M为正整数。
- 如权利要求4所述的方法,其特征在于,所述终端确定逻辑信道对应的MDBV,包括:所述终端在MAC层确定逻辑信道对应的MDBV。
- 如权利要求5所述的方法,其特征在于,所述终端通过MAC层确定逻辑信道的MDBV之前,还包括:所述终端通过业务数据适配层SDAP或无线资源控制RRC层通知媒体接入控制MAC层Flow和逻辑信道的映射关系;或,所述终端通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系以及业务质量流标识QFI对应的MDBV;或,所述终端通过SDAP或RRC层通知MAC层逻辑信道对应的MDBV;或,所述终端通过SDAP层通知MAC层实际映射到逻辑信道的Flow;或,所述终端通过SDAP层通知MAC层实际映射到逻辑信道的Flow和QFI对应的MDBV;或,所述终端备通过SDAP层通知MAC层逻辑信道对应的MDBV。
- 如权利要求1所述的方法,其特征在于,所述用于MDBV控制的滑动窗口的长度为逻辑信道对应的数据包时延预算PDB。
- 如权利要求7所述的方法,其特征在于,所述终端通过下列方式确定逻辑信道对应的PDB:所述终端根据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道的所有Flow对应的5QI或实际映射到所述逻辑信道的所有Flow对应的5QI;所述终端根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道对应的PDB。
- 如权利要求7所述的方法,其特征在于,所述终端确定逻辑信道对应的滑动窗口,包括:所述终端确定逻辑信道对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻。
- 如权利要求1所述的方法,其特征在于,所述终端根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述逻辑信道进行资源分配,包括:所述终端对有PBR令牌且有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行排序,然后依次对每个逻辑信道基于PBR进行第一轮资源分配,同时更新每个逻辑信道对应的PBR令牌桶中令牌个数,同时对有MDBV要求的逻辑信道,完成基于PBR的资源分配后,需要更新该逻辑信道对应的滑动窗口内可以分配资源的数据量为MDBV和当前时刻对应的滑动窗口内该逻辑信道已经分配了资源的数据量之差;所述终端在确定还有剩余资源后,对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配:对于有MDBV要求的逻辑信道,在第二轮资源分配过程中所述逻辑信道允许分配资源的数据量取所述逻辑信道用于MDBV控制的滑动窗口内能够分配资源的数据量和所述逻辑信道当前待传输的数据量中较小值,对所述逻辑信道进行资源分配;若当前需要分配的逻辑信道是没有MDBV要求的逻辑信道,则所述终端根据所述逻辑信道当前待传输的数据量对所述逻辑信道进行资源分配。
- 如权利要求10所述的方法,其特征在于,所述终端对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配之后,还包括:如果所述终端确定还有剩余资源,所述终端按对所有有数据传输需求的逻辑信道优先级降序顺序对剩余待传输数据进行资源分配,直到资源耗尽或者所有逻辑信道的待传输数据都分配了资源。
- 如权利要求1所述的方法,其特征在于,所述终端根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述逻辑信道进行资源分配,还包括:所述终端对有可用PBR令牌且有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行排序,然后依次对每个逻辑信道基于PBR进行第一轮资源分配,同时更新每个逻辑信道对应的PBR令牌桶中令牌个数,同时对有MDBV要求的逻辑信道,完成基于PBR的资源分配后,需要更新该逻辑信道 对应的滑动窗口内可以分配资源的数据量为MDBV和当前时刻对应的滑动窗口内该逻辑信道已经分配了资源的数据量之差;所述终端在确定还有剩余资源后,对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配:对于有MDBV要求的逻辑信道,在第二轮资源分配过程中所述逻辑信道允许分配资源的数据量取所述逻辑信道用于MDBV控制的滑动窗口内能够分配资源的数据量和所述逻辑信道当前待传输的数据量中较小值,对所述逻辑信道进行资源分配;若当前需要分配的逻辑信道是没有MDBV要求,且包含GBR业务的逻辑信道,则所述终端对所述逻辑信道进行资源分配。
- 如权利要求12所述的方法,其特征在于,所述终端对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配之后,还包括:如果所述终端确定还有剩余资源,所述终端按对所有有数据传输需求的逻辑信道优先级降序顺序对剩余待传输数据进行资源分配,直到资源耗尽或者所有逻辑信道的待传输数据都分配了资源。
- 如权利要求10或12所述的方法,其特征在于,所述逻辑信道对应的所述用于MDBV控制的滑动窗口内能够分配资源的数据量为所述逻辑信道对应的MDBV与所述逻辑信道对应的所述用于MDBV控制的滑动窗口内已分配的资源的数据量的差值。
- 一种进行资源分配的方法,其特征在于,该方法包括:网络侧设备确定资源分配对象对应的MDBV和用于MDBV控制的滑动窗口;所述网络侧设备根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述资源分配对象进行资源分配;其中,若进行上行资源分配,则所述资源分配对象为逻辑信道组;若进行下行资源分配,则所述资源分配对象为逻辑信道。
- 如权利要求15所述的方法,其特征在于,所述网络侧设备确定资源 分配对象对应的MDBV和用于MDBV控制的滑动窗口之前,还包括:所述网络侧设备确定逻辑信道建立完成;和/或,所述网络侧设备根据系统负荷确定需要基于MDBV进行资源分配。
- 如权利要求16所述的方法,其特征在于,该方法还包括:若进行上行资源分配,所述网络侧设备根据系统负荷确定需要基于MDBV进行资源分配之后,通知终端需要基于MDBV进行资源分配。
- 如权利要求15所述的方法,其特征在于,所述网络侧设备确定资源分配对象对应的MDBV,包括:若进行下行资源分配,所述网络侧设备根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV;或,若进行上行资源分配,所述网络侧设备根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV,并将同一逻辑信道组内的逻辑信道对应的MDBV之和作为逻辑信道组对应的MDBV;或,若进行上行资源分配,所述网络侧设备将终端上报的逻辑信道对应的MDBV之和作为逻辑信道组对应的MDBV;或,若进行上行资源分配,所述网络侧设备接收终端上报的逻辑信道组对应的MDBV。
- 如权利要求18所述的方法,其特征在于,所述网络侧设备根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV,包括:若Flow和逻辑信道采用1:1映射,所述网络侧设备将Flow对应的MDBV作为所述逻辑信道对应的MDBV;或,若Flow和逻辑信道采用M:1映射,所述网络侧设备根据Flow和逻辑信道的映射关系,将能够映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;或,若Flow和逻辑信道采用M:1映射,所述网络侧设备将根据Flow和逻辑信道映射关系,将实际映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;其中,所述M为正整数。
- 如权利要求19所述的方法,其特征在于,所述网络侧设备确定对象对应的MDBV,包括:所述网络侧设备在MAC层确定对象对应的MDBV。
- 如权利要求20所述的方法,其特征在于,所述网络侧设备在MAC层确定资源分配对象对应的MDBV之前,还包括:所述网络侧设备通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系;或,所述网络侧设备通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系以及QFI对应的MDBV;或,所述网络侧设备通过SDAP或RRC层通知MAC层逻辑信道对应的MDBV;或,所述网络侧设备通过SDAP层通知MAC层实际映射到逻辑信道的Flow;或,所述网络侧设备通过SDAP层通知MAC层实际映射到逻辑信道的Flow和QFI对应的MDBV;或,所述网络侧设备通过SDAP层通知MAC层逻辑信道对应的MDBV。
- 如权利要求21所述的方法,其特征在于,如果所述资源分配对象是逻辑信道组,所述方法还包括:所述网络侧设备通过所述RRC层通知MAC层逻辑信道和逻辑信道组的映射关系。
- 如权利要求15所述的方法,其特征在于,若进行下行资源分配,所述用于MDBV控制的滑动窗口的长度为逻辑信道对应的PDB;或,若进行上行资源分配,所述用于MDBV控制的滑动窗口的长度为逻辑信道组对应的PDB。
- 如权利要求23所述的方法,其特征在于,所述网络侧设备通过下列方式确定逻辑信道对应的PDB:所述网络侧设备根据Flow和逻辑信道的映射关系确定能够映射到所述逻 辑信道的所有Flow对应的5QI或实际映射到所述逻辑信道的所有Flow对应的5QI;所述网络侧设备根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道对应的PDB。
- 如权利要求23所述的方法,其特征在于,所述网络侧设备确定资源分配对象对应的用于MDBV控制的滑动窗口,包括:若进行下行资源分配,所述网络侧设备确定资源分配对象对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻。
- 如权利要求23所述的方法,其特征在于,所述网络侧设备通过下列方式确定逻辑信道组对应的PDB:所述网络侧设备确定能够映射到逻辑信道组或者实际映射到逻辑信道组的逻辑信道;所述网络侧设备根据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道组的所有Flow对应的5QI或实际映射到所述逻辑信道组的所有Flow对应的5QI;所述网络侧设备根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道组对应的PDB。
- 如权利要求23所述的方法,其特征在于,所述网络侧设备确定资源分配对象对应的滑动窗口,包括:若进行上行资源分配,所述网络侧设备确定资源分配对象对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻。
- 如权利要求15~27任一所述的方法,其特征在于,所述网络侧设备根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述资源分配对象进行资源分配,包括:若进行下行资源分配,所述网络侧设备将所述逻辑信道对应的MDBV与所述用于MDBV控制的滑动窗口内已分配的资源的数据量之差作为所述逻辑信道能够分配资源的数据量;所述网络侧设备根据所述逻辑信道能够分配资源的数据量和当前逻辑信道实际待传输数据量两者之间的最小值为所述逻辑信道进行资源分配。
- 如权利要求15~27任一所述的方法,其特征在于,所述网络侧设备根据确定的所述用于MDBV控制的滑动窗口和所述MDBV为所述资源分配对象进行资源分配,包括:若进行上行资源分配,所述网络侧设备将所述逻辑信道组对应的MDBV与所述逻辑信道组对应的所述用于MDBV控制的滑动窗口内已分配的资源的数据量的差值作为所述逻辑信道能够分配资源的数据量;所述网络侧设备根据所述逻辑信道组能够分配资源的数据量和当前逻辑信道组实际待传输数据量两者之间的最小值为所述逻辑信道组进行资源分配。
- 一种进行资源分配的的终端,其特征在于,该终端包括处理器、存储器和收发机;其中,处理器,用于读取存储器中的程序并执行:确定逻辑信道用于MDBV控制的滑动窗口和逻辑信道对应的MDBV;根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述逻辑信道进行资源分配。
- 如权利要求30所述的终端,其特征在于,所述处理器还用于:在确定逻辑信道用于MDBV控制的滑动窗口和逻辑信道对应的MDBV之前确定逻辑信道建立完成;和/或接收到网络侧设备发送的需要基于MDBV进行资源分配的通知。
- 如权利要求30所述的终端,其特征在于,所述处理器具体用于:根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV。
- 如权利要求32所述的终端,其特征在于,所述处理器还用于:若Flow和逻辑信道采用1:1映射,将Flow对应的MDBV作为所述逻辑信道对应的MDBV;或,若Flow和逻辑信道采用M:1映射,根据Flow和逻辑信道的映射关系,将能够映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对 应的MDBV;或,若Flow和逻辑信道采用M:1映射,将根据Flow和逻辑信道映射关系,将实际映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;其中,所述M为正整数。
- 如权利要求32所述的终端,其特征在于,所述处理器具体用于:在MAC层确定逻辑信道对应的MDBV。
- 如权利要求34所述的终端,其特征在于,所述处理器还用于:在通过MAC层确定逻辑信道对应的MDBV之前,通过SDAP或RRC层通知MAC层Flow以及逻辑信道的映射关系;或,通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系以及QFI对应的MDBV;或,通过SDAP或RRC层通知MAC层逻辑信道对应的MDBV;或,通过SDAP层通知MAC层实际映射到逻辑信道的Flow;或,通过SDAP层通知MAC层实际映射到逻辑信道的Flow和QFI对应的MDBV;或,通过SDAP层通知MAC层逻辑信道对应的MDBV。
- 如权利要求30所述的终端,其特征在于,所述用于MDBV控制的滑动窗口的长度为逻辑信道对应的PDB。
- 如权利要求36所述的终端,其特征在于,所述处理器具体用于:通过下列方式确定逻辑信道对应的PDB:根据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道的所有Flow对应的5QI或实际映射到所述逻辑信道的所有Flow对应的5QI;根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道对应的PDB。
- 如权利要求36所述的终端,其特征在于,所述处理器具体用于:确定逻辑信道对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻。
- 如权利要求30所述的终端,其特征在于,所述处理器还用于:对有可用PBR令牌且有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行排序,然后依次对每个逻辑信道基于PBR进行第一轮资源分配,同时更新每个逻辑信道对应的PBR令牌桶中令牌个数,同时对有MDBV要求的逻辑信道,完成基于PBR的资源分配后,需要更新该逻辑信道对应的滑动窗口内可以分配资源的数据量为MDBV和当前时刻对应的滑动窗口内该逻辑信道已经分配了资源的数据量之差;在确定还有剩余资源后,对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配:对于有MDBV要求的逻辑信道,在第二轮资源分配过程中所述逻辑信道允许分配资源的数据量取所述逻辑信道用于MDBV控制的滑动窗口内能够分配资源的数据量和所述逻辑信道当前待传输的数据量中较小值,对所述逻辑信道进行资源分配;若当前需要分配的逻辑信道是没有MDBV要求的逻辑信道,则根据所述逻辑信道当前待传输的数据量对所述逻辑信道进行资源分配。
- 如权利要求39所述的终端,其特征在于,所述处理器还用于:在对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配之后,如果确定还有剩余资源,按对所有有数据传输需求的逻辑信道优先级降序顺序对剩余待传输数据进行资源分配,直到资源耗尽或者所有逻辑信道的待传输数据都分配了资源。
- 如权利要求30所述的终端,其特征在于,所述处理器还用于:可用PBR令牌且有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行排序,然后依次对每个逻辑信道基于PBR进行第一轮资源分配,同时更新每个逻辑信道对应的PBR令牌桶中令牌个数,同时对有MDBV要求的逻辑信道,完成基于PBR的资源分配后,需要更新该逻辑信道对应的滑动窗口内可以分配资源的数据量为MDBV和当前时刻对应的滑动窗口内该逻辑信道已经分配了资源的数据量之差;在确定还有剩余资源后,对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配:对于有MDBV要求的逻辑信道,在第二轮资源分配过程中所述逻辑信道允许分配资源的数据量取所述逻辑信道用于MDBV控制的滑动窗口内能够分配资源的数据量和所述逻辑信道当前待传输的数据量中较小值,对所述逻辑信道进行资源分配;若当前需要分配的逻辑信道是没有MDBV要求,且包含GBR业务的逻辑信道,则对所述逻辑信道进行资源分配。
- 如权利要求41所述的终端,其特征在于,所述处理器还用于:在对所有有数据传输需求的逻辑信道按照逻辑信道优先级降序顺序进行第二轮资源分配之后,如果确定还有剩余资源,按对所有有数据传输需求的逻辑信道优先级降序顺序对剩余待传输数据进行资源分配,直到资源耗尽或者所有逻辑信道的待传输数据都分配了资源。
- 如权利要求39或41所述的终端,其特征在于,所述逻辑信道对应的所述用于MDBV控制的滑动窗口内能够分配资源的数据量为所述逻辑信道对应的MDBV与所述逻辑信道对应的所述用于MDBV控制的滑动窗口内已分配的资源的数据量的差值。
- 一种进行资源分配的的网络侧设备,其特征在于,该网络侧设备包括处理器、存储器和收发机;其中,处理器,用于读取存储器中的程序并执行:确定资源分配对象对应的MDBV和用于MDBV控制的滑动窗口;根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述资源分配对象进行资源分配;其中,若进行上行资源分配,则所述资源分配对象为逻辑信道组;若进行下行资源分配,则所述资源分配对象为逻辑信道。
- 如权利要求44所述的网络侧设备,其特征在于,所述处理器还用于:在确定资源分配对象对应的MDBV和用于MDBV控制的滑动窗口之前,确定逻辑信道建立完成;和/或根据系统负荷确定需要基于MDBV进行资源分配。
- 如权利要求44所述的网络侧设备,其特征在于,所述处理器还用于:若进行上行资源分配,根据系统负荷确定需要基于MDBV进行资源分配 之后,通知终端需要基于MDBV进行资源分配。
- 如权利要求44所述的网络侧设备,其特征在于,所述处理器具体用于:若进行下行资源分配,根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV;或,若进行上行资源分配,根据Flow和逻辑信道的映射关系确定逻辑信道对应的MDBV,并将同一逻辑信道组内的逻辑信道对应的MDBV之和作为逻辑信道组对应的MDBV;或,若进行上行资源分配,将终端上报的逻辑信道对应的MDBV之和作为逻辑信道组对应的MDBV;或,若进行上行资源分配,接收终端上报的逻辑信道组对应的MDBV。
- 如权利要求47所述的网络侧设备,其特征在于,所述处理器具体用于:若Flow和逻辑信道采用1:1映射,将Flow对应的MDBV作为所述逻辑信道对应的MDBV;或,若Flow和逻辑信道采用M:1映射,根据Flow和逻辑信道的映射关系,将能够映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;或,若Flow和逻辑信道采用M:1映射,将根据Flow和逻辑信道映射关系,将实际映射到所述逻辑信道的Flow对应的MDBV之和作为所述逻辑信道对应的MDBV;其中,所述M为正整数。
- 如权利要求48所述的网络侧设备,其特征在于,所述处理器具体用于:在MAC层确定资源分配对象对应的MDBV。
- 如权利要求49所述的网络侧设备,其特征在于,所述处理器还用于:在MAC层确定资源分配对象对应的MDBV之前,通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系;或,通过SDAP或RRC层通知MAC层Flow和逻辑信道的映射关系以及QFI对应的MDBV;或,通过SDAP或RRC层通知MAC层逻辑信道对应的MDBV;或通过SDAP层通知MAC层实际映射到逻辑信道的Flow;或,通过SDAP层通知MAC层实际映射到逻辑信道的Flow和QFI对应的MDBV;或,通过SDAP层通知MAC层逻辑信道对应的MDBV。
- 如权利要求50所述的网络侧设备,其特征在于,如果所述资源分配对象是逻辑信道组,所述处理器还用于:通过所述RRC层通知MAC层逻辑信道和逻辑信道组的映射关系。
- 如权利要求44所述的网络侧设备,其特征在于,若进行下行资源分配,所述用于MDBV控制的滑动窗口的长度为逻辑信道对应的PDB;或若进行上行资源分配,所述用于MDBV控制的滑动窗口的长度为逻辑信道组对应的PDB。
- 如权利要求52所述的网络侧设备,其特征在于,所述处理器具体用于:通过下列方式确定逻辑信道对应的PDB:根据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道的所有Flow对应的5QI或实际映射到所述逻辑信道的所有Flow对应的5QI;根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道对应的PDB。
- 如权利要求52所述的网络侧设备,其特征在于,所述处理器具体用于:若进行下行资源分配,确定资源分配对象对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻。
- 如权利要求52所述的网络侧设备,其特征在于,所述处理器具体用于:通过下列方式确定逻辑信道组对应的PDB:确定能够映射到逻辑信道组或者实际映射到逻辑信道组的逻辑信道;根 据Flow和逻辑信道的映射关系确定能够映射到所述逻辑信道组的所有Flow对应的5QI或实际映射到所述逻辑信道组的所有Flow对应的5QI;根据所述Flow对应的5QI确定最大的PDB作为所述逻辑信道组对应的PDB。
- 如权利要求52所述的网络侧设备,其特征在于,所述处理器具体用于:若进行上行资源分配,确定资源分配对象对应的用于MDBV控制的滑动窗口为(N-PDB,N],其中N为调度时刻。
- 如权利要求44~56任一所述的网络侧设备,其特征在于,所述处理器具体用于:若进行下行资源分配,将所述逻辑信道对应的MDBV与所述用于MDBV控制的滑动窗口内已分配的资源的数据量之差作为所述逻辑信道能够分配资源的数据量;根据所述逻辑信道能够分配资源的数据量和当前逻辑信道实际待传输数据量两者之间的最小值为所述逻辑信道进行资源分配。
- 如权利要求44~56任一所述的网络侧设备,其特征在于,所述处理器具体用于:若进行上行资源分配,将所述逻辑信道组对应的MDBV与所述逻辑信道组对应的所述用于MDBV控制的滑动窗口内已分配的资源的数据量的差值作为所述逻辑信道能够分配资源的数据量;根据所述逻辑信道组能够分配资源的数据量和当前逻辑信道组实际待传输数据量两者之间的最小值为所述逻辑信道组进行资源分配。
- 一种进行资源分配的的终端,其特征在于,该终端包括;第一确定模块,用于确定逻辑信道用于MDBV控制的滑动窗口和逻辑信道对应的MDBV;第一分配模块,用于根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述逻辑信道进行资源分配。
- 一种进行资源分配的的网络侧设备,其特征在于,该网络侧设备包括;第二确定模块,用于确定资源分配对象对应的MDBV和用于MDBV控制的滑动窗口;第二分配模块,用于根据确定的所述MDBV和所述用于MDBV控制的滑动窗口为所述资源分配对象进行资源分配;其中,若进行上行资源分配,则所述资源分配对象为逻辑信道组;若进行下行资源分配,则所述资源分配对象为逻辑信道。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810438209.4 | 2018-05-09 | ||
CN201810438209.4A CN110475341B (zh) | 2018-05-09 | 2018-05-09 | 一种进行资源分配的方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019214553A1 true WO2019214553A1 (zh) | 2019-11-14 |
Family
ID=68467709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/085574 WO2019214553A1 (zh) | 2018-05-09 | 2019-05-05 | 一种进行资源分配的方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110475341B (zh) |
WO (1) | WO2019214553A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113490281A (zh) * | 2021-07-20 | 2021-10-08 | 上海中兴易联通讯股份有限公司 | 一种用于5g nr系统调度优化的方法和装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105099627A (zh) * | 2014-05-23 | 2015-11-25 | 三星电子株式会社 | 移动通信系统中低成本终端的数据发送/接收方法和装置 |
WO2016159597A1 (en) * | 2015-03-27 | 2016-10-06 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting signal using sliding-window superposition coding in wireless network |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107920390B (zh) * | 2016-10-10 | 2021-09-21 | 展讯通信(上海)有限公司 | 上行逻辑信道调度方法、装置及用户设备 |
-
2018
- 2018-05-09 CN CN201810438209.4A patent/CN110475341B/zh active Active
-
2019
- 2019-05-05 WO PCT/CN2019/085574 patent/WO2019214553A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105099627A (zh) * | 2014-05-23 | 2015-11-25 | 三星电子株式会社 | 移动通信系统中低成本终端的数据发送/接收方法和装置 |
WO2016159597A1 (en) * | 2015-03-27 | 2016-10-06 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting signal using sliding-window superposition coding in wireless network |
Non-Patent Citations (1)
Title |
---|
NOKIA ET AL: "On delivering Delay critical service consistently end to end", SA WG2 MEETING #127, S2-183400, vol. SA WG2, 9 April 2018 (2018-04-09), Sanya, China, pages 1 - 7, XP051437453 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113490281A (zh) * | 2021-07-20 | 2021-10-08 | 上海中兴易联通讯股份有限公司 | 一种用于5g nr系统调度优化的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110475341B (zh) | 2022-05-17 |
CN110475341A (zh) | 2019-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110691370B (zh) | 一种数据传输方法、装置及系统 | |
KR102364595B1 (ko) | 통신 방법 및 통신 디바이스 | |
US11039448B2 (en) | Resource scheduling method and apparatus | |
WO2020192244A1 (zh) | 一种通信方法和装置 | |
EP4274373A2 (en) | Base station device and qos control method in wireless section | |
CN109392024B (zh) | 一种业务质量流的控制方法及相关设备 | |
WO2018032991A1 (zh) | 一种数据处理方法及装置 | |
CN113630796A (zh) | 服务质量监测方法、设备及系统 | |
WO2019214524A1 (zh) | 一种进行资源分配的方法和装置 | |
WO2021184263A1 (zh) | 一种数据传输方法及装置、通信设备 | |
CN109756986B (zh) | 一种上行数据包资源分配方法和用户终端 | |
WO2020228419A1 (zh) | 一种信令传输的方法、用户终端、基站及存储介质 | |
CN112584342B (zh) | 通信方法和通信装置 | |
WO2021155517A1 (zh) | 资源指示方法、装置和终端 | |
US20230025780A1 (en) | Resource determining method and device | |
CN112019363A (zh) | 确定业务传输需求的方法、设备及系统 | |
JP2024113092A (ja) | 送信競合の解決方法、装置、端末及び媒体 | |
CN115245022A (zh) | 网状网络中的资源单元分拨 | |
CN106465387B (zh) | 多跳能力的发现和每链路基础上的路由 | |
TWI772538B (zh) | 一種功率控制方法、裝置及電腦可讀存儲介質 | |
WO2019214553A1 (zh) | 一种进行资源分配的方法和装置 | |
CN111418177A (zh) | 可靠性传输方法及相关产品 | |
CN110933758B (zh) | 一种干扰协调方法及装置、基站 | |
CN108513727B (zh) | 建立缺省数据无线承载的方法和装置 | |
CN112272108B (zh) | 一种调度方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19799167 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19799167 Country of ref document: EP Kind code of ref document: A1 |