WO2020029810A1 - 信号传输方法和设备 - Google Patents

信号传输方法和设备 Download PDF

Info

Publication number
WO2020029810A1
WO2020029810A1 PCT/CN2019/097860 CN2019097860W WO2020029810A1 WO 2020029810 A1 WO2020029810 A1 WO 2020029810A1 CN 2019097860 W CN2019097860 W CN 2019097860W WO 2020029810 A1 WO2020029810 A1 WO 2020029810A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
network device
interference
remote interference
present disclosure
Prior art date
Application number
PCT/CN2019/097860
Other languages
English (en)
French (fr)
Inventor
金婧
徐晓东
邵华
柯颋
侯雪颖
刘建军
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Priority to JP2021506736A priority Critical patent/JP7182690B2/ja
Priority to US17/266,288 priority patent/US20210306878A1/en
Priority to EP19846784.7A priority patent/EP3836595B1/en
Publication of WO2020029810A1 publication Critical patent/WO2020029810A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0056Inter-base station aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/104Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof of other parameters, e.g. DC offset, delay or propagation times

Definitions

  • the remote base station transmitting tens or hundreds of kilometers away from the downlink to interfere with the uplink reception of the base station is a phenomenon of remote interference.
  • the interference range can reach tens or hundreds of kilometers (for example: 300km)
  • the propagation delay is 1 millisecond (ms)
  • the interference source is the downlink resource before the GP.
  • An object of the embodiments of the present disclosure is to provide a method and a device for signal transmission to solve the problem of remote interference.
  • an embodiment of the present disclosure provides a signal transmission method, which is applied to a first network device.
  • the method includes:
  • an embodiment of the present disclosure further provides a signal transmission method, which is applied to a second network device.
  • the method includes:
  • an embodiment of the present disclosure further provides a first network device, including: a first transceiver and a first processor;
  • the first transceiver is configured to send a first reference signal, where the first reference signal indicates that the first network device is subject to remote interference;
  • the first transceiver is further configured to listen to a second reference signal, where the second reference signal indicates that there is far-end interference and / or an atmospheric waveguide.
  • the second transceiver is configured to: listen to a first reference signal, where the first reference signal indicates that the first network device is subject to remote interference;
  • an embodiment of the present disclosure further provides a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored.
  • the steps of the signal transmission method described above are implemented.
  • the computer program is executed by a processor, implements the steps of the signal transmission method as described above.
  • Figure 1 is a schematic diagram of the atmospheric waveguide phenomenon
  • FIG. 2 is a schematic diagram of interference of a remote base station
  • FIG. 5 is a first flowchart of a signal transmission method according to an embodiment of the present disclosure.
  • FIG. 7 is a third flowchart of a signal transmission method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of an NR-RIM scheme in an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a first network device in an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a network device in an embodiment of the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present disclosure should not be interpreted as being better or more advantageous than other embodiments or designs. Rather, the use of the words “exemplary” or “for example” is intended to present the relevant concept in a concrete manner.
  • LTE Long Time Evolution
  • LTE-A LTE-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Single-carrier
  • 5G NR 5G NR
  • the terms “system” and “network” are often used interchangeably.
  • the CDMA system can implement radio technologies such as CDMA2000, Universal Terrestrial Radio Access (UTRA) and the like.
  • UTRA includes Wideband CDMA (Wideband Code Division Multiple Access) and other CDMA variants.
  • the TDMA system can implement a radio technology such as Global System for Mobile (Communication, Global System for Mobile).
  • OFDMA system can implement such as Ultra Mobile Broadband (UMB), Evolution-UTRA (Evolution-UTRA, E-UTRA), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM, etc. Radio technology.
  • UMB Ultra Mobile Broadband
  • Evolution-UTRA Evolution-UTRA
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM
  • Flash-OFDM Flash-OFDM
  • LTE and more advanced LTE are new UMTS versions using E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3rd Generation Generation Partnership Project (3GPP)).
  • CDMA2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2).
  • the techniques described herein can be used for both the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • Step 401 After the victim station detects the far-end interference, it sends the victim signal;
  • Step 402 The interference station performs interference avoidance after receiving the corresponding interfered signal
  • interference avoidance refers to downlink transmission resources before sacrificing the GP.
  • step 404 if the factors that cause remote interference, such as atmospheric refraction, have not disappeared, they will continue to interfere with the victim station, and then steps 401 to In step 404, a ping-pong effect in the far-end interference processing is thereby generated.
  • Step 501 Send a first reference signal, where the first reference signal indicates that the first network device is subject to remote interference;
  • Step 502 Listen for a second reference signal, which indicates that there is far-end interference and / or an atmospheric waveguide.
  • the second reference signal may also be referred to as a second type of reference signal or a feedback reference signal.
  • it can be determined whether the atmospheric waveguide phenomenon disappears based on the second reference signal.
  • first reference signal and the second reference signal may be the same reference signal, or the first reference signal and the second reference signal may be different reference signals.
  • the forms of the first reference signal and the second reference signal are not specifically limited in the embodiments of the present disclosure.
  • the second reference signal may be monitored in any of the following ways:
  • the uplink IoT exhibiting remote interference characteristics may mean that the uplink IoT exceeds a preset threshold value.
  • the threshold value is not specifically limited in the embodiment of the present disclosure.
  • the second reference signal indicating the presence of far-end interference and / or the atmospheric waveguide can accurately determine whether the factors causing the far-end interference phenomenon have disappeared and effectively avoid the ping-pong effect in the far-end interference processing.
  • an embodiment of the present disclosure provides another signal transmission method.
  • the execution subject of the method may be a first network device serving as a scrambling station and / or a victim station.
  • the first network device may be 4G LTE
  • the base stations, 5G NR base stations, or network equipment of other communication systems, the specific steps of this method are as follows:
  • Step 601 Determine whether there is far-end interference. When it is determined that there is remote interference, go to step 602; when it is determined that there is no remote interference, continue to step 601.
  • Step 602 Send a first reference signal, where the first reference signal indicates that the first network device is subject to remote interference;
  • Step 603 Listen for a second reference signal, where the second reference signal indicates that there is far-end interference and / or an atmospheric waveguide. Step 604, or step 605, or step 606 may then be performed.
  • Step 604 When no second reference signal is detected, stop sending the first reference signal.
  • the first time window can be configured by the first network device or OAM, and is not limited to this.
  • the intercepted second reference signal refers to at least one of the following: the signal strength of the intercepted second reference signal is higher than the first threshold value; The number is higher than the second threshold.
  • first threshold value and the second threshold value can be set according to specific situations, and are not specifically limited in the embodiments of the present disclosure.
  • first reference signal and the second reference signal in the embodiment shown in FIG. 6 is the same as the description of the first reference signal and the second reference signal in the embodiment shown in FIG. More details.
  • the second reference signal indicating the presence of far-end interference and / or the atmospheric waveguide can accurately determine whether the factors causing the far-end interference phenomenon have disappeared and effectively avoid the ping-pong effect in the far-end interference processing.
  • an embodiment of the present disclosure provides another signal transmission method.
  • the execution subject of the method may be a second network device serving as a scrambling station and / or a victim station.
  • the second network device may be 4G LTE
  • the base stations, 5G NR base stations, or network equipment of other communication systems, the specific steps of this method are as follows:
  • Step 701 Listen for a first reference signal, where the first reference signal indicates that the first network device is subject to remote interference;
  • the first reference signal may be referred to as a first type of reference signal, or may also be referred to as an interfered signal.
  • the first reference signal may trigger other network devices to perform an interference fallback operation.
  • the first reference signal may be monitored in any of the following ways:
  • the second reference signal may also be referred to as a second type of reference signal or a feedback reference signal.
  • it can be determined whether the atmospheric waveguide phenomenon disappears based on the second reference signal.
  • first reference signal and the second reference signal may be the same reference signal, or the first reference signal and the second reference signal may be different reference signals.
  • the forms of the first reference signal and the second reference signal are not specifically limited in the embodiments of the present disclosure.
  • the second reference signal indicating the presence of far-end interference and / or the atmospheric waveguide can accurately determine whether the factors causing the far-end interference phenomenon have disappeared and effectively avoid the ping-pong effect in the far-end interference processing.
  • Step 801 determine whether a first reference signal is detected, the first reference signal indicates that the first network device is subject to remote interference; when the first reference signal is detected, step 802 is performed; When the first reference signal is heard, step 803, or step 804, or step 805 may be performed.
  • the first reference signal may be referred to as a first type of reference signal, or may also be referred to as an interfered signal.
  • the first reference signal may trigger other network devices to perform an interference fallback operation.
  • the uplink IoT exhibiting remote interference characteristics may mean that the uplink IoT exceeds a preset threshold value.
  • the threshold value is not specifically limited in the embodiment of the present disclosure.
  • Step 802 When the first reference signal is detected, a second reference signal is sent, where the second reference signal indicates that there is far-end interference and / or an atmospheric waveguide.
  • the second reference signal may also be referred to as a second type of reference signal or a feedback reference signal.
  • it can be determined whether the atmospheric waveguide phenomenon disappears based on the second reference signal.
  • remote interference management is performed, and the remote interference management includes remote interference avoidance and / or remote interference deletion.
  • the remote interference management when the first reference signal is not detected, the remote interference management is stopped, and the remote interference management includes remote interference avoidance and / or remote interference deletion.
  • Step 804 When the first reference signal is not detected within the second time window, stop listening to the first reference signal.
  • the second time window may be configured by the first network device or OAM, and is not limited to this.
  • Step 805 Stop listening to the first reference signal according to the OAM configuration.
  • the non-detection of the first reference signal refers to at least one of the following: the signal strength of the intercepted first reference signal is lower than that of the third gate. Limit value; the number of the detected first reference signals is lower than a fourth threshold value.
  • the third threshold value and the fourth threshold value can be set according to specific situations, and are not specifically limited in the embodiments of the present disclosure.
  • the second reference signal indicating the presence of far-end interference and / or the atmospheric waveguide can accurately determine whether the factors causing the far-end interference phenomenon have disappeared and effectively avoid the ping-pong effect in the far-end interference processing.
  • Step 901 The first network device determines whether there is remote interference. When it is determined that there is remote interference, step 902 is performed; when it is determined that there is no remote interference, step 901 is continued.
  • the first network device serves as a victim station.
  • the uplink IoT of the first network device exhibits remote interference characteristics
  • the uplink IoT exhibiting remote interference characteristics may mean that the uplink IoT exceeds a preset threshold value.
  • the threshold value is not specifically limited in the embodiment of the present disclosure.
  • Step 902 The first network device sends a first reference signal, where the first reference signal indicates that the first network device is subject to remote interference;
  • step 902 the content of step 902 is the same as that of step 501, and details are not described herein again.
  • Step 903 the second network device determines whether the first reference signal is intercepted; when the second network device detects the first reference signal, step 904 is performed; when the second network device does not detect the first reference signal When the signal is referenced, step 905 is performed.
  • the second network device serves as a scrambling station.
  • Step 904 When the second network device detects the first reference signal, the second network device sends a second reference signal, where the second reference signal indicates that there is far-end interference and / or an atmospheric waveguide.
  • the first reference signal and the second reference signal are the same reference signal, or the first reference signal and the second reference signal are different reference signals.
  • Step 905 When the second network device does not detect the first reference signal, the second network device stops sending the second reference signal.
  • Step 906 The first network device determines whether the second reference signal is intercepted. When the second reference signal is not detected, step 907 is performed; when the second reference signal is detected, step 902 is returned.
  • the first reference signal and the second reference signal are the same reference signal, or the first reference signal and the second reference signal are different reference signals.
  • Step 907 When the first network device does not detect the second reference signal, the first network device stops sending the first reference signal.
  • FIG. 10 illustrates a remote base station interference management (Remote Interference Management) process.
  • the basic process is as follows:
  • RS specific reference signals
  • Atmospheric waveguide phenomenon occurs, and the DL signal sent by the interference station interferes with the UL data reception of the victim station;
  • the victim station detects the far-end interference characteristics, and then sends an RS to notify the potential interference station to perform the necessary interference rollback operation;
  • the scrambler After the scrambler detects the RS, it performs an interference fallback operation
  • the scrambling station If the scrambling station detects the RS but does not detect the far-end interference characteristics, the scrambling station also needs to start sending RS;
  • the interference rollback operation includes at least one of the following:
  • the interference station After the interference station performs the interference back-off operation, it can significantly alleviate its interference problem with the UL data of the far-end victim station.
  • the entire remote interference management process shown in FIG. include:
  • the interference station ends the interference rollback process
  • an embodiment of the present disclosure further provides a first network device. Since the principle of the first network device solving the problem is similar to the signal transmission method in the embodiment of the present disclosure, the first network device For the implementation of the method, refer to the implementation of the method. Referring to FIG. 11, an embodiment of the present disclosure further provides a first network device.
  • the first network device includes a first transceiver 1101 and a first processor 1102.
  • the first transceiver 1101 is configured to send a first reference signal, where the first reference signal indicates that the first network device is subject to remote interference;
  • the first transceiver 1101 is further configured to: listen to a second reference signal, where the second reference signal indicates that there is far-end interference and / or an atmospheric waveguide.
  • the first transceiver 1101 is further configured to: when the uplink interference noise IoT of the first network device exhibits remote interference characteristics, determine that there is remote interference, and send a first reference signal.
  • the first transceiver 1101 is further configured to stop sending the first reference signal when the second reference signal used to indicate the presence of far-end interference and / or the atmospheric waveguide is not detected.
  • the first transceiver 1101 is further configured to: when the second reference signal used to indicate the presence of far-end interference and / or atmospheric waveguide is not detected within the first time window, stop the listening station.
  • the second reference signal or, stopping the second reference signal according to the OAM configuration.
  • the first time window may be configured by the first network device or OAM.
  • the fact that the second reference signal is not detected refers to at least one of the following: the signal strength of the second reference signal detected is lower than a first threshold value; The number of the second reference signals is lower than a second threshold.
  • the first reference signal and the second reference signal are the same reference signal, or the first reference signal and the second reference signal are different reference signals.
  • the mobile terminal provided by the embodiment of the present disclosure can implement each process in the method embodiments in FIG. 5 to FIG. 6. To avoid repetition, details are not described herein again.
  • the second reference signal indicating the presence of far-end interference and / or the atmospheric waveguide can accurately determine whether the factors causing the far-end interference phenomenon have disappeared and effectively avoid the ping-pong effect in the far-end interference processing.
  • a second network device is also provided in the embodiment of the present disclosure. Since the principle of the second network device to solve the problem is similar to the signal transmission method in the embodiment of the present disclosure, the second network device For the implementation of the method, refer to the implementation of the method.
  • an embodiment of the present disclosure further provides a second network device, where the second network device includes: a second transceiver 1201 and a second processor 1202;
  • the second transceiver 1201 is configured to: listen to a first reference signal, where the first reference signal indicates that the first network device is subject to remote interference;
  • the first reference signal and the second reference signal are the same reference signal, or the first reference signal and the second reference signal are different reference signals.
  • the second transceiver 1201 is further configured to perform remote interference management when the first reference signal is detected, and the remote interference management includes remote interference avoidance and / or remote interference deletion.
  • the second transceiver 1201 is further configured to stop remote interference management when the first reference signal cannot be detected, and the remote interference management includes remote interference avoidance and / or remote interference deletion .
  • the second transceiver 1201 is further configured to: when the first reference signal cannot be detected, stop sending the second reference signal.
  • the second transceiver 1201 is further configured to: when the first reference signal is not detected within the second time window, stop listening to the first reference signal; or, according to the OAM configuration, stop Listening to the first reference signal.
  • the second time window is configured by a second network device or an OAM configuration.
  • the mobile terminal provided by the embodiment of the present disclosure can implement each process in the method embodiments of FIG. 7 to FIG. 8. To avoid repetition, details are not described herein again.
  • a network device is also provided in the embodiment of the present disclosure. Since the principle of the network device to solve the problem is similar to the signal transmission method in the embodiment of the present disclosure, the implementation of the network device can refer to the method. Implementation, duplicates are not repeated.
  • the processor 1301 may be responsible for managing the bus architecture and general processing.
  • the memory 1303 may store data used by the processor 1301 when performing operations.
  • the network device 1300 may further include a computer program stored in the memory 1303 and executable on the processor 1301. When the computer program is executed by the processor 1301, the steps in the foregoing method are implemented.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 1301 and various circuits of the memory represented by the memory 1303 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, the embodiments of this disclosure will not further describe them.
  • the bus interface provides an interface.
  • the transceiver 1302 may be a plurality of components, including a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium.
  • the steps of the method or algorithm described in connection with the present disclosure may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in Random Access Memory (RAM), Flash, Read Only Memory (ROM), and Electrically Programmable Read Only Memory (Electrically Programmable Read Only Memory (EPROM), Electrically Erasable Programmable Read Only Memory (EEPROM), registers, hard disk, mobile hard disk, read-only optical disk, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC can be located in a core network interface device.
  • the processor and the storage medium can also exist as discrete components in the core network interface device.
  • the functions described in this disclosure may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored on a computer-readable medium or transmitted as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • the embodiments of the present disclosure may be provided as a method, a system, or a computer program product. Therefore, the embodiments of the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the embodiments of the present disclosure may use one or more computer-usable storage media (including, but not limited to, magnetic disk storage, read-only compact memory (CD-ROM), and optical storage) containing computer-usable program code. Memory, etc.) in the form of a computer program product.
  • computer-usable storage media including, but not limited to, magnetic disk storage, read-only compact memory (CD-ROM), and optical storage
  • CD-ROM compact memory
  • Memory etc.
  • Embodiments of the present disclosure are described with reference to flowcharts and / or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present disclosure. It should be understood that each process and / or block in the flowcharts and / or block diagrams, and combinations of processes and / or blocks in the flowcharts and / or block diagrams can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general-purpose computer, special-purpose computer, embedded processor, or other programmable data processing device to produce a machine, so that instructions generated by the processor of the computer or other programmable data processing device may be used to generate instructions. Means for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.
  • These computer program instructions may also be loaded on a computer or other programmable data processing device, so that a series of operation steps are performed on the computer or other programmable device to produce a computer-implemented process, and thus executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种信号传输方法和设备,所述方法包括:发送第一参考信号,所述第一参考信号指示:所述第一网络设备受到远端干扰;侦听第二参考信号,所述第二参考信号指示:存在远端干扰和/或大气波导。

Description

信号传输方法和设备
相关申请的交叉引用
本申请主张在2018年8月6日在中国提交的中国专利申请号No.201810886392.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,具体涉及一种信号传输方法和设备。
背景技术
在春夏、夏秋之交的内陆地区,或冬季的沿海地区,容易发生大气波导(Surface ducting)现象。如图1所示,当大气波导现象发生时,对流层中将存在逆温或水汽随高度急剧变小的层次,称为波导层,大部分无线电波辐射都将被限制在该波导层中,进行超折射传播。超视距传播使得无线电信号可以传播很远的距离,且经受较低的路径传播损失。
对蜂窝无线通信系统(例如:第四代移动通信(fourth generation,4G)长期演进(Long Term Evolution,LTE)系统,或第五代移动通信(fifth generation,5G)新无线(New Radio,NR)系统)而言,大气波导现象发生时,远端基站的下行(Down Link,DL)信号将会对本地基站的上行(Up Link,UL)数据接收造成较强干扰。
如图2所示,因为存在大气波导层,远端施扰站(Interference site,或者Aggressor site,或者Interfering site)发送的DL信号经过超远距离(例如:数十或数百公里)空间传播后,仍具有较高能量,其落在本地受扰站(Victim site或者Interfered site)的UL信号接收窗口内,从而对本地基站的UL数据接收造成较强干扰。
分时长期演进(Time Division Long Term Evolution,TD-LTE)现网中发现,江苏、安徽、海南、河南等多省TD-LTE大面积上行受扰,上行干扰噪声(Interference over Thermal,IoT)抬升可达25dB,无线资源控制(Radio Resource Control,RRC)连接建立成功率等关键业绩指标(Key Performance  Indicator,KPI)指标恶化严重。受扰小区以农村F频段为主,干扰时间主要集中在0:00-8:00,受影响基站数几百到几万不等。
参见图3,在时分双工(Time Division Duplexing,TDD)系统组网中,为了避免小区间的上下行干扰,一般会选择相同的上下行配置情况。并且下行与上行发送之间会设置一个保护间隔(Guard Period,GP),一般为N(例如:小于<14)个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。GP长度的选择需要保证一定范围内(例如:几十公里)基站的下行传输不会对本基站的上行接收产生干扰。
通常情况下,考虑到电磁波在空间传播的损耗,本基站体验不到数十或数百公里外基站下行发送产生的干扰。
但是,由于大气折射、传播环境等因素的影响,导致数十或数百公里外的远端基站下行发送干扰本基站的上行接收,即为远端干扰现象。在该远端干扰现象中,干扰范围可达数十或数百公里(例如:300km),传播时延1毫秒(ms),超过上下行切换的GP,干扰源为GP前的下行资源。
因此,亟需一种解决远端干扰的技术方案。
发明内容
本公开实施例的一个目的在于提供一种信号传输方法和设备,解决远端干扰的问题。
第一方面,本公开实施例提供了一种信号传输方法,应用于第一网络设备,所述方法包括:
发送第一参考信号,所述第一参考信号指示:所述第一网络设备受到远端干扰;
侦听第二参考信号,所述第二参考信号指示:存在远端干扰和/或大气波导。
第二方面,本公开实施例还提供了一种信号传输方法,应用于第二网络设备,所述方法包括:
侦听第一参考信号,所述第一参考信号指示第一网络设备受到远端干扰;
发送第二参考信号,所述第二参考信号指示存在远端干扰和/或大气波导。
第三方面,本公开实施例还提供了一种第一网络设备,包括:第一收发机和第一处理器;
所述第一收发机用于:发送第一参考信号,所述第一参考信号指示:所述第一网络设备受到远端干扰;
所述第一收发机还用于:侦听第二参考信号,所述第二参考信号指示:存在远端干扰和/或大气波导。
第四方面,本公开实施例还提供了一种第二网络设备,所述第二网络设备包括:第二收发机和第二处理器;
所述第二收发机用于:侦听第一参考信号,所述第一参考信号指示第一网络设备受到远端干扰;
所述第二收发机还用于:发送第二参考信号,所述第二参考信号指示存在远端干扰和/或大气波导。
第五方面,本公开实施例还提供了一种网络设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的信号传输方法的步骤;或者实现如上所述的信号传输方法的步骤。
第六方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上所述的信号传输方法的步骤;或者,所述计算机程序被处理器执行时实现如上所述的信号传输方法的步骤。
在本公开实施例中,通过指示存在远端干扰和/或大气波导的第二参考信号,可准确判断造成远端干扰现象的因素是否消失,有效避免远端干扰处理中的乒乓效应。
附图说明
通过阅读下文可选实施方式的详细描述,各种其它的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为大气波导现象示意图;
图2为远端基站干扰示意图;
图3为远端干扰的示意图之一;
图4为远端干扰的示意图之二;
图5为本公开实施例中信号传输方法的流程图之一;
图6为本公开实施例中信号传输方法的流程图之二;
图7为本公开实施例中信号传输方法的流程图之三;
图8为本公开实施例中信号传输方法的流程图之四;
图9本公开实施例中信号传输的示意图;
图10为本公开实施例中的NR-RIM方案示意图;
图11为本公开实施例中第一网络设备的示意图;
图12为本公开实施例中第二网络设备的示意图;
图13为本公开实施例中的网络设备的示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更佳或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本文所描述的技术不限于长期演进型(Long Time Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其它系统,例如5G NR等。
术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其它CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(Ultra Mobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其它系统和无线电技术。
参见图4,图中示出一种远端干扰管理流程,基本流程如下:
步骤401:受扰站检测到远端干扰后,发送受干扰信号;
步骤402:施扰站接收到相应受干扰信号后,执行干扰退避;
其中,干扰退避是指牺牲GP前的下行发送资源。
步骤403:受扰站检测不到远端干扰,则停止发送受干扰信号;
步骤404:施扰站接收不到相应受干扰信号后,恢复至原始发送方式。
然而,在上述远端干扰管理流程中,在步骤404之后,如果造成远端干 扰的因素,例如:大气折射等现象并未消失,会继续对受扰站产生干扰,进而需要再执行步骤401至步骤404,由此产生远端干扰处理中的乒乓效应。
参见图5,本公开实施例提供了一种信号传输方法,该方法的执行主体可以是作为施扰站和/或作为受扰站的第一网络设备,该第一网络设备可以是4G LTE基站、5G NR基站,或者是其它通信系统的网络设备,该方法的具体步骤如下:
步骤501:发送第一参考信号,该第一参考信号指示:该第一网络设备受到远端干扰;
其中,第一参考信号可以称为第一类型的参考信号,或者也可以称为受干扰信号。可选地,该第一参考信号可以触发其它网络设备执行干扰回退操作。
在本公开实施例中,可选地,在步骤501中,当第一网络设备判断存在远端干扰时,发送第一参考信号。具体地,当第一网络设备的上行IoT呈现远端干扰特性时,则判断存在远端干扰,发送第一参考信号。其中,上行IoT呈现远端干扰特性可以是指上行IoT超过预设的门限值,当然可以理解的是,在本公开实施例中对于门限值不做具体限定。
步骤502:侦听第二参考信号,该第二参考信号指示:存在远端干扰和/或大气波导。
其中,第二参考信号也可以称为第二类型的参考信号,或者称为反馈参考信号。可选地,根据第二参考信号可以确定大气波导现象是否消失。
可以理解的是,在本公开实施中,第一参考信号与第二参考信号可以为相同的参考信号,或者第一参考信号与第二参考信号可以为不同的参考信号。在本公开实施例中对于第一参考信号和第二参考信号的形式不做具体限定。
在本公开实施例中,可选地,在步骤502中可以通过以下任意一种方式侦听第二参考信号:
(1)当第一网络设备的上行IoT呈现远端干扰特性时,侦听所述第二参考信号;
其中,上行IoT呈现远端干扰特性可以是指上行IoT超过预设的门限值,当然可以理解的是,在本公开实施例中对于门限值不做具体限定。
(2)根据操作维护管理(Operation Administration and Maintenance,OAM)配置,侦听所述第二参考信号。
在本公开实施例中,通过指示存在远端干扰和/或大气波导的第二参考信号,可准确判断造成远端干扰现象的因素是否消失,有效避免远端干扰处理中的乒乓效应。
参见图6,本公开实施例提供了另一种信号传输方法,该方法的执行主体可以是作为施扰站和/或作为受扰站的第一网络设备,该第一网络设备可以是4G LTE基站、5G NR基站,或者是其它通信系统的网络设备,该方法的具体步骤如下:
步骤601:判断是否存在远端干扰,当判断存在远端干扰时,执行步骤602;当判断不存在远端干扰时,继续执行步骤601。
例如:当第一网络设备的上行IoT呈现远端干扰特性时,则判断存在远端干扰。其中,上行IoT呈现远端干扰特性可以是指上行IoT超过预设的门限值,当然可以理解的是,在本公开实施例中对于门限值不做具体限定。
步骤602:发送第一参考信号,该第一参考信号指示:第一网络设备受到远端干扰;
步骤603:侦听第二参考信号,第二参考信号指示:存在远端干扰和/或大气波导。然后可以执行步骤604,或者步骤605,或者步骤606。
步骤604:当没有侦听到第二参考信号时,停止发送第一参考信号;
步骤605:当第一时间窗内没有侦听到第二参考信号时,停止侦听第二参考信号;
其中,该第一时间窗可以由第一网络设备配置或OAM配置,当然并不仅限于此。
步骤606:根据OAM配置,停止侦听第二参考信号。
可以理解的是,当侦听到第二参考信号时,可以继续执行步骤602。
在本公开实施例中,在步骤604和步骤605中,没有侦听到第二参考信号是指以下至少一项:侦听到的第二参考信号的信号强度低于第一门限值;侦听到的所述第二参考信号的个数低于第二门限值。
在本公开实施例中,侦听到第二参考信号是指以下至少一项:侦听到的 第二参考信号的信号强度高于第一门限值;侦听到的第二参考信号的个数高于第二门限值。
可以理解的是,第一门限值和第二门限值可以根据具体情况进行设置,在本公开实施例中不做具体限定。
可以理解的是,图6所示实施例中的第一参考信号和第二参考信号的描述与图5所示的实施例中的第一参考信号和第二参考信号的描述一样,在此不再赘述。
在本公开实施例中,通过指示存在远端干扰和/或大气波导的第二参考信号,可准确判断造成远端干扰现象的因素是否消失,有效避免远端干扰处理中的乒乓效应。
参见图7,本公开实施例提供了又一种信号传输方法,该方法的执行主体可以是作为施扰站和/或作为受扰站的第二网络设备,该第二网络设备可以是4G LTE基站、5G NR基站,或者是其它通信系统的网络设备,该方法的具体步骤如下:
步骤701:侦听第一参考信号,该第一参考信号指示该第一网络设备受到远端干扰;
其中,第一参考信号可以称为第一类型的参考信号,或者也可以称为受干扰信号。可选地,该第一参考信号可以触发其它网络设备执行干扰回退操作。
在本公开实施例中,可选地,在步骤701中,可以通过以下任意一种方式侦听第一参考信号:
(1)当第二网络设备的上行IoT呈现远端干扰特性时,侦听所述第一参考信号;
其中,上行IoT呈现远端干扰特性可以是指上行IoT超过预设的门限值,当然可以理解的是,在本公开实施例中对于门限值不做具体限定。
(2)根据OAM配置,侦听所述第一参考信号。
步骤702:发送第二参考信号,该第二参考信号指示存在远端干扰和/或大气波导。
其中,第二参考信号也可以称为第二类型的参考信号,或者称为反馈参 考信号。可选地,根据第二参考信号可以确定大气波导现象是否消失。
可以理解的是,在本公开实施中,第一参考信号与第二参考信号可以为相同的参考信号,或者第一参考信号与第二参考信号可以为不同的参考信号。在本公开实施例中对于第一参考信号和第二参考信号的形式不做具体限定。
在本公开实施例中,通过指示存在远端干扰和/或大气波导的第二参考信号,可准确判断造成远端干扰现象的因素是否消失,有效避免远端干扰处理中的乒乓效应。
参见图8,本公开实施例提供了又一种信号传输方法,该方法的执行主体可以是作为施扰站和/或作为受扰站的第二网络设备,该第二网络设备可以是4G LTE基站、5G NR基站,或者是其它通信系统的网络设备,该方法的具体步骤如下:
步骤801:判断是否侦听到第一参考信号,所述第一参考信号指示所述第一网络设备受到远端干扰;当侦听到所述第一参考信号时,执行步骤802;当没有侦听到所述第一参考信号时,可以执行步骤803,或者步骤804,或者步骤805。
其中,第一参考信号可以称为第一类型的参考信号,或者也可以称为受干扰信号。可选地,该第一参考信号可以触发其它网络设备执行干扰回退操作。
在本公开实施例中,可选地,在步骤801中,可以通过以下任意一种方式侦听第一参考信号:
(1)当第二网络设备的上行IoT呈现远端干扰特性时,侦听所述第一参考信号;
其中,上行IoT呈现远端干扰特性可以是指上行IoT超过预设的门限值,当然可以理解的是,在本公开实施例中对于门限值不做具体限定。
(2)根据OAM配置,侦听所述第一参考信号。
步骤802:当侦听到所述第一参考信号时,发送第二参考信号,该第二参考信号指示存在远端干扰和/或大气波导。
其中,第二参考信号也可以称为第二类型的参考信号,或者称为反馈参考信号。可选地,根据第二参考信号可以确定大气波导现象是否消失。
可以理解的是,在本公开实施中,第一参考信号与第二参考信号可以为相同的参考信号,或者第一参考信号与第二参考信号可以为不同的参考信号。在本公开实施例中对于第一参考信号和第二参考信号的形式不做具体限定。
当侦听到所述第一参考信号时,进行远端干扰管理,所述远端干扰管理包括远端干扰避免和/或远端干扰删除。
步骤803:当没有侦听到所述第一参考信号时,停止发送第二参考信号;然后返回步骤801。
在本公开实施例中,当没有侦听到所述第一参考信号时,停止远端干扰管理,该远端干扰管理包括远端干扰避免和/或远端干扰删除。
步骤804:当第二时间窗内没有侦听到所述第一参考信号时,停止侦听所述第一参考信号。
其中,该第二时间窗可以由第一网络设备配置或OAM配置,当然并不仅限于此。
步骤805:根据OAM配置,停止侦听所述第一参考信号。
在本公开实施例中,在步骤803和步骤804中,所述没有侦听到第一参考信号是指以下至少一项:侦听到的所述第一参考信号的信号强度低于第三门限值;侦听到的所述第一参考信号的个数低于第四门限值。
对应地,侦听到第一参考信号是指以下至少一项:侦听到的所述第一参考信号的信号强度高于第三门限值;侦听到的所述第一参考信号的个数高于第四门限值。
可以理解的是,第三门限值和第四门限值可以根据具体情况进行设置,在本公开实施例中不做具体限定。
可以理解的是,图8所示实施例中的第一参考信号和第二参考信号的描述与图7所示的实施例中的第一参考信号和第二参考信号的描述一样,在此不再赘述。
在本公开实施例中,通过指示存在远端干扰和/或大气波导的第二参考信号,可准确判断造成远端干扰现象的因素是否消失,有效避免远端干扰处理中的乒乓效应。
参见图9,本公开实施例还提供了一种信号传输方法,具体步骤如下:
步骤901:第一网络设备判断是否存在远端干扰,当判断存在远端干扰时,执行步骤902;当判断不存在远端干扰时,继续执行步骤901。
其中,该第一网络设备作为受扰站。
例如:当第一网络设备的上行IoT呈现远端干扰特性时,则判断存在远端干扰。其中,上行IoT呈现远端干扰特性可以是指上行IoT超过预设的门限值,当然可以理解的是,在本公开实施例中对于门限值不做具体限定。
步骤902:第一网络设备发送第一参考信号,该第一参考信号指示:该第一网络设备受到远端干扰;
在本公开实施例中,步骤902的内容与步骤501相同,在此不在赘述。
步骤903:第二网络设备判断是否侦听到第一参考信号;当第二网络设备侦听到所述第一参考信号时,执行步骤904;当第二网络设备没有侦听到所述第一参考信号时,执行步骤905。
其中,第二网络设备作为施扰站。
步骤904:当第二网络设备侦听到所述第一参考信号时,第二网络设备发送第二参考信号,所述第二参考信号指示存在远端干扰和/或大气波导。
在本公开实施例中,侦听到第一参考信号是指以下至少一项:侦听到的所述第一参考信号的信号强度高于第三门限值;侦听到的所述第一参考信号的个数高于第四门限值。当第二网络设备侦听到所述第一参考信号时,进行远端干扰管理,该远端干扰管理包括远端干扰避免和/或远端干扰删除。
在本公开实施例中,所述第一参考信号与所述第二参考信号为相同的参考信号,或者所述第一参考信号与所述第二参考信号为不同的参考信号。
步骤905:当第二网络设备没有侦听到所述第一参考信号时,第二网络设备停止发送第二参考信号。
在本公开实施例中,在步骤905中,所述没有侦听到第一参考信号是指以下至少一项:侦听到的所述第一参考信号的信号强度低于第三门限值;侦听到的所述第一参考信号的个数低于第四门限值。
步骤906:第一网络设备判断是否侦听到第二参考信号。当没有侦听到所述第二参考信号时,执行步骤907;当侦听到所述第二参考信号时,则返回步骤902。
在本公开实施中,所述第一参考信号与所述第二参考信号为相同的参考信号,或者所述第一参考信号与所述第二参考信号为不同的参考信号。
步骤907:当第一网络设备没有侦听到所述第二参考信号时,第一网络设备停止发送第一参考信号。
在本公开实施例中,通过指示存在远端干扰和/或大气波导的第二参考信号,可准确判断造成远端干扰现象的因素是否消失,有效避免远端干扰处理中的乒乓效应。
参见图10,图10为一种远端基站干扰管理(Remote Interference Management,简称RIM)流程,基本流程如下:
T0时刻:
所有基站都侦听特定参考信号(简记为RS);
对于潜在受扰站(如存在UL业务的基站),还需要检测干扰特征;
T1时刻:
大气波导现象发生,施扰站发送的DL信号干扰了受扰站的UL数据接收;
T2时刻:
受扰站检测到了远端干扰特征,则开始发送RS,用于通知潜在施扰站执行必要的干扰回退操作;
T3时刻:
施扰站检测到RS后,则执行干扰回退操作;
如果施扰站检测到RS,但是未检测到远端干扰特征,则施扰站还需要开始发送RS;
其中,所述干扰回退操作包括如下至少一种:
(1)在至少一个DL正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号中降低下行信号发送功率;
(2)增加时域保护间隔(GP);
(3)禁止在特定下行OFDM符号中发送信号。
显然,施扰站执行干扰回退操作后,可以显著缓解其对远端受扰站UL数据的干扰问题。
注意到,基站停止发送RS的条件是:在给定时长内侦听不到任一RS信 号。
而在T3时刻之后,只要大气波导现象未消失,所有基站都能够听到其它基站发送的RS信号,因此不会触发RS停止发送条件。进而,所有基站都会持续发送RS,从而保证干扰回退操作能够被持续维持。
只有当大气波导现象消失后,任何一个基站在UL信号接收窗口内都不能侦听到其它基站发送的DL信号(包括RS),这时,可以终止图3所示的整个远端干扰管理流程,包括:
(1)施扰站结束干扰回退过程;
(2)施扰站和受扰站停止发送RS。
为了解决远端干扰的问题,本公开实施例中还提供了一种第一网络设备,由于第一网络设备解决问题的原理与本公开实施例中的信号传输方法相似,因此该第一网络设备的实施可以参见方法的实施,重复之处不再赘述。参见图11,本公开实施例还提供了一种第一网络设备,该第一网络设备包括:第一收发机1101和第一处理器1102;
所述第一收发机1101用于:发送第一参考信号,所述第一参考信号指示:所述第一网络设备受到远端干扰;
所述第一收发机1101还用于:侦听第二参考信号,所述第二参考信号指示:存在远端干扰和/或大气波导。
可选地,所述第一收发机1101进一步用于:当判断存在远端干扰时,发送第一参考信号。
可选地,所述第一收发机1101进一步用于:当第一网络设备的上行干扰噪声IoT呈现远端干扰特性时,则判断存在远端干扰,发送第一参考信号。
可选地,所述第一收发机1101还用于:当没有侦听到用于指示存在远端干扰和/或大气波导的所述第二参考信号时,停止发送第一参考信号。
可选地,所述第一收发机1101进一步用于:当第一网络设备的上行IoT呈现远端干扰特性时,侦听所述第二参考信号;或者,根据操作维护管理OAM配置,侦听所述第二参考信号。
可选地,所述第一收发机1101还用于:当第一时间窗内没有侦听到用于指示存在远端干扰和/或大气波导的所述第二参考信号时,停止侦听所述第二 参考信号;或者,根据OAM配置,停止侦听所述第二参考信号。
可选地,所述第一时间窗可以由第一网络设备配置或OAM配置。
在本公开实施例中,所述没有侦听到所述第二参考信号是指以下至少一项:侦听到的所述第二参考信号的信号强度低于第一门限值;侦听到的所述第二参考信号的个数低于第二门限值。
在本公开实施例中,所述第一参考信号与所述第二参考信号为相同的参考信号,或者所述第一参考信号与所述第二参考信号为不同的参考信号。
本公开实施例提供的移动终端能够实现图5至图6的方法实施例中的各个过程,为避免重复,这里不再赘述。
在本公开实施例中,通过指示存在远端干扰和/或大气波导的第二参考信号,可准确判断造成远端干扰现象的因素是否消失,有效避免远端干扰处理中的乒乓效应。
为了解决远端干扰的问题,本公开实施例中还提供了一种第二网络设备,由于第二网络设备解决问题的原理与本公开实施例中的信号传输方法相似,因此该第二网络设备的实施可以参见方法的实施,重复之处不再赘述。
参见图12,本公开实施例还提供了一种第二网络设备,所述第二网络设备包括:第二收发机1201和第二处理器1202;
其中,所述第二收发机1201用于:侦听第一参考信号,所述第一参考信号指示所述第一网络设备受到远端干扰;
所述第二收发机1201还用于:发送第二参考信号,所述第二参考信号指示存在远端干扰和/或大气波导。
在本公开实施例中,所述第一参考信号与所述第二参考信号为相同的参考信号,或者所述第一参考信号与所述第二参考信号为不同的参考信号。
可选地,所述第二收发机1201进一步用于:当第二网络设备的上行IoT呈现远端干扰特性时,侦听所述第一参考信号;或者,根据OAM配置,侦听所述第一参考信号。
可选地,所述第二收发机1201还用于:当侦听到所述第一参考信号时,进行远端干扰管理,远端干扰管理包括远端干扰避免和/或远端干扰删除。
可选地,所述第二收发机1201还用于:当侦听到所述第一参考信号时, 发送所述第二参考信号。
可选地,所述第二收发机1201还用于:当侦听不到所述第一参考信号时,停止远端干扰管理,远端干扰管理包括远端干扰避免和/或远端干扰删除。
可选地,所述第二收发机1201还用于:当侦听不到所述第一参考信号时,停止发送所述第二参考信号。
可选地,所述第二收发机1201还用于:当第二时间窗内没有侦听到所述第一参考信号时,停止侦听所述第一参考信号;或者,根据OAM配置,停止侦听所述第一参考信号。
可选地,所述第二时间窗由第二网络设备配置或OAM配置。
本公开实施例提供的移动终端能够实现图7至图8的方法实施例中的各个过程,为避免重复,这里不再赘述。
在本公开实施例中,通过指示存在远端干扰和/或大气波导的第二参考信号,可准确判断造成远端干扰现象的因素是否消失,有效避免远端干扰处理中的乒乓效应。
为了解决远端干扰的问题,本公开实施例中还提供了一种网络设备,由于网络设备解决问题的原理与本公开实施例中的信号传输方法相似,因此该网络设备的实施可以参见方法的实施,重复之处不再赘述。
参见图13,本公开实施例提供了另一种网络设备1300,包括:处理器1301、收发机1302、存储器1303和总线接口。
其中,处理器1301可以负责管理总线架构和通常的处理。存储器1303可以存储处理器1301在执行操作时所使用的数据。
本公开实施例中,网络设备1300还可以包括:存储在存储器1303上并可在处理器1301上运行的计算机程序,该计算机程序被处理器1301执行时实现如上述方法中的步骤。
在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1301代表的一个或多个处理器和存储器1303代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其它电路链接在一起,这些都是本领域所公知的,因此,本公开实施例不再对其进行进一步描述。总线接口提供接口。收发机1302可以是多个元 件,即包括发送机和接收机,提供用于在传输介质上与各种其它装置通信的单元。
结合本公开公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、电可编程序只读存储器(Electrically Programmable Read Only Memory,EPROM)、电可擦可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施方式而已,并不用于限定本公开的保护范围,凡在本公开的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本公开的保护范围之内。
本领域内的技术人员应明白,本公开实施例可提供为方法、系统、或计算机程序产品。因此,本公开实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、只读型光盘(Compact Disc Read Only Memory,CD-ROM)、 光学存储器等)上实施的计算机程序产品的形式。
本公开实施例是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其它可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其它可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其它可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其它可编程数据处理设备上,使得在计算机或其它可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其它可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (23)

  1. 一种信号传输方法,应用于第一网络设备,所述方法包括:
    发送第一参考信号,所述第一参考信号指示:所述第一网络设备受到远端干扰;
    侦听第二参考信号,所述第二参考信号指示:存在远端干扰和/或大气波导。
  2. 根据权利要求1所述的方法,其中,所述发送第一参考信号,包括:
    当判断存在远端干扰时,发送所述第一参考信号。
  3. 根据权利要求2所述的方法,其中,所述当判断存在远端干扰时,发送所述第一参考信号,包括:
    当所述第一网络设备的上行干扰噪声IoT呈现远端干扰特性时,则判断存在远端干扰,发送所述第一参考信号。
  4. 根据权利要求1所述的方法,还包括:
    当没有侦听到所述第二参考信号时,停止发送所述第一参考信号。
  5. 根据权利要求1至4任一项所述的方法,其中,所述侦听第二参考信号,包括:
    当所述第一网络设备的上行IoT呈现远端干扰特性时,侦听所述第二参考信号;或者,
    根据操作维护管理OAM配置,侦听所述第二参考信号。
  6. 根据权利要求1所述的方法,还包括:
    当第一时间窗内没有侦听到所述第二参考信号时,停止侦听所述第二参考信号;或者,
    根据OAM配置,停止侦听所述第二参考信号。
  7. 根据权利要求6所述的方法,其中,所述第一时间窗由所述第一网络设备配置或OAM配置。
  8. 根据权利要求6所述的方法,其中,所述没有侦听到所述第二参考信号是指以下至少一项:侦听到的所述第二参考信号的信号强度低于第一门限值;侦听到的所述第二参考信号的个数低于第二门限值。
  9. 根据权利要求1至8任一项所述的方法,其中,所述第一参考信号与所述第二参考信号为相同的参考信号,或者所述第一参考信号与所述第二参考信号为不同的参考信号。
  10. 一种信号传输方法,应用于第二网络设备,所述方法包括:
    侦听第一参考信号,所述第一参考信号指示第一网络设备受到远端干扰;
    发送第二参考信号,所述第二参考信号指示存在远端干扰和/或大气波导。
  11. 根据权利要求10所述的方法,其中,所述侦听第一参考信号,包括:
    当所述第二网络设备的上行IoT呈现远端干扰特性时,侦听所述第一参考信号;或者,
    根据OAM配置,侦听所述第一参考信号。
  12. 根据权利要求10所述的方法,还包括:
    当侦听到所述第一参考信号时,进行远端干扰管理,所述远端干扰管理包括远端干扰避免和/或远端干扰删除。
  13. 根据权利要求10所述的方法,还包括:
    当侦听到所述第一参考信号时,发送所述第二参考信号。
  14. 根据权利要求10所述的方法,还包括:
    当没有侦听到所述第一参考信号时,停止远端干扰管理,所述远端干扰管理包括远端干扰避免和/或远端干扰删除。
  15. 根据权利要求10所述的方法,还包括:
    当没有侦听到所述第一参考信号时,停止发送所述第二参考信号。
  16. 根据权利要求10所述的方法,还包括:
    当第二时间窗内没有侦听到所述第一参考信号时,停止侦听所述第一参考信号;或者,
    根据OAM配置,停止侦听所述第一参考信号。
  17. 根据权利要求16所述的方法,其中,所述第二时间窗由第二网络设备配置或OAM配置。
  18. 根据权利要求14或16所述的方法,其中,所述没有侦听到所述第一参考信号是指以下至少一项:侦听到的所述第一参考信号的信号强度低于第三门限值;侦听到的所述第一参考信号的个数低于第四门限值。
  19. 根据权利要求10至18任一项所述的方法,其中,所述第一参考信号与所述第二参考信号为相同的参考信号,或者所述第一参考信号与所述第二参考信号为不同的参考信号。
  20. 一种第一网络设备,包括:第一收发机和第一处理器;
    所述第一收发机用于:发送第一参考信号,所述第一参考信号指示:所述第一网络设备受到远端干扰;
    所述第一收发机还用于:侦听第二参考信号,所述第二参考信号指示:存在远端干扰和/或大气波导。
  21. 一种第二网络设备,包括:第二收发机和第二处理器;
    所述第二收发机用于:侦听第一参考信号,所述第一参考信号指示第一网络设备受到远端干扰;
    所述第二收发机还用于:发送第二参考信号,所述第二参考信号指示存在远端干扰和/或大气波导。
  22. 一种网络设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至9中任一项所述的信号传输方法的步骤;或者实现如权利要求10至19中任一项所述的信号传输方法的步骤。
  23. 一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至9中任一项所述的信号传输方法的步骤;或者,所述计算机程序被处理器执行时实现如权利要求10至19中任一项所述的信号传输方法的步骤。
PCT/CN2019/097860 2018-08-06 2019-07-26 信号传输方法和设备 WO2020029810A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021506736A JP7182690B2 (ja) 2018-08-06 2019-07-26 信号伝送方法及び機器
US17/266,288 US20210306878A1 (en) 2018-08-06 2019-07-26 Signal transmission method and device
EP19846784.7A EP3836595B1 (en) 2018-08-06 2019-07-26 Signal transmission method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810886392.4A CN110809278B (zh) 2018-08-06 2018-08-06 信号传输方法和设备
CN201810886392.4 2018-08-06

Publications (1)

Publication Number Publication Date
WO2020029810A1 true WO2020029810A1 (zh) 2020-02-13

Family

ID=69414490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097860 WO2020029810A1 (zh) 2018-08-06 2019-07-26 信号传输方法和设备

Country Status (5)

Country Link
US (1) US20210306878A1 (zh)
EP (1) EP3836595B1 (zh)
JP (1) JP7182690B2 (zh)
CN (1) CN110809278B (zh)
WO (1) WO2020029810A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831021B (zh) * 2018-08-07 2023-03-28 中国移动通信有限公司研究院 一种信号传输方法及通信设备
CN112753268B (zh) * 2018-09-27 2023-10-17 中兴通讯股份有限公司 无线系统中的干扰管理
CN112956144B (zh) * 2018-11-02 2022-10-04 中兴通讯股份有限公司 无线系统中的干扰管理
EP3903519A1 (en) * 2019-02-15 2021-11-03 Apple Inc. Apparatus and method for protecting against victim masquerade attack in remote interference management
US20230217375A1 (en) * 2021-12-30 2023-07-06 T-Mobile Innovations Llc Massive Mimo Beamforming Mode Control To Combat Remote Interference Due To Tropospheric Ducting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655652A (zh) * 2012-01-05 2012-09-05 电信科学技术研究院 一种远端干扰的检测方法和设备
CN104956716A (zh) * 2012-11-26 2015-09-30 爱立信(中国)通信有限公司 用于测量干扰的方法和无线电网络节点
CN108243444A (zh) * 2016-12-26 2018-07-03 大唐移动通信设备有限公司 一种干扰检测的方法及装置
CN108289311A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 干扰测量方法及装置和定时偏差测量方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5690019B2 (ja) * 2011-04-08 2015-03-25 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線通信システムにおいて大気ダクトによって生じる干渉の低減
CN102655650B (zh) * 2012-01-05 2015-05-06 电信科学技术研究院 一种远端干扰基站的定位方法和设备
JP5781016B2 (ja) * 2012-06-04 2015-09-16 株式会社Nttドコモ 無線基地局、無線通信システム及び無線通信方法
CN105828349B (zh) * 2015-01-04 2019-04-23 中国移动通信集团公司 一种基于td-lte系统的远端干扰检测方法及装置
CN107534876B (zh) * 2015-05-29 2021-04-20 瑞典爱立信有限公司 用于识别通过大气波导传播的干扰的源的方法和设备
CN106941679B (zh) * 2016-01-04 2021-05-11 中兴通讯股份有限公司 一种基站及其实现信号处理的方法
EP3831118A4 (en) * 2018-07-28 2022-03-23 Qualcomm Incorporated REFERENCE SIGNAL FOR REMOTE INTERFERENCE MANAGEMENT
US11005586B2 (en) * 2018-07-31 2021-05-11 Qualcomm Incorporated Reference signal monitoring mechanism for remote interference management
CN110971379B (zh) * 2018-09-28 2022-10-18 海信集团有限公司 一种远程干扰管理方法及网络侧设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655652A (zh) * 2012-01-05 2012-09-05 电信科学技术研究院 一种远端干扰的检测方法和设备
CN104956716A (zh) * 2012-11-26 2015-09-30 爱立信(中国)通信有限公司 用于测量干扰的方法和无线电网络节点
CN108243444A (zh) * 2016-12-26 2018-07-03 大唐移动通信设备有限公司 一种干扰检测的方法及装置
CN108289311A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 干扰测量方法及装置和定时偏差测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3836595A4 *

Also Published As

Publication number Publication date
CN110809278B (zh) 2021-10-22
US20210306878A1 (en) 2021-09-30
EP3836595B1 (en) 2024-06-12
JP2021534632A (ja) 2021-12-09
EP3836595A4 (en) 2022-05-04
CN110809278A (zh) 2020-02-18
EP3836595A1 (en) 2021-06-16
JP7182690B2 (ja) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2020029810A1 (zh) 信号传输方法和设备
CN111972004B (zh) Scell bfr期间的用户设备接收机空间滤波器配置的方法和装置
KR102146149B1 (ko) 무선 통신 네트워크에서의 전이중 동작
KR101552073B1 (ko) 셀들의 ta 그룹 변화들을 검출하기 위한 방법 및 장치
JPWO2020012619A1 (ja) ユーザ端末
JP2023116528A (ja) 装置、方法及びコンピュータープログラム
KR20140010395A (ko) 이종 셀룰러 네트워크에서 랜덤 액세스 간섭 완화를 위한 방법 및 시스템
JPWO2020066023A1 (ja) ユーザ端末及び無線通信方法
CN110324120B (zh) 一种参考信号的发送方法及装置、设备、存储介质
WO2022028543A1 (zh) 资源复用指示方法、装置和中继节点
WO2020192764A1 (zh) 处理方法及设备
CN112655174B (zh) 用于无线通信的装置和方法
WO2021227985A1 (zh) 同步信号块的处理方法及装置、通信设备和可读存储介质
CN111837351B (zh) 用于传输信号的方法及相应的用户终端、基站
JPWO2020166079A1 (ja) ユーザ端末及び無線通信方法
WO2013138976A1 (en) Method and apparatus for facilitating a s1 handover of a mobile terminal that has experienced in-device coexistence interference at one or more frequencies
CN110944346B (zh) 一种信号发送方法及设备
WO2020029827A1 (zh) 信号接收方法及发送方法、参数配置方法、网络侧设备
WO2019029462A1 (zh) 一种干扰测量方法及装置
CN110752900B (zh) 参考信号侦听方法及装置、通信设备、存储介质
US11671882B2 (en) User equipment
CN112671519B (zh) 确定参考信号侦听时机的方法及装置
CN108737016B (zh) 用于wce模式的激活和去激活的方法、设备和计算机可读介质
CN110831021B (zh) 一种信号传输方法及通信设备
CN110831046B (zh) 一种信号传输方法及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019846784

Country of ref document: EP

Effective date: 20210309