WO2020029493A1 - 一种最大功率点追踪方法 - Google Patents

一种最大功率点追踪方法 Download PDF

Info

Publication number
WO2020029493A1
WO2020029493A1 PCT/CN2018/120082 CN2018120082W WO2020029493A1 WO 2020029493 A1 WO2020029493 A1 WO 2020029493A1 CN 2018120082 W CN2018120082 W CN 2018120082W WO 2020029493 A1 WO2020029493 A1 WO 2020029493A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
fine
fine adjustment
adjustment mode
mode
Prior art date
Application number
PCT/CN2018/120082
Other languages
English (en)
French (fr)
Inventor
鲁海波
徐卫军
刘滔
黄敏
方刚
卢进军
Original Assignee
江苏固德威电源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏固德威电源科技股份有限公司 filed Critical 江苏固德威电源科技股份有限公司
Publication of WO2020029493A1 publication Critical patent/WO2020029493A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention belongs to the field of photovoltaic power generation, and particularly relates to a method for tracking the maximum power point of an input side of an inverter PV.
  • the existing MPPT algorithm has obvious differences in the tracking effect of PV curves of different voltage levels and different power levels, and there is a problem that the algorithm judges the direction due to sampling noise or control power fluctuation.
  • the purpose of the present invention is to provide a maximum power point tracking method that can accurately track PV curves of different voltage levels and different power levels.
  • a method for tracking a maximum power point is applied to a controller of a DC power generating device.
  • the method for tracking the maximum power point is: an average voltage of the DC power generating device and a voltage in a booster circuit connected to the DC power generating device.
  • the average inductor current is used as an input parameter.
  • power calculation is performed to obtain the PV curve of the DC power generating device, and then output the The control reference voltage of the DC power generating device to adjust the DC power generating device;
  • the adjustment modes for adjusting the DC power generation device include a single-direction coarse adjustment mode, a two-direction fine adjustment mode, and a two-direction fine adjustment mode; when the power change value of the DC power generation device before and after the adjustment is less than 0, The coarse adjustment mode is switched to the fine adjustment mode; when the power change value of the DC power generating device before and after the adjustment is less than a power threshold, the fine adjustment mode is switched to the fine adjustment mode;
  • the power threshold is dynamically determined according to the actual power of the DC power generation device
  • the fine-tuning direction used in the fine-tuning mode and the fine-tuning direction of the fine-tuning mode are dynamically determined according to the power change value and the voltage change value of the DC power generation device;
  • the coarse adjustment step used in the coarse adjustment mode, the fine adjustment step used in the fine adjustment mode, and the fine adjustment step used in the fine adjustment mode are all dynamically determined according to the open-circuit voltage value of the DC power generation device;
  • the number of coarse adjustment steps used in the coarse adjustment mode, the number of fine adjustment steps used in the fine adjustment mode, and the number of fine adjustment steps used in the fine adjustment mode are all determined according to the adjustment mode.
  • a plurality of sections are divided according to a ratio of the actual power of the DC power generating device to its rated power, and each section corresponds to one of the power thresholds.
  • the power threshold is P1; when the actual power of the DC power generating device is greater than or equal to 2% of its rated power and less than its rated power When the power is 5%, the power threshold is P2; when the actual power of the DC power generating device is greater than or equal to 5% of its rated power and less than 10% of its rated power, the power threshold is P3; when When the actual power of the DC power generating device is greater than or equal to 10% of its rated power and less than 20% of its rated power, the power threshold is P4; when the actual power of the DC power generating device is greater than or equal to 20 of its rated power %%, the power threshold is P5; P1 ⁇ P2 ⁇ P3 ⁇ P4 ⁇ P5.
  • the fine adjustment direction adopted by the fine adjustment mode or the fine adjustment direction of the fine adjustment mode is rightward. Adjustment; when the power change value of the DC power generation device is> 0 and the voltage change value of the DC power generation device is ⁇ 0, the fine adjustment direction adopted by the fine adjustment mode or the fine adjustment direction of the fine adjustment mode is adjusted to the left ; When the power change value of the DC power generating device is ⁇ 0 and the voltage change value of the DC power generating device is> 0, the fine adjustment direction adopted by the fine adjustment mode or the fine adjustment direction of the fine adjustment mode is adjusted to the left; When the power change value of the DC power generation device is ⁇ 0 and the voltage change value of the DC power generation device is ⁇ 0, the fine adjustment direction adopted by the fine adjustment mode or the fine adjustment direction of the fine adjustment mode is adjusted to the right.
  • the fine-tuning step used in the fine-tuning mode the open-circuit voltage value of the DC power generating device * k3; k1> k2> k3.
  • the coarse adjustment step used in the coarse adjustment mode, the fine adjustment step used in the fine adjustment mode, and the fine adjustment step used in the fine adjustment mode are respectively set with corresponding amplitude ranges.
  • the coarse adjustment step used in the coarse adjustment mode / the fine adjustment step used in the fine adjustment mode / the fine adjustment step used in the fine adjustment mode exceeds the corresponding amplitude range, adjust it to the corresponding amplitude Within range.
  • Continuous multi-point disturbance mediation is used for adjustment.
  • the present invention has the following advantages compared with the prior art:
  • the method of the present invention solves the problem that the conventional MPPT algorithm has different tracking effects on PV curves of different voltage levels and power levels. By dynamically adjusting the algorithm parameters, It can have the same tracking effect on the PV curve of the full operating voltage level and power level range, and can also avoid the wrong judgment of the disturbance direction.
  • FIG. 1 is a schematic diagram of input and output parameters in the maximum power point tracking method of the present invention.
  • FIG. 2 is a schematic flow chart of an adjustment mode determination in the maximum power point tracking method of the present invention.
  • FIG. 3 is a schematic flowchart of determining a power threshold in the maximum power point tracking method of the present invention.
  • FIG. 4 is a schematic diagram of a compensation determination process in the maximum power point tracking method of the present invention.
  • FIG. 5 is a schematic diagram of continuous multi-point disturbance and adjustment direction determination in the maximum power point tracking method of the present invention.
  • Embodiment 1 A method for tracking a maximum power point applied to a controller of a DC power generating device is: the average voltage of a DC power generating device (such as a photovoltaic power generating device) and the inductance in a booster circuit connected to the DC power generating device The average current is used as an input parameter. Based on the average voltage of the DC power generation device and the average current of the inductor in the booster circuit connected to the DC power generation device, power calculation is performed to obtain the PV curve of the DC power generation device, and then the control reference voltage of the DC power generation device is output. Adjust the DC power generation device, as shown in Figure 1.
  • the maximum power point tracking method adjusts a DC power generating device through a control reference voltage of the output DC power generating device, including three adjustment modes, namely a coarse adjustment mode, a fine adjustment mode, and a fine adjustment mode, to ensure that the disturbance algorithm has both Speed and stability.
  • the coarse adjustment mode is implemented based on the coarse adjustment direction, the number of coarse adjustment steps, and the coarse adjustment step size.
  • the coarse adjustment direction of the coarse adjustment mode is unidirectional, and can only be adjusted to the left, that is, the control of the output DC power generation device.
  • the reference voltage decreases according to the coarse adjustment step size and the number of coarse adjustment steps.
  • the fine-tuning mode is implemented according to the fine-tuning direction, the number of fine-tuning steps, and the fine-tuning step size.
  • the fine-tuning direction of the fine-tuning mode is two directions, and can be adjusted to the left or right.
  • the fine-tuning mode is implemented according to the fine-tuning direction, the number of fine-tuning steps, and the fine-tuning step size.
  • the fine-tuning direction of the fine-tuning mode is also two directions, that is, it can be adjusted to the left or right. Among them, the adjustment mode has fewer adjustment steps than the fine adjustment mode, which can keep the disturbance power point stable.
  • the coarse adjustment mode is switched to the fine adjustment mode.
  • the fine-tuning mode is switched to the fine-tuning mode.
  • the threshold value of the peak of the PV curve is determined according to the current dynamic change of the power of the DC power generating device, that is, the power threshold for switching between the fine tuning mode and the fine tuning mode, so the power threshold is dynamically determined according to the actual power of the DC power generating device. Multiple intervals can be divided according to the ratio of the actual power of the DC power generation device to its rated power, and each interval corresponds to a power threshold.
  • the power threshold when the actual power of a DC power plant is less than 2% of its rated power, the power threshold is P1; when the actual power of a DC power plant is greater than or equal to 2% of its rated power and less than its rated power At 5%, the power threshold is P2; when the actual power of the DC power plant is greater than or equal to 5% of its rated power and less than 10% of its rated power, the power threshold is P3; when the actual power of the DC power plant is greater than or equal to When the rated power is 10% and less than 20% of its rated power, the power threshold is P4; when the actual power of the DC power generation device is greater than or equal to 20% of its rated power, the power threshold is P5.
  • the stability of the peak of the algorithm under different PV power curves is improved.
  • the power threshold of P1-P5 needs to be determined according to the actual running status of different PV power level curves, usually P1 ⁇ P2 ⁇ P3 ⁇ P4 ⁇ P5.
  • the number of coarse adjustment steps used in the coarse adjustment mode, the number of fine adjustment steps used in the fine adjustment mode, and the number of fine adjustment steps used in the fine adjustment mode are determined according to the adjustment mode.
  • the coarse adjustment step used in the coarse adjustment mode, the fine adjustment step used in the fine adjustment mode, and the fine adjustment step used in the fine adjustment mode are dynamically determined according to the open-circuit voltage value of the DC power generation device. As shown in FIG.
  • the fine-tuning step length of the open-circuit voltage value of the DC power generation device * k3; k1> k2> k3.
  • the coarse adjustment step used in the mode / fine adjustment step used in the mode / fine adjustment step used in the fine adjustment mode exceeds the corresponding amplitude range [dVmin, dVmax], adjust it to the corresponding amplitude range, such as The end point of the amplitude range closest to the calculated value is used.
  • the adaptability of the perturbation algorithm to different voltage level curves can be improved.
  • the fine-tuning direction used in the fine-tuning mode and the fine-tuning direction of the fine-tuning mode are dynamically determined according to the power change value and voltage change value of the DC power generation device. As shown in FIG. 5, when the power change value of the DC power generation device is greater than 0 and the voltage change value of the DC power generation device is greater than 0, the fine adjustment direction adopted by the fine adjustment mode or the fine adjustment direction of the fine adjustment mode is adjusted to the right; When the power change value of the power generating device is> 0 and the voltage change value of the DC power generating device is ⁇ 0, the fine adjustment direction adopted by the fine adjustment mode or the fine adjustment direction of the fine adjustment mode is adjusted to the left; when the power change value of the DC power generation device is ⁇ 0 and When the voltage change value of the DC power generation device is> 0, the fine adjustment direction used in the fine adjustment mode or the fine adjustment direction of the fine adjustment mode is leftward adjustment; when the power change value of the DC power generation device is ⁇ 0 and the voltage change value of the DC power
  • the left adjustment count / right adjustment count is assigned according to the adjustment mode and the adjustment direction determined by the last adjustment speed to make it equal to the number of steps required by the current adjustment mode.
  • the continuous multi-point disturbance mediation method is used for adjustment, that is, the disturbance adjustment is performed multiple times in a row.
  • Each adjustment mode is composed of several disturbance adjustments.
  • Each disturbance adjustment corresponds to one step of the current adjustment mode.
  • the control reference voltage of the DC power generation device is decreased or increased according to a fine adjustment step / fine adjustment step, and then the corresponding left adjustment count / right adjustment count is decremented.
  • the number of disturbance adjustments performed is counted by the adjustment count.
  • the adjustment of the current adjustment mode is completed once. Then, the adjustment count is returned to zero, and the power change value and voltage change value of the DC power generating device before and after the implementation of the main body adjustment mode are calculated, so that the corresponding adjustment mode and direction of the next adjustment can be determined.
  • the problem of incorrect judgment of the direction of the perturbation algorithm caused by sampling noise or control power fluctuations can be solved; and the number of perturbation points in the left and right directions, that is, the number of steps can be adjusted, and the perturbation algorithm direction characteristics can be configured according to requirements.
  • the number of adjustment steps is determined by the adjustment mode, and the specific parameters N1-N5 are determined according to the actual MPPT tracking effect.

Abstract

一种最大功率点追踪方法,包括:将直流发电装置的平均电压、其升压电路中的电感平均电流作为输入参数,进行功率计算,然后输出直流发电装置的控制参考电压而对直流发电装置进行调节。调节模式包括粗调模式、细调模式和微调模式;当直流发电装置的功率变化值小于0时,由粗调模式切换至细调模式;当功率变化值小于功率阈值时,由细调模式切换至微调模式。功率阈值根据直流发电装置的实际功率而动态确定。细调方向、微调方向均根据直流发电装置的功率变化值和电压变化值而动态确定。粗调步长、细调步长、微调步长均根据直流发电装置的开路电压值而动态确定。最大功率点追踪方法能对全工作电压等级与功率等级范围的PV曲线具备相同的追踪效果,还能够避免扰动方向判断错误。

Description

一种最大功率点追踪方法 技术领域
本发明属于光伏发电领域,具体涉及到逆变器PV输入侧的最大功率点追踪的方法。
背景技术
现有MPPT算法对于不同电压等级、不同功率等级的PV曲线的追踪效果差异明显,并且存在因采样噪声或者控制功率波动导致的算法判断方向错误的问题。
发明内容
本发明的目的是提供一种能够适应不同电压等级、不同功率等级的PV曲线而进行准确追踪的最大功率点追踪方法。
为达到上述目的,本发明采用的技术方案是:
一种最大功率点追踪方法,应用于直流发电装置的控制器中,所述最大功率点追踪方法为:将所述直流发电装置的平均电压、所述直流发电装置所连接的升压电路中的电感平均电流作为输入参数,基于所述直流发电装置的平均电压、所述直流发电装置所连接的升压电路中的电感平均电流进行功率计算从而获取所述直流发电装置的PV曲线,然后输出所述直流发电装置的控制参考电压而对所述直流发电装置进行调节;
对所述直流发电装置进行调节的调节模式包括单方向的粗调模式、双方向的细调模式和双方向的微调模式;当调节前后所述直流发电装置的功率变化值小于0时,由所述粗调模式切换至所述细调模式;当调节前后所述直流发电装置的功率变化值小于功率阈值时,由所述细调模式切换至所述微调模式;
所述功率阈值根据所述直流发电装置的实际功率而动态确定;
所述细调模式采用的细调方向、所述微调模式的微调方向均根据所述直流发电装置的功率变化值和电压变化值而动态确定;
所述粗调模式采用的粗调步长、所述细调模式采用的细调步长、所述微调模式采用的微调步长均根据所述直流发电装置的开路电压值而动态确定;
所述粗调模式采用的粗调步数、所述细调模式采用的细调步数、所述微调模式采用的微调步数均根据所述调节模式而确定。
优选的,根据所述直流发电装置的实际功率与其额定功率的比值划分多个区间,每个区间对应一个所述功率阈值。
优选的,当所述直流发电装置的实际功率小于其额定功率的2%时,所述功率阈值为P1;当所述直流发电装置的实际功率大于或等于其额定功率的2%且小于其额定功率的5%时,所述功率阈值为P2;当所述直流发电装置的实际功率大于或等于其额定功率的5%且小于其额定功率的10%时,所述功率阈值为P3;当所述直流发电装置的实际功率大于或等于其额定功率的10%且小于其额定功率的20%时,所述功率阈值为P4;当所述直流发电装置的实际功率大于或等于其额定功率的20%且时,所述功率阈值为P5;P1<P2<P3<P4<P5。
优选的,当所述直流发电装置的功率变化值>0且所述直流发电装置的电压变化值>0时,所述细调模式采用的细调方向或所述微调模式的微调方向为向右调节;当所述直流发电装置的功率变化值>0且所述直流发电装置的电压变化值≤0时,所述细调模式采用的细调方 向或所述微调模式的微调方向为向左调节;当所述直流发电装置的功率变化值≤0且所述直流发电装置的电压变化值>0时,所述细调模式采用的细调方向或所述微调模式的微调方向为向左调节;当所述直流发电装置的功率变化值≤0且所述直流发电装置的电压变化值≤0时,所述细调模式采用的细调方向或所述微调模式的微调方向为向右调节。
优选的,所述粗调模式采用的粗调步长=所述直流发电装置的开路电压值*k1;所述细调模式采用的细调步长=所述直流发电装置的开路电压值*k2;所述微调模式采用的微调步长=所述直流发电装置的开路电压值*k3;k1>k2>k3。
优选的,所述粗调模式采用的粗调步长、所述细调模式采用的细调步长、所述微调模式采用的微调步长分别设置有对应的幅值范围,当计算出的所述粗调模式采用的粗调步长/所述细调模式采用的细调步长/所述微调模式采用的微调步长超出对应的幅值范围时,将其调整至对应的所述幅值范围内。
进行调节时采用连续多点扰动调解方式。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:本发明的方法解决了常规MPPT算法对不同电压等级、功率等级PV曲线追踪效果存在差异的问题,通过动态调节算法参数,使其能对全工作电压等级与功率等级范围的PV曲线具备相同的追踪效果,还能够避免扰动方向判断错误。
附图说明
附图1为本发明的最大功率点追踪方法中输入输出参数示意图。
附图2为本发明的最大功率点追踪方法中调节模式判定流程示意图。
附图3为本发明的最大功率点追踪方法中功率阈值确定流程示意图。
附图4为本发明的最大功率点追踪方法中补偿确定流程示意图。
附图5为本发明的最大功率点追踪方法中连续多点扰动和调节方向确定示意图。
具体实施方式
下面结合附图所示的实施例对本发明作进一步描述。
实施例一:一种应用于直流发电装置的控制器中的最大功率点追踪方法,为:将直流发电装置(如光伏发电装置)的平均电压、直流发电装置所连接的升压电路中的电感平均电流作为输入参数,基于直流发电装置的平均电压、直流发电装置所连接的升压电路中的电感平均电流进行功率计算从而获取直流发电装置的PV曲线,然后输出直流发电装置的控制参考电压而对直流发电装置进行调节,如附图1所示。使用直流发电装置的平均电压和直流发电装置所连接的升压电路中的电感平均电流进行MPPT算法的功率计算,可以降低使用瞬时电感电流值时,不同boost占空比下电感电流纹波对MPPT功率计算精度的影响。
该最大功率点追踪方法通过输出的直流发电装置的控制参考电压而对直流发电装置进行的调节,包括三种调节模式,分别为粗调模式、细调模式和微调模式,以确保扰动算法同时具备快速性与稳定性。粗调模式依据粗调方向、粗调步数和粗调步长而实施,本方法中,粗调模式的粗调方向为单方向,仅能向左进行调解,即输出的直流发电装置的控制参考电压依据粗调步长和粗调步数而减小。细调模式依据细调方向、细调步数和细调步长而实施,本方法中,细调模式的细调方向为双方向,既可以向左调节也可以向右调节。微调模式依据微调方向、微调步数和微调步长而实施,本方法中,微调模式的微调方向也为双方向,即可以向左或向右调节。其中,调模式较细调模式调节步数变少,可以使扰动功率点保持稳定。
初始时,先进入粗调模式,然后根据调节前后直流发电装置的功率变化值来确定下一步的调节模式。当调节前后直流发电装置的功率变化值(即调节后的实际功率值与调节前的实际功率值的差值)小于0时,由粗调模式切换至细调模式。当调节前后直流发电装置的功率变化值小于功率阈值时,由细调模式切换至微调模式。当进行万能细调模式或微调模式后,需要根据直流发电装置的电压变化值进行判断,若未超过电压变化允许值,则继续细调或微调,若超过电压变化允许值,则重新开始粗调。
根据当前直流发电装置的功率动态改变判定PV曲线峰顶的阈值,即用于细调模式和微调模式切换的功率阈值,故功率阈值根据直流发电装置的实际功率而动态确定。可以根据直流发电装置的实际功率与其额定功率的比值划分多个区间,每个区间对应一个功率阈值。如附图3所示,当直流发电装置的实际功率小于其额定功率的2%时,功率阈值为P1;当直流发电装置的实际功率大于或等于其额定功率的2%且小于其额定功率的5%时,功率阈值为P2;当直流发电装置的实际功率大于或等于其额定功率的5%且小于其额定功率的10%时,功率阈值为P3;当直流发电装置的实际功率大于或等于其额定功率的10%且小于其额定功率的20%时,功率阈值为P4;当直流发电装置的实际功率大于或等于其额定功率的20%且时,功率阈值为P5。通过该方式以提高算法在不同PV功率曲线下峰顶的稳定性。其中P1-P5的功率阈值需根据实际不同PV功率等级曲线运行状态确定,通常P1<P2<P3<P4<P5。P1、P2、P3、P4、P5可由调试获得,例如P1=0.8W,P2=1W,P3=2W,P4=8W,P5=10W。
粗调模式采用的粗调步数、细调模式采用的细调步数、微调模式采用的微调步数均根据调节模式而确定。粗调模式采用的粗调步长、细调模式采用的细调步长、微调模式采用的微调步长均根据直流发电装置的开路电压值而动态确定。如附图4所示,粗调模式采用的粗调步长=直流发电装置的开路电压值*k1;细调模式采用的细调步长=直流发电装置的开路电压值*k2;微调模式采用的微调步长=直流发电装置的开路电压值*k3;k1>k2>k3。还可以对粗调模式采用的粗调步长、细调模式采用的细调步长、微调模式采用的微调步长分别设置有对应的幅值范围[dVmin,dVmax],当计算出的粗调模式采用的粗调步长/细调模式采用的细调步长/微调模式采用的微调步长超出对应的幅值范围[dVmin,dVmax]时,将其调整至对应的幅值范围内,如采用与计算值最接近的幅值范围端点值。通过对步长的动态调整,可以提高扰动算法对不同电压等级曲线的适应性。其中k1、k2、k3,dVmin,dVmax需根据实际不同电压等级的PV曲线下的运行状态调试确定,例如k1=1%,k2=0.5%,k3=0.1%。
细调模式采用的细调方向、微调模式的微调方向均根据直流发电装置的功率变化值和电压变化值而动态确定。如附图5所示,当直流发电装置的功率变化值>0且直流发电装置的电压变化值>0时,细调模式采用的细调方向或微调模式的微调方向为向右调节;当直流发电装置的功率变化值>0且直流发电装置的电压变化值≤0时,细调模式采用的细调方向或微调模式的微调方向为向左调节;当直流发电装置的功率变化值≤0且直流发电装置的电压变化值>0时,细调模式采用的细调方向或微调模式的微调方向为向左调节;当直流发电装置的功率变化值≤0且直流发电装置的电压变化值≤0时,细调模式采用的细调方向或微调模式的微调方向为向右调节。
如附图5所示,当执行当前一次调节模式时,先依据上一次调节速确定的调节模式和调节方向来赋值左调节计数/右调节计数,使其等于当前调剂模式所需的步数,进行调节时采 用连续多点扰动调解方式,即连续多次进行扰动调节,每一次调节模式是由若干次扰动调节构成,每一次扰动调节对应当前调节模式的一步。每进行一次扰动调节,使直流发电装置的控制参考电压按照一个细调步长/微调步长进行递减或递增,然后对应的左调节计数/右调节计数累减。通过调节计数对所进行的扰动调节次数进行计次,当达到当前调节模式所需的步数后,完成了一次当前所需的调节模式的调节。然后将调节计数归零,计算本体调节模式实施前后直流发电装置的功率变化值和电压变化值,从而可以确定下一次调节对应的调节模式和方向。通过单方向连续多点扰动,可以解决因采样噪声或者控制功率波动导致的扰动算法方向判断错误问题;并且左右方向扰动点数,即步数可调,根据需求配置扰动算法方向特性。其中调节步数由调节模式决定,具体参数N1-N5根据实际MPPT追踪效果调试确定。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (7)

  1. 一种最大功率点追踪方法,应用于直流发电装置的控制器中,其特征在于:所述最大功率点追踪方法为:将所述直流发电装置的平均电压、所述直流发电装置所连接的升压电路中的电感平均电流作为输入参数,基于所述直流发电装置的平均电压、所述直流发电装置所连接的升压电路中的电感平均电流进行功率计算从而获取所述直流发电装置的PV曲线,然后输出所述直流发电装置的控制参考电压而对所述直流发电装置进行调节;
    对所述直流发电装置进行调节的调节模式包括单方向的粗调模式、双方向的细调模式和双方向的微调模式;当调节前后所述直流发电装置的功率变化值小于0时,由所述粗调模式切换至所述细调模式;当调节前后所述直流发电装置的功率变化值小于功率阈值时,由所述细调模式切换至所述微调模式;
    所述功率阈值根据所述直流发电装置的实际功率而动态确定;
    所述细调模式采用的细调方向、所述微调模式的微调方向均根据所述直流发电装置的功率变化值和电压变化值而动态确定;
    所述粗调模式采用的粗调步长、所述细调模式采用的细调步长、所述微调模式采用的微调步长均根据所述直流发电装置的开路电压值而动态确定;
    所述粗调模式采用的粗调步数、所述细调模式采用的细调步数、所述微调模式采用的微调步数均根据所述调节模式而确定。
  2. 根据权利要求1所述的一种最大功率点追踪方法,其特征在于:根据所述直流发电装置的实际功率与其额定功率的比值划分多个区间,每个区间对应一个所述功率阈值。
  3. 根据权利要求2所述的一种最大功率点追踪方法,其特征在于:当所述直流发电装置的实际功率小于其额定功率的2%时,所述功率阈值为P1;当所述直流发电装置的实际功率大于或等于其额定功率的2%且小于其额定功率的5%时,所述功率阈值为P2;当所述直流发电装置的实际功率大于或等于其额定功率的5%且小于其额定功率的10%时,所述功率阈值为P3;当所述直流发电装置的实际功率大于或等于其额定功率的10%且小于其额定功率的20%时,所述功率阈值为P4;当所述直流发电装置的实际功率大于或等于其额定功率的20%且时,所述功率阈值为P5;P1<P2<P3<P4<P5。
  4. 根据权利要求1所述的一种最大功率点追踪方法,其特征在于:当所述直流发电装置的功率变化值>0且所述直流发电装置的电压变化值>0时,所述细调模式采用的细调方向或所述微调模式的微调方向为向右调节;当所述直流发电装置的功率变化值>0且所述直流发电装置的电压变化值≤0时,所述细调模式采用的细调方向或所述微调模式的微调方向为向左调节;当所述直流发电装置的功率变化值≤0且所述直流发电装置的电压变化值>0时,所述细调模式采用的细调方向或所述微调模式的微调方向为向左调节;当所述直流发电装置的功率变化值≤0且所述直流发电装置的电压变化值≤0时,所述细调模式采用的细调方向或所述微调模式的微调方向为向右调节。
  5. 根据权利要求1所述的一种最大功率点追踪方法,其特征在于:所述粗调模式采用的粗调步长=所述直流发电装置的开路电压值*k1;所述细调模式采用的细调步长=所述直流发电装置的开路电压值*k2;所述微调模式采用的微调步长=所述直流发电装置的开路电压值*k3;k1>k2>k3。
  6. 根据权利要求5所述的一种最大功率点追踪方法,其特征在于:所述粗调模式采用的粗调步长、所述细调模式采用的细调步长、所述微调模式采用的微调步长分别设置有对应的幅值范围,当计算出的所述粗调模式采用的粗调步长/所述细调模式采用的细调步长/所述 微调模式采用的微调步长超出对应的幅值范围时,将其调整至对应的所述幅值范围内。
  7. 根据权利要求1所述的一种最大功率点追踪方法,其特征在于:进行调节时采用连续多点扰动调解方式。
PCT/CN2018/120082 2018-08-08 2018-12-10 一种最大功率点追踪方法 WO2020029493A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810896228.1A CN108983862B (zh) 2018-08-08 2018-08-08 一种最大功率点追踪方法
CN201810896228.1 2018-08-08

Publications (1)

Publication Number Publication Date
WO2020029493A1 true WO2020029493A1 (zh) 2020-02-13

Family

ID=64555635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120082 WO2020029493A1 (zh) 2018-08-08 2018-12-10 一种最大功率点追踪方法

Country Status (2)

Country Link
CN (1) CN108983862B (zh)
WO (1) WO2020029493A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163067A (zh) * 2011-04-11 2011-08-24 武汉万鹏科技有限公司 太阳能最大功率跟踪方法及太阳能充电装置
CN103019294A (zh) * 2011-09-28 2013-04-03 上海康威特吉能源技术有限公司 一种自适应扰动频率和步长的最大功率点跟踪方法
CN103488238A (zh) * 2013-09-24 2014-01-01 许继集团有限公司 应对光照强度快速变化的自适应变步长mppt控制方法
CN104104112A (zh) * 2014-08-08 2014-10-15 深圳市创皓科技有限公司 用于两级拓扑结构的光伏并网逆变器的mppt控制方法
CN106681423A (zh) * 2016-10-17 2017-05-17 国网重庆市电力公司电力科学研究院 一种光伏电池的最大功率点跟踪方法和装置
CN107491137A (zh) * 2017-09-29 2017-12-19 特变电工西安电气科技有限公司 一种变步长定速降额限功率mppt扰动方法
CN107918437A (zh) * 2017-09-21 2018-04-17 武汉工程大学 渐进型变步长光伏阵列最大功率点跟踪方法及其系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088256B (zh) * 2010-12-16 2012-12-19 永济新时速电机电器有限责任公司 光伏电池最大功率点跟踪控制方法
CN102736661B (zh) * 2012-07-03 2014-06-11 南京冠亚电源设备有限公司 一种光伏系统中的mppt控制方法
JP6555471B2 (ja) * 2015-08-05 2019-08-07 富士電機株式会社 太陽光発電用パワーコンディショナ及び太陽光発電システム
CN107168451B (zh) * 2017-06-27 2018-09-04 广东威阳科技有限公司 太阳能光伏阵列变步长mppt控制系统与方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163067A (zh) * 2011-04-11 2011-08-24 武汉万鹏科技有限公司 太阳能最大功率跟踪方法及太阳能充电装置
CN103019294A (zh) * 2011-09-28 2013-04-03 上海康威特吉能源技术有限公司 一种自适应扰动频率和步长的最大功率点跟踪方法
CN103488238A (zh) * 2013-09-24 2014-01-01 许继集团有限公司 应对光照强度快速变化的自适应变步长mppt控制方法
CN104104112A (zh) * 2014-08-08 2014-10-15 深圳市创皓科技有限公司 用于两级拓扑结构的光伏并网逆变器的mppt控制方法
CN106681423A (zh) * 2016-10-17 2017-05-17 国网重庆市电力公司电力科学研究院 一种光伏电池的最大功率点跟踪方法和装置
CN107918437A (zh) * 2017-09-21 2018-04-17 武汉工程大学 渐进型变步长光伏阵列最大功率点跟踪方法及其系统
CN107491137A (zh) * 2017-09-29 2017-12-19 特变电工西安电气科技有限公司 一种变步长定速降额限功率mppt扰动方法

Also Published As

Publication number Publication date
CN108983862B (zh) 2021-02-02
CN108983862A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
US9257864B2 (en) Input power controller for AC/DC battery charging
CN107248756B (zh) 一种提高微电网中多逆变器并联功率分配精度的控制方法
CN100405733C (zh) 对逆变器进行变环宽滞环电流控制的方法及电路
CN112491097B (zh) 一种直流储能功率-电压调节方法
CN104065077A (zh) 串联电压补偿装置的控制方法
CN106208031A (zh) 直流微网中可抑制环流的改进下垂控制方法和系统
CN110429819B (zh) 双向dc-dc变换器的前馈型占空比控制方法
CN105406488A (zh) 一种基于光伏逆变器无功调节的过电压抑制方法
CN109309389A (zh) 一种光储系统直流母线电压稳定控制方法和控制系统
CN108667309B (zh) 用于有轨电车辅助变流系统的dc-dc控制方法
WO2020029493A1 (zh) 一种最大功率点追踪方法
CN102508511B (zh) 基于功率扰动的光伏逆变器mppt控制方法
CN104218605A (zh) 三相电压源型并网逆变器的无冲击电流并网方法
CN107872072B (zh) L型并网逆变器电流控制系统及其有源高频阻尼方法
CN103513693A (zh) 基于单变量电流法光伏发电最大功率跟踪控制系统及方法
CN111404141A (zh) 抑制直流电网中光伏变换器输出振荡的控制方法及系统
CN114499257B (zh) 一种低短路比下提高并网逆变器稳定性的控制方法
CN105470981A (zh) 一种基于暂态能量函数综合指标的电力系统暂态稳定智能调控方法
CN104485687B (zh) 基于电流连续模式和电流断续模式切换的光伏并网逆变器pi谐振控制方法
CN112467716B (zh) 一种用于直流微电网的自适应下垂控制方法
CN106505621B (zh) 逆变器及其控制方法和装置
CN104319778B (zh) 一种调节电网电压的方法
CN110868091A (zh) 基于微分平坦的车载充电机pfc变换器的非线性控制方法
CN110572068B (zh) 一种附加控制信号的电流源接入装置
Chen et al. Adaptive Integrated Coordinated Control Strategy Based on Sliding Mode Control for MMC-MTDC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929440

Country of ref document: EP

Kind code of ref document: A1