WO2020029184A1 - 上行发射功率确定方法、网络设备和存储介质 - Google Patents
上行发射功率确定方法、网络设备和存储介质 Download PDFInfo
- Publication number
- WO2020029184A1 WO2020029184A1 PCT/CN2018/099676 CN2018099676W WO2020029184A1 WO 2020029184 A1 WO2020029184 A1 WO 2020029184A1 CN 2018099676 W CN2018099676 W CN 2018099676W WO 2020029184 A1 WO2020029184 A1 WO 2020029184A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- uci
- repetitions
- network device
- phr
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/345—Interference values
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/382—Monitoring; Testing of propagation channels for resource allocation, admission control or handover
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/08—Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/243—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/367—Power values between minimum and maximum limits, e.g. dynamic range
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
- H04W52/48—TPC being performed in particular situations during retransmission after error or non-acknowledgment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/242—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/365—Power headroom reporting
Definitions
- the present application relates to communication technologies, and in particular, to a method for determining uplink transmit power, a network device, and a storage medium.
- NB-IoT NarrowBand Internet of Things
- the interference can be divided into interference from outside the NB-IoT system and interference from the NB-IoT system.
- the introduction of interference and networking are also relevant.
- the interference in the system is mainly caused by the high transmit power of the users in the adjacent area or the large load in the adjacent area.
- the uplink power is controlled by open loop power and is related to the coverage level and the number of channel repetitions.
- the protocol stipulates that when the uplink physical uplink shared channel (PUSCH) repetition times> 2, the terminal fixedly uses P CMAX as the transmission power (full power transmission); when the repetition times ⁇ 2, the transmit power is calculated according to the open loop power control .
- Uplink Control Information (UCI) is transmitted on the PUSCH, and its transmit power meets the PUSCH power control.
- the number of UCI repetitions is that the base station does not support adaptive adjustment according to the coverage level configuration. The higher the coverage level, the greater the number of UCI repetitions configured.
- the terminal selects a coverage level according to a downlink reference signal received power (RSRP) or a signal to interference plus noise ratio (SINR), and then reports the coverage level to the base station, and the base station performs the coverage according to the reported coverage level.
- RSRP downlink reference signal received power
- SINR signal to interference plus noise ratio
- the number of UCI repetitions is also directly determined by the downlink coverage level.
- the terminal chooses access level 1 or 2 due to the limitation of the downlink SINR, the UCI repetition number configuration is likely to be greater than 2 and the UCI repetition number is configured only once. This will cause the UCI transmission power of these terminals to be always in accordance with At full power, the noise floor will continue to rise for services with frequent heartbeat packets. In severe scenarios, the uplink avalanche effect is likely to cause the current network users to lose access.
- the embodiments of the present application provide a method for determining uplink transmit power, a network device, and a storage medium, which are used to solve the current scheme for determining the number of UCI repetitions, which will cause the UCI transmit power of these terminals to always transmit at full power.
- the packet service will cause the noise floor to continue to rise, and in severe scenarios, it is easy to cause the uplink avalanche effect and make the existing network users unable to access.
- a first aspect of the embodiments of the present application provides a method for determining uplink transmit power, where the method includes:
- the determining the number of repetitions of the UCI of the terminal according to the PL and the obtained interference margin includes:
- a low coverage level is used to determine the number of repetitions of the UCI.
- the method further includes:
- the interference margin is calculated and obtained according to the detected interference noise value.
- a specific way to obtain a PL value, and obtaining the current road loss PL of the terminal according to the PHR includes:
- the power headroom report PHR reported by the receiving terminal includes:
- the PHR received by the terminal in a radio resource control RRC connection request message is received.
- the sending the repetition number of the UCI to the terminal includes:
- the RRC connection establishment message sent to the terminal carries the number of repetitions of the UCI.
- the method further includes:
- a second aspect of the present application provides a network device, including:
- a receiving module configured to receive a power headroom report PHR reported by a terminal
- a processing module configured to obtain the current path loss PL of the terminal according to the PHR;
- the processing module is further configured to determine the number of repetitions of the UCI of the terminal according to the PL and the obtained interference margin;
- a sending module is configured to send the number of repetitions of the UCI to the terminal, and the number of repetitions of the UCI is used to determine uplink transmit power.
- processing module is specifically configured to:
- a low coverage level is used to determine the number of repetitions of the UCI.
- processing module is further configured to:
- the interference margin is calculated and obtained according to the detected interference noise value.
- processing module is specifically configured to:
- the receiving module is specifically configured to:
- the PHR received by the terminal in a radio resource control RRC connection request message is received.
- the sending module is specifically configured to:
- the RRC connection establishment message sent to the terminal carries the number of repetitions of the UCI.
- processing module is further configured to:
- the sending module is further configured to send the re-determined number of repetitions of the UCI to the terminal.
- a third aspect of the present application provides a network device, including:
- a processor configured to obtain the current path loss PL of the terminal according to the PHR
- the processor is further configured to determine the number of repetitions of the UCI of the terminal according to the PL and the obtained interference margin;
- the transmitter is configured to send the number of repetitions of the UCI to the terminal, and the number of repetitions of the UCI is used to determine uplink transmit power.
- the processor is specifically configured to:
- a low coverage level is used to determine the number of repetitions of the UCI.
- the processor is further configured to:
- the interference margin is calculated and obtained according to the detected interference noise value.
- the processor is specifically configured to:
- the receiver is specifically configured to:
- the PHR received by the terminal in a radio resource control RRC connection request message is received.
- the transmitter is specifically configured to:
- the RRC connection establishment message sent to the terminal carries the number of repetitions of the UCI.
- the processor is further configured to:
- the transmitter is further configured to send the re-determined number of repetitions of the UCI to the terminal.
- a fourth aspect of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and the computer program is used to implement the method for determining uplink transmission power provided by any implementation manner of the first aspect.
- a fifth aspect of the present application provides a computer program product.
- the computer program product includes a computer program that, when the computer program is run by a network device, causes the network device to perform the uplink transmit power determination provided by any implementation manner of the first aspect. method.
- the uplink transmit power determination method, network device, and storage medium provided in the embodiments of the present application.
- the network device obtains the path loss PL according to the power headroom report reported by the terminal, and then determines the UCI repetition times of the terminal according to the path loss and interference headroom, Send the UCI repetition times to the terminal, and the terminal determines the uplink transmission power according to the UCI repetition times. That is, according to the PL situation and the level of interference, the user-side UCI repetition times are adaptively configured to determine whether the user currently accessing at a high coverage level needs to configure the UCI repetition times at a low coverage level to control the UCI transmit power. , To avoid the avalanche effect caused by always selecting full-power uplink transmission.
- FIG. 1 is a schematic flowchart of Embodiment 1 of a method for determining uplink transmit power provided by this application;
- FIG. 2 is a schematic diagram of a current coverage level and uplink transmission power
- FIG. 3 is a schematic diagram of a coverage level and uplink transmission power provided by this application.
- Embodiment 4 is a schematic flowchart of Embodiment 2 of a method for determining uplink transmit power provided by this application;
- FIG. 5 is a schematic structural diagram of a first embodiment of a network device provided by this application.
- FIG. 6 is a schematic structural diagram of a second embodiment of a network device provided by this application.
- the uplink power is controlled by open loop power, and it is related to the coverage level and the number of channel repetitions.
- the protocol stipulates that when the uplink physical uplink shared channel (PUSCH) repetition times> 2, the terminal fixedly uses P CMAX as the transmission power (full power transmission); when the repetition times ⁇ 2, it is calculated according to the open-loop power control formula. for:
- P CMAX is the maximum transmit power of the terminal.
- M NPUSCH is the number of subcarriers, which is 1/4 at Single-tone 3.75K, 1 at Single-tone 15K, and Multi-tone, which is the number of subcarriers, and the value range is ⁇ 3, 6, 12 ⁇ .
- PL is the downlink path loss value estimated by the UE, referred to as the path loss, or the path loss value.
- P O_NPUSCH is the desired received power level of the base station and is determined by the base station.
- ⁇ is the path loss compensation factor
- the uplink control information (Uplink Control Information) is transmitted on the uplink PUSCH, and its transmission power meets the uplink PUSCH power control.
- the number of UCI repetitions is that the base station does not support adaptive adjustment according to the coverage level configuration. The higher the coverage level, the greater the number of UCI repetitions configured.
- the terminal selects a coverage level according to the downlink reference signal received power (RSRP) or Signal to Interference plus Signal Noise Ratio (SINR), and then reports the coverage level to the base station. The base station performs the coverage level based on the reported coverage level.
- RSRP downlink reference signal received power
- SINR Signal to Interference plus Signal Noise Ratio
- the uplink and downlink scheduling that is, the uplink coverage level is directly determined by the downlink signal quality, and the UCI repetition number is also directly determined by the downlink coverage level.
- the terminal chooses access level 1 or 2 due to the limitation of the downlink SINR, the UCI repetition number configuration is likely to be greater than 2 and the UCI repetition number is set by message4 (abbreviation: Msg4, which refers to the random access process
- Msg4 refers to the random access process
- the radio resource control (Radio Resource Control (RRC) connection establishment message) is issued and configured only once. This will cause the UCI transmit power of these terminals to be transmitted at full power at all times, which will cause noise floor for services with frequent heartbeat packets. Continue to rise. In harsh scenarios, the bottom noise in the neighboring area will rise by more than 30dB, which will cause uplink avalanche effect and make the current network users unable to access.
- RRC Radio Resource Control
- the present application provides a method for determining uplink transmit power, and provides a solution that is adaptive to the number of UCI repetitions.
- the ultimate goal is to reduce uplink interference caused by excessive transmit power of the terminal.
- the method for determining uplink transmission power provided in this application is specifically applied to Narrowband Internet of Things (NB-IoT) or other Internet of Things systems.
- the main network elements of the NB-IoT communication system involved in this application include a core network (for example, an Evolved Packet Core (EPC)), network equipment (for example, an eNB base station), and a terminal.
- the terminal accesses through network equipment such as a base station or a routing node, and the network equipment is connected to the core network to complete data backhaul and forward transfer.
- EPC Evolved Packet Core
- GSM Global System of Mobile
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- UMTS Universal Mobile Telecommunication System
- the network equipment in this solution may be a base station (Base Transceiver Station (BTS)) in Global System Communication (GSM) or Code Division Multiple Access (CDMA). It can also be a base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA), or an evolutionary NodeB (eNB or eNodeB) in LTE, or a relay station. Or access points, or base stations in future 5G networks, etc., are not limited here.
- the terminal involved can be a wireless terminal or a wired terminal.
- the wireless terminal can be a device that provides users with voice and / or other business data connectivity, a handheld device with a wireless connection function, or other processing connected to a wireless modem. device.
- a wireless terminal can communicate with one or more core networks via a radio access network (Radio Access Network, RAN for short).
- the wireless terminal can be a mobile terminal, such as a mobile phone (or a "cellular" phone) and a mobile terminal with a mobile terminal.
- Computers for example, may be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices that exchange languages and / or data with a wireless access network.
- a wireless terminal can also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a mobile station, a remote station, a remote terminal, The access terminal (Access terminal), user terminal (User terminal), user agent (User agent), user equipment (User Device or User Equipment) are not limited here.
- FIG. 1 is a schematic flowchart of Embodiment 1 of an uplink transmission power determination method provided in this application. As shown in FIG. 1, specific implementation steps of the uplink transmission power determination method include:
- S101 a power headroom report (PHR) reported by a receiving terminal.
- PHR power headroom report
- the wireless signal has energy loss from the transmitting end to the receiving end, and the power headroom indicates the remaining power after a terminal completes the current transmission.
- the PHR is issued through a control element (CE) of a media access control (MAC) layer.
- CE control element
- MAC media access control
- the network side that is, the network equipment uses the value of the power headroom to estimate the bandwidth that the terminal can use in a specific uplink subframe. Because the more bandwidth the terminal uses, the greater the transmission power, but it cannot exceed the maximum power allowed in the protocol.
- the terminal transmits power headroom to network equipment in at least the following two ways:
- the path loss change value exceeds a certain threshold the network will instruct the terminal to calculate the path loss value based on the reference signal. On the terminal side, if the path loss change value exceeds a certain threshold, the PHR is transmitted to the network device.
- Timed transmission Configure a fixed time interval, and the terminal periodically transmits PHR to the network device according to the time interval.
- the network device may infer the current PL of the terminal according to the calculation formula of the PHR, so as to subsequently determine the number of repetitions of the UCI according to the value of the PL.
- S103 Determine the number of repetitions of the UCI of the terminal according to the PL and the obtained interference margin.
- UCI may choose a lower number of repetitions.
- UCI demodulation may not be successful, so the interference situation needs to be considered. Therefore, the network equipment also needs to consider the interference margin when determining the number of UCI repetitions of the terminal.
- the network device may determine the UCI repetition times of the terminal according to the following manner:
- the network device compares the sum of the PL and the interference margin with a preset threshold.
- the threshold value can be determined according to the minimum coupling loss, which can be a theoretical value obtained by laboratory testing.
- a high coverage level is used to determine the number of repetitions of the UCI; if the sum of the PL and the interference margin is less than the threshold value , A low coverage level is used to determine the number of repetitions of the UCI.
- the high coverage level and low coverage level refer to: if the UCI repetition times of the coverage levels 1 and 2 are greater than 2, the high coverage level refers to the coverage level 1 and 2, and the corresponding low coverage level refers to the level 0; if The number of UCI repetitions for coverage level 2> 2, then the high coverage level refers to coverage level 2 and the corresponding low coverage level refers to levels 0 and 1.
- S104 Send the number of UCI repetitions to the terminal.
- the number of UCI repetitions is used to determine uplink transmit power.
- the network device After determining the number of repetitions of the UCI, the network device sends the number of repetitions of the UCI to the terminal, so that the terminal determines the uplink transmit power according to the number of repetitions of the UCI.
- the repetition number of UCI supports adaptive adjustment.
- the repetition number of UCI is adaptively changed according to the change of path loss and interference margin.
- the terminal After receiving the repetition number of UCI, the terminal calculates the transmission power based on PUSCH. Calculate the uplink transmit power in the same way.
- UCI is a special PUSCH. Its transmit power is calculated the same as the transmit power of ordinary uplink PUSCH. That is, when the UCI repetition number is> 2, the terminal uses P CMAX as the transmit power (full power transmission). ); When the number of UCI repetitions is less than 2, the calculation is based on open-loop power control, and the formula is:
- P CMAX is the maximum transmit power of the terminal.
- M NPUSCH is the number of subcarriers, which is 1/4 at Single-tone 3.75K, 1 at Single-tone 15K, and Multi-tone, which is the number of subcarriers, and the value range is ⁇ 3, 6, 12 ⁇ .
- PL is the estimated path loss or path loss value of the terminal.
- P O_NPUSCH is the desired received power level of the network device and is determined by the network device.
- ⁇ is the path loss compensation factor.
- a network device obtains a path loss PL according to a power headroom report reported by a terminal, and then determines a UCI repetition number of the terminal according to the path loss and interference headroom, and then sends the UCI repetition number.
- the terminal determines the uplink transmit power according to the number of UCI repetitions. That is, according to the PL situation and the level of interference, the user-side UCI repetition times are adaptively configured to determine whether the user currently accessing at a high coverage level needs to configure the UCI repetition times at a low coverage level to control the UCI transmit power. , To avoid the avalanche effect caused by always selecting full-power uplink transmission.
- FIG. 2 is a schematic diagram of a current coverage level and uplink transmission power
- FIG. 3 is a schematic diagram of a coverage level and uplink transmission power provided by the present application.
- CE0 indicates uplink
- CE1 indicates downlink
- the height of the column represents the power level
- the number of UCI repetitions is that the base station does not support adaptive adjustment according to the coverage level configuration.
- the higher the coverage level the UCI repetition is configured.
- the greater the number of times the terminal selects coverage level 1 or 2 for access because the downlink SINR is limited.
- the UCI repetition number configuration is likely to be greater than 2, and the UCI repetition number is configured only once. This will cause UCI transmission for these terminals.
- CE0 represents uplink
- CE1 represents downlink
- the height of the column represents the power level.
- FIG. 4 is a schematic flowchart of Embodiment 2 of an uplink transmission power determination method provided in this application. As shown in FIG. 4, based on the foregoing embodiment, a specific implementation manner of the uplink transmission power determination method provided in this application includes:
- a receiving terminal sends a PHR in a radio resource control (Radio Resource Control (RRC) connection request message).
- RRC Radio Resource Control
- the terminal sends the PHR to the network device in the MSG3 during the random access process, for example, sends it to the base station.
- MSG3 here refers to the RRC connection request message. That is, when the terminal specifically transmits the PHR to the network device, the terminal can transmit during the random access process.
- S202 Calculate and obtain an interference margin according to the detected interference noise value.
- the network device can calculate and obtain the interference margin according to the detected interference noise value NI.
- the NI value terminal here can be reported to the network device regularly.
- i represents a time slot, which can be defined in the protocol.
- P O_NPUSCH, c (1) is the non-persistent scheduling expectation configured for the network device. Power, ⁇ c (1) is a path loss factor configured by a network device, P CMAX, c (i) is a maximum allowable transmission power of the terminal device, and PL c is a current PL of the terminal.
- PO_NPUSCH, c (1) and ⁇ c (1) are uplink power control parameters P0NominalPUSCH and PassLossCoeff configured by the base station.
- Table 1 Mapping table for coverage level 0PHR
- the network device After receiving the PHR value sent by the terminal, the network device determines the coverage level, and determines the value of PH c (i) according to the coverage level and the PHR value. Combined with other parameters in the formula, the road loss value can be calculated.
- S204 Determine the number of repetitions of the UCI of the terminal according to the PL and the obtained interference margin.
- the network device determines which coverage level to configure the number of UCI repetitions according to the value of the path loss PL and the interference margin. Specifically, a threshold can be set. The threshold can be configured. If (PL + interference margin) > Threshold, configure according to high coverage level (such as: coverage level 1 or 2), otherwise configure according to low coverage level (such as: coverage level 0).
- the high coverage level and the low coverage level are relative numbers, and the specific values are not limited.
- the network device After determining the UCI repetition times, the network device carries the UCI repetition times in a connection establishment message and sends it to the terminal, so that the terminal calculates the transmission power according to the UCI repetition times.
- the process can be re-triggered, the UCI repetition times are updated, and the network equipment re-issues.
- the UCI repetition times of the terminal are re-determined according to the changed PL and / or interference margin, and the re-determined UCI repetition times are sent to the terminal so that the terminal can restart Calculate the uplink transmit power.
- the interference margin is calculated based on the NI value, which can be reported every 10ms.
- the prevailing transmit power determination method estimates the current uplink path loss value based on the PHR value; based on the comprehensive consideration of the PHR value and the cell-level interference margin, adaptively configures the number of UCI repetitions, and sends it to the terminal for the terminal to determine Uplink transmit power. Decoupling the uplink power control and repetition selection from the downlink coverage level, increasing the configuration flexibility of UCI repetitions, reducing the number of near-point users UCI repetitions greater than 2, thereby reducing the number of uplink full power transmissions and the uplink interference. Reduce power consumption of near-point UEs.
- FIG. 5 is a schematic structural diagram of a first embodiment of a network device provided in this application. As shown in FIG. 5, the network device 10 includes:
- the receiving module 11 is configured to receive a power headroom report PHR reported by the terminal;
- a processing module 12 configured to obtain the current path loss PL of the terminal according to the PHR;
- the processing module 12 is further configured to determine the number of repetitions of the UCI of the terminal according to the PL and the obtained interference margin;
- the sending module 13 is configured to send the number of repetitions of the UCI to the terminal, and the number of repetitions of the UCI is used to determine uplink transmit power.
- the network device provided in this embodiment is used to implement the technical solution of any of the foregoing method embodiments.
- the implementation principles and technical effects are similar.
- the user-side UCI repetition times are adaptively configured and determined. Does a user currently accessing at a high coverage level need to configure the number of UCI repetitions according to a low coverage level to control the transmission power of UCI and avoid avalanche effects caused by always selecting full power uplink transmission.
- processing module 12 is specifically configured to:
- a low coverage level is used to determine the number of repetitions of the UCI.
- processing module 12 is further configured to:
- the interference margin is calculated and obtained according to the detected interference noise value.
- processing module 12 is specifically configured to:
- the receiving module 11 is specifically configured to:
- the PHR received by the terminal in a radio resource control RRC connection request message is received.
- the sending module 12 is specifically configured to:
- the RRC connection establishment message sent to the terminal carries the number of repetitions of the UCI.
- processing module 12 is further configured to:
- the sending module 13 is further configured to send the re-determined number of repetitions of the UCI to the terminal.
- the network device provided by any one of the foregoing embodiments is used to implement the technical solution of any one of the foregoing method embodiments, and its implementation principles and technical effects are similar, and details are not described herein again.
- FIG. 6 is a schematic structural diagram of a second embodiment of a network device provided in this application. As shown in FIG. 6, the network device 20 includes:
- the receiver 21 is configured to receive a power headroom report PHR reported by the terminal;
- a processor 22 configured to obtain the current path loss PL of the terminal according to the PHR;
- the processor 22 is further configured to determine the number of repetitions of the UCI of the terminal according to the PL and the obtained interference margin;
- the transmitter 23 is configured to send the number of repetitions of the UCI to the terminal, and the number of repetitions of the UCI is used to determine uplink transmission power.
- a memory 24 for storing data and an executable computer program may also be included.
- the processor 22 is specifically configured to:
- a low coverage level is used to determine the number of repetitions of the UCI.
- the processor 22 is further configured to:
- the interference margin is calculated and obtained according to the detected interference noise value.
- the processor 22 is specifically configured to:
- the receiver 21 is specifically configured to:
- the PHR received by the terminal in a radio resource control RRC connection request message is received.
- the transmitter 23 is specifically configured to:
- the RRC connection establishment message sent to the terminal carries the number of repetitions of the UCI.
- the processor 22 is further configured to:
- the transmitter 23 is further configured to send the re-determined number of repetitions of the UCI to the terminal.
- the network device provided by any one of the foregoing embodiments is used to implement the technical solution of any one of the foregoing method embodiments, and its implementation principles and technical effects are similar, and details are not described herein again.
- This application also provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and the computer program is used to implement the method for determining uplink transmission power provided by any implementation manner of the foregoing method embodiments.
- the computer program product includes a computer program that, when the computer program is run by a network device, causes the network device to perform the uplink transmit power determination provided by any implementation manner of the foregoing method embodiments. method.
- the processor may be a central processing unit (English: Central Processing Unit, CPU for short), or other general-purpose processors, digital signal processors (English: Digital Signal Processor) , Referred to as DSP), application specific integrated circuit (English: Application Specific Integrated Circuit, referred to as ASIC), etc.
- a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like. The steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
- All or part of the steps for implementing the foregoing method embodiments may be completed by a program instructing related hardware.
- the aforementioned program can be stored in a readable memory.
- the steps including the foregoing method embodiments are executed; and the foregoing memory (storage medium) includes: read-only memory (English: read-only memory (abbreviation: ROM)), RAM, flash memory, hard disk, Solid state hard disk, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disk (English: optical disc) and any combination thereof.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种上行发射功率确定方法、网络设备和存储介质,该方法包括:网络设备根据终端上报的功率余量报告得到路损PL,然后根据路损和干扰余量确定终端的UCI的重复次数,然后将该UCI的重复次数发送给终端,终端根据UCI的重复次数确定上行的发射功率。即根据PL情况以及干扰的水平对用户侧的UCI的重复次数进行自适应配置,确定当前按照高覆盖等级接入的用户是否需要按照低覆盖等级来配置UCI的重复次数,从而控制UCI的发射功率,避免始终选择满功率的上行发射导致的雪崩效应。
Description
本申请涉及通信技术,尤其涉及一种上行发射功率确定方法、网络设备和存储介质。
在窄带物联网(NarrowBand Internet of Things,NB-IoT)系统中,对传输过程中出现问题的处理过程中,发现大部分丢包和时延问题最终的定位结果都是由于干扰导致的,在NB-IoT建网前后都有可能有干扰的影响。按照干扰产生的来源总体可以分为来自NB-IoT系统外的干扰和NB-IoT系统内的干扰,干扰的引入和组网也有相关性。系统内的干扰主要是邻区用户发射功率过高或者邻区负荷大引起的。
在NB-IOT系统中,上行功率采用开环功控,且与覆盖等级和信道重复次数有关。协议规定当上行物理上行共享信道(Physical Uplink Shared Channel,PUSCH)重复次数>2时,终端固定使用P
CMAX作为发射功率(满功率发送);重复次数<2时,按照开环功控计算发射功率。上行控制信息(Uplink Control Information,UCI)在PUSCH上传输,其发射功率满足PUSCH功率控制。目前,UCI重复次数是基站根据覆盖等级配置不支持自适应调整,覆盖等级越高配置的UCI重复次数越大。终端根据下行参考信号接收功率(Reference Signal Receiving Power,RSRP)或信干噪比(Signal to Interference plus Noise Ratio,SINR)选择覆盖等级,然后再将覆盖等级上报给基站,基站根据上报的覆盖等级进行上下行调度,UCI的重复次数也直接由下行覆盖等级决定。
若终端由于下行SINR受限,选择覆盖等级1或2接入,此时UCI重复次数配置很有可能大于2,且UCI重复次数仅配置一次,这样会导致这部分终端的UCI的发射功率始终按照满功率发射,对于频繁心跳包的业务会造成底噪持续抬升,在恶劣的场景下容易引起上行雪崩效应导致现网用户无法接入。
发明内容
本申请实施例提供一种上行发射功率确定方法、网络设备和存储介质,用于解决目前的UCI重复次数的确定方案,会导致这部分终端的UCI的发射功率始终按照满功率发射,对于频繁心跳包的业务会造成底噪持续抬升,在恶劣的场景下容易引起上行雪崩效应导致现网用户无法接入的问题。
本申请实施例第一方面提供一种上行发射功率确定方法,所述方法包括:
接收终端上报的功率余量报告PHR;
根据所述PHR获取所述终端当前的路损PL;
根据所述PL以及获取到的干扰余量确定所述终端的UCI的重复次数;
将所述UCI的重复次数发送给所述终端,所述UCI的重复次数用于确定上行的发射功率。
在该方案的一种具体实现中,所述根据所述PL以及获取到的干扰余量确定所述终端的UCI的重复次数,包括:
将所述PL与所述干扰余量之和与预设的门限值进行比较;
若所述PL与所述干扰余量之和大于所述门限值,则采用高覆盖等级确定所述UCI的重复次数;
若所述PL与所述干扰余量之和小于所述门限值,则采用低覆盖等级确定所述UCI的重复次数。
在该方案的另一种具体实现中,所述方法还包括:
根据检测到的干扰噪声值计算获取所述干扰余量。
在上述任一方案基础上,一种具体的获取PL值的方式,所述根据所述PHR获取所述终端当前的路损PL,包括:
根据所述PHR的计算公式PH
c(i)=P
CMAX,c(i)-{P
O_NPUSCH,c(1)+α
c(1)·PL
c},反推计算获取所述终端当前的PL;其中,i表示时隙,PH
c(i)为所述PHR对应的实测量值的下限值,P
O_NPUSCH,c(1)为网络设备配置的非持续调度期望功率,α
c(1)为网络设备配置的路损因子,P
CMAX,c(i)为所述终端设备最大允许发射功率,PL
c为所述终端当前的PL。
在一种具体实现方式中,所述接收终端上报的功率余量报告PHR,包括:
在随机接入过程中,接收所述终端在无线资源控制RRC连接请求消息中发送的所述PHR。
在一种具体实现方式中,所述将所述UCI的重复次数发送给所述终端,包括:
在向所述终端发送的RRC连接建立消息中携带所述UCI的重复次数。
在上述任一实现方式的基础上,所述方法还包括:
当所述终端的PL和/或干扰余量发生变化,则根据变化后的PL和干扰余量重新确定所述终端的UCI的重复次数,并将重新确定的UCI的重复次数发送给所述终端。
本申请第二方面提供一种网络设备,包括:
接收模块,用于接收终端上报的功率余量报告PHR;
处理模块,用于根据所述PHR获取所述终端当前的路损PL;
所述处理模块还用于根据所述PL以及获取到的干扰余量确定所述终端的UCI的重复次数;
发送模块,用于将所述UCI的重复次数发送给所述终端,所述UCI的重复次数用于确定上行的发射功率。
可选的,所述处理模块具体用于:
将所述PL与所述干扰余量之和与预设的门限值进行比较;
若所述PL与所述干扰余量之和大于所述门限值,则采用高覆盖等级确定所述UCI的重复次数;
若所述PL与所述干扰余量之和小于所述门限值,则采用低覆盖等级确定所述UCI的重复次数。
可选的,所述处理模块还用于:
根据检测到的干扰噪声值计算获取所述干扰余量。
可选的,所述处理模块具体用于:
根据所述PHR的计算公式PH
c(i)=P
CMAX,c(i)-{P
O_NPUSCH,c(1)+α
c(1)·PL
c},反推计算获取所述终端当前的PL;其中,i表示时隙,PH
c(i)为所述PHR对应的实测量值的下限值,P
O_NPUSCH,c(1)为网络设备配置的非持续调度期望功率,α
c(1)为网络设备配置的路损因子,P
CMAX,c(i)为所述终端设备最大允许发射功率,PL
c为所述终端当前的PL。
可选的,所述接收模块具体用于:
在随机接入过程中,接收所述终端在无线资源控制RRC连接请求消息中发送的所述PHR。
可选的,所述发送模块具体用于:
在向所述终端发送的RRC连接建立消息中携带所述UCI的重复次数。
可选的,所述处理模块还用于:
当所述终端的PL和/或干扰余量发生变化,则根据变化后的PL和干扰余量重新确定所述终端的UCI的重复次数;
所述发送模块还用于将重新确定的UCI的重复次数发送给所述终端。
本申请第三方面提供一种网络设备,包括:
接收器,用于接收终端上报的功率余量报告PHR;
处理器,用于根据所述PHR获取所述终端当前的路损PL;
所述处理器还用于根据所述PL以及获取到的干扰余量确定所述终端的UCI的重复次数;
发送器,用于将所述UCI的重复次数发送给所述终端,所述UCI的重复次数用于确定上行的发射功率。
可选的,所述处理器具体用于:
将所述PL与所述干扰余量之和与预设的门限值进行比较;
若所述PL与所述干扰余量之和大于所述门限值,则采用高覆盖等级确定所述UCI的重复次数;
若所述PL与所述干扰余量之和小于所述门限值,则采用低覆盖等级确定所述UCI的重复次数。
可选的,所述处理器还用于:
根据检测到的干扰噪声值计算获取所述干扰余量。
可选的,所述处理器具体用于:
根据所述PHR的计算公式PH
c(i)=P
CMAX,c(i)-{P
O_NPUSCH,c(1)+α
c(1)·PL
c},反推计算获取所述终端当前的PL;其中,i表示时隙,PH
c(i)为所述PHR对应的实测量值的下 限值,P
O_NPUSCH,c(1)为网络设备配置的非持续调度期望功率,α
c(1)为网络设备配置的路损因子,P
CMAX,c(i)为所述终端设备最大允许发射功率,PL
c为所述终端当前的PL。
可选的,所述接收器具体用于:
在随机接入过程中,接收所述终端在无线资源控制RRC连接请求消息中发送的所述PHR。
可选的,所述发送器具体用于:
在向所述终端发送的RRC连接建立消息中携带所述UCI的重复次数。
可选的,所述处理器还用于:
当所述终端的PL和/或干扰余量发生变化,则根据变化后的PL和干扰余量重新确定所述终端的UCI的重复次数;
所述发送器还用于将重新确定的UCI的重复次数发送给所述终端。
本申请第四方面提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序用于实现第一方面任一实现方式提供的上行发射功率确定方法。
本申请第五方面提供一种计算机程序产品,该计算机程序产品包括:计算机程序,当该计算机程序被网络设备运行时,使得所述网络设备执行第一方面任一实现方式提供的上行发射功率确定方法。
本申请实施例提供的上行发射功率确定方法、网络设备和存储介质,网络设备根据终端上报的功率余量报告得到路损PL,然后根据路损和干扰余量确定终端的UCI的重复次数,然后将该UCI的重复次数发送给终端,终端根据UCI的重复次数确定上行的发射功率。即根据PL情况以及干扰的水平对用户侧的UCI的重复次数进行自适应配置,确定当前按照高覆盖等级接入的用户是否需要按照低覆盖等级来配置UCI的重复次数,从而控制UCI的发射功率,避免始终选择满功率的上行发射导致的雪崩效应。
图1为本申请提供的上行发射功率确定方法实施例一的流程示意图;
图2为目前的覆盖等级和上行传输功率的示意图;
图3为本申请提供的覆盖等级和上行传输功率的示意图;
图4为本申请提供的上行发射功率确定方法实施例二的流程示意图;
图5为本申请提供的网络设备实施例一的结构示意图;
图6为本申请提供的网络设备实施例二的结构示意图。
在窄带物联网(NarrowBand Internet of Things,NB-IoT)系统中,上行功率采用开环功控,且与覆盖等级和信道重复次数有关。协议规定当上行物理上行共享信道(Physical Uplink Shared Channel,PUSCH)重复次数>2时,终端固定使用P
CMAX作为发射功率(满功率发送);重复次数<2时,按照开环功控计算,公式为:
其中,P
CMAX为终端的最大发射功率。
M
NPUSCH为子载波数,Single-tone 3.75K时取值1/4,Single-tone 15K时取值1,Multi-tone时取值为子载波数,取值范围为{3,6,12}。
PL为UE估计的下行路径损耗值,简称路损,或者路损值。
P
O_NPUSCH为基站期望的接收功率水平,由基站决定。
α为路径损耗补偿因子。
上行控制信息(Uplink Control Information,UCI)在上行PUSCH上传输,其发射功率满足上行PUSCH功率控制。UCI重复次数是基站根据覆盖等级配置不支持自适应调整,覆盖等级越高配置的UCI重复次数越大。终端根据下行参考信号接收功率(Reference Signal Receiving Power,RSRP)或信干噪比(Signal to Interference plus Noise Ratio,SINR)选择覆盖等级,然后再将覆盖等级上报给基站,基站根据上报的覆盖等级进行上下行调度,即上行覆盖等级由下行信号质量直接决定,UCI的重复次数也直接由下行覆盖等级决定。
然而,若终端由于下行SINR受限,选择覆盖等级1或2接入,此时UCI重复次数配置很有可能大于2,且UCI重复次数由message4(简称:Msg4,指的是在随机接入过程中的无线资源控制(Radio Resource Control,RRC)连接建立消息)下发且仅配置一次,这样会导致这部分终端的UCI的发射功率始终按照满功率发射,对于频繁心跳包的业务会造成底噪持续抬升,在恶劣的场景下,邻区底噪会抬升30dB以上,引起上行雪崩效应导致现网用户无法接入。
针对上述存在的问题,即为了控制终端发射功率,本申请提供一种上行发射功率确定方法,提供对UCI重复次数自适应的解决方案,最终目的在于减少由终端发射功率过高引起的上行干扰。
本申请提供的上行发射功率确定方法具体应用于窄带物联网(NarrowBand Internet of Things,NB-IoT)或者其他的物联网系统。本申请涉及的NB-IoT通信系统,主要的网元有核心网(例如:分组核心网(Evolved Packet Core,EPC))、网络设备(例如:eNB基站)和终端。终端通过基站或者路由节点等网络设备接入,网络设备连接核心网完成数据的回传和前向传递。
本申请实施例的技术方案还可以应用在5G通信系统或未来的通信系统,也可以用于其他各种无线通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(CDMA,Code Division Multiple Access)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Freq终端设备ncy Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
应理解,本方案中的网络设备可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
涉及到的终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
下面通过几个具体实施例对本申请提供的上行发射功率确定方法进行详细说明。
图1为本申请提供的上行发射功率确定方法实施例一的流程示意图,如图1所示,该上行发射功率确定方法的具体实现步骤包括:
S101:接收终端上报的功率余量报告(Power Headroom Report,PHR)。
在本步骤中,无线信号从发送端到接收端有能量损耗,功率余量表示的是一个终端完成当前传输后的剩余功率。PHR是通过媒体访问控制(Media Access Control,MAC)层的控制单元(control element,CE)发出的。网络侧(即网络设备)用功率余量的值估计终端可以在特定的上行子帧使用的带宽。因为终端使用越多的带宽,就会得到更大的传输功率,但是不能超过协议中的允许最大功率。
终端将功率余量传输给网络设备的方式至少包括以下两种:
1.路损变化值超过了一定门限:网络会指示终端根据参考信号计算路损值,在终端侧,如果路损变化值超过一定的门限,则向网络设备传输PHR。
2.定时传输。配置固定的时间间隔,终端按照该时间间隔定时的向网络设备传输PHR。
S102:根据PHR获取终端当前的路损PL。
在本步骤中,网络设备接收到了终端发送的PHR之后,可根据PHR的计算公式可反推终端当前PL,以便后续根据该PL的值确定UCI的重复次数。
S103:根据PL以及获取到的干扰余量确定终端的UCI的重复次数。
在本步骤中,若在配置UCI重复次数时只考虑路损,则可能导致UCI选择了较低的重复次数,当存在干扰的情况下,UCI可能解调不成功,故还需要考虑干扰情况。因此,网络设备在确定终端的UCI的重复次数时候,还需要考虑干扰余量。
一种具体的实现方式中,网络设备可以根据下面的方式确定终端的UCI重复次数:
网络设备将所述PL与所述干扰余量之和与预设的门限值进行比较。这里的门限值可以根据最小耦合损耗确定,该最小耦合损耗可以是由实验室测试得到的理论值。
若所述PL与所述干扰余量之和大于所述门限值,则采用高覆盖等级确定所述UCI的重复次数;若所述PL与所述干扰余量之和小于所述门限值,则采用低覆盖等级确定所述UCI的重复次数。
这里的高覆盖等级和低覆盖等级指的是:若覆盖等级1、2的UCI重复次数>2,则高覆盖等级指覆盖等级1、2,相对应的低覆盖等级指的是等级0;若覆盖等级2的UCI重复次数>2,则高覆盖等级指覆盖等级2,相对应的低覆盖等级指的是等级0、1。
S104:将UCI的重复次数发送给终端,UCI的重复次数用于确定上行的发射功率。
在本步骤中,网络设备在确定了UCI的重复次数之后,将该UCI的重复次数发送给终端,以便终端根据该UCI的重复次数确定上行的发射功率。
在该方案中,UCI的重复次数支持自适应调整的,该UCI的重复次数是根据路损以及干扰余量的变化自适应变化,终端在接收到UCI的重复次数之后,根据PUSCH的发射功率计算同样的方式计算上行的发射功率,UCI是特殊的PUSCH,其发射功率与普通上行PUSCH的发射功率一样计算,即当UCI的重复次数>2时,终端固定使用P
CMAX作为发射功率(满功率发送);UCI的重复次数<2时,按照开环功控计算,公式为:
其中,P
CMAX为终端的最大发射功率。M
NPUSCH为子载波数,Single-tone 3.75K时取值1/4,Single-tone 15K时取值1,Multi-tone时取值为子载波数,取值范围为{3,6,12}。PL为终端估计的路损或者路损值。P
O_NPUSCH为网络设备期望的接收功率水平,由网络设备决定。α为路径损耗补偿因子。
本实施例提供的上行发射功率确定方法,网络设备根据终端上报的功率余量报告得到路损PL,然后根据路损和干扰余量确定终端的UCI的重复次数,然后将该UCI的重复次数发送给终端,终端根据UCI的重复次数确定上行的发射功率。即根据PL情况以及干扰的水平对用户侧的UCI的重复次数进行自适应配置,确定当前按照高覆盖等级接入的用户是否需要按照低覆盖等级来配置UCI的重复次数,从而控制UCI的发射功率,避免始终选择满功率的上行发射导致的雪崩效应。
在上述实施例的基础上,图2为目前的覆盖等级和上行传输功率的示意图;图3为本 申请提供的覆盖等级和上行传输功率的示意图。如图2所示,目前常用的方式中,CE0表示上行,CE1表示下行,柱状的高度表示功率大小,UCI重复次数是基站根据覆盖等级配置不支持自适应调整,覆盖等级越高配置的UCI重复次数越大,终端由于下行SINR受限,选择覆盖等级1或2接入,此时UCI重复次数配置很有可能大于2,且UCI重复次数仅配置一次,这样会导致这部分终端的UCI的发射功率始终按照满功率发射,对于频繁心跳包的业务会造成底噪持续抬升,在恶劣的场景下容易引起上行雪崩效应导致现网用户无法接入。同样的,图3中,CE0表示上行,CE1表示下行,柱状的高度表示功率大小,可知,本申请提供的技术方案中是对上下行进行解耦,使得上行发射功率根据上行信道质量灵活变化,而不由下行直接决定,从而减少上行满功率发射的次数,达到减少上行干扰的目的。
图4为本申请提供的上行发射功率确定方法实施例二的流程示意图,如图4所示,在上述实施例的基础上,本申请提供的上行发射功率确定方法的一种具体实现方式包括:
S201:在随机接入过程中,接收终端在无线资源控制(Radio Resource Control,RRC)连接请求消息中发送的PHR。
在本步骤中,终端在随机接入过程中,将PHR携带在MSG3中发送给网络设备,例如:发给基站。这里的MSG3指的就是RRC连接请求消息。即终端在具体将PHR传输至网络设备时,可以在随机接入过程中进行传输。
S202:根据检测到的干扰噪声值计算获取干扰余量。
在该步骤中,若在配置UCI的重复次数时只考虑上行路损,导致UCI选择了较低的重复次数,当存在干扰的情况下,UCI可能解调不成功,故还需要考虑干扰情况。因此网络设备可以根据检测到的干扰噪声值NI计算获取干扰余量。这里的NI值终端可以定时上报给网络设备。
S203:根据PHR的计算公式PH
c(i)=P
CMAX,c(i)-{P
O_NPUSCH,c(1)+α
c(1)·PL
c},反推计算获取所述终端当前的PL。
在本步骤中,i表示时隙,可以在协议中进行定义,l取值为{1,2},l=1表示数传PUSCH,l=2表示PUSCH是msg3;PH
c(i)为所述PHR对应的实测量值(Measured quantity value)的下限值,各覆盖等级的PHR值对应的Measured quantity value见表1、2;P
O_NPUSCH,c(1)为网络设备配置的非持续调度期望功率,α
c(1)为网络设备配置的路损因子,P
CMAX,c(i)为所述终端设备最大允许发射功率,PL
c为所述终端当前的PL。例如,当网络设备是基站时,P
O_NPUSCH,c(1)和α
c(1)是基站配置的上行功控参数P0NominalPUSCH和PassLossCoeff。
表1 覆盖等级0PHR映射表
PHR值(Value) | Measured quantity value |
POWER_HEADROOM_0 | [-54]<=PH<5 |
POWER_HEADROOM_1 | 5<=PH<8 |
POWER_HEADROOM_2 | 8<=PH<11 |
POWER_HEADROOM_3 | PH>=11 |
表2 覆盖等级1、2PHR映射表
PHR值(Value) | Measured quantity value |
POWER_HEADROOM_0 | [-54]<=PH<-10 |
POWER_HEADROOM_1 | -10<=PH<-2 |
POWER_HEADROOM_2 | -2<=PH<6 |
POWER_HEADROOM_3 | PH>=6 |
网络设备接收到终端发送的PHR值之后,确定覆盖等级,并根据覆盖等级以及PHR值确定PH
c(i)的值,结合公式中的其他参数,可以计算得到路损值。
S204:根据PL以及获取到的干扰余量确定终端的UCI的重复次数。
在本步骤中,网络设备根据路损PL与干扰余量的值确定按照哪个覆盖等级配置UCI的重复次数,具体可以设置一个门限值,该门限值可配置,若(PL+干扰余量)>门限值,则按高覆盖等级(如:覆盖等级1或者2)配置,否则按低覆盖等级(如:覆盖等级0)配置。这里的高覆盖等级与低覆盖等级为相对的数,并不限定其具体是什么数值。
S205:在向终端发送的RRC连接建立消息中携带UCI的重复次数。
在本步骤中,网络设备在确定出UCI的重复次数之后,将该UCI的重复次数携带在连接建立消息中发送给终端,以使终端根据UCI的重复次数计算发射功率。
若路损或干扰发生变化,则可重新触发该流程,更新UCI重复次数并由网络设备重新下发。当终端的PL和/或干扰余量发生变化,则根据变化后的PL和干扰余量重新确定所述终端的UCI的重复次数,并将重新确定的UCI的重复次数发送给,以便终端能够重新计算得到上行的发射功率。
具体实现中干扰余量是根据NI值计算出来的,NI数值可以每10ms上报一次。
本实施例提供的盛行发射功率确定方法,根据PHR值估算当前上行路损值;根据PHR值和小区级干扰余量综合考虑,自适应配置UCI的重复次数,从而发送给终端,以使终端确定上行的发射功率。实现将上行功控和重复次数选择与下行覆盖等级解耦,增加了UCI重复次数的配置灵活性,减少近点用户UCI重复次数大于2的情况,从而减少上行满功率发射次数,降低上行干扰,降低近点UE的功耗。
图5为本申请提供的网络设备实施例一的结构示意图,如图5所示,该网络设备10包括:
接收模块11,用于接收终端上报的功率余量报告PHR;
处理模块12,用于根据所述PHR获取所述终端当前的路损PL;
所述处理模块12还用于根据所述PL以及获取到的干扰余量确定所述终端的UCI的重复次数;
发送模块13,用于将所述UCI的重复次数发送给所述终端,所述UCI的重复次数用于确定上行的发射功率。
本实施例提供的网络设备,用于实现前述任一方法实施例的技术方案,其实现原理和 技术效果类似,根据PL情况以及干扰的水平对用户侧的UCI的重复次数进行自适应配置,确定当前按照高覆盖等级接入的用户是否需要按照低覆盖等级来配置UCI的重复次数,从而控制UCI的发射功率,避免始终选择满功率的上行发射导致的雪崩效应。
在上述实施例的基础上,所述处理模块12具体用于:
将所述PL与所述干扰余量之和与预设的门限值进行比较;
若所述PL与所述干扰余量之和大于所述门限值,则采用高覆盖等级确定所述UCI的重复次数;
若所述PL与所述干扰余量之和小于所述门限值,则采用低覆盖等级确定所述UCI的重复次数。
可选的,所述处理模块12还用于:
根据检测到的干扰噪声值计算获取所述干扰余量。
可选的,所述处理模块12具体用于:
根据所述PHR的计算公式PH
c(i)=P
CMAX,c(i)-{P
O_NPUSCH,c(1)+α
c(1)·PL
c},反推计算获取所述终端当前的PL;其中,i表示时隙,PH
c(i)为所述PHR对应的实测量值的下限值,P
O_NPUSCH,c(1)为网络设备配置的非持续调度期望功率,α
c(1)为网络设备配置的路损因子,P
CMAX,c(i)为所述终端设备最大允许发射功率,PL
c为所述终端当前的PL。
可选的,所述接收模块11具体用于:
在随机接入过程中,接收所述终端在无线资源控制RRC连接请求消息中发送的所述PHR。
可选的,所述发送模块12具体用于:
在向所述终端发送的RRC连接建立消息中携带所述UCI的重复次数。
可选的,所述处理模块12还用于:
当所述终端的PL和/或干扰余量发生变化,则根据变化后的PL和干扰余量重新确定所述终端的UCI的重复次数;
所述发送模块13还用于将重新确定的UCI的重复次数发送给所述终端。
上述任一实施例提供的网络设备,用于实现前述任一方法实施例的技术方案,其实现原理和技术效果类似,在此不再赘述。
图6为本申请提供的网络设备实施例二的结构示意图,如图6所示,该网络设备20包括:
接收器21,用于接收终端上报的功率余量报告PHR;
处理器22,用于根据所述PHR获取所述终端当前的路损PL;
所述处理器22还用于根据所述PL以及获取到的干扰余量确定所述终端的UCI的重复次数;
发送器23,用于将所述UCI的重复次数发送给所述终端,所述UCI的重复次数用于确定上行的发射功率。
可选的,还可以包括用于存储数据以及可执行的计算机程序的存储器24。
可选的,所述处理器22具体用于:
将所述PL与所述干扰余量之和与预设的门限值进行比较;
若所述PL与所述干扰余量之和大于所述门限值,则采用高覆盖等级确定所述UCI的重复次数;
若所述PL与所述干扰余量之和小于所述门限值,则采用低覆盖等级确定所述UCI的重复次数。
可选的,所述处理器22还用于:
根据检测到的干扰噪声值计算获取所述干扰余量。
可选的,所述处理器22具体用于:
根据所述PHR的计算公式PH
c(i)=P
CMAX,c(i)-{P
O_NPUSCH,c(1)+α
c(1)·PL
c},反推计算获取所述终端当前的PL;其中,i表示时隙,PH
c(i)为所述PHR对应的实测量值的下限值,P
O_NPUSCH,c(1)为网络设备配置的非持续调度期望功率,α
c(1)为网络设备配置的路损因子,P
CMAX,c(i)为所述终端设备最大允许发射功率,PL
c为所述终端当前的PL。
可选的,所述接收器21具体用于:
在随机接入过程中,接收所述终端在无线资源控制RRC连接请求消息中发送的所述PHR。
可选的,所述发送器23具体用于:
在向所述终端发送的RRC连接建立消息中携带所述UCI的重复次数。
可选的,所述处理器22还用于:
当所述终端的PL和/或干扰余量发生变化,则根据变化后的PL和干扰余量重新确定所述终端的UCI的重复次数;
所述发送器23还用于将重新确定的UCI的重复次数发送给所述终端。
上述任一实施例提供的网络设备,用于实现前述任一方法实施例的技术方案,其实现原理和技术效果类似,在此不再赘述。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序用于实现前述的方法实施例任一实现方式提供的上行发射功率确定方法。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序,当该计算机程序被网络设备运行时,使得所述网络设备执行前述的方法实施例任一实现方式提供的上行发射功率确定方法。
在上述的网络设备的具体实现中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。
Claims (23)
- 一种上行发射功率确定方法,其特征在于,所述方法包括:接收终端上报的功率余量报告PHR;根据所述PHR获取所述终端当前的路损PL;根据所述PL以及获取到的干扰余量确定所述终端的UCI的重复次数;将所述UCI的重复次数发送给所述终端,所述UCI的重复次数用于确定上行的发射功率。
- 根据权利要求1所述的方法,其特征在于,所述根据所述PL以及获取到的干扰余量确定所述终端的UCI的重复次数,包括:将所述PL与所述干扰余量之和与预设的门限值进行比较;若所述PL与所述干扰余量之和大于所述门限值,则采用高覆盖等级确定所述UCI的重复次数;若所述PL与所述干扰余量之和小于所述门限值,则采用低覆盖等级确定所述UCI的重复次数。
- 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:根据检测到的干扰噪声值计算获取所述干扰余量。
- 根据权利要求1至3任一项所述的方法,其特征在于,所述根据所述PHR获取所述终端当前的路损PL,包括:根据所述PHR的计算公式PH c(i)=P CMAX,c(i)-{P O_NPUSCH,c(1)+α c(1)·PL c},反推计算获取所述终端当前的PL;其中,i表示时隙,PH c(i)为所述PHR对应的实测量值的下限值,P O_NPUSCH,c(1)为网络设备配置的非持续调度期望功率,α c(1)为网络设备配置的路损因子,P CMAX,c(i)为所述终端设备最大允许发射功率,PL c为所述终端当前的PL。
- 根据权利要求1至4任一项所述的方法,其特征在于,所述接收终端上报的功率余量报告PHR,包括:在随机接入过程中,接收所述终端在无线资源控制RRC连接请求消息中发送的所述PHR。
- 根据权利要求1至5任一项所述的方法,其特征在于,所述将所述UCI的重复次数发送给所述终端,包括:在向所述终端发送的RRC连接建立消息中携带所述UCI的重复次数。
- 根据权利要求1至6任一项所述的方法,其特征在于,所述方法还包括:当所述终端的PL和/或干扰余量发生变化,则根据变化后的PL和干扰余量重新确定所述终端的UCI的重复次数,并将重新确定的UCI的重复次数发送给所述终端。
- 一种网络设备,其特征在于,包括:接收模块,用于接收终端上报的功率余量报告PHR;处理模块,用于根据所述PHR获取所述终端当前的路损PL;所述处理模块还用于根据所述PL以及获取到的干扰余量确定所述终端的UCI的重复次数;发送模块,用于将所述UCI的重复次数发送给所述终端,所述UCI的重复次数用于确定上行的发射功率。
- 根据权利要求8所述的网络设备,其特征在于,所述处理模块具体用于:将所述PL与所述干扰余量之和与预设的门限值进行比较;若所述PL与所述干扰余量之和大于所述门限值,则采用高覆盖等级确定所述UCI的重复次数;若所述PL与所述干扰余量之和小于所述门限值,则采用低覆盖等级确定所述UCI的重复次数。
- 根据权利要求8或9所述的网络设备,其特征在于,所述处理模块还用于:根据检测到的干扰噪声值计算获取所述干扰余量。
- 根据权利要求8至10任一项所述的网络设备,其特征在于,所述处理模块具体用于:根据所述PHR的计算公式PH c(i)=P CMAX,c(i)-{P O_NPUSCH,c(1)+α c(1)·PL c},反推计算获取所述终端当前的PL;其中,i表示时隙,PH c(i)为所述PHR对应的实测量值的下限值,P O_NPUSCH,c(1)为网络设备配置的非持续调度期望功率,α c(1)为网络设备配置的路损因子,P CMAX,c(i)为所述终端设备最大允许发射功率,PL c为所述终端当前的PL。
- 根据权利要求8至11任一项所述的网络设备,其特征在于,所述接收模块具体用于:在随机接入过程中,接收所述终端在无线资源控制RRC连接请求消息中发送的所述PHR。
- 根据权利要求8至12任一项所述的网络设备,其特征在于,所述发送模块具体用于:在向所述终端发送的RRC连接建立消息中携带所述UCI的重复次数。
- 根据权利要求8至13任一项所述的网络设备,其特征在于,所述处理模块还用于:当所述终端的PL和/或干扰余量发生变化,则根据变化后的PL和干扰余量重新确定所述终端的UCI的重复次数;所述发送模块还用于将重新确定的UCI的重复次数发送给所述终端。
- 一种网络设备,其特征在于,包括:接收器,用于接收终端上报的功率余量报告PHR;处理器,用于根据所述PHR获取所述终端当前的路损PL;所述处理器还用于根据所述PL以及获取到的干扰余量确定所述终端的UCI的重复次数;发送器,用于将所述UCI的重复次数发送给所述终端,所述UCI的重复次数用于确 定上行的发射功率。
- 根据权利要求15所述的网络设备,其特征在于,所述处理器具体用于:将所述PL与所述干扰余量之和与预设的门限值进行比较;若所述PL与所述干扰余量之和大于所述门限值,则采用高覆盖等级确定所述UCI的重复次数;若所述PL与所述干扰余量之和小于所述门限值,则采用低覆盖等级确定所述UCI的重复次数。
- 根据权利要求15或16所述的网络设备,其特征在于,所述处理器还用于:根据检测到的干扰噪声值计算获取所述干扰余量。
- 根据权利要求15至17任一项所述的网络设备,其特征在于,所述处理器具体用于:根据所述PHR的计算公式PH c(i)=P CMAX,c(i)-{P O_NPUSCH,c(1)+α c(1)·PL c},反推计算获取所述终端当前的PL;其中,i表示时隙,PH c(i)为所述PHR对应的实测量值的下限值,P O_NPUSCH,c(1)为网络设备配置的非持续调度期望功率,α c(1)为网络设备配置的路损因子,P CMAX,c(i)为所述终端设备最大允许发射功率,PL c为所述终端当前的PL。
- 根据权利要求15至18任一项所述的网络设备,其特征在于,所述接收器具体用于:在随机接入过程中,接收所述终端在无线资源控制RRC连接请求消息中发送的所述PHR。
- 根据权利要求15至19任一项所述的网络设备,其特征在于,所述发送器具体用于:在向所述终端发送的RRC连接建立消息中携带所述UCI的重复次数。
- 根据权利要求15至20任一项所述的网络设备,其特征在于,所述处理器还用于:当所述终端的PL和/或干扰余量发生变化,则根据变化后的PL和干扰余量重新确定所述终端的UCI的重复次数;所述发送器还用于将重新确定的UCI的重复次数发送给所述终端。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序用于实现权利要求1至7任一项所述的上行发射功率确定方法。
- 一种计算机程序产品,其特征在于,该计算机程序产品包括:计算机程序,当该计算机程序被网络设备运行时,使得所述网络设备执行权利要求1至7任一项所述的上行发射功率确定方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18929469.7A EP3826375B1 (en) | 2018-08-09 | 2018-08-09 | Uplink transmitting power determining method, network device, and storage medium |
PCT/CN2018/099676 WO2020029184A1 (zh) | 2018-08-09 | 2018-08-09 | 上行发射功率确定方法、网络设备和存储介质 |
CN201880095874.6A CN112470528B (zh) | 2018-08-09 | 2018-08-09 | 上行发射功率确定方法、网络设备和存储介质 |
US17/169,857 US11963106B2 (en) | 2018-08-09 | 2021-02-08 | Uplink transmit power determining method, network device, and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/099676 WO2020029184A1 (zh) | 2018-08-09 | 2018-08-09 | 上行发射功率确定方法、网络设备和存储介质 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/169,857 Continuation US11963106B2 (en) | 2018-08-09 | 2021-02-08 | Uplink transmit power determining method, network device, and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020029184A1 true WO2020029184A1 (zh) | 2020-02-13 |
Family
ID=69413764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/099676 WO2020029184A1 (zh) | 2018-08-09 | 2018-08-09 | 上行发射功率确定方法、网络设备和存储介质 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11963106B2 (zh) |
EP (1) | EP3826375B1 (zh) |
CN (1) | CN112470528B (zh) |
WO (1) | WO2020029184A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10750456B2 (en) * | 2018-09-07 | 2020-08-18 | T-Mobile Usa, Inc. | Systems and methods for managing cellular multi-connectivity |
CN114285520A (zh) * | 2021-12-21 | 2022-04-05 | 中国电信股份有限公司 | 配置授权的自适应配置方法、装置、存储介质及电子设备 |
CN114630437A (zh) * | 2022-04-08 | 2022-06-14 | 中国电信股份有限公司 | 时隙聚合方法及装置、计算机存储介质、电子设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130121186A1 (en) * | 2011-11-14 | 2013-05-16 | Qualcomm Incorporated | Uplink data transmission with interference mitigation |
CN106233794A (zh) * | 2014-01-29 | 2016-12-14 | 交互数字专利控股公司 | 用于覆盖增强无线传输的接入和链路自适应的方法 |
WO2017135887A1 (en) * | 2016-02-05 | 2017-08-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods for determining the number of repetitions of pucch for mtc ues |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9392553B2 (en) * | 2009-10-01 | 2016-07-12 | Interdigital Patent Holdings, Inc. | Determining power headroom in a wireless network |
CN102076062B (zh) * | 2009-11-20 | 2015-03-11 | 华为技术有限公司 | 上行发送功率控制参数的获取方法、基站和用户设备 |
KR20120129961A (ko) * | 2010-03-12 | 2012-11-28 | 교세라 가부시키가이샤 | 무선통신시스템, 고전력기지국, 저전력기지국, 및 무선통신방법 |
KR101878143B1 (ko) * | 2010-09-19 | 2018-07-13 | 엘지전자 주식회사 | 제어 정보를 전송하는 방법 및 이를 위한 장치 |
CN102076072B (zh) * | 2010-12-31 | 2013-10-09 | 北京邮电大学 | 上行功率控制方法、用户设备和载波聚合系统 |
CN103535086B (zh) | 2013-05-16 | 2017-05-31 | 华为技术有限公司 | 上行功率控制方法及基站 |
US9859972B2 (en) * | 2014-02-17 | 2018-01-02 | Ubiqomm Llc | Broadband access to mobile platforms using drone/UAV background |
EP2919534B1 (en) * | 2014-03-12 | 2019-03-06 | Panasonic Intellectual Property Corporation of America | Power headroom reporting for MTC devices in enhanced coverage mode |
JP2017516362A (ja) * | 2014-04-09 | 2017-06-15 | エルジー エレクトロニクス インコーポレイティド | 送信制御実行方法及びユーザ装置 |
JP6853187B2 (ja) * | 2015-05-10 | 2021-03-31 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおけるアップリンク送信のための繰り返しレベルを適応させる方法及び装置 |
CN106257856B (zh) * | 2015-06-19 | 2021-02-02 | 北京三星通信技术研究有限公司 | 一种传输上行控制信息的方法 |
CN106961721B (zh) * | 2016-01-11 | 2020-05-15 | 中兴通讯股份有限公司 | 一种实现上行功率控制的方法及终端 |
WO2017153118A1 (en) | 2016-03-11 | 2017-09-14 | Sony Corporation | Repetitive transmission for nb-iot |
EP3425980A4 (en) * | 2016-03-16 | 2019-09-25 | HFI Innovation Inc. | METHOD FOR PLANNING UPLINK CONTROL INFORMATION AND WIRELESS COMMUNICATION APPARATUS |
CN107371229B (zh) * | 2016-05-13 | 2022-10-11 | 中兴通讯股份有限公司 | 功率控制方法、装置及用户设备 |
US10462755B2 (en) * | 2017-06-16 | 2019-10-29 | Qualcomm Incorporated | Techniques and apparatuses for power headroom reporting in new radio |
WO2019026296A1 (ja) * | 2017-08-04 | 2019-02-07 | 株式会社Nttドコモ | ユーザ端末及び無線通信方法 |
US11388611B2 (en) * | 2018-07-06 | 2022-07-12 | Sony Corporation | Communication control apparatus and communication control method |
-
2018
- 2018-08-09 WO PCT/CN2018/099676 patent/WO2020029184A1/zh unknown
- 2018-08-09 CN CN201880095874.6A patent/CN112470528B/zh active Active
- 2018-08-09 EP EP18929469.7A patent/EP3826375B1/en active Active
-
2021
- 2021-02-08 US US17/169,857 patent/US11963106B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130121186A1 (en) * | 2011-11-14 | 2013-05-16 | Qualcomm Incorporated | Uplink data transmission with interference mitigation |
CN106233794A (zh) * | 2014-01-29 | 2016-12-14 | 交互数字专利控股公司 | 用于覆盖增强无线传输的接入和链路自适应的方法 |
WO2017135887A1 (en) * | 2016-02-05 | 2017-08-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods for determining the number of repetitions of pucch for mtc ues |
Non-Patent Citations (2)
Title |
---|
"Remaining issues on NR UL power control", 3GPP TSG RAN WG1 MEETING #92 R1-1801546, 2 March 2018 (2018-03-02), XP051396798 * |
See also references of EP3826375A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20210168727A1 (en) | 2021-06-03 |
US11963106B2 (en) | 2024-04-16 |
CN112470528A (zh) | 2021-03-09 |
EP3826375A4 (en) | 2021-07-28 |
EP3826375B1 (en) | 2022-10-26 |
CN112470528B (zh) | 2022-06-14 |
EP3826375A1 (en) | 2021-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11134447B2 (en) | Power control method for transmitting uplink channel | |
JP6775007B2 (ja) | マルチユーザ電力制御方法および手順 | |
US20200022094A1 (en) | Information transmission method and apparatus | |
CN105557055B (zh) | 空闲信道评估(cca)阈值适配方法 | |
US9860810B2 (en) | Cell change based on uplink configuration | |
JP5227938B2 (ja) | ユーザ装置及び移動通信方法 | |
WO2019170106A1 (zh) | 一种功率控制方法及设备 | |
WO2019028881A1 (zh) | 随机接入功率控制方法、装置以及通信系统 | |
WO2019000321A1 (zh) | 用于传输信号的方法、终端设备和网络设备 | |
WO2018059307A1 (zh) | 通信方法、基站和终端设备 | |
US10560947B2 (en) | Terminal device, network device, uplink reference signal sending method, and uplink reference signal receiving method | |
WO2019062998A1 (zh) | 功率控制方法及装置 | |
CN106851809B (zh) | 确定功率的方法及用户设备 | |
US20200163026A1 (en) | Uplink power control method and apparatus | |
US11963106B2 (en) | Uplink transmit power determining method, network device, and storage medium | |
JP2019533938A (ja) | アップリンク電力制御方法及び装置 | |
KR102308640B1 (ko) | 지시 정보 전송 방법, 지시 정보 수신 방법, 기기 및 시스템 | |
WO2021052112A1 (en) | Method and apparatus for beam management, and ue | |
WO2018196787A1 (zh) | 一种信道状态的指示方法、装置及网络设备 | |
TWI749056B (zh) | 通訊方法、終端裝置和網路裝置 | |
JP2018523395A (ja) | 無線通信ネットワークにおける無線チャネルに上で少なくとも1つの受信ノードへのデータ送信を行う送信ノード、および送信ノードにおける方法 | |
US11832191B2 (en) | Power control method, terminal, and network device | |
CN118118991A (zh) | 用于多时隙传输块传输的上行链路功率控制 | |
JP6174564B2 (ja) | 送信装置、受信装置及び送信電力制御方法 | |
WO2016154924A1 (zh) | 一种发射功率调整方法及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18929469 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018929469 Country of ref document: EP Effective date: 20210216 |