WO2019028881A1 - 随机接入功率控制方法、装置以及通信系统 - Google Patents

随机接入功率控制方法、装置以及通信系统 Download PDF

Info

Publication number
WO2019028881A1
WO2019028881A1 PCT/CN2017/097220 CN2017097220W WO2019028881A1 WO 2019028881 A1 WO2019028881 A1 WO 2019028881A1 CN 2017097220 W CN2017097220 W CN 2017097220W WO 2019028881 A1 WO2019028881 A1 WO 2019028881A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
user equipment
physical broadcast
preamble
broadcast signal
Prior art date
Application number
PCT/CN2017/097220
Other languages
English (en)
French (fr)
Inventor
蒋琴艳
王昕�
贾美艺
Original Assignee
富士通株式会社
蒋琴艳
王昕�
贾美艺
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 蒋琴艳, 王昕�, 贾美艺 filed Critical 富士通株式会社
Priority to JP2020506260A priority Critical patent/JP6988994B2/ja
Priority to EP17921016.6A priority patent/EP3668194A4/en
Priority to PCT/CN2017/097220 priority patent/WO2019028881A1/zh
Priority to CN201780092671.7A priority patent/CN110832913B/zh
Publication of WO2019028881A1 publication Critical patent/WO2019028881A1/zh
Priority to US16/450,273 priority patent/US10736054B2/en
Priority to US16/910,736 priority patent/US11337166B2/en
Priority to JP2021194086A priority patent/JP7322939B2/ja
Priority to US17/724,067 priority patent/US11785557B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/322Power control of broadcast channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side

Definitions

  • the present invention relates to the field of communications, and in particular, to a random access power control method, apparatus, and communication system.
  • a user equipment performs a random access process attempt at the same time, and can initiate another when it is determined that the random access attempt fails. The random access procedure attempts to access again.
  • LTE Long Term Evolution
  • the user equipment randomly selects a preamble and transmits it on a physical random access channel (Physical Random Channel, PRACH for short).
  • PRACH Physical Random Channel
  • the base station indicates that the user equipment uses a certain preamble, and indicates that the UE uses a specific PRACH time-frequency resource or instructs the UE to select a time-frequency resource by itself.
  • the transmit power of the preamble can be calculated using the following equation (1):
  • P PRACH min ⁇ P CMAX,c (i),PREAMBLE_RECEIVED_TARGET_POWER+PL c ⁇ [dBm] (1)
  • P CMAX,c (i) is the maximum transmission power of the UE to the subframe i in the cell c;
  • PL c is the downlink path loss of the cell c estimated by the UE
  • PREAMBLE_RECEIVED_TARGET_POWER is the preamble receiving target power, and its expression is as follows (2):
  • PREAMBLE_RECEIVED_TARGET_POWER preambleInitialReceivedTargetPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*powerRampingStep (2)
  • the DELTA_PREAMBLE is a predefined power offset value based on the preamble format; the preambleInitialReceivedTargetPower and the powerRampingStep are the initial target received power and the power boosting step for the preamble respectively configured by the cell; the PREAMBLE_TRANSMISSION_COUNTER is the preamble sending count value, and the initial value is 1, if 1 random access attempt fails, the UE restarts a random access attempt, the count value is incremented by 1. When the value added by 1 is greater than the maximum number of transmissions configured by the cell, the UE reports a random access problem to the upper layer, and then the UE can Perform cell reselection.
  • the communication scenario of random access is relatively simple, and the factors considered are relatively small when determining the transmit power of the preamble.
  • the inventors of the present application have found that in future wireless communication systems, such as 5G and New Radio (NR) systems, the communication scenario of random access becomes more complicated, and more possibilities may be introduced to cause the UE to be randomly connected. Uncertainty of the failure of the incoming process. If the current mechanism is still used to determine the transmit power of the preamble, it is difficult to meet the requirements of complex communication scenarios.
  • the base station is transmitting multiple synchronization signals/physical broadcast signal blocks (SS/PBCH block).
  • SS/PBCH block synchronization signals/physical broadcast signal blocks
  • the above method does not consider the difference in the method of determining the transmit power of the preamble, and thus it is difficult to accurately estimate the transmission of the preamble in the multi-beam scenario. power.
  • the present application provides a random access method, device, and communication system, which can be adapted to a complex random access scenario of a UE.
  • a random access power control apparatus comprising:
  • a first computing unit that utilizes a path loss estimated based on a synchronization signal/physical broadcast signal block (SS/PBCH block) and/or a channel state information reference signal (CSI-RS) currently selected by the user equipment, Calculating a transmit power used by the user equipment to send a random access preamble.
  • SS/PBCH block synchronization signal/physical broadcast signal block
  • CSI-RS channel state information reference signal
  • a random access power control method includes:
  • SS/PBCH block synchronization signal/physical broadcast signal block
  • CSI-RS channel state information reference signal
  • a random access power control apparatus comprising:
  • a second calculating unit configured to calculate a transmit power of the preamble by using a first parameter, where the first parameter comprises: a number of sequences received by a single receive beam of the user equipment (N_seq.beam), and/or a configuration adopted by the preamble
  • N_seq.beam a number of sequences received by a single receive beam of the user equipment
  • a random access power control method includes:
  • the first parameter includes: a sequence number (N_seq.beam) received by a single receive beam of the user equipment, and/or a configuration parameter or a subcarrier bandwidth adopted by the preamble, And/or the type of the user equipment, and/or the gain of the transmit/receive beam of the user equipment.
  • N_seq.beam a sequence number received by a single receive beam of the user equipment
  • configuration parameter or a subcarrier bandwidth adopted by the preamble And/or the type of the user equipment, and/or the gain of the transmit/receive beam of the user equipment.
  • a communication system comprising a user equipment; wherein the user equipment utilizes a path loss estimated based on a synchronization signal/physical broadcast signal block (SS/PBCH block) currently selected by the user equipment And calculating, by the user equipment, the sending power used when sending the random access preamble; or, the user equipment calculates the sending power by using the first parameter,
  • SS/PBCH block synchronization signal/physical broadcast signal block
  • the beneficial effects of the embodiment of the present invention are: when calculating the transmission power used by the user equipment to send the random access preamble, the influence of multiple parameters is considered, thereby being able to adapt to the UE random access procedure in a complex scenario.
  • FIG. 2 is a schematic diagram of a method for a UE to perform a random access attempt according to Embodiment 1 of the present application;
  • FIG. 3 is a flowchart of a random access power control method according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of a random access power control apparatus according to Embodiment 3 of the present application.
  • FIG. 5 is a schematic diagram of a random access power control apparatus according to Embodiment 4 of the present application.
  • FIG. 6 is a schematic diagram of a user equipment according to Embodiment 5 of the present application.
  • FIG. 7A is a schematic diagram of a communication system according to Embodiment 6 of the present application.
  • FIG. 7B is another schematic diagram of a communication system according to Embodiment 6 of the present application.
  • FIG. 10 is a schematic diagram of an information indicating apparatus according to Embodiment 9 of the present application.
  • FIG. 11 is a schematic diagram of an information indicating apparatus according to Embodiment 10 of the present application.
  • Figure 12 is a schematic diagram of a communication system according to Embodiment 11 of the present application.
  • FIG. 13 is a schematic diagram of a base station according to Embodiment 11 of the present application.
  • FIG. 14 is a schematic diagram of a user equipment according to Embodiment 11 of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or chronological order of the elements, and these elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising,” “comprising,” “having,” or “an” are used to distinguish different elements from the title, but do not indicate the spatial arrangement or chronological order of the elements, and these elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the term “communication network” or “wireless communication network” may refer to a network that conforms to any communication standard such as Long Term Evolution (LTE), Enhanced Long Term Evolution (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA), High-Speed Packet Access (HSPA), and the like.
  • LTE Long Term Evolution
  • LTE-A Enhanced Long Term Evolution
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system may be performed according to any phase of the communication protocol, and may include, for example but not limited to, the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G, and future. 5G, New Radio (NR), etc., and/or other communication protocols currently known or to be developed in the future.
  • the term "network device” refers to, for example, a device in a communication system that accesses a terminal device to a communication network and provides a service for the terminal device.
  • the network device may include, but is not limited to, a device: a base station (BS, a base station), an access point (AP, an Access Point), a transmission and reception point (TRP), a broadcast transmitter, and a mobility management entity (MME, Mobile). Management Entity), gateway, server, Radio Network Controller (RNC), Base Station Controller (BSC), and so on.
  • BS base station
  • AP access point
  • TRP transmission and reception point
  • MME mobility management entity
  • Management Entity gateway
  • server Radio Network Controller
  • BSC Base Station Controller
  • the base station may include, but is not limited to, a Node B (NodeB or NB), an evolved Node B (eNodeB or eNB), and a 5G base station (gNB), and the like, and may further include a Remote Radio Head (RRH). , Remote Radio Unit (RRU), relay or low power node (eg femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • base station may include some or all of their functions, and each base station may provide communication coverage for a particular geographic area.
  • the term "cell” can refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "user equipment” (UE) or “Terminal Equipment” (TE) refers to, for example, a device that accesses a communication network through a network device and receives a network service.
  • the user equipment may be fixed or mobile, and may also be referred to as a mobile station (MS, Mobile Station), a terminal, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, and the like.
  • the user equipment may include, but is not limited to, a cellular phone (Cellular Phone), a personal digital assistant (PDA, Personal Digital Assistant), a wireless modem, a wireless communication device, a handheld device, a machine type communication device, a laptop computer, Cordless phones, smart phones, smart watches, digital cameras, and many more.
  • a cellular phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem a wireless communication device
  • handheld device a machine type communication device
  • a laptop computer Cordless phones, smart phones, smart watches, digital cameras, and many more.
  • the user equipment may also be a machine or device that performs monitoring or measurement, and may include, but is not limited to, a Machine Type Communication (MTC) terminal, In-vehicle communication terminal, device to device (D2D, Device to Device) terminal, machine to machine (M2M, Machine to Machine) terminal, and the like.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • the random access procedure may be a contention based random access procedure or a non-contention based random access procedure.
  • the random access procedure is classified into a contention-based random access procedure and a non-contention-based random access procedure according to whether the network device can uniquely identify a random access procedure of a certain UE.
  • the embodiment 1 of the present invention provides a random access power control method, which is applied to a device side that initiates a random access procedure to a network side, such as a user equipment (UE) side.
  • a network side such as a user equipment (UE) side.
  • UE user equipment
  • FIG. 1 is a flow chart of a random access power control method according to Embodiment 1 of the present invention. As shown in Figure 1, the method includes:
  • Step 101 Calculate, by using a path loss estimated by a synchronization signal/physical broadcast signal block (SS/PBCH block) and/or a channel state information reference signal (CSI-RS) currently selected by the user equipment, when the user equipment sends the random access preamble The transmit power used.
  • SS/PBCH block synchronization signal/physical broadcast signal block
  • CSI-RS channel state information reference signal
  • the path loss estimated based on the UE-selected synchronization signal/physical broadcast signal block (SS/PBCH block) and/or channel state information reference signal (CSI-RS) is considered in calculating the transmission power of the preamble, Therefore, it can adapt to the UE random access process in complex scenarios such as multi-beam.
  • SS/PBCH block UE-selected synchronization signal/physical broadcast signal block
  • CSI-RS channel state information reference signal
  • the base station may periodically send a plurality of synchronization signals/physical broadcast signal blocks (SS/PBCH blocks), or a synchronization signal block (SSB), in a beam sweeping manner.
  • the base station may configure a physical random access channel resource/preamble set and divide it into multiple subsets, different SS/PBCH blocks and different physical random access channel resources/preambles.
  • the subset PRACH resource/preamble subset is associated.
  • the user equipment may select a cell and an SS/PBCH block in the cell by using a cell search, thereby determining a PRACH resource/preamble subset associated with the SS/PBCH block, from the PRACH resource/preamble
  • the PRACH resource and the preamble are selected in the subset, and the message containing the preamble is sent using the PRACH resource.
  • the UE may reselect the SS/PBCH block from the cell, thereby switching the new PRACH resource/preamble subset to perform a random access attempt.
  • the preamble transmission corresponding to the SS/PBCH block can be accurately calculated according to the path loss estimated based on the SS/PBCH block selected by the UE. Power, so as to adapt to the UE random access process in complex scenarios such as multi-beam.
  • the transmission power P PRACH of the preamble can be calculated according to the following formula (3):
  • P CMAX,c is the maximum transmit power of the UE in cell c
  • P PRACH, SSB is the transmit power required by the UE to transmit the preamble according to the power up count and the path loss estimated based on the SS/PBCH block, for example, P PRACH, SSB can be obtained according to the following formula (4):
  • P PRACH,SSB PREAMBLE_RECEIVED_TARGET_POWER+PL1 (4)
  • PREAMBLE_RECEIVED_TARGET_POWER indicates a preamble receiving target power, which can be obtained based on the power up-up count.
  • PREAMBLE_RECEIVED_TARGET_POWER can be obtained according to the following formula (5):
  • the preambleInitialReceivedTargetPower and the powerRampingStep are the initial target received power and the power boosting step for the preamble respectively configured by the cell;
  • the DELTA_PREAMBLE is a pre-defined format (Preamble Format) based predefined power offset value;
  • the POWER_RAMPING_COUNTER represents the power uplifting count.
  • the initial value of the power up count may be 1, and the power up count may be incremented by one every time the UE restarts a random access attempt.
  • the preamble transmission count PREAMBLE_TRANSMISSION_COUNTER may be incremented by one.
  • the power up count POWER_RAMPING_COUNTER and the preamble transmission count PREAMBLE_TRANSMISSION_COUNTER can be equal or unequal.
  • the UE may report the first random access problem to the upper layer when the value of the preamble transmission count value plus one is greater than the maximum transmission number configured by the cell, and then the UE may perform cell reselection.
  • the PL1 may be calculated based on the specific implementation manner of the UE.
  • the corresponding PL1 may be calculated based on the measured value of the received power of the UE (RSRP1) corresponding to the SS/PBCH block currently selected by the UE, for example, according to The following formula (4-1) is calculated:
  • PL1 base station transmit power - UE receive power (RSRP1) (4-1)
  • the channel state information reference signal may be configured for measurement
  • different CSI-RSs may correspond to different beams, so as to be associated with different physical random access channel resources/preamble subsets, and the UE may refer to signals based on channel state information ( For the measurement result of the CSI-RS, the PRACH resource corresponding to the CSI-RS is selected for random access.
  • the transmission power of the preamble may also be calculated based on the path loss estimated by the CSI-RS configured by the UE.
  • P PRACH, SSB can be calculated according to the following formula (4-2):
  • PL2 is a path loss estimated based on the CSI-RS that the UE is configured.
  • step 101 of the present embodiment when calculating the transmission power of the preamble, either PL1 or PL2 may be utilized, PL1 and PL2 may be used to form PL3, and PL3 may be substituted for PL1 in equation (4).
  • the method further includes:
  • Step 102 Set a power up count and/or a power up step when the reported random access problem related to the user equipment reselecting the synchronization signal/physical broadcast signal block is obtained.
  • the reported random access problem ie, the second random access problem
  • the step size may be used to control the transmit power of the preamble sent by the UE, so as to avoid interference to other UEs due to excessive transmit power when transmitting the preamble corresponding to the reselected SS/PBCH block.
  • the power up count and/or the power up step can be set by the upper layer of the UE.
  • the power up count and/or the power up step can be reset to a predetermined value, for example, the power up count is Set to 0 or halved.
  • the UE may raise the count and/or power according to the newly set power during the subsequent random access attempt.
  • the step size is raised to calculate the transmission power of the transmitted preamble, and therefore, the transmission power of the preamble can be controlled.
  • the method further includes:
  • Step 103 In the case that the user equipment reselects the synchronization signal/physical broadcast signal block (SS/PBCH block), the random access problem related to the user equipment reselecting the synchronization signal/physical broadcast signal block is reported.
  • SS/PBCH block synchronization signal/physical broadcast signal block
  • the method further includes:
  • Step 104 When the user equipment reselects the synchronization signal/physical broadcast signal block (SS/PBCH block) and meets the first preset condition, reporting the randomization related to the user equipment reselecting the synchronization signal/physical broadcast signal block Access problem.
  • SS/PBCH block synchronization signal/physical broadcast signal block
  • the first preset condition involved in step 104 may be at least one of the following conditions: the power ups up count is greater than the first threshold value N_thre; the UE estimates according to the power uplift count and based on the reselected SS/PBCH block The path loss calculated by the preamble is greater than the second threshold P_thre.
  • the random access problem (ie, the second random access problem) related to the user equipment reselecting the synchronization signal/physical broadcast signal block may be reported to the upper layer of the user equipment, the user.
  • the upper layer of the device sets the power up count and/or the power up step in the event that the second random access problem is received.
  • the method may further include:
  • Step 102a When the user equipment reselects the synchronization signal/physical broadcast signal block, or when the user equipment reselects the synchronization signal/physical broadcast signal block and meets the second preset condition, setting the power up count and/or power Raise the step size.
  • the power up count and/or the power up step may be set without performing the reporting of the second random access problem, for example, when setting the power up count and/or the power up step When the unit is in the same layer as the unit that is counting, the power up count and/or the power up step can be set without reporting the second random access problem.
  • the second preset condition may be at least one condition listed in the first preset condition.
  • the method further includes:
  • Step 105 The parameter related to the synchronization signal/physical broadcast signal block (SS/PBCH block) currently selected by the user equipment satisfies a third preset condition, and/or in a target synchronization signal/physical broadcast signal block (SS /PBCH block) When the relevant parameter satisfies the fourth preset condition, it is determined that the target synchronization signal/physical broadcast signal block is selected.
  • SS/PBCH block synchronization signal/physical broadcast signal block
  • the UE when the UE decides to restart a random access attempt, it can determine whether to reselect the SS/PBCH block. Therefore, it is possible to avoid selecting the SS/PBCH block too frequently, thereby avoiding the SS/PBCH block.
  • the third preset condition may be any one or a combination of two or more of the following conditions:
  • the UE may compare the received power RSRP of the currently selected SS/PBCH block with a third threshold X [dBm], if RSRP ⁇ X[dBm], the UE may reselect the SS/PBCH block, otherwise the UE does not select a new SS/PBCH block.
  • the UE may reselect the SS/PBCH block, otherwise, the UE does not reselect the SS/PBCH block.
  • the maximum transmit power of the preamble calculated based on the currently selected SS/PBCH block is P max , and when the number of times the UE sends the preamble by using the maximum transmit power P max is greater than or equal to N, the UE may re-retransmit the preamble next time.
  • the SS/PBCH block is selected. Otherwise, the UE does not reselect the SS/PBCH block.
  • the SS/PBCH block may be reselected. Otherwise, the UE may not reselect the SS/PBCH block.
  • the fourth preset condition may include at least one of the following conditions:
  • the UE may compare the difference between the received power RSRP2 of the target SS/PBCH block and the received power RSRP1 of the currently selected SS/PBCH block (RSRP2-RSRP1) with the seventh threshold Y[dB], if (RSRP2-RSRP1) ⁇ Y [dB], the UE can select the target SS/PBCH block as the new SS/PBCH block; otherwise, the UE cannot reselect the SS/PBCH block.
  • RSRP2-RSRP1 received power RSRP1 of the currently selected SS/PBCH block
  • the UE can select the target SS/PBCH block as the new SS/PBCH block; otherwise, the UE cannot reselect the SS/PBCH block.
  • the first threshold, and/or the second threshold, and/or the third threshold, and/or the fourth threshold, and/or the fifth threshold, and/or the sixth threshold, and/ Or the seventh threshold, and/or the eighth threshold may be configured by the base station to the UE, for example, the base station may be configured by system message, and/or RRC signaling, and/or physical layer control signaling, and the like.
  • the present embodiment is not limited thereto.
  • the UE may also configure one or more of the first threshold to the eighth threshold.
  • FIG. 2 is a schematic diagram of a method for the UE to perform a random access attempt according to the embodiment. As shown in FIG. 2, the method includes:
  • Step 201 The previous random access attempt of the UE fails, and it is decided to restart a random access attempt.
  • Step 202 The UE calculates the transmit power P PRACH, SSB of the preamble according to the power up count PRC and the path loss estimated based on the currently selected SS/PBCH block.
  • Step 203 it is determined whether (P PRACH, SSB - P CMAX, c ) is greater than the threshold Z [dB], if the determination is "No”, then proceeds to step 204, if the determination is "Yes”, then proceeds to step 208;
  • Step 204 Do not reselect the SS/PBCH block
  • Step 205 the power upcount PR is incremented by 1 to update the PRC;
  • Step 206 The UE recalculates the transmit power P PRACH, SSB of the preamble according to the updated power up count PRC and the path loss estimated based on the currently selected SS/PBCH block;
  • Step 207 The UE reselects the SS/PBCH block, and selects a PRACH resource corresponding to the reselected SS/PBCH block.
  • Step 208 it is determined whether the power up-up count PRC is greater than the first threshold value N_thre, if the determination is "NO”, then proceeds to step 210, if the determination is "Yes”, then proceeds to step 209;
  • Step 209 Report the second random access problem to the upper layer, and the high-level power up count PRC
  • the row is reset, for example, the power upcount PR is set to half of the original value; or the upper layer resets the power up step, for example, setting the power up step to half of the original value.
  • Step 210 The UE recalculates the transmit power P PRACH, SSB of the preamble according to the power up count PRC, the power up step, and the path loss estimated based on the reselected SS/PBCH block.
  • Step 211 The UE determines, according to the foregoing formula (3), the transmit power P PRACH of the preamble according to the P PRACH, SSB , and sends the preamble.
  • the step shown by the dashed box 20 indicates the process in which the UE reports the second random access problem to the upper layer in the case where the new SS/PBCH block is selected.
  • the path loss estimated based on the synchronization signal/physical broadcast signal block (SS/PBCH block) selected by the UE is taken into account when calculating the transmit power of the preamble, so that the UE can be randomly connected in a complex scenario such as multi-beam.
  • the UE sets the power up-count and/or the power up step in the case where the new SS/PBCH block is selected, whereby the transmit power of the preamble can be controlled to avoid interference to other UEs; and, the UE The new SS/PBCH block is selected for preamble transmission when the preset conditions are met, thereby avoiding the ping-pong effect between the SS/PBCH blocks.
  • the second embodiment of the present invention provides a random access method, which is applied to a device side that initiates a random access procedure to a network side, such as a user equipment (UE) side.
  • a network side such as a user equipment (UE) side.
  • UE user equipment
  • FIG. 3 is a flowchart of a random access power control method according to Embodiment 2 of the present invention. As shown in Figure 3, it includes:
  • Step 301 Calculate the transmit power of the preamble by using the first parameter.
  • the first parameter may include, for example, the sequence number N_seq.beam of a single receive beam of the UE, and/or the number of sequences and the number of receive beams included in the preamble, and/or configuration parameters adopted by the preamble or The bandwidth of the subcarrier (numerology/SCS), and/or the type of the UE, and/or the gain of the transmit/receive beam (TX/RX beam) of the UE, and the like.
  • the first parameter may not be limited to the parameters listed above.
  • the first parameter is taken into consideration, thereby enabling the transmission power of the preamble to satisfy the requirements of the complex communication scenario.
  • the transmit power P' PRACH of the preamble can be determined according to the following formula (6):
  • P CMAX,c is the maximum transmit power of the UE in cell c
  • P' PRACH, SSB is the transmit power required by the UE to transmit the preamble according to the power up count, the estimated value of the path loss, and the first parameter, for example
  • the first parameter can be used to determine a power offset value that can be introduced into the formula for calculating P' PRACH, SSB .
  • the P' PRACH may be calculated according to the power offset value DELTA_P set by the first parameter, the estimated value of the path loss, and the preamble receiving target power (PREAMBLE_RECEIVED_TARGET_POWER) obtained based on the power up count.
  • SSB for example, P' PRACH, SSB can be obtained according to the following formula (7):
  • PL' is an estimated value of the path loss of the path for transmitting the prereamble
  • the estimated value of the path loss may be the downlink path loss of the cell c estimated by the UE, such that PL' may be equal to PLc in equation (1)
  • the estimated value of the path loss may also be an estimated path loss based on the SS/PBCH block selected by the UE, such that PL' may be the same as PL1 in equation (4), PL2 in equation (4-2), or PL3.
  • the random access method of the present embodiment and the random access method of the embodiment 1 can be combined, that is, the Step 301 may be combined with step 101 of FIG. 1, whereby the UE-selected synchronization signal/physical broadcast signal block (SS/PBCH block) and/or channel state information reference signal (CSI-) is selected according to the power up count (POWER_RAMPING_COUNTER).
  • SS/PBCH block UE-selected synchronization signal/physical broadcast signal block
  • CSI- channel state information reference signal
  • PREAMBLE_RECEIVED_TARGET_POWER indicates the preamble receive target power, which can be obtained based on the power up count, for example, PREAMBLE_RECEIVED_TARGET_POWER can be based on (5) is obtained.
  • P' PRACH, SSB may be calculated according to the preamble receiving target power obtained based on the power offset value DELTA_P and the power up count set by the first parameter, and the path loss PL'.
  • P' PRACH, SSB can be obtained according to the following formula (8):
  • the PREAMBLE_RECEIVED_TARGET_POWER' is a preamble receiving target power obtained based on the power offset value DELTA_P and the power up count set by the first parameter, for example, PREAMBLE_RECEIVED_TARGET_POWER' can be obtained by using the following formula (9):
  • the preambleInitialReceivedTargetPower and the powerRampingStep are the initial target receiving power and the power lifting step for the preamble respectively configured by the cell;
  • the DELTA_PREAMBLE is a pre-defined power offset value based on the preamble format;
  • the POWER_RAMPING_COUNTER indicates the power upcount;
  • the DELTA_P is according to the The power offset value set by the characteristic parameter.
  • the power offset value DELTA_P is introduced into the calculation of P' PRACH, SSB in the form of addition, but the embodiment is not limited thereto, and the power offset value DELTA_P can also be introduced into the calculation of P' PRACH, SSB in the form of subtraction, and / or multiplication, and / or division, and / or exponential operations, and / or logarithm operations; in addition, can also be
  • the power offset value DELTA_P is introduced in the equation (7) or the equation (9) under certain predetermined conditions, thereby calculating P' PRACH, SSB , for example, in the case where the preamble is a short sequence, for the equation (9) DELTA_P can be reserved, and DELTA_PREAMBLE is deleted, that is, DELTA_PREAMBLE is replaced with DELTA_P.
  • DELTA_PREAMBLE can be retained,
  • DELTA_PREAMBLE can be determined based on the format of the preamble.
  • format0 (839) can be used as a reference format to determine the value of DELTA_PREAMBLE corresponding to each other format; for a short sequence (sequence length L is 127/) 139, ie, 127 or 139) preamble, using a format of a short sequence (127/139) (for example, format A0) as a reference format to calculate values of DELTA_PREAMBLE corresponding to other formats, and a short sequence
  • the value of the DELTA_PREAMBLE corresponding to the reference format can also be obtained by taking the value of the DELTA_PREAMBLE corresponding to the long sequence reference format as a reference. Table 1 shows the values of DELTA_PREAMBLE corresponding to each format.
  • the corresponding DELTA_PREAMBLE can be directly determined from Table 1, wherein the values of DELTA_PREAMBLE corresponding to formats 1, 2, and 3 are in format 0.
  • the corresponding DELTA_PREAMBLE value is obtained by reference.
  • the value of DELTA_PREAMBLE corresponding to the short sequence reference format may be used as the value of DELTA_PREAMBLE corresponding to each format.
  • the value of the DELTA_PREAMBLE corresponding to the short sequence reference format is, for example, 14 dB, and the value may be a value obtained by taking the value 0 of the DELTA_PREAMBLE corresponding to the format 0 as a reference.
  • the power offset value DELTA_P DELTA_NoS determined based on N_seq.beam.
  • the long sequence (sequence length L is 839) preamble and the short sequence (sequence length L is 127/139) are different in DELTA_NoS corresponding to each format of the preamble.
  • Table 2 is a list of DELTA_NoS corresponding to the long sequence preamble.
  • Table 3 is a list of DELTA_NoS corresponding to the short sequence preamble.
  • the DELTA_NoS can be determined according to the following formula (10):
  • Fomat refers to the Preamble Format
  • #of Sequence indicates the number of the received sequence (sequnce).
  • DELTA_NoS shown in Table 2 or Table 3 can be substituted into equations (7) or (8), (9) to calculate P' PRACH, SSB .
  • DELTA_NoS may also be introduced in the equation (7) or the equation (9) under certain predetermined conditions, thereby calculating P' PRACH, SSB , for example, a short sequence (127/139) in the preamble.
  • DELTA_NoS may be retained, and DELTA_PREAMBLE may be deleted, that is, the effect of DELTA_No on the transmit power of the preamble is considered only in the case where the preamble is a short sequence (127/139).
  • DELTA_PREAMBLE is replaced by DELTA_NoS.
  • DELTA_PREAMBLE can be retained in the equation (7) or (9), and DELTA_NoS can be deleted.
  • equation (9) can be written as follows (9a):
  • PREAMBLE_RECEIVED_TARGET_POWER preambleInitialReceivedTargetPower+DELTA_PREAMBLE(for 839)/DELTA_NoS(for 127/139)
  • DELTA_PREAMBLE(for 839)/DELTA_NoS(for 127/139) indicates that the value of DELTA_NoS is taken when the preamble is a short sequence (127/139)
  • the value of DELTA_NoS can be determined by referring to Table 3 above;
  • the value of DELTA_PREAMBLE is taken.
  • the value of DELTA_PREAMBLE can be determined by referring to Table 1 above.
  • the transmission power of the short sequence preamble may be calculated based on the configuration parameter or the subcarrier bandwidth adopted by the preamble for the case of the short sequence preamble.
  • DELTA_SCS may be determined according to the following formula (11):
  • denotes the configuration parameter of the subcarrier bandwidth used by the preamble
  • the power offset value DELTA_SCS relative to the reference transmit power can be as shown in Table 4 below.
  • the UE type may be, for example, a service type of the UE, and the work determined based on the UE type.
  • a correspondence list between the UE type and the DELTA_UE value may be preset, thereby determining a value of the DELTA_UE corresponding to the UE type.
  • Table 5 below is an example of the correspondence between the UE type and the DELTA_UE value.
  • the UE type is 0, which means that the service type of the UE is beam-capable, and the DELTA_UE corresponding to the type is 0 dB; the UE type is 1, and the service type of the UE is that the beam correspondence cannot be performed.
  • the DELTA_UE corresponding to the type has a value of 3 dB.
  • the DELTA_Beam value corresponding to the gain of the transmit/receive beam may be determined by a preset correspondence between the gain of the transmit/receive beam and the DELTA_Beam value, or a formula.
  • DELTA_NoS may be used as DELTA_P to calculate P' PRACH, SSB , or two or more of them may be combined as DELTA_P to calculate P' PRACH, SSB. .
  • the UE may determine whether to reselect the SS/PBCH block for preamble transmission in the same manner as in Embodiment 1; and, in the case that the UE reselects the SS/PBCH block, the UE may adopt the method described in Embodiment 1.
  • the manner is determined when the UE reports the second random access problem, and the manner in which the upper layer of the UE resets the power up count and/or the power up step is also the same as in Embodiment 1.
  • the first parameter is taken into consideration, thereby enabling the transmission power of the preamble to satisfy the requirements of the complex communication scenario.
  • the third embodiment provides a random access power control device.
  • the principle of the device is similar to that of the first embodiment and the second embodiment. Therefore, the specific implementation may refer to the methods of the first embodiment and the second embodiment. The implementation of the same content will not be repeated.
  • the apparatus 400 includes a first calculating unit 401, and the first calculating unit 401 is configured to calculate that a user equipment sends a preamble in a random access procedure. The transmit power used at the time.
  • the first calculating unit 401 calculates the path loss estimated based on the synchronization signal/physical broadcast signal block (SS/PBCH block) and/or the channel state information reference signal (CSI-RS) currently selected by the user equipment.
  • the sending power used by the user equipment to transmit a random access preamble.
  • the apparatus 400 may further have a first setting unit 402.
  • the setting unit 402 obtains the reported random access problem related to the user equipment reselecting the synchronization signal/physical broadcast signal block. , set the power up count and / or power up step size.
  • the setting unit 402 can be implemented by a high layer of the UE, and the upper layer of the UE can be, for example, a Media Access Control (MAC) layer.
  • MAC Media Access Control
  • the apparatus 400 may further have a first reporting unit 403, and the first reporting unit 403 is configured to reselect the synchronization signal/physical broadcast signal block (SS/PBCH block) at the user equipment.
  • the random access problem related to the user equipment reselection of the synchronization signal/physical broadcast signal block is reported to the setting unit 402.
  • the apparatus 400 may further have a second reporting unit 404, and the second reporting unit 404 is configured to reselect the synchronization signal/physical broadcast signal block (SS/PBCH block) at the user equipment. If the first preset condition is met, the setting unit 402 reports the random access problem related to the user equipment reselecting the synchronization signal/physical broadcast signal block.
  • SS/PBCH block synchronization signal/physical broadcast signal block
  • the first preset condition is at least one of the following conditions:
  • the transmission power is greater than a second threshold.
  • the device 400 may further have a second setting unit 402a, and the second device
  • the setting unit 402a sets the power up count and/or the power up step when the user equipment reselects the synchronization signal/physical broadcast signal block, or when the user equipment reselects the synchronization signal/physical broadcast signal block and satisfies the second preset condition. long.
  • the second setting unit 402a may be used without reporting the random access problem (ie, the second random access problem) related to the UE reselecting the SS/PBCH block to the second setting unit 402a.
  • the setting of the power up count and/or the power up step can be performed, wherein the second setting unit 402a can be located, for example, at the physical layer of the UE.
  • the second preset condition may be at least one condition listed in the first preset condition.
  • the apparatus 400 may further have a first determining unit 405, and the first determining unit 405 is currently in the synchronization signal/physical broadcast signal block (SS/PBCH block) selected by the user equipment.
  • the relevant parameter satisfies the third preset condition, and/or the parameter related to the target synchronization signal/physical broadcast signal block (SS/PBCH block) satisfies the fourth preset condition, determining to select the target synchronization signal/physical broadcast Signal block.
  • the third preset condition includes at least one of the following conditions:
  • the fourth preset condition may include at least one of the following conditions:
  • the difference between the maximum transmit power of the user equipment in the cell and the transmit power of the preamble calculated based on the target synchronization signal/physical broadcast signal block is greater than an eighth threshold.
  • the first calculating unit 401 may further calculate the transmit power according to the characteristic parameter related to the user equipment, that is, the first calculating unit 401 may perform the count based on the power, based on the user. Synchronization signal/physical broadcast signal block (SS/PBCH block) and/or channel status selected by the device.
  • SS/PBCH block Synchronization signal/physical broadcast signal block
  • CSI-RS information reference signal
  • the first calculating unit 401 may calculate the transmit power according to the power offset value set by the first parameter, the path loss, and the preamble receiving target power obtained based on the power up count; or the first calculating unit 401 The transmission power is calculated based on the preamble reception target power obtained based on the power offset value and the power up count set by the first parameter, and the path loss.
  • the first parameter may include: a sequence number (N_seq.beam) received by a single receiving beam of the user equipment, and/or a configuration parameter or a subcarrier bandwidth adopted by the preamble, and/or the user equipment Type, and/or gain of the transmit/receive beam of the user equipment.
  • N_seq.beam a sequence number received by a single receiving beam of the user equipment
  • configuration parameter or a subcarrier bandwidth adopted by the preamble and/or the user equipment Type, and/or gain of the transmit/receive beam of the user equipment.
  • the impact of the first parameter on the transmit power may be considered under a preset condition.
  • the preamble is a short sequence (127/139)
  • the influence of the first parameter on the transmit power is considered.
  • the preamble is a long sequence (839)
  • the influence of the first parameter on the transmission power is not considered.
  • the UE random access procedure in a complex scenario such as multi-beam can be adapted; and, if the UE selects a new SS/PBCH block, the power up count and/or the power up step are set. Therefore, the transmit power of the preamble can be controlled to avoid interference to other UEs; and the UE selects a new SS/PBCH block for preamble transmission when the preset condition is met, thereby avoiding the SS/PBCH block.
  • the fourth embodiment provides a random access control device.
  • the principle of the device is similar to that of the second embodiment. Therefore, the specific implementation may refer to the implementation of the method in the second embodiment. Repeat the instructions.
  • the apparatus 500 includes a second calculating unit 501, where the second calculating unit 501 is configured to calculate that a user equipment sends a preamble during a random access procedure. The transmit power used.
  • the second calculating unit 501 is configured to calculate the sending power according to a first parameter related to the user equipment, where the first parameter includes: a sequence number received by a single receiving beam of the user equipment. (N_seq.beam), and/or configuration parameters or subcarrier bandwidth employed by the preamble, and/or type of the user equipment, and/or gain of the transmit/receive beam of the user equipment, and the like.
  • N_seq.beam a sequence number received by a single receiving beam of the user equipment.
  • the random access device is capable of adapting to a random access procedure of a UE in a complex scenario such as multiple beams.
  • the fifth embodiment provides a user equipment configured with the random access control device 400 or the random access control device 500 as described in Embodiment 3 or Embodiment 4.
  • FIG. 6 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • user device 600 can include a central processing unit (CPU) 601 and memory 602; and memory 602 is coupled to central processor 601.
  • the memory 602 can store various data; in addition, a program for data processing is stored, and the program is executed under the control of the central processing unit 601 to perform random access.
  • random access control device 400 or random access control device 500 may be integrated into central processor 601.
  • the central processing unit 601 can be configured to implement the random access method described in Embodiment 1 or Embodiment 2.
  • the central processing unit 601 can be configured to calculate the path loss estimated based on the synchronization signal/physical broadcast signal block (SS/PBCH block) and/or channel state information reference signal (CSI-RS) selected by the user equipment.
  • SS/PBCH block synchronization signal/physical broadcast signal block
  • CSI-RS channel state information reference signal
  • the central processor 601 can be configured to calculate the transmit power using the first parameter.
  • the random access control device 400 or the random access control device 500 may be configured separately from the central processing unit 601.
  • the random access control device 400 or the random access control device 500 may be configured to be central to The chip connected to the processor 601, such as the random access unit shown in FIG. 6, implements the functions of the random access control device 400 or the random access control device 500 by the control of the central processing unit 601.
  • the user equipment 600 may further include: a communication module 603, an input unit 604, a display 606, an audio processor 605, an antenna 607, a power source 608, and the like. Among them, the function and the present of the above components There are similar technologies and will not be described here. It should be noted that the user equipment 600 does not necessarily have to include all the components shown in FIG. 6; in addition, the user equipment 600 may also include components not shown in FIG. 6, and reference may be made to the prior art.
  • the UE can adapt to the UE random access procedure in a complex scenario such as multiple beams.
  • the communication system 700 includes a network device 701 and a user equipment 702 on the network side; the user equipment 702 utilizes a synchronization signal/physical broadcast signal block (SS/PBCH block) and/or channel currently selected based on the user equipment.
  • the path loss estimated by the state information reference signal (CSI-RS) is used to calculate the transmit power used by the user equipment to transmit the random access preamble; or the user equipment 702 calculates the transmit power by using the first parameter.
  • a network device 701 on the network side receives the preamble transmitted by the UE 702.
  • one network device 701 on the network side may further configure any one or more of the first threshold to the eighth threshold used by the user equipment for the user equipment 702.
  • the communication system 700 includes a plurality of network devices 701 and user equipment 702 on the network side; the user equipment 702 utilizes a synchronization signal/physical broadcast signal block (SS/PBCH block) currently selected based on the user equipment and/or The channel state information reference signal (CSI-RS) estimated path loss is used to calculate the transmit power used by the user equipment to transmit the random access preamble; or the user equipment 702 calculates the transmit power by using the first parameter.
  • a plurality of network devices 701 on the network side receive the preamble transmitted by the UE 702.
  • the plurality of network devices 701 on the network side may further configure one or more of the first threshold to the eighth threshold used by the user equipment for the user equipment 702.
  • the configuration of the user equipment 702 is as described in Embodiment 5.
  • the workflow of the system is as shown in Embodiment 1-4, and the content thereof is incorporated herein, and details are not described herein again.
  • the system can adapt to the UE random access process in complex scenarios such as multi-beam.
  • Embodiment 7 of the present application provides an information indication method, which is applied to a network side, such as a network device.
  • FIG. 8 is a schematic diagram of the information indication method in the embodiment. As shown in FIG. 8, the information indication method may include:
  • Step 801 Send a channel for indicating a current cell transmission synchronization signal/physical broadcast signal (SS/PBCH) First indication information of the location and/or number of time-frequency resources of the block, and/or location of the time-frequency resource for indicating a neighboring cell transmission synchronization signal/physical broadcast signal block (SS/PBCH block) and/or The second indication of the quantity.
  • SS/PBCH current cell transmission synchronization signal/physical broadcast signal
  • the time-frequency resource used for transmitting the SS/PBCH block can be indicated, so that the UE can send and receive data and perform measurement.
  • the upper limit L of the number of time-frequency resources for transmitting the SS/PBCH block corresponding to the transmission period of the SS/PBCH block or the SS burst set may be predefined. And the location of all possible time-frequency resources for transmitting SS/PBCH blocks under different upper limit.
  • the network device may configure the number of time-frequency resources actually used to transmit the SS/PBCH block and the location of each time-frequency resource in one cycle of the SS/PBCH block.
  • the network device can indicate the time-frequency resource used for transmitting the SS/PBCH block by sending the first indication information and/or the second indication information, so that the UE can send and receive data and perform measurement.
  • the first indication information and/or the second indication information may be any one of the following:
  • the information indicating whether each predetermined position in the time-frequency resource is used to transmit the synchronization signal/physical broadcast signal block may be a bit; the predetermined location may be, for example, pre-configured by the network device, and may be used to send the SS/PBCH. The location of the time-frequency resource of the block.
  • the first indication information and/or the second indication information may be indicated based on a bit-map, for example, for each predetermined location, the time of the location may be indicated by 1 bit. Whether the frequency resource is used to actually transmit the SS/PBCH block. For example, if the bit is 1, the resource indicating the predetermined location is actually used to transmit the SS/PBCH block, and the bit is 0, indicating that the resource at the predetermined location is not actually used for transmission. SS/PBCH block.
  • the first indication information and/or the second indication information may be indicated based on a bitmap of a packet, for example, a predetermined number of slots (for example, 2) a predetermined position as a group, for each group, a bit can be used to indicate whether there is a time-frequency resource for actually transmitting the SS/PBCH block in the time-frequency resource of the group, for example, if the bit is 1, the At least one resource of the group is actually used to transmit the SS/PBCH block. If the bit is 0, it indicates that the resources of the group are not actually used to transmit the SS/PBCH block.
  • the upper limit of the number of predetermined positions is 4 (if the number of predetermined positions of each group is 2), information of 2 bits can be used to indicate whether each group has resources actually used for transmitting the SS/PBCH block.
  • a predetermined transmission pattern formed by the time-frequency resource for transmitting the SS/PBCH block may be defined in advance, and a correspondence between the predetermined transmission mode and the index is set, thereby
  • the user equipment may determine the transmission mode according to the index, thereby determining the number and/or location of the time-frequency resources actually used to transmit the SS/PBCH block.
  • the predetermined transmission mode may be, for example, that the SS/PBCH block is transmitted using only the previous possible resource location in one slot.
  • the first indication information and/or the second indication information may include a total number of time-frequency resources for transmitting the SS/PBCH block corresponding to one transmission period of the SS/PBCH block, and/or a last time-frequency resource. Location, at this time, if the default SS/PBCH block is continuously transmitted from the first position of the predetermined time-frequency resource until the total number of transmissions or the end of the time-frequency resource is reached.
  • the first of the time-frequency resources for transmitting the synchronization signal/physical broadcast signal block, and the last location for transmitting the synchronization signal/physical broadcast signal block and/or the time-frequency resource for transmission synchronization The total number of locations of signal/physical broadcast signal blocks.
  • the first indication information and/or the second indication information may include a first location of a time-frequency resource for transmitting an SS/PBCH block corresponding to one transmission period of the SS/PBCH block, and a last one for transmission.
  • the method may further include:
  • Step 802 Configure a grouping of each predetermined location of the time-frequency resource.
  • the user equipment can receive the configuration information, thereby determining which group of resources are used to transmit the SS/PBCH block according to the first indication information and/or the second indication information.
  • the method may further include:
  • Step 803 Configure a correspondence between the predetermined transmission mode and an index.
  • the user equipment can receive the configuration information, so as to determine which transmission mode is used to transmit the SS/PBCH block according to the first indication information and/or the second indication information.
  • the network device may send the first indication information via system information (SI), and/or radio resource control (RRC) signaling.
  • SI system information
  • RRC radio resource control
  • the system information may include, for example, a Physical Broadcast Channel (PBCH), and/or Remaining Minimum System Information (RMSI), and/or other information.
  • PBCH Physical Broadcast Channel
  • RMSI Remaining Minimum System Information
  • the network device may send the second indication information via measurement configuration information, and/or redirection configuration information, and/or a handover command.
  • the network device may configure the number of time-frequency resources that are actually used to transmit the SS/PBCH block and the location of each time-frequency resource in one cycle of the SS/PBCH block, and generate the first result based on the result of the configuration.
  • An indication message may be configured to indicate the number of time-frequency resources that are actually used to transmit the SS/PBCH block and the location of each time-frequency resource in one cycle of the SS/PBCH block.
  • the network device of the neighboring cell may send first indication information generated based on the configuration result of the network device of the neighboring cell, where the network device of the current serving cell receives the neighboring cell
  • the first indication information may be processed to generate second indication information.
  • the network device of the current serving cell may determine, according to the first indication information sent by the neighboring cell, the time-frequency resource used by the neighboring cell for the actually transmitted SS/PBCH block, and according to the determined time-frequency.
  • the resource determines the measurement window of the UE, and uses the measurement window to generate the second indication information, where the second indication information may only indicate the time-frequency resource configuration of the neighboring cell in the measurement window for transmitting the transmission SS/PBCH block.
  • the measurement window may not be able to cover all possible locations of the neighboring cell for transmitting time-frequency resources of the SS/PBCH block.
  • the UE may obtain a configuration of a time-frequency resource used by the neighboring cell to transmit the SS/PBCH block.
  • the UE it is possible to facilitate the UE to transmit and receive data and perform measurement.
  • Embodiment 8 of the present application provides an information indication method, which is applied to a user equipment side, such as a user equipment.
  • FIG. 9 is a schematic diagram of the information indication method in the embodiment. As shown in FIG. 9, the information indication method may include:
  • Step 901 Receive first indication information indicating a location and/or a quantity of a time-frequency resource of a current cell transmission synchronization signal/physical broadcast signal block (SS/PBCH block), and/or indicate a neighbor cell transmission synchronization. Second indication of the location and/or number of time-frequency resources of the signal/physical broadcast signal block (SS/PBCH block).
  • the time-frequency resource used for transmitting the SS/PBCH block can be indicated, so that the UE can send and receive data and perform measurement.
  • the description about the first indication information and/or the second indication information may refer to Embodiment 7.
  • the method may further include:
  • Step 902 Receive configuration information of the packet in each predetermined location.
  • the user equipment can receive the configuration information, thereby determining which group of resources are used to transmit the SS/PBCH block according to the first indication information and/or the second indication information.
  • the method may further include:
  • Step 903 Receive configuration information of a correspondence between the predetermined transmission mode and an index.
  • the user equipment can receive the configuration information, so as to determine which transmission mode is used to transmit the SS/PBCH block according to the first indication information and/or the second indication information.
  • the user equipment may receive the first indication information via system information (SI), and/or radio resource control (RRC) signaling.
  • SI system information
  • RRC radio resource control
  • the user equipment may receive the second indication information via measurement configuration information, and/or redirection configuration information, and/or a handover command.
  • the UE it is possible to facilitate the UE to transmit and receive data and perform measurement.
  • An embodiment of the present invention provides an information indicating apparatus, which is configured on a transmitting end.
  • the present embodiment 9 corresponds to the information method of the seventh embodiment, and the same content is not described herein again.
  • FIG. 10 is a schematic diagram of an information indicating apparatus according to an embodiment of the present invention. As shown in FIG. 10, the information indicating apparatus 1000 includes:
  • a first sending unit 1001 configured to send first indication information for indicating a location and/or a quantity of a time-frequency resource of a current cell transmission synchronization signal/physical broadcast signal block (SS/PBCH block), and/or for Second indication information indicating the location and/or number of time-frequency resources of the neighboring cell transmission synchronization signal/physical broadcast signal block (SS/PBCH block).
  • the first sending unit 1001 may send the first indication information via system information (SI), and/or radio resource control (RRC) signaling.
  • SI system information
  • RRC radio resource control
  • the first sending unit sends the second indication information via measurement configuration information, and/or redirection configuration information, and/or a handover command.
  • the description about the first indication information and/or the second indication information may refer to Embodiment 7.
  • the apparatus 1000 may further include a first configuration unit 1002 for configuring the grouping of each predetermined location.
  • the apparatus 1000 may further include a second configuration unit 1003 configured to configure a correspondence between the predetermined transmission mode and an index.
  • the apparatus 1000 may configure the number of time-frequency resources actually used for transmitting the SS/PBCH block and the location of each time-frequency resource in one cycle of the SS/PBCH block, and generate a result based on the configuration. First indication information.
  • the network device of the neighboring cell may send the first indication information generated based on the configuration result of the network device of the neighboring cell, where the device 1000 of the network device of the current cell receives the adjacent
  • the first indication information may be processed to generate the second indication information. Therefore, the apparatus 1000 of the present application may further include an indication information generating unit (not shown).
  • an indication information generating unit (not shown). For the method of generating the second indication information by the indication information generating unit, reference may be made to the description in Embodiment 7.
  • the UE may obtain a configuration of a time-frequency resource used by the neighboring cell to transmit the SS/PBCH block.
  • the UE it is possible to facilitate the UE to transmit and receive data and perform measurement.
  • the embodiment of the present invention provides an information indicating apparatus, which is configured on the receiving end.
  • the present embodiment 10 corresponds to the information indicating method of the eighth embodiment, and the same content is not described herein again.
  • FIG. 11 is a schematic diagram of an information indicating apparatus according to an embodiment of the present invention. As shown in FIG. 11, the information indicating apparatus 1100 may include:
  • a first receiving unit 1101 configured to receive first indication information for indicating a location and/or a quantity of a time-frequency resource of a current cell transmission synchronization signal/physical broadcast signal block (SS/PBCH block), and/or for Second indication information indicating the location and/or number of time-frequency resources of the neighboring cell transmission synchronization signal/physical broadcast signal block (SS/PBCH block).
  • first indication information for indicating a location and/or a quantity of a time-frequency resource of a current cell transmission synchronization signal/physical broadcast signal block (SS/PBCH block)
  • Second indication information indicating the location and/or number of time-frequency resources of the neighboring cell transmission synchronization signal/physical broadcast signal block (SS/PBCH block).
  • the first receiving unit 1101 receives the first indication information via system information (SI), and/or radio resource control (RRC) signaling.
  • SI system information
  • RRC radio resource control
  • the first receiving unit 1101 receives the second indication information via measurement configuration information, and/or redirection configuration information, and/or a handover command.
  • the apparatus 1100 may further include a second receiving unit 1102 for receiving configuration information of the packet at each predetermined location.
  • the apparatus 1100 may further include a third receiving unit 1103, configured to receive configuration information of a correspondence between the predetermined transmission mode and an index.
  • the UE it is possible to facilitate the UE to transmit and receive data and perform measurement.
  • the embodiment of the present invention further provides a communication system, and the same contents as those of Embodiments 7 to 10 are not described herein.
  • the communication system may include:
  • a transmitting end which is configured with the information indicating device 1000 as described in Embodiment 9;
  • the receiving end is configured with the information indicating device 1100 as described in Embodiment 10.
  • FIG. 12 is a schematic diagram of a communication system according to an embodiment of the present invention, which schematically illustrates a case where a transmitting end is a user equipment and a receiving end is a base station.
  • the communication system 1200 may include a base station 1201 and a user equipment 1202. .
  • the base station 1201 is configured with the information indicating apparatus 1000 as described in Embodiment 9, and the user
  • the device 1202 is configured with the information indicating device 1100 as described in Embodiment 10.
  • the embodiment of the present invention further provides a receiving end, which may be, for example, a base station, but the present invention is not limited thereto, and may be other network devices.
  • a receiving end which may be, for example, a base station, but the present invention is not limited thereto, and may be other network devices.
  • the following takes a base station as an example for description.
  • FIG. 13 is a schematic diagram showing the structure of a base station according to an embodiment of the present invention.
  • base station 1300 can include a central processing unit (CPU) 200 and memory 210; and memory 210 is coupled to central processing unit 200.
  • the memory 210 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 200.
  • the central processing unit 200 can be configured to implement the functions of the information indicating apparatus 1000.
  • the central processing unit 200 can be configured to be controllable to cause the base station to perform the information indicating method shown in Embodiment 7.
  • the base station 1300 may further include: a transceiver 220, an antenna 230, and the like; wherein the functions of the foregoing components are similar to those of the prior art, and details are not described herein again. It should be noted that the base station 1300 does not have to include all the components shown in FIG. 13; in addition, the base station 1300 may further include components not shown in FIG. 13, and reference may be made to the prior art.
  • the embodiment of the present invention further provides a sending end, which may be, for example, a user equipment, but the present invention is not limited thereto, and may be other network devices.
  • a sending end which may be, for example, a user equipment, but the present invention is not limited thereto, and may be other network devices.
  • the following uses the user equipment as an example for description.
  • FIG. 14 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • the user device 1400 can include a central processing unit 100 and a memory 140; the memory 140 is coupled to the central processing unit 100.
  • the figure is exemplary; other types of structures may be used in addition to or in place of the structure to implement telecommunications functions or other functions.
  • the central processing unit 100 can be configured to implement the information indicating apparatus 1100.
  • the central processing unit 100 can be configured to be controllable to cause the user equipment to perform the information indicating method shown in Embodiment 8.
  • the user equipment 1500 may further include: a communication module 110, an input unit 120, a display 160, and a power source 170.
  • the functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the user equipment 1500 does not have to include all the components shown in FIG. 15, and the above components are not required; in addition, the user equipment 1500 may further include components not shown in FIG. There are technologies.
  • the embodiment of the present invention further provides a computer readable program, wherein the program causes the random access power control device or user equipment to perform Embodiment 1 when the program is executed in a random access power control device or a user equipment 2, the random access power control method.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a random access power control device or a user equipment to perform the random access power control method described in Embodiments 1 and 2. .
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in an information device or a network device, the program causes the information device or the user equipment to execute the information indicating method described in Embodiment 7.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the information indicating device or the network device to execute the information method described in Embodiment 7.
  • the embodiment of the present invention further provides a computer readable program, wherein the program causes the information device or the user equipment to perform the information indication method described in Embodiment 8 when the program is executed in an information device or a user device.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the information indicating device or the user equipment to execute the information indicating method described in Embodiment 8.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • the random access method in the random access device described in connection with the embodiments of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional blocks shown in Figures 4, 5, 10, 11 and/or one or more combinations of functional blocks may correspond to various software modules of a computer program flow, or may correspond to Various hardware modules.
  • These software modules may correspond to the respective steps shown in Figures 1, 3, 8, and 9, respectively.
  • These hardware modules can be implemented, for example, by curing these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • the software module can be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage known in the art.
  • Storage medium can be coupled to the processor to enable the processor to read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional block diagrams described with respect to Figures 4, 5, 10, 11 and/or one or more combinations of functional block diagrams may be implemented as a general purpose processor, digital signal processing for performing the functions described herein. (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any suitable combination thereof.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to Figures 4, 5, 10, 11 and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, A plurality of microprocessors, one or more microprocessors in communication with the DSP, or any other such configuration.
  • An information indicating device comprising:
  • a first sending unit configured to send first indication information for indicating a location and/or a quantity of a time-frequency resource of a current cell transmission synchronization signal/physical broadcast signal block (SS/PBCH block), and/or for indicating The neighboring cell transmits second indication information of the location and/or number of time-frequency resources of the synchronization signal/physical broadcast signal block (SS/PBCH block).
  • the first sending unit sends the first indication information via system information (SI), and/or radio resource control (RRC) signaling.
  • SI system information
  • RRC radio resource control
  • the first indication unit transmits the second indication information via measurement configuration information, and/or redirection configuration information, and/or a handover command.
  • first indication information and/or the second indication information comprises:
  • the first of the time-frequency resources for transmitting the synchronization signal/physical broadcast signal block, and the last location for transmitting the synchronization signal/physical broadcast signal block and/or the time-frequency resource for transmitting the synchronization signal / The total number of locations of physical broadcast signal blocks.
  • a first configuration unit for configuring the grouping of each predetermined location.
  • a second configuration unit configured to configure a correspondence between the predetermined transmission mode and an index.
  • An information indicating device comprising:
  • a first receiving unit configured to receive first indication information for indicating a location and/or a quantity of a time-frequency resource of a current cell transmission synchronization signal/physical broadcast signal block (SS/PBCH block), and/or for indicating The neighboring cell transmits second indication information of the location and/or number of time-frequency resources of the synchronization signal/physical broadcast signal block (SS/PBCH block).
  • the first receiving unit receives the first indication information via system information (SI), and/or radio resource control (RRC) signaling.
  • SI system information
  • RRC radio resource control
  • the first receiving unit receives the second indication information via measurement configuration information, and/or redirection configuration information, and/or a handover command.
  • the first indication information and/or the second indication information comprises:
  • the first of the time-frequency resources for transmitting the synchronization signal/physical broadcast signal block, and the last location for transmitting the synchronization signal/physical broadcast signal block and/or the time-frequency resource for transmitting the synchronization signal / The total number of locations of physical broadcast signal blocks.
  • a second receiving unit configured to receive configuration information of the packet of each predetermined location.
  • a third receiving unit configured to receive configuration information of the correspondence between the predetermined transmission mode and the index.
  • a communication system comprising:
  • a transmitting end configured with the information indicating device according to claim 1;
  • a receiving end configured with the information indicating device according to claim 7.
  • An information indication method applied to the network side, comprising:
  • first indication information indicating a location and/or a quantity of a time-frequency resource of a current cell transmission synchronization signal/physical broadcast signal block (SS/PBCH block), and/or indicating a neighboring cell transmission synchronization signal/physical Second indication of the location and/or number of time-frequency resources of the broadcast signal block (SS/PBCH block).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种随机接入功率控制装置、方法和通信系统,其中,该随机接入装置包括:第一计算单元,其利用基于用户设备当前选择的同步信号/物理广播信号块和/或信道状态信息参考信号(CSI-RS)估计的路径损耗,计算所述用户设备发送随机接入前导时所使用的发送功率。由此,该UE能够适应多波束等复杂场景下的UE随机接入过程。

Description

随机接入功率控制方法、装置以及通信系统 技术领域
本发明涉及通信领域,特别涉及一种随机接入功率控制方法、装置以及通信系统。
背景技术
在长期演进(LTE,Long Term Evolution)系统中,用户设备(UE,User Equipment)同一时间进行单个随机接入过程(Random Access Process)尝试,在确认该随机接入尝试失败时才可发起另一个随机接入过程再次尝试接入。
在基于竞争的随机接入过程(Contention based random access procedure)中,用户设备随机选择一个前导(Preamble),在物理随机接入信道(Physical Random Channel,简称为PRACH)上发送。在基于非竞争的随机接入过程中,基站指示用户设备使用某一前导,并且指示UE使用特定PRACH时频资源或者指示UE自行选择时频资源。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
在LTE中,可以采用如下的式(1)计算前导的发送功率:
PPRACH=min{PCMAX,c(i),PREAMBLE_RECEIVED_TARGET_POWER+PLc}[dBm]    (1)
其中,PCMAX,c(i)为小区c中UE对子帧i的最大传输功率;
PLc为UE估计的小区c的下行路径损耗;
PREAMBLE_RECEIVED_TARGET_POWER为前导接收目标功率,其表达式如下式(2):
PREAMBLE_RECEIVED_TARGET_POWER=preambleInitialReceivedTargetPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*powerRampingStep    (2)
其中,DELTA_PREAMBLE为基于前导格式的预定义功率偏移值;preambleInitialReceivedTargetPower和powerRampingStep分别为小区配置的对于前导的初始目标接收功率及功率抬升步长;PREAMBLE_TRANSMISSION_COUNTER为前导发送计数值,其初始值为1,若1次随机接入尝试失败,UE每重新开始一次随机接入尝试,该计数值加1,当加1后的值大于小区配置的最大传输次数,UE向高层报告随机接入问题,随后UE可进行小区重选。
在LTE中,随机接入的通信场景相对简单,在确定前导的发送功率时,考虑的因素相对较少。
然而,本申请的发明人发现:在未来无线通信系统,例如5G、新无线(NR,New Radio)系统中,随机接入的通信场景变得更为复杂,将引入更多可能导致UE随机接入过程失败的不确定因素,如果仍采用目前的机制来确定preamble的发送功率,则难以满足复杂通信场景的要求,例如,基站在发送多个同步信号/物理广播信号块(SS/PBCH block)的场景下,存在着因SS/PBCH block的不同所引起的路径的损耗差异,而目前确定preamble的发送功率的方法中并没有考虑到上述差异,因而难以准确地估计多波束场景下preamble的发送功率。但目前还没有解决上述问题的方法。
因此,考虑未来无线通信中复杂的通信场景要求,本申请实施例提供一种随机接入方法、装置和通信系统,可适应复杂的UE随机接入场景。
根据本实施例的第一方面,提供了一种随机接入功率控制装置,所述装置包括:
第一计算单元,其利用基于用户设备当前选择的同步信号/物理广播信号块(SS/PBCH block)和/或信道状态信息参考信号(CSI-RS,channel state information reference signal)估计的路径损耗,计算所述用户设备发送随机接入前导时所使用的发送功率。
根据本实施例的第二方面,提供了一种随机接入功率控制方法,所述方法包括:
利用基于用户设备当前选择的同步信号/物理广播信号块(SS/PBCH block)和/或信道状态信息参考信号(CSI-RS)估计的路径损耗,计算所述用户设备发送随机接入前导时所使用的发送功率。
根据本实施例的第三方面,提供了一种随机接入功率控制装置,所述装置包括:
第二计算单元,其利用第一参数计算前导的发送功率,其中,所述第一参数包括:所述用户设备的单个接收波束接收的序列数量(N_seq.beam),和/或前导采用的配置 参数或子载波带宽,和/或所述用户设备的类型,和/或所述用户设备的发送/接收波束的增益。
根据本实施例的第四方面,提供了一种随机接入功率控制方法,所述方法包括:
利用第一参数计算前导的发送功率,其中,所述第一参数包括:所述用户设备的单个接收波束接收的序列数量(N_seq.beam),和/或前导采用的配置参数或子载波带宽,和/或所述用户设备的类型,和/或所述用户设备的发送/接收波束的增益。
根据本实施例的第五方面,提供了一种通信系统,包括用户设备;其中,所述用户设备利用基于用户设备当前选择的同步信号/物理广播信号块(SS/PBCH block)估计的路径损耗,计算所述用户设备发送随机接入前导时所使用的发送功率;或者,所述用户设备利用所述第一参数计算所述发送功率,
本发明实施例的有益效果在于:在计算用户设备发送随机接入前导时所使用的发送功率时,考虑多种参数的影响,由此,可适应复杂场景下的UE随机接入过程。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本申请实施例1的随机接入功率控制方法的流程图;
图2是本申请实施例1的UE进行随机接入尝试的方法的一个示意图;
图3是本发明实施例2的随机接入功率控制方法的流程图;
图4是本申请实施例3的随机接入功率控制装置示意图;
图5是本申请实施例4的随机接入功率控制装置示意图;
图6是本申请实施例5的用户设备的一个示意图;
图7A是本申请实施例6的通信系统的一个示意图;
图7B是本申请实施例6的通信系统的另一个示意图;
图8是本申请实施例7的信息指示方法的流程图;
图9是本申请实施例8的信息指示方法的流程图;
图10是本申请实施例9的信息指示装置的示意图;
图11是本申请实施例10的信息指示装置的示意图;
图12是本申请实施例11的通信系统的示意图;
图13是本申请实施例11的基站的示意图;
图14是本申请实施例11的用户设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。下面结合附图对本发明的各种实施方式进行说明。这些实施方式只是示例性的,不是对本发明的限制。
在本发明实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本发明实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式 也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本发明实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本发明实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本发明实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备。用户设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,用户设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机, 等等。
再例如,在物联网(IoT,Internet of Things)等场景下,用户设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
在本实施例中,随机接入过程可以是基于竞争的随机接入过程(Contention based random access procedure),也可以是基于非竞争的随机接入过程(Non-contention based random access procedure)。其中,根据网络设备是否能唯一标识某一UE的随机接入过程,随机接入过程分为基于竞争的随机接入过程和基于非竞争的随机接入过程。
下面结合附图对本发明实施例进行说明。
实施例1
本发明实施例1提供一种随机接入功率控制方法,应用于向网络侧发起随机接入过程的装置侧,如用户设备(UE)侧。
图1是本发明实施例1的随机接入功率控制方法的一个流程图。如图1所示,该方法包括:
步骤101、利用基于用户设备当前选择的同步信号/物理广播信号块(SS/PBCH block)和/或信道状态信息参考信号(CSI-RS)估计的路径损耗,计算用户设备发送随机接入前导时所使用的发送功率。
根据本实施例,在计算前导的发送功率时考虑到基于UE选择的同步信号/物理广播信号块(SS/PBCH block)和/或信道状态信息参考信号(CSI-RS)所估计的路径损耗,因而能够适应多波束等复杂场景下的UE随机接入过程。
在本实施例中,基站可以以波束扫描(beam sweeping)的方式周期性地发送多个同步信号/物理广播信号块(SS/PBCH block),或称同步信号块(synchronization signal block,SSB)。基站可以配置物理随机接入信道资源/前导的集合(PRACH resource/preamble set),并将其划分为多个子集(subset),不同的SS/PBCH block与不同的物理随机接入信道资源/前导的子集(PRACH resource/preamble subset)相关联。用户设备可以通过小区搜索选择小区及该小区中的SS/PBCH block,由此确定与该SS/PBCH block关联的PRACH resource/preamble subset,从PRACH resource/preamble  subset中选择PRACH resource及preamble,并使用PRACH resource发送包含preamble的消息。
在本实施例中,UE在随机接入尝试失败的情况下,可以从小区中重新选择SS/PBCH block,从而切换新的PRACH resource/preamble subset进行随机接入尝试。
在本实施例中,由于UE所选择的SS/PBCH block可以发生变化,因此,根据基于UE选择的SS/PBCH block所估计的路径损耗,能够准确地计算与SS/PBCH block对应的preamble的发送功率,从而适应多波束等复杂场景下的UE随机接入过程。
在本实施例中,可以根据下式(3)来计算preamble的发送功率PPRACH
PPRACH=min{PCMAX,c,PPRACH,SSB}[dBm]    (3)
其中PCMAX,c为UE在小区c的最大发送功率,PPRACH,SSB为UE根据功率抬升计数,以及基于SS/PBCH block估计的路径损耗等计算的发送preamble时所需要的发送功率,例如,PPRACH,SSB可以根据下式(4)来得到:
PPRACH,SSB=PREAMBLE_RECEIVED_TARGET_POWER+PL1    (4)
其中,PL1为至少基于UE选择的SS/PBCH block所估计的路径损耗,PREAMBLE_RECEIVED_TARGET_POWER表示前导接收目标功率,可以基于功率抬升计数来得到,例如,PREAMBLE_RECEIVED_TARGET_POWER可以根据下式(5)来得到:
PREAMBLE_RECEIVED_TARGET_POWER=
preambleInitialReceivedTargetPower+DELTA_PREAMBLE
+(POWER_RAMPING_COUNTER–1)*powerRampingStep    (5)
其中,preambleInitialReceivedTargetPower和powerRampingStep分别为小区配置的对于前导的初始目标接收功率及功率抬升步长;DELTA_PREAMBLE为基于前导格式(Preamble Format)的预定义功率偏移值;POWER_RAMPING_COUNTER表示功率抬升计数。
在本实施例中,功率抬升计数的初始值可以是1,UE每重新开始一次随机接入尝试,功率抬升计数可以加1。
在本实施例中,UE每重新开始一次随机接入尝试,可以使前导发送计数PREAMBLE_TRANSMISSION_COUNTER加1。
在本实施例中,功率抬升计数POWER_RAMPING_COUNTER与前导发送计数 PREAMBLE_TRANSMISSION_COUNTER可以相等或不等。
在本实施例中,UE可以在该前导发送计数值加1后的值大于小区配置的最大传输次数时,向高层报告第一随机接入问题,随后UE可进行小区重选。
在本实施例中,可以基于UE的具体实现方式来计算PL1,例如,可以基于UE当前选择的SS/PBCH block所对应的UE接收功率的测量值(RSRP1)来计算相应的PL1,例如可以根据下式(4-1)进行计算:
PL1=基站发送功率-UE接收功率(RSRP1)    (4-1)
在本实施例中,UE的随机接入过程还存在另一种可能的情况是:针对连接模式(CONNECTED mode)的UE,可以被配置用于测量的信道状态信息参考信号(CSI-RS),并且,不同CSI-RS可以对应不同的波束(beam),从而与不同的物理随机接入信道资源/前导的子集(PRACH resource/preamble subset)相关联,UE可以根据基于信道状态信息参考信号(CSI-RS)的测量结果,选择与CSI-RS对应的PRACH resource进行随机接入。
在本实施例的步骤101中,也可以利用基于UE被配置的CSI-RS估计的路径损耗,计算preamble的发送功率。例如,可以根据下式(4-2)计算PPRACH,SSB
PPRACH,SSB=PREAMBLE_RECEIVED_TARGET_POWER+PL2    (4-2)
其中,PL2是基于UE被配置的CSI-RS估计的路径损耗。
在本实施例的步骤101中,在计算preamble的发送功率时,可以利用PL1和PL2中的任一者,也可以利用PL1和PL2来形成PL3,并将PL3替代式(4)中的PL1。
在本实施例中,如图1所示,该方法还包括:
步骤102、在获得上报的与用户设备重新选择同步信号/物理广播信号块相关的随机接入问题时,设置功率抬升计数和/或功率抬升步长。
在本实施例中,在获得上报的与用户设备重新选择同步信号/物理广播信号块相关的随机接入问题(即,第二随机接入问题)时,通过设置功率抬升计数和/或功率抬升步长,可以对UE发送preamble的发送功率进行控制,避免在发送重新选择的SS/PBCH block所对应的preamble时由于发送功率过高对其它UE产生干扰。
在本实施例中,可以由UE的高层设置功率抬升计数和/或功率抬升步长,例如,可以将功率抬升计数和/或功率抬升步长重新设置为预定的数值,例如,功率抬升计数被设置为0或被减半。
在本实施例中,在步骤102中设置了功率抬升计数和/或功率抬升步长的情况下,在随后的随机接入尝试过程中UE可以根据该新设置过的功率抬升计数和/或功率抬升步长来计算发送preamble的发送功率,因此,preamble的发送功率能够得到控制。
在本实施例中,如图1所示,该方法还包括:
步骤103、在用户设备重新选择同步信号/物理广播信号块(SS/PBCH block)的情况下,上报所述与用户设备重新选择同步信号/物理广播信号块相关的随机接入问题。
在本实施例中,如图1所示,该方法还包括:
步骤104、在用户设备重新选择同步信号/物理广播信号块(SS/PBCH block)且满足第一预设条件的情况下,上报所述与用户设备重新选择同步信号/物理广播信号块相关的随机接入问题。
在本实施例中,步骤104所涉及的第一预设条件可以是以下条件中的至少一个:功率抬升计数大于第一阈值N_thre;UE根据功率抬升计数和基于重新选择的SS/PBCH block所估计的路径损耗计算出的preamble的发送功率大于第二阈值P_thre。
在本实施例的步骤103和步骤104中,与用户设备重新选择同步信号/物理广播信号块相关的随机接入问题(即,第二随机接入问题)可以被上报到用户设备的高层,用户设备的高层在接收到该第二随机接入问题的情况下,设置功率抬升计数和/或功率抬升步长。
在本实施例中,如图1所示,该方法还可以包括:
步骤102a、在用户设备重新选择同步信号/物理广播信号块时,或者,在所述用户设备重新选择同步信号/物理广播信号块且满足第二预设条件时,设置功率抬升计数和/或功率抬升步长。
在本实施例的步骤102a中,可以不需要进行第二随机接入问题的上报,就可以设置功率抬升计数和/或功率抬升步长,例如,当设置功率抬升计数和/或功率抬升步长的单元与进行计数的单元处于用户设备的同一层时,可以无需进行第二随机接入问题的上报而设置功率抬升计数和/或功率抬升步长。
在本实施例中,第二预设条件可以是上述第一预设条件中所列举的至少一个条件。
在本实施例中,如图1所示,该方法还包括:
步骤105、在与所述用户设备当前选择的同步信号/物理广播信号块(SS/PBCH block)相关的参数满足第三预设条件,和/或在与目标同步信号/物理广播信号块(SS/PBCH block)相关的参数满足第四预设条件时,确定选择所述目标同步信号/物理广播信号块。
由此,UE在决定要重新开始一次随机接入尝试的情况下,可以判断是否要对SS/PBCH block重新进行选择,因此,可以避免过于频繁地选择SS/PBCH block,从而避免SS/PBCH block之间的乒乓效应。
在本实施例中,第三预设条件可以是下列条件中的任意一个或两个以上的组合:
(1)当前选择的同步信号/物理广播信号块的接收功率小于第三阈值时:例如,UE可以将当前选择的SS/PBCH block的接收功率RSRP与第三阈值X[dBm]进行比较,如果RSRP<X[dBm],UE可重新选择SS/PBCH block,否则,UE不选择新的SS/PBCH block。
(2)当基于当前选择的同步信号/物理广播信号块计算的前导的发送功率PPRACH,SSB与用户设备在小区内的最大发送功率PCMAX,c的差值大于第四阈值Z[dB]时:
例如,当(PPRACH,SSB-PCMAX,c)>Z[dB]时,UE可重新选择SS/PBCH block,否则,UE不重新选择SS/PBCH block。
(3)当以基于当前选择的同步信号/物理广播信号块计算的前导的最大发送功率进行发送的次数大于或等于第五阈值N时:
例如,基于当前选择的SS/PBCH block所计算的前导的最大发送功率为Pmax,当UE采用该最大发送功率Pmax发送preamble的次数大于或等于N时,UE可在下一次重传preamble时重新选择SS/PBCH block,否则,UE不重新选择SS/PBCH block。
(4)当基于当前选择的同步信号/物理广播信号块尝试随机接入的时间大于或等于第六阈值T[ms]时:
例如,若UE基于当前SS/PBCH block进行尝试随机接入的时间大于或等于第六阈值T[ms],则可以重新选择SS/PBCH block,否则,UE不能重新选择SS/PBCH block。
在本实施例中,第四预设条件可以包括下列条件中的至少一个:
(1)目标同步信号/物理广播信号块的接收功率与当前选择的同步信号/物理广播信号块的接收功率的差大于或等于第七阈值时:
例如,UE可以将目标SS/PBCH block的接收功率RSRP2与当前选择的SS/PBCH block的接收功率RSRP1的差(RSRP2-RSRP1)与第七阈值Y[dB]进行比较,如果(RSRP2-RSRP1)≥Y[dB],UE可选择该目标SS/PBCH block作为新的SS/PBCH block,否则,UE不能重新选择SS/PBCH block。
(2)该用户设备在小区内的最大发送功率PCMAX,c与基于目标同步信号/物理广播信号块计算的前导的发送功率P_SSB的差值大于第八阈值W[dB]时:
例如,PCMAX,c-P_SSB->W dB时,UE可选择该目标SS/PBCH block作为新的SS/PBCH block,否则,UE不能重新选择SS/PBCH block。在本实施例中,该第一阈值,和/或第二阈值,和/或第三阈值,和/或该第四阈值,和/或第五阈值,和/或该第六阈值,和/或该第七阈值,和/或该第八阈值可以由基站配置给UE,例如,基站可以通过系统消息,和/或RRC信令,和/或物理层控制信令等进行配置。此外,本实施例可以不限于此,例如,UE也可以自行配置第一阈值~第八阈值中的任意一种或两种以上。
下面,结合一个实例来说明本实施例的UE进行随机接入尝试的方法,图2是本实施例的UE进行随机接入尝试的方法的一个示意图,如图2所示,该方法包括:
步骤201、UE的前一次随机接入尝试失败,决定要重新开始一次随机接入尝试;
步骤202、UE根据功率抬升计数PRC,和基于当前选择的SS/PBCH block所估计的路径损耗,计算preamble的发送功率PPRACH,SSB
步骤203、判断(PPRACH,SSB-PCMAX,c)是否大于阈值Z[dB],若判断为“否”,则进入步骤204,若判断为“是”,则进入步骤208;
步骤204、不重新选择SS/PBCH block;
步骤205、功率抬升计数PRC加1,以对PRC进行更新;
步骤206、UE根据更新后的功率抬升计数PRC,和基于当前选择的SS/PBCH block所估计的路径损耗,重新计算preamble的发送功率PPRACH,SSB
步骤207、UE重新选择SS/PBCH block,并选择与该重新选择的SS/PBCH block对应的PRACH resource;
步骤208、判断功率抬升计数PRC是否大于第一阈值N_thre,若判断为“否”,则进入步骤210,若判断为“是”,则进入步骤209;
步骤209、向高层报告该第二随机接入问题,并由高层对功率抬升计数PRC进 行重置,例如,将功率抬升计数PRC设置为原有值的一半;或者高层对功率抬升步长进行重置,例如,将功率抬升步长设置为原有值的一半。
步骤210、UE根据功率抬升计数PRC,功率抬升步长,和基于重新选择的SS/PBCH block所估计的路径损耗,重新计算preamble的发送功率PPRACH,SSB
步骤211、UE根据PPRACH,SSB,基于上式(3)确定preamble的发送功率PPRACH,并发送preamble。
在图2中,虚线框20所示的步骤表示UE在选择了新SS/PBCH block的情况下,向高层报告第二随机接入问题的过程。
根据本实施例,在计算前导的发送功率时考虑到基于UE选择的同步信号/物理广播信号块(SS/PBCH block)所估计的路径损耗,因而能够适应多波束等复杂场景下的UE随机接入过程;并且,UE在选择了新SS/PBCH block的情况下,设置功率抬升计数和/或功率抬升步长,由此,能够控制preamble的发送功率,避免对其他UE造成干扰;并且,UE在满足预设条件下才会选择新的SS/PBCH block进行preamble发送,由此,能够避免SS/PBCH block之间的乒乓效应。
实施例2
本发明实施例2提供一种随机接入方法,应用于向网络侧发起随机接入过程的装置侧,如用户设备(UE)侧。
图3是本发明实施例2的随机接入功率控制方法流程图。如图3所示,包括:
步骤301,利用第一参数计算preamble的发送功率。
在本实施例中,第一参数例如可以包括:UE的单个接收波束的序列数量N_seq.beam,和/或前导包含的序列数及接收波束(beam)数,和/或前导采用的配置参数或子载波的带宽(numerology/SCS),和/或UE的类型,和/或UE的发送/接收波束(TX/RX beam)的增益等。
此外,在本实施例中,第一参数可以不限于上述所列举的参数。
根据本实施例,在计算preamble的发送功率时,考虑到第一参数,由此,使得preamble的发送功率能够满足复杂通信场景的要求。
在本实施例中,preamble的发送功率P’PRACH可以根据下式(6)来确定:
PPRACH=min{PCMAX,c,P’PRACH,SSB}[dBm]    (6)
其中,PCMAX,c为UE在小区c的最大发送功率,P’PRACH,SSB为UE根据功率抬升计数、路径损耗的估计值、以及第一参数所计算的发送preamble时需要的发送功率,例如,第一参数可以用来确定功率偏移值,该功率偏移值可以被引入计算P’PRACH,SSB的公式中。
在一个实施方式中,可以根据由该第一参数所设定的功率偏移值DELTA_P,该路径损耗的估计值,以及基于功率抬升计数所得到的前导接收目标功率(PREAMBLE_RECEIVED_TARGET_POWER),计算P’PRACH,SSB,例如,P’PRACH,SSB可以根据下式(7)来得到:
P’PRACH,SSB=PREAMBLE_RECEIVED_TARGET_POWER+PL’+DELTA_P  (7)
其中,PL’为传输prereamble的路径的路径损耗的估计值,该路径损耗的估计值可以是UE估计的小区c的下行路径损耗,这样,PL’可以与式(1)中的PLc相等;此外,该路径损耗的估计值也可以是基于UE选择的SS/PBCH block所估计的路径损耗,这样,PL’可以与式(4)中的PL1,式(4-2)中的PL2,或PL3相等,并且,在PL’可以与式(4)中的PL1,PL2或PL3相等的情况下,本实施例的随机接入方法与实施例1的随机接入方法可以合并,即,图3的步骤301可以与图1的步骤101合并,由此,根据功率抬升计数(POWER_RAMPING_COUNTER),基于UE选择的同步信号/物理广播信号块(SS/PBCH block)和/或信道状态信息参考信号(CSI-RS)所估计的路径损耗,以及第一参数计算preamble的发送功率;PREAMBLE_RECEIVED_TARGET_POWER表示前导接收目标功率,可以基于功率抬升计数来得到,例如,PREAMBLE_RECEIVED_TARGET_POWER可以根据上式(5)来得到。
在另一个实施方式中,可以根据基于由所述第一参数设定的功率偏移值DELTA_P和功率抬升计数所得到的前导接收目标功率,以及路径损耗PL’,计算P’PRACH,SSB,例如P’PRACH,SSB可以根据下式(8)来得到:
P’PRACH,SSB=PREAMBLE_RECEIVED_TARGET_POWER’+PL’    (8)
其中,PREAMBLE_RECEIVED_TARGET_POWER’为根据基于由所述第一参数设定的功率偏移值DELTA_P和功率抬升计数所得到的前导接收目标功率,例如,PREAMBLE_RECEIVED_TARGET_POWER’可以采用下式(9)来得到:
PREAMBLE_RECEIVED_TARGET_POWER’=
preambleInitialReceivedTargetPower+DELTA_PREAMBLE+DELTA_P
+(POWER_RAMPING_COUNTER–1)*powerRampingStep    (9)
其中,preambleInitialReceivedTargetPower和powerRampingStep分别为小区配置的对于前导的初始目标接收功率及功率抬升步长;DELTA_PREAMBLE为基于前导格式(Preamble Format)的预定义功率偏移值;POWER_RAMPING_COUNTER表示功率抬升计数;DELTA_P为根据该特性参数所设定的功率偏移值。
在上面的式(7)和式(9)中,功率偏移值DELTA_P是以加法运算的形式被引入到P’PRACH,SSB的计算中,但是本实施例并不限于此,功率偏移值DELTA_P也可以是以减法运算,和/或乘法运算,和/或除法运算,和/或指数运算,和/或对数运算等形式被引入到P’PRACH,SSB的计算中;此外,也可以在某些预定条件下在式(7)或式(9)中引入功率偏移值DELTA_P,从而计算P’PRACH,SSB,例如,在preamble为短序列的情况下,对式(9)而言,可以保留DELTA_P,而删除DELTA_PREAMBLE,也就是说,用DELTA_P替换DELTA_PREAMBLE,另外,在preamble为长序列的情况下,对式(9)而言,可以保留DELTA_PREAMBLE,而删除DELTA_P。
下面,对式(5)和式(9)中DELTA_PREAMBLE的确定方式进行说明。
DELTA_PREAMBLE可以根据前导的格式来确定。
在本实施例中,对于长序列(序列长度L为839)preamble而言,可以以format0(839)作为参考格式来确定其它各格式对应的DELTA_PREAMBLE取值;对于短序列(序列长度L为127/139,即,127或139)preamble而言,以短序列(127/139)中的某一格式(例如,格式A0)为参考格式,来计算其它各格式对应的DELTA_PREAMBLE取值,并且,短序列参考格式对应的DELTA_PREAMBLE取值也可以以长序列参考格式对应的DELTA_PREAMBLE取值作为参考来得到。表1示出了各格式对应的DELTA_PREAMBLE取值。
表1:
Figure PCTCN2017097220-appb-000001
在表1中,对于长序列对应的各格式0,1,2,3而言,可以从表1中直接确定对应的DELTA_PREAMBLE,其中,格式1,2,3对应的DELTA_PREAMBLE取值是以格式0对应的DELTA_PREAMBLE取值为参考而获得的。对于短序列对应的各格式而言,可以以短序列参考格式对应的DELTA_PREAMBLE取值作为各格式对应的DELTA_PREAMBLE取值。并且,短序列参考格式对应的DELTA_PREAMBLE取值例如为14dB,这一数值可以是以格式0对应的DELTA_PREAMBLE取值0为参考而获得的取值。
此外,上述表1中,Δf=15kHz表示前导所采用的子载波的带宽。
此外,上述表1仅是示例,各格式对应的DELTA_PREAMBLE取值也可以是其它的数值。
下面,分别对于根据各特性参数计算P’PRACH,SSB的方式进行说明。
1、根据UE的单个接收波束接收的序列数量(N_seq.beam)计算P’PRACH,SSB
基于N_seq.beam确定的功率偏移值DELTA_P=DELTA_NoS。
在本实施例中,长序列(序列长度L为839)preamble和短序列(序列长度L为127/139)preamble的各格式对应的DELTA_NoS不同。表2是长序列preamble对应的DELTA_NoS列表。
表2:L=839
Format L DELTA_NoS
0 839 0dB
1 839 0dB
2 839 0dB
3 839 0dB
表3是短序列preamble对应的DELTA_NoS列表。其中,例如将format A0作为参考format计算短序列格式对应的DELTA_PREAMBLE时,可以根据下式(10)确定DELTA_NoS:
Figure PCTCN2017097220-appb-000002
表3:L=127/139
Figure PCTCN2017097220-appb-000003
Figure PCTCN2017097220-appb-000004
在表1和表2中,Fomat是指前导格式(Preamble Format),“#of Sequence”表示接收的序列(sequnce)的编号。
针对长序列preamble或短序列preamble,根据其N_seq.beam,可以将表2或表3所示的DELTA_NoS代入式(7)或(8)、(9),从而计算得到P’PRACH,SSB
此外,在本实施例中,也可以在某些预定条件下在式(7)或式(9)中引入DELTA_NoS,从而计算P’PRACH,SSB,例如,在preamble为短序列(127/139)的情况下,可以在式(7)或式(9)中保留DELTA_NoS,而删除DELTA_PREAMBLE,也就是说,仅在preamble为短序列(127/139)的情况下考虑DELTA_No对preamble发送功率的影响,并且用DELTA_NoS替换DELTA_PREAMBLE,另外,在preamble为长序列(839)的情况下,可以在式(7)或式(9)中保留DELTA_PREAMBLE, 而删除DELTA_NoS,例如,式(9)可以被写成如下形式(9a):
PREAMBLE_RECEIVED_TARGET_POWER’=preambleInitialReceivedTargetPower+DELTA_PREAMBLE(for 839)/DELTA_NoS(for 127/139)
+(POWER_RAMPING_COUNTER–1)*powerRampingStep    (9a)
其中,DELTA_PREAMBLE(for 839)/DELTA_NoS(for 127/139)表示:在preamble为短序列(127/139)的情况下,取DELTA_NoS的值,例如,可以参考上述表3来确定DELTA_NoS取值;在preamble为长序列(839)的情况下,取DELTA_PREAMBLE的值,例如,可以参考上述表1来确定DELTA_PREAMBLE的取值。
2、根据前导采用的配置参数或子载波带宽(numerology/SCS)计算P’PRACH,SSB
在本实施例,可以针对短序列preamble的情况,基于前导采用的配置参数或子载波带宽来计算该短序列preamble的发送功率。
其中,基于前导采用的配置参数或子载波带宽(numerology/SCS)确定的功率偏移值可以被表示为DELTA_P=DELTA_SCS,例如,可以根据下式(11)确定DELTA_SCS:
DELTA_SCS=10log(μ+1)    (11)
其中,μ表示preamble所采用的子载波带宽的配置参数,preamble所采用的子载波带宽Δf可以被表示为Δf=15·2μkHz,μ的取值例如可以是0,1,2,或3等。
例如,将SCS为15kHz的preamble所需的发送功率作为参考发送功率,Δf=15·2μkHz表示preamble采用的子载波带宽,以format A2为例,相对于参考发送功率的功率偏移值DELTA_SCS可以为下表4所示。
表4:
Figure PCTCN2017097220-appb-000005
3、根据UE类型计算P’PRACH,SSB
在本实施例中,UE类型例如可以指UE的业务类型等,基于UE类型确定的功 率偏移值可以被表示为DELTA_P=DELTA_UE。
在本实施例中,可以预设UE类型与DELTA_UE取值之间的对应关系列表,从而确定与UE类型对应的DELTA_UE取值。
下表5是UE类型与DELTA_UE取值之间对应关系的一个示例。
Figure PCTCN2017097220-appb-000006
在上表中,UE类型为0,代表该UE的业务类型为能够进行波束对应,该类型对应的DELTA_UE取值为0dB;UE类型为1,代表该UE的业务类型为不能进行波束对应,该类型对应的DELTA_UE取值为3dB。
4、根据UE的发送/接收波束的增益计算P’PRACH,SSB
在本实施例中,基于UE的发送/接收波束的增益确定的功率偏移值可以被表示为DELTA_P=DELTA_Beam。
在本实施例中,可以通过预设的发送/接收波束的增益与DELTA_Beam取值之间对应关系列表、或公式的方式来确定与发送/接收波束的增益对应的DELTA_Beam取值。
在本实施例中,可以将DELTA_NoS,DELTA_SCS,DELTA_UE,以及DELTA_Beam中的至少一者作为DELTA_P来计算P’PRACH,SSB,也可以将其中的两者以上进行组合作为DELTA_P来计算P’PRACH,SSB
在本实施例中,UE可以采用与实施例1相同的方式,决定是否重新选择SS/PBCH block进行preamble发送;并且,在UE重新选择SS/PBCH block情况下,可以采用实施例1所述的方式来决定UE报告该第二随机接入问题的时机,并且,UE的高层重新设置功率抬升计数和/或功率抬升步长的方式也与实施例1相同。
5、根据前导包含的序列数及接收波束(beam)数计算P’PRACH,SSB
具体方式与1类似。
根据本实施例,在计算preamble的发送功率时,考虑到第一参数,由此,使得preamble的发送功率能够满足复杂通信场景的要求。
实施例3
本实施例3提供了一种随机接入功率控制装置,由于该装置解决问题的原理与实施例1和实施例2的方法类似,因此其具体的实施可以参考实施例1和实施例2的方法的实施,内容相同之处不再重复说明。
图4是本申请实施例3的随机接入功率控制装置示意图,如图4所示,装置400包括第一计算单元401,第一计算单元401用于计算用户设备在随机接入过程中发送前导时所使用的发送功率。
在本实施例中,第一计算单元401利用基于用户设备当前选择的同步信号/物理广播信号块(SS/PBCH block)和/或信道状态信息参考信号(CSI-RS)估计的路径损耗,计算所述用户设备发送随机接入前导时所使用的发送功率。
在本实施例中,如图4所示,该装置400还可以具有第一设置单元402,设置单元402在获得上报的与用户设备重新选择同步信号/物理广播信号块相关的随机接入问题时,设置功率抬升计数和/或功率抬升步长。在本实施例中,该设置单元402可以由UE的高层来实现,该UE的高层例如可以是介质访问控制(Media Access Control,MAC)层。
在本实施例中,如图4所示,该装置400还可以具有第一报告单元403,第一报告单元403用于在用户设备重新选择同步信号/物理广播信号块(SS/PBCH block)的情况下,向设置单元402上报与用户设备重新选择同步信号/物理广播信号块相关的所述随机接入问题。
在本实施例中,如图4所示,该装置400还可以具有第二报告单元404,第二报告单元404,用于在用户设备重新选择同步信号/物理广播信号块(SS/PBCH block)且满足第一预设条件的情况下,向设置单元402上报用户设备重新选择同步信号/物理广播信号块相关的所述随机接入问题。
在本实施例中,所述第一预设条件为以下条件中的至少一个:
当功率抬升计数大于第一阈值时;
当所述用户设备利用基于所述用户设备重新选择的同步信号/物理广播信号块所估计的路径损耗计算出的发送功率大于第二阈值时。
在本实施例中,如4所示,该装置400还可以具有第二设置单元402a,第二设 置单元402a在用户设备重新选择同步信号/物理广播信号块时,或者,在用户设备重新选择同步信号/物理广播信号块且满足第二预设条件时,设置功率抬升计数和/或功率抬升步长。
在本实施例中,可以在不用向第二设置单元402a报告与该UE重新选择SS/PBCH block相关的随机接入问题(即,第二随机接入问题)的情况下,第二设置单元402a就可以进行功率抬升计数和/或功率抬升步长的设置,其中,第二设置单元402a例如可以位于UE的物理层。
在本实施例中,第二预设条件可以是上述第一预设条件中列举的至少一个条件。
在本实施例中,如图4所示,该装置400还可以具有第一确定单元405,第一确定单元405在与所述用户设备当前选择的同步信号/物理广播信号块(SS/PBCH block)相关的参数满足第三预设条件,和/或与目标同步信号/物理广播信号块(SS/PBCH block)相关的参数满足第四预设条件时,确定选择所述目标同步信号/物理广播信号块。
在本实施例中,该第三预设条件包括下列条件中的至少一个:
当前选择的同步信号/物理广播信号块的接收功率小于第三阈值时;
基于当前选择的同步信号/物理广播信号块计算的所述前导的发送功率与所述用户设备在小区内的最大发送功率的差值大于第四阈值时;
以基于当前选择的同步信号/物理广播信号块计算的所述前导的最大发送功率进行发送的次数大于或等于第五阈值时;
基于当前选择的同步信号/物理广播信号块尝试随机接入的时间大于或等于第六阈值时。
在本实施例中,该第四预设条件可以包括下列条件中的至少一个:
目标同步信号/物理广播信号块的接收功率与当前选择的同步信号/物理广播信号块的接收功率的差大于或等于第七阈值时;
所述用户设备在小区内的最大发送功率与基于目标同步信号/物理广播信号块计算的所述前导的发送功率的差值大于第八阈值时。
在本实施例中,第一计算单元401在计算发送功率时,还可以根据与用户设备相关的特性参数计算所述发送功率,也就是说,第一计算单元401可以根据功率抬升计数,基于用户设备选择的同步信号/物理广播信号块(SS/PBCH block)和/或信道状态 信息参考信号(CSI-RS)所估计的路径损耗,以及与该用户设备相关的特性参数,计算该用户设备在随机接入过程中发送该前导时所使用的发送功率。
例如,第一计算单元401可以根据由第一参数设定的功率偏移值,路径损耗,以及基于功率抬升计数所得到的前导接收目标功率,计算该发送功率;或者,该第一计算单元401根据基于由第一参数设定的功率偏移值和功率抬升计数所得到的前导接收目标功率,以及路径损耗,计算发送功率。
在本实施例中,第一参数可以包括:该用户设备的单个接收波束接收的序列数量(N_seq.beam),和/或前导采用的配置参数或子载波带宽,和/或所述用户设备的类型,和/或所述用户设备的发送/接收波束的增益。
在本实施例中,可以在预设的条件下考虑该第一参数对发送功率的影响,例如,在preamble为短序列(127/139)时,考虑该第一参数对发送功率的影响,在preamble为长序列(839)时,不考虑该第一参数对发送功率的影响。
在本实施例中,关于基于第一参数计算功率偏移值进而计算发送功率的具体方法,可以参考实施例2的说明,本实施例不再进行说明。
根据本实施例的随机接入装置,能够适应多波束等复杂场景下的UE随机接入过程;并且,UE在选择了新SS/PBCH block的情况下,设置功率抬升计数和/或功率抬升步长,由此,能够控制preamble的发送功率,避免对其他UE造成干扰;并且,UE在满足预设条件下才会选择新的SS/PBCH block进行preamble发送,由此,能够避免SS/PBCH block之间的乒乓效应。
实施例4
本实施例4提供了一种随机接入控制装置,由于该装置解决问题的原理与实施例2的方法类似,因此其具体的实施可以参考实施例2的方法的实施,内容相同之处不再重复说明。
图5是本申请实施例4的随机接入控制装置示意图,如图5所示,装置500包括第二计算单元501,第二计算单元501用于计算用户设备在随机接入过程中发送前导时所使用的发送功率。
在本实施例中,第二计算单元501能够根据与用户设备相关的第一参数计算该发送功率,其中,该第一参数包括:用户设备的单个接收波束接收的序列数量 (N_seq.beam),和/或前导采用的配置参数或子载波带宽,和/或所述用户设备的类型,和/或所述用户设备的发送/接收波束的增益等。
在本实施例中,关于基于第一参数计算功率偏移值进而计算发送功率的具体方法,可以参考实施例2的说明,本实施例不再进行说明。
根据本实施例的随机接入装置,能够适应多波束等复杂场景下的UE随机接入过程。
实施例5
本实施例5提供一种用户设备,该用户设备配置有如实施例3或实施例4所述的随机接入控制装置400或随机接入控制装置500。
图6是本发明实施例的用户设备的构成示意图。如图6所示,用户设备600可以包括:中央处理器(CPU)601和存储器602;存储器602耦合到中央处理器601。其中该存储器602可存储各种数据;此外还存储数据处理的程序,并且在中央处理器601的控制下执行该程序,以进行随机接入。
在一个实施方式中,随机接入控制装置400或随机接入控制装置500的功能可以被集成到中央处理器601中。其中,中央处理器601可以被配置为实现实施例1或实施例2所述的随机接入方法。
例如,中央处理器601可以被配置为:利用基于用户设备选择的同步信号/物理广播信号块(SS/PBCH block)和/或信道状态信息参考信号(CSI-RS)所估计的路径损耗,计算所述用户设备在随机接入过程中发送所述前导时所使用的发送功率。或者,中央处理器601可以被配置为:利用所述第一参数计算所述发送功率。
另外,该中央处理器601的其他配置方式可以参考实施例1和实施例2,此处不再赘述。
在另一个实施方式中,随机接入控制装置400或随机接入控制装置500可以与中央处理器601分开配置,例如,可以将随机接入控制装置400或随机接入控制装置500配置为与中央处理器601连接的芯片,如图6所示的随机接入单元,通过中央处理器601的控制来实现随机接入控制装置400或随机接入控制装置500的功能。
此外,如图6所示,用户设备600还可以包括:通信模块603、输入单元604、显示器606、音频处理器605、天线607和电源608等。其中,上述部件的功能与现 有技术类似,此处不再赘述。值得注意的是,用户设备600也并不是必须要包括图6中所示的所有部件;此外,用户设备600还可以包括图6中没有示出的部件,可以参考现有技术。
由上述实施例可知,该UE能够适应多波束等复杂场景下的UE随机接入过程。
实施例6
图7A和图7B是实施例6的通信系统的示意图。如图7A所示,通信系统700包括网络侧的一个网络设备701和用户设备702;该用户设备702利用基于用户设备当前选择的同步信号/物理广播信号块(SS/PBCH block)和/或信道状态信息参考信号(CSI-RS)估计的路径损耗,计算所述用户设备发送随机接入前导时所使用的发送功率;或者,该用户设备702利用该第一参数计算所述发送功率。网络侧的一个网络设备701接收UE702发送的前导。此外,网络侧的一个网络设备701还可以为用户设备702配置用户设备所使用的上述第一阈值~第八阈值中的任意一个或两个以上。
如图7B所示,通信系统700包括网络侧的多个网络设备701和用户设备702;该用户设备702利用基于用户设备当前选择的同步信号/物理广播信号块(SS/PBCH block)和/或信道状态信息参考信号(CSI-RS)估计的路径损耗,计算所述用户设备发送随机接入前导时所使用的发送功率;或者,该用户设备702利用该第一参数计算所述发送功率。网络侧的多个网络设备701接收UE702发送的前导。此外,网络侧的多个网络设备701还可以为用户设备702配置用户设备所使用的上述第一阈值~第八阈值中的任意一个或两个以上。
其中,用户设备702的构成如实施例5所述,该系统的工作流程如实施例1-4所示,将其内容合并于此,此处不再赘述。
由上述实施例可知,该系统能够适应多波束等复杂场景下的UE随机接入过程。
实施例7
本申请实施例7提供一种信息指示方法,应用于网络侧,例如网络设备。
图8是本实施例的信息指示方法的一个示意图,如图8所示,该信息指示方法可以包括:
步骤801、发送用于指示当前小区传输同步信号/物理广播信号块(SS/PBCH  block)的时频资源的位置和/或数量的第一指示信息,和/或用于指示相邻小区传输同步信号/物理广播信号块(SS/PBCH block)的时频资源的位置和/或数量的第二指示信息。
在本实施例中,通过发送第一指示信息和/或第二指示信息,能够指示传输SS/PBCH block所采用的时频资源,便于UE收发数据和进行测量。
在本实施例中,针对不同的频率范围,可以预定义与SS/PBCH block或同步资源集合(SS burst set)的传输周期对应的用于传输SS/PBCH block的时频资源的数量上限L,以及不同数量上限下所有可能的用于传输SS/PBCH block的时频资源的位置。例如:
频率小于3GHz,L=4;
频率在3GHz~6GHz,L=8;
频率在6GHz~52.6GHz,L=64
在上述时频资源的数量上限和位置的基础上,网络设备可以配置在SS/PBCH block的一个周期中实际用于传输SS/PBCH block的时频资源的数量和每个时频资源的位置。
在本实施例中,网络设备通过发送第一指示信息和/或第二指示信息,能够指示传输SS/PBCH block所采用的时频资源,便于UE收发数据和进行测量。
在本实施例中,该第一指示信息和/或该第二指示信息可以下述任一种:
1、指示时频资源中的各预定位置是否用于传输同步信号/物理广播信号块的信息:
其中,该指示时频资源中的各预定位置是否用于传输同步信号/物理广播信号块的信息可以是比特位;该预定位置例如可以是由网络设备预先配置的,可能用于发送SS/PBCH block的时频资源的位置。
在本实施例中,该第一指示信息和/或第二指示信息可以基于的位图(bit-map)进行指示,例如,针对每个预定位置,可以由1个bit来指示该位置的时频资源是否用于实际传输SS/PBCH block,例如,该bit为1则指示该预定位置的资源实际用于传输SS/PBCH block,该bit为0则指示该预定位置的资源实际没有用于传输SS/PBCH block。
2、指示时频资源中的各预定位置的分组是否用于传输同步信号/物理广播信号块 的信息:
在本实施例中,该第一指示信息和/或第二指示信息可以基于分组的位图(bit-map)进行指示,例如,将一个时隙(slot)中的预定数量个(例如,2个)预定位置作为一组,针对每一组,可以由1个bit来指示该组的时频资源中是否有用于实际传输SS/PBCH block的时频资源,例如,该bit为1则指示该组的资源中至少有一个资源实际用于传输SS/PBCH block,该bit为0则指示该组的资源都没有实际用于传输SS/PBCH block。在本实施例中,当预定位置的数量上限为4时(如果每组的预定位置的数量为2),可以采用2bits的信息来指示各组是否有资源实际用于传输SS/PBCH block。
3、与预定的传输模式(pattern)对应的索引(index):
在本实施例中,可以预先定义用于传输SS/PBCH block的时频资源所形成的预定的传输模式(pattern),并设定预定的传输模式与索引之间的对应关系,由此,第一指示信息和/或第二指示信息中包含有索引的情况下,用户设备可以根据索引来确定传输模式,从而确定实际用来传输SS/PBCH block的时频资源的数量和/或位置。
在本实施例中,预定的传输模式例如可以是,仅利用一个时隙(slot)中的前一个可能的资源位置进行来传输SS/PBCH block。
4、时频资源中最后一个用于传输同步信号/物理广播信号块的位置和/或时频资源中用于传输同步信号/物理广播信号块的位置的总数:
例如,该第一指示信息和/或第二指示信息可以包括与SS/PBCH block的一个传输周期对应的用于传输SS/PBCH block的时频资源的总数,和/或最后一个时频资源的位置,此时,如果默认SS/PBCH block从预定的时频资源的第一个位置开始连续传输直至达到传输总数或时频资源的终点。
5、时频资源中第一个用于传输同步信号/物理广播信号块的位置,以及最后一个用于传输同步信号/物理广播信号块的位置和/或所述时频资源中用于传输同步信号/物理广播信号块的位置的总数。
例如,该第一指示信息和/或第二指示信息可以包括与SS/PBCH block的一个传输周期对应的用于传输SS/PBCH block的时频资源的第一个位置,以及最后一个用于传输SS/PBCH block的时频资源的位置和/或用于传输SS/PBCH block的时频资源的总数。
在本实施例中,如图8所示,该方法还可以包括:
步骤802、配置时频资源的各预定位置的分组。
由此,用户设备可以接收该配置信息,从而根据第一指示信息和/或第二指示信息确定哪个组的资源用于传输SS/PBCH block。
在本实施例中,如图8所示,该方法还可以包括:
步骤803、配置该预定的传输模式与索引的对应关系。
由此,用户设备可以接收该配置信息,从而根据第一指示信息和/或第二指示信息确定采用哪种传输模式传输SS/PBCH block。
在本实施例中,网络设备可以经由系统信息(system information,SI),和/或无线资源控制(Radio Resource Control,RRC)信令发送该第一指示信息。其中,该系统信息例如可以包括物理广播信道(PBCH),和/或剩余最小系统信息(Remaining Minimum System Information,RMSI),和/或其他信息。
在本实施例例中,网络设备可以经由测量配置信息,和/或重定向配置信息,和/或切换命令发送该第二指示信息。
在本实施例中,网络设备可以配置在SS/PBCH block的一个周期中实际用于传输SS/PBCH block的时频资源的数量和每个时频资源的位置,并基于该配置的结果生成第一指示信息。
在本实施例中,相邻的小区的网络设备可以发送基于该相邻的小区的网络设备的配置结果生成的第一指示信息,当前的服务小区的网络设备在接收到该相邻的小区的网络设备发送的第一指示信息的情况下,可以将该第一指示信息进行处理,以生成第二指示信息。
例如,在本实施例中,当前的服务小区的网络设备可以基于邻小区发送的第一指示信息确定邻小区用于实际传输的SS/PBCH block的时频资源,并根据该确定出来的时频资源确定UE的测量窗,并利用该测量窗生成第二指示信息,由此,该第二指示信息可以仅指示各邻小区在测量窗内的用于传输传输SS/PBCH block的时频资源配置情况,其中,该测量窗可能无法覆盖该邻小区的所有可能的用于传输SS/PBCH block的时频资源的位置。
在本实施例中,基于该第二指示信息,UE可以获得相邻小区的用于传输SS/PBCH block的时频资源的配置情况。
根据本实施例,能够便于UE进行收发数据和进行测量。
实施例8
本申请实施例8提供一种信息指示方法,应用于用户设备侧,例如用户设备。
图9是本实施例的信息指示方法的一个示意图,如图9所示,该信息指示方法可以包括:
步骤901、接收用于指示当前小区传输同步信号/物理广播信号块(SS/PBCH block)的时频资源的位置和/或数量的第一指示信息,和/或用于指示相邻小区传输同步信号/物理广播信号块(SS/PBCH block)的时频资源的位置和/或数量的第二指示信息。
在本实施例中,通过接收第一指示信息和/或第二指示信息,能够指示传输SS/PBCH block所采用的时频资源,便于UE收发数据和进行测量。
在本实施例中,关于第一指示信息和/或该第二指示信息的说明可以参靠实施例7。
在本实施例中,如图9所示,该方法还可以包括:
步骤902、接收各预定位置的所述分组的配置信息。
由此,用户设备可以接收该配置信息,从而根据第一指示信息和/或第二指示信息确定哪个组的资源用于传输SS/PBCH block。
在本实施例中,如图9所示,该方法还可以包括:
步骤903、接收所述预定的传输模式与索引的对应关系的配置信息。
由此,用户设备可以接收该配置信息,从而根据第一指示信息和/或第二指示信息确定采用哪种传输模式传输SS/PBCH block。
在本实施例中,用户设备可以经由系统信息(system information,SI),和/或无线资源控制(Radio Resource Control,RRC)信令接收该第一指示信息。
在本实施例例中,用户设备可以经由测量配置信息,和/或重定向配置信息,和/或切换命令接收该第二指示信息。
根据本实施例,能够便于UE进行收发数据和进行测量。
实施例9
本发明实施例提供一种信息指示装置,配置于发送端;本实施例9对应于实施例7的信息方法,相同的内容不再赘述。
图10是本发明实施例的信息指示装置的一示意图,如图10所示,信息指示装置1000包括:
第一发送单元1001,其用于发送用于指示当前小区传输同步信号/物理广播信号块(SS/PBCH block)的时频资源的位置和/或数量的第一指示信息,和/或用于指示相邻小区传输同步信号/物理广播信号块(SS/PBCH block)的时频资源的位置和/或数量的第二指示信息。
在本实施例中,第一发送单元1001可以经由系统信息(system information,SI),和/或无线资源控制(Radio Resource Control,RRC)信令发送所述第一指示信息。
在本实施例中,第一发送单元经由测量配置信息,和/或重定向配置信息,和/或切换命令发送所述第二指示信息。
在本实施例中,关于第一指示信息和/或所述第二指示信息的说明可以参考实施例7。
在本实施例中,如图10所示,该装置1000还可以包括第一配置单元1002,其用于配置各预定位置的所述分组。
如图10所示,该装置1000还可以包括第二配置单元1003,其用于配置所述预定的传输模式与索引的对应关系。
在本实施例中,该装置1000可以配置在SS/PBCH block的一个周期中实际用于传输SS/PBCH block的时频资源的数量和每个时频资源的位置,并基于该配置的结果生成第一指示信息。
在本实施例中,相邻的小区的网络设备可以发送基于该相邻的小区的网络设备的配置结果生成的第一指示信息,当前的小区的网络设备的装置1000在接收到该相邻的小区的网络设备发送的第一指示信息的情况下,可以将该第一指示信息进行处理,以生成第二指示信息,因此,本申请的装置1000还可以具有指示信息生成部(未图示),关于指示信息生成部生成第二指示信息的方法,可以参考实施例7中的描述。
基于该第二指示信息,UE可以获得相邻小区的用于传输SS/PBCH block的时频资源的配置情况。
根据本实施例,能够便于UE进行收发数据和进行测量。
实施例10
本发明实施例提供一种信息指示装置,配置于接收端;本实施例10对应于实施例8的信息指示方法,相同的内容不再赘述。
图11是本发明实施例的信息指示装置的一示意图,如图11所示,信息指示装置1100可以包括:
第一接收单元1101,其用于接收用于指示当前小区传输同步信号/物理广播信号块(SS/PBCH block)的时频资源的位置和/或数量的第一指示信息,和/或用于指示相邻小区传输同步信号/物理广播信号块(SS/PBCH block)的时频资源的位置和/或数量的第二指示信息。
在本实施例中,第一接收单元1101经由系统信息(system information,SI),和/或无线资源控制(Radio Resource Control,RRC)信令接收所述第一指示信息。
在本实施例中,第一接收单元1101经由测量配置信息,和/或重定向配置信息,和/或切换命令接收所述第二指示信息。
在本实施例中,如图11所示,该装置1100还可以包括第二接收单元1102,其用于接收各预定位置的所述分组的配置信息。
如图11所示,该装置1100还可以包括第三接收单元1103,其用于接收所述预定的传输模式与索引的对应关系的配置信息。
根据本实施例,能够便于UE进行收发数据和进行测量。
实施例11
本发明实施例还提供一种通信系统,与实施例7至10相同的内容不再赘述。
在本实施例中,通信系统可以包括:
发送端,其配置有如实施例9所述的信息指示装置1000;
接收端,其配置有如实施例10所述的信息指示装置1100。
图12是本发明实施例的通信系统的一示意图,示意性说明了以发送端为用户设备以及以接收端为基站的情况,如图12所示,通信系统1200可以包括基站1201和用户设备1202。其中,基站1201配置有如实施例9所述的信息指示装置1000,用户 设备1202配置有如实施例10所述的信息指示装置1100。
本发明实施例还提供一种接收端,例如可以是基站,但本发明不限于此,还可以是其他的网络设备。以下以基站为例进行说明。
图13是本发明实施例的基站的构成示意图。如图13所示,基站1300可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序。
其中,中央处理器200可以被配置为实现信息指示装置1000的功能。
例如,中央处理器200可以被配置为能够进行控制,以使基站执行实施例7所示信息指示方法。
此外,如图13所示,基站1300还可以包括:收发机220和天线230等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,基站1300也并不是必须要包括图13中所示的所有部件;此外,基站1300还可以包括图13中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种发送端,例如可以是用户设备,但本发明不限于此,还可以是其他的网络设备。以下以用户设备为例进行说明。
图14是本发明实施例的用户设备的示意图。如图14所示,该用户设备1400可以包括中央处理器100和存储器140;存储器140耦合到中央处理器100。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
其中,中央处理器100可以被配置为实现信息指示装置1100。
例如,中央处理器100可以被配置能够进行控制,以使用户设备执行实施例8所示信息指示方法。
如图15所示,该用户设备1500还可以包括:通信模块110、输入单元120、显示器160、电源170。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,用户设备1500也并不是必须要包括图15中所示的所有部件,上述部件并不是必需的;此外,用户设备1500还可以包括图15中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种计算机可读程序,其中当随机接入功率控制装置或用户设备中执行所述程序时,所述程序使得所述随机接入功率控制装置或用户设备执行实施例1,2所述的随机接入功率控制方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得随机接入功率控制装置或用户设备执行实施例1,2所述的随机接入功率控制方法。
本发明实施例还提供一种计算机可读程序,其中当信息装置或网络设备中执行所述程序时,所述程序使得所述信息装置或用户设备执行实施例7所述的信息指示方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得信息指示装置或网络设备执行实施例7所述的信息方法。
本发明实施例还提供一种计算机可读程序,其中当信息装置或用户设备中执行所述程序时,所述程序使得所述信息装置或用户设备执行实施例8所述的信息指示方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得信息指示装置或用户设备执行实施例8所述的信息指示方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的在随机接入装置中的随机接入方法可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图4,5,10,11中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图1,3,8,9所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存 储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(例如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对图4,5,10,11描述的功能框图中的一个或多个和/或功能框图的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或晶体管逻辑器件、分立硬件组件、或者其任意适当组合。针对图4,5,10,11描述的功能框图中的一个或多个和/或功能框图的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
本申请还包含以下附记:
1、一种信息指示装置,包括:
第一发送单元,其用于发送用于指示当前小区传输同步信号/物理广播信号块(SS/PBCH block)的时频资源的位置和/或数量的第一指示信息,和/或用于指示相邻小区传输同步信号/物理广播信号块(SS/PBCH block)的时频资源的位置和/或数量的第二指示信息。
2、根据附记1所述的装置,其中:
所述第一发送单元经由系统信息(system information,SI),和/或无线资源控制(Radio Resource Control,RRC)信令发送所述第一指示信息。
3、根据附记1所述的装置,其中:
所述第一指示单元经由测量配置信息,和/或重定向配置信息,和/或切换命令发送所述第二指示信息。
4、根据附记1的装置,其中,所述第一指示信息和/或所述第二指示信息包括:
指示时频资源中的各预定位置是否用于传输同步信号/物理广播信号块的信息;或者,
指示时频资源中的各预定位置的分组是否用于传输同步信号/物理广播信号块的信息;或者
与预定的传输模式(pattern)对应的索引(index);或者,
时频资源中最后一个用于传输同步信号/物理广播信号块的位置和/或所述时频资源中用于传输同步信号/物理广播信号块的位置的总数;或者,
时频资源中第一个用于传输同步信号/物理广播信号块的位置,以及最后一个用于传输同步信号/物理广播信号块的位置和/或所述时频资源中用于传输同步信号/物理广播信号块的位置的总数。
5、根据附记4所述的装置,其中,所述装置还包括:
第一配置单元,其用于配置各预定位置的所述分组。
6、根据附记4所述的装置,其中,所述装置还包括:
第二配置单元,其用于配置所述预定的传输模式与索引的对应关系。
7、一种信息指示装置,包括:
第一接收单元,其用于接收用于指示当前小区传输同步信号/物理广播信号块(SS/PBCH block)的时频资源的位置和/或数量的第一指示信息,和/或用于指示相邻小区传输同步信号/物理广播信号块(SS/PBCH block)的时频资源的位置和/或数量的第二指示信息。
8、根据附记7所述的装置,其中:
所述第一接收单元经由系统信息(system information,SI),和/或无线资源控制(Radio Resource Control,RRC)信令接收所述第一指示信息。
9、根据附记7所述的装置,其中:
所述第一接收单元经由测量配置信息,和/或重定向配置信息,和/或切换命令接收所述第二指示信息。
10、根据附记7的装置,其中,所述第一指示信息和/或所述第二指示信息包括:
指示时频资源中的各预定位置是否用于传输同步信号/物理广播信号块的信息;或者,
指示时频资源中的各预定位置的分组是否用于传输同步信号/物理广播信号块的 信息;或者
与预定的传输模式(pattern)对应的索引(index);或者,
时频资源中最后一个用于传输同步信号/物理广播信号块的位置和/或所述时频资源中用于传输同步信号/物理广播信号块的位置的总数;或者,
时频资源中第一个用于传输同步信号/物理广播信号块的位置,以及最后一个用于传输同步信号/物理广播信号块的位置和/或所述时频资源中用于传输同步信号/物理广播信号块的位置的总数。
11、根据附记10所述的装置,其中,所述装置还包括:
第二接收单元,其用于接收各预定位置的所述分组的配置信息。
12、根据附记10所述的装置,其中,所述装置还包括:
第三接收单元,其用于接收所述预定的传输模式与索引的对应关系的配置信息。
12、一种通信系统,所述通信系统包括:
发送端,其配置有如权利要求1所述的信息指示装置;
接收端,其配置有如权利要求7所述的信息指示装置。
13、一种信息指示方法,应用于网络侧,包括:
发送用于指示当前小区传输同步信号/物理广播信号块(SS/PBCH block)的时频资源的位置和/或数量的第一指示信息,和/或用于指示相邻小区传输同步信号/物理广播信号块(SS/PBCH block)的时频资源的位置和/或数量的第二指示信息。

Claims (20)

  1. 一种随机接入功率控制装置,所述装置包括:
    第一计算单元,其利用基于用户设备当前选择的同步信号/物理广播信号块和/或信道状态信息参考信号估计的路径损耗,计算所述用户设备发送随机接入前导时所使用的发送功率。
  2. 如权利要求1所述的装置,其中,所述装置还包括:第一设置单元,其在获得上报的与用户设备重新选择同步信号/物理广播信号块相关的随机接入问题时,设置功率抬升计数和/或功率抬升步长。
  3. 如权利要求2所述的装置,其中,所述装置还包括:
    第一报告单元,其用于在所述用户设备重新选择同步信号/物理广播信号块的情况下,向所述设置单元上报随机接入问题。
  4. 如权利要求2所述的装置,其中:所述装置还包括:
    第二报告单元,其用于在所述用户设备重新选择同步信号/物理广播信号块且满足第一预设条件的情况下,向所述设置单元上报所述随机接入问题。
  5. 根据权利要求4所述的装置,其中,所述第一预设条件为以下条件中的至少一个:
    当功率抬升计数大于第一阈值时;
    当所述用户设备利用基于所述用户设备重新选择的同步信号/物理广播信号块所估计的路径损耗计算出的发送功率大于第二阈值时。
  6. 如权利要求1所述的装置,其中,所述装置还包括:
    第二设置单元,其在用户设备重新选择同步信号/物理广播信号块时,或者,在所述用户设备重新选择同步信号/物理广播信号块且满足第二预设条件时,设置功率抬升计数和/或功率抬升步长。
  7. 如权利要求1所述的装置,其中,所述装置还包括:
    第一确定单元,其在与所述用户设备当前选择的同步信号/物理广播信号块相关的参数满足第三预设条件,和/或与目标同步信号/物理广播信号块相关的参数满足第四预设条件时,确定选择所述目标同步信号/物理广播信号块。
  8. 如权利要求7所述的装置,其中,第三预设条件包括下列条件中的至少一个:
    当前选择的同步信号/物理广播信号块的接收功率小于第三阈值时;
    基于当前选择的同步信号/物理广播信号块计算的所述前导的发送功率与所述用户设备在小区内的最大发送功率的差值大于第四阈值时;
    以基于当前选择的同步信号/物理广播信号块计算的所述前导的最大发送功率进行发送的次数大于或等于第五阈值时;
    基于当前选择的同步信号/物理广播信号块尝试随机接入的时间大于或等于第六阈值时。
  9. 如权利要求7所述的装置,其中,所述第四预设条件包括下列条件中的至少一个:
    目标同步信号/物理广播信号块的接收功率与当前选择的同步信号/物理广播信号块的接收功率的差大于或等于第七阈值时;
    所述用户设备在小区内的最大发送功率与基于目标同步信号/物理广播信号块计算的所述前导的发送功率的差值大于第八阈值时。
  10. 如权利要求1所述的装置,其中,
    所述第一计算单元在计算所述发送功率时,还利用第一参数计算所述发送功率,
    其中,所述第一参数包括:所述用户设备的单个接收波束接收的序列数量、和/或前导包含的序列数及接收波束数,和/或前导采用的配置参数或子载波带宽,和/或所述用户设备的类型,和/或所述用户设备的发送/接收波束的增益。
  11. 如权利要求10所述的装置,其中,
    所述第一计算单元根据由所述第一参数设定的功率偏移值,所述路径损耗,以及基于所述功率抬升计数所得到的前导接收目标功率,计算所述发送功率;或
    所述第一计算单元根据基于由所述第一参数设定的功率偏移值和所述功率抬升计数所得到的前导接收目标功率,以及所述路径损耗,计算所述发送功率。
  12. 一种随机接入功率控制方法,所述方法包括:
    利用基于用户设备当前选择的同步信号/物理广播信号块和/或信道状态信息参考信号估计的路径损耗,计算所述用户设备发送随机接入前导时所使用的发送功率。
  13. 如权利要求12所述的方法,其中,所述方法还包括:在获得上报的与用户设备重新选择同步信号/物理广播信号块相关的随机接入问题时,设置功率抬升计数 和/或功率抬升步长。
  14. 如权利要求13所述的方法,其中,所述方法还包括:
    在所述用户设备重新选择同步信号/物理广播信号块(SS/PBCH block)的情况下,上报所述随机接入问题。
  15. 如权利要求13所述的方法,其中,所述方法还包括:
    在所述用户设备重新选择同步信号/物理广播信号块(SS/PBCH block)且满足第一预设条件的情况下,上报所述随机接入问题。
  16. 根据权利要求14所述的方法,其中,所述第一预设条件为以下条件中的至少一个:
    当功率抬升计数大于第一阈值时;
    当所述用户设备利用基于所述用户设备重新选择的同步信号/物理广播信号块估计的路径损耗计算出的发送功率大于第二阈值时。
  17. 如权利要求12所述的方法,其中,所述方法还包括:
    在用户设备重新选择同步信号/物理广播信号块时,或者,在所述用户设备重新选择同步信号/物理广播信号块且满足第二预设条件时,设置功率抬升计数和/或功率抬升步长。
  18. 如权利要求12所述的方法,其中,所述方法还包括:
    在与所述用户设备当前选择的同步信号/物理广播信号块相关的参数满足第三预设条件,和/或在与目标同步信号/物理广播信号块相关的参数满足第四预设条件时,确定选择所述目标同步信号/物理广播信号块。
  19. 如权利要求12所述的方法,其中,
    在计算所述发送功率的步骤中,还利用第一参数计算所述发送功率,
    所述第一参数包括:所述用户设备的单个接收波束接收的序列数量,和/或前导采用的配置参数或子载波带宽,和/或所述用户设备的类型,和/或所述用户设备的发送/接收波束的增益。
  20. 一种通信系统,包括用户设备;其中,
    所述用户设备包括权利要求1-12中任一项所述的随机接入功率控制装置。
PCT/CN2017/097220 2017-08-11 2017-08-11 随机接入功率控制方法、装置以及通信系统 WO2019028881A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2020506260A JP6988994B2 (ja) 2017-08-11 2017-08-11 ランダムアクセスの電力制御装置、方法及び通信システム
EP17921016.6A EP3668194A4 (en) 2017-08-11 2017-08-11 METHOD AND DEVICE FOR DIRECT ACCESS PERFORMANCE CONTROL AND COMMUNICATION SYSTEM
PCT/CN2017/097220 WO2019028881A1 (zh) 2017-08-11 2017-08-11 随机接入功率控制方法、装置以及通信系统
CN201780092671.7A CN110832913B (zh) 2017-08-11 2017-08-11 随机接入功率控制方法、装置以及通信系统
US16/450,273 US10736054B2 (en) 2017-08-11 2019-06-24 Random access power control method and apparatus and communication system
US16/910,736 US11337166B2 (en) 2017-08-11 2020-06-24 Random access power control method and apparatus and communication system
JP2021194086A JP7322939B2 (ja) 2017-08-11 2021-11-30 ランダムアクセスの電力制御装置、方法及び通信システム
US17/724,067 US11785557B2 (en) 2017-08-11 2022-04-19 Random access power control method and apparatus and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/097220 WO2019028881A1 (zh) 2017-08-11 2017-08-11 随机接入功率控制方法、装置以及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/450,273 Continuation US10736054B2 (en) 2017-08-11 2019-06-24 Random access power control method and apparatus and communication system

Publications (1)

Publication Number Publication Date
WO2019028881A1 true WO2019028881A1 (zh) 2019-02-14

Family

ID=65272959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097220 WO2019028881A1 (zh) 2017-08-11 2017-08-11 随机接入功率控制方法、装置以及通信系统

Country Status (5)

Country Link
US (3) US10736054B2 (zh)
EP (1) EP3668194A4 (zh)
JP (1) JP6988994B2 (zh)
CN (1) CN110832913B (zh)
WO (1) WO2019028881A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143471A1 (en) * 2019-01-07 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Method, terminal device, base station for power control in random access procedure
CN111757541A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种随机接入方法和终端设备
WO2020227857A1 (zh) * 2019-05-10 2020-11-19 Oppo广东移动通信有限公司 用于随机接入的方法及设备
AU2018401905B2 (en) * 2018-01-12 2021-01-21 Huawei Technologies Co., Ltd. Communication method and device
WO2021049162A1 (ja) * 2019-09-12 2021-03-18 ソニーセミコンダクタソリューションズ株式会社 通信装置、通信方法、及び通信システム
JP2021530175A (ja) * 2018-07-20 2021-11-04 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. 物理ランダムアクセスチャネルの電力制御方法及び端末
US12035358B2 (en) 2023-05-30 2024-07-09 Telefonaktiebolaget Lm Ericsson (Publ) Method, terminal device, base station for power control in random access procedure

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109561499B (zh) * 2017-09-26 2021-09-07 捷开通讯(深圳)有限公司 寻呼方法、装置及可读存储介质
EP3711427A1 (en) * 2017-11-18 2020-09-23 Lenovo (Singapore) Pte. Ltd. Random access configuration
WO2019157726A1 (zh) * 2018-02-14 2019-08-22 Oppo广东移动通信有限公司 资源上报的方法、终端设备和网络设备
CN110446271B (zh) * 2018-05-02 2022-11-01 中国移动通信有限公司研究院 一种随机接入的方法、用户设备及网络侧设备
EP3855825A4 (en) * 2018-09-27 2022-05-11 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND APPARATUS FOR TRANSMITTING SYNCHRONIZATION INDICATION INFORMATION
US11496970B2 (en) * 2019-03-06 2022-11-08 Qualcomm Incorporated Support of high pathloss mode
US11510071B2 (en) 2019-04-17 2022-11-22 Qualcomm Incorporated Beam direction selection for high pathloss mode operations
US11477747B2 (en) 2019-04-17 2022-10-18 Qualcomm Incorporated Synchronization signal periodicity adjustment
US11445408B2 (en) 2019-04-17 2022-09-13 Qualcomm Incorporated High pathloss mode multiplexing
US11463964B2 (en) 2019-04-17 2022-10-04 Qualcomm Incorporated Communication configuration for high pathloss operations
US11438808B2 (en) 2019-04-17 2022-09-06 Qualcomm Incorporated Acknowledgment messaging for resource reservations
TWI715247B (zh) * 2019-10-16 2021-01-01 國立清華大學 天線陣列的波束調準方法、多波束傳輸系統及裝置
KR102402353B1 (ko) 2019-11-07 2022-05-30 애플 인크. 디폴트 pucch 및 srs 빔 결정
CN112996134B (zh) * 2019-12-13 2022-11-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
EP3952586A1 (en) * 2020-08-07 2022-02-09 Nokia Technologies Oy Methods for ul rach coverage extension
CN114268971A (zh) * 2020-09-16 2022-04-01 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
WO2022265546A1 (en) * 2021-06-18 2022-12-22 Telefonaktiebolaget Lm Ericsson (Publ) Network node and method in a multi-tpr communication network where minimum distance is obtained by establishing path-loss difference between ue and tprs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7647050B2 (en) * 2005-12-28 2010-01-12 Alcatel-Lucent Usa Inc. Method of adjusting a power level of communications over a channel in a wirelss communications network
US7945281B1 (en) * 2005-03-11 2011-05-17 Sprint Spectrum L.P. Method and system for dynamically adjusting forward-link transmission power for sole sector serving one or more active mobile stations in cluster
CN102342145A (zh) * 2009-03-20 2012-02-01 瑞典爱立信有限公司 用于监控随机接入信道的方法和装置
CN103782647A (zh) * 2011-08-05 2014-05-07 苹果公司 自适应随机接入信道重传

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY152765A (en) 2008-01-11 2014-11-28 Ericsson Telefon Ab L M Methods and devices for random access power control in a communications network
WO2012115445A2 (en) 2011-02-22 2012-08-30 Samsung Electronics Co., Ltd. User equipment and power control method for random access
KR101910475B1 (ko) * 2011-02-22 2018-10-24 삼성전자 주식회사 단말 및 그 단말에서 랜덤 억세스 수행을 위한 전력 제어 방법
US9497733B2 (en) * 2013-02-13 2016-11-15 Qualcomm Incorporated Single-frequency network (SFN) operation for machine-type communications (MTC) coverage enhancements
CN105453461B (zh) * 2013-07-25 2018-06-19 Lg电子株式会社 用于覆盖增强的方法和装置
KR101994386B1 (ko) 2013-08-13 2019-06-28 후아웨이 테크놀러지 컴퍼니 리미티드 프리앰블 시퀀스를 전송하기 위한 방법 및 사용자 장비
CN107734630A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 信息传输方法、终端及网络设备
US10476623B2 (en) * 2017-04-03 2019-11-12 Qualcomm Incorporated Techniques and apparatuses for tertiary synchronization signal design for new radio
CA3062307A1 (en) * 2017-05-04 2018-11-08 Sharp Kabushiki Kaisha Synchronization signal transmission and reception for radio system
KR102440020B1 (ko) * 2017-05-04 2022-09-06 삼성전자주식회사 래치 전력 오프셋

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7945281B1 (en) * 2005-03-11 2011-05-17 Sprint Spectrum L.P. Method and system for dynamically adjusting forward-link transmission power for sole sector serving one or more active mobile stations in cluster
US7647050B2 (en) * 2005-12-28 2010-01-12 Alcatel-Lucent Usa Inc. Method of adjusting a power level of communications over a channel in a wirelss communications network
CN102342145A (zh) * 2009-03-20 2012-02-01 瑞典爱立信有限公司 用于监控随机接入信道的方法和装置
CN103782647A (zh) * 2011-08-05 2014-05-07 苹果公司 自适应随机接入信道重传

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11160116B2 (en) * 2018-01-12 2021-10-26 Huawei Technologies Co., Ltd. Communication method and communications apparatus
AU2018401905B2 (en) * 2018-01-12 2021-01-21 Huawei Technologies Co., Ltd. Communication method and device
AU2018401905B9 (en) * 2018-01-12 2021-02-11 Huawei Technologies Co., Ltd. Communication method and device
JP7178479B2 (ja) 2018-07-20 2022-11-25 維沃移動通信有限公司 物理ランダムアクセスチャネルの電力制御方法及び端末
US11445448B2 (en) 2018-07-20 2022-09-13 Vivo Mobile Communication Co., Ltd. Power control method for physical random access channel and terminal
JP2021530175A (ja) * 2018-07-20 2021-11-04 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. 物理ランダムアクセスチャネルの電力制御方法及び端末
US11026258B2 (en) 2019-01-07 2021-06-01 Telefonaktiebolaget Lm Ericsson (Publ) Method, terminal device, base station for power control in random access procedure
WO2020143471A1 (en) * 2019-01-07 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Method, terminal device, base station for power control in random access procedure
US11706796B2 (en) 2019-01-07 2023-07-18 Telefonaktiebolaget Lm Ericsson (Publ) Method, terminal device, base station for power control in random access procedure
CN111757541B (zh) * 2019-03-29 2022-07-12 华为技术有限公司 一种随机接入方法和终端设备
CN111757541A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种随机接入方法和终端设备
WO2020227857A1 (zh) * 2019-05-10 2020-11-19 Oppo广东移动通信有限公司 用于随机接入的方法及设备
US11540316B2 (en) 2019-05-10 2022-12-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Random access method and device
WO2021049162A1 (ja) * 2019-09-12 2021-03-18 ソニーセミコンダクタソリューションズ株式会社 通信装置、通信方法、及び通信システム
US12035358B2 (en) 2023-05-30 2024-07-09 Telefonaktiebolaget Lm Ericsson (Publ) Method, terminal device, base station for power control in random access procedure

Also Published As

Publication number Publication date
JP2020529790A (ja) 2020-10-08
CN110832913B (zh) 2022-12-27
US11337166B2 (en) 2022-05-17
EP3668194A1 (en) 2020-06-17
CN110832913A (zh) 2020-02-21
US10736054B2 (en) 2020-08-04
JP6988994B2 (ja) 2022-01-05
EP3668194A4 (en) 2021-03-24
US11785557B2 (en) 2023-10-10
US20190313345A1 (en) 2019-10-10
US20220240197A1 (en) 2022-07-28
US20200322898A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
CN110832913B (zh) 随机接入功率控制方法、装置以及通信系统
JP7102148B2 (ja) 端末、プリアンブル送信方法、基地局、及び通信システム
CA3044493C (en) Resource configuration method and apparatus
EP3531787B1 (en) Wave beam-based multi-connection communication method, terminal device, and network device
US20200187266A1 (en) Random access method, device, and system
WO2018098790A1 (zh) 测量方法、终端设备和网络设备
CN112219427B (zh) 功率的确定方法及装置
JP2022160706A (ja) Srs信号の送信方法と端末装置及びsrs信号の受信方法とネットワーク装置
WO2020164323A1 (zh) 传输探测参考信号的方法、装置和系统
EP3573410B1 (en) Random access response method and device, and random access method and device
US20200037355A1 (en) Random Access Method, Network Device, And Terminal Device
WO2018059151A1 (zh) 资源管理指示方法及装置
WO2020220323A1 (zh) 随机接入的方法、装置和通信系统
EP3456110B1 (en) Network node and method for ue specific power handling
WO2021062576A1 (zh) 随机接入方法、装置和通信系统
US10681702B2 (en) Communication method and device
EP3826375A1 (en) Uplink transmitting power determining method, network device, and storage medium
EP3300439A1 (en) Data transmission method and device
CN113748713A (zh) 增强型随机接入过程的系统和方法
US20200022184A1 (en) Random access method and apparatus, device, and storage medium
JP7322939B2 (ja) ランダムアクセスの電力制御装置、方法及び通信システム
WO2020056738A1 (zh) 功率控制方法及其装置、通信系统
US20230135408A1 (en) Methods and apparatus for beam determination for physical uplink control channel (pucch) transmission
CN117616852A (zh) 用于增强上行链路覆盖的方法、设备和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506260

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017921016

Country of ref document: EP

Effective date: 20200311