WO2020029036A1 - 电动汽车和车载空调压缩机的开关电源 - Google Patents

电动汽车和车载空调压缩机的开关电源 Download PDF

Info

Publication number
WO2020029036A1
WO2020029036A1 PCT/CN2018/099037 CN2018099037W WO2020029036A1 WO 2020029036 A1 WO2020029036 A1 WO 2020029036A1 CN 2018099037 W CN2018099037 W CN 2018099037W WO 2020029036 A1 WO2020029036 A1 WO 2020029036A1
Authority
WO
WIPO (PCT)
Prior art keywords
output terminal
voltage
output
vehicle
electrically connected
Prior art date
Application number
PCT/CN2018/099037
Other languages
English (en)
French (fr)
Inventor
敬江河
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to CN201880087347.0A priority Critical patent/CN111684698A/zh
Priority to PCT/CN2018/099037 priority patent/WO2020029036A1/zh
Publication of WO2020029036A1 publication Critical patent/WO2020029036A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present application relates to the field of drivers, and in particular, to a switching power supply for an electric vehicle and a vehicle-mounted air-conditioning compressor.
  • the switching power supply of the new energy electric vehicle air-conditioning compressor is an important unit module to ensure the normal operation of the new energy electric vehicle air-conditioning compressor. If the output voltage of the switching power supply of the new energy electric vehicle air-conditioning compressor fluctuates greatly, it may cause new energy electric The car air-conditioning compressor does not work properly. Therefore, the switching power supply must not only provide a reliable and stable voltage output for the control unit of the new energy electric vehicle air conditioner compressor, but also provide a reliable and stable voltage output for the drive inverter unit of the new energy electric vehicle air conditioner compressor.
  • the switching power supply of the new energy electric vehicle air-conditioning compressor uses a single power IC chip, which has the disadvantages of high cost and difficult layout, and the entire system's power architecture lacks global voltage stability monitoring. There are hidden dangers to the reliability of the system.
  • the existing switching power supplies often have the following problems in specific occasions: the number of output circuits is large or small, the output voltage value does not match, the output current capability is too weak to meet the application requirements, the output current capability is too large, and the power consumption is large, etc.
  • the problem requires a set of switching power supplies that can solve the above disadvantages for specific applications.
  • the technical problem mainly solved by this application is to provide a switching power supply for a vehicle-mounted air-conditioning compressor and an electric vehicle, which can reduce production costs, meet the requirements of specific occasions, and reduce external electromagnetic interference.
  • the switching power supply includes: a primary side, the primary side is electrically connected to the vehicle power source, and the primary side obtains an input voltage from the vehicle power source; The side is used to control the operation of the vehicle air-conditioning compressor.
  • the secondary side includes a first output terminal, a second output terminal, and a third output terminal. The first output terminal is electrically connected to the control unit of the vehicle air-conditioning compressor, and the second output terminal.
  • the third output terminal is electrically connected to the power unit of the vehicle air-conditioning compressor; the feedback control circuit, the feedback control circuit is electrically connected to any one of the first output terminal, the second output terminal, and the third output terminal and the primary side;
  • the feedback control circuit is configured to obtain a voltage sampling signal from any output terminal, and adjust the output voltages of the first output terminal, the second output terminal, and the third output terminal according to the voltage sampling signal.
  • the present application also provides an electric vehicle.
  • the electric vehicle includes a vehicle-mounted power supply and a vehicle-mounted air-conditioning compressor.
  • the vehicle-mounted air-conditioning compressor is provided with a switching power supply.
  • the switching power supply includes: a primary side, and the primary side is electrically connected to the vehicle power source.
  • the primary side obtains the input voltage from the vehicle power supply; the secondary side, the secondary side is used to control the operation of the vehicle air-conditioning compressor, and the secondary side includes a first output end, a second output end, and a third output end, where the first The output terminal is electrically connected to the control unit of the vehicle air-conditioning compressor, and the second output terminal and the third output terminal are electrically connected to the power unit of the vehicle air-conditioning compressor; the feedback control circuit, the feedback control circuit is respectively connected to the first output terminal and the second output. Any one of the output terminal and the third output terminal is electrically connected to the primary side.
  • the feedback control circuit is configured to obtain a voltage sampling signal from any output terminal, and adjust the first output terminal, the second output terminal, and the first output terminal according to the voltage sampling signal. Output voltage at three outputs.
  • this application further proposes a switching power supply for a vehicle air-conditioning compressor.
  • the switching power supply includes: a primary side, the primary side is electrically connected to the vehicle power source, and the primary side obtains an input voltage from the vehicle power source; the secondary side The secondary side is used to control the operation of the vehicle air-conditioning compressor.
  • the secondary side includes at least one output terminal, and the output terminal is electrically connected to the vehicle air-conditioning compressor; the feedback control circuit, the feedback control circuit is electrically connected to the output terminal and the primary side, and the feedback control circuit. It is used to obtain the voltage sampling signal from the output terminal, and adjust the output voltage of the output terminal according to the voltage sampling signal.
  • the electric vehicle includes a vehicle power source and a vehicle air-conditioning compressor.
  • the vehicle air-conditioning compressor is provided with a switching power supply.
  • the switching power supply includes: a primary side, a primary side and a vehicle power source. Connected, the primary side obtains the input voltage from the vehicle power supply; the secondary side, the secondary side is used to control the operation of the vehicle air-conditioning compressor, the secondary side includes at least one output terminal, the output terminal is electrically connected to the vehicle air-conditioning compressor; the feedback control circuit, The feedback control circuit is electrically connected to the output terminal and the primary side.
  • the feedback control circuit is used to obtain a voltage sampling signal from the output terminal and adjust the output voltage of the output terminal according to the voltage sampling signal.
  • this application proposes a switching power supply for electric vehicles and vehicle air-conditioning compressors, which electrically connects the first output end on the secondary side to the control unit of the vehicle air-conditioning compressor.
  • the second output terminal and the third output terminal are electrically connected to the power unit of the vehicle air-conditioning compressor, and the number of the secondary side output terminals and the output voltage correspond to the control requirements of the vehicle air-conditioning compressor to meet the needs of specific occasions.
  • the feedback control circuit is connected to the output of the secondary side to monitor and adjust the output voltage of the secondary side, which improves the working stability of the vehicle air-conditioning compressor.
  • FIG. 1 is a schematic structural diagram of an embodiment of a switching power supply for a vehicle-mounted air-conditioning compressor of the present application
  • FIG. 2 is a schematic structural diagram of another embodiment of the switching power supply of FIG. 1;
  • FIG. 3 is a schematic structural diagram of an embodiment of a coil of a switching power supply on a primary side and a secondary side of a vehicle air-conditioning compressor of the present application;
  • FIG. 4 is a schematic structural diagram of an embodiment of a mounting bracket for the switching power supply of FIG. 3;
  • FIG. 5 is a schematic structural diagram of an embodiment of an electric vehicle according to the present application.
  • FIG. 6 is a schematic structural diagram of another embodiment of a switching power supply for an air-conditioning compressor of the present application.
  • FIG. 7 is a schematic structural diagram of another embodiment of an electric vehicle according to the present application.
  • FIG. 1 is a schematic structural diagram of an embodiment of a switching power supply for a vehicle air-conditioning compressor of the present application.
  • the switching power supply of the vehicle air-conditioning compressor includes a primary side 11, a secondary side 12, and a feedback control circuit 13.
  • the secondary side 12 includes a first output terminal 121, a second output terminal 122, and a third output terminal 123.
  • An input terminal (not shown) of the primary side 11 is electrically connected to the vehicle power source 10.
  • the current input from the input side of the primary side 11 to the primary side 11 is DC, and the voltage is 12V.
  • the current transmitted by the vehicle power source 10 may also be AC power or the voltage may not only be 12V, as long as the switching power supply can control the vehicle air-conditioning compressor based on the current transmitted by the vehicle power source 10, which is not described here. limited.
  • the primary side 11 After the primary side 11 obtains the voltage transmitted by the vehicle-mounted power source 10, it transmits it to the secondary side 12. Both the primary side 11 and the secondary side 12 are wound into a coil, and the primary side 11 transmits energy to the secondary side 12 in an electromagnetic induction manner.
  • the secondary side 12 is used to control the operation of the vehicle air-conditioning compressor.
  • the first output 121 of the secondary side 12 is electrically connected to the control unit 15 for controlling the vehicle air-conditioning compressor.
  • the control unit 15 for controlling the vehicle air-conditioning compressor is normal. jobs.
  • the second output terminal 122 and the third output terminal 123 are electrically connected to the power unit 14 of the vehicle air-conditioning compressor, so as to control the power driving unit (not shown) of the vehicle air-conditioning compressor to normally drive the vehicle air-conditioning compressor to work.
  • the primary side 11 and the secondary side 12 are not directly connected, and the primary side 11 and the secondary side 12 transmit power by means of electromagnetic induction.
  • the primary side 11 may also transmit power to the secondary side 12 through microwave transmission, photoelectric transmission, and other electromagnetic resonance, electromagnetic radiation, and other methods, and details are not described herein.
  • the voltages of the output terminals of the secondary side 12 have a certain functional relationship.
  • the secondary side The ratio between the voltages at the output terminals of 12 is the ratio between the number of coil turns at each output terminal.
  • a feedback control circuit 13 is further provided on the switching power supply.
  • the feedback control circuit 13 is electrically connected to an input terminal of the primary side 11 and an output terminal of the vehicle power source 10 respectively.
  • the primary side 11 forms a loop with the vehicle power source 10 through the feedback control circuit 13.
  • the feedback control circuit 13 is also connected to the first output terminal 121. Electrical connection.
  • the feedback control circuit 13 obtains a voltage sampling signal from the first output terminal 121 electrically connected to the feedback control circuit 13 and determines whether the voltage output by the secondary side 12 is a voltage capable of controlling the normal operation of the vehicle air-conditioning compressor according to the voltage sampling signal. Then, the voltage of the input primary side 11 is adjusted according to the voltage sampling signal, and then the secondary side 12 is controlled to output a stable and normal voltage, so that the vehicle air-conditioning compressor operates normally.
  • the feedback control circuit 13 may also be electrically connected to the second output terminal 122 or the third output terminal 123, and obtain a voltage sampling signal of the second output terminal 122 or the third output terminal 123 to determine the secondary side 12 Whether or not the output voltage of the vehicle can control the normal operation of the vehicle air-conditioning compressor is not limited here.
  • FIG. 2 is a schematic structural diagram of another embodiment of the switching power supply of FIG. 1.
  • the switching power supply of the vehicle air-conditioning compressor includes a primary side 11, a secondary side 12, and a feedback control circuit 13.
  • the secondary side 12 includes a first output terminal 121, a second output terminal 122, and a third output terminal 123.
  • An input terminal (not shown) of the primary side 11 is electrically connected to the vehicle power source 10.
  • the current input from the input side of the primary side 11 to the primary side 11 is DC, and the voltage is 12V.
  • the current transmitted by the vehicle power source 10 may be an alternating current or a voltage of 12V.
  • the switching power supply only needs to control the vehicle air-conditioning compressor based on the current transmitted by the vehicle power source 10, which is not limited herein. .
  • the primary side 11 After the primary side 11 obtains the voltage transmitted by the vehicle-mounted power source 10, it transmits it to the secondary side 12. Both the primary side 11 and the secondary side 12 are wound into a coil, and the primary side 11 transmits energy to the secondary side 12 in an electromagnetic induction manner.
  • the secondary side 12 is used to control the operation of the vehicle air-conditioning compressor.
  • the first output 121 of the secondary side 12 is electrically connected to the control unit 15 for controlling the vehicle air-conditioning compressor.
  • the control unit 15 for controlling the vehicle air-conditioning compressor is normal. jobs.
  • the second output terminal 122 and the third output terminal 123 are electrically connected to the power unit 14 of the vehicle air-conditioning compressor, so as to control the power driving unit (not shown) of the vehicle air-conditioning compressor to normally drive the vehicle air-conditioning compressor to work.
  • the primary side 11 and the secondary side 12 are not directly connected, and the primary side 11 and the secondary side 12 transmit power by means of electromagnetic induction.
  • the primary side 11 may also transmit power to the secondary side 12 through microwave transmission, photoelectric transmission, and other electromagnetic resonance, electromagnetic radiation, and other methods, and details are not described herein.
  • a capacitor 21 and an RCD (Residual Current) are also provided on the switching power supply.
  • Device, residual current device) absorption circuit 22 An input terminal of the primary side 11 is electrically connected to the vehicle power source 10 through a capacitor 21 and an RCD absorption circuit 22.
  • the capacitor 21 is electrically connected to the vehicle power source 10.
  • the capacitor 21 is used for filtering the voltage transmitted by the vehicle power source 10. After the capacitor 21 filters the voltage transmitted by the vehicle power source 10, it is transmitted to the capacitor 21 for electrical connection.
  • the RCD absorption circuit 22 further transmits the voltage transmitted by the capacitor 21 to the primary side 11 which is electrically connected to the RCD absorption circuit 22.
  • the RCD absorption circuit 22 is used to protect the PWM (Pulse) in the switching power supply. Width Modulation (Pulse Width Modulation) switch and reduce the turn-off loss.
  • the switching power supply is further provided with a feedback control circuit 13.
  • the feedback control circuit 13 includes a PWM pulse control circuit 131, an optocoupler isolator 132, and a voltage acquisition circuit 133.
  • One output terminal of the RCD absorption circuit 22 is electrically connected to the PWM pulse control circuit 131, and one input terminal of the primary side 11 is controlled by PWM.
  • the pulse control circuit 131 is electrically connected to one output terminal of the RCD absorption circuit 22, and then the primary side 11 forms a complete loop through the PWM pulse control circuit 131 and the RCD absorption circuit 22.
  • the feedback control circuit 13 obtains the voltage sampling signal from the first output terminal 121 on the secondary side 12 through the voltage acquisition circuit 133.
  • the voltage acquisition circuit 133 transmits the obtained voltage sampling signal to the optocoupler isolator 132, and the optocoupler isolator 132 receives
  • the voltage sampling signal is converted into an optical signal, and then converted into an electric signal and transmitted to the PWM pulse control circuit 131 for processing.
  • the PWM pulse control circuit 131 obtains the output voltage of the first output terminal 121 according to the obtained voltage sampling signal, and then obtains the second output terminal 122 according to the voltage relationship between the first output terminal 121, the second output terminal 122, and the third output terminal 123.
  • the output voltage of the third output terminal 123 determines whether the output voltage of the secondary side 12 can control the normal operation of the vehicle air-conditioning compressor through the output voltages of the first output terminal 121, the second output terminal 122, and the third output terminal 123. If not, the input voltage of the input terminal of the primary side 11 is adjusted by the PWM pulse control circuit 131, so that the output voltage of the secondary side 12 is changed, so that the vehicle-mounted air conditioner compressor works normally.
  • the voltage acquisition circuit 133 may also be electrically connected to the second output terminal 122 or the third output terminal 123, and obtain a voltage sampling signal of the second output terminal 122 or the third output terminal 123 to determine the secondary side 12 Whether or not the output voltage of the vehicle can control the normal operation of the vehicle air-conditioning compressor is not limited here.
  • the optocoupler isolator 132 is used to unidirectionally transmit the voltage sampling signal collected by the voltage acquisition circuit 133, and completely electrically isolate the voltage acquisition circuit 133 located at both ends of the optocoupler isolator 132 and the PWM pulse control circuit 131.
  • the components connecting the voltage acquisition circuit 133 and the PWM pulse control circuit 131 may also be devices that can achieve electrical isolation, such as coupling transformers, relays, and thyristors, which are not limited here. .
  • the voltage acquisition circuit is composed of a TL431 chip.
  • the voltage acquisition circuit may also be composed of other circuits capable of realizing the voltage signal acquisition function, which will not be repeated here.
  • the first output terminal 121 of the secondary side 12 is independently grounded, and the second output terminal 122 and the third output terminal 123 share one ground terminal.
  • the voltage of the third output terminal 123 may be different from the voltage of the second output terminal 122 or the first output terminal 121.
  • the secondary side 12 may also have one or more output terminals.
  • the voltages output by these output terminals may be the same or different.
  • the output terminals may have a common ground terminal or no common ground terminal.
  • the output end of the secondary side 12 can be connected to the control unit 15 and the power unit 14 of the vehicle air-conditioning compressor, and can control the operation of the vehicle air-conditioning compressor, which is not limited herein.
  • FIG. 3 is a schematic structural diagram of one embodiment of the coils of the switching power supply of the vehicle-mounted air-conditioning compressor of the present application.
  • the first output end 121, the second output end 122, and the third output end 123 of the primary side 11 and the secondary side 12 are all wound into a coil shape.
  • the first output terminal 121, the second output terminal 122, and the third output terminal 123 are represented by cross-sections of a wound copper wire on a coil.
  • the coils made by winding the primary side 11 and the secondary side 12 are arranged in the stack 15, and there are three stacks 15 in total.
  • the three output terminals 123 are respectively disposed in the three stacks 15.
  • the primary side 11 is located in a stack 15 alone, the first output end 121 is located in the stack 15 close to the primary side 11, and the second output end 122 and the third output end 123 are both disposed close to the first output end 121, In the stack 15 far from the primary side 11, adjacent stacks 15 are insulated from each other.
  • the adjacent stacks 15 are insulated and isolated by an insulating tape.
  • materials between the stacks 15 such as quartz, asbestos, polyester lacquer, and polyimide, which can prevent conduction between the coils in the adjacent stacks 15, are not limited here.
  • the wire diameter of each coil corresponds to the maximum current passing through the coil.
  • the primary side 11 alone in one stack 15 is wound with copper wire, and the diameter of the copper wire is 0.5 mm.
  • the output voltage of the first output terminal 121 located in the stack 15 near the primary side 11 is 5V, the maximum output current is 150 mA, and the copper wire is wound, and the copper wire diameter is 0.5 mm.
  • the output voltage of the second output terminal 122 located in the stack 15 far from the primary side 11 is -5V, the maximum output current is 50mA, and the copper wire is wound, and the diameter of the copper wire is 0.3mm.
  • the output voltage of the third output terminal 123 in the same stack 15 as the second output terminal 122 is 15V, the maximum output current is 150mA, and the copper wire is wound, and the diameter of the copper wire is 0.5mm.
  • the coil winding method of the primary side 11 and the secondary side 12 is freely set, and the copper wire diameter of the coil may not be the above data, and only the primary side 11 can transmit energy to the secondary side. 12, and the first output terminal 121, the second output terminal 122, and the third output terminal 123 of the secondary side 12 can be used to control the normal operation of the vehicle air-conditioning compressor, which is not limited herein.
  • the stack 15 for setting the coils of the primary side 11 and the secondary side 12 is accommodated in a space formed by a mounting frame (not shown) (the space in FIG. 2 is a part of the space formed by the mounting frame), and in order to increase the stack
  • the creepage distance between the layers 15 ensures the normal operation of the switching power supply.
  • An insulating barrier wall 14 is provided on the side of the mounting frame 16 close to the stack 15. The side 16 and the insulating barrier 14 are perpendicular to the stack 15.
  • FIG. 4 is a schematic structural diagram of an embodiment of a mounting bracket for the switching power supply of FIG. 3.
  • the mounting frame structure of the present application is further described with reference to FIGS. 4 and 3.
  • the mounting frame has a rectangular structure, and the laminate 15, the insulating retaining wall 14, the primary side 11, and the secondary side 12 are located within the rectangular structure.
  • Pins 30 are provided on the side 16 near the insulating retaining wall 14, and the pins 30 include pins 301, 302, 303, 304, 305, 306, 307, 308, 309, and 310, and the primary side 11 and the secondary side 12 is electrically connected to a printed circuit board (not shown) through a pin 30, and further soldered to the printed circuit board through the pin 30.
  • the side 16 where the pins 301, 302, 303, 304, and 305 are located is opposite to the side 16 where the pins 306, 307, 308, 309, and 310 are located.
  • the pins 301 and 305 electrically connected to the primary side 11 and the pins 306, 307, 308, 309, and 310 electrically connected to the secondary side 12 are located on different sides 16.
  • pins 301 and 305 are respectively electrically connected to the 12V input terminal and 12V ground terminal of the primary side 11
  • pins 306 and 307 are respectively electrically connected to the 5V output and 5V ground of the first output terminal 121
  • pins 308 and The -5V output of the second output terminal 122 is electrically connected
  • the pin 309 is the common ground of the second output terminal 122 and the third output terminal 123
  • the pin 310 is electrically connected to the 15V output of the third output terminal 123.
  • connection manner with the input end of the primary side 11 and the output of the secondary side 12 and the pin 30 is not limited to the above connection manner, as long as the primary side 11 and the secondary side 12 can pass through the mounting bracket.
  • the pins 30 may be electrically connected to the printed circuit board, which is not limited herein.
  • the distance between the pins 30 opposite to each other is 10 mm and is located on the same side 16.
  • the distance between adjacent pins 30 is 2.5 mm.
  • the maximum length of the side 16 that is perpendicular to the direction of the stack 15 is 14 mm, and the maximum distance between the sides that are away from the insulating barrier wall 14 on the opposite side 16 is 13.7 mm.
  • the distance between the adjacent pins 30 on the side 16 may not be 2.5 mm, and the distance between the pins 30 located on different sides 16 may be not 10 mm.
  • the mounting frame can reduce the layout area of the printed circuit board and reduce external electromagnetic interference, it is not limited here.
  • this application proposes a switching power supply for a vehicle air-conditioning compressor, which electrically connects the first output end on the secondary side to the control unit of the vehicle air-conditioning compressor, and The second output terminal and the third output terminal are electrically connected to the power unit of the vehicle air-conditioning compressor.
  • the number of output terminals on the secondary side and the output voltage correspond to the control requirements of the vehicle air-conditioning compressor. It is connected to the output of the secondary side to monitor and adjust the output voltage of the secondary side, which improves the working stability of the vehicle air-conditioning compressor.
  • this application also proposes an electric vehicle.
  • FIG. 5 is a schematic structural diagram of an embodiment of an electric vehicle according to the present application.
  • the electric vehicle 50 includes an on-board power source 51, an on-board air-conditioning compressor 53, and a switching power source 52.
  • the air-conditioning compressor 53 is electrically connected, and the switching power supply 52 is used to control the operation of the vehicle-mounted air-conditioning compressor 53.
  • the electric vehicle 50 may be a vehicle having a vehicle-mounted power source 51 and a vehicle-mounted air-conditioning compressor 53 such as a pure electric vehicle, a hybrid vehicle, and a fuel cell vehicle, which is not limited herein.
  • the vehicle-mounted power source 51 is a DC power source and the voltage is 12V.
  • the power source type and voltage of the vehicle-mounted power source 51 can also be set according to the type of the electric vehicle 50, which is not limited herein.
  • the vehicle-mounted air-conditioning compressor 53 may be a fixed-displacement compressor and a variable-displacement compressor, and only needs to be able to control its operation through the switching power supply 52, and details are not described herein.
  • the switching power supply 52 includes the switching power supply of the vehicle-mounted air-conditioning compressor as described above, which is not described in detail here.
  • the present application proposes an electric vehicle, which electrically connects the first output terminal on the secondary side with the control unit of the vehicle air-conditioning compressor, and connects the second output terminal, the first The three outputs are electrically connected to the power unit of the vehicle air-conditioning compressor.
  • the number of output terminals on the secondary side and the output voltage correspond to the control requirements of the vehicle air-conditioning compressor.
  • the feedback control circuit is connected to the secondary side.
  • the output terminal is connected to monitor and adjust the secondary-side output voltage, which improves the working stability of the vehicle air-conditioning compressor.
  • FIG. 6 is a schematic structural diagram of another embodiment of a switching power supply for an air conditioner compressor of the present application.
  • the switching power supply (not shown) includes a vehicle-mounted power source 60, a primary side 61, a secondary side 62, a feedback control circuit 63, and a vehicle-mounted air-conditioning compressor 64.
  • An input terminal (not labeled) of the primary side 61 is electrically connected to an output terminal (not labeled) of the vehicle power source 60, and the primary side 61 obtains an input voltage from the vehicle power source 60.
  • the in-vehicle power supply 60 has a DC current and a voltage of 12V from the input terminal of the primary side 61 to the primary side 61.
  • the current transmitted by the vehicle power source 60 to the primary side 61 may also be AC power or the voltage may not only be 12V, as long as the switching power supply can control the vehicle air-conditioning compressor 64 according to the current transmitted by the vehicle power source 60. Yes, it is not limited here.
  • the secondary side 62 is opposite to the primary side 61 and obtains an induced voltage from the primary side 61 in an electromagnetic induction manner.
  • the output terminal (not shown) of the secondary side 62 is electrically connected to the vehicle air-conditioning compressor 64, so that the voltage obtained by the secondary side 62 from the primary side 61 is used to control the vehicle air-conditioning compressor to turn on, off, and operate normally.
  • the secondary side 62 has an output terminal electrically connected to the vehicle-mounted air-conditioning compressor 64.
  • the secondary side 62 may also have multiple output terminals. The output voltages of these output terminals may be the same or different, and may also have a common ground terminal or no common ground terminal. Only the secondary side 62 is required.
  • the output terminal can be electrically connected to the vehicle-mounted air-conditioning compressor 64 and can control the operation of the vehicle-mounted air-conditioning compressor 64, which is not limited herein.
  • one end of the feedback control circuit 63 is electrically connected to one end of the input terminal of the primary side 61, and the input terminal of the primary side 61 is electrically connected to the vehicle power source 60 through the feedback control circuit 63 to form a complete loop.
  • the other end of the feedback control circuit 63 is electrically connected to one end of one output terminal of the secondary side 62.
  • the feedback control circuit 63 obtains a voltage sampling signal from the output terminal of the secondary side 62, and adjusts the input voltage of the input terminal of the primary side 61 according to the voltage sampling signal, thereby adjusting the output voltage of the secondary side 62, thereby controlling the operation of the vehicle air-conditioning compressor 64. .
  • the switching power supply of this embodiment includes the switching power supply of the vehicle-mounted air-conditioning compressor described above, and details are not described herein.
  • this application proposes a switching power supply for a vehicle air-conditioning compressor, which electrically connects an output terminal on the secondary side to the vehicle air-conditioning compressor, and connects the feedback control circuit to the secondary
  • the output terminal on the side is connected to monitor and adjust the output voltage on the secondary side, which improves the working stability of the vehicle air-conditioning compressor.
  • FIG. 7 is a schematic structural diagram of another embodiment of an electric vehicle according to the present application.
  • the electric vehicle 70 includes a vehicle power source 71, a vehicle air-conditioning compressor 73, and a switching power source 72.
  • the switching power source 72 is electrically connected to the vehicle power source 71 and the vehicle air-conditioning compressor 73, respectively.
  • the switching power source 72 is used to control the operation of the vehicle air-conditioning compressor 73. .
  • the electric vehicle 70 may be a vehicle having a vehicle-mounted power source 71 and a vehicle-mounted air-conditioning compressor 73 such as a pure electric vehicle, a hybrid vehicle, and a fuel cell vehicle, which is not limited here.
  • the vehicle-mounted power source 71 is a DC power source and the voltage is 12V.
  • the power source type and voltage of the vehicle-mounted power source 71 can also be set according to the type of the electric vehicle 70, which is not limited herein.
  • the vehicle-mounted air-conditioning compressor 73 may be a fixed-displacement compressor and a variable-displacement compressor, and only needs to be able to control its operation through the switching power supply 72, and details are not described herein.
  • the switching power supply 72 includes the switching power supply of the vehicle-mounted air-conditioning compressor described above, which is not described in detail here.
  • this application proposes an electric vehicle, which electrically connects an output terminal on the secondary side with the vehicle air-conditioning compressor, and connects the feedback control circuit with the output terminal on the secondary side.
  • the secondary side output voltage is monitored and adjusted to improve the working stability of the vehicle air-conditioning compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种电动汽车和车载空调压缩机的开关电源,该开关电源包括:一次侧(11),与车载电源(10)电连接,从车载电源处获取输入电压;二次侧(12),用于控制车载空调压缩机工作,二次侧包括第一输出端(121)、第二输出端(122)以及第三输出端(123);反馈控制电路(13),反馈控制电路用于从任一个输出端获取电压采样信号,并根据电压采样信号调节第一输出端、第二输出端以及第三输出端的输出电压。二次侧的输出端数量、输出电压与车载空调压缩机的控制要求相对应,满足特定场合需求,将反馈控制电路与二次侧的输出端连接以监控并调节二次侧输出电压,提高了车载空调压缩机的工作稳定性。

Description

电动汽车和车载空调压缩机的开关电源
【技术领域】
本申请涉及驱动器领域,特别是涉及一种电动汽车和车载空调压缩机的开关电源。
【背景技术】
新能源电动汽车空调压缩机的开关电源是保证新能源电动汽车空调压缩机正常工作的重要单元模块,若新能源电动汽车空调压缩机开关电源输出电压发生较大的波动,则可能造成新能源电动汽车空调压缩机不能正常工作。因此,开关电源不仅要能够为新能源电动汽车空调压缩机的控制单元提供可靠稳定的电压输出,还要为新能源电动汽车空调压缩机的驱动逆变单元提供可靠稳定的电压输出。
但是,现有技术中,新能源电动汽车空调压缩机的开关电源是采用单一的电源IC芯片,具有成本高昂、布局困难的缺点,而且,整个系统的电源架构缺少全局的电压稳定性监控,整个系统的可靠性存在隐患。另外,现有的开关电源在特定场合往往具有以下问题:输出路数多或者少、输出电压值不匹配、输出的电流能力过弱不能满足应用要求、输出的电流能力过大、功耗大等问题,需要一套开关电源能够针对特定应用场合解决上述缺点。
【发明内容】
本申请主要解决的技术问题是提供一种车载空调压缩机的开关电源和电动汽车,能够降低生产成本,满足特定场合的需求,并且减少对外电磁干扰。
为解决技术问题,本申请提出一种车载空调压缩机的开关电源,该开关电源包括:一次侧,一次侧与车载电源电连接,一次侧从车载电源处获取输入电压;二次侧,二次侧用于控制车载空调压缩机工作,二次侧包括第一输出端、第二输出端以及第三输出端,其中,第一输出端与车载空调压缩机的控制单元电连接,第二输出端以及第三输出端与车载空调压缩机的功率单元电连接;反馈控制电路,反馈控制电路分别与第一输出端、第二输出端以及第三输出端中的任一个输出端和一次侧电连接,反馈控制电路用于从任一个输出端获取电压采样信号,并根据电压采样信号调节第一输出端、第二输出端以及第三输出端的输出电压。
为解决上述技术问题,本申请还提供一种电动汽车,该电动汽车包括车载电源、车载空调压缩机,车载空调压缩机上设有开关电源;开关电源包括:一次侧,一次侧与车载电源电连接,一次侧从车载电源处获取输入电压;二次侧,二次侧用于控制车载空调压缩机工作,二次侧包括第一输出端、第二输出端以及第三输出端,其中,第一输出端与车载空调压缩机的控制单元电连接,第二输出端以及第三输出端与车载空调压缩机的功率单元电连接;反馈控制电路,反馈控制电路分别与第一输出端、第二输出端以及第三输出端中的任一个输出端和一次侧电连接,反馈控制电路用于从任一个输出端获取电压采样信号,并根据电压采样信号调节第一输出端、第二输出端以及第三输出端的输出电压。
为解决上述技术问题,本申请又提出了一种车载空调压缩机的开关电源,该开关电源包括:一次侧,一次侧与车载电源电连接,一次侧从车载电源处获取输入电压;二次侧,二次侧用于控制车载空调压缩机工作,二次侧包括至少一个输出端,输出端与车载空调压缩机电连接;反馈控制电路,反馈控制电路与输出端及一次侧电连接,反馈控制电路用于从输出端获取电压采样信号,并根据电压采样信号调节输出端的输出电压。
为解决上述技术问题,本申请再提出了一种电动汽车,该电动汽车包括车载电源、车载空调压缩机,车载空调压缩机上设有开关电源;开关电源包括:一次侧,一次侧与车载电源电连接,一次侧从车载电源处获取输入电压;二次侧,二次侧用于控制车载空调压缩机工作,二次侧包括至少一个输出端,输出端与车载空调压缩机电连接;反馈控制电路,反馈控制电路与输出端及一次侧电连接,反馈控制电路用于从输出端获取电压采样信号,并根据电压采样信号调节输出端的输出电压。
本申请的有益效果是:区别于现有技术的情况,本申请提出一种电动汽车和车载空调压缩机的开关电源,将二次侧的第一输出端与车载空调压缩机的控制单元电连接,将第二输出端、第三输出端与车载空调压缩机的功率单元电连接,将二次侧的输出端数量、输出电压与车载空调压缩机的控制要求相对应,满足特定场合需求,将反馈控制电路与二次侧的输出端连接以监控并调节二次侧输出电压,提高了车载空调压缩机的工作稳定性。
【附图说明】
图1是本申请车载空调压缩机的开关电源一实施方式的结构示意图;
图2是图1的开关电源另一实施方式结构示意图;
图3是本申请车载空调压缩机的开关电源一次侧与二次侧的线圈一实施方式结构示意图;
图4是图3开关电源的安装架一实施方式结构示意图;
图5是本申请电动汽车一实施方式的结构示意图;
图6是本申请空调压缩机的开关电源另一实施例结构示意图;
图7是本申请电动汽车另一实施例结构示意图。
【具体实施方式】
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,均属于本申请保护的范围。
请参阅图1,图1是本申请车载空调压缩机的开关电源一实施方式的结构示意图。
在本实施方式中,车载空调压缩机的开关电源包括一次侧11、二次侧12以及反馈控制电路13。其中,二次侧12包括第一输出端121、第二输出端122以及第三输出端123。
一次侧11的输入端(未标示)与车载电源10电连接,车载电源10从一次侧11的输入端输入一次侧11的电流为直流电,且电压为12V。在其他实施方式中,车载电源10传输的电流还可以为交流电或电压大小也可不仅为12V,只需开关电源能够根据车载电源10传输的电流对车载空调压缩机进行控制即可,在此不作限定。
一次侧11获取车载电源10传输的电压后,将其传输给二次侧12。一次侧11与二次侧12均绕制为线圈,一次侧11以电磁感应的方式将能量传输给二次侧12。二次侧12用于控制车载空调压缩机工作,其中,二次侧12的第一输出端121与控制车载空调压缩机的控制单元15电连接,用于控制车载空调压缩机的控制单元15正常工作。第二输出端122以及第三输出端123与车载空调压缩机的功率单元14电连接,从而控制车载空调压缩机的功率驱动单元(未图示)正常驱动车载空调压缩机工作。
在本实施方式中,一次侧11与二次侧12并不直接连接,一次侧11与二次侧12通过电磁感应的方式传输电力。在其他实施方式中,一次侧11还可以通过微波传输、光电传输以及其他电磁共振、电磁辐射等方式将电力传输给二次侧12,在此不做赘述。可以理解的是,在不同的电力传输方式中,二次侧12的各输出端的电压均具有一定的函数关系,如一次侧11与二次侧12通过电磁感应的方式传输电力时,二次侧12的各输出端的电压之间的比例即为各输出端的线圈匝数之间的比例。
为了确保二次侧12输出的电压稳定且正常,在开关电源上还设有反馈控制电路13。反馈控制电路13分别与一次侧11的一个输入端和车载电源10的一个输出端电连接,一次侧11通过反馈控制电路13与车载电源10形成回路,反馈控制电路13还与第一输出端121电连接。其中,反馈控制电路13从与其电连接的第一输出端121获取电压采样信号,并根据该电压采样信号判断二次侧12输出的电压是否为能够控制车载空调压缩机正常工作的电压,若不是,则根据该电压采样信号对输入一次侧11的电压进行调整,进而控制二次侧12输出稳定且正常的电压,使车载空调压缩机正常工作。
在上述实施方式中,反馈控制电路13还可与第二输出端122或第三输出端123电连接,并获取第二输出端122或第三输出端123的电压采样信号以判断二次侧12的输出电压能否控制车载空调压缩机正常工作,在此不做限定。
请参阅图2,图2是图1的开关电源另一实施方式结构示意图。
在本实施方式中,车载空调压缩机的开关电源包括一次侧11、二次侧12以及反馈控制电路13。其中,二次侧12包括第一输出端121、第二输出端122以及第三输出端123。
一次侧11的输入端(未标示)与车载电源10电连接,车载电源10从一次侧11的输入端输入一次侧11的电流为直流电,且电压为12V。在其他实施方式中,车载电源10传输的电流可以为交流电或电压大小也可不仅为12V,只需开关电源能够根据车载电源10传输的电流对车载空调压缩机进行控制即可,在此不作限定。
一次侧11获取车载电源10传输的电压后,将其传输给二次侧12。一次侧11与二次侧12均绕制为线圈,一次侧11以电磁感应的方式将能量传输给二次侧12。二次侧12用于控制车载空调压缩机工作,其中,二次侧12的第一输出端121与控制车载空调压缩机的控制单元15电连接,用于控制车载空调压缩机的控制单元15正常工作。第二输出端122以及第三输出端123与车载空调压缩机的功率单元14电连接,从而控制车载空调压缩机的功率驱动单元(未图示)正常驱动车载空调压缩机工作。
在本实施方式中,一次侧11与二次侧12并不直接连接,一次侧11与二次侧12通过电磁感应的方式传输电力。在其他实施方式中,一次侧11还可以通过微波传输、光电传输以及其他电磁共振、电磁辐射等方式将电力传输给二次侧12,在此不做赘述。
在本实施方式中,为了使一次侧11能够获取稳定的电压以及对电路进行保护,在开关电源上还设有电容21和RCD(Residual Current Device,剩余电流装置)吸收电路22。一次侧11的输入端通过电容21和RCD吸收电路22与车载电源10电连接。其中,电容21与车载电源10电连接,电容21用于对车载电源10传输的电压进行滤波处理,在电容21对车载电源10传输的电压进行滤波处理后,将其传输给与电容21电连接的RCD吸收电路22,RCD吸收电路22进一步将电容21传输的电压传输给与RCD吸收电路22电连接的一次侧11。RCD吸收电路22在开关电源中用于保护开关电源上的PWM(Pulse Width Modulation,脉冲宽度调制)开关管,并减少关断损耗。
在本实施方式中,为了确保二次侧12输出的电压稳定且正常,在开关电源上还设有反馈控制电路13。反馈控制电路13包括PWM脉冲控制电路131、光耦隔离器132、电压采集电路133,其中,RCD吸收电路22的一个输出端与PWM脉冲控制电路131电连接,一次侧11的一个输入端通过PWM脉冲控制电路131与RCD吸收电路22的一个输出端电连接,进而一次侧11通过PWM脉冲控制电路131与RCD吸收电路22构成完整回路。
反馈控制电路13通过电压采集电路133从位于二次侧12的第一输出端121获取电压采样信号,电压采集电路133将获取的电压采样信号传输给光耦隔离器132,光耦隔离器132接收该电压采样信号后将其转化为光信号,之后再转换为电信号传输给PWM脉冲控制电路131进行处理。PWM脉冲控制电路131根据获取电压采样信号获取第一输出端121的输出电压,进而根据第一输出端121、第二输出端122、第三输出端123之间的电压关系获取第二输出端122、第三输出端123的输出电压,通过第一输出端121、第二输出端122以及第三输出端123的输出电压判断二次侧12的输出电压是否能控制车载空调压缩机正常工作,若不能,则通过PWM脉冲控制电路131调整一次侧11的输入端的输入电压,从而改变二次侧12的输出电压,使车载空调压缩机正常工作。
在上述实施方式中,电压采集电路133还可与第二输出端122或第三输出端123电连接,并获取第二输出端122或第三输出端123的电压采样信号以判断二次侧12的输出电压能否控制车载空调压缩机正常工作,在此不做限定。
在上述实施方式中,光耦隔离器132用于使电压采集电路133采集的电压采样信号单向传输,并使位于光耦隔离器132两端的电压采集电路133与PWM脉冲控制电路131完全电气隔离,以减少信号干扰,在其他实施方式中,连接电压采集电路133与PWM脉冲控制电路131的元器件还可以为耦合变压器、继电器、可控硅等能够实现电气隔离的器件,在此不做限定。
在上述实施方式中,电压采集电路由TL431芯片构成,在其他实施方式中,电压采集电路还可以由其他能够实现电压信号采集功能的电路组成,在此不做赘述。
在本实施方式中,二次侧12的第一输出端121独立接地,第二输出端122与第三输出端123共用一个接地端。其中,第三输出端123的电压与第二输出端122或第一输出端121的电压大小可以不同。
在其他实施方式中,二次侧12还可以有一个或多个输出端,这些输出端输出的电压大小可以相同也可以不同,输出端可以具有公共接地端也可以没有公共接地端,只需二次侧12的输出端能够与车载空调压缩机的控制单元15和功率单元14连接,并控制车载空调压缩机工作即可,在此不作限定。
请参阅图3,图3是本申请车载空调压缩机的开关电源一次侧与二次侧的线圈一实施方式结构示意图,结合图3对本申请车载空调压缩机的开关电源做进一步详细描述。
一次侧11与二次侧12的第一输出端121、第二输出端122、第三输出端123均绕制为线圈形状。在图3中以线圈上的绕制铜线截面表示第一输出端121、第二输出端122以及第三输出端123。一次侧11与二次侧12绕制成的线圈设置在叠层15内,且叠层15共有三个,一次侧11与二次侧12的第一输出端121、第二输出端122、第三输出端123分别设置在三个叠层15内。其中,一次侧11单独位于一个叠层15内,第一输出端121位于靠近一次侧11的叠层15内,第二输出端122与第三输出端123均设置在靠近第一输出端121,且远离一次侧11的叠层15内,相邻的叠层15之间绝缘设置。
在本实施方式中,相邻的叠层15之间通过绝缘胶带进行绝缘隔离。在其他实施方式中,叠层15之间还可以是石英、石棉、聚酯漆、聚酰亚胺等可以防止相邻的叠层15内的线圈之间导电的材料,在此不做限定。
在本实施方式中,每一个线圈的线径与通过该线圈的最大电流相对应。其中,单独位于一个叠层15中的一次侧11采用铜线绕制,铜线线径为0.5mm。位于靠近一次侧11的叠层15内的第一输出端121的输出电压为5V,最大输出电流为150mA,采用铜线绕制,铜线线径为0.5mm。位于远离一次侧11的叠层15内的第二输出端122的输出电压为-5V,最大输出电流为50mA,采用铜线绕制,铜线线径为0.3mm。与第二输出端122位于相同的叠层15内的第三输出端123的输出电压为15V,最大输出电流为150mA,采用铜线绕制,铜线线径为0.5mm。
在上述实施方式中,一次侧11与二次侧12的线圈绕制方法自由设置,绕制线圈的铜线线径也可以不为上述数据,只需一次侧11能够将能量传输给二次侧12,并通过二次侧12的第一输出端121、第二输出端122以及第三输出端123输出控制车载空调压缩机正常工作即可,在此不作限定。
用于设置一次侧11与二次侧12的线圈的叠层15容置于安装架(未标示)形成的空间内(在图2中的空间为安装架形成的部分空间),且为了增加叠层15之间的爬电距离,保证开关电源正常工作,在安装架的侧边16靠近叠层15的侧面设有绝缘挡墙14,侧边16和绝缘挡墙14均垂直于叠层15。
请参阅图4,图4是图3开关电源的安装架一实施方式结构示意图。结合图4和图3对本申请的安装架结构做进一步描述。
在本实施方式中,安装架为矩形结构,叠层15、绝缘挡墙14、一次侧11以及二次侧12位于该矩形结构内。在靠近绝缘挡墙14的侧边16上设有引脚30,引脚30包括引脚301、302、303、304、305、306、307、308、309、310,一次侧11与二次侧12通过引脚30与印刷电路板(未图示)电连接,进而通过引脚30焊接在印刷电路板上。其中,引脚301、302、303、304、305所在的侧边16与引脚306、307、308、309、310所在的侧边16相对。
在本实施方式中,与一次侧11电连接的引脚301、305和与二次侧12电连接的引脚306、307、308、309、310位于不同的侧边16上。其中,引脚301与引脚305分别与一次侧11的12V输入端、12V接地端电连接,引脚306、307分别与第一输出端121的5V输出、5V接地电连接,引脚308与第二输出端122的-5V输出电连接,引脚309为第二输出端122与第三输出端123的公共地,引脚310与第三输出端123的15V输出电连接。
在其他实施方式中,与一次侧11的输入端、二次侧12的输出与引脚30的连接方式不局限于上述连接方式,只需一次侧11与二次侧12能通过安装架上的引脚30与印刷电路板电连接即可,在此不作限定。
在上述实施方式中,为了减少印刷电路板的布局面积以及减少对外电磁干扰,位于相对的侧边16上,且彼此相对的引脚30之间的距离为10mm,位于相同的侧边16上,且相邻的引脚30之间的距离为2.5mm。侧边16垂直于叠层15方向的最大长度为14mm,位于相对的侧边16上,且远离绝缘挡墙14的侧面之间的最远距离为13.7mm。
在上述实施方式中,侧边16上相邻的引脚30之间距离可以不为2.5mm,位于不同的侧边16上,且彼此相对的引脚30之间的距离也可以不为10mm,只需通过安装架能够减少印刷电路板布局面积,并减少对外电磁干扰即可,在此不做限定。
本申请的有益效果是:区别于现有技术的情况,本申请提出一种车载空调压缩机的开关电源,将二次侧的第一输出端与车载空调压缩机的控制单元电连接,将第二输出端、第三输出端与车载空调压缩机的功率单元电连接,将二次侧的输出端数量、输出电压与车载空调压缩机的控制要求相对应,满足特定场合需求,将反馈控制电路与二次侧的输出端连接以监控并调节二次侧输出电压,提高了车载空调压缩机的工作稳定性。
基于同样的发明构思,本申请还提出了一种电动汽车。
请参阅图5,图5是本申请电动汽车一实施方式的结构示意图,该电动汽车50包括车载电源51、车载空调压缩机53以及开关电源52,其中,开关电源52分别与车载电源51和车载空调压缩机53电连接,开关电源52用于控制车载空调压缩机53工作。
在本实施方式中,电动汽车50可以为纯电动汽车、混合动力汽车以及燃料电池汽车等具有车载电源51和车载空调压缩机53的汽车,此处不予限定。
在本实施方式中,车载电源51为直流电源,电压为12V,在其他实施方式中,车载电源51的电源类型和电压大小也可根据电动汽车50的类型进行设置,在此不作限定。
在本实施方式中,车载空调压缩机53可以为定排量压缩机和变排量压缩机,只需能够通过开关电源52控制其工作即可,在此不做赘述。
开关电源52包括如上所述的车载空调压缩机的开关电源,在此不做详述。
本申请的有益效果是:区别于现有技术的情况,本申请提出一种电动汽车,将二次侧的第一输出端与车载空调压缩机的控制单元电连接,将第二输出端、第三输出端与车载空调压缩机的功率单元电连接,将二次侧的输出端数量、输出电压与车载空调压缩机的控制要求相对应,满足特定场合需求,将反馈控制电路与二次侧的输出端连接以监控并调节二次侧输出电压,提高了车载空调压缩机的工作稳定性。
基于同样的发明构思,本申请还提出了一种车载空调压缩机的开关电源。请参阅图6,图6是本申请空调压缩机的开关电源另一实施例结构示意图。
在本实施例中,开关电源(未标示)包括车载电源60、一次侧61、二次侧62、反馈控制电路63以及车载空调压缩机64。其中,一次侧61的输入端(未标示)与车载电源60的输出端(未标示)电连接,并且一次侧61从车载电源60处获取输入电压。车载电源60从一次侧61的输入端输入一次侧61的电流为直流电,且电压为12V。
在其他实施例中,车载电源60向一次侧61传输的电流还可以为交流电或电压大小也可不仅为12V,只需开关电源能够根据车载电源60传输的电流对车载空调压缩机64进行控制即可,在此不作限定。
二次侧62与一次侧61相对,并以电磁感应的方式从一次侧61处获取感应电压。二次侧62的输出端(未标示)与车载空调压缩机64电连接,从而通过二次侧62从一次侧61获取的电压控制车载空调压缩机开启、关闭以及正常工作。
在本实施例中,二次侧62具有一个与车载空调压缩机64电连接的输出端。在其他实施例中,二次侧62还可以有多个输出端,这些输出端输出的电压大小可以相同也可以不同,同样可以具有公共接地端也可以没有公共接地端,只需二次侧62的输出端能够与车载空调压缩机64电连接,并控制车载空调压缩机64工作即可,在此不作限定。
在本实施例中,反馈控制电路63的一端与一次侧61的输入端一端电连接,一次侧61的该输入端通过反馈控制电路63与车载电源60电连接形成完整回路。反馈控制电路63的另一端与二次侧62的一个输出端一端电连接。反馈控制电路63从二次侧62的输出端获取电压采样信号,并根据该电压采样信号调节一次侧61输入端的输入电压,从而调节二次侧62的输出电压,进而控制车载空调压缩机64工作。
本实施例的开关电源包括如前文所述的车载空调压缩机的开关电源,在此不做赘述。
本申请的有益效果是:区别于现有技术的情况,本申请提出一种车载空调压缩机的开关电源,将二次侧的一输出端与车载空调压缩机电连接,将反馈控制电路与二次侧的输出端连接以监控并调节二次侧输出电压,提高了车载空调压缩机的工作稳定性。
基于同样的发明构思,本申请再提出了一种电动汽车,请参阅图7,图7是本申请电动汽车另一实施例结构示意图。
该电动汽车70包括车载电源71、车载空调压缩机73以及开关电源72,其中,开关电源72分别与车载电源71和车载空调压缩机73电连接,开关电源72用于控制车载空调压缩机73工作。
在本实施方式中,电动汽车70可以为纯电动汽车、混合动力汽车以及燃料电池汽车等具有车载电源71和车载空调压缩机73的汽车,此处不予限定。
在本实施方式中,车载电源71为直流电源,电压为12V,在其他实施方式中,车载电源71的电源类型和电压大小也可根据电动汽车70的类型进行设置,在此不作限定。
在本实施方式中,车载空调压缩机73可以为定排量压缩机和变排量压缩机,只需能够通过开关电源72控制其工作即可,在此不做赘述。
开关电源72包括如上所述的车载空调压缩机的开关电源,在此不做详述。
本申请的有益效果是:区别于现有技术的情况,本申请提出一种电动汽车,将二次侧的一输出端与车载空调压缩机电连接,将反馈控制电路与二次侧的输出端连接以监控并调节二次侧输出电压,提高了车载空调压缩机的工作稳定性。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (26)

  1. 一种车载空调压缩机的开关电源,其特征在于,所述开关电源包括:
    一次侧,所述一次侧与车载电源电连接,所述一次侧从所述车载电源处获取输入电压;
    二次侧,所述二次侧用于控制所述车载空调压缩机工作,所述二次侧包括第一输出端、第二输出端以及第三输出端,其中,所述第一输出端与所述车载空调压缩机的控制单元电连接,所述第二输出端以及所述第三输出端与所述车载空调压缩机的功率单元电连接;
    反馈控制电路,所述反馈控制电路分别与所述第一输出端、第二输出端以及第三输出端中的任一个输出端和一次侧电连接,所述反馈控制电路用于从所述任一个输出端获取电压采样信号,并根据所述电压采样信号调节所述第一输出端、第二输出端以及第三输出端的输出电压。
  2. 根据权利要求1所述的开关电源,其特征在于,所述开关电源还包括:
    电容,所述电容与所述车载电源电连接,所述电容用于对所述车载电源传输的电压进行滤波处理;
    RCD吸收电路,所述RCD吸收电路与所述一次侧电连接,所述电容与所述RCD吸收电路电连接,所述RCD吸收电路将所述电容滤波处理后的电压传输给所述一次侧,所述车载电源通过所述电容和RCD吸收电路将电压传输给所述一次侧。
  3. 根据权利要求2所述的开关电源,其特征在于,所述反馈控制电路包括PWM脉冲控制电路、光耦隔离器、电压采集电路,所述 RCD吸收电路的一个输出端与所述PWM脉冲控制电路电连接,所述一次侧的一个输入端通过所述PWM脉冲控制电路与所述RCD吸收电路的一个输出端电连接,所述PWM脉冲控制电路依次通过光耦隔离器、电压采集电路与所述二次侧的其中一个输出端电连接。
  4. 根据权利要求3所述的开关电源,其特征在于,所述反馈控制电路用于从所述任一个输出端获取电压采样信号,并根据所述电压采样信号调节所述第一输出端、第二输出端以及第三输出端的输出电压,包括:
    所述反馈控制电路通过所述电压采集电路从位于所述二次侧的任一输出端获取电压采样信号,所述电压采集电路将获取的所述电压采样信号传输给所述光耦隔离器,所述光耦隔离器接收所述电压采样信号后将其转化为光信号,之后再转换为电信号传输给所述PWM脉冲控制电路进行处理,所述PWM脉冲控制电路根据获取的所述电压采样信号获取所述输出端的输出电压,进而根据所述第一输出端、所述第二输出端、所述第三输出端之间的电压关系获取其他输出端的输出电压,通过所述第一输出端、所述第二输出端以及所述第三输出端的输出电压判断所述二次侧的输出电压是否能控制车载空调压缩机正常工作,若不能,则通过所述PWM脉冲控制电路调整所述一次侧的所述输入端的所述输入电压,改变所述二次侧的所述输出电压。
  5. 根据权利要求1所述的开关电源,其特征在于,所述第一输出端独立接地,所述第二输出端与所述第三输出端拥有相同的接地端。
  6. 根据权利要求1所述的开关电源,其特征在于,所述第一输出端电压为5V,最大输出电流为150mA,所述第二输出端电压为-5V,最大输出电流为50mA,所述第三输出端电压为15V,最大输出电流为150mA。
  7. 根据权利要求1所述的开关电源,其特征在于,所述一次侧与所述二次侧的所述第一输出端、第二输出端以及第三输出端分别绕制为线圈形状,所述线圈的绕线线径与通过所述线圈的最大电流相对应。
  8. 根据权利要求7所述的开关电源,其特征在于,所述一次侧与所述二次侧绕制的所述线圈分为三层叠放设置,所述一次侧单独位于一个叠层内,所述第一输出端位于靠近所述一次侧的叠层内,所述第二输出端与所述第三输出端位于远离所述一次侧的叠层内,所述叠层之间绝缘设置。
  9. 根据权利要求8所述的开关电源,其特征在于,所述叠层容置于安装架形成的空间内,所述安装架的侧边靠近所述叠层的侧面设有绝缘挡墙,所述侧边与所述绝缘挡墙垂直于所述叠层,所述绝缘挡墙用于增加所述叠层之间的爬电距离。
  10. 根据权利要求9所述的开关电源,其特征在于,所述安装架为矩形结构,所述安装架的靠近所述绝缘挡墙的侧边上设有引脚,所述一次侧与所述二次侧通过所述引脚与电路板电连接。
  11. 根据权利要求10所述的开关电源,其特征在于,与所述一次侧输入端电连接的所述引脚和与所述二次侧的输出端电连接的所述引脚位于不同的所述侧边上。
  12. 根据权利要求10所述的开关电源,其特征在于,位于不同所述侧边,且彼此相对的所述引脚之间的距离为10mm,所述侧边上的相邻所述引脚之间的距离为2.5mm。
  13. 一种电动汽车,其特征在于,所述电动汽车包括车载电源、车载空调压缩机,所述车载空调压缩机上设有开关电源;
    所述开关电源包括:
    一次侧,所述一次侧与所述车载电源电连接,所述一次侧从所述车载电源处获取输入电压;
    二次侧,所述二次侧用于控制所述车载空调压缩机工作,所述二次侧包括第一输出端、第二输出端以及第三输出端,其中,所述第一输出端与所述车载空调压缩机的控制单元电连接,所述第二输出端以及所述第三输出端与所述车载空调压缩机的功率单元电连接;
    反馈控制电路,所述反馈控制电路分别与所述第一输出端、第二输出端以及第三输出端中的任一个输出端和一次侧电连接,所述反馈控制电路用于从所述任一个输出端获取电压采样信号,并根据所述电压采样信号调节所述第一输出端、第二输出端以及第三输出端的输出电压。
  14. 根据权利要求13所述的电动汽车,其特征在于,所述开关电源还包括:
    电容,所述电容与所述车载电源电连接,所述电容用于对所述车载电源传输的电压进行滤波处理;
    RCD吸收电路,所述RCD吸收电路与所述一次侧电连接,所述电容与所述RCD吸收电路电连接,所述RCD吸收电路将所述电容滤波处理后的电压传输给所述一次侧,所述RCD吸收电路用于保护PWM开关管,并减少关断损耗,所述车载电源通过所述电容和RCD吸收电路将电压传输给所述一次侧。
  15. 根据权利要求14所述的电动汽车,其特征在于,所述反馈控制电路包括PWM脉冲控制电路、光耦隔离器、电压采集电路,所述 RCD吸收电路的一个输出端与所述PWM脉冲控制电路电连接,所述一次侧的一个输入端通过所述PWM脉冲控制电路与所述RCD吸收电路的一个输出端电连接,所述PWM脉冲控制电路依次通过光耦隔离器、电压采集电路与所述二次侧的其中一个输出端电连接。
  16. 根据权利要求15所述的电动汽车,其特征在于,所述反馈控制电路用于从所述任一个输出端获取电压采样信号,并根据所述电压采样信号调节所述第一输出端、第二输出端以及第三输出端的输出电压,包括:
    所述反馈控制电路通过所述电压采集电路从位于所述二次侧的任一输出端获取电压采样信号,所述电压采集电路将获取的所述电压采样信号传输给所述光耦隔离器,所述光耦隔离器接收所述电压采样信号后将其转化为光信号,之后再转换为电信号传输给所述PWM脉冲控制电路进行处理,所述PWM脉冲控制电路根据获取的所述电压采样信号获取所述输出端的输出电压,进而根据所述第一输出端、所述第二输出端、所述第三输出端之间的电压关系获取其他输出端的输出电压,通过所述第一输出端、所述第二输出端以及所述第三输出端的输出电压判断所述二次侧的输出电压是否能控制车载空调压缩机正常工作,若不能,则通过所述PWM脉冲控制电路调整所述一次侧的所述输入端的所述输入电压,改变所述二次侧的所述输出电压。
  17. 根据权利要求13所述的电动汽车,其特征在于,所述第一输出端独立接地,所述第二输出端与所述第三输出端拥有相同的接地端。
  18. 根据权利要求13所述的电动汽车,其特征在于,所述第一输出端电压为5V,最大输出电流为150mA,所述第二输出端电压为-5V,最大输出电流为50mA,所述第三输出端电压为15V,最大输出电流为150mA。
  19. 根据权利要求13所述的电动汽车,其特征在于,所述一次侧与所述二次侧的第一输出端、第二处输出端以及第三输出端分别绕制为线圈形状,所述线圈的绕线线径与通过所述线圈的最大电流相对应。
  20. 根据权利要求19所述的电动汽车,其特征在于,所述一次侧与所述二次侧绕制的所述线圈分为三层叠放设置,所述一次侧单独位于一个叠层内,所述第一输出端位于靠近所述一次侧的叠层内,所述第二输出端与所述第三输出端位于远离所述一次侧的叠层内,所述叠层之间绝缘设置。
  21. 根据权利要求20所述的电动汽车,其特征在于,所述叠层容置于安装架形成的空间内,所述叠层靠近所述安装架侧边的侧面设有绝缘挡墙,所述侧边与所述绝缘挡墙垂直于所述叠层,所述绝缘挡墙用于增加所述叠层之间的爬电距离。
  22. 根据权利要求21所述的电动汽车,其特征在于,所述安装架为矩形结构,所述安装架的靠近所述绝缘挡墙的侧边上设有引脚,所述一次侧与所述二次侧通过所述引脚与电路板电连接。
  23. 根据权利要求22所述的电动汽车,其特征在于,与所述一次侧输入端电连接的所述引脚和与所述二次侧的输出端电连接的所述引脚位于不同的所述侧边上。
  24. 根据权利要求22所述的电动汽车,其特征在于,位于不同所述侧边,且彼此相对的所述引脚之间的距离为10mm,所述侧边上的相邻引脚之间的距离为2.5mm。
  25. 一种车载空调压缩机的开关电源,其特征在于,所述开关电源包括:
    一次侧,所述一次侧与车载电源电连接,所述一次侧从所述车载电源处获取输入电压;
    二次侧,所述二次侧用于控制所述车载空调压缩机工作,所述二次侧包括至少一个输出端,所述输出端与所述车载空调压缩机电连接;
    反馈控制电路,所述反馈控制电路与所述输出端及所述一次侧电连接,所述反馈控制电路用于从所述输出端获取电压采样信号,并根据所述电压采样信号调节所述输出端的输出电压。
  26. 一种电动汽车,其特征在于,所述电动汽车包括车载电源、车载空调压缩机,所述车载空调压缩机上设有开关电源;
    所述开关电源包括:
    一次侧,所述一次侧与所述车载电源电连接,所述一次侧从所述车载电源处获取输入电压;
    二次侧,所述二次侧用于控制所述车载空调压缩机工作,所述二次侧包括至少一个输出端,所述输出端与所述车载空调压缩机电连接;
    反馈控制电路,所述反馈控制电路与所述输出端及所述一次侧电连接,所述反馈控制电路用于从所述输出端获取电压采样信号,并根据所述电压采样信号调节所述输出端的输出电压。
PCT/CN2018/099037 2018-08-06 2018-08-06 电动汽车和车载空调压缩机的开关电源 WO2020029036A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880087347.0A CN111684698A (zh) 2018-08-06 2018-08-06 电动汽车和车载空调压缩机的开关电源
PCT/CN2018/099037 WO2020029036A1 (zh) 2018-08-06 2018-08-06 电动汽车和车载空调压缩机的开关电源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/099037 WO2020029036A1 (zh) 2018-08-06 2018-08-06 电动汽车和车载空调压缩机的开关电源

Publications (1)

Publication Number Publication Date
WO2020029036A1 true WO2020029036A1 (zh) 2020-02-13

Family

ID=69413912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099037 WO2020029036A1 (zh) 2018-08-06 2018-08-06 电动汽车和车载空调压缩机的开关电源

Country Status (2)

Country Link
CN (1) CN111684698A (zh)
WO (1) WO2020029036A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005165A1 (en) * 1986-02-24 1987-08-27 Fanuc Ltd Switching regulator
CN101814837A (zh) * 2010-04-23 2010-08-25 威海金丰电子有限公司 超薄磁芯pcb板式开关电源
WO2011141785A1 (en) * 2010-05-14 2011-11-17 Toyota Jidosha Kabushiki Kaisha Power converter and vehicle provided with the same
CN102661272A (zh) * 2012-05-24 2012-09-12 山东龙都瑞麟祥机电股份有限公司 电动汽车用调频空调压缩机驱动器
CN103944416A (zh) * 2014-05-02 2014-07-23 张新安 一种电路简单的多输出开关直流稳压电源
CN104901552A (zh) * 2014-12-13 2015-09-09 襄阳精圣科技信息咨询有限公司 一种压力控制通断的推挽变换器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208589921U (zh) * 2018-08-06 2019-03-08 深圳配天智能技术研究院有限公司 电动汽车和车载空调压缩机的开关电源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005165A1 (en) * 1986-02-24 1987-08-27 Fanuc Ltd Switching regulator
CN101814837A (zh) * 2010-04-23 2010-08-25 威海金丰电子有限公司 超薄磁芯pcb板式开关电源
WO2011141785A1 (en) * 2010-05-14 2011-11-17 Toyota Jidosha Kabushiki Kaisha Power converter and vehicle provided with the same
CN102661272A (zh) * 2012-05-24 2012-09-12 山东龙都瑞麟祥机电股份有限公司 电动汽车用调频空调压缩机驱动器
CN103944416A (zh) * 2014-05-02 2014-07-23 张新安 一种电路简单的多输出开关直流稳压电源
CN104901552A (zh) * 2014-12-13 2015-09-09 襄阳精圣科技信息咨询有限公司 一种压力控制通断的推挽变换器

Also Published As

Publication number Publication date
CN111684698A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
US8305027B2 (en) Electric compressor control device
JP3351330B2 (ja) 空調用インバータシステム
EP3487030A1 (en) Output device for wireless charging
WO2012148164A1 (ko) 좌우편차를 고려한 자기유도식 급전장치, 집전장치 및 전력전달장치
WO2012141458A2 (en) Power transmitter, repeater, power receiver, and wireless power transmission system
WO2020119378A1 (zh) 一种带屏蔽的多功能供电及驱动装置
WO2019203445A1 (ko) 무선으로 전력을 공급하는 디스플레이 시스템
WO2021251583A1 (ko) 저압 및 고압 일체용 충전 장치
JP2017060255A (ja) インバータ制御基板
WO2020159108A1 (ko) 무정전 멀티 페일오버 기능이 구비된 무선 전력전송장치
CN100536294C (zh) 电源装置、使用该电源装置的电源系统及电子装置
WO2020029036A1 (zh) 电动汽车和车载空调压缩机的开关电源
US10321612B2 (en) Power conversion device
WO2020032537A1 (ko) 유무선 통합 전력 수신 시스템
WO2012023690A1 (ko) 패일오버 기능이 구비된 무선 전력전송장치
CN106093478A (zh) 一种智能电力数据模块及分体式显示器
WO2022092817A1 (ko) 수소 연료 전지 차량용 직류 컨버터
WO2020171456A1 (ko) Ic 칩 및 이를 이용한 회로 시스템
WO2022114575A1 (ko) 배터리 충/방전용 dc-dc 컨버터
WO2021112451A1 (ko) Ac/dc 컨버터
CN208589921U (zh) 电动汽车和车载空调压缩机的开关电源
WO2021020638A1 (ko) 인버터-충전기 통합 장치 및 이를 제어하는 제어방법
KR20170126822A (ko) 엘이디점등용 컨버터회로장치
WO2014178589A1 (ko) 자기에너지전달소자 및 전원장치
CN107017773A (zh) 车载dc/dc变换器系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 30/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18929369

Country of ref document: EP

Kind code of ref document: A1