WO2014178589A1 - 자기에너지전달소자 및 전원장치 - Google Patents

자기에너지전달소자 및 전원장치 Download PDF

Info

Publication number
WO2014178589A1
WO2014178589A1 PCT/KR2014/003734 KR2014003734W WO2014178589A1 WO 2014178589 A1 WO2014178589 A1 WO 2014178589A1 KR 2014003734 W KR2014003734 W KR 2014003734W WO 2014178589 A1 WO2014178589 A1 WO 2014178589A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
magnetic energy
energy transfer
output
transfer device
Prior art date
Application number
PCT/KR2014/003734
Other languages
English (en)
French (fr)
Inventor
박찬웅
Original Assignee
Park Chan Woong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Park Chan Woong filed Critical Park Chan Woong
Publication of WO2014178589A1 publication Critical patent/WO2014178589A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a magnetic energy transfer device and a power supply device, and more particularly, to a magnetic energy transfer device and a power supply device that cancel and lower conductive EMI (electromagnetic interference) generated in the power supply device.
  • EMI electromagnetic interference
  • EMI is generated by radiating noise into the air.
  • the noise potential on the output line must be lowered by lowering the sum of the capacitive coupling produced by the elements in the power supply, including each winding of the transformer, to the output winding below a certain level.
  • FIG. 1 illustrates an example of canceling and lowering conductive EMI generated in a flyback converter of the prior art.
  • the AC input voltage is rectified and smoothed by the capacitor 11.
  • the switching element 12 is switched to accumulate and discharge energy in the input winding 131 of the transformer 13, and the output rectifier 14 and the capacitor 15 are connected to the output winding 133. Draws energy through and supplies power to the load.
  • the large potential variation generated in the input winding 131 of the transformer 13 is transmitted through the distribution capacitance Cps between the input winding 131 and the output winding 133.
  • the potential of the transformer core 136 is transmitted to the output winding 133 through the distribution capacitor Ccs to cause the output line 17 to have a potential of noise, thereby greatly generating EMI of the power supply device.
  • the surface of the transformer core 136 may be connected to ground to reduce variations in the potential of the transformer core 136.
  • FIG. 1 presents a representative embodiment for lowering the potential of noise in the output line 17.
  • the offset winding 132 fills an area in which the output winding 133 is wound in the winding layer between the input winding 131 and the output winding 133 so as to be wound tightly, and thus, between the input winding 131 and the output winding 133. Block capacitive coupling to occur as little as possible.
  • the capacitive coupling between the input winding 131 and the output winding 133 is similar in size and generates a capacitive coupling having opposite polarity, and thus the offset winding 132 ) And the sum of the capacitive coupling generated from the input winding 131 to the output winding 133 are canceled to approach "zero", and the noise potential of the output line 17 is lowered.
  • Output winding 133 to generate a capacitive coupling of opposite magnitude and capacitive coupling between input winding 131 and output winding 133 between offset winding 132 and output winding 133.
  • the number of turns of the offset winding 132 coupled with this winding surface is typically one to two turns smaller than the number of turns of the output winding 133. That is, the capacitive coupling between the input winding 131 and the output winding 133 is a capacitive coupling generated by the potential difference caused by the difference in the number of turns of one to two turns between the output winding 133 and the offset winding 132. To offset the bonds.
  • FIG. 2 illustrates another example of canceling and lowering conductive EMI occurring in a flyback converter of the prior art.
  • the transformer 18 includes an input winding 181, a flyback winding 182, an output winding 183, and a forward winding 184.
  • the flyback winding 182 inducing a positive flyback voltage and the forward winding 184 inducing a negative flyback voltage make the average potential of one winding surface "0".
  • the sum of the capacitive coupling generated by the flyback winding 182 and the forward winding 184 as the output winding 183 is reverse polarity with the capacitive coupling generated between the input winding 181 and the output winding 183.
  • the sum of the capacitive coupling generated by the output winding 183 is canceled to approach "0", and the noise potential of the output line 17 is lowered.
  • the entire winding surface of the input winding 181 is wound around the flyback winding 182 and the forward winding 184, and the capacitive coupling generated between the input winding 181 and the output winding 183 is plyed. If the back winding 182 and the forward winding 184 are much smaller than the sum of the capacitive couplings generated by the output windings 183, another winding may be used to lower the sum of the capacitive couplings generated by the output windings 183. There was a disadvantage to install.
  • FIG. 3 illustrates another example of canceling and lowering conductive EMI occurring in a flyback converter of the prior art.
  • the transformer 19 includes a first input winding 191, a second input winding 192, and an output winding 193.
  • the second input winding 192 is wound around the winding layer between the first input winding 191 and the output winding 193, and the capacitive coupling generated between the second input winding 192 and the output winding 193
  • the capacitive coupling generated between the first input winding 191 and the output winding 193 and the reverse polarity are set to be similar in size.
  • the sum of the capacitive coupling generated by the output winding 193 is canceled and lowered.
  • the noise potential of the output line 17 is lowered, and the EMI of the power supply is set below the regulation value.
  • the output winding 193 required to lower the EMI is lowest.
  • the number of turns of the second input winding 192 which is capacitively coupled to the surface has a value that is typically about 1 to 2 turns greater than the number of turns of the output winding 193. If the number of turns of the output winding 193 is five turns, the number of turns of the second input winding 192 needs 6 to 7 turns.
  • the winding surface of the bobbin is often very difficult to fill with a turn number of one to two turns larger than the output winding 193, so that winding is very difficult.
  • FIG. 4 illustrates another example of canceling and lowering conductive EMI generated in a flyback converter of the prior art.
  • the transformer 13a includes an input winding 131a, an offset winding 132a, an output winding 133a, and a shield plate 135a.
  • the shield plate 135a is positioned in the winding layer between the input winding 131a and the output winding 133a to block the capacitive coupling between the input winding 131a and the output winding 133a.
  • the offset winding 132a is positioned to face the opposite winding surface of the winding surface of the output winding 133 toward the input winding 131a, and is disposed between the offset winding 132a and the output winding 133a.
  • Capacitive bonds between 133a) and shield plate 135a are similar in size and produce opposite capacitive bonds, and the sum of the capacitive bonds generated by output winding 133a is canceled out to " zero (zero). ", The noise potential of the output line 17 is to be lowered.
  • the shield plate 135a is wound without insulation to increase workability, the ends of the metal plate are wound 1 mm to 2 mm short so that both ends of the metal plate are not shorted.
  • the metal plate is wound more than one round to completely block the capacitive coupling between the two windings.
  • one point is electrically connected between the input winding 181 and the output winding 183 of the transformer 18 or between the first input winding 191 and the output winding 193 of the transformer 19. Sometimes the shield plate is connected to
  • this technique also has to lower the EMI by controlling the number of turns of the offset winding 132a or the flyback winding 182 and the forward winding 184 or the second input winding 192 that increases or decreases by one turn. It is difficult to reduce EMI uniformly below a certain value because of the difficulty of fine offsetting.
  • the present invention addresses all of these drawbacks of the prior art.
  • Magnetic energy transfer device of the present invention for solving the above problems is a first voltage input terminal, a second voltage input terminal, an output line, the first voltage input terminal and the second voltage input terminal and the output line.
  • a switching type power supply comprising a magnetic energy transfer device and a switching device
  • a core of the magnetic energy transfer device Bobbin of the magnetic energy transfer device; An input winding wound around a core of the magnetic energy transfer element and controlled to store and release magnetic energy by a switching operation of the switching element; An output winding which magnetically couples with the input winding to draw energy and supplies the load to the load through the output line; And a conductor plate positioned between one winding surface of the input winding and the winding surface of the output winding,
  • the capacitive coupling between one winding surface of the input winding and the winding surface of the output winding is cut off at the portion where the conductor plate intersects between one winding surface of the input winding and the winding surface of the output winding,
  • EMI of the power supply device generated by the sum of the couplings is offset and lowered by the capacitive coupling generated from the conductor plate to the output winding.
  • the magnetic energy transfer device of the present invention for solving the above problems is the first voltage input terminal, the second voltage input terminal, the output line, the first voltage input terminal and the second voltage input terminal and the In the magnetic energy transfer device positioned between the output line, and the magnetic energy transfer device used in a switching type power supply including a switching device,
  • a core of the magnetic energy transfer device Bobbin of the magnetic energy transfer device; An input winding wound around a core of the magnetic energy transfer element and controlled to store and release magnetic energy by a switching operation of the switching element; An output winding which magnetically couples with the input winding to draw energy and supplies the load to the load through the output line; And a conductor plate of the winding surface of the output winding, wherein the output winding creates a capacitive coupling with the winding surface opposite to the winding surface facing the input winding.
  • the amount of capacitive coupling generated from the conductor plate to the output winding is set by selecting the width and length of the conductor plate in the portion of the conductor plate surrounding the winding surface of the output winding,
  • EMI of the power supply by the sum of the capacitive coupling generated from the magnetic energy transfer element and the elements in the power supply to the output winding is canceled and lowered by the capacitive coupling generated from the conductor plate to the output winding. It is characterized by.
  • the present invention precisely cancels the EMI of the power supply device by a conductor plate coupling capacitively coupled to a portion of the winding surface of the output winding even though the winding which is coupled with the output winding capacitively is larger than the output winding. It can be lowered to secure sufficient EMI margin, and the winding which is combined with the output winding and capacitively can be taken by a large number of turns to fill the winding surface to improve the productivity of the transformer and reduce the manufacturing cost. .
  • 1 to 4 are diagrams showing examples of canceling and lowering conductive EMI generated in a conventional flyback converter.
  • FIG. 5 is a diagram illustrating an embodiment of finely canceling and lowering conductive EMI generated in a flyback converter according to the present invention.
  • 6 to 9 illustrate embodiments of the structure of a transformer according to the present invention.
  • the magnetic energy transfer device of the present invention can be applied to any type of switched power supply, but the following describes an embodiment of the present invention using a flyback converter.
  • Figure 5 illustrates one embodiment of finely canceling and lowering the conductive EMI generated in the flyback converter according to the present invention.
  • the circuit configuration except for the transformer 20 corresponds to the circuit configuration of FIG. 1.
  • the transformer 20 of FIG. 5 includes an input winding 201, a first winding 202, an output winding 203, a conductor plate 205, and a transformer core 206.
  • the input winding 201 and the first winding 202 and the transformer core 206 are included in the power supply including windings that are not shown but may be added as necessary.
  • the sum of the capacitive coupling generated from the elements to the output winding 203 is canceled by the reverse polarity capacitive coupling generated from the conductor plate 205 to the output winding 203 to lower the EMI of the power supply.
  • the output winding 203 is generated from elements in the power supply including the input winding 201 and the first winding 202 and the transformer core 206 and windings that are not shown but may be added as needed.
  • the length and width of the conductive plate 205 to offset the conductive EMI generated by the power supply by the sum of the capacitive couplings by the capacitive coupling between the conductive plate 205 and the output winding 203 to approach "0". Can be determined, providing sufficient EMI margin.
  • the conductor plate 205 is connected. Capacitive coupling is generated between the turn winding and the output winding 203 by five turns of aberration.
  • the circumference of the winding surface of the output winding 203 is 30 mm and the conductor plate 205 wraps the entire winding width of the output winding 203 with a length of 6 mm, between the conductor plate 205 and the output winding 203. In this case, a capacitive coupling is generated by the difference of 1 turn, which is 6/30 of 5 turns.
  • capacitive coupling is generated by the turn aberration of 7/6 turns. That is, a change in the length of the conductor plate 205 of 1 mm can bring about a change in capacitive coupling by a difference of 1/6 turns, and a change of 1/12 turns by a change of 0.5 mm. This can lead to a change in capacitive coupling.
  • capacitive coupling is generated by a turn order difference of 15/6 or 2.5 turns.
  • the sum of the capacitive coupling generated from the elements in the power supply including the input winding 201 and the first winding 202 and the transformer core 206 to the output winding 203 is generated by the number of turns of N turns.
  • the length of the conductor plate 205 to be offset by generating a capacitive coupling of the turn aberrations of N turns in reverse polarity is calculated by the following equation.
  • Length circumference X turns of the winding surface of the output winding 203 / number of turns of the output winding 203
  • the length of the conductor plate 205 necessary for offsetting is 7.8. mm. If the deviation of the length of the conductor plate 205 is +/- 0.3mm, the capacitive coupling varies in the range of the turn aberration of 1.35 turns to 1.25 turns, so that the deviation of the length of the conductor plate 205 is +/- 0.05. Deviation of the turn aberration of the turn occurs.
  • the flyback converter of FIG. 5 cancels and lowers the conducted EMI generated in the power supply device more precisely by about 10 times compared to the conventional technique of FIG. Provides a large EMI margin.
  • Capacitive is generated from the elements of the power supply including the input winding 201 and the first winding 202 and the transformer core 206 and the windings that are not shown but may be added as needed. Even if the sum of the couplings is not the number of turns, the length of the conductor plate 205 obtained with the lowest conductive EMI generated from the power supply may be found by experimentation.
  • the conductor plate 205 may be a copper plate or a copper tape, and is capacitively coupled with the winding surface of the output winding 203, and one point is directly connected to the electrical ground of the primary side through a combination of one or more passive elements. It may be connected or connected to electrical ground through a winding for applying potential to the conductor plate 205.
  • the surface of the transformer core 206 is connected to an electrical ground, and the winding layer between the input winding 201 and the output winding 203 is completely filled with the first winding 202. If the capacitive coupling between the reel input winding 201 and the output winding 203 is generated as little as possible, the amount of capacitive coupling generated by the output winding 203 is mostly the first winding 202 and the output winding ( It is determined by the potential difference between 203). If the difference between the number of turns of the first winding 202 and the number of turns of the output winding 203 is smaller than the number of turns of the output winding 203, the conductor plate 205 may output the winding 203 as shown in FIG. 6.
  • the winding face of the wire is positioned to create a capacitive coupling with the winding face opposite the winding face facing the input winding 201, and by selecting the length of the conductor plate 205, the input winding 201 and the first winding Offsets the sum of the capacitive coupling produced by the output winding 203 from the elements in the power supply including the 202 and the transformer core 206 and windings that are not shown but may be added as needed. Can be accessed.
  • the shield plate 135a is a metal plate insulated around the winding surface of one of the output windings 133a so that both ends are not shorted, or at least one wheel or a metal plate that is not insulated at both ends is less than 1 mm.
  • the sum of the capacitive couplings generated by the output windings 133a by adjusting the number of turns of the offset windings 132a, which is less than 2 mm or is wrapped around 90% of the circumference, and capacitively coupled to the output windings 133a, is possible. It has a low value to reduce EMI.
  • the transformer 20a of FIG. 6 is a winding which may be added as necessary, although not shown, with the input winding 201, the first winding 202, and the transformer core 206 by selecting the length of the conductor plate 205. It is a difference from the transformer of FIG. 4 to cancel the sum of the capacitive coupling generated by the output windings 203 from the elements in the power supply, which includes them.
  • the length of the conductor plate 205 which reduces the EMI by creating a capacitive coupling with the winding surface opposite to the winding surface facing the input winding 201, among the winding surfaces of the output winding 203. 80 mm or less of the circumference of the winding side opposite to the winding side facing the input winding 201 or 4 mm of the winding side of the winding side of the output winding 203 opposite the winding side facing the input winding 201 When the length is less than the subtraction, the distinction from the conventional art of FIG. 4 may be clearer.
  • the winding of the output winding 203 may have a length of the conductor plate 205 that reduces capacitance by creating a capacitive coupling with a winding surface opposite to the winding surface facing the input winding 201 of the winding of the output winding 203.
  • a length of the conductor plate 205 that reduces capacitance by creating a capacitive coupling with a winding surface opposite to the winding surface facing the input winding 201 of the winding of the output winding 203.
  • the shield plate 135a is positioned between the input winding 131a and the output winding 133a.
  • the conductor plate 205 has the output winding 203.
  • FIG. 6 illustrates a conductive plate for capacitively coupling a portion of the circumference of the output winding 203 across the entire width of the winding surface of the output winding 203 opposite the winding surface facing the input winding 201.
  • the embodiment in which the terminal 207 drawn out by attaching 205a is connected to an electrical ground is shown, and FIG. 7 shows an embodiment in which the conductor plate 205b is attached to be shorter than the winding width of the output winding 203.
  • the length of the conductor plate 205 in which one point of the transformer 20a is connected to the electrical ground, is the periphery of the winding surface opposite to the winding surface of the winding surface of the output winding 203 facing the input winding 201.
  • the conductor plate 205 is input in the area of the conductor plate 205 while generating a capacitive coupling with the winding face of the output winding 203 facing the input winding 201 as shown in FIGS. 8 and 9. It can be positioned to block the capacitive coupling generated by the output winding 203 from elements in the power supply including the winding 201. In this case, as the area of the conductor plate 205 increases, the capacitive coupling generated by the output winding 203 from the elements in the power supply device including the input winding 201 is cut off, so that the conductor plate 205 is reduced.
  • the capacitive coupling between the output winding 203 and the output winding 203 is the lowest by canceling the EMI generated in the power supply by the capacitive coupling generated by the output winding 203 from the elements in the power supply including the input winding 201.
  • the length of the conductor plate 205 is selected so that a capacitive coupling between the lowering conductor plate 205 and the output winding 203 is produced. 8 and 9, the first winding 202 is positioned between the input winding 201 and the output winding 203, and the winding surface area between the first winding 202 and the output winding 203.
  • the conductor plate 205 may be located in whole or in part. In this case, since a part of the high frequency noise generated by the input winding 201 and the first winding 202 is blocked by the conductor plate 205 and is not transmitted to the output winding 203, the radiated EMI is also reduced.
  • the conductor plate 205 is located at all or a part of the winding surface area between the input winding 201 and the output winding 203, and one of the conductor plate 205 is located between the output winding 203. More windings may be located. An example is the winding or the first winding 202 which is combined with the output winding 203 to feed back information of the output voltage.
  • the conductor plate 205 or 205a or 205b or 205c may connect a connection line to the outside in the winding surface of the bobbin.
  • a portion of the conductor plate 205c may be drawn out of the winding surface of the bobbin 28 to connect a terminal 207 connected to the outside outside the winding surface.
  • one end of the conductor plate 205a or 205b can be drawn out of the winding surface of the bobbin to connect the terminal 207 to be connected to the outside.
  • the conductor plate 205 has a winding surface of the output winding 203 and a position which creates a capacitive coupling with a winding surface opposite to the winding surface facing the input winding 201 of the winding surface of the output winding 203.
  • the winding surface facing the input winding 201 of the middle and may be located in a position to create a capacitive coupling.
  • the conductor plate 205 is placed in two places or on one side to generate capacitive coupling on both winding surfaces of the output winding 203. It can also be positioned to create capacitive coupling only on the winding surface.
  • FIG. 10 shows another embodiment of finely canceling and lowering the conductive EMI generated in the flyback converter according to the present invention, which differs from FIG.
  • an output winding 213 from elements in a power supply including an input winding 211, a first winding 212, a transformer core 216, and windings that are not shown but may be added as needed.
  • the sum of the capacitive coupling generated by the capacitor is canceled by the coupling of the reverse polarity capacitive generated from the conductor plate 215 to the output winding 213 to lower the conductive EMI generated in the power supply.
  • FIG. 11 shows another embodiment for finely canceling and lowering the conductive EMI generated in the flyback converter according to the present invention.
  • the circuit configuration except for the transformer 22 corresponds to the circuit configuration of FIG. 2.
  • FIG. 11 shows the potential difference between the output potential 183 and the average potential formed by the flyback winding 222 that induces a positive flyback voltage and the forward winding 224 that induces a negative flyback voltage.
  • the EMI of the power supply device can be precisely reduced by selecting the width and length of the conductor plate 225, thereby ensuring sufficient EMI margin.
  • the conductor plate 225 may be positioned so as to create a capacitive coupling to a winding surface opposite to the winding surface facing the input winding 221 of the winding surface of the output winding 223, and among the winding surfaces of the output winding 223.
  • the winding face facing the input winding 221 may be positioned to create a capacitive coupling, or both.
  • Figure 12 illustrates yet another embodiment for finely canceling and lowering the conductive EMI generated in the flyback converter according to the present invention.
  • the transformer 23 of FIG. 12 includes a first input winding 231, a second input winding 232, an output winding 233, a conductor plate 235, and a transformer core 236.
  • the second input winding 232 may be located in the winding layer between the first input winding 231 and the output winding 233, and the output winding 233 may be the first input winding 231 and the second input winding ( It may be located in the winding layer between 232).
  • EMI generated by the power supply by the sum is canceled by the capacitive coupling generated between the conductor plate 235 and the output winding 233 to lower.
  • the EMI of the power supply device can be precisely lowered by selecting the width and length of the conductor plate 235, thereby ensuring sufficient EMI margin.
  • the core 206 or 216 or 226 or 236 of the transformer may be open, connected to the electrical ground of the primary side, or included in the transformer 20 or 21 or 22 or 23. As long as it can be connected to one terminal of the winding.
  • the conductor plate 205 or 215 or 225 or 235 is directly connected to the electrical ground of the primary side, or connected to the electrical ground of the primary side through a combination of passive elements such as a resistor or capacitor, Alternatively, it may be connected to the electrical ground of the primary side via a winding for supplying a potential to the conductor plate.
  • 5 to 12 are transformers 20 or 21 including input windings 201 or 211 or 221 or 231 for the width and length of conductor plates 205 or 205a to 205c or 215 or 225 or 235. Or 22 or 23) and the sum of the capacitive combinations generated from the elements in the power supply to the output windings (203 or 213 or 223 or 233) to set the value at which the EMI generated by the power supply can be canceled most. As a result, EMI is much lower than that of the prior art of FIGS. 1 to 3, thereby providing sufficient margin.
  • the number of turns of the first winding 202 or the flyback winding 222 and the forward winding 224 or the second input winding 232 that is capacitively coupled to the output winding 203 or 213 or 223 or 233 is determined. Even if the power supply of the controller is rectified by rectifying the flyback voltage by taking twice the number of turns of the output winding (203 or 213 or 223 or 233), the size of the conductor plate can be canceled by reducing the EMI of the power supply most. Since it is possible to provide sufficient EMI margin, it is not necessary to add a separate winding to cancel the capacitive coupling generated by the output windings 203 or 213 or 223 or 233 as shown in FIGS. Has an advantage.
  • first winding 202 or the flyback winding 222 and the forward winding 224 or the second input winding 232 which are twice the number of turns of the output winding 203 or 213 or 223 or 233, are thin lines.
  • the winding surface of the bobbin can be easily filled and wound about 2 to 3 strands, so that the workability of the winding has been increased compared to the prior art, which had to be wound around as many strands as the small number of turns of the output winding (203 or 213 or 223 or 233).
  • Productivity is greatly improved.

Abstract

본 발명은 자기에너지전달소자 및 전원장치에 관한 것으로, 상기 자기에너지전달소자는 제1전압입력단자와, 제2전압입력단자와, 출력 선로와, 상기 제1전압입력단자 및 상기 제2전압입력단자와 상기 출력 선로 사이에 위치하는 자기에너지전달소자와, 스위칭소자를 포함하는 스위칭형 전원장치에 사용되는 상기 자기에너지전달소자에 있어서, 상기 자기에너지전달소자의 코어와; 상기 자기에너지전달소자의 보빈과; 상기 자기에너지전달소자의 코어에 감겨지고, 상기 스위칭소자의 스위칭 동작에 의해 자기에너지의 축적과 방출이 제어되는 입력권선과; 상기 입력권선과 자기적으로 결합하여 에너지를 인출하여 상기 출력 선로를 통해 부하에 공급하는 출력권선과; 그리고 상기 입력권선의 한 권선면과 상기 출력권선의 권선면 사이에 위치하는 도체판을 포함하되, 상기 도체판이 상기 입력권선의 한 권선면과 상기 출력권선의 권선면 사이를 가로 막는 부분에서 상기 입력권선의 한 권선면과 상기 출력권선의 권선면 사이의 용량성 결합이 차단되며, 상기 도체판이 상기 출력권선의 권선면을 감싸는 부분의 상기 도체판의 폭과 길이의 선정에 의해 상기 입력권선의 한 권선면과 상기 출력권선의 권선면 사이를 가로막지 않는 면적을 포함하는 경로를 통해 상기 자기에너지전달소자 및 상기 전원장치 내의 요소들로부터 상기 출력권선으로 생성하는 용량성 결합의 합과 상기 도체판으로부터 상기 출력권선으로 생성되는 용량성 결합의 양이 설정되며, 상기 도체판이 상기 입력권선의 한 권선면과 상기 출력권선의 권선면 사이를 가로막지 않는 면적을 포함하는 경로를 통해 상기 자기에너지전달소자 및 상기 전원장치 내의 요소들로부터 상기 출력권선으로 생성하는 용량성 결합의 합에 의해 생성되는 전원장치의 EMI가 상기 도체판으로부터 상기 출력권선으로 생성되는 용량성 결합에 의해 상쇄되어 낮아지는 것을 특징으로 한다.

Description

자기에너지전달소자 및 전원장치
본 발명은 자기에너지전달소자 및 전원장치에 관한 것으로, 보다 상세하게는 전원장치에서 발생하는 전도성 EMI(Electromagnetic interference, 전자방해)를 상쇄시켜 낮추는 자기에너지전달소자 및 전원장치에 관한 것이다.
스위칭 전원에서, 스위칭 소자가 스위칭될 때 트랜스포머의 입력권선의 전위의 변동이 용량성 결합에 의해 출력권선으로 전달되어 출력선로가 전위의 변동을 가지게 되며, 출력 선로는 대지 접지로 노이즈의 전류를 흐르게 하거나 공중으로 노이즈를 방사하여 EMI가 발생한다. EMI를 규제치 이내로 낮추기 위해서는 트랜스포머의 각 권선을 포함하여 전원장치 내의 요소들로부터 출력권선으로 생성되는 용량성 결합의 합을 일정 수준 이하로 낮추어 출력선로의 노이즈 전위를 낮게 해야 한다.
종래에 있어서, 트랜스포머의 각 권선을 포함하여 전원장치 내의 요소들로부터 출력권선으로 생성되는 용량성 결합의 합과 크기는 같고 극성이 반대인 용량성 결합을 출력권선으로 생성시켜 상쇄시킬 목적을 갖는 하나 이상의 권선을 출력권선 주위에 위치시켜, 출력권선으로 생성되는 모든 용량성 결합을 상쇄시켜 전원장치의 EMI를 법적인 규제치 이하로 낮추려 하였다.
종래 기술을 간략히 설명하면 다음과 같다.
이하 제시된 모든 도면에서 트랜스포머의 각 권선에 표시된 검은 점은 권선의 시작이나 혹은 끝을 표시한다.
도 1은 종래 기술의 플라이백 컨버터에서 발생하는 전도성 EMI를 상쇄시켜 낮추는 일례를 도시한다.
도 1에 있어서, 교류 입력 전압은 정류되고 캐패시터(11)에 의해 평활된다. 출력전압의 피드백에 대응하여 스위칭소자(12)가 스위칭되어 트랜스포머(13)의 입력권선(131)에 에너지의 축적과 방출이 일어나며, 출력정류기(14)와 캐패시터(15)는 출력권선(133)을 통해 에너지를 인출하여 부하에 전력을 공급한다.
스위칭소자(12)가 스위칭될 때 트랜스포머(13)의 입력권선(131)에서 생성되는 큰 전위의 변동은 입력권선(131)과 출력권선(133) 사이의 분포용량(Cps)을 통해 전달되고, 트랜스포머 코어(136)의 전위는 분포용량(Ccs)을 통해 출력권선(133)에 전달되어 출력 선로(17)가 노이즈의 전위를 갖게 하여, 전원장치의 EMI가 크게 발생한다. 트랜스포머 코어(136)의 전위의 변동을 줄이기 위해 트랜스포머 코어(136)의 표면을 접지로 연결하기도 한다.
도 1의 종래기술은 출력 선로(17)가 갖는 노이즈의 전위를 낮추기 위한 대표적인 실시예를 제시한다.
상쇄권선(132)은 입력권선(131)과 출력권선(133) 사이의 권선층에 출력권선(133)이 감기는 면적을 꽉 채워서 빈틈없이 감겨 입력권선(131)과 출력권선(133) 사이의 용량성의 결합이 가능한 한 적게 발생하게 차단한다. 또한, 상쇄권선(132)과 출력권선(133) 사이에서 입력권선(131)과 출력권선(133) 사이의 용량성 결합과 크기는 비슷하고 반대 극성인 용량성 결합을 생성시켜, 상쇄권선(132)과 입력권선(131)으로부터 출력권선(133)으로 생성되는 용량성 결합의 합이 상쇄되어 "0(zero)"에 접근하게 하고, 출력선로(17)의 노이즈 전위를 낮추려 한다. 상쇄권선(132)과 출력권선(133) 사이에서 입력권선(131)과 출력권선(133) 사이의 용량성 결합과 크기는 비슷하고 반대 극성인 용량성 결합을 생성시키기 위해, 출력권선(133)이 감기는 면과 결합하는 상쇄권선(132)의 턴 수는 통상적으로 출력권선(133)의 턴 수보다 1 내지 2턴 작은 값을 가진다. 즉, 출력권선(133)과 상쇄권선(132)의 사이에서 1 내지 2 턴의 턴 수 차이에 의한 전위차에 의해 생성되는 용량성의 결합으로 입력권선(131)과 출력권선(133) 사이의 용량성의 결합을 상쇄시켜 낮추는 것이다.
그런데 이 경우, 출력권선(133)과 상쇄권선(132)의 턴수차가 1 턴이면 입력권선(131)과 출력권선(133) 사이의 용량성의 결합을 제거하기에 약간 부족하고, 2 턴이면 너무 커서, 출력 선로 (17)의 노이즈 전위가 제대로 상쇄시켜 낮출 수 없어서 높은 EMI를 유지하는 경우가 대부분인 단점이 있었다.
또한, 출력권선(133)의 턴 수가 3 내지 5턴 정도로 작은데 보빈의 권선폭이 넓은 경우, 출력권선(133)보다 1 내지 2 턴이 더 작은 2 내지 3턴으로 보빈의 권선폭 전체를 여러 가닥으로 빈틈없이 채워서 감기가 물리적으로 매우 어렵다는 단점도 있었다.
또한, 출력 전압이 5V 정도로 낮은 경우, 출력권선(133)보다 더 작은 턴 수를 갖는 상쇄권선(132)의 플라이백 전압을 정류하더라도 6V 이하의 전압 밖에 얻을 수 없으므로, 전원장치의 제어부에 10V 내외의 전원 전압을 공급하기 위해서는 별도의 권선이 요구되는 단점이 있었다.
도 2는 종래기술의 플라이백 컨버터에서 발생하는 전도성 EMI를 상쇄시켜 낮추는 다른 일례를 도시한다.
트랜스포머(18)는 입력권선(181)과 플라이백권선(182)과 출력권선(183)과 포워드권선(184)을 포함한다.
도 2에 있어서, "정"의 플라이백 전압을 유도하는 플라이백권선(182)과 "부"의 플라이백 전압을 유도하는 포워드권선(184)은 한 권선면의 평균전위를 "0"으로 만들어, 플라이백권선(182)과 포워드권선(184)이 출력권선(183)으로 생성시키는 용량성 결합의 합을 입력권선(181)과 출력권선(183) 사이에서 생성되는 용량성의 결합과 역극성이면서 크기가 같게 생성하게 하여, 출력권선(183)으로 생성되는 용량성 결합의 합을 상쇄시켜 "0"에 접근시키고, 출력 선로 (17)의 노이즈 전위를 낮추려 한다.
도 2의 종래기술에 있어서도, 플라이백권선(182)과 포워드권선(184)이 형성하는 "0"의 평균전위와 출력권선(183) 사이의 전위차에 의한 용량성의 결합의 양을 입력권선(181)과 출력권선(183) 사이에서 생성되는 용량성의 결합과 역극성이면서 크기가 같게 생성시키기가 어려워 제품마다의 편차가 커서, 도 1과 마찬가지로 전원장치가 발생시키는 EMI를 균일하게 어느 값 이하로 낮추기가 어렵다는 단점이 있었다.
또한, 플라이백권선(182)과 포워드권선(184)으로 입력권선(181)의 권선면 전체를 빈틈없이 채워서 감아, 입력권선(181)과 출력권선(183) 사이에서 생성되는 용량성의 결합이 플라이백권선(182)과 포워드권선(184)이 출력권선(183)으로 생성시키는 용량성 결합의 합보다 훨씬 작은 경우, 출력권선(183)으로 생성되는 용량성 결합의 합을 낮추기 위해 또 다른 권선을 설치해야 하는 단점이 있었다.
도 3은 종래기술의 플라이백 컨버터에서 발생하는 전도성 EMI를 상쇄시켜 낮추는 또 다른 일례를 도시한다.
트랜스포머(19)는 제1입력권선(191)과 제2입력권선(192)과 출력권선(193)을 포함한다.
제2입력권선(192)은 제1입력권선(191)과 출력권선(193) 사이의 권선층에 감겨지며, 제2입력권선(192)과 출력권선(193) 사이에서 생성되는 용량성 결합은 제1입력권선(191)과 출력권선(193) 사이에서 생성되는 용량성의 결합과 역극성이면서 크기가 비슷하게 생성하도록 설정되며, 출력권선(193)으로 생성되는 용량성 결합의 합을 상쇄시켜 낮추어, 출력 선로 (17)의 노이즈 전위를 낮추며, 전원장치의 EMI를 규제치 이하로 맞추려 한다.
도 3에 있어서는, 제2입력권선(192)이 제1입력권선(191)과 출력권선(193) 사이를 빈틈없이 채워서 감기는 경우, EMI를 가장 낮게 낮추기 위해 필요한 출력권선(193)이 감기는 면과 용량성으로 결합하는 제2입력권선(192)의 턴 수는 통상적으로 출력권선(193)의 턴 수보다 1 내지 2턴 정도 큰 값을 가진다. 출력권선(193)의 턴수가 5턴이면 제2입력권선(192)의 턴수는 6 내지 7 턴이 필요하다.
도 3의 종래기술에 있어서도, 한 바퀴 단위로 증가하거나 감소하는 제2입력권선(192)의 턴 수를 조절하는 것만으로는 전원장치가 발생시키는 EMI를 어느 값 이하로 낮추기가 어렵다는 단점이 있었다.
또한, 출력권선(193)의 턴 수는 작은데 보빈의 권선폭이 넓은 경우 출력권선(193)보다 1 내지 2턴 큰 턴 수로 보빈의 권선면을 빈틈없이 채워서 감기가 매우 어려운 경우가 많다는 단점도 있었다.
또한, 권선의 플라이백 전압을 정류하여 전원장치의 제어부의 전원전압을 공급해야 하는 경우, 제2입력권선(192)과는 별도로 추가의 권선을 설치해야 했는데, 추가된 권선이 출력권선(193)으로 또 다른 용량성의 결합을 생성시키거나 혹은 제1입력권선(191)과 출력권선(193) 사이의 자기 결합을 방해하여 효율을 낮추는 등의 문제를 야기했었다.
도 4는 종래기술의 플라이백 컨버터에서 발생하는 전도성 EMI를 상쇄시켜 낮추는 또 다른 일례를 도시한다.
트랜스포머(13a)는 입력권선(131a)과 상쇄권선(132a)과 출력권선(133a)과 쉴드판(135a)을 포함한다.
쉴드판(135a)은 입력권선(131a)과 출력권선(133a) 사이의 권선층에 위치하여 입력권선(131a)과 출력권선(133a) 사이의 용량성의 결합을 차단한다.
상쇄권선(132a)은 출력권선(133)의 권선면 중 입력권선(131a)을 향하는 권선면의 반대쪽 권선면과 마주하여 위치하며, 상쇄권선(132a)과 출력권선(133a) 사이에서 출력권선(133a)과 쉴드판(135a) 사이의 용량성의 결합과 크기는 비슷하고 극성이 반대인 용량성 결합을 생성시켜, 출력권선(133a)으로 생성되는 용량성 결합의 합이 상쇄되어 "0(zero)"에 접근하게 하여, 출력선로(17)의 노이즈 전위를 낮추려 한다. 작업성을 높이기 위해 쉴드판(135a)을 절연시키지 않고 감는 경우, 금속판의 양끝이 단락되지 않도록 한바퀴에서 1mm 내지 2mm 부족하게 감는다. 혹은 테이프 등으로 절연 구조를 형성시키는 경우, 금속판을 한바퀴를 초과하게 감아 두 권선 사이의 용량성 결합을 완전히 차단한다.
도시하지는 않았지만, 트랜스포머(18)의 입력권선(181)과 출력권선(183)의 사이나 혹은 트랜스포머(19)의 제1입력권선(191)과 출력권선(193)의 사이에 한 점이 전기적인 접지로 연결되는 쉴드판을 위치시키기도 한다.
그런데, 이 기술도 1턴 단위로 증가하거나 감소하는 상쇄권선(132a) 혹은 플라이백권선(182)과 포워드권선(184) 혹은 제2입력권선(192)의 턴 수를 조절하여 EMI를 낮추어야 하는데, 정교한 상쇄가 어려워 EMI를 균일하게 어느 값 이하로 낮추기가 어렵다는 단점이 있었다.
이와 같이 종래기술은 한 바퀴 단위로 증감하는 권선의 턴 수의 조절만으로는 전원장치의 EMI를 충분히 낮추기가 어려워 EMI의 마진을 충분히 확보하기가 어렵고, 출력권선의 턴 수는 작은데 보빈의 권선폭이 넓은 경우 상쇄를 위해 설치하는 권선을 여러가닥의 작은 턴 수로 보빈의 권선면을 빈틈없이 채워서 감기가 물리적으로 매우 어려우며, 보조 전원 전압의 인출을 필요로 하는 경우 추가로 권선이 필요하여 효율이 저하하고 트랜스포머의 가격이 상승하는 등의 단점이 있었다.
본 발명은 종래기술의 이러한 단점들을 모두 해결하기 위한 것이다.
본 발명의 기술적 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급하지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 자기에너지전달소자는 제1전압입력단자와, 제2전압입력단자와, 출력 선로와, 상기 제1전압입력단자 및 상기 제2전압입력단자와 상기 출력 선로 사이에 위치하는 자기에너지전달소자와, 스위칭소자를 포함하는 스위칭형 전원장치에 사용되는 상기 자기에너지전달소자에 있어서,
상기 자기에너지전달소자의 코어와; 상기 자기에너지전달소자의 보빈과; 상기 자기에너지전달소자의 코어에 감겨지고, 상기 스위칭소자의 스위칭 동작에 의해 자기에너지의 축적과 방출이 제어되는 입력권선과; 상기 입력권선과 자기적으로 결합하여 에너지를 인출하여 상기 출력 선로를 통해 부하에 공급하는 출력권선과; 그리고 상기 입력권선의 한 권선면과 상기 출력권선의 권선면 사이에 위치하는 도체판을 포함하되,
상기 도체판이 상기 입력권선의 한 권선면과 상기 출력권선의 권선면 사이를 가로 막는 부분에서 상기 입력권선의 한 권선면과 상기 출력권선의 권선면 사이의 용량성 결합이 차단되며,
상기 도체판이 상기 출력권선의 권선면을 감싸는 부분의 상기 도체판의 폭과 길이의 선정에 의해 상기 입력권선의 한 권선면과 상기 출력권선의 권선면 사이를 가로막지 않는 면적을 포함하는 경로를 통해 상기 자기에너지전달소자 및 상기 전원장치 내의 요소들로부터 상기 출력권선으로 생성하는 용량성 결합의 합과 상기 도체판으로부터 상기 출력권선으로 생성되는 용량성 결합의 양이 설정되며,
상기 도체판이 상기 입력권선의 한 권선면과 상기 출력권선의 권선면 사이를 가로막지 않는 면적을 포함하는 경로를 통해 상기 자기에너지전달소자 및 상기 전원장치 내의 요소들로부터 상기 출력권선으로 생성하는 용량성 결합의 합에 의해 생성되는 전원장치의 EMI가 상기 도체판으로부터 상기 출력권선으로 생성되는 용량성 결합에 의해 상쇄되어 낮아지는 것을 특징으로 한다.
또한, 상술한 과제를 해결하기 위한 본 발명의 자기에너지전달소자는 제1전압입력단자와, 제2전압입력단자와, 출력 선로와, 상기 제1전압입력단자 및 상기 제2전압입력단자와 상기 출력 선로 사이에 위치하는 자기에너지전달소자와, 스위칭소자를 포함하는 스위칭형 전원장치에 사용되는 상기 자기에너지전달소자에 있어서,
상기 자기에너지전달소자의 코어와; 상기 자기에너지전달소자의 보빈과; 상기 자기에너지전달소자의 코어에 감겨지고, 상기 스위칭소자의 스위칭 동작에 의해 자기에너지의 축적과 방출이 제어되는 입력권선과; 상기 입력권선과 자기적으로 결합하여 에너지를 인출하여 상기 출력 선로를 통해 부하에 공급하는 출력권선과; 그리고 상기 출력권선의 권선면 중 상기 출력권선이 상기 입력권선을 향하는 권선면의 반대쪽 권선면과 용량성 결합을 생성시키는 도체판을 포함하되,
상기 도체판이 상기 출력권선의 권선면을 감싸는 부분의 상기 도체판의 폭과 길이의 선정에 의해 상기 도체판으로부터 상기 출력권선으로 생성되는 용량성 결합의 양이 설정되며,
상기 자기에너지전달소자 및 상기 전원장치 내의 요소들로부터 상기 출력권선으로 생성하는 용량성 결합의 합에 의한 전원장치의 EMI가 상기 도체판으로부터 상기 출력권선으로 생성되는 용량성 결합에 의해 상쇄되어 낮아지는 것을 특징으로 한다.
또한, 본 발명에 따르는 상술한 자기에너지전달소자를 포함하는 스위치형 전원장치 및 스위치형 전원장치를 포함하는 물품이 제공된다.
본 발명의 기타 구체적인 사항들은 이하의 발명의 상세한 설명 및 도면들에 포함되어 있다.
본 발명은 출력권선과 용량성으로 결합하는 권선을 출력권선보다 훨씬 크게 취하고도 출력권선의 권선면의 일부분과 용량성으로 결합하는 도체판에 의해 전원장치의 EMI를 정교하게 상쇄시켜 아주 낮은 값으로 낮출 수 있게 하여 충분한 EMI의 마진을 확보할 수 있게 하며, 출력권선과 용량성으로 결합하는 권선을 큰 턴 수로 취하여 권선면을 채워서 감을 수 있어서 트랜스포머의 생산성을 향상시키며, 제조 원가 인하의 효과를 갖는다.
도 1 내지 도 4는 종래기술의 플라이백 컨버터에서 발생하는 전도성 EMI를 상쇄시켜 낮추는 예들을 도시한 도면이다.
도 5는 본 발명에 따르는 플라이백 컨버터에서 발생하는 전도성 EMI를 정교하게 상쇄시켜 낮추는 일 실시예를 도시한 도면이다.
도 6 내지 도 9는 본 발명에 따르는 트랜스포머의 구조의 실시예들을 도시한 도면이다.
도 10 내지 도 12는 본 발명에 따르는 플라이백 컨버터에서 발생하는 전도성 EMI를 정교하게 상쇄시켜 낮추는 다른 실시예들을 도시한 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부한 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
본 명세서에서 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.
본 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
이하 첨부한 도면을 참조하여 본 발명의 실시예에 따른 자기에너지전달소자 및 전원장치에 대해 보다 상세하게 설명한다. 본 발명의 자기에너지전달소자는 모든 방식의 스위치형 전원장치에 적용될 수 있으나, 이하 플라이백 컨버터를 이용하여 본발명의 실시예를 설명한다.
도 5는 본 발명에 따르는 플라이백 컨버터에서 발생하는 전도성 EMI를 정교하게 상쇄시켜 낮추는 일 실시예를 도시한다.
도 5에 있어서, 트랜스포머(20)를 제외한 회로 구성은 도 1의 회로 구성에 대응된다.
도 5의 트랜스포머(20)은 입력권선(201)과 제1권선(202)과 출력권선(203)과 도체판(205)과 트랜스포머코어(206)를 포함한다.
도 5에서, 스위칭소자(12)가 스위칭 될 때 입력권선(201)과 제1권선(202)과 트랜스포머코어(206)와 도시되지는 않았지만 필요에 의해 추가될 수도 있는 권선들을 포함하는 전원장치 내의 요소들로부터 출력권선(203)으로 생성되는 용량성의 결합의 합을 도체판(205)으로부터 출력권선(203)으로 생성되는 역극성의 용량성의 결합에 의해 상쇄시켜 전원장치의 EMI를 낮춘다.
특히, 입력권선(201)과 제1권선(202)과 트랜스포머코어(206)와 도시되지는 않았지만 필요에 의해 추가될 수도 있는 권선들을 포함하는 전원장치 내의 요소들로부터 출력권선(203)으로 생성되는 용량성의 결합의 합에 의해 전원장치에서 발생하는 전도성 EMI를 도체판(205)과 출력권선(203) 사이의 용량성 결합에 의해 상쇄시켜 "0"에 접근시킬 도체판(205)의 길이와 폭을 정할 수 있어서, 충분한 EMI의 마진을 제공한다.
예를 들어, 출력권선(203)의 턴수가 5턴이고 도체판(205)이 출력권선(203)의 한쪽 권선면의 전체 폭과 둘레를 감싸서 전기적인 접지로 연결되어 있다면, 도체판(205)과 출력권선(203)의 사이에는 5턴의 턴 수차에 의한 용량성의 결합이 생성된다. 또한, 출력권선(203)의 권선면의 둘레가 30mm인데 도체판(205)이 출력권선(203)의 권선폭 전체를 6mm의 길이로 감싸면, 도체판(205)과 출력권선(203)의 사이에는 5턴의 6/30인 1턴의 차이에 의한 용량성의 결합이 생성된다. 또한, 도체판(205)이 출력권선(203)의 권선폭을 7mm의 길이로 감싸면, 7/6 턴의 턴 수차만큼의 용량성의 결합이 생성된다. 즉, 1mm의 도체판(205) 길이의 변화로 1/6 턴의 턴 수 차(difference)만큼의 용량성 결합의 변화를 가져 올 수 있고, 0.5mm의 변화로 1/12 턴의 턴 수 차만큼의 용량성 결합의 변화를 가져 올 수 있다. 또한, 도체판(205)이 출력권선(203)의 권선폭을 15mm의 길이로 감싸면, 15/6 즉 2.5턴의 턴 수 차만큼의 용량성의 결합이 생성된다.
입력권선(201)과 제1권선(202)과 트랜스포머코어(206)를 포함하는 전원장치 내의 요소들로부터 출력권선(203)으로 생성되는 용량성의 결합의 합이 N 턴의 턴 수 차만큼 발생되는 경우, N 턴의 턴 수 차의 용량성의 결합을 역극성으로 생성시켜 상쇄할 도체판(205) 길이는 다음 식으로 산출된다.
길이 = 출력권선(203)의 권선면의 둘레 X 턴 수 차 / 출력권선(203)의 턴 수
예를 들어, 출력권선(203)의 권선면의 둘레가 30mm이고, 출력권선(203)의 턴 수가 5턴이며, 턴 수 차가 1.3턴이면, 상쇄를 위해 필요한 도체판(205)의 길이는 7.8mm이다. 도체판(205)의 길이의 편차가 +/- 0.3mm 이면, 용량성 결합은 1.35턴에서 1.25턴의 턴 수 차의 범위에서 변화하므로 도체판(205)의 길이의 편차에 의해 +/- 0.05턴의 턴 수 차의 편차가 발생한다.
이와 같이, 도 5의 플라이 백컨버터는 1턴 단위의 증감에 의해 대략적으로 조절하던 도 1의 종래기술에 비해 10배 가까이 훨씬 세밀하게 전원장치에서 발생하는 전도성 EMI를 상쇄시켜 낮출 수 있게 하여, 훨씬 큰 EMI의 마진을 제공한다.
입력권선(201)과 제1권선(202)과 트랜스포머코어(206)와 도시되지는 않았지만 필요에 의해 추가될 수도 있는 권선들을 포함하는 전원장치 내의 요소들로부터 출력권선(203)으로 생성되는 용량성의 결합의 합이 몇 턴의 턴 수 차인지 모르더라도, 전원장치에서 발생하는 전도성 EMI가 가장 낮게 얻어지는 도체판(205)의 길이를 실험에 의해 찾아서 선정할 수도 있다.
도체판(205)은 동판이나 동 테이프 등이 사용될 수 있으며, 출력권선(203)의 권선면과 용량성으로 결합하며, 한 점이 직접 혹은 하나 이상의 수동 소자의 조합을 통해 1차측의 전기적인 접지로 연결되거나 도체판(205)에 전위를 가하기 위한 권선을 통해 전기적인 접지로 연결될 수도 있다.
도 5의 일 실시예로써, 트랜스포머코어(206)의 표면이 전기적인 접지로 연결되어 있고, 입력권선(201)과 출력권선(203) 사이의 권선층을 제1권선(202)으로 빈틈없이 채워서 감아 입력권선(201)과 출력권선(203) 사이의 용량성 결합이 가능한 한 적게 생성되게 하는 경우, 출력권선(203)으로 생성되는 용량성 결합의 양은 대부분 제1권선(202)과 출력권선(203) 사이의 전위차에 의해 결정된다. 만일, 제1권선(202)의 턴 수와 출력권선(203)의 턴 수와의 차이가 출력권선(203)의 턴 수보다 작다면, 도체판(205)은 도 6과 같이 출력권선(203)의 권선면 중 입력권선(201)을 마주하는 권선면의 반대쪽 권선면과 용량성의 결합을 생성시키도록 위치하여, 도체판(205)의 길이의 선정에 의해 입력권선(201)과 제1권선(202)과 트랜스포머코어(206)와 도시되지는 않았지만 필요에 의해 추가될 수도 있는 권선들을 포함하는 전원장치 내의 요소들로부터 출력권선(203)으로 생성되는 용량성의 결합의 합을 상쇄시켜 "0"에 접근시킬 수 있다.
도 4의 종래의 트랜스포머(13a)는 출력권선(133a)의 한 쪽 권선면의 둘레는 한 점이 전기적인 접지로 연결된 쉴드판(135a)으로 감싸고, 다른 한 쪽 권선면의 둘레는 상쇄권선(132a)으로 감싸는 구조를 갖는다.
도 4에 있어서는, 쉴드판(135a)으로 출력권선(133a)의 한 쪽 권선면의 둘레를 양쪽 끝이 단락되지 않게 절연된 금속판으로 한 바퀴 이상 혹은 양쪽 끝이 절연되지 않은 금속판으로 한 바퀴보다 1mm 내지 2mm 부족하게 혹은 둘레의 90% 만큼 감싸고, 출력권선(133a)과 용량성으로 결합하는 상쇄권선(132a)의 턴 수의 조절에 의해 출력권선(133a)으로 생성되는 용량성의 결합의 합을 가능한 한 낮은 값으로 갖도록 하여 EMI를 낮춘다.
도 6의 트랜스포머(20a)는 도체판(205)의 길이의 선정에 의해 입력권선(201)과 제1권선(202)과 트랜스포머코어(206)와 도시되지는 않았지만 필요에 의해 추가될 수도 있는 권선들을 포함하는 전원장치 내의 요소들로부터 출력권선(203)으로 생성되는 용량성의 결합의 합을 상쇄시켜 EMI를 세밀하게 "0"에 접근시키는 것이 도 4의 트랜스포머와의 차이점이다.
도 6의 트랜스포머에서 도체판(205)의 길이가 출력권선(203)의 한 쪽 권선면의 둘레에서 1mm 내지 2mm를 뺀 값 혹은 둘레의 90%에 접근하거나 혹은 그 이상이 되는 경우, 도 4의 종래의 기술과의 구분이 어려워질 수 있다.
출력권선(203)의 권선면 중 입력권선(201)을 마주하는 권선면의 반대쪽 권선면과 용량성의 결합을 생성시켜서 EMI를 낮추는 도체판(205)의 길이가 출력권선(203)의 권선면 중 입력권선(201)을 마주하는 권선면의 반대쪽 권선면의 둘레의 80 퍼센트 이하이거나 혹은 출력권선(203)의 권선면 중 입력권선(201)을 마주하는 권선면의 반대쪽 권선면의 둘레에서 4mm를 뺀 길이 이하일 때 도 4의 종래의 기술과의 구분이 더 명확해 질 수 있다. 혹은, 출력권선(203)의 권선면 중 입력권선(201)을 마주하는 권선면의 반대쪽 권선면과 용량성의 결합을 생성시켜서 EMI를 낮추는 도체판(205)의 길이가 출력권선(203)의 권선면 중 입력권선(201)을 마주하는 권선면의 반대쪽 권선면의 둘레의 60 퍼센트 이내이거나 혹은 출력권선(203)의 권선면 중 입력권선(201)을 마주하는 권선면의 반대쪽 권선면의 둘레에서 6mm를 뺀 길이 이하일 때 더욱 더 명확해 질 수 있다.
또한, 도 4의 트랜스포머(13a)는 쉴드판(135a)이 입력권선(131a)과 출력권선(133a) 사이에 위치하나, 도 6의 트랜스포머(20a)는 도체판(205)이 출력권선(203)의 권선면 중 입력권선(201)을 마주하는 권선면의 반대쪽 권선면 쪽에 위치하는 큰 구조적인 차이를 갖는다. 따라서, 도 6의 트랜스포머(20a)의 도체판(205)의 길이가 출력권선(203)의 권선면 중 입력권선(201)을 마주하는 권선면의 반대쪽 권선면의 둘레의 100 퍼센트에 이르더라도 그 구분은 명확하다 할 것이다.
도 6은 출력권선(203)의 권선면 중 입력권선(201)을 마주하는 권선면의 반대쪽 권선면의 전체 폭을 가로질러 출력권선(203)의 둘레의 일부분과 용량성으로 결합하도록 도체판(205a)을 부착하여 인출한 단자(207)를 전기적인 접지로 연결한 실시예를 도시하고, 도 7은 출력권선(203) 권선폭보다 짧게 도체판(205b)을 부착한 실시예를 도시한다.
도 6에 있어서, 트랜스포머(20a)의 한 점이 전기적인 접지로 연결된 도체판(205)의 길이가 출력권선(203)의 권선면 중 입력권선(201)을 마주하는 권선면의 반대쪽 권선면의 둘레의 100 퍼센트에 이르러도 입력권선(201)과 제1권선(202)과 트랜스포머코어(206)와 도시되지는 않았지만 필요에 의해 추가될 수도 있는 권선들을 포함하는 전원장치 내의 요소들로부터 출력권선(203)으로 생성되는 용량성의 결합의 합을 상쇄시켜 EMI를 "0"에 접근시키기에 부족한 경우, 도체판(205)은 출력권선(203)과의 전위차를 키우기 위한 권선을 거쳐서 전기적인 접지로 연결할 수도 있다.
또한, 도체판(205)은 도 8과 도 9와 같이 출력권선(203)의 권선면 중 입력권선(201)을 마주하는 권선면과 용량성의 결합을 생성시키면서 도체판(205)의 면적에서 입력권선(201)을 포함하는 전원장치 내의 요소들로부터 출력권선(203)으로 생성되는 용량성의 결합을 차단하도록 위치시킬 수 있다. 이 경우는 도체판(205)의 면적이 증가할 수록 입력권선(201)을 포함하는 전원장치 내의 요소들로부터 출력권선(203)으로 생성되는 용량성의 결합이 차단되어 감소하므로, 도체판(205)과 출력권선(203) 사이의 용량성의 결합이 입력권선(201)을 포함하는 전원장치 내의 요소들로부터 출력권선(203)으로 생성되는 용량성의 결합에 의해 전원장치에서 발생하는 EMI를 상쇄시켜 가장 낮게 낮추는 도체판(205)과 출력권선(203) 사이의 용량성의 결합이 생성되도록 도체판(205)의 길이를 선정한다. 도 8과 도 9의 일실시예로써, 입력권선(201)과 출력권선(203) 사이에 제1권선(202)이 위치하고, 제1권선(202)과 출력권선(203) 사이의 권선면 면적의 전체 혹은 일부분에 도체판(205)이 위치할 수 있다. 이 경우 입력권선(201)과 제1권선(202)에서 생성하는 고주파 노이즈의 일부가 도체판(205)에 의해 차단되어 출력권선(203)에 전달되지 않으므로, 방사 EMI도 낮추는 효과를 갖는다.
다른 일실시예로써, 입력권선(201)과 출력권선(203) 사이의 권선면 면적의 전체 혹은 일부분에 도체판(205)이 위치하고, 도체판(205)과 출력권선(203)의 사이에 하나 이상의 권선이 위치할 수도 있다. 출력권선(203)과 결합하여 출력전압의 정보를 피드백하는 권선 혹은 제1권선(202)이 그 일례이다.
일실시예로써, 도체판(205 혹은 205a 혹은 205b 혹은 205c)은 보빈의 권선면 내에서 외부와 연결하는 연결선을 접속할 수 있다. 다른 실시예로써, 도 8과 도 9와 같이 도체판(205c)의 일부분을 보빈(28)의 권선면 밖으로 인출하여 권선면의 밖에서 외부와 연결하는 단자(207)를 접속할 수 있다. 도 6과 도 7의 경우에도 도체판(205a 혹은 205b)의 한쪽 끝을 보빈의 권선면 밖으로 인출하여 외부와 연결하는 단자(207)를 접속할 수 있다.
필요에 따라, 도체판(205)은 출력권선(203)의 권선면 중 입력권선(201)을 마주하는 권선면의 반대쪽 권선면과 용량성의 결합을 생성시키는 위치와 출력권선(203)의 권선면 중 입력권선(201)을 마주하는 권선면과 용량성의 결합을 생성시키는 위치에 모두 위치시킬 수도 있다. 입력권선(201)이 둘로 나뉘어 출력권선(203)과 샌드위치 구조를 가지는 경우에도 도체판(205)은 출력권선(203)의 양쪽 권선면에 용량성의 결합을 생성시키도록 두 군데에 위치시키거나 한쪽 권선면에만 용량성의 결합을 생성시키도록 위치시킬 수도 있다.
도 10은 본 발명에 따르는 플라이백 컨버터에서 발생하는 전도성 EMI를 정교하게 상쇄시켜 낮추는 다른 실시예를 도시하는데, "부"의 출력전압이 인출되는 것이 도 5와 다르다.
도 10에 있어서, 입력권선(211)과 제1권선(212)과 트랜스포머코어(216)와 도시되지는 않았지만 필요에 의해 추가될 수도 있는 권선들을 포함하는 전원장치 내의 요소들로부터 출력권선(213)으로 생성되는 용량성의 결합의 합을 도체판(215)으로부터 출력권선(213)으로 생성되는 역극성의 용량성의 결합에 의해 상쇄시켜 전원장치에서 발생하는 전도성 EMI를 낮춘다.
도 11은 본 발명에 따르는 플라이백 컨버터에서 발생하는 전도성 EMI를 정교하게 상쇄시켜 낮추는 또 다른 실시예를 도시한다.
도 11에 있어서, 트랜스포머(22)를 제외한 회로 구성은 도 2의 회로 구성에 대응된다.
도 11은 "정"의 플라이백 전압을 유도하는 플라이백권선(222)과 "부"의 플라이백 전압을 유도하는 포워드권선(224)이 형성하는 평균전위와 출력권선(183) 사이의 전위차에 의한 용량성의 결합과 입력권선(181)과 출력권선(183) 사이에서 생성되는 용량성의 결합의 합을 포함하여 트랜스포머의 코어(226)와 도시되지는 않았지만 필요에 의해 추가될 수도 있는 권선들이나 요소들로부터 출력권선(223)으로 생성시키는 용량성 결합에 의해 전원장치에서 생성되는 EMI를 도체판(225)과 출력권선(223) 사이에서 생성되는 용량성 결합으로 상쇄시켜 낮춘다. 도 5와 마찬가지로, 도체판(225)의 폭과 길이를 선정하여 정교하게 전원장치의 EMI를 낮출 수 있어서, 충분한 EMI 마진을 확보할 수 있다.
도체판(225)은 출력권선(223)의 권선면 중 입력권선(221)을 마주하는 권선면의 반대쪽 권선면으로 용량성의 결합을 생성하도록 위치시킬 수도 있고, 출력권선(223)의 권선면 중 입력권선(221)을 마주하는 권선면으로 용량성의 결합을 생성하도록 위치시킬 수도 있으며, 양쪽 모두에 위치할 수도 있다.
도 12는 본 발명에 따르는 플라이백 컨버터에서 발생하는 전도성 EMI를 정교하게 상쇄시켜 낮추는 또 다른 실시예를 도시한다.
도 12에 있어서, 트랜스포머(23)를 제외한 회로 구성은 도 3의 회로 구성에 대응된다.
도 12의 트랜스포머(23)는 제1입력권선(231)과 제2입력권선(232)과 출력권선(233)과 도체판(235)과 트랜스포머코어(236)를 포함한다.
제2입력권선(232)이 제1입력권선(231)과 출력권선(233) 사이의 권선층에 위치할 수도 있고, 출력권선(233)이 제1입력권선(231)과 제2입력권선(232) 사이의 권선층에 위치할 수도 있다.
트랜스포머 코어(236)와 제1입력권선(231)과 제2입력권선(232)과 도시되지는 않았지만 필요에 의해 추가될 수도 있는 권선들이나 요소들로부터 출력권선(233)으로 생성시키는 용량성의 결합의 합에 의해 전원장치에서 생성되는 EMI를 도체판(235)과 출력권선(233) 사이에서 생성되는 용량성 결합으로 상쇄시켜 낮춘다. 도 5와 마찬가지로, 도체판(235)의 폭과 길이를 선정하여 정교하게 전원장치의 EMI를 낮출 수 있어서, 충분한 EMI 마진을 확보할 수 있다.
도 5 내지 도 12에서 트랜스포머의 코어(206 혹은 216 혹은 226 혹은 236)는 오픈된 상태일 수도 있고, 1차측의 전기적인 접지에 연결될 수도 있고, 혹은 트랜스포머(20 혹은 21 혹은 22 혹은 23)에 포함되는 한 권선의 일측단자에 연결될 수도 있다.
도 5 내지 도 12에서 도체판(205 혹은 215 혹은 225 혹은 235)은 직접 1차측의 전기적인 접지로 연결되거나, 저항이나 캐패시터 등의 수동소자의 조합을 통해 1차측의 전기적인 접지로 연결되거나, 혹은 도체판에 전위를 공급하기 위한 권선을 경유하여 1차측의 전기적인 접지로 연결될 수도 있다.
이와 같은 도 5 내지 도 12의 실시예들은 도체판(205 혹은 205a 내지 205c 혹은 215 혹은 225 혹은 235)의 폭과 길이를 입력권선(201혹은 211 혹은 221 혹은 231)을 포함하는 트랜스포머(20혹은 21 혹은 22 혹은 23) 및 전원장치 내의 요소들로부터 출력권선(203 혹은 213 혹은 223 혹은 233)으로 생성되는 용량성의 결합의 합에 의해 전원장치에서 발생시키는 EMI를 가장 많이 상쇄시켜 낮출 수 있는 값으로 설정할 수 있으므로, 도 1 내지 도 3의 종래기술에 비해 EMI를 훨씬 낮춰 충분한 마진을 제공하는 장점을 가진다.
또한, 출력권선(203 혹은 213 혹은 223 혹은 233)과 용량성으로 결합하는 제1권선(202) 혹은 플라이백권선(222)과 포워드권선(224) 혹은 제2입력권선(232)의 턴 수를 출력권선(203 혹은 213 혹은 223 혹은 233)의 턴 수보다 2배로 크게 취하여 플라이백 전압을 정류하여 제어부의 전원을 공급하더라도, 도체판의 크기를 전원장치의 EMI를 가장 많이 상쇄시켜 낮출 수 있는 값으로 설정하여 충분한 EMI의 마진을 제공할 수 있으므로, 도 1 내지 도 3에서와 같이 출력권선(203 혹은 213 혹은 223 혹은 233)으로 생성되는 용량성 결합을 상쇄시킬 별도의 권선을 추가할 필요가 없다는 장점을 가진다.
또한, 출력권선(203 혹은 213 혹은 223 혹은 233)의 턴 수의 2배인 제1권선(202) 혹은 플라이백권선(222)과 포워드권선(224) 혹은 제2입력권선(232)은 얇은 선을 2 내지 3가닥 정도로 보빈의 권선면을 쉽게 꽉 채워서 감을 수 있으므로, 출력권선(203 혹은 213 혹은 223 혹은 233)의 작은 턴 수 내외로 많은 가닥수로 감아서 채워야 했던 종래기술에 비해 권선의 작업성과 생산성이 크게 개선되는 장점을 가진다.
이상 첨부한 도면을 참조하여 본 발명의 실시예를 설명하였지만, 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 설명한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (29)

  1. 제1전압입력단자와, 제2전압입력단자와, 출력 선로와, 상기 제1전압입력단자 및 상기 제2전압입력단자와 상기 출력 선로 사이에 위치하는 자기에너지전달소자와, 스위칭소자를 포함하는 스위칭형 전원장치에 사용되는 상기 자기에너지전달소자에 있어서,
    상기 자기에너지전달소자의 코어와;
    상기 자기에너지전달소자의 보빈과;
    상기 자기에너지전달소자의 코어에 감겨지고, 상기 스위칭소자의 스위칭 동작에 의해 자기에너지의 축적과 방출이 제어되는 입력권선과;
    상기 입력권선과 자기적으로 결합하여 에너지를 인출하여 상기 출력 선로를 통해 부하에 공급하는 출력권선과; 그리고
    상기 입력권선의 한 권선면과 상기 출력권선의 권선면 사이에 위치하는 도체판을 포함하되,
    상기 도체판이 상기 입력권선의 한 권선면과 상기 출력권선의 권선면 사이를 가로 막는 부분에서 상기 입력권선의 한 권선면과 상기 출력권선의 권선면 사이의 용량성 결합이 차단되며,
    상기 도체판이 상기 출력권선의 권선면을 감싸는 부분의 상기 도체판의 폭과 길이의 선정에 의해 상기 입력권선의 한 권선면과 상기 출력권선의 권선면 사이를 가로막지 않는 면적을 포함하는 경로를 통해 상기 자기에너지전달소자 및 상기 전원장치 내의 요소들로부터 상기 출력권선으로 생성하는 용량성 결합의 합과 상기 도체판으로부터 상기 출력권선으로 생성되는 용량성 결합의 양이 설정되며,
    상기 도체판이 상기 입력권선의 한 권선면과 상기 출력권선의 권선면 사이를 가로막지 않는 면적을 포함하는 경로를 통해 상기 자기에너지전달소자 및 상기 전원장치 내의 요소들로부터 상기 출력권선으로 생성하는 용량성 결합의 합에 의해 생성되는 전원장치의 EMI가 상기 도체판으로부터 상기 출력권선으로 생성되는 용량성 결합에 의해 상쇄되어 낮아지는 것을 특징으로 하는 자기에너지전달소자.
  2. 제1항의 자기에너지전달소자에 있어서, 상기 도체판에 전위를 가하기 위한 제1권선을 더 포함하며, 상기 도체판은 상기 제1권선을 통해 전기적인 접지에 연결되는 것을 특징으로 하는 자기에너지전달소자.
  3. 제1항의 자기에너지전달소자에 있어서, 상기 도체판은 전기적인 접지에 연결되는 것을 특징으로 하는 자기에너지전달소자.
  4. 제1항의 자기에너지전달소자에 있어서, 상기 도체판은 하나 이상의 수동소자의 조합을 통해 전기적인 접지에 연결되는 것을 특징으로 하는 자기에너지전달소자.
  5. 제1항의 자기에너지전달소자에 있어서, "정"의 플라이백 전압을 유도하는 제2권선을 더 포함하며, 상기 입력권선과 상기 출력권선 사이에 상기 제2권선이 위치하고 상기 제2권선과 상기 출력권선 사이에 상기 도체판이 위치하는 것을 특징으로 하는 자기에너지전달소자.
  6. 제1항의 자기에너지전달소자에 있어서, "정"의 플라이백 전압을 유도하는 제2권선을 더 포함하며, 상기 입력권선과 상기 출력권선 사이에 상기 제2권선이 위치하고 상기 입력권선과 상기 제2권선 사이에 상기 도체판이 위치하는 것을 특징으로 하는 자기에너지전달소자.
  7. 제1항의 자기에너지전달소자에 있어서, "정"의 플라이백 전압을 유도하는 제3권선과 "부"의 플라이백 전압을 유도하는 제4권선을 더 포함하며, 상기 도체판의 한 면 쪽으로 상기 입력권선과 상기 제3권선과 상기 제4권선이 위치하고 상기 도체판의 다른 한 면 쪽으로 상기 출력권선이 위치하는 것을 특징으로 하는 자기에너지전달소자.
  8. 제1항의 자기에너지전달소자에 있어서, "정"의 플라이백 전압을 유도하는 제3권선과 "부"의 플라이백 전압을 유도하는 제4권선을 더 포함하며, 상기 도체판의 한 면 쪽으로 상기 입력권선이 위치하고 상기 도체판의 다른 한 면 쪽으로 상기 제3권선과 상기 제4권선과 상기 출력권선이 위치하는 것을 특징으로 하는 자기에너지전달소자.
  9. 제1항의 자기에너지전달소자에 있어서, 상기 자기에너지전달소자의 코어에 감겨지고, 상기 제2전압입력단자와 상기 스위칭소자의 다른 일측 단자와의 사이에 접속되어, 상기 스위칭소자의 스위칭 동작에 의해 자기에너지의 축적과 방출이 제어되는 제5권선을 더 포함하며, 상기 도체판의 한 면 쪽으로 상기 입력권선이 위치하고 상기 도체판의 다른 한 면 쪽으로 상기 제5권선과 상기 출력권선이 위치하는 것을 특징으로 하는 자기에너지전달소자.
  10. 제9항의 자기에너지전달소자에 있어서, 상기 제5권선은 상기 도체판과 상기 출력권선의 사이에 위치하는 것을 특징으로 하는 자기에너지전달소자.
  11. 제9항의 자기에너지전달소자에 있어서, 상기 출력권선은 상기 도체판과 상기 제5권선의 사이에 위치하는 것을 특징으로 하는 자기에너지전달소자.
  12. 제1항의 자기에너지전달소자에 있어서, 상기 자기에너지전달소자의 코어에 감겨지고, 상기 제2전압입력단자와 상기 스위칭소자의 다른 일측 단자와의 사이에 접속되어, 상기 스위칭소자의 스위칭 동작에 의해 자기에너지의 축적과 방출이 제어되는 제5권선을 더 포함하며, 상기 도체판의 한 면 쪽으로 상기 입력권선과 상기 제5권선이 위치하고 상기 도체판의 다른 한 면 쪽으로 상기 출력권선이 위치하는 것을 특징으로 하는 자기에너지전달소자.
  13. 제1항의 자기에너지전달소자에 있어서, 상기 입력권선의 일부분이 상기 출력권선의 한 쪽 권선면과 마주하여 위치하고, 상기 입력권선의 다른 일부분이 상기 출력권선의 다른 한 쪽 권선면과 마주하여 위치하며, 상기 도체판은 상기 입력권선의 일부분과 상기 출력권선의 한 쪽 권선면 사이에 위치하는 것을 특징으로 하는 자기에너지전달소자.
  14. 제13항의 자기에너지전달소자에 있어서, 상기 입력권선의 다른 일부분과 상기 출력권선의 다른 한 쪽 권선면 사이에 상기 출력권선의 다른 한 쪽 권선면으로 용량성 결합을 생성하는 제2도체판을 더 포함하는 것을 특징으로 하는 자기에너지전달소자.
  15. 제1항의 자기에너지전달소자에 있어서, 상기 출력권선의 권선면 중 상기 출력권선이 상기 입력권선을 향하는 권선면의 반대쪽 권선면의 면적의 일부분으로 용량성 결합을 생성하는 제3도체판을 더 포함하는 것을 특징으로 하는 자기에너지전달소자.
  16. 제1항의 자기에너지전달소자에 있어서, 상기 도체판의 일부분이 상기 자기에너지전달소자의 보빈의 권선면 밖으로 인출되어 외부와의 연결선과 접속되는 것을 특징으로 하는 자기에너지전달소자.
  17. 제1전압입력단자와, 제2전압입력단자와, 출력 선로와, 상기 제1전압입력단자 및 상기 제2전압입력단자와 상기 출력 선로 사이에 위치하는 자기에너지전달소자와, 스위칭소자를 포함하는 스위칭형 전원장치에 사용되는 상기 자기에너지전달소자에 있어서,
    상기 자기에너지전달소자의 코어와;
    상기 자기에너지전달소자의 보빈과;
    상기 자기에너지전달소자의 코어에 감겨지고, 상기 스위칭소자의 스위칭 동작에 의해 자기에너지의 축적과 방출이 제어되는 입력권선과;
    상기 입력권선과 자기적으로 결합하여 에너지를 인출하여 상기 출력 선로를 통해 부하에 공급하는 출력권선과; 그리고
    상기 출력권선의 권선면 중 상기 출력권선이 상기 입력권선을 향하는 권선면의 반대쪽 권선면과 용량성 결합을 생성시키는 도체판을 포함하되,
    상기 도체판이 상기 출력권선의 권선면을 감싸는 부분의 상기 도체판의 폭과 길이의 선정에 의해 상기 도체판으로부터 상기 출력권선으로 생성되는 용량성 결합의 양이 설정되며,
    상기 자기에너지전달소자 및 상기 전원장치 내의 요소들로부터 상기 출력권선으로 생성하는 용량성 결합의 합에 의한 전원장치의 EMI가 상기 도체판으로부터 상기 출력권선으로 생성되는 용량성 결합에 의해 상쇄되어 낮아지는 것을 특징으로 하는 자기에너지전달소자.
  18. 제17항의 자기에너지전달소자에 있어서, 상기 도체판의 길이는 상기 도체판과 마주하는 상기 출력권선의 권선면의 둘레의 80% 이하인 것을 특징으로 하는 자기에너지전달소자
  19. 제17항의 자기에너지전달소자에 있어서, 상기 도체판의 길이는 상기 도체판과 마주하는 상기 출력권선의 권선면의 둘레의 60% 이하인 것을 특징으로 하는 자기에너지전달소자
  20. 제17항의 자기에너지전달소자에 있어서, 상기 도체판에 전위를 가하기 위한 제1권선을 더 포함하며, 상기 도체판은 상기 제1권선을 통해 전기적인 접지에 연결되는 것을 특징으로 하는 자기에너지전달소자.
  21. 제17항의 자기에너지전달소자에 있어서, 상기 도체판은 전기적인 접지에 연결되는 것을 특징으로 하는 자기에너지전달소자.
  22. 제17항의 자기에너지전달소자에 있어서, 상기 도체판은 하나 이상의 수동소자의 조합을 통해 전기적인 접지에 연결되는 것을 특징으로 하는 자기에너지전달소자.
  23. 제17항의 자기에너지전달소자에 있어서, "정"의 플라이백 전압을 유도하는 제2권선을 더 포함하며, 상기 입력권선과 상기 출력권선 사이에 상기 제2권선이 위치하는 것을 특징으로 하는 자기에너지전달소자.
  24. 제17항의 자기에너지전달소자에 있어서, "정"의 플라이백 전압을 유도하는 제3권선과 "부"의 플라이백 전압을 유도하는 제4권선을 더 포함하며, 상기 제3권선과 상기 제4권선은 상기 입력권선과 상기 출력권선 사이에 위치하는 것을 특징으로 하는 자기에너지전달소자.
  25. 제17항의 자기에너지전달소자에 있어서, 상기 자기에너지전달소자의 코어에 감겨지고, 상기 제2전압입력단자와 상기 스위칭소자의 다른 일측 단자와의 사이에 접속되어, 상기 스위칭소자의 스위칭 동작에 의해 자기에너지의 축적과 방출이 제어되는 제5권선을 더 포함하며, 상기 제5권선은 상기 출력권선이 상기 입력권선을 마주하는 방향 쪽에 위치하는 것을 특징으로 하는 자기에너지전달소자.
  26. 제17항의 자기에너지전달소자에 있어서, 상기 자기에너지전달소자의 코어에 감겨지고, 상기 제2전압입력단자와 상기 스위칭소자의 다른 일측 단자와의 사이에 접속되어, 상기 스위칭소자의 스위칭 동작에 의해 자기에너지의 축적과 방출이 제어되는 제5권선을 더 포함하며, 상기 제5권선은 상기 출력권선이 상기 입력권선을 마주하는 방향의 반대쪽에 위치하는 것을 특징으로 하는 자기에너지전달소자.
  27. 제17항의 자기에너지전달소자에 있어서, 상기 도체판의 일부분이 상기 자기에너지전달소자의 보빈의 권선면 밖으로 인출되어 외부와의 연결선과 접속되는 것을 특징으로 하는 자기에너지전달소자.
  28. 제1항 내지 제27항 중 어느 한 항의 자기에너지전달소자를 포함하는 것을 특징으로 하는 스위칭형 전원장치.
  29. 제28항의 스위칭형 전원장치를 포함하는 것을 특징으로 하는 제조된 물품.
PCT/KR2014/003734 2013-05-02 2014-04-28 자기에너지전달소자 및 전원장치 WO2014178589A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20130049340 2013-05-02
KR10-2013-0049340 2013-05-02
KR10-2014-0022754 2014-02-26
KR20140022754 2014-02-26
KR10-2014-0041172 2014-04-07
KR20140041172 2014-04-07

Publications (1)

Publication Number Publication Date
WO2014178589A1 true WO2014178589A1 (ko) 2014-11-06

Family

ID=51843653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003734 WO2014178589A1 (ko) 2013-05-02 2014-04-28 자기에너지전달소자 및 전원장치

Country Status (1)

Country Link
WO (1) WO2014178589A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020038923A1 (de) * 2018-08-20 2020-02-27 Ebm-Papst Mulfingen Gmbh & Co. Kg Vorrichtung zur reduzierung hochfrequenter störungen eines transformators
CN112421966A (zh) * 2019-08-22 2021-02-26 南京南瑞继保电气有限公司 一种固态变压器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017667A (ja) * 2006-07-07 2008-01-24 Tinyplug Technology (Shenzhen) Ltd プラグタイプの電源ユニット
KR20090011485A (ko) * 2007-07-26 2009-02-02 페어차일드코리아반도체 주식회사 주파수 변조 장치 및 이를 이용하는 스위치 모드 파워서플라이
KR100944113B1 (ko) * 2009-02-27 2010-02-24 한국과학기술원 전기자동차용 전원공급 시스템 및 방법
KR101012154B1 (ko) * 2009-07-15 2011-02-07 주식회사 와이즈파워 스위칭 모드 파워 서플라이의 전력 저감장치
KR101045585B1 (ko) * 2010-09-29 2011-06-30 한국과학기술원 전자기파의 누설이 저감된 무선전력전송장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017667A (ja) * 2006-07-07 2008-01-24 Tinyplug Technology (Shenzhen) Ltd プラグタイプの電源ユニット
KR20090011485A (ko) * 2007-07-26 2009-02-02 페어차일드코리아반도체 주식회사 주파수 변조 장치 및 이를 이용하는 스위치 모드 파워서플라이
KR100944113B1 (ko) * 2009-02-27 2010-02-24 한국과학기술원 전기자동차용 전원공급 시스템 및 방법
KR101012154B1 (ko) * 2009-07-15 2011-02-07 주식회사 와이즈파워 스위칭 모드 파워 서플라이의 전력 저감장치
KR101045585B1 (ko) * 2010-09-29 2011-06-30 한국과학기술원 전자기파의 누설이 저감된 무선전력전송장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020038923A1 (de) * 2018-08-20 2020-02-27 Ebm-Papst Mulfingen Gmbh & Co. Kg Vorrichtung zur reduzierung hochfrequenter störungen eines transformators
CN112421966A (zh) * 2019-08-22 2021-02-26 南京南瑞继保电气有限公司 一种固态变压器

Similar Documents

Publication Publication Date Title
JP4292184B2 (ja) ワイヤレスエレベータホール備品に有用な誘導結合電力
WO2014112827A1 (ko) 전자기 유도 방식 전원 공급 장치
CN100561616C (zh) 变压器
KR20080090601A (ko) 에너지 전달 소자 및 이를 포함하는 컨버터
WO2018070779A1 (ko) 자기유도 전원 공급 장치
WO2017160098A1 (ko) 스위칭 전원의 1차측에 위치하는 정류 다이오드에서 생성되는 잡음을 낮추는 방법과 장치
WO2014178589A1 (ko) 자기에너지전달소자 및 전원장치
WO2014157844A2 (ko) 다수의 외부 장치에 유선으로 전원공급이 가능한 무선 전력 수신 장치
WO2018074861A1 (ko) 자기유도 전원 공급 장치
WO2018117595A1 (en) Magnetic core, coil component, and electronic component including same
WO2019245233A1 (ko) 트랜스포머
EP4162778B1 (en) Electronic circuit with isolation
WO2014178667A1 (ko) 무선전력 수신장치
WO2020159252A1 (ko) 트랜스포머
CA3149834A1 (en) Protection of an ac device
KR102219171B1 (ko) 자기에너지전달소자 및 전원장치
WO2020096344A1 (ko) 무선 충전 패드 및 무선 충전 장치
CN220873382U (zh) 无y电容变压器及开关电源电路
CN216250367U (zh) 一种大功率直流高压的隔离变压器
CN108666095A (zh) 一种隔离变压器
WO2023211136A1 (ko) 전력변환장치용 계자 유니트
JP2001258183A (ja) 静電誘導利用電源装置
EP4310870A1 (en) Power conversion device
WO2022086220A1 (ko) 자성 소자 및 이를 포함하는 영상 출력 장치
CN214674872U (zh) 一种应用于poe电源的dc输出端传导滤波电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791864

Country of ref document: EP

Kind code of ref document: A1