WO2020026621A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2020026621A1
WO2020026621A1 PCT/JP2019/024080 JP2019024080W WO2020026621A1 WO 2020026621 A1 WO2020026621 A1 WO 2020026621A1 JP 2019024080 W JP2019024080 W JP 2019024080W WO 2020026621 A1 WO2020026621 A1 WO 2020026621A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking torque
vehicle
regenerative braking
engine
control device
Prior art date
Application number
PCT/JP2019/024080
Other languages
French (fr)
Japanese (ja)
Inventor
小倉 健太郎
武史 長岡
Original Assignee
ボッシュ株式会社
ボッシュエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社, ボッシュエンジニアリング株式会社 filed Critical ボッシュ株式会社
Priority to DE112019003902.4T priority Critical patent/DE112019003902T5/en
Priority to JP2020534095A priority patent/JP7223762B2/en
Priority to CN201980065054.7A priority patent/CN112752688B/en
Publication of WO2020026621A1 publication Critical patent/WO2020026621A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/188Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0614Position of fuel or air injector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • B60W2510/0642Idle condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • B60W2710/085Torque change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/89Repartition of braking force, e.g. friction braking versus regenerative braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a control device for a vehicle.
  • Vehicles equipped with an internal combustion engine and a motor generator having a power generation function are known.
  • the motor generator functions as a power generation device that converts kinetic energy input from the driving wheel side into electric energy, and at the same time, transmits the rotational resistance generated during the power generation to the driving wheel side as a regenerative brake. Functions as a device.
  • various technologies for controlling a braking force of the vehicle have been proposed.
  • Patent Literature 1 discloses a hybrid vehicle and an electric vehicle that can obtain a braking force desired by a driver by changing a hydraulic braking torque in accordance with a regenerative braking torque that changes according to a power generation amount of a motor generator. Discloses a brake system and a control method thereof.
  • fuel injection to the engine may be stopped to improve fuel efficiency.
  • the regenerative braking by the motor generator may be preferentially used for a braking request of the vehicle.
  • the present invention has been made in view of the above problems, and an object of the present invention is to make it possible to smoothly replace a braking force by a regenerative brake with a braking force by a hydraulic brake when the vehicle is decelerated. It is to provide a control device for a vehicle.
  • a regenerative braking torque and a regenerative braking torque generated by a motor generator mounted on a vehicle including an engine and a motor generator connected in series and a hydraulic brake operated by hydraulic pressure are provided.
  • a control device for a vehicle that controls a hydraulic brake torque generated by a hydraulic brake, wherein the regenerative braking torque is generated during fuel cut control for cutting fuel injection to an engine, and is correlated with an engine speed.
  • a regenerative braking torque control unit that reduces the target regenerative braking torque at a predetermined gradient when the engine speed index satisfies a predetermined condition; and a torque between a required braking torque requested by the driver of the vehicle and the target regenerative braking torque.
  • a hydraulic brake control unit that sets a difference between the two as a target hydraulic brake torque. That.
  • the braking force by the regenerative brake can be smoothly replaced with the braking force by the hydraulic brake.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a vehicle to which a vehicle control device according to a first embodiment of the present invention can be applied.
  • FIG. 2 is a block diagram illustrating a configuration example of a vehicle control device according to the embodiment.
  • FIG. 5 is an explanatory diagram illustrating an operation example of a control device for a vehicle according to a comparative example. It is an explanatory view showing an operation example of the control device for the vehicle according to the embodiment. It is an explanatory view showing an operation example of the control device for the vehicle according to the embodiment. It is a flow chart which shows an example of operation of the control device of the vehicles concerning the embodiment.
  • FIG. 2 is a block diagram illustrating a configuration example of a vehicle control device according to the embodiment. It is an explanatory view showing an operation example of the control device for the vehicle according to the embodiment. It is an explanatory view showing an operation example of the control device for the vehicle according to the embodiment. It is a flow chart which shows an example of operation of the control device of the vehicles concerning the embodiment.
  • FIG. 1 is a schematic diagram showing a vehicle 1 provided with a vehicle control device 100.
  • FIG. 1 an example of the overall configuration of the vehicle 1 will be described separately for the power unit 10 and the control device 100.
  • the power unit 10 of the vehicle 1 includes an engine 20 as a power source.
  • the power unit 10 includes a motor generator 30 that functions as a starter that performs cranking when the engine 20 starts. Motor generator 30 also functions as a braking device during vehicle deceleration.
  • the engine 20 and the motor generator 30 are connected in series via, for example, a coupling.
  • the power unit 10 includes a manual stepped transmission mechanism 50 connected to the motor generator 30 via the clutch mechanism 40.
  • the stepped transmission mechanism 50 is connected to the drive wheels 60 via a differential mechanism or the like.
  • the battery 32 is connected to the motor generator 30 via the inverter 34.
  • Inverter 34 controls motor generator 30 according to a control signal input from control device 100 described later.
  • motor generator 30 When the motor generator 30 is controlled as a starter, power is supplied from the battery 32 to the motor generator 30 via the inverter 34. Motor generator 30 performs cranking using the supplied power.
  • the motor generator 30 When the motor generator 30 is controlled as a braking device (regenerative control), the motor generator 30 converts rotational energy input from the drive wheels 60 into electric energy. Motor generator 30 transmits the rotational resistance generated during the conversion to drive wheels 60 as regenerative braking torque.
  • the braking force (regenerative braking torque) by the regenerative brake is controlled.
  • the electric energy converted from the rotational energy is supplied from the motor generator 30 to the battery 32 via the inverter 34 as electric power.
  • the drive wheel 60 is provided with a hydraulic brake 62 operated by hydraulic pressure.
  • a hydraulic brake 62 for example, a disk brake is used.
  • the hydraulic pressure supplied to the hydraulic brake 62 the braking force (hydraulic brake torque) by the hydraulic brake 62 is controlled.
  • the hydraulic pressure supplied to the hydraulic brake 62 is controlled by the hydraulic unit 70.
  • the hydraulic unit 70 includes an oil passage for supplying oil pressure from a master cylinder (not shown) to the hydraulic brake 62, a pump driven by a motor to discharge brake fluid, and a control valve such as a solenoid valve for adjusting opening and closing of the oil passage. And are provided.
  • the hydraulic pressure supplied to the hydraulic brake 62 is controlled by controlling the drive of the pump and the control valve by a brake controller 120 described later.
  • the clutch mechanism 40 switches the connection state between the motor generator 30 and the stepped transmission mechanism 50, that is, the connection state between the engine 20 and the stepped transmission mechanism 50.
  • the clutch mechanism 40 for example, a wet multi-plate clutch is used. By controlling the hydraulic pressure supplied to the clutch mechanism 40, the clutch mechanism 40 is engaged or released.
  • the engine 20 and the motor generator 30 are connected in series via a coupling.
  • the engine 20 and the motor generator 30 may be connected via a belt and a pulley.
  • the vehicle 1 includes various controllers including a microcomputer and the like in order to control an operation state of the power unit 10. As various controllers, an engine controller 110 and a brake controller 120 are provided.
  • controllers are communicably connected to each other via one or a plurality of in-vehicle networks such as CAN (Controller Area Network) or LIN (Local Internet), and perform braking force displacement control in cooperation with each other.
  • in-vehicle networks such as CAN (Controller Area Network) or LIN (Local Internet)
  • each controller may be configured by, for example, a microcomputer, a microprocessor unit, or the like.
  • a part or all of each controller may be configured by an updatable device such as firmware, or may be a program module or the like executed by a command from a CPU or the like.
  • Each controller includes a storage device (not shown) for storing a program executed by a microcomputer or the like, parameters used for various calculations, detection data, information on calculation results, and the like.
  • the storage device may be a storage device such as a random access memory (RAM) or a read only memory (ROM), or a storage device such as a hard disk drive (HDD), a CD-ROM, or a storage device.
  • RAM random access memory
  • ROM read only memory
  • HDD hard disk drive
  • CD-ROM compact disc-read only memory
  • a brake sensor 81, an accelerator sensor 83, a clutch sensor 85, and an engine speed sensor 87 are connected to the engine controller 110.
  • a brake sensor 81 is connected to the brake controller 120.
  • the brake sensor 81 detects the operation amount of the brake pedal.
  • the accelerator sensor 83 detects an operation amount of an accelerator pedal.
  • the clutch sensor 85 detects the operation amount of the clutch pedal.
  • the engine speed sensor 87 detects the engine speed, which is the rotation speed of the crankshaft.
  • the engine controller 110 outputs a control signal to a throttle valve, an injector, and the like of the engine 20 to control engine torque, engine speed, and the like.
  • the engine controller 110 stops the fuel injection while the engine 20 continues to rotate without stopping due to the rotational force of the drive wheels 60 even if the fuel injection is stopped (hereinafter, “fuel injection”). Also called “cut control.”).
  • Engine controller 110 outputs a control signal to inverter 34 connected to motor generator 30 to control the driving of motor generator 30.
  • the engine controller 110 outputs a control signal to the inverter 34 based on a control command from the brake controller 120, and controls the regenerative braking torque of the motor generator 30.
  • the brake controller 120 controls the regenerative braking torque by the motor generator 30 and the hydraulic brake torque by the hydraulic brake 62 to control the braking force of the vehicle 1.
  • the brake controller 120 sets the control target (target regenerative braking torque) of the motor generator 30 based on the information transmitted from each sensor and the engine controller 110. Brake controller 120 outputs a control command related to motor generator 30 to engine controller 110 based on the set control target.
  • the brake controller 120 sets a difference obtained by subtracting the regenerative braking torque by the motor generator 30 from the braking force (requested braking torque) required for the vehicle 1 as a control target (a target hydraulic brake torque) of the hydraulic brake 62.
  • the brake controller 120 outputs a control signal to a pump and a control valve provided in the hydraulic unit 70 based on the control target, and controls a hydraulic brake torque and the like.
  • the brake controller 120 when a driver or the like performs a brake operation during fuel cut control, the brake controller 120 causes the motor generator 30 to generate regenerative braking torque to decelerate the vehicle 1.
  • the brake controller 120 performs the braking force replacement control for gradually replacing the regenerative braking torque with the hydraulic brake torque.
  • the engine controller 110 performs a fuel cut control for stopping the fuel injection to the engine 20 in order to improve the fuel efficiency of the vehicle 1.
  • the brake controller 120 When the driver operates the brake pedal during the fuel cut control, the brake controller 120 generates regenerative braking torque. During the fuel cut control, the output torque from the engine 20 is zero, and efficient regenerative power generation by the motor generator 30 is possible. For this reason, the brake controller 120 generates the braking force of the vehicle 1 by the regenerative control of the motor generator 30 without using the hydraulic brake.
  • the engine controller 110 ends the fuel cut control and restarts the fuel injection. After the fuel injection is restarted, the fuel injection amount is controlled to the minimum necessary amount to keep the engine speed at the minimum speed (for example, idling speed) at which there is no risk of engine stall.
  • the brake controller 120 replaces the braking torque of the vehicle 1 with the hydraulic braking torque from the regenerative braking torque before the engine speed reaches the idling speed.
  • the control device 100 that enables the execution of the braking force replacement control will be described.
  • FIG. 2 is an explanatory diagram illustrating a functional configuration of a portion related to the braking force replacement control in the control device 100 including the engine controller 110 and the brake controller 120 illustrated in FIG.
  • the control device 100 includes a control start determination unit 210, a maximum regenerative braking torque setting unit 220, a regenerative braking torque control unit 230, and a hydraulic brake control unit 240.
  • Control device 100 also acquires signals output from brake sensor 81, accelerator sensor 83, clutch sensor 85, and engine speed sensor 87. Various types of information indicated by the acquired signals are stored in a storage device (not shown).
  • Control start determination unit For example, the engine controller 110 functions as the control start determination unit 210.
  • the control start determination unit 210 determines whether to start the braking force replacement control based on information from various sensors.
  • control start determination unit 210 determines whether or not the engine speed as an engine speed index acquired from the engine speed sensor 87 has reached the first speed during vehicle deceleration. When the engine speed decreases and reaches the first speed, the control start determination unit 210 determines to start the braking force replacement control.
  • the braking force replacement control be started before the fuel injection is restarted.
  • an appropriate reference rotation speed higher than the idling rotation speed may be used as the first rotation speed. This is because when the purpose is to prevent engine stall, the braking force replacement control may be started before the engine speed reaches the idling speed.
  • the first rotation speed is excessively higher than the rotation speed at which fuel injection is restarted (fuel injection restart rotation speed).
  • fuel injection restart rotation speed some regenerative braking torques are not increased even though the fuel consumption is reduced. It is replaced by torque, and the regenerative efficiency decreases.
  • the first rotation speed is, for example, a rotation speed obtained by adding an appropriate offset value to the fuel injection restart rotation speed.
  • the engine controller 110 functions as the maximum regenerative braking torque setting unit 220.
  • the maximum regenerative braking torque setting unit 220 sets the maximum regenerative braking torque that can be generated by the motor generator 30 as described below when the control start determination unit 210 determines to start the braking force replacement control.
  • the maximum regenerative braking torque that can be generated by motor generator 30 is referred to as the maximum regenerative braking torque.
  • the maximum regenerative braking torque setting unit 220 sets the regenerative braking torque generated by the motor generator 30 as the initial value of the maximum regenerative braking torque at the time when the control start determination unit 210 determines to start the braking force replacement control. .
  • the maximum regenerative braking torque setting unit 220 monotonically decreases the maximum regenerative braking torque with a predetermined gradient as time passes. At this time, the maximum regenerative braking torque setting unit 220 may reduce the maximum regenerative braking torque so that the gradient becomes linear.
  • the maximum regenerative braking torque setting unit 220 determines the rate of decrease of the maximum regenerative braking torque so that the angle of the gradient increases. May be raised.
  • the rotational resistance of the motor generator 30 may become a load on the engine 20 and cause engine stall.
  • the second rotation speed may be, for example, a rotation speed obtained by adding an appropriate offset value to the idling rotation speed.
  • the maximum regenerative braking torque setting unit 220 does not necessarily need to change the gradient even when the maximum regenerative braking torque is not 0 when the engine speed reaches the second speed. .
  • the maximum regenerative braking torque setting unit 220 does not need to change the gradient.
  • Regenerative braking torque control unit For example, the engine controller 110 and the brake controller 120 function as the regenerative braking torque control unit 230.
  • Regenerative braking torque control section 230 controls the regenerative braking torque generated by motor generator 30 based on the maximum regenerative braking torque set in maximum regenerative braking torque setting section 220 and information from various sensors.
  • the regenerative braking torque control unit 230 controls the overall braking force of the vehicle 1 in cooperation with the hydraulic brake control unit 240.
  • the regenerative braking torque control unit 230 calculates the required braking torque of the vehicle 1 based on, for example, the operation amount of the brake pedal acquired from the brake sensor 81. Further, regenerative braking torque control section 230 compares the required braking torque with the maximum regenerative braking torque, and sets a smaller value as a target value (a target regenerative braking torque) of the regenerative braking torque that causes motor generator 30 to generate a smaller value. decide. Regenerative braking torque control section 230 controls motor generator 30 via inverter 34 based on the determined regenerative braking torque. Thereby, the regenerative braking torque of motor generator 30 is controlled.
  • the brake controller 120 functions as the hydraulic brake control unit 240.
  • the hydraulic brake control unit 240 sets the difference between the required braking torque and the target regenerative braking torque as the target hydraulic brake torque for causing the hydraulic brake 62 to generate.
  • the hydraulic brake control unit 240 sets the target hydraulic brake torque such that the total torque of the target regenerative braking torque and the target hydraulic brake torque matches the required braking torque.
  • the hydraulic brake control unit 240 controls the pump and the control valve provided in the hydraulic unit 70 based on the set target hydraulic brake torque. Thereby, the hydraulic brake torque of the hydraulic brake 62 is controlled.
  • FIG. 3 is an explanatory diagram illustrating an operation example of a control device for a vehicle according to a comparative example.
  • 4 and 5 are explanatory diagrams showing an operation example of the control device for a vehicle according to the present embodiment.
  • the control device for the vehicle according to the comparative example differs from the control device for the vehicle according to the present embodiment in that the engine speed is used as an input parameter when setting the maximum regenerative braking torque tra.
  • the control device starts the braking force replacement control.
  • the control device sets the value of the maximum regenerative braking torque tra using the engine speed as an input parameter.
  • the value of the maximum regenerative braking torque tra is set by multiplying the engine speed by a predetermined coefficient.
  • the engine speed does not decrease linearly but decreases with slight vertical fluctuation. Therefore, the maximum regenerative braking torque tra set using the engine speed as an input parameter decreases with vertical fluctuation.
  • control device compares the required braking torque tre calculated based on the operation amount of the brake pedal acquired from the brake sensor 81 with the maximum regenerative braking torque tra, and determines the smaller value. Is set as the target regenerative braking torque.
  • the target regenerative braking torque matches the maximum regenerative braking torque tra.
  • the target regenerative braking torque decreases with vertical fluctuation.
  • regenerative braking torque trb actually generated by motor generator 30 decreases with vertical fluctuation.
  • the regenerative braking torque trb actually generated by the motor generator 30 is generated by the inverter 34 controlling the motor generator 30 according to the target regenerative braking torque set by the regenerative braking torque control unit 230. That is, the regenerative braking torque trb is controlled by the electric signal.
  • the hydraulic brake torque trc actually generated by the hydraulic brake 62 is driven by a pump provided in the hydraulic unit 70 in accordance with the target hydraulic brake torque set by the hydraulic brake control unit 240, and the control valve is connected to the hydraulic passage. It is generated by performing the opening / closing operation. That is, the hydraulic brake torque trc is physically controlled.
  • the responsiveness and followability of the hydraulic brake torque trc are inferior to the regenerative braking torque trb. That is, the total torque trd of the regenerative braking torque trb and the hydraulic brake torque trc may not coincide with the required braking torque tr and may be accompanied by vertical fluctuations. Therefore, the control device according to the comparative example may cause vibration of the vehicle 1 when replacing the braking force.
  • FIG. 4 is an operation example of the control device 100 when the vehicle 1 is traveling on a flat road.
  • the control start determination unit 210 determines to start the braking force replacement control.
  • the maximum regenerative braking torque setting unit 220 sets the regenerative braking torque trb at that time as an initial value of the maximum regenerative braking torque tra. Then, the maximum regenerative braking torque setting unit 220 monotonically decreases the maximum regenerative braking torque with the passage of time. In the example shown in FIG. 4, the maximum regenerative braking torque decreases linearly.
  • the followability of the hydraulic brake torque trc is inferior to the regenerative braking torque trb. That is, when the regenerative braking torque trb suddenly decreases, the increase in the hydraulic brake torque trc may not catch up.
  • the angle of the gradient at the time of reducing the maximum regenerative braking torque tra is such that the hydraulic brake 62 has a target hydraulic brake torque that increases in contradiction with the target regenerative braking torque that decreases as the maximum regenerative braking torque tra decreases. It is preferable that the angle be determined so as to be able to follow.
  • the gradient when the maximum regenerative braking torque tra decreases is such that the maximum regenerative braking torque tra becomes zero before the engine speed reaches the idling speed nd while the vehicle 1 is traveling under the predetermined conditions.
  • the predetermined condition may be, for example, a state where the vehicle 1 is traveling on a flat road, a state where the clutch mechanism 40 is engaged, and a state where the accelerator pedal and the brake pedal are released.
  • the gradient angle may be set so that the rate of decrease in the maximum regenerative braking torque tra is -250 Nm / sec.
  • the regenerative braking torque control unit 230 calculates the required braking torque tre based on the operation amount of the brake pedal acquired from the brake sensor 81 and the like. Further, the regenerative braking torque control unit 230 compares the required braking torque tre with the maximum regenerative braking torque tra, and sets a smaller value as the target regenerative braking torque.
  • the maximum regenerative braking torque tra is smaller than the required braking torque tre. For this reason, the value of the target regenerative braking torque matches the value of the maximum regenerative braking torque tra, and decreases linearly with time. Accordingly, the regenerative braking torque trb decreases linearly with time.
  • the hydraulic brake control unit 240 sets the difference between the required braking torque tre and the target regenerative braking torque as the target hydraulic brake torque for causing the hydraulic brake 62 to generate.
  • the regenerative braking torque trb decreases linearly with the passage of time.
  • the hydraulic brake torque trc increases linearly with time so as to compensate for the difference between the required braking torque tr and the regenerative braking torque trb.
  • the vehicle control device 100 can smoothly replace the braking torque of the vehicle 1 from the regenerative braking torque trb to the hydraulic brake torque trc when the vehicle decelerates.
  • the vehicle control device 100 can improve the certainty of preventing the engine stall.
  • FIG. 5 is an operation example of the control device 100 in the vehicle 1 traveling on an uphill.
  • the decreasing speed of the engine speed is faster than that in FIG.
  • the maximum regenerative braking torque tra is not 0 at time t12 when the engine speed reaches the second speed nc.
  • the regenerative braking torque trb may not become zero before the time t13 when the engine speed reaches the idling speed nd. is there.
  • the maximum regenerative braking torque setting unit 220 changes the gradient of the decreasing maximum regenerative braking torque tra such that the angle of the gradient increases.
  • the maximum regenerative braking torque setting unit 220 may change the gradient such that the changed maximum regenerative braking torque tra decreases linearly with the passage of time.
  • the angle of the gradient may be set so that the rate of decrease of the maximum regenerative braking torque tra is ⁇ 500 N ⁇ m / sec.
  • the control device 100 for a vehicle can further improve the reliability of preventing the engine stall.
  • FIG. 6 is a flowchart illustrating an operation example of the control device 100 of the vehicle 1 according to the present embodiment.
  • control start determination unit 210 determines whether the engine speed acquired from the engine speed sensor 87 has reached the above-described first speed during vehicle deceleration (step S11).
  • step S11 determines that the braking force replacement control is not to be started, and the engine speed has reached the first speed. The determination in step S11 is repeated until the determination is made.
  • the control start determination unit 210 determines to start the braking force replacement control.
  • the maximum regenerative braking torque setting unit 220 decreases the maximum regenerative braking torque over time as described above (step S13).
  • the maximum regenerative braking torque setting unit 220 linearly reduces the maximum regenerative braking torque, for example.
  • the regenerative braking torque controller 230 sets a target regenerative braking torque based on the maximum regenerative braking torque and information from various sensors. Further, the hydraulic brake control unit 240 sets a target hydraulic brake torque based on the required braking torque and the target regenerative braking torque (Step S15).
  • the target regenerative braking torque exceeds the maximum regenerative braking torque, the target regenerative braking torque decreases linearly. Accordingly, the target hydraulic brake torque obtained by subtracting the target regenerative braking torque from the required braking torque increases linearly.
  • the maximum regenerative braking torque setting unit 220 determines whether or not the engine speed has reached the above-described second speed (step S17).
  • the maximum regenerative braking torque setting unit 220 repeats the determination in step S17 until the engine speed reaches the second speed.
  • the maximum regenerative braking torque setting unit 220 determines whether or not the maximum regenerative braking torque is 0 (step S19). ).
  • the maximum regenerative braking torque setting unit 220 increases the angle of the gradient of the decreasing maximum regenerative braking torque. Then, when the regenerative braking torque becomes 0 and the replacement of the braking force ends, the vehicle control device 100 according to the present embodiment ends the braking force replacement control.
  • the vehicle control device 100 ends the braking force replacement control as it is.
  • the clutch mechanism 40 may be disconnected by the driver during the braking force replacement control. In this case, since the connection of the drive wheel 60 to the engine 20 is released, the regenerative control of the motor generator 30 can no longer be performed.
  • the control device 100 may end the braking force replacement control at that time.
  • the target regenerative braking torque monotonously decreases with the passage of time during the braking force replacement control. Further, the target hydraulic brake torque compensates for a difference between the required braking torque and the target regenerative braking torque.
  • the vehicle control device 100 can smoothly replace the braking torque of the vehicle from the regenerative braking torque to the hydraulic braking torque when the vehicle decelerates. As a result, vibration of the vehicle 1 can be suppressed.
  • the target regenerative braking torque decreases linearly with time. For this reason, the target hydraulic brake torque also increases relatively monotonously, and the effect of suppressing the vibration of the vehicle 1 can be improved.
  • the target regenerative braking torque is controlled such that the target engine speed becomes zero before the engine speed reaches the idling speed. Therefore, the control device 100 of the vehicle according to the present embodiment can improve the reliability of preventing the engine stall during the vehicle deceleration.
  • the angle of the gradient of the reduced maximum regenerative braking torque is halfway. Is changed to be larger.
  • control device 100 for a vehicle can further improve the reliability of preventing the engine stall.
  • a vehicle control device according to a second embodiment of the present invention will be described.
  • the control device for a vehicle according to the present embodiment is different from the first embodiment in that the vehicle speed is used as an engine speed index for determining whether to start the braking force replacement control.
  • points different from the control device of the vehicle of the first embodiment will be mainly described.
  • FIG. 7 is a schematic diagram showing the vehicle 2 including the vehicle control device 300.
  • the power unit 11 and the control device 300 will be described separately for the power unit 11 and the control device 300.
  • the power unit 11 of the vehicle 2 includes an automatic transmission having a continuously variable transmission mechanism 51 (hereinafter, also referred to as “CVT”) instead of the stepped transmission mechanism.
  • the continuously variable transmission mechanism 51 has a primary pulley and a secondary pulley, and the primary pulley is connected to the motor generator 30 via the clutch mechanism 41.
  • the secondary pulley is connected to the driving wheel 60 via a differential mechanism.
  • the engine speed can be kept constant by changing the ratio (pulley ratio) between the pulley diameter of the primary pulley and the pulley diameter of the secondary pulley when the vehicle 2 is decelerated. For this reason, in the vehicle 2 provided with the continuously variable transmission mechanism 51, control for keeping the engine speed at or above the fuel injection restart speed during deceleration may be performed.
  • the control device 300 uses the vehicle speed as an engine speed index for determining whether to start the braking force replacement control.
  • the clutch mechanism 41 can switch the engagement state between the motor generator 30 and the continuously variable transmission mechanism 51.
  • the clutch mechanism 41 corresponds to a lock-up clutch of the torque converter.
  • the configuration of the power unit 11 other than the continuously variable transmission mechanism 51 and the clutch mechanism 41 is the same as that of the vehicle 1 described above.
  • the control device 300 of the vehicle 2 includes an engine controller 310 and a brake controller 320.
  • a brake sensor 81, an accelerator sensor 83, an engine speed sensor 87, and a vehicle speed sensor 89 are connected to the engine controller 310.
  • the vehicle speed sensor 89 detects the vehicle speed of the vehicle 2.
  • the engine controller 310 and the brake controller 320 correspond to the engine controller 110 and the brake controller 120 in the first embodiment.
  • the basic operation of the braking force replacement control by the control device 300 is the same as that of the above-described first embodiment, except that the engine speed index for determining whether to start the braking force replacement control is the vehicle speed. .
  • the control device 300 differs from the first embodiment in that the control device 300 ends the replacement of the regenerative braking torque with the hydraulic brake torque before the fuel injection to the engine 20 is restarted. different.
  • the brake controller 320 since the regenerative efficiency utilizing the rotational energy of the drive wheels 60 is reduced, the brake controller 320 immediately sets the regenerative braking torque to zero, and sets the required braking torque of the vehicle 2 as the target hydraulic brake torque as it is.
  • the regenerative braking torque may be rapidly switched to the hydraulic brake torque.
  • the responsiveness and followability of the hydraulic brake torque are inferior to the regenerative braking torque. Therefore, the braking force of the vehicle 2 may fluctuate, which may affect drivability.
  • the brake controller 320 performs control so that the replacement of the regenerative braking torque with the hydraulic brake torque is completed before the engine speed reaches the fuel injection restart speed.
  • the control device 300 capable of executing such braking force replacement control will be described.
  • FIG. 8 is an explanatory diagram illustrating a functional configuration of a portion related to the braking force replacement control in the control device 300 including the engine controller 310 and the brake controller 320 illustrated in FIG.
  • the control device 300 includes a control start determination unit 410, a maximum regenerative braking torque setting unit 420, a regenerative braking torque control unit 430, and a hydraulic brake control unit 440.
  • Control device 300 acquires signals output from brake sensor 81, accelerator sensor 83, engine speed sensor 87, and vehicle speed sensor 89, and information on the clutch disengagement state.
  • the regenerative braking torque controller 430 and the hydraulic brake controller 440 are configured similarly to the regenerative braking torque controller 230 and the hydraulic brake controller 240 of the control device 100 according to the first embodiment.
  • Control start determination unit For example, the engine controller 310 functions as the control start determination unit 410.
  • the control start determination unit 410 determines whether or not the vehicle speed acquired from the vehicle speed sensor 89 has reached a preset first speed during vehicle deceleration. When the vehicle speed has reached the first speed, the control start determination unit 410 determines to start the braking force replacement control from the regenerative braking torque to the hydraulic brake torque.
  • the braking force replacement process be completed before resuming fuel injection to the engine 20.
  • the first speed is maintained at a constant engine speed even by adjusting the pulley ratio.
  • vehicle speed at the time of restarting fuel injection is a speed obtained by adding an appropriate offset value. Good.
  • the offset value is determined in consideration of the regeneration efficiency.
  • the engine controller 310 functions as the maximum regenerative braking torque setting unit 420.
  • the maximum regenerative braking torque setting unit 420 sets the maximum regenerative braking torque similarly to the above-described maximum regenerative braking torque setting unit 220.
  • the maximum regenerative braking torque setting unit 420 increases the gradient for decreasing the maximum regenerative braking torque. Then, the maximum regenerative braking torque may be immediately reduced to zero.
  • the maximum regenerative braking torque setting unit 420 increases the angle of the gradient.
  • the reduction rate of the maximum regenerative braking torque may be increased.
  • the second speed may be, for example, a speed obtained by adding an appropriate offset value to the vehicle speed at the time of restarting fuel injection.
  • control device (2-4-1. Outline)
  • FIGS. 9 and 10 are explanatory diagrams showing an operation example of the control device for a vehicle according to the present embodiment.
  • FIG. 9 is an operation example of the control device 300 when the vehicle 2 is traveling on a flat road.
  • the control start determination unit 410 determines to start the braking force replacement control from the regenerative braking torque trb to the hydraulic brake torque trc.
  • the maximum regenerative braking torque setting unit 420 sets the regenerative braking torque trb at time t30 as an initial value of the maximum regenerative braking torque tra, and decreases the maximum regenerative braking torque tra over time. In the example shown in FIG. 9, the maximum regenerative braking torque decreases linearly.
  • the gradient at the time of reducing the maximum regenerative braking torque tra be set within a range in which the hydraulic brake 62 can follow the target hydraulic brake torque, as in the first embodiment.
  • the gradient at the time of decreasing the maximum regenerative braking torque tra is such that the maximum regenerative braking torque tra before the engine speed reaches the fuel injection restart speed nb while the vehicle 2 is traveling under the predetermined conditions. May be set to 0.
  • the predetermined condition may be the same as the condition in the first embodiment.
  • the value of the target regenerative braking torque matches the value of the maximum regenerative braking torque tra, and decreases linearly with time. Accordingly, the target hydraulic brake torque increases linearly with the passage of time. Therefore, the regenerative braking torque trb decreases linearly with the passage of time, and the hydraulic brake torque trc increases linearly with the passage of time.
  • the regenerative braking torque trb decreases linearly with the passage of time.
  • the hydraulic brake torque trc increases linearly with time so as to compensate for the difference between the required braking torque tr and the regenerative braking torque trb.
  • the vehicle control device 300 can smoothly replace the braking torque of the vehicle 2 from the regenerative braking torque trb to the hydraulic brake torque trc during vehicle deceleration.
  • the control device 300 of the vehicle according to the present embodiment can improve the certainty of preventing deterioration of fuel efficiency and drivability.
  • FIG. 10 is an operation example of the control device 300 in the vehicle 2 traveling on an uphill.
  • the decrease speed of the vehicle speed is faster than that in FIG. That is, the time required for the engine speed to reach the fuel injection restart speed is shorter than that in FIG.
  • the maximum regenerative braking torque tra is not 0 at time t32 when the vehicle speed of the vehicle 2 reaches the second speed vb.
  • the regenerative braking torque trb may not become 0 before the time t33 when the engine speed reaches the fuel injection restart speed nb. There is.
  • the maximum regenerative braking torque setting unit 420 increases the gradient angle of the maximum regenerative braking torque tra that decreases as described above.
  • the control device 300 of the vehicle according to the present embodiment can further improve the certainty of suppressing the deterioration of the fuel efficiency and the decrease of the drivability.
  • FIG. 11 is a flowchart illustrating an operation example of the vehicle control device according to the present embodiment.
  • the control start determination unit 410 determines whether the vehicle speed acquired from the vehicle speed sensor 89 has reached the above-described first speed during vehicle deceleration (step S31).
  • the control start determination unit 410 determines that the braking force replacement control is not to be started, and determines in step S31 until the vehicle speed reaches the first speed. repeat. On the other hand, when the vehicle speed has reached the first speed (S31 / yes), the control start determination unit 410 determines to start the braking force replacement control.
  • the maximum regenerative braking torque setting unit 420 decreases the maximum regenerative braking torque with the passage of time as described above (step S33).
  • the maximum regenerative braking torque setting unit 420 linearly reduces the maximum regenerative braking torque, for example.
  • the target regenerative braking torque exceeds the maximum regenerative braking torque, the target regenerative braking torque decreases linearly. Accordingly, the target hydraulic brake torque obtained by subtracting the target regenerative braking torque from the required braking torque increases linearly.
  • the maximum regenerative braking torque setting unit 420 determines whether or not the vehicle speed has reached the above-described second speed (Step S37).
  • the maximum regenerative braking torque setting unit 420 repeats the determination in step S37 until the vehicle speed reaches the second speed. On the other hand, when the vehicle speed has reached the second speed (S37 / yes), the maximum regenerative braking torque setting unit 420 determines whether the maximum regenerative braking torque is 0 (step S39).
  • the maximum regenerative braking torque setting unit 420 increases the angle of the decreasing gradient of the maximum regenerative braking torque. Then, when the regenerative braking torque becomes 0 and the replacement of the braking force ends, the vehicle control device 300 according to the present embodiment ends the braking force replacement control.
  • the vehicle control device 300 ends the braking force replacement control as it is.
  • the vehicle speed may be used as an engine speed index for determining whether or not to start the braking force replacement control in the vehicle 1 including the stepped transmission mechanism 50 as exemplified in the first embodiment.
  • the vehicle speed is used as an engine speed index for determining whether to start the braking force replacement control. For this reason, the braking force replacement control can be applied to the vehicle 2 in which the control for maintaining the engine rotation speed equal to or higher than the fuel injection restart rotation speed is performed, similar to the control device 100 according to the first embodiment. The effect of can be obtained.
  • the control device 300 of the vehicle according to the present embodiment can improve the certainty of suppressing the deterioration of the fuel efficiency and the decrease of the drivability when the vehicle is decelerated.
  • the engine speed index correlated with the engine speed satisfies a predetermined condition. Then, the target regenerative braking torque is reduced at a predetermined gradient, and the difference between the required braking torque of the vehicle and the target regenerative braking torque is set as the target hydraulic brake torque.
  • the regenerative braking torque does not decrease with vertical fluctuation, and the regenerative braking torque can be smoothly replaced with the hydraulic brake torque.
  • the vehicle control device includes two controllers, but the present invention is not limited to this example. Some or all of the functions of the above controller may be integrated into one controller, or may be further divided into a plurality of controllers. Further, a higher-level controller that controls the two controllers in cooperation with each other may be provided.
  • the motor generator has functions as a starter and a braking device, but the present invention is not limited to such an example.
  • the motor generator may further have a function as a power source.

Abstract

Provided is a vehicle control device capable of smoothly replacing the braking force generated by a regenerative brake with the braking force generated by a hydraulic brake when a vehicle is decelerating. This vehicle control device (100) comprises: a regenerative braking torque control unit (230) that reduces target regenerative braking torque with a predetermined gradient when an engine speed index correlated with the rotational speed of an engine (20) satisfies a predetermined condition in a state in which regenerative braking torque is generated during fuel-cut control in which fuel injection into the engine (20) is stopped; and a hydraulic brake control unit (240) that sets, as target hydraulic brake torque, the difference between the required braking torque required by the driver of a vehicle (1) and the target regenerative braking torque.

Description

車両の制御装置Vehicle control device
 本発明は、車両の制御装置に関する。 The present invention relates to a control device for a vehicle.
 内燃機関であるエンジンと、発電機能を有するモータジェネレータとを搭載した車両が知られている。かかる車両の減速時に、モータジェネレータは、駆動輪側から入力される運動エネルギーを電気エネルギーに変換する発電装置として機能すると同時に、当該発電時に発生する回転抵抗を回生ブレーキとして駆動輪側に伝達する制動装置として機能する。モータジェネレータを搭載した車両に関する分野において、車両の制動力を制御するための様々な技術が提案されている。 車 両 Vehicles equipped with an internal combustion engine and a motor generator having a power generation function are known. When the vehicle decelerates, the motor generator functions as a power generation device that converts kinetic energy input from the driving wheel side into electric energy, and at the same time, transmits the rotational resistance generated during the power generation to the driving wheel side as a regenerative brake. Functions as a device. In the field related to a vehicle equipped with a motor generator, various technologies for controlling a braking force of the vehicle have been proposed.
 例えば、特許文献1には、モータジェネレータの発電量に応じて変化する回生制動トルクに合わせて油圧制動トルクを変化させることにより、運転者が所望する制動力を得ることができるハイブリッド車両及び電気車両のブレーキシステムとその制御方法が開示されている。 For example, Patent Literature 1 discloses a hybrid vehicle and an electric vehicle that can obtain a braking force desired by a driver by changing a hydraulic braking torque in accordance with a regenerative braking torque that changes according to a power generation amount of a motor generator. Discloses a brake system and a control method thereof.
特開2008-056228号公報JP 2008-056228 A
 ところで、車両の減速時において、燃費向上のためエンジンへの燃料噴射が停止されることがある。また、燃料噴射が停止された状態において、車両の制動要求に対してモータジェネレータによる回生ブレーキが優先的に使用されることがある。 By the way, when the vehicle is decelerated, fuel injection to the engine may be stopped to improve fuel efficiency. In addition, in a state where the fuel injection is stopped, the regenerative braking by the motor generator may be preferentially used for a braking request of the vehicle.
 エンジン及びモータジェネレータが直結されている(切離しできない)車両では、モータジェネレータの回生駆動による回転抵抗がエンジンの負荷となるため、減速時にエンジン回転数が低下しすぎるとエンジンストールが発生するおそれがある。 In a vehicle in which the engine and the motor generator are directly connected (cannot be separated), the rotational resistance due to the regenerative driving of the motor generator becomes the load on the engine. .
 このような場合、回生ブレーキによる制動力を徐々に減少させる一方、回生ブレーキによる制動力の減少分を油圧ブレーキによる制動力に置き換える制御を行うことが考えられる。 In such a case, it is conceivable to perform control to gradually reduce the braking force by the regenerative brake and replace the decrease in the braking force by the regenerative brake with the braking force by the hydraulic brake.
 回生ブレーキによる制動力を油圧ブレーキによる制動力に置き換える制御の1つとして、エンジン回転数の変化に合わせて回生ブレーキによる制動力を減少させる方法が考えられる。 As one of the controls for replacing the braking force by the regenerative brake with the braking force by the hydraulic brake, a method of reducing the braking force by the regenerative brake in accordance with the change in the engine speed can be considered.
 しかし、車両の減速時において、一般にエンジン回転数は上下変動を伴いながら低下するため、当該方法では、回生ブレーキによる制動力が上下変動を伴いながら減少する。一方、油圧ブレーキによる制動力は、油圧回路を流れる油圧が変化することによって制御されるため、油圧ブレーキによる制動力の制御には一定のタイムラグが生じる。 However, when the vehicle is decelerated, the engine speed generally decreases with vertical fluctuations, and in this method, the braking force by the regenerative brake decreases with vertical fluctuations. On the other hand, since the braking force by the hydraulic brake is controlled by changing the hydraulic pressure flowing through the hydraulic circuit, a certain time lag occurs in controlling the braking force by the hydraulic brake.
 したがって、このような制御方法を車両の減速時に適用した場合、車両全体の制動力が安定せず、車両の振動を引き起こすおそれがある。 Therefore, when such a control method is applied at the time of deceleration of the vehicle, the braking force of the entire vehicle is not stabilized, and the vehicle may be vibrated.
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、車両の減速時に、回生ブレーキによる制動力を油圧ブレーキによる制動力に円滑に置き換えることが可能な車両の制御装置を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to make it possible to smoothly replace a braking force by a regenerative brake with a braking force by a hydraulic brake when the vehicle is decelerated. It is to provide a control device for a vehicle.
 上記課題を解決するために、本発明のある観点によれば、直列に連結されたエンジン及びモータジェネレータと油圧により作動する油圧ブレーキとを備える車両に搭載され、モータジェネレータが発生する回生制動トルク及び油圧ブレーキが発生する油圧ブレーキトルクを制御する車両の制御装置であって、エンジンへの燃料の噴射をカットする燃料カット制御中に回生制動トルクを発生させた状態で、エンジンの回転数に相関するエンジン回転数指標が所定の条件を満たしたときに、目標回生制動トルクを所定の勾配で減少させる回生制動トルク制御部と、車両の運転者が要求する要求制動トルクと目標回生制動トルクとのトルクの差分を目標油圧ブレーキトルクとして設定する油圧ブレーキ制御部と、を備える車両の制御装置が提供される。 In order to solve the above problems, according to an aspect of the present invention, a regenerative braking torque and a regenerative braking torque generated by a motor generator mounted on a vehicle including an engine and a motor generator connected in series and a hydraulic brake operated by hydraulic pressure are provided. A control device for a vehicle that controls a hydraulic brake torque generated by a hydraulic brake, wherein the regenerative braking torque is generated during fuel cut control for cutting fuel injection to an engine, and is correlated with an engine speed. A regenerative braking torque control unit that reduces the target regenerative braking torque at a predetermined gradient when the engine speed index satisfies a predetermined condition; and a torque between a required braking torque requested by the driver of the vehicle and the target regenerative braking torque. And a hydraulic brake control unit that sets a difference between the two as a target hydraulic brake torque. That.
 以上説明したように本発明によれば、車両の減速時に、回生ブレーキによる制動力を油圧ブレーキによる制動力に円滑に置き換えることができる。 As described above, according to the present invention, when the vehicle is decelerated, the braking force by the regenerative brake can be smoothly replaced with the braking force by the hydraulic brake.
本発明の第1の実施形態に係る車両の制御装置を適用可能な車両の構成例を示す模式図である。FIG. 1 is a schematic diagram illustrating a configuration example of a vehicle to which a vehicle control device according to a first embodiment of the present invention can be applied. 同実施形態に係る車両の制御装置の構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of a vehicle control device according to the embodiment. 比較例に係る車両の制御装置の動作例を示す説明図である。FIG. 5 is an explanatory diagram illustrating an operation example of a control device for a vehicle according to a comparative example. 同実施形態に係る車両の制御装置の動作例を示す説明図である。It is an explanatory view showing an operation example of the control device for the vehicle according to the embodiment. 同実施形態に係る車両の制御装置の動作例を示す説明図である。It is an explanatory view showing an operation example of the control device for the vehicle according to the embodiment. 同実施形態に係る車両の制御装置の動作例を示すフローチャートである。It is a flow chart which shows an example of operation of the control device of the vehicles concerning the embodiment. 本発明の第2の実施形態に係る車両の制御装置を適用可能な車両の構成例を示す模式図である。It is a schematic diagram showing a configuration example of a vehicle to which a control device for a vehicle according to a second embodiment of the present invention can be applied. 同実施形態に係る車両の制御装置の構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of a vehicle control device according to the embodiment. 同実施形態に係る車両の制御装置の動作例を示す説明図である。It is an explanatory view showing an operation example of the control device for the vehicle according to the embodiment. 同実施形態に係る車両の制御装置の動作例を示す説明図である。It is an explanatory view showing an operation example of the control device for the vehicle according to the embodiment. 同実施形態に係る車両の制御装置の動作例を示すフローチャートである。It is a flow chart which shows an example of operation of the control device of the vehicles concerning the embodiment.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the specification and the drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
 <1.第1の実施形態>
 本発明の第1の実施形態に係る車両の制御装置について説明する。
<1. First Embodiment>
A vehicle control device according to a first embodiment of the present invention will be described.
  [1-1.車両の全体構成例]
 まず、図1を参照して、本実施形態に係る車両の制御装置を適用可能な車両の全体構成例を説明する。図1は、車両の制御装置100を備えた車両1を示す模式図である。以下、パワーユニット10と制御装置100とに分けて、車両1の全体構成例を説明する。
[1-1. Example of overall configuration of vehicle]
First, an overall configuration example of a vehicle to which the vehicle control device according to the present embodiment can be applied will be described with reference to FIG. FIG. 1 is a schematic diagram showing a vehicle 1 provided with a vehicle control device 100. Hereinafter, an example of the overall configuration of the vehicle 1 will be described separately for the power unit 10 and the control device 100.
   (1-1-1.パワーユニット)
 図1に示すように、車両1のパワーユニット10は、動力源としてエンジン20を備える。パワーユニット10は、エンジン20の始動時にクランキングを行うスタータとして機能するモータジェネレータ30を備える。モータジェネレータ30は、車両減速時に制動装置としても機能する。
(1-1-1. Power unit)
As shown in FIG. 1, the power unit 10 of the vehicle 1 includes an engine 20 as a power source. The power unit 10 includes a motor generator 30 that functions as a starter that performs cranking when the engine 20 starts. Motor generator 30 also functions as a braking device during vehicle deceleration.
 エンジン20とモータジェネレータ30とは、例えばカップリングを介して直列に連結されている。パワーユニット10は、クラッチ機構40を介してモータジェネレータ30と連結される手動式の有段変速機構50を備える。有段変速機構50は、デファレンシャル機構等を介して駆動輪60に連結される。 The engine 20 and the motor generator 30 are connected in series via, for example, a coupling. The power unit 10 includes a manual stepped transmission mechanism 50 connected to the motor generator 30 via the clutch mechanism 40. The stepped transmission mechanism 50 is connected to the drive wheels 60 via a differential mechanism or the like.
 モータジェネレータ30には、インバータ34を介してバッテリ32が接続されている。インバータ34は、後述する制御装置100から入力される制御信号に応じてモータジェネレータ30を制御する。 The battery 32 is connected to the motor generator 30 via the inverter 34. Inverter 34 controls motor generator 30 according to a control signal input from control device 100 described later.
 モータジェネレータ30がスタータとして制御される際には、バッテリ32からインバータ34を介してモータジェネレータ30に電力が供給される。モータジェネレータ30は、供給された電力を用いてクランキングを行う。 When the motor generator 30 is controlled as a starter, power is supplied from the battery 32 to the motor generator 30 via the inverter 34. Motor generator 30 performs cranking using the supplied power.
 モータジェネレータ30が制動装置として制御(回生制御)される場合、モータジェネレータ30は、駆動輪60から入力される回転エネルギーを電気エネルギーに変換する。モータジェネレータ30は、当該変換時に発生する回転抵抗を回生制動トルクとして駆動輪60に伝達する。 When the motor generator 30 is controlled as a braking device (regenerative control), the motor generator 30 converts rotational energy input from the drive wheels 60 into electric energy. Motor generator 30 transmits the rotational resistance generated during the conversion to drive wheels 60 as regenerative braking torque.
 モータジェネレータ30のロータに流れる励磁電流がインバータ34により制御されることにより、回生ブレーキによる制動力(回生制動トルク)が制御される。回転エネルギーから変換された電気エネルギーは、インバータ34を介してモータジェネレータ30からバッテリ32に電力として供給される。 (4) By controlling the exciting current flowing through the rotor of the motor generator 30 by the inverter 34, the braking force (regenerative braking torque) by the regenerative brake is controlled. The electric energy converted from the rotational energy is supplied from the motor generator 30 to the battery 32 via the inverter 34 as electric power.
 駆動輪60には、油圧により作動する油圧ブレーキ62が設けられている。油圧ブレーキ62としては、例えば、ディスクブレーキが用いられる。油圧ブレーキ62へ供給される油圧が制御されることによって、油圧ブレーキ62による制動力(油圧ブレーキトルク)が制御される。 The drive wheel 60 is provided with a hydraulic brake 62 operated by hydraulic pressure. As the hydraulic brake 62, for example, a disk brake is used. By controlling the hydraulic pressure supplied to the hydraulic brake 62, the braking force (hydraulic brake torque) by the hydraulic brake 62 is controlled.
 油圧ブレーキ62へ供給される油圧は、液圧ユニット70により制御される。液圧ユニット70には、図示しないマスタシリンダから油圧ブレーキ62へ油圧を供給する油路と、モータにより駆動されてブレーキ液を吐出するポンプと、油路の開閉を調節する電磁弁等の制御弁とが備えられている。当該ポンプ及び制御弁が後述するブレーキコントローラ120により駆動制御されることで油圧ブレーキ62へ供給される油圧が制御される。 油 圧 The hydraulic pressure supplied to the hydraulic brake 62 is controlled by the hydraulic unit 70. The hydraulic unit 70 includes an oil passage for supplying oil pressure from a master cylinder (not shown) to the hydraulic brake 62, a pump driven by a motor to discharge brake fluid, and a control valve such as a solenoid valve for adjusting opening and closing of the oil passage. And are provided. The hydraulic pressure supplied to the hydraulic brake 62 is controlled by controlling the drive of the pump and the control valve by a brake controller 120 described later.
 クラッチ機構40は、モータジェネレータ30と有段変速機構50との連結状態、つまりエンジン20と有段変速機構50との連結状態を切り替える。クラッチ機構40としては、例えば、湿式多板クラッチが用いられる。クラッチ機構40へ供給される油圧が制御されることによって、クラッチ機構40は締結され、又は解放される。 The clutch mechanism 40 switches the connection state between the motor generator 30 and the stepped transmission mechanism 50, that is, the connection state between the engine 20 and the stepped transmission mechanism 50. As the clutch mechanism 40, for example, a wet multi-plate clutch is used. By controlling the hydraulic pressure supplied to the clutch mechanism 40, the clutch mechanism 40 is engaged or released.
 クラッチ機構40が締結されることによって、エンジン20と有段変速機構50とが連結され、エンジン20及びモータジェネレータ30に対して駆動輪60が連結される。一方、クラッチ機構40が解放されることによって、エンジン20と有段変速機構50との連結が解除され、エンジン20及びモータジェネレータ30が駆動輪60から切り離される。 (4) When the clutch mechanism 40 is engaged, the engine 20 and the stepped transmission mechanism 50 are connected, and the drive wheels 60 are connected to the engine 20 and the motor generator 30. On the other hand, when the clutch mechanism 40 is released, the connection between the engine 20 and the stepped transmission mechanism 50 is released, and the engine 20 and the motor generator 30 are disconnected from the drive wheels 60.
 なお、上記ではエンジン20及びモータジェネレータ30がカップリングを介して直列に連結されている例を挙げたが、エンジン20及びモータジェネレータ30はベルト及びプーリを介して連結されてもよい。 In the above description, an example is described in which the engine 20 and the motor generator 30 are connected in series via a coupling. However, the engine 20 and the motor generator 30 may be connected via a belt and a pulley.
   (1-1-2.制御装置)
 車両1の制御装置100の全体構成を説明する。図1に示すように、車両1は、パワーユニット10の作動状態を制御するため、マイクロコンピュータ等を備える各種コントローラを備える。各種コントローラとして、エンジンコントローラ110及びブレーキコントローラ120が備えられている。
(1-1-2. Control device)
The overall configuration of the control device 100 of the vehicle 1 will be described. As shown in FIG. 1, the vehicle 1 includes various controllers including a microcomputer and the like in order to control an operation state of the power unit 10. As various controllers, an engine controller 110 and a brake controller 120 are provided.
 これらのコントローラは、CAN(Controller Area Network)又はLIN(Local InterNet)等の一つ又は複数の車載ネットワークを介して互いに通信可能に接続されており、互いに協調して制動力置換制御を行う。 These controllers are communicably connected to each other via one or a plurality of in-vehicle networks such as CAN (Controller Area Network) or LIN (Local Internet), and perform braking force displacement control in cooperation with each other.
 それぞれのコントローラの一部又は全部は、例えばマイクロコンピュータ、マイクロプロセッサユニット等で構成されていてもよい。また、それぞれのコントローラの一部又は全部は、ファームウェア等の更新可能なもので構成されていてもよく、また、CPU等からの指令によって実行されるプログラムモジュール等であってもよい。 A part or all of each controller may be configured by, for example, a microcomputer, a microprocessor unit, or the like. In addition, a part or all of each controller may be configured by an updatable device such as firmware, or may be a program module or the like executed by a command from a CPU or the like.
 また、それぞれのコントローラは、マイクロコンピュータ等により実行されるプログラムや種々の演算に用いるパラメータ、検出データ、演算結果の情報等を記憶する図示しない記憶装置を備える。 Each controller includes a storage device (not shown) for storing a program executed by a microcomputer or the like, parameters used for various calculations, detection data, information on calculation results, and the like.
 記憶装置は、例えばRAM(Random Access Memory)やROM(Read Only Memory)等の記憶素子であってもよく、HDD(Hard Disk Drive)やCD-ROM、ストレージ装置等の記憶装置であってもよい。 The storage device may be a storage device such as a random access memory (RAM) or a read only memory (ROM), or a storage device such as a hard disk drive (HDD), a CD-ROM, or a storage device. .
 エンジンコントローラ110には、ブレーキセンサ81、アクセルセンサ83、クラッチセンサ85及びエンジン回転数センサ87が接続されている。ブレーキコントローラ120には、ブレーキセンサ81が接続されている。 ブ レ ー キ A brake sensor 81, an accelerator sensor 83, a clutch sensor 85, and an engine speed sensor 87 are connected to the engine controller 110. A brake sensor 81 is connected to the brake controller 120.
 ブレーキセンサ81は、ブレーキペダルの操作量を検出する。アクセルセンサ83は、アクセルペダルの操作量を検出する。クラッチセンサ85は、クラッチペダルの操作量を検出する。エンジン回転数センサ87は、クランク軸の回転速度であるエンジン回転数を検出する。 The brake sensor 81 detects the operation amount of the brake pedal. The accelerator sensor 83 detects an operation amount of an accelerator pedal. The clutch sensor 85 detects the operation amount of the clutch pedal. The engine speed sensor 87 detects the engine speed, which is the rotation speed of the crankshaft.
 エンジンコントローラ110は、エンジン20のスロットルバルブやインジェクタ等に制御信号を出力し、エンジントルクやエンジン回転数等を制御する。車両1の減速時において、エンジンコントローラ110は、燃料の噴射を停止しても駆動輪60の回転力によってエンジン20が停止することなく回転し続ける間、燃料の噴射を停止する(以下、「燃料カット制御」ともいう。)。 (4) The engine controller 110 outputs a control signal to a throttle valve, an injector, and the like of the engine 20 to control engine torque, engine speed, and the like. When the vehicle 1 is decelerated, the engine controller 110 stops the fuel injection while the engine 20 continues to rotate without stopping due to the rotational force of the drive wheels 60 even if the fuel injection is stopped (hereinafter, “fuel injection”). Also called "cut control.").
 また、エンジンコントローラ110は、エンジン回転数が低下してエンジンストールを生じ得る領域に近づいた場合に、燃料の噴射を再開する。 {Circle around (4)} When the engine speed approaches an area where engine stall may occur due to a decrease in the engine speed, fuel injection is restarted.
 また、エンジンコントローラ110は、モータジェネレータ30に接続されたインバータ34に制御信号を出力し、モータジェネレータ30の駆動を制御する。車両1の減速時において、エンジンコントローラ110は、ブレーキコントローラ120からの制御指令に基づいてインバータ34に制御信号を出力し、モータジェネレータ30の回生制動トルクを制御する。 {Circle around (4)} Engine controller 110 outputs a control signal to inverter 34 connected to motor generator 30 to control the driving of motor generator 30. When the vehicle 1 is decelerating, the engine controller 110 outputs a control signal to the inverter 34 based on a control command from the brake controller 120, and controls the regenerative braking torque of the motor generator 30.
 ブレーキコントローラ120は、モータジェネレータ30による回生制動トルク及び油圧ブレーキ62による油圧ブレーキトルクを制御して、車両1の制動力を制御する。 The brake controller 120 controls the regenerative braking torque by the motor generator 30 and the hydraulic brake torque by the hydraulic brake 62 to control the braking force of the vehicle 1.
 ブレーキコントローラ120は、それぞれのセンサやエンジンコントローラ110から送信される情報に基づいてモータジェネレータ30の制御目標(目標回生制動トルク)を設定する。ブレーキコントローラ120は、設定した制御目標に基づいてエンジンコントローラ110にモータジェネレータ30に関する制御指令を出力する。 The brake controller 120 sets the control target (target regenerative braking torque) of the motor generator 30 based on the information transmitted from each sensor and the engine controller 110. Brake controller 120 outputs a control command related to motor generator 30 to engine controller 110 based on the set control target.
 ブレーキコントローラ120は、車両1に対して要求される制動力(要求制動トルク)からモータジェネレータ30による回生制動トルクを引いた差分を油圧ブレーキ62の制御目標(目標油圧ブレーキトルク)として設定する。ブレーキコントローラ120は、当該制御目標に基づいて液圧ユニット70に備えられたポンプ及び制御弁に制御信号を出力し、油圧ブレーキトルク等を制御する。 The brake controller 120 sets a difference obtained by subtracting the regenerative braking torque by the motor generator 30 from the braking force (requested braking torque) required for the vehicle 1 as a control target (a target hydraulic brake torque) of the hydraulic brake 62. The brake controller 120 outputs a control signal to a pump and a control valve provided in the hydraulic unit 70 based on the control target, and controls a hydraulic brake torque and the like.
 本実施形態において、燃料カット制御中にドライバ等によりブレーキ操作が行われた場合、ブレーキコントローラ120は、モータジェネレータ30により回生制動トルクを発生させて車両1を減速させる。 In the present embodiment, when a driver or the like performs a brake operation during fuel cut control, the brake controller 120 causes the motor generator 30 to generate regenerative braking torque to decelerate the vehicle 1.
 また、ブレーキコントローラ120は、エンジン回転数が低下して、エンジンストールを生じるおそれのある運転状態になると、回生制動トルクを徐々に油圧ブレーキトルクに置き換える制動力置換制御を行う。 {Circle around (2)} When the engine speed is reduced and the operating state is likely to cause an engine stall, the brake controller 120 performs the braking force replacement control for gradually replacing the regenerative braking torque with the hydraulic brake torque.
 エンジン20及びモータジェネレータ30が直列に連結されている車両1において、クラッチ機構40が締結状態である場合、エンジン20及びモータジェネレータ30に対して駆動輪60が連結された状態となる。 In the vehicle 1 in which the engine 20 and the motor generator 30 are connected in series, when the clutch mechanism 40 is in the engaged state, the driving wheels 60 are connected to the engine 20 and the motor generator 30.
 この状態でアクセルペダルが解放されて車両1の要求駆動トルクがゼロになった場合において、エンジン20に駆動輪60の回転力が伝達されることにより、エンジン20に燃料が噴射されなくてもエンジンストールを生じることなくエンジン20が回転できる運転領域がある。 In this state, when the accelerator pedal is released and the required driving torque of the vehicle 1 becomes zero, the rotational force of the drive wheels 60 is transmitted to the engine 20 so that even if fuel is not injected into the engine 20, There is an operation region where the engine 20 can rotate without causing a stall.
 このようなエンジン20の運転領域では、エンジンコントローラ110は、車両1の燃費向上のためエンジン20への燃料噴射を停止する燃料カット制御を行う。 で は In such an operation range of the engine 20, the engine controller 110 performs a fuel cut control for stopping the fuel injection to the engine 20 in order to improve the fuel efficiency of the vehicle 1.
 燃料カット制御中にドライバがブレーキペダルを操作した場合、ブレーキコントローラ120は、回生制動トルクを発生させる。燃料カット制御中はエンジン20からの出力トルクがゼロであり、モータジェネレータ30による効率のよい回生発電が可能である。このため、ブレーキコントローラ120は、油圧ブレーキによらずにモータジェネレータ30の回生制御により車両1の制動力を発生させる。 場合 When the driver operates the brake pedal during the fuel cut control, the brake controller 120 generates regenerative braking torque. During the fuel cut control, the output torque from the engine 20 is zero, and efficient regenerative power generation by the motor generator 30 is possible. For this reason, the brake controller 120 generates the braking force of the vehicle 1 by the regenerative control of the motor generator 30 without using the hydraulic brake.
 車両1が更に減速し、エンジン回転数がエンジンストールのおそれのある領域に近づいた場合、エンジンコントローラ110は、燃料カット制御を終了して燃料噴射を再開する。燃料噴射を再開した後の燃料噴射量は、エンジン回転数をエンジンストールのおそれのない最低限の回転数(例えばアイドリング回転数)に保つための必要最低限の量に制御される。 (4) When the vehicle 1 further decelerates and the engine speed approaches an area where the engine may be stalled, the engine controller 110 ends the fuel cut control and restarts the fuel injection. After the fuel injection is restarted, the fuel injection amount is controlled to the minimum necessary amount to keep the engine speed at the minimum speed (for example, idling speed) at which there is no risk of engine stall.
 ここで、車両1が更に減速し、エンジン回転数がアイドリング回転数に到達した際に回生制動トルクが0となっていない場合、モータジェネレータ30の回転抵抗がエンジン20の負荷となってエンジンストールが発生するおそれがある。 Here, when the vehicle 1 further decelerates and the regenerative braking torque is not 0 when the engine speed reaches the idling speed, the rotational resistance of the motor generator 30 becomes a load on the engine 20 and engine stall occurs. May occur.
 したがって、ブレーキコントローラ120は、エンジン回転数がアイドリング回転数に到達するよりも前に車両1の制動トルクを回生制動トルクから油圧ブレーキトルクに置き換える。以下、制動力置換制御を実行可能とする制御装置100の具体例について説明する。 Therefore, the brake controller 120 replaces the braking torque of the vehicle 1 with the hydraulic braking torque from the regenerative braking torque before the engine speed reaches the idling speed. Hereinafter, a specific example of the control device 100 that enables the execution of the braking force replacement control will be described.
  [1-2.制御装置の具体例]
 本実施形態に係る車両の制御装置100の具体例を説明する。図2は、図1に示したエンジンコントローラ110及びブレーキコントローラ120により構成される制御装置100のうち、制動力置換制御に関連する部分の機能構成を示す説明図である。
[1-2. Specific example of control device]
A specific example of the vehicle control device 100 according to the present embodiment will be described. FIG. 2 is an explanatory diagram illustrating a functional configuration of a portion related to the braking force replacement control in the control device 100 including the engine controller 110 and the brake controller 120 illustrated in FIG.
 制御装置100は、制御開始判定部210、最大回生制動トルク設定部220、回生制動トルク制御部230及び油圧ブレーキ制御部240を備える。 The control device 100 includes a control start determination unit 210, a maximum regenerative braking torque setting unit 220, a regenerative braking torque control unit 230, and a hydraulic brake control unit 240.
 また、制御装置100は、ブレーキセンサ81、アクセルセンサ83、クラッチセンサ85及びエンジン回転数センサ87から出力される信号を取得する。取得された信号が示す各種情報は、図示しない記憶装置に記憶される。 制 御 Control device 100 also acquires signals output from brake sensor 81, accelerator sensor 83, clutch sensor 85, and engine speed sensor 87. Various types of information indicated by the acquired signals are stored in a storage device (not shown).
  (制御開始判定部)
 例えばエンジンコントローラ110が制御開始判定部210として機能する。制御開始判定部210は、各種センサの情報に基づいて制動力置換制御を開始するか否かを判定する。
(Control start determination unit)
For example, the engine controller 110 functions as the control start determination unit 210. The control start determination unit 210 determines whether to start the braking force replacement control based on information from various sensors.
 具体的に、制御開始判定部210は、車両減速時に、エンジン回転数センサ87より取得したエンジン回転数指標としてのエンジン回転数が第1の回転数に到達したか否かを判定する。エンジン回転数が低下して第1の回転数に到達した場合、制御開始判定部210は、制動力置換制御を開始すると判定する。 {Specifically, the control start determination unit 210 determines whether or not the engine speed as an engine speed index acquired from the engine speed sensor 87 has reached the first speed during vehicle deceleration. When the engine speed decreases and reaches the first speed, the control start determination unit 210 determines to start the braking force replacement control.
 ここで、モータジェネレータ30の回生制御中に燃料噴射を行うと、回生制動トルクを付与する駆動軸に対してエンジン20の出力トルクを付与することになって燃費が低下する。このため、制動力置換制御は燃料噴射の再開よりも前に開始されることが好ましい。 Here, if the fuel injection is performed during the regenerative control of the motor generator 30, the output torque of the engine 20 is applied to the drive shaft to which the regenerative braking torque is applied, and the fuel efficiency is reduced. Therefore, it is preferable that the braking force replacement control be started before the fuel injection is restarted.
 なお、第1の回転数として、アイドリング回転数よりも高い適宜の基準回転数を使用してもよい。エンジンストールの防止を目的とする場合には、エンジン回転数がアイドリング回転数に到達するまでに制動力置換制御が開始されればよいからである。 Note that an appropriate reference rotation speed higher than the idling rotation speed may be used as the first rotation speed. This is because when the purpose is to prevent engine stall, the braking force replacement control may be started before the engine speed reaches the idling speed.
 ただし、第1の回転数が燃料噴射を再開する回転数(燃料噴射再開回転数)よりも過度に大きい場合、燃費を悪化させることがないにもかかわらず、一部の回生制動トルクが油圧ブレーキトルクに置き換えられてしまい、回生効率が低下する。このため、第1の回転数は、例えば、燃料噴射再開回転数に適宜のオフセット値を加えた回転数とすることが好ましい。 However, when the first rotation speed is excessively higher than the rotation speed at which fuel injection is restarted (fuel injection restart rotation speed), some regenerative braking torques are not increased even though the fuel consumption is reduced. It is replaced by torque, and the regenerative efficiency decreases. For this reason, it is preferable that the first rotation speed is, for example, a rotation speed obtained by adding an appropriate offset value to the fuel injection restart rotation speed.
  (最大回生制動トルク設定部)
 例えばエンジンコントローラ110が最大回生制動トルク設定部220として機能する。最大回生制動トルク設定部220は、制御開始判定部210が制動力置換制御を開始すると判定した場合、以下のようにモータジェネレータ30が発生可能な最大の回生制動トルクを設定する。
(Maximum regenerative braking torque setting section)
For example, the engine controller 110 functions as the maximum regenerative braking torque setting unit 220. The maximum regenerative braking torque setting unit 220 sets the maximum regenerative braking torque that can be generated by the motor generator 30 as described below when the control start determination unit 210 determines to start the braking force replacement control.
 なお、以下の説明では、モータジェネレータ30が発生可能な最大の回生制動トルクを最大回生制動トルクと称する。 In the following description, the maximum regenerative braking torque that can be generated by motor generator 30 is referred to as the maximum regenerative braking torque.
 まず、最大回生制動トルク設定部220は、制御開始判定部210が制動力置換制御を開始すると判定した時点においてモータジェネレータ30が発生している回生制動トルクを最大回生制動トルクの初期値として設定する。 First, the maximum regenerative braking torque setting unit 220 sets the regenerative braking torque generated by the motor generator 30 as the initial value of the maximum regenerative braking torque at the time when the control start determination unit 210 determines to start the braking force replacement control. .
 また、最大回生制動トルク設定部220は、最大回生制動トルクを時間の経過とともに所定の勾配で単調減少させる。このとき、最大回生制動トルク設定部220は、勾配が直線状となるように最大回生制動トルクを減少させてよい。 {Circle around (4)} The maximum regenerative braking torque setting unit 220 monotonically decreases the maximum regenerative braking torque with a predetermined gradient as time passes. At this time, the maximum regenerative braking torque setting unit 220 may reduce the maximum regenerative braking torque so that the gradient becomes linear.
 最大回生制動トルク設定部220は、エンジン回転数が第2の回転数に到達した際に最大回生制動トルクが0となっていない場合、勾配の角度が大きくなるように最大回生制動トルクの減少率を上げてもよい。 When the maximum regenerative braking torque is not 0 when the engine speed reaches the second rotation speed, the maximum regenerative braking torque setting unit 220 determines the rate of decrease of the maximum regenerative braking torque so that the angle of the gradient increases. May be raised.
 つまり、エンジン回転数がアイドリング回転数に到達した後においてもモータジェネレータ30が回転駆動されると、モータジェネレータ30の回転抵抗がエンジン20の負荷となって、エンジンストールを生じるおそれがある。 That is, if the motor generator 30 is driven to rotate even after the engine speed reaches the idling speed, the rotational resistance of the motor generator 30 may become a load on the engine 20 and cause engine stall.
 このため、エンジン回転数がアイドリング回転数に到達するまでに最大回生制動トルクが0とならないと判断される場合、最大回生制動トルクを減少させる勾配を大きくして、速やかに最大回生制動トルクを0にすることが好ましい。第2の回転数は、例えば、アイドリング回転数に適宜のオフセット値を加えた回転数であってよい。 For this reason, when it is determined that the maximum regenerative braking torque does not become 0 before the engine speed reaches the idling speed, the gradient for decreasing the maximum regenerative braking torque is increased, and the maximum regenerative braking torque is quickly reduced to 0. Is preferable. The second rotation speed may be, for example, a rotation speed obtained by adding an appropriate offset value to the idling rotation speed.
 なお、最大回生制動トルク設定部220は、エンジン回転数が第2の回転数に到達した際に最大回生制動トルクが0となっていない場合であっても、必ずしも勾配を変更しなくてもよい。 Note that the maximum regenerative braking torque setting unit 220 does not necessarily need to change the gradient even when the maximum regenerative braking torque is not 0 when the engine speed reaches the second speed. .
 例えば、エンジン回転数が第2の回転数に到達した際に最大回生制動トルクが0に近い領域にあり、エンジン回転数がアイドリング回転数に到達するよりも前に最大回生制動トルクが0に到達すると判断される場合、最大回生制動トルク設定部220は、勾配を変更しなくてよい。 For example, when the engine speed reaches the second speed, the maximum regenerative braking torque is in a region close to 0, and the maximum regenerative braking torque reaches 0 before the engine speed reaches the idling speed. When it is determined that this is the case, the maximum regenerative braking torque setting unit 220 does not need to change the gradient.
  (回生制動トルク制御部)
 例えばエンジンコントローラ110及びブレーキコントローラ120が回生制動トルク制御部230として機能する。回生制動トルク制御部230は、最大回生制動トルク設定部220において設定される最大回生制動トルクと各種センサの情報とに基づいて、モータジェネレータ30が発生する回生制動トルクを制御する。回生制動トルク制御部230は、油圧ブレーキ制御部240と協調して車両1の全体の制動力を制御する。
(Regenerative braking torque control unit)
For example, the engine controller 110 and the brake controller 120 function as the regenerative braking torque control unit 230. Regenerative braking torque control section 230 controls the regenerative braking torque generated by motor generator 30 based on the maximum regenerative braking torque set in maximum regenerative braking torque setting section 220 and information from various sensors. The regenerative braking torque control unit 230 controls the overall braking force of the vehicle 1 in cooperation with the hydraulic brake control unit 240.
 回生制動トルク制御部230は、例えば、ブレーキセンサ81より取得したブレーキペダルの操作量等に基づいて車両1要求制動トルクを算出する。また、回生制動トルク制御部230は、要求制動トルクと、最大回生制動トルクとを比較し、値が小さい方の値をモータジェネレータ30に発生させる回生制動トルクの目標値(目標回生制動トルク)として決定する。回生制動トルク制御部230は、決定された回生制動トルクに基づいてインバータ34を介してモータジェネレータ30を制御する。それにより、モータジェネレータ30の回生制動トルクが制御される。 The regenerative braking torque control unit 230 calculates the required braking torque of the vehicle 1 based on, for example, the operation amount of the brake pedal acquired from the brake sensor 81. Further, regenerative braking torque control section 230 compares the required braking torque with the maximum regenerative braking torque, and sets a smaller value as a target value (a target regenerative braking torque) of the regenerative braking torque that causes motor generator 30 to generate a smaller value. decide. Regenerative braking torque control section 230 controls motor generator 30 via inverter 34 based on the determined regenerative braking torque. Thereby, the regenerative braking torque of motor generator 30 is controlled.
  (油圧ブレーキ制御部)
 例えばブレーキコントローラ120が油圧ブレーキ制御部240として機能する。油圧ブレーキ制御部240は、要求制動トルクと目標回生制動トルクとのトルクの差分を油圧ブレーキ62に発生させる目標油圧ブレーキトルクとして設定する。
(Hydraulic brake control unit)
For example, the brake controller 120 functions as the hydraulic brake control unit 240. The hydraulic brake control unit 240 sets the difference between the required braking torque and the target regenerative braking torque as the target hydraulic brake torque for causing the hydraulic brake 62 to generate.
 換言すれば、油圧ブレーキ制御部240は、目標回生制動トルクと目標油圧ブレーキトルクとのトルクの合計トルクが要求制動トルクと一致するように目標油圧ブレーキトルクを設定する。 In other words, the hydraulic brake control unit 240 sets the target hydraulic brake torque such that the total torque of the target regenerative braking torque and the target hydraulic brake torque matches the required braking torque.
 油圧ブレーキ制御部240は、設定された目標油圧ブレーキトルクに基づいて液圧ユニット70に備えられたポンプ及び制御弁を制御する。それにより、油圧ブレーキ62の油圧ブレーキトルクが制御される。 The hydraulic brake control unit 240 controls the pump and the control valve provided in the hydraulic unit 70 based on the set target hydraulic brake torque. Thereby, the hydraulic brake torque of the hydraulic brake 62 is controlled.
  [1-4.制御装置の動作例]
 ここまで、制御装置100の構成例を説明した。以下、制御装置100の動作例を説明する。
[1-4. Operation example of control device]
So far, the configuration example of the control device 100 has been described. Hereinafter, an operation example of the control device 100 will be described.
   (1-4-1.概略)
 まず、図3~5を参照して、制御装置100による車両1の制御方法の概略を説明する。図3は、比較例に係る車両の制御装置の動作例を示す説明図である。図4~5は、本実施形態に係る車両の制御装置の動作例を示す説明図である。
(1-4-1. Outline)
First, an outline of a control method of the vehicle 1 by the control device 100 will be described with reference to FIGS. FIG. 3 is an explanatory diagram illustrating an operation example of a control device for a vehicle according to a comparative example. 4 and 5 are explanatory diagrams showing an operation example of the control device for a vehicle according to the present embodiment.
 図3を参照して比較例に係る車両の制御装置の動作例を説明する。比較例に係る車両の制御装置は、最大回生制動トルクtraを設定する際にエンジン回転数を入力パラメータとして使用する点で本実施形態に係る車両の制御装置とは異なっている。 An operation example of the vehicle control device according to the comparative example will be described with reference to FIG. The control device for the vehicle according to the comparative example differs from the control device for the vehicle according to the present embodiment in that the engine speed is used as an input parameter when setting the maximum regenerative braking torque tra.
 時刻t90において、エンジン回転数が燃料噴射再開回転数nbに適宜のオフセット値を加えた第1の回転数naに到達すると、比較例に係る制御装置は制動力置換制御を開始する。 At time t90, when the engine speed reaches the first engine speed na obtained by adding an appropriate offset value to the fuel injection restart speed nb, the control device according to the comparative example starts the braking force replacement control.
 時刻t90以降において、比較例に係る制御装置は、エンジン回転数を入力パラメータとして用いて最大回生制動トルクtraの値を設定する。例えば、エンジン回転数に所定の係数を乗算することにより最大回生制動トルクtraの値が設定される。 After time t90, the control device according to the comparative example sets the value of the maximum regenerative braking torque tra using the engine speed as an input parameter. For example, the value of the maximum regenerative braking torque tra is set by multiplying the engine speed by a predetermined coefficient.
 ここで、一般に、車両1の減速時にエンジン回転数は直線状に減少せず、わずかな上下変動を伴いながら減少する。したがって、エンジン回転数を入力パラメータとして用いて設定された最大回生制動トルクtraは上下変動を伴いながら減少する。 Here, in general, when the vehicle 1 is decelerated, the engine speed does not decrease linearly but decreases with slight vertical fluctuation. Therefore, the maximum regenerative braking torque tra set using the engine speed as an input parameter decreases with vertical fluctuation.
 また、比較例に係る制御装置は、ブレーキセンサ81より取得したブレーキペダルの操作量等に基づいて算出される要求制動トルクtreと、最大回生制動トルクtraとを比較し、値が小さい方の値を目標回生制動トルクとして設定する。 Further, the control device according to the comparative example compares the required braking torque tre calculated based on the operation amount of the brake pedal acquired from the brake sensor 81 with the maximum regenerative braking torque tra, and determines the smaller value. Is set as the target regenerative braking torque.
 最大回生制動トルクtraが要求制動トルクtreを下回る場合、目標回生制動トルクは最大回生制動トルクtraと一致する。この場合、目標回生制動トルクは、上下変動を伴いながら減少する。それにより、モータジェネレータ30が実際に発生する回生制動トルクtrbは、上下変動を伴いながら減少する。 場合 When the maximum regenerative braking torque tra is lower than the required braking torque tre, the target regenerative braking torque matches the maximum regenerative braking torque tra. In this case, the target regenerative braking torque decreases with vertical fluctuation. Thereby, regenerative braking torque trb actually generated by motor generator 30 decreases with vertical fluctuation.
 図3に示した例では、時刻t90以降において、要求制動トルクtreは一定であるため、目標回生制動トルクが上下変動を伴いながら減少する場合、目標油圧ブレーキトルクは上下変動を伴いながら増加する。 In the example shown in FIG. 3, since the required braking torque tre is constant after time t90, when the target regenerative braking torque decreases with vertical fluctuation, the target hydraulic brake torque increases with vertical fluctuation.
 ここで、モータジェネレータ30が実際に発生する回生制動トルクtrbは、回生制動トルク制御部230にて設定された目標回生制動トルクに従いインバータ34がモータジェネレータ30を制御することにより発生する。つまり、回生制動トルクtrbは、電気信号により制御される。 Here, the regenerative braking torque trb actually generated by the motor generator 30 is generated by the inverter 34 controlling the motor generator 30 according to the target regenerative braking torque set by the regenerative braking torque control unit 230. That is, the regenerative braking torque trb is controlled by the electric signal.
 一方、油圧ブレーキ62が実際に発生する油圧ブレーキトルクtrcは、油圧ブレーキ制御部240にて設定された目標油圧ブレーキトルクに従い液圧ユニット70に備えられたポンプが駆動し、制御弁が油路の開閉動作を行うことにより発生する。つまり、油圧ブレーキトルクtrcは、物理的に制御される。 On the other hand, the hydraulic brake torque trc actually generated by the hydraulic brake 62 is driven by a pump provided in the hydraulic unit 70 in accordance with the target hydraulic brake torque set by the hydraulic brake control unit 240, and the control valve is connected to the hydraulic passage. It is generated by performing the opening / closing operation. That is, the hydraulic brake torque trc is physically controlled.
 このため、回生制動トルクtrbに比べて油圧ブレーキトルクtrcの応答性及び追従性は劣る。つまり、回生制動トルクtrbと油圧ブレーキトルクtrcとの合計トルクtrdは、要求制動トルクtreと一致せず上下変動を伴う場合がある。したがって、比較例に係る制御装置は、制動力の置き換えの際に車両1の振動を引き起こすおそれがある。 Therefore, the responsiveness and followability of the hydraulic brake torque trc are inferior to the regenerative braking torque trb. That is, the total torque trd of the regenerative braking torque trb and the hydraulic brake torque trc may not coincide with the required braking torque tr and may be accompanied by vertical fluctuations. Therefore, the control device according to the comparative example may cause vibration of the vehicle 1 when replacing the braking force.
 次に、図4を参照して本実施形態に係る車両の制御装置の動作例を説明する。図4は、車両1が平坦路を走行している場合の制御装置100の動作例である。 Next, an operation example of the vehicle control device according to the present embodiment will be described with reference to FIG. FIG. 4 is an operation example of the control device 100 when the vehicle 1 is traveling on a flat road.
 時刻t10において、エンジン回転数が燃料噴射再開回転数nbに適宜のオフセット回転数を加えた第1の回転数naに到達すると、制御開始判定部210は、制動力置換制御を開始すると判定する。 At time t10, when the engine rotation speed reaches the first rotation speed na obtained by adding an appropriate offset rotation speed to the fuel injection restart rotation speed nb, the control start determination unit 210 determines to start the braking force replacement control.
 時刻t10において、最大回生制動トルク設定部220は、その時点の回生制動トルクtrbを最大回生制動トルクtraの初期値として設定する。そして、最大回生制動トルク設定部220は、最大回生制動トルクを時間の経過とともに単調減少させる。図4に示した例では、最大回生制動トルクが直線状に減少する。 At time t10, the maximum regenerative braking torque setting unit 220 sets the regenerative braking torque trb at that time as an initial value of the maximum regenerative braking torque tra. Then, the maximum regenerative braking torque setting unit 220 monotonically decreases the maximum regenerative braking torque with the passage of time. In the example shown in FIG. 4, the maximum regenerative braking torque decreases linearly.
 ところで、上述のとおり、回生制動トルクtrbに比べて油圧ブレーキトルクtrcの追従性は劣る。つまり、回生制動トルクtrbが急激に減少した場合に油圧ブレーキトルクtrcの増加が追い付かない場合がある。 By the way, as described above, the followability of the hydraulic brake torque trc is inferior to the regenerative braking torque trb. That is, when the regenerative braking torque trb suddenly decreases, the increase in the hydraulic brake torque trc may not catch up.
 よって、最大回生制動トルクtraを減少させる際の勾配の角度は、最大回生制動トルクtraの減少に伴い減少する目標回生制動トルクと相反して増加する目標油圧ブレーキトルクに対して、油圧ブレーキ62が追従可能な角度に決定されることが好ましい。 Therefore, the angle of the gradient at the time of reducing the maximum regenerative braking torque tra is such that the hydraulic brake 62 has a target hydraulic brake torque that increases in contradiction with the target regenerative braking torque that decreases as the maximum regenerative braking torque tra decreases. It is preferable that the angle be determined so as to be able to follow.
 併せて、最大回生制動トルクtraが減少する際の勾配は、車両1が所定の条件下で走行中に、エンジン回転数がアイドリング回転数ndに到達するよりも前に最大回生制動トルクtraが0となるように決定されてもよい。所定の条件は、例えば、車両1が平坦路を走行している状態から、クラッチ機構40の締結状態で、アクセルペダル及びブレーキペダルが解放された状態であってよい。 At the same time, the gradient when the maximum regenerative braking torque tra decreases is such that the maximum regenerative braking torque tra becomes zero before the engine speed reaches the idling speed nd while the vehicle 1 is traveling under the predetermined conditions. May be determined so that The predetermined condition may be, for example, a state where the vehicle 1 is traveling on a flat road, a state where the clutch mechanism 40 is engaged, and a state where the accelerator pedal and the brake pedal are released.
 例えば、勾配が直線状である場合、最大回生制動トルクtraの減少率が-250N・m/secとなるように勾配の角度が設定されてよい。 For example, when the gradient is linear, the gradient angle may be set so that the rate of decrease in the maximum regenerative braking torque tra is -250 Nm / sec.
 時刻t10以降において、回生制動トルク制御部230は、ブレーキセンサ81より取得したブレーキペダルの操作量等に基づいて要求制動トルクtreを算出する。また、回生制動トルク制御部230は、要求制動トルクtreと最大回生制動トルクtraとを比較し、値が小さい方の値を目標回生制動トルクとして設定する。 に お い て After time t10, the regenerative braking torque control unit 230 calculates the required braking torque tre based on the operation amount of the brake pedal acquired from the brake sensor 81 and the like. Further, the regenerative braking torque control unit 230 compares the required braking torque tre with the maximum regenerative braking torque tra, and sets a smaller value as the target regenerative braking torque.
 図4に示した例では、時刻t10以降、最大回生制動トルクtraは要求制動トルクtreよりも小さい。このため、目標回生制動トルクの値は最大回生制動トルクtraの値と一致し、時間の経過とともに直線状に減少する。これに伴って、回生制動トルクtrbは、時間の経過とともに直線状に減少する。 で は In the example shown in FIG. 4, after time t10, the maximum regenerative braking torque tra is smaller than the required braking torque tre. For this reason, the value of the target regenerative braking torque matches the value of the maximum regenerative braking torque tra, and decreases linearly with time. Accordingly, the regenerative braking torque trb decreases linearly with time.
 時刻t10以降において、油圧ブレーキ制御部240は、要求制動トルクtreと目標回生制動トルクとの差分を油圧ブレーキ62に発生させる目標油圧ブレーキトルクとして設定する。 に お い て After time t10, the hydraulic brake control unit 240 sets the difference between the required braking torque tre and the target regenerative braking torque as the target hydraulic brake torque for causing the hydraulic brake 62 to generate.
 図4に示した例では、要求制動トルクtreは一定であるため、目標回生制動トルクが時間の経過とともに直線状に減少する場合、目標油圧ブレーキトルクは時間の経過とともに直線状に増加する。これに伴って、油圧ブレーキトルクtrcは、時間の経過とともに直線状に増加する。 In the example shown in FIG. 4, since the required braking torque tre is constant, if the target regenerative braking torque decreases linearly with time, the target hydraulic brake torque increases linearly with time. Accordingly, the hydraulic brake torque trc increases linearly with the passage of time.
 その後、エンジン回転数がアイドリング回転数ndに到達する時刻t13よりも前の時刻t11に回生制動トルクtrbが0となり、制動力置換制御が終了する。 Thereafter, at time t11 before the time t13 when the engine speed reaches the idling speed nd, the regenerative braking torque trb becomes 0, and the braking force replacement control ends.
 このように、本実施形態において、回生制動トルクtrbは、時間の経過とともに直線状に減少する。また、油圧ブレーキトルクtrcは、要求制動トルクtreと回生制動トルクtrbとの差分を補うように時間の経過とともに直線状に増加する。 As described above, in the present embodiment, the regenerative braking torque trb decreases linearly with the passage of time. The hydraulic brake torque trc increases linearly with time so as to compensate for the difference between the required braking torque tr and the regenerative braking torque trb.
 それにより、回生制動トルクtrbと油圧ブレーキトルクtrcとの合計トルクtrdは一定となる。つまり、本実施形態に係る車両の制御装置100は、車両減速時に、車両1の制動トルクを回生制動トルクtrbから油圧ブレーキトルクtrcへと円滑に置き換えることができる。 Accordingly, the total torque trd of the regenerative braking torque trb and the hydraulic braking torque trc becomes constant. That is, the vehicle control device 100 according to the present embodiment can smoothly replace the braking torque of the vehicle 1 from the regenerative braking torque trb to the hydraulic brake torque trc when the vehicle decelerates.
 また、図4に示した例では、回生制動トルクtrbは、エンジン回転数がアイドリング回転数ndに到達する時刻t13よりも前に0となっている。つまり、本実施形態に係る車両の制御装置100は、エンジンストールを防ぐ確実性を向上することができる。 In addition, in the example shown in FIG. 4, the regenerative braking torque trb is 0 before the time t13 when the engine speed reaches the idling speed nd. That is, the vehicle control device 100 according to the present embodiment can improve the certainty of preventing the engine stall.
 次に、図5を参照して、エンジン回転数がアイドリング回転数に到達するまでに回生制動トルクが0とならないおそれがある場合を説明する。図5は、上り坂を走行している車両1における制御装置100の動作例である。図5に示す制御装置100の動作例において、エンジン回転数の低下速度は図4に比べて速い。 Next, with reference to FIG. 5, a case where the regenerative braking torque may not become 0 before the engine speed reaches the idling speed will be described. FIG. 5 is an operation example of the control device 100 in the vehicle 1 traveling on an uphill. In the operation example of the control device 100 shown in FIG. 5, the decreasing speed of the engine speed is faster than that in FIG.
 図5に示す例において、エンジン回転数が、上述した第2の回転数ncに到達する時刻t12までの車両の制御装置100の動作は、上述した図4に示した動作と同様である。 In the example shown in FIG. 5, the operation of the control device 100 of the vehicle until the time t12 when the engine speed reaches the second speed nc is the same as the operation shown in FIG.
 図5に示す例では、エンジン回転数が第2の回転数ncに到達する時刻t12において、最大回生制動トルクtraが0となっていない。このような状況において、減少する最大回生制動トルクtraの勾配の角度を変更しない場合、エンジン回転数がアイドリング回転数ndに到達する時刻t13よりも前に、回生制動トルクtrbが0とならないおそれがある。 In the example shown in FIG. 5, the maximum regenerative braking torque tra is not 0 at time t12 when the engine speed reaches the second speed nc. In such a situation, when the angle of the gradient of the decreasing maximum regenerative braking torque tra is not changed, the regenerative braking torque trb may not become zero before the time t13 when the engine speed reaches the idling speed nd. is there.
 時刻t12において最大回生制動トルク設定部220は、減少する最大回生制動トルクtraの勾配の角度が大きくなるように勾配を変更する。 に お い て At time t12, the maximum regenerative braking torque setting unit 220 changes the gradient of the decreasing maximum regenerative braking torque tra such that the angle of the gradient increases.
 このとき、最大回生制動トルク設定部220は、変更後の最大回生制動トルクtraが時間の経過とともに直線状に減少するように勾配を変更してもよい。例えば、最大回生制動トルクtraの減少率が-500N・m/secとなるように勾配の角度が設定されてよい。 At this time, the maximum regenerative braking torque setting unit 220 may change the gradient such that the changed maximum regenerative braking torque tra decreases linearly with the passage of time. For example, the angle of the gradient may be set so that the rate of decrease of the maximum regenerative braking torque tra is −500 N · m / sec.
 その後、エンジン回転数がアイドリング回転数ndに到達する時刻t13よりも前の時刻t11に回生制動トルクtrbが0となり、制動力置換制御が終了する。 Thereafter, at time t11 before the time t13 when the engine speed reaches the idling speed nd, the regenerative braking torque trb becomes 0, and the braking force replacement control ends.
 このように、図5に示した例では、エンジン回転数がアイドリング回転数に到達するまでに回生制動トルクが0とならないおそれがある場合、減少する最大回生制動トルクtraの勾配の角度が途中で大きくなる。 As described above, in the example shown in FIG. 5, when there is a possibility that the regenerative braking torque does not become 0 before the engine rotational speed reaches the idling rotational speed, the angle of the decreasing gradient of the maximum regenerative braking torque tra is halfway. growing.
 それにより、回生制動トルクtrbは、エンジン回転数がアイドリング回転数ndに到達する時刻t13よりも前に0となっている。したがって、本実施形態に係る車両の制御装置100は、エンジンストールを防ぐ確実性を一層向上することができる。 Accordingly, the regenerative braking torque trb becomes zero before time t13 when the engine speed reaches the idling speed nd. Therefore, the control device 100 for a vehicle according to the present embodiment can further improve the reliability of preventing the engine stall.
   (1-4-2.フローチャート)
 次に、図6を参照して、制御装置100による車両1の制御方法を説明する。図6は、本実施形態に係る車両1の制御装置100の動作例を示すフローチャートである。
(1-4-2. Flowchart)
Next, a control method of the vehicle 1 by the control device 100 will be described with reference to FIG. FIG. 6 is a flowchart illustrating an operation example of the control device 100 of the vehicle 1 according to the present embodiment.
 まず、制御開始判定部210は、車両減速時に、エンジン回転数センサ87より取得したエンジン回転数が、上述した第1の回転数に到達したか否かを判定する(ステップS11)。 First, the control start determination unit 210 determines whether the engine speed acquired from the engine speed sensor 87 has reached the above-described first speed during vehicle deceleration (step S11).
 エンジン回転数が第1の回転数に到達していない場合(S11/no)、制御開始判定部210は、制動力置換制御を開始しないと判定し、エンジン回転数が第1の回転数に到達するまでステップS11の判定を繰り返す。 When the engine speed has not reached the first speed (S11 / no), the control start determination unit 210 determines that the braking force replacement control is not to be started, and the engine speed has reached the first speed. The determination in step S11 is repeated until the determination is made.
 一方、エンジン回転数が第1の回転数に到達している場合(S11/yes)、制御開始判定部210は、制動力置換制御を開始すると判定する。 On the other hand, when the engine speed has reached the first speed (S11 / yes), the control start determination unit 210 determines to start the braking force replacement control.
 制御開始判定部210が制動力置換制御を開始すると判定した場合、最大回生制動トルク設定部220は、上述したように最大回生制動トルクを時間の経過とともに減少させる(ステップS13)。最大回生制動トルク設定部220は、例えば最大回生制動トルクを直線状に減少させる。 When the control start determination unit 210 determines that the braking force replacement control is to be started, the maximum regenerative braking torque setting unit 220 decreases the maximum regenerative braking torque over time as described above (step S13). The maximum regenerative braking torque setting unit 220 linearly reduces the maximum regenerative braking torque, for example.
 次いで、回生制動トルク制御部230は、最大回生制動トルクと各種センサの情報とに基づいて目標回生制動トルクを設定する。また、油圧ブレーキ制御部240は、要求制動トルクと目標回生制動トルクとに基づいて目標油圧ブレーキトルクを設定する(ステップS15)。 Next, the regenerative braking torque controller 230 sets a target regenerative braking torque based on the maximum regenerative braking torque and information from various sensors. Further, the hydraulic brake control unit 240 sets a target hydraulic brake torque based on the required braking torque and the target regenerative braking torque (Step S15).
 目標回生制動トルクが最大回生制動トルクを上回る場合、目標回生制動トルクは直線状に減少する。これに伴って、要求制動トルクから目標回生制動トルクを引いて求められる目標油圧ブレーキトルクは、直線状に増加する。 目標 If the target regenerative braking torque exceeds the maximum regenerative braking torque, the target regenerative braking torque decreases linearly. Accordingly, the target hydraulic brake torque obtained by subtracting the target regenerative braking torque from the required braking torque increases linearly.
 次いで、最大回生制動トルク設定部220は、エンジン回転数が上述した第2の回転数に到達しているか否かを判定する(ステップS17)。 Next, the maximum regenerative braking torque setting unit 220 determines whether or not the engine speed has reached the above-described second speed (step S17).
 エンジン回転数が第2の回転数に到達していない場合(S17/no)、最大回生制動トルク設定部220は、エンジン回転数が第2の回転数に到達するまでステップS17の判定を繰り返す。 If the engine speed has not reached the second speed (S17 / no), the maximum regenerative braking torque setting unit 220 repeats the determination in step S17 until the engine speed reaches the second speed.
 一方、エンジン回転数が第2の回転数に到達している場合(S17/yes)、最大回生制動トルク設定部220は、最大回生制動トルクが0になっているか否かを判定する(ステップS19)。 On the other hand, when the engine speed has reached the second speed (S17 / yes), the maximum regenerative braking torque setting unit 220 determines whether or not the maximum regenerative braking torque is 0 (step S19). ).
 最大回生制動トルクが0になっていない場合(S19/no)、最大回生制動トルク設定部220は、減少する最大回生制動トルクの勾配の角度を大きくする。そして、回生制動トルクが0となり制動力の置き換えが終了した時点で、本実施形態に係る車両の制御装置100は制動力置換制御を終了する。 If the maximum regenerative braking torque is not 0 (S19 / no), the maximum regenerative braking torque setting unit 220 increases the angle of the gradient of the decreasing maximum regenerative braking torque. Then, when the regenerative braking torque becomes 0 and the replacement of the braking force ends, the vehicle control device 100 according to the present embodiment ends the braking force replacement control.
 一方、最大回生制動トルクが0になっている場合(S19/yes)、本実施形態に係る車両の制御装置100はそのまま制動力置換制御を終了する。 On the other hand, when the maximum regenerative braking torque is 0 (S19 / yes), the vehicle control device 100 according to the present embodiment ends the braking force replacement control as it is.
 なお、制動力置換制御中にドライバによりクラッチ機構40が切り離されることがある。この場合、エンジン20に対する駆動輪60の連結は解除されるため、もはやモータジェネレータ30の回生制御を行うことができない。 The clutch mechanism 40 may be disconnected by the driver during the braking force replacement control. In this case, since the connection of the drive wheel 60 to the engine 20 is released, the regenerative control of the motor generator 30 can no longer be performed.
 このため、回生制動トルクは速やかにゼロにされ、車両1の要求制動トルクがそのまま目標油圧ブレーキトルクとなる。したがって、制動力置換制御中にドライバによりクラッチ機構40が切り離された場合、その時点で制御装置100は制動力置換制御を終了してよい。 Therefore, the regenerative braking torque is quickly reduced to zero, and the required braking torque of the vehicle 1 becomes the target hydraulic brake torque as it is. Therefore, when the driver disengages the clutch mechanism 40 during the braking force replacement control, the control device 100 may end the braking force replacement control at that time.
  [1-5.制御装置の効果]
 続いて、本実施形態に係る制御装置100の効果について説明する。
[1-5. Effect of control device]
Subsequently, effects of the control device 100 according to the present embodiment will be described.
 本実施形態に係る車両の制御装置100によれば、制動力置換制御中、目標回生制動トルクは時間の経過とともに単調減少する。また、目標油圧ブレーキトルクは要求制動トルクと目標回生制動トルクとのトルクの差分を補うようにされる。 According to the vehicle control device 100 according to the present embodiment, the target regenerative braking torque monotonously decreases with the passage of time during the braking force replacement control. Further, the target hydraulic brake torque compensates for a difference between the required braking torque and the target regenerative braking torque.
 それにより、本実施形態に係る車両の制御装置100は、車両減速時に、車両の制動トルクを回生制動トルクから油圧ブレーキトルクへ円滑に置き換えることができる。その結果、車両1の振動を抑制することができる。 Accordingly, the vehicle control device 100 according to the present embodiment can smoothly replace the braking torque of the vehicle from the regenerative braking torque to the hydraulic braking torque when the vehicle decelerates. As a result, vibration of the vehicle 1 can be suppressed.
 また、本実施形態に係る車両の制御装置100において、目標回生制動トルクは、時間の経過とともに直線状に減少する。このため、目標油圧ブレーキトルクも比較的単調に増加するようになり、車両1の振動を抑制する効果を向上させることができる。 In the vehicle control device 100 according to the present embodiment, the target regenerative braking torque decreases linearly with time. For this reason, the target hydraulic brake torque also increases relatively monotonously, and the effect of suppressing the vibration of the vehicle 1 can be improved.
 また、本実施形態に係る車両の制御装置100において、目標回生制動トルクは、エンジン回転数がアイドリング回転数に到達するよりも前に0となるように制御される。したがって、本実施形態に係る車両の制御装置100は、車両減速時に、エンジンストールを防ぐ確実性を向上することができる。 In addition, in the vehicle control device 100 according to the present embodiment, the target regenerative braking torque is controlled such that the target engine speed becomes zero before the engine speed reaches the idling speed. Therefore, the control device 100 of the vehicle according to the present embodiment can improve the reliability of preventing the engine stall during the vehicle deceleration.
 また、本実施形態に係る車両の制御装置100において、エンジン回転数がアイドリング回転数に到達するまでに回生制動トルクが0とならないおそれがある場合、減少する最大回生制動トルクの勾配の角度は途中で大きくなるように変更される。 In the vehicle control device 100 according to the present embodiment, if the regenerative braking torque does not become 0 before the engine speed reaches the idling speed, the angle of the gradient of the reduced maximum regenerative braking torque is halfway. Is changed to be larger.
 それにより、エンジン回転数がアイドリング回転数に到達するよりも前に回生制動トルクが0となる確実性が一層向上する。したがって、本実施形態に係る車両の制御装置100は、エンジンストールを防ぐ確実性を一層向上することができる。 Thereby, the certainty that the regenerative braking torque becomes zero before the engine speed reaches the idling speed is further improved. Therefore, the control device 100 for a vehicle according to the present embodiment can further improve the reliability of preventing the engine stall.
 <2.第2の実施形態>
 本発明の第2の実施形態に係る車両の制御装置について説明する。本実施形態に係る車両の制御装置は、第1の実施形態と比較して、制動力置換制御を開始するか否かを判定するエンジン回転数指標としてとして車速を使用する点で相違する。以下では、主として第1の実施形態の車両の制御装置と異なる点について説明する。
<2. Second Embodiment>
A vehicle control device according to a second embodiment of the present invention will be described. The control device for a vehicle according to the present embodiment is different from the first embodiment in that the vehicle speed is used as an engine speed index for determining whether to start the braking force replacement control. Hereinafter, points different from the control device of the vehicle of the first embodiment will be mainly described.
 [2-1.車両の全体構成]
 まず、図7を参照して、本実施形態に係る車両の制御装置を適用可能な車両の全体構成例を説明する。図7は、車両の制御装置300を備えた車両2を示す模式図である。以下、パワーユニット11と制御装置300とに分けて、車両2の全体構成例を説明する。
[2-1. Overall configuration of vehicle]
First, an example of the overall configuration of a vehicle to which the vehicle control device according to the present embodiment can be applied will be described with reference to FIG. FIG. 7 is a schematic diagram showing the vehicle 2 including the vehicle control device 300. Hereinafter, an example of the overall configuration of the vehicle 2 will be described separately for the power unit 11 and the control device 300.
   (2-1-1.パワーユニット)
 車両2のパワーユニット11は、有段変速機構に代えて無段変速機構51(以下、「CVT」ともいう。)を有する自動変速機を備える。無段変速機構51はプライマリプーリ及びセカンダリプーリを有し、プライマリプーリはクラッチ機構41を介してモータジェネレータ30と連結される。また、セカンダリプーリはデファレンシャル機構を介して駆動輪60と連結される。
(2-1-1. Power unit)
The power unit 11 of the vehicle 2 includes an automatic transmission having a continuously variable transmission mechanism 51 (hereinafter, also referred to as “CVT”) instead of the stepped transmission mechanism. The continuously variable transmission mechanism 51 has a primary pulley and a secondary pulley, and the primary pulley is connected to the motor generator 30 via the clutch mechanism 41. The secondary pulley is connected to the driving wheel 60 via a differential mechanism.
 無段変速機構51を備える場合、車両2の減速時に、プライマリプーリのプーリ径とセカンダリプーリのプーリ径との比率(プーリ比)を変更することにより、エンジン回転数を一定に保つことができる。このため、無段変速機構51を備える車両2では、減速時に、エンジン回転数を燃料噴射再開回転数以上に保つ制御が行われる場合がある。 When the continuously variable transmission mechanism 51 is provided, the engine speed can be kept constant by changing the ratio (pulley ratio) between the pulley diameter of the primary pulley and the pulley diameter of the secondary pulley when the vehicle 2 is decelerated. For this reason, in the vehicle 2 provided with the continuously variable transmission mechanism 51, control for keeping the engine speed at or above the fuel injection restart speed during deceleration may be performed.
 かかる場合、制動力置換制御を開始するか否かの判定を、エンジン回転数が低下して第1の回転数に到達したか否かに基づいて行うことは困難である。このため、本実施形態に係る制御装置300では、制動力置換制御を開始するか否かを判定するエンジン回転数指標として車速を使用する。 In such a case, it is difficult to determine whether to start the braking force replacement control based on whether or not the engine speed has decreased and reached the first speed. For this reason, the control device 300 according to the present embodiment uses the vehicle speed as an engine speed index for determining whether to start the braking force replacement control.
 なお、車両2の減速時に、無段変速機構51によってエンジン回転数を一定に保つことができなくなった場合(つまり、無段変速機構51のプーリ比が最大の値となった場合)、エンジン回転数は車速の低下に伴って低下する。 Note that when the continuously variable transmission mechanism 51 cannot maintain a constant engine speed during the deceleration of the vehicle 2 (that is, when the pulley ratio of the continuously variable transmission mechanism 51 reaches the maximum value), the engine rotation is stopped. The number decreases with decreasing vehicle speed.
 クラッチ機構41は、モータジェネレータ30と無段変速機構51との締結状態を切り替え可能である。クラッチ機構41はトルクコンバータのロックアップクラッチに相当する。無段変速機構51及びクラッチ機構41以外のパワーユニット11の構成は、上述した車両1と同様である。 The clutch mechanism 41 can switch the engagement state between the motor generator 30 and the continuously variable transmission mechanism 51. The clutch mechanism 41 corresponds to a lock-up clutch of the torque converter. The configuration of the power unit 11 other than the continuously variable transmission mechanism 51 and the clutch mechanism 41 is the same as that of the vehicle 1 described above.
   (2-1-2.制御装置)
 車両2の制御装置300は、エンジンコントローラ310及びブレーキコントローラ320を備える。エンジンコントローラ310には、ブレーキセンサ81、アクセルセンサ83、エンジン回転数センサ87及び車速センサ89が接続されている。
(2-1-2. Control device)
The control device 300 of the vehicle 2 includes an engine controller 310 and a brake controller 320. A brake sensor 81, an accelerator sensor 83, an engine speed sensor 87, and a vehicle speed sensor 89 are connected to the engine controller 310.
 車速センサ89は、車両2の車速を検出する。エンジンコントローラ310及びブレーキコントローラ320は、第1の実施形態におけるエンジンコントローラ110及びブレーキコントローラ120に相当する。 The vehicle speed sensor 89 detects the vehicle speed of the vehicle 2. The engine controller 310 and the brake controller 320 correspond to the engine controller 110 and the brake controller 120 in the first embodiment.
 制動力置換制御を開始するか否かを判定するエンジン回転数指標が車速になる点以外、制御装置300による基本的な制動力置換制御の動作は、上述した第1の実施形態と同様である。 The basic operation of the braking force replacement control by the control device 300 is the same as that of the above-described first embodiment, except that the engine speed index for determining whether to start the braking force replacement control is the vehicle speed. .
 ただし、無段変速機構51を有する自動変速機を備える車両2では、車速が低下して、エンジン回転数を燃料噴射再開回転数以上に保つことが困難となり得る。このため、本実施形態に係る制御装置300は、エンジン20への燃料噴射が再開されるよりも前に回生制動トルクから油圧ブレーキトルクへの置き換えを終了する点で、第1の実施形態とは異なる。 However, in the vehicle 2 including the automatic transmission having the continuously variable transmission mechanism 51, the vehicle speed may decrease, and it may be difficult to maintain the engine speed at or above the fuel injection restart speed. For this reason, the control device 300 according to the present embodiment differs from the first embodiment in that the control device 300 ends the replacement of the regenerative braking torque with the hydraulic brake torque before the fuel injection to the engine 20 is restarted. different.
 無段変速機構51を有する自動変速機を備える車両2では、車速が低下し、エンジン回転数を一定に保つことが困難になった場合、エンジンストールを防ぐために燃料噴射が再開される。このとき、エンジン20の出力トルクが駆動輪60に伝達されないようにクラッチ機構41の締結状態を解放する制御が行われることがある。クラッチ機構41の締結状態の解放時には、例えば、図示しないトランスミッションコントローラによりクラッチ解放フラグが生成される。 In the vehicle 2 including the automatic transmission having the continuously variable transmission mechanism 51, when the vehicle speed decreases and it becomes difficult to keep the engine speed constant, fuel injection is restarted to prevent engine stall. At this time, control may be performed to release the engaged state of the clutch mechanism 41 so that the output torque of the engine 20 is not transmitted to the drive wheels 60. When the clutch mechanism 41 is released from the engaged state, for example, a clutch release flag is generated by a transmission controller (not shown).
 この場合、駆動輪60の回転エネルギーを利用した回生効率は低下するために、ブレーキコントローラ320は、回生制動トルクを速やかにゼロにし、車両2の要求制動トルクをそのまま目標油圧ブレーキトルクとして設定する。 In this case, since the regenerative efficiency utilizing the rotational energy of the drive wheels 60 is reduced, the brake controller 320 immediately sets the regenerative braking torque to zero, and sets the required braking torque of the vehicle 2 as the target hydraulic brake torque as it is.
 また、クラッチ機構41の締結状態が解放される際に回生制動トルクが0となっていない場合、回生制動トルクが油圧ブレーキトルクに急激に切り替えられることがある。上述したように、回生制動トルクに比べて油圧ブレーキトルクの応答性及び追従性は劣る。このため、車両2の制動力が変動し、ドライバビリティに影響を与えるおそれがある。 If the regenerative braking torque is not 0 when the clutch mechanism 41 is released from the engaged state, the regenerative braking torque may be rapidly switched to the hydraulic brake torque. As described above, the responsiveness and followability of the hydraulic brake torque are inferior to the regenerative braking torque. Therefore, the braking force of the vehicle 2 may fluctuate, which may affect drivability.
 したがって、本実施形態において、ブレーキコントローラ320は、エンジン回転数が燃料噴射再開回転数に到達するよりも前に回生制動トルクから油圧ブレーキトルクへの置き換えを終了するように制御を行う。以下、このような制動力置換制御を実行可能とする制御装置300の具体例について説明する。 Therefore, in the present embodiment, the brake controller 320 performs control so that the replacement of the regenerative braking torque with the hydraulic brake torque is completed before the engine speed reaches the fuel injection restart speed. Hereinafter, a specific example of the control device 300 capable of executing such braking force replacement control will be described.
  [2-3.制御装置の具体例]
 本実施形態に係る車両の制御装置300の具体例を説明する。図8は、図7に示したエンジンコントローラ310及びブレーキコントローラ320により構成される制御装置300のうち、制動力置換制御に関連する部分の機能構成を示す説明図である。
[2-3. Specific example of control device]
A specific example of the vehicle control device 300 according to the present embodiment will be described. FIG. 8 is an explanatory diagram illustrating a functional configuration of a portion related to the braking force replacement control in the control device 300 including the engine controller 310 and the brake controller 320 illustrated in FIG.
 制御装置300は、制御開始判定部410、最大回生制動トルク設定部420、回生制動トルク制御部430及び油圧ブレーキ制御部440を備える。制御装置300は、ブレーキセンサ81、アクセルセンサ83、エンジン回転数センサ87及び車速センサ89から出力される信号と、クラッチ解放状態の情報とを取得する。 The control device 300 includes a control start determination unit 410, a maximum regenerative braking torque setting unit 420, a regenerative braking torque control unit 430, and a hydraulic brake control unit 440. Control device 300 acquires signals output from brake sensor 81, accelerator sensor 83, engine speed sensor 87, and vehicle speed sensor 89, and information on the clutch disengagement state.
 このうち、回生制動トルク制御部430及び油圧ブレーキ制御部440は、第1の実施形態に係る制御装置100の回生制動トルク制御部230及び油圧ブレーキ制御部240と同様に構成される。 う ち The regenerative braking torque controller 430 and the hydraulic brake controller 440 are configured similarly to the regenerative braking torque controller 230 and the hydraulic brake controller 240 of the control device 100 according to the first embodiment.
  (制御開始判定部)
 例えばエンジンコントローラ310が制御開始判定部410として機能する。本実施形態において、制御開始判定部410は、車両減速時に、車速センサ89より取得した車速があらかじめ設定された第1の速度に到達したか否かを判定する。車速が第1の速度に到達した場合、制御開始判定部410は、回生制動トルクから油圧ブレーキトルクへの制動力置換制御を開始すると判定する。
(Control start determination unit)
For example, the engine controller 310 functions as the control start determination unit 410. In the present embodiment, the control start determination unit 410 determines whether or not the vehicle speed acquired from the vehicle speed sensor 89 has reached a preset first speed during vehicle deceleration. When the vehicle speed has reached the first speed, the control start determination unit 410 determines to start the braking force replacement control from the regenerative braking torque to the hydraulic brake torque.
 上述したように、本実施形態において制動力置換処理は、エンジン20への燃料噴射の再開よりも前に終了することが好ましい。無段変速機構51を制御することによりエンジン回転数が燃料噴射再開回転数以上に保たれる本実施形態の場合、第1の速度は、プーリ比の調節によってもエンジン回転数を一定に保つことができずにエンジン回転数が低下して燃料噴射再開回転数に到達する時点における車速(以下、「燃料噴射再開時の車速」ともいう。)に、適宜のオフセット値を加えた速度であってよい。 As described above, in the present embodiment, it is preferable that the braking force replacement process be completed before resuming fuel injection to the engine 20. In the case of the present embodiment in which the engine speed is maintained equal to or higher than the fuel injection restart speed by controlling the continuously variable transmission mechanism 51, the first speed is maintained at a constant engine speed even by adjusting the pulley ratio. The vehicle speed at the time when the engine speed decreases to reach the fuel injection restart speed without performing the engine speed (hereinafter, also referred to as “vehicle speed at the time of restarting fuel injection”) is a speed obtained by adding an appropriate offset value. Good.
 ただし、第1の速度が、燃料噴射再開時の車速よりも過度に大きい場合、燃費を悪化させることがないにもかかわらず、一部の回生制動トルクが油圧ブレーキトルクに置き換えられてしまい、回生効率が低下する。したがって、オフセット値は回生効率を考慮した上で決定されることが好ましい。 However, if the first speed is excessively higher than the vehicle speed at the time of resuming fuel injection, some of the regenerative braking torque is replaced with the hydraulic brake torque, despite the fact that fuel efficiency is not deteriorated, and Efficiency decreases. Therefore, it is preferable that the offset value is determined in consideration of the regeneration efficiency.
  (最大回生制動トルク設定部)
 例えばエンジンコントローラ310が最大回生制動トルク設定部420として機能する。最大回生制動トルク設定部420は、上述した最大回生制動トルク設定部220と同様に最大回生制動トルクを設定する。
(Maximum regenerative braking torque setting section)
For example, the engine controller 310 functions as the maximum regenerative braking torque setting unit 420. The maximum regenerative braking torque setting unit 420 sets the maximum regenerative braking torque similarly to the above-described maximum regenerative braking torque setting unit 220.
 上述したように、本実施形態において制動力の置き換え処理は、燃料噴射の再開よりも前に終了することが好ましい。このため、車速が、燃料噴射再開時の車速に到達するまでに最大回生制動トルクが0とならないと判断される場合、最大回生制動トルク設定部420は、最大回生制動トルクを減少させる勾配を大きくして、速やかに最大回生制動トルクを0にしてもよい。 As described above, in the present embodiment, it is preferable that the braking force replacement process be completed before the fuel injection is restarted. Therefore, when it is determined that the maximum regenerative braking torque does not become 0 before the vehicle speed reaches the vehicle speed at the time of resuming fuel injection, the maximum regenerative braking torque setting unit 420 increases the gradient for decreasing the maximum regenerative braking torque. Then, the maximum regenerative braking torque may be immediately reduced to zero.
 例えば、最大回生制動トルク設定部420は、車両2の車速があらかじめ設定された第2の速度に到達した際に最大回生制動トルクが0となっていない場合、勾配の角度が大きくなるように、最大回生制動トルクの減少率を上げてもよい。第2の速度は、例えば、燃料噴射再開時の車速に適宜のオフセット値を加えた速度であってよい。 For example, when the maximum regenerative braking torque is not 0 when the vehicle speed of the vehicle 2 reaches the second speed set in advance, the maximum regenerative braking torque setting unit 420 increases the angle of the gradient. The reduction rate of the maximum regenerative braking torque may be increased. The second speed may be, for example, a speed obtained by adding an appropriate offset value to the vehicle speed at the time of restarting fuel injection.
  [2-4.制御装置の動作例]
   (2-4-1.概略)
 図9~10を参照して、制御装置300による車両2の制御方法の概略を説明する。図9~10は、本実施形態に係る車両の制御装置の動作例を示す説明図である。
[2-4. Operation example of control device]
(2-4-1. Outline)
With reference to FIGS. 9 and 10, an outline of a method of controlling vehicle 2 by control device 300 will be described. 9 and 10 are explanatory diagrams showing an operation example of the control device for a vehicle according to the present embodiment.
 図9は、車両2が平坦路を走行している場合の制御装置300の動作例である。
 時刻t30において、車速が上述した第1の速度vaに到達すると、制御開始判定部410は、回生制動トルクtrbから油圧ブレーキトルクtrcへの制動力置換制御を開始すると判定する。
FIG. 9 is an operation example of the control device 300 when the vehicle 2 is traveling on a flat road.
At time t30, when the vehicle speed reaches the above-described first speed va, the control start determination unit 410 determines to start the braking force replacement control from the regenerative braking torque trb to the hydraulic brake torque trc.
 時刻t30以降において、最大回生制動トルク設定部420は、時刻t30の回生制動トルクtrbを最大回生制動トルクtraの初期値として設定するとともに、最大回生制動トルクtraを時間の経過とともに減少させる。図9に示した例では、最大回生制動トルクが直線状に減少する。 に お い て After time t30, the maximum regenerative braking torque setting unit 420 sets the regenerative braking torque trb at time t30 as an initial value of the maximum regenerative braking torque tra, and decreases the maximum regenerative braking torque tra over time. In the example shown in FIG. 9, the maximum regenerative braking torque decreases linearly.
 最大回生制動トルクtraを減少させる際の勾配は、第1の実施形態と同様に、目標油圧ブレーキトルクに対して油圧ブレーキ62が追従可能な範囲内に設定されることが好ましい。 It is preferable that the gradient at the time of reducing the maximum regenerative braking torque tra be set within a range in which the hydraulic brake 62 can follow the target hydraulic brake torque, as in the first embodiment.
 併せて、最大回生制動トルクtraを減少させる際の勾配は、車両2が所定の条件下で走行中に、エンジン回転数が燃料噴射再開回転数nbに到達するよりも前に最大回生制動トルクtraが0となるように設定されてもよい。所定の条件は、第1の実施形態における条件と同様であってよい。 At the same time, the gradient at the time of decreasing the maximum regenerative braking torque tra is such that the maximum regenerative braking torque tra before the engine speed reaches the fuel injection restart speed nb while the vehicle 2 is traveling under the predetermined conditions. May be set to 0. The predetermined condition may be the same as the condition in the first embodiment.
 時刻t30以降において、目標回生制動トルクの値は、最大回生制動トルクtraの値と一致し、時間の経過とともに直線状に減少する。これに伴って、目標油圧ブレーキトルクは時間の経過とともに直線状に増加する。したがって、回生制動トルクtrbは、時間の経過とともに直線状に減少し、油圧ブレーキトルクtrcは、時間の経過とともに直線状に増加する。 に お い て After time t30, the value of the target regenerative braking torque matches the value of the maximum regenerative braking torque tra, and decreases linearly with time. Accordingly, the target hydraulic brake torque increases linearly with the passage of time. Therefore, the regenerative braking torque trb decreases linearly with the passage of time, and the hydraulic brake torque trc increases linearly with the passage of time.
 その後、エンジン回転数が燃料噴射再開回転数nbに到達する時刻t33よりも前の時刻t31に回生制動トルクtrbが0となり、制動力置換制御が終了する。 Thereafter, at time t31 before the time t33 when the engine speed reaches the fuel injection restart speed nb, the regenerative braking torque trb becomes 0, and the braking force replacement control ends.
 このように、本実施形態において回生制動トルクtrbは、時間の経過とともに直線状に減少する。また、油圧ブレーキトルクtrcは、要求制動トルクtreと回生制動トルクtrbとの差分を補うように時間の経過とともに直線状に増加する。 As described above, in the present embodiment, the regenerative braking torque trb decreases linearly with the passage of time. The hydraulic brake torque trc increases linearly with time so as to compensate for the difference between the required braking torque tr and the regenerative braking torque trb.
 それにより、回生制動トルクtrbと油圧ブレーキトルクtrcとの合計トルクtrdは一定となる。つまり、本実施形態に係る車両の制御装置300は、車両減速時に、車両2の制動トルクを回生制動トルクtrbから油圧ブレーキトルクtrcへと円滑に置き換えることができる。 Accordingly, the total torque trd of the regenerative braking torque trb and the hydraulic braking torque trc becomes constant. That is, the vehicle control device 300 according to the present embodiment can smoothly replace the braking torque of the vehicle 2 from the regenerative braking torque trb to the hydraulic brake torque trc during vehicle deceleration.
 また、図9に示した例では、回生制動トルクtrbは、エンジン回転数が燃料噴射再開回転数nbに到達する時刻t33よりも前に0となっている。したがって、本実施形態に係る車両の制御装置300は、燃費の悪化及びドライバビリティの低下を防ぐ確実性を向上することができる。 In addition, in the example shown in FIG. 9, the regenerative braking torque trb is 0 before the time t33 when the engine speed reaches the fuel injection restart speed nb. Therefore, the control device 300 of the vehicle according to the present embodiment can improve the certainty of preventing deterioration of fuel efficiency and drivability.
 次に、図10を参照して、エンジン回転数が燃料噴射再開回転数に到達するまでに回生制動トルクが0とならないおそれがある場合を説明する。図10は、上り坂を走行している車両2における制御装置300の動作例である。図10に示す制御装置300の動作例において、車速の低下速度は図4に比べて速い。つまり、エンジン回転数が燃料噴射再開回転数に至るまでの時間は図4に比べて短い。 Next, a case where the regenerative braking torque may not become 0 before the engine speed reaches the fuel injection restart speed will be described with reference to FIG. FIG. 10 is an operation example of the control device 300 in the vehicle 2 traveling on an uphill. In the operation example of the control device 300 shown in FIG. 10, the decrease speed of the vehicle speed is faster than that in FIG. That is, the time required for the engine speed to reach the fuel injection restart speed is shorter than that in FIG.
 図10に示す例において、車速が、上述した第2の速度vbに到達する時刻t32までの車両の制御装置300の動作は、上述した図9に示した動作と同様である。 In the example shown in FIG. 10, the operation of the control device 300 of the vehicle until time t32 when the vehicle speed reaches the above-described second speed vb is the same as the above-described operation shown in FIG.
 図10に示す例では、車両2の車速が第2の速度vb到達する時刻t32において、最大回生制動トルクtraが0となっていない。このような状況において、減少する最大回生制動トルクtraの勾配の角度を変更しない場合、エンジン回転数が燃料噴射再開回転数nbに到達する時刻t33よりも前に回生制動トルクtrbが0とならないおそれがある。 In the example shown in FIG. 10, the maximum regenerative braking torque tra is not 0 at time t32 when the vehicle speed of the vehicle 2 reaches the second speed vb. In such a situation, when the angle of the gradient of the decreasing maximum regenerative braking torque tra is not changed, the regenerative braking torque trb may not become 0 before the time t33 when the engine speed reaches the fuel injection restart speed nb. There is.
 このため、時刻t32において、最大回生制動トルク設定部420は、上述したように減少する最大回生制動トルクtraの勾配の角度を大きくする。 Therefore, at time t32, the maximum regenerative braking torque setting unit 420 increases the gradient angle of the maximum regenerative braking torque tra that decreases as described above.
 その後、エンジン回転数が燃料噴射再開回転数nbに到達する時刻t33よりも前の時刻t31に回生制動トルクtrbが0となり、制動力置換制御が終了する。 Thereafter, at time t31 before the time t33 when the engine speed reaches the fuel injection restart speed nb, the regenerative braking torque trb becomes 0, and the braking force replacement control ends.
 このように、図10に示した例では、エンジン回転数が燃料噴射再開回転数に到達するまでに回生制動トルクが0とならないおそれがある場合に、最大回生制動トルクtraを減少させる勾配の角度を途中で大きくする。 As described above, in the example illustrated in FIG. 10, when the regenerative braking torque may not become 0 before the engine speed reaches the fuel injection restart speed, the angle of the gradient that reduces the maximum regenerative braking torque tra On the way.
 それにより、回生制動トルクtrbはエンジン回転数が燃料噴射再開回転数nbに到達する時刻t33よりも前に0となる。したがって、本実施形態に係る車両の制御装置300は、燃費の悪化及びドライバビリティの低下を抑制する確実性を一層向上することができる。 Accordingly, the regenerative braking torque trb becomes zero before the time t33 when the engine speed reaches the fuel injection restart speed nb. Therefore, the control device 300 of the vehicle according to the present embodiment can further improve the certainty of suppressing the deterioration of the fuel efficiency and the decrease of the drivability.
   (2-4-2.フローチャート)
 次に、図11を参照して、制御装置300による車両2の制御方法を説明する。図11は、本実施形態に係る車両の制御装置の動作例を示すフローチャートである。
(2-4-2. Flowchart)
Next, a control method of the vehicle 2 by the control device 300 will be described with reference to FIG. FIG. 11 is a flowchart illustrating an operation example of the vehicle control device according to the present embodiment.
 制御開始判定部410は、車両減速時に、車速センサ89より取得した車速が上述した第1の速度に到達したか否かを判定する(ステップS31)。 The control start determination unit 410 determines whether the vehicle speed acquired from the vehicle speed sensor 89 has reached the above-described first speed during vehicle deceleration (step S31).
 車速が第1の速度に到達していない場合(S31/no)、制御開始判定部410は、制動力置換制御を開始しないと判定し、車速が第1の速度に到達するまでステップS31の判定を繰り返す。一方、車速が第1の速度に到達している場合(S31/yes)、制御開始判定部410は、制動力置換制御を開始すると判定する。 When the vehicle speed has not reached the first speed (S31 / no), the control start determination unit 410 determines that the braking force replacement control is not to be started, and determines in step S31 until the vehicle speed reaches the first speed. repeat. On the other hand, when the vehicle speed has reached the first speed (S31 / yes), the control start determination unit 410 determines to start the braking force replacement control.
 制御開始判定部410が制動力置換制御を開始すると判定した場合、最大回生制動トルク設定部420は、上述したように最大回生制動トルクを時間の経過とともに減少させる(ステップS33)。最大回生制動トルク設定部420は、例えば最大回生制動トルクを直線状に減少させる When the control start determination unit 410 determines that the braking force replacement control is to be started, the maximum regenerative braking torque setting unit 420 decreases the maximum regenerative braking torque with the passage of time as described above (step S33). The maximum regenerative braking torque setting unit 420 linearly reduces the maximum regenerative braking torque, for example.
 次いで、回生制動トルク制御部430は、時間の経過とともに減少する最大回生制動トルクと各種センサの情報とに基づいて目標回生制動トルクを設定する。また、油圧ブレーキ制御部440は、要求制動トルクと目標回生制動トルクとに基づいて目標油圧ブレーキトルクを設定する(ステップS35)。 Next, the regenerative braking torque control unit 430 sets the target regenerative braking torque based on the maximum regenerative braking torque that decreases over time and information from various sensors. Further, the hydraulic brake control unit 440 sets the target hydraulic brake torque based on the required braking torque and the target regenerative braking torque (Step S35).
 目標回生制動トルクが最大回生制動トルクを上回る場合、目標回生制動トルクは直線状に減少する。これに伴って、要求制動トルクから目標回生制動トルクを引いて求められる目標油圧ブレーキトルクは、直線状に増加する。 目標 If the target regenerative braking torque exceeds the maximum regenerative braking torque, the target regenerative braking torque decreases linearly. Accordingly, the target hydraulic brake torque obtained by subtracting the target regenerative braking torque from the required braking torque increases linearly.
 次いで、最大回生制動トルク設定部420は、車速が上述した第2の速度に到達しているか否かを判定する(ステップS37)。 Next, the maximum regenerative braking torque setting unit 420 determines whether or not the vehicle speed has reached the above-described second speed (Step S37).
 車速が第2の速度に到達していない場合(S37/no)、最大回生制動トルク設定部420は、車速が第2の速度に到達するまでステップS37の判定を繰り返す。一方、車速が第2の速度に到達している場合(S37/yes)、最大回生制動トルク設定部420は、最大回生制動トルクが0になっているか否かを判定する(ステップS39)。 If the vehicle speed has not reached the second speed (S37 / no), the maximum regenerative braking torque setting unit 420 repeats the determination in step S37 until the vehicle speed reaches the second speed. On the other hand, when the vehicle speed has reached the second speed (S37 / yes), the maximum regenerative braking torque setting unit 420 determines whether the maximum regenerative braking torque is 0 (step S39).
 最大回生制動トルクが0になっていない場合(S39/no)、最大回生制動トルク設定部420は、減少する最大回生制動トルクの勾配の角度を大きくする。そして、回生制動トルクが0となり制動力の置き換えが終了した時点で、本実施形態に係る車両の制御装置300は制動力置換制御を終了する。 If the maximum regenerative braking torque is not 0 (S39 / no), the maximum regenerative braking torque setting unit 420 increases the angle of the decreasing gradient of the maximum regenerative braking torque. Then, when the regenerative braking torque becomes 0 and the replacement of the braking force ends, the vehicle control device 300 according to the present embodiment ends the braking force replacement control.
 一方、最大回生制動トルクが0になっている場合(S39/yes)、本実施形態に係る車両の制御装置300はそのまま制動力置換制御を終了する。 On the other hand, when the maximum regenerative braking torque is 0 (S39 / yes), the vehicle control device 300 according to the present embodiment ends the braking force replacement control as it is.
 なお、上記では無段変速機構51を有する自動変速機を備える車両2において制動力置換制御を開始するか否かを判定するエンジン回転数指標としてとして車速を使用する例を示したが、本実施形態は係る例に限定されない。 In the above description, an example in which the vehicle speed is used as the engine speed index for determining whether or not to start the braking force replacement control in the vehicle 2 including the automatic transmission having the continuously variable transmission mechanism 51 has been described. The form is not limited to such an example.
 例えば、第1の実施形態で例示したような有段変速機構50を備える車両1において制動力置換制御を開始するか否かを判定するエンジン回転数指標として車速を使用してもよい。 For example, the vehicle speed may be used as an engine speed index for determining whether or not to start the braking force replacement control in the vehicle 1 including the stepped transmission mechanism 50 as exemplified in the first embodiment.
  [2-5.制御装置の効果]
 本実施形態に係る制御装置300の効果について説明する。
[2-5. Effect of control device]
Effects of the control device 300 according to the present embodiment will be described.
 本実施形態に係る車両の制御装置300において、制動力置換制御を開始するか否かを判定するエンジン回転数指標としてとして車速が用いられる。このため、エンジン回転数を燃料噴射再開回転数以上に保つ制御が行われる車両2に対しても、制動力置換制御を適用することができ、第1の実施の形態に係る制御装置100と同様の効果を得ることができる。 In the vehicle control device 300 according to the present embodiment, the vehicle speed is used as an engine speed index for determining whether to start the braking force replacement control. For this reason, the braking force replacement control can be applied to the vehicle 2 in which the control for maintaining the engine rotation speed equal to or higher than the fuel injection restart rotation speed is performed, similar to the control device 100 according to the first embodiment. The effect of can be obtained.
 また、本実施形態に係る車両の制御装置300において、回生制動トルクはエンジン回転数が燃料噴射再開回転数に到達するよりも前に0となるように制御される。したがって、本実施形態に係る車両の制御装置300は、車両減速時に、燃費の悪化及びドライバビリティの低下を抑制する確実性を向上することができる。 In addition, in the vehicle control device 300 according to the present embodiment, the regenerative braking torque is controlled to become 0 before the engine speed reaches the fuel injection restart speed. Therefore, the control device 300 of the vehicle according to the present embodiment can improve the certainty of suppressing the deterioration of the fuel efficiency and the decrease of the drivability when the vehicle is decelerated.
 <3.むすび>
 以上説明したように、本発明の実施形態に係る車両の制御装置は、燃料カット制御中に回生制動トルクを発生させた状態で、エンジン回転数に相関するエンジン回転数指標が所定の条件を満たしたときに、目標回生制動トルクを所定の勾配で減少させ、かつ、車両の要求制動トルクと目標回生制動トルクとの差分を目標油圧ブレーキトルクとして設定する。
<3. Conclusion>
As described above, in the vehicle control device according to the embodiment of the present invention, when the regenerative braking torque is generated during the fuel cut control, the engine speed index correlated with the engine speed satisfies a predetermined condition. Then, the target regenerative braking torque is reduced at a predetermined gradient, and the difference between the required braking torque of the vehicle and the target regenerative braking torque is set as the target hydraulic brake torque.
 それにより、回生制動トルクが上下変動を伴いながら低下することがなくなって、回生制動トルクを油圧ブレーキトルクに円滑に置き換えることができる。 Thereby, the regenerative braking torque does not decrease with vertical fluctuation, and the regenerative braking torque can be smoothly replaced with the hydraulic brake torque.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明は係る例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。また、上記の実施形態を互いに組み合わせた態様も、当然に本発明の技術的範囲に属する。 Although the preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that those skilled in the art to which the present invention pertains can conceive various changes or modifications within the scope of the technical idea described in the claims. It is understood that these also belong to the technical scope of the present invention. Further, a mode in which the above embodiments are combined with each other naturally belongs to the technical scope of the present invention.
 例えば、上記実施形態において車両の制御装置は2つのコントローラを備えているが、本発明はかかる例に限定されない。上記のコントローラの一部又は全部の機能が1つのコントローラに統合されていてもよく、さらに複数のコントローラに分かれていてもよい。また、2つのコントローラを互いに協調させて制御するさらに上位のコントローラが設けられていてもよい。 For example, in the above embodiment, the vehicle control device includes two controllers, but the present invention is not limited to this example. Some or all of the functions of the above controller may be integrated into one controller, or may be further divided into a plurality of controllers. Further, a higher-level controller that controls the two controllers in cooperation with each other may be provided.
 また、例えば、上記実施形態においてモータジェネレータはスタータ及び制動装置としての機能を有するが、本発明はかかる例に限定されない。モータジェネレータは動力源としての機能をさらに有していてもよい。 Also, for example, in the above embodiment, the motor generator has functions as a starter and a braking device, but the present invention is not limited to such an example. The motor generator may further have a function as a power source.
 1,2・・・車両、10,11・・・パワーユニット、20・・・エンジン、30・・・モータジェネレータ、32・・・バッテリ、34・・・インバータ、40,41・・・クラッチ機構、50・・・有段変速機構、51・・・無段変速機構、60・・・駆動輪、62・・・油圧ブレーキ、70・・・液圧ユニット、81・・・ブレーキセンサ、83・・・アクセルセンサ、85・・・クラッチセンサ、87・・・エンジン回転数センサ、89・・・車速センサ、100,300・・・制御装置、110,310・・・エンジンコントローラ、120,320・・・ブレーキコントローラ、210,410・・・制御開始判定部、220,420・・・最大回生制動トルク設定部、230,430・・・回生制動トルク制御部、240,440・・・油圧ブレーキ制御部
 
1, 2, ... vehicle, 10, 11 ... power unit, 20 ... engine, 30 ... motor generator, 32 ... battery, 34 ... inverter, 40, 41 ... clutch mechanism, 50: stepped transmission mechanism, 51: stepless transmission mechanism, 60: drive wheel, 62: hydraulic brake, 70: hydraulic unit, 81: brake sensor, 83 ... Accelerator sensor, 85: clutch sensor, 87: engine speed sensor, 89: vehicle speed sensor, 100, 300: control device, 110, 310: engine controller, 120, 320 Brake controllers, 210, 410: control start determination unit, 220, 420: maximum regenerative braking torque setting unit, 230, 430: regenerative braking torque control unit, 240, 4 0 ... hydraulic brake control unit

Claims (13)

  1.  直列に連結されたエンジン(20)及びモータジェネレータ(30)と、油圧により作動する油圧ブレーキ(62)とを備える車両(1)に搭載され、前記モータジェネレータ(30)が発生する回生制動トルク及び前記油圧ブレーキ(62)が発生する油圧ブレーキトルクを制御する車両の制御装置(100)であって、
     前記エンジン(20)への燃料の噴射を停止する燃料カット制御中に前記回生制動トルクを発生させた状態で、前記エンジン(20)の回転数に相関するエンジン回転数指標が所定の条件を満たしたときに、目標回生制動トルクを所定の勾配で減少させる回生制動トルク制御部(230)と、
     前記車両(1)の運転者が要求する要求制動トルクと、前記目標回生制動トルクとの差分を目標油圧ブレーキトルクとして設定する油圧ブレーキ制御部(240)とを備える
     ことを特徴とする車両の制御装置(100)。
    It is mounted on a vehicle (1) including an engine (20) and a motor generator (30) connected in series, and a hydraulic brake (62) operated by hydraulic pressure. A vehicle control device (100) for controlling a hydraulic brake torque generated by the hydraulic brake (62),
    In a state where the regenerative braking torque is generated during the fuel cut control for stopping the injection of fuel to the engine (20), an engine speed index correlated with the speed of the engine (20) satisfies a predetermined condition. A regenerative braking torque control unit (230) that reduces the target regenerative braking torque at a predetermined gradient when:
    A vehicle control comprising: a hydraulic brake control unit (240) that sets a difference between a required braking torque requested by a driver of the vehicle (1) and the target regenerative braking torque as a target hydraulic brake torque. Apparatus (100).
  2.  前記所定の勾配は、
     前記車両(1)が所定の条件下で走行中に、前記エンジン(20)の回転数が前記車両(1)のアイドリング回転数に到達するよりも前に前記目標回生制動トルクの値が0となるように設定される
     ことを特徴とする請求項1に記載の車両の制御装置(100)。
    The predetermined gradient is
    While the vehicle (1) is traveling under predetermined conditions, the value of the target regenerative braking torque is set to 0 before the rotation speed of the engine (20) reaches the idling rotation speed of the vehicle (1). The vehicle control device (100) according to claim 1, wherein the vehicle control device (100) is set to:
  3.  前記所定の勾配の角度は、
     前記目標油圧ブレーキトルクに対して前記油圧ブレーキが追従可能な範囲で設定される
     ことを特徴とする請求項1又は2のいずれか1項に記載の車両の制御装置(100)。
    The angle of the predetermined gradient is
    The control device (100) for a vehicle according to claim 1, wherein the hydraulic brake is set within a range in which the hydraulic brake can follow the target hydraulic brake torque.
  4.  前記エンジン回転数指標は、
     前記エンジン(20)の回転数である
     ことを特徴とする請求項1~3のいずれか1項に記載の車両の制御装置(100)。
    The engine speed index is:
    The control device (100) for a vehicle according to any one of claims 1 to 3, wherein the control device is a rotation speed of the engine (20).
  5.  前記回生制動トルク制御部(230)は、
     前記エンジン(20)の回転数があらかじめ設定された基準回転数となった場合に、前記目標回生制動トルクを所定の勾配で減少させる
     ことを特徴とする請求項4に記載の車両の制御装置(100)。
    The regenerative braking torque control unit (230) includes:
    The vehicle control device according to claim 4, wherein the target regenerative braking torque is reduced at a predetermined gradient when the rotation speed of the engine (20) reaches a preset reference rotation speed. 100).
  6.  前記基準回転数は、
     前記エンジン(20)への燃料噴射を再開する基準となる燃料噴射再開回転数に第1のオフセット回転数を加えた回転数である
     ことを特徴とする請求項5に記載の車両の制御装置(100)。
    The reference rotation speed is
    The vehicle control device according to claim 5, wherein the rotation speed is obtained by adding a first offset rotation speed to a fuel injection restart rotation speed serving as a reference for restarting fuel injection to the engine (20). 100).
  7.  前記回生制動トルク制御部(230)は、
     前記エンジン(20)の回転数がアイドリング回転数に到達するよりも前に前記目標回生制動トルクの値が0とならないと判断した場合に、前記所定の勾配の角度を大きくする
     ことを特徴とする請求項1~6のいずれか1項に記載の車両の制御装置(100)。
    The regenerative braking torque control unit (230) includes:
    When it is determined that the value of the target regenerative braking torque does not become 0 before the rotation speed of the engine (20) reaches the idling rotation speed, the angle of the predetermined gradient is increased. A control device (100) for a vehicle according to any one of the preceding claims.
  8.  前記回生制動トルク制御部(230)は、
     前記エンジン(20)の回転数がアイドリング回転数に第2のオフセット回転数を加えた回転数となった際に前記目標回生制動トルクの値が0となっていない場合に、前記所定の勾配の角度を大きくする
     ことを特徴とする請求項7に記載の車両の制御装置(100)。
    The regenerative braking torque control unit (230) includes:
    When the value of the target regenerative braking torque is not 0 when the number of revolutions of the engine (20) becomes the number of revolutions obtained by adding the second offset number of revolutions to the idling number of revolutions, The control device (100) of a vehicle according to claim 7, wherein the angle is increased.
  9.  前記エンジン回転数指標は、前記車両(2)の車速である
     ことを特徴とする請求項1~3のいずれか1項に記載の車両の制御装置(300)。
    The vehicle control device (300) according to any one of claims 1 to 3, wherein the engine speed index is a vehicle speed of the vehicle (2).
  10.  前記回生制動トルク制御部(430)は、
     前記車速があらかじめ設定された第1の速度となった場合に、前記目標回生制動トルクを所定の勾配で減少させる
     ことを特徴とする請求項9に記載の車両の制御装置(300)。
    The regenerative braking torque control unit (430) includes:
    The vehicle control device (300) according to claim 9, wherein the target regenerative braking torque is reduced at a predetermined gradient when the vehicle speed reaches a first speed set in advance.
  11.  前記車両(2)は、
     無段変速機構(51)を有し、
     前記所定の勾配は、
     前記車両(2)が所定の条件下で走行中に、前記エンジン(20)の回転数が前記エンジン(20)への燃料噴射を再開する基準となる燃料噴射再開回転数に到達するよりも前に前記目標回生制動トルクの値が0となるように設定される
     ことを特徴とする請求項9又は10に記載の車両の制御装置(300)。
    The vehicle (2) is
    Having a continuously variable transmission mechanism (51),
    The predetermined gradient is
    While the vehicle (2) is traveling under a predetermined condition, the rotation speed of the engine (20) before the rotation speed of the engine (20) reaches a fuel injection restart rotation speed serving as a reference for restarting fuel injection to the engine (20). The control device (300) for a vehicle according to claim 9 or 10, wherein the value of the target regenerative braking torque is set to 0.
  12.  前記回生制動トルク制御部(430)は、
     前記車速が、前記エンジン(20)の回転数が前記エンジン(20)への燃料噴射を再開する基準となる燃料噴射再開回転数に到達する時点の車速に適宜のオフセット値を加えた速度となった際に、前記目標回生制動トルクの値が0となっていない場合に、前記所定の勾配の角度を大きくする
     ことを特徴とする請求項9~11のいずれか1項に記載の車両の制御装置(300)。
    The regenerative braking torque control unit (430) includes:
    The vehicle speed is a speed obtained by adding an appropriate offset value to the vehicle speed at the time when the rotation speed of the engine (20) reaches a fuel injection restart rotation speed serving as a reference for restarting fuel injection to the engine (20). The control of the vehicle according to any one of claims 9 to 11, wherein when the value of the target regenerative braking torque is not 0, the angle of the predetermined gradient is increased. Apparatus (300).
  13.  前記所定の勾配は、直線状である
     ことを特徴とする請求項1~12のいずれか1項に記載の車両の制御装置(300)。
     
    The control device (300) for a vehicle according to any one of claims 1 to 12, wherein the predetermined slope is linear.
PCT/JP2019/024080 2018-08-02 2019-06-18 Vehicle control device WO2020026621A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019003902.4T DE112019003902T5 (en) 2018-08-02 2019-06-18 Vehicle control device
JP2020534095A JP7223762B2 (en) 2018-08-02 2019-06-18 vehicle controller
CN201980065054.7A CN112752688B (en) 2018-08-02 2019-06-18 Vehicle control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-145903 2018-08-02
JP2018145903 2018-08-02

Publications (1)

Publication Number Publication Date
WO2020026621A1 true WO2020026621A1 (en) 2020-02-06

Family

ID=69231631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024080 WO2020026621A1 (en) 2018-08-02 2019-06-18 Vehicle control device

Country Status (4)

Country Link
JP (1) JP7223762B2 (en)
CN (1) CN112752688B (en)
DE (1) DE112019003902T5 (en)
WO (1) WO2020026621A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430719A (en) * 2020-04-28 2022-05-03 三菱自动车工业株式会社 Vehicle brake device
EP4063174A1 (en) * 2021-01-12 2022-09-28 Suzuki Motor Corporation Control device for vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287304A (en) * 1999-03-30 2000-10-13 Mitsubishi Electric Corp Driving device for internal combustion engine
JP2004278317A (en) * 2003-03-12 2004-10-07 Toyota Motor Corp Vehicular speed reduction control device
JP2013177024A (en) * 2012-02-28 2013-09-09 Nissan Motor Co Ltd Brake control device for electric vehicle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371413B2 (en) * 1995-05-18 2003-01-27 株式会社エクォス・リサーチ Hybrid vehicle
JP3610962B2 (en) 2002-04-09 2005-01-19 トヨタ自動車株式会社 Control device for vehicle braking force
JP2004232486A (en) * 2003-01-28 2004-08-19 Toyota Motor Corp Fuel injection control device for internal combustion engine
JP3925498B2 (en) 2004-02-03 2007-06-06 日産自動車株式会社 Control device for hybrid vehicle
JP2005329740A (en) 2004-05-18 2005-12-02 Toyota Motor Corp Vehicular braking system
JP5066004B2 (en) 2008-06-06 2012-11-07 日立オートモティブシステムズ株式会社 Brake system
CN104797475B (en) * 2012-11-16 2016-08-24 日产自动车株式会社 The control device of motor vehicle driven by mixed power
JP6569592B2 (en) * 2016-05-02 2019-09-04 株式会社デンソー Vehicle control apparatus and vehicle control method
JP6520884B2 (en) * 2016-10-12 2019-05-29 トヨタ自動車株式会社 Vehicle control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287304A (en) * 1999-03-30 2000-10-13 Mitsubishi Electric Corp Driving device for internal combustion engine
JP2004278317A (en) * 2003-03-12 2004-10-07 Toyota Motor Corp Vehicular speed reduction control device
JP2013177024A (en) * 2012-02-28 2013-09-09 Nissan Motor Co Ltd Brake control device for electric vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430719A (en) * 2020-04-28 2022-05-03 三菱自动车工业株式会社 Vehicle brake device
CN114430719B (en) * 2020-04-28 2024-01-16 三菱自动车工业株式会社 vehicle braking device
EP4063174A1 (en) * 2021-01-12 2022-09-28 Suzuki Motor Corporation Control device for vehicle

Also Published As

Publication number Publication date
DE112019003902T5 (en) 2021-05-06
CN112752688B (en) 2024-01-30
CN112752688A (en) 2021-05-04
JP7223762B2 (en) 2023-02-16
JPWO2020026621A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
US7351182B2 (en) Drive apparatus for hybrid vehicle and control method thereof
US9470156B2 (en) Vehicle engine automatic control device and vehicle engine automatic control method
KR101471722B1 (en) Line pressure control apparatus for vehicle
JP6369549B2 (en) Vehicle control apparatus and vehicle control method
WO2014142016A1 (en) Oil supply device
JP5790670B2 (en) Vehicle control device
CN109072998B (en) Vehicle control device
WO2020026621A1 (en) Vehicle control device
JP5353678B2 (en) Vehicle control device
JP2000296720A (en) Oil pressure control device
JP5910733B2 (en) Vehicle control device
JP3648411B2 (en) Electric hydraulic pump control apparatus and method for automatic transmission
JP2019064508A (en) Controller of vehicle with multistage automatic transmission
JP3972905B2 (en) Control device for hybrid vehicle
JP3551192B2 (en) Hydraulic control device
JP2012072740A (en) Vehicle control system
JP3945312B2 (en) Vehicle control device
JP3993193B2 (en) Automatic engine stop device for vehicle
JP2014069771A (en) Control device for automatic stop and restart of engine in vehicle
KR101575281B1 (en) Method for controlling electric oil pump of vehicle
US11007996B2 (en) Vehicle control method and vehicle control device
JP6481536B2 (en) ENGINE CONTROL METHOD AND ENGINE CONTROL DEVICE
JP5510266B2 (en) Control device for hybrid vehicle
JP2018114831A (en) Vehicle and method for controlling vehicle
JP2018115703A (en) Vehicle and vehicle control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534095

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19844962

Country of ref document: EP

Kind code of ref document: A1