WO2020026521A1 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
WO2020026521A1
WO2020026521A1 PCT/JP2019/013340 JP2019013340W WO2020026521A1 WO 2020026521 A1 WO2020026521 A1 WO 2020026521A1 JP 2019013340 W JP2019013340 W JP 2019013340W WO 2020026521 A1 WO2020026521 A1 WO 2020026521A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
work machine
terrain
bucket
transport vehicle
Prior art date
Application number
PCT/JP2019/013340
Other languages
English (en)
French (fr)
Inventor
正憲 逢澤
健二郎 嶋田
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to CN201980014992.4A priority Critical patent/CN111771030B/zh
Priority to DE112019001254.1T priority patent/DE112019001254T5/de
Priority to US16/975,196 priority patent/US11933017B2/en
Publication of WO2020026521A1 publication Critical patent/WO2020026521A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2029Controlling the position of implements in function of its load, e.g. modifying the attitude of implements in accordance to vehicle speed
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/02Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume
    • G01N2009/022Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume of solids

Definitions

  • the present invention relates to a working machine.
  • Some work involves excavating materials such as earth and sand with a working machine such as a hydraulic excavator and loading them into a transport vehicle such as a dump truck.
  • the transport vehicle loads the material at a predetermined loading position.
  • the transport vehicle travels to a predetermined dump position and dumps the material at the dump position. Then, the transport vehicle returns to the loading position, and the material is loaded on the transport vehicle again by the work machine.
  • Patent Literature 1 an excavation position and an earth discharging position are taught in advance to a controller of a work machine.
  • An object of the present invention is to provide a technique capable of easily and accurately obtaining the soil quality of a material.
  • the first mode is a work machine for loading materials into a transport vehicle.
  • the work machine includes a work machine having a bucket, a terrain sensor for measuring terrain, and a controller.
  • the controller obtains a digging route by the bucket and measures the weight of the material held by the bucket.
  • the controller calculates the volume of the material held by the bucket based on the terrain data indicating the terrain measured by the terrain sensor and the excavation route, and divides the measured material weight by the calculated material volume, Calculate the density of the material.
  • the second aspect is a work machine including a work machine having a bucket, a terrain sensor for measuring terrain, and a controller.
  • the controller determines a target digging path by the bucket based on the terrain data indicating the terrain measured by the terrain sensor, and acquires an actual digging path based on the position of the bucket at the time of digging.
  • the controller calculates at least one of viscosity and hardness of the material based on a difference between the target excavation path and the actual excavation path.
  • the third aspect is a method executed by the controller to control the work machine.
  • the method includes the following processing.
  • the first process is to acquire terrain data indicating the terrain near the work machine.
  • the second process is to acquire a digging route by a bucket included in the work machine.
  • the third process is to calculate the volume of the material held by the bucket based on the excavation route and the terrain data.
  • the fourth process is to measure the weight of the material held by the bucket.
  • the fifth process is to calculate the density of the material by dividing the measured weight of the material by the calculated volume of the material.
  • a fourth mode is a system for controlling a work machine.
  • the work machine includes a work machine having a bucket and a terrain sensor for measuring terrain.
  • the system includes a controller that acquires a digging path by a bucket and measures the weight of a material held by the bucket.
  • the controller calculates the volume of the material held by the bucket based on the terrain data indicating the terrain measured by the terrain sensor and the excavation route, and divides the measured material weight by the calculated material volume, Calculate the density of the material.
  • FIG. 3 is a diagram illustrating an example of an image captured by a first camera or a second camera.
  • FIG. 3 is a diagram illustrating an example of an image captured by a first camera. It is a figure which shows the range of the raw material which a working machine can excavate at a present position. It is a flowchart which shows the process of an excavation plan. It is a figure showing an example of a section of the current terrain, and an excavation route. It is the side view which looked at the work machine and the excavation position from the X direction of FIG.
  • FIG. 3 is a diagram illustrating an example of an image captured by a first camera.
  • FIG. 1 is a plan view showing an example of a work site where the work machine 1 is used.
  • a work machine 1 and a transport vehicle 2 are arranged.
  • the work machine 1 performs work in cooperation with the transport vehicle 2 by automatic control.
  • the work machine 1 is a hydraulic shovel.
  • the transport vehicle 2 is a dump truck.
  • the work machine 1 is arranged beside a predetermined excavation position L1 in the work site.
  • the transport vehicle 2 travels back and forth between a predetermined loading position L2 and a predetermined dump position L3 in the work site.
  • the work machine 1 excavates the excavation position L1 by automatic control, and loads a material such as earth and sand as an excavation target into the transport vehicle 2 stopped at the loading position L2.
  • the transport vehicle 2 loaded with the material travels to the dump position L3, and unloads the material to the dump position L3.
  • Another working machine 3 such as a bulldozer is arranged at the dump position L3, and spreads the material dropped at the dump position L3.
  • the transporting vehicle 2 having unloaded the material travels to the loading position L2, and the work machine 1 reloads the material on the transporting vehicle 2 stopped at the loading position L2. By repeating such an operation, the material at the excavation position L1 is transferred to the dump position L3.
  • FIG. 2 is a side view of the work machine 1.
  • the work machine 1 includes a vehicle body 11 and a work machine 12.
  • the vehicle body 11 includes a revolving unit 13 and a traveling unit 14.
  • the revolving unit 13 is attached to the traveling unit 14 so as to be revolvable.
  • a cab 15 is arranged on the revolving superstructure 13. However, the cab 15 may be omitted.
  • the traveling body 14 includes a crawler belt 16.
  • the work machine 1 travels when the crawler belt 16 is driven by a driving force of an engine 24 described later.
  • Work machine 12 is attached to the front of vehicle body 11.
  • Work implement 12 includes boom 17, arm 18, and bucket 19.
  • the boom 17 is attached to the revolving unit 13 so as to be operable in a vertical direction.
  • the arm 18 is operably attached to the boom 17.
  • the bucket 19 is operatively attached to the arm 18.
  • Work implement 12 includes a boom cylinder 21, an arm cylinder 22, and a bucket cylinder 23.
  • the boom cylinder 21, the arm cylinder 22, and the bucket cylinder 23 are hydraulic cylinders, and are driven by hydraulic oil from a hydraulic pump 25 described later.
  • the boom cylinder 21 operates the boom 17.
  • the arm cylinder 22 operates the arm 18.
  • the bucket cylinder 23 operates the bucket 19.
  • FIG. 3 is a block diagram showing a configuration of a control system of the work machine 1.
  • the work machine 1 includes an engine 24, a hydraulic pump 25, a power transmission device 26, and a controller 27.
  • the engine 24 is controlled by a command signal from the controller 27.
  • the hydraulic pump 25 is driven by the engine 24 and discharges hydraulic oil.
  • the hydraulic oil discharged from the hydraulic pump 25 is supplied to the boom cylinder 21, the arm cylinder 22, and the bucket cylinder 23.
  • the work machine 1 includes the swing motor 28.
  • the turning motor 28 is a hydraulic motor, and is driven by hydraulic oil from a hydraulic pump 25.
  • the swing motor 28 swings the swing body 13. Although one hydraulic pump 25 is shown in FIG. 2, a plurality of hydraulic pumps may be provided.
  • a pump control device 29 is connected to the hydraulic pump 25.
  • the hydraulic pump 25 is a variable displacement pump.
  • the pump control device 29 controls the tilt angle of the hydraulic pump 25.
  • the pump control device 29 includes, for example, an electromagnetic valve, and is controlled by a command signal from the controller 27.
  • the controller 27 controls the displacement of the hydraulic pump 25 by controlling the pump control device 29.
  • the hydraulic pump 25, the cylinders 21-23 and the turning motor 28 are connected by a hydraulic circuit via a control valve 31.
  • the control valve 31 is controlled by a command signal from the controller 27.
  • the control valve 31 controls the flow rate of hydraulic oil supplied from the hydraulic pump 25 to the cylinders 21 to 23 and the swing motor 28.
  • the controller 27 controls the operation of the work implement 12 by controlling the control valve 31. Further, the controller 27 controls the turning of the revolving body 13 by controlling the control valve 31.
  • the power transmission device 26 transmits the driving force of the engine 24 to the traveling body 14.
  • the power transmission device 26 may be, for example, a torque converter or a transmission having a plurality of transmission gears.
  • the power transmission device 26 may be another type of transmission such as HST (Hydro Static ⁇ Transmission) or HMT (Hydraulic Mechanical Transmission).
  • the controller 27 is programmed to control the work machine 1 based on the acquired data.
  • the controller 27 causes the work machine 1 to travel by controlling the engine 24, the traveling body 14, and the power transmission device 26.
  • the controller 27 operates the work implement 12 by controlling the engine 24, the hydraulic pump 25, and the control valve 31.
  • the controller 27 includes a processor 271 such as a CPU or a GPU, and a storage device 272.
  • the processor 271 performs a process for automatically controlling the work machine 1.
  • the storage device 272 includes a memory such as a RAM or a ROM, and an auxiliary storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive).
  • the storage device 272 stores data and programs for automatic control of the work machine 1.
  • Work machine 1 includes load sensors 32a-32c.
  • the load sensors 32a to 32c detect a load applied to the work implement 12, and output load data indicating the load.
  • the load sensors 32a-32c are oil pressure sensors and detect the oil pressure of the cylinders 21-23, respectively.
  • the load data indicates the oil pressure of the cylinders 21-23.
  • the controller 27 is communicably connected to the load sensors 32a to 32c by wire or wirelessly. The controller 27 receives load data from the load sensors 32a-32c.
  • the work machine 1 includes a position sensor 33, work machine sensors 34a to 34c, and a turning angle sensor 39.
  • the position sensor 33 detects the position of the work machine 1 and outputs position data indicating the position of the work machine 1.
  • the position sensor 33 includes a GNSS (Global Navigation Satellite System) receiver and an IMU (Inertial Measurement Unit: Inertial Measurement Unit).
  • the GNSS receiver is, for example, a GPS (Global Positioning System) receiver.
  • the position data includes data indicating the position of the work machine 1 output from the GNSS receiver, and data indicating the attitude of the vehicle body 11 output from the IMU.
  • the posture of the vehicle body 11 includes, for example, an angle (pitch angle) of the work machine 1 with respect to the horizontal in the front-rear direction and an angle (roll angle) of the work machine 1 with respect to the horizontal in the horizontal direction.
  • Work machine sensors 34a-34c detect the posture of work machine 12 and output posture data indicating the posture of work machine 12.
  • the work implement sensors 34a to 34c are stroke sensors that detect the stroke amount of the cylinders 21 to 23, for example.
  • the posture data of the work machine 12 includes the stroke amounts of the cylinders 21-23.
  • the work implement sensors 34a to 34c may be other sensors such as a sensor that detects the rotation angle of each of the boom 17, the arm 18, and the bucket 19.
  • the turning angle sensor 39 detects a turning angle of the turning body 13 with respect to the traveling body 14 and outputs turning angle data indicating the turning angle.
  • the controller 27 is communicably connected to the position sensor 33, the work equipment sensors 34a to 34c, and the turning angle sensor 39 by wire or wirelessly.
  • the controller 27 receives the position data of the work machine 1, the posture data of the work machine 12, and the turning angle data from the position sensor 33, the working machine sensors 34a to 34c, and the turning angle sensor 39, respectively.
  • the controller 27 calculates the cutting edge position of the bucket 19 of the work implement 12 from the position data, the posture data, and the turning angle data.
  • the position data of the work machine 1 indicates global coordinates of the position sensor 33.
  • the controller 27 calculates the global coordinates of the cutting edge position of the bucket 19 from the global coordinates of the position sensor 33 based on the posture data and the turning angle data of the work implement 12.
  • the Work machine 1 includes a terrain sensor 35.
  • the terrain sensor 35 measures the terrain around the work machine 1 and outputs terrain data indicating the terrain measured by the terrain sensor 35.
  • the terrain sensor 35 is attached to the side of the revolving unit 13.
  • the terrain sensor 35 measures the terrain located on the side of the revolving superstructure 13.
  • the terrain sensor 35 is, for example, a lidar (LIDAR: Laser Imaging Detection and Ranging).
  • the lidar measures the distance to a plurality of measurement points on the terrain by irradiating a laser and measuring the reflected light.
  • the terrain data indicates the position of each measurement point with respect to the work machine 1.
  • Work machine 1 includes a first camera 36 and a plurality of second cameras 37.
  • the first camera 36 is attached to the revolving unit 13 so as to face forward of the revolving unit 13.
  • the first camera 36 captures an image of the front of the rotating body 13.
  • the first camera 36 is a stereo camera.
  • the first camera 36 outputs first image data indicating a captured moving image.
  • the plurality of second cameras 37 are attached to the revolving unit 13 toward the left side, right side, and rear side of the revolving unit 13, respectively.
  • the second camera 37 outputs second image data indicating a captured moving image.
  • the second camera 37 may be a monocular camera. Alternatively, the second camera 37 may be a stereo camera like the first camera 36.
  • the controller 27 is communicably connected to the first camera 36 and the second camera 37 by wire or wirelessly.
  • the controller 27 receives the first image data from the first camera 36.
  • the controller 27 receives the second image data from the second camera 37.
  • Work machine 1 includes communication device 38.
  • the communication device 38 performs data communication with a device external to the work machine 1.
  • the communication device 38 communicates with a remote computer device 4 outside the work machine 1.
  • the remote computer device 4 may be located at a work site. Alternatively, the remote computer device 4 may be located in a management center remote from the work site.
  • the remote computer device 4 includes a display 401 and an input device 402.
  • the display 401 displays an image related to the work machine 1.
  • the display 401 displays an image corresponding to a signal received from the controller 27 via the communication device 38.
  • the input device 402 is operated by an operator.
  • Input device 402 may include, for example, a touch panel, or may include hardware keys.
  • the remote computer device 4 transmits a signal indicating a command input by the input device 402 to the controller 27 via the communication device 38.
  • the communication device 38 performs data communication with the transport vehicle 2.
  • FIG. 4 is a side view of the transport vehicle 2.
  • the transport vehicle 2 includes a vehicle body 51, a traveling body 52, and a carrier 53.
  • the vehicle body 51 is supported by the traveling body 52.
  • the traveling body 52 includes a crawler belt 54.
  • the crawler belt 54 is driven by a driving force of an engine 55 described later, so that the transport vehicle 2 runs.
  • the carrier 53 is supported by the vehicle body 51.
  • the bed 53 is operably provided in a dumping posture and a carrying posture.
  • the bed 53 indicated by a solid line indicates the position of the bed 53 in the carrying posture.
  • a bed 53 'indicated by a two-dot chain line indicates the position of the bed 53 in the dump posture.
  • the carrier 53 In the transport position, the carrier 53 is arranged substantially horizontally. In the dumping posture, the carrier 53 is inclined with respect to the carrying posture.
  • FIG. 5 is a block diagram showing the configuration of the control system of the transport vehicle 2.
  • the transport vehicle 2 includes an engine 55, a hydraulic pump 56, a power transmission device 57, a lift cylinder 58, a turning motor 59, a controller 61, and a control valve 62.
  • the controller 61 includes a processor 611, a volatile storage unit 612, and a nonvolatile storage unit 613.
  • the engine 55, the hydraulic pump 56, the power transmission device 57, the controller 61, and the control valve 62 have the same configurations as the engine 24, the hydraulic pump 25, the power transmission device 26, the controller 27, and the control valve 31 of the work machine 1, respectively. Detailed description is omitted.
  • the lift cylinder 58 is a hydraulic cylinder.
  • the swing motor 59 is a hydraulic motor.
  • the hydraulic oil discharged from the hydraulic pump 56 is supplied to the lift cylinder 58 and the turning motor 59.
  • Lift cylinder 58 and swing motor 59 are driven by hydraulic oil from hydraulic pump 56.
  • the lift cylinder 58 moves up and down the carrier 53. Thereby, the posture of the carrier 53 is switched between the carrying posture and the dumping posture.
  • the turning motor 59 turns the vehicle body 51 with respect to the traveling body 52.
  • the controller 61 controls the operation of the carrier 53 by controlling the lift cylinder 58 with the control valve 62.
  • the controller 61 controls turning of the vehicle main body 51 by controlling the turning motor 59 by the control valve 62.
  • the transport vehicle 2 includes a position sensor 63, a bed sensor 64, and a turning angle sensor 65.
  • the position sensor 63 outputs position data, similarly to the position sensor 33 of the work machine 1.
  • the position data includes data indicating the position of the transport vehicle 2 and data indicating the attitude of the vehicle body 51.
  • the bed sensor 64 detects the posture of the bed 53 and outputs bed data indicating the posture of the bed 53.
  • the bed sensor 64 is a stroke sensor that detects a stroke amount of the lift cylinder 58, for example.
  • the bed data includes the stroke amount of the lift cylinder 58.
  • the bed sensor 64 may be another sensor such as a sensor that detects the inclination angle of the bed 53.
  • the turning angle sensor 65 detects a turning angle of the vehicle main body 51 with respect to the traveling body 52 and outputs turning angle data indicating the turning angle.
  • the controller 61 is communicably connected to the position sensor 63, the bed sensor 64, the turning angle sensor 65 by wire or wirelessly.
  • the controller 61 receives position data, bed data, and turning angle data from the position sensor 63, the bed sensor 64, and the turning angle sensor 65, respectively.
  • the transport vehicle 2 includes the communication device 66.
  • the controller 61 of the transport vehicle 2 performs data communication with the controller 27 of the work machine 1 via the communication device 66.
  • the controller 61 of the transport vehicle 2 transmits the position data, the bed data, and the turning angle data of the transport vehicle 2 via the communication device 66.
  • the controller 27 of the work machine 1 receives the position data, the carrier data, and the turning angle data of the transport vehicle 2 via the communication device 38.
  • the controller 27 of the work machine 1 stores vehicle size data indicating the arrangement and size of the vehicle body 51 and the carrier 53 of the transport vehicle 2.
  • the controller 27 calculates the position of the loading platform 53 from the position data, the loading platform data, the turning angle data, and the vehicle size data of the transport vehicle 2.
  • the automatic control mode includes a loading mode and a mode other than the loading mode.
  • the other mode in the present embodiment is a standby mode. In the standby mode, the controller 27 causes the work machine 1 to wait until the transport vehicle 2 reaches the loading position L2 and stops.
  • the other modes may include a mode other than the standby mode, such as a mode for collecting broken materials and a mode for excavating another region to newly increase the materials.
  • FIG. 6 is a flowchart showing a process in the standby mode.
  • 7 to 9 are flowcharts showing processing in the loading mode.
  • FIGS. 10 to 18 are plan views schematically showing the situation of the work site in the automatic control mode.
  • the controller 27 When the controller 27 receives the command to start the automatic control mode, the controller 27 starts the engine 24 of the work machine 1 and executes the processing in the standby mode shown in FIG. As shown in FIG. 10, the start command of the automatic control mode is output from the remote computer device 4 when, for example, the operator operates the input device 402 of the remote computer device 4 described above.
  • the controller 27 receives the start command via the communication device 38.
  • the transport vehicle 2 also receives the start command of the automatic control mode. When receiving the start command of the automatic control mode, the transport vehicle 2 starts moving toward the loading position L2.
  • step S101 the controller 27 causes the work machine 1 to wait in the unloading waiting posture. That is, in the standby mode, the controller 27 maintains the work implement 12, the revolving unit 13, and the traveling unit 14 in a stopped state in the discharging standby state.
  • the work implement 12 is arranged so as to face the loading position L2 in the unloading waiting posture. That is, in the discharge waiting posture, the front of the revolving unit 13 faces the loading position L2.
  • the bucket 19 is arranged at a position higher than the height of the carrier 53 of the transport vehicle 2.
  • step S102 the controller 27 acquires the position of the work machine 1.
  • the controller 27 acquires the position data of the work machine 1, the posture data of the work machine 12, and the turning angle data from the position sensor 33, the working machine sensors 34a to 34c, and the turning angle sensor 39, respectively. I do.
  • the controller 27 calculates the cutting edge position of the bucket 19 of the work implement 12 from the position data, the posture data, and the turning angle data.
  • step S103 the controller 27 acquires image data.
  • the controller 27 acquires, from the first camera 36, first image data indicating a moving image in front of the revolving unit 13.
  • the controller 27 acquires, from the second camera 37, second image data indicating moving images on both sides and behind the revolving structure 13.
  • the first camera 36 and the second camera 37 always perform photographing at least during execution of the automatic control mode to generate first image data and second image data.
  • the controller 27 acquires the first image data and the second image data from the first camera 36 and the second camera 37 in real time at least during execution of the automatic control mode.
  • step S104 the controller 27 executes the image processing 1.
  • the image processing 1 detects the presence of a person around the work machine 1 by an image recognition technique based on the first image data and the second image data. Therefore, the first camera 36 and the second camera 37 correspond to a person detection device that detects the presence of a person in a region around the work machine 1.
  • the controller 27 detects the presence of a person in the image indicated by the first image data and the second image data, for example, by an image recognition technique using AI (Artificial Intelligence).
  • FIG. 19 is a diagram illustrating an example of an image captured by the first camera 36 or the second camera 37. As shown in FIG. 19, when a person is included in the image indicated by the first image data or the second image data, the controller 27 recognizes and detects a person in the image. In step S105, the controller 27 determines whether the presence of a person around the work machine 1 has been detected. If the presence of a person has not been detected, the process proceeds to step S106.
  • step S106 the controller 27 executes image processing 2.
  • the controller 27 detects the presence of the transport vehicle 2 based on the first image data by an image recognition technique. Therefore, the first camera 36 corresponds to a vehicle detection device that detects the approach of the transport vehicle 2 to the work machine 1. About an image recognition technique, it is the same as that of step S104. As shown in FIG. 11, when the transport vehicle 2 reaches the shooting range of the first camera 36, the controller 27 detects the presence of the transport vehicle 2.
  • FIG. 20 is a diagram illustrating an example of an image captured by the first camera 36 when the transport vehicle 2 reaches the capturing range of the first camera. As shown in FIG. 20, when the transport vehicle 2 is included in the image indicated by the first image data, the controller 27 recognizes and detects the transport vehicle 2 in the image.
  • step S107 the controller 27 communicates with the transport vehicle 2.
  • the controller 27 receives the position data of the transport vehicle 2 from the transport vehicle 2 via the communication device 38. Further, the controller 27 receives the carrier data and the turning angle data from the transport vehicle 2 via the communication device 38.
  • step S108 the controller 27 determines whether the approach of the transport vehicle 2 has been detected.
  • the controller 27 determines that the approach of the transport vehicle 2 is detected when the distance from the work machine 1 to the transport vehicle 2 is equal to or less than a predetermined threshold.
  • the controller 27 calculates the distance from the work machine 1 to the transport vehicle 2 by analyzing the first image data. Alternatively, the controller 27 may calculate the distance from the work machine 1 to the transport vehicle 2 from the position data of the work machine 1 and the position data of the transport vehicle 2.
  • the process proceeds to step S201 shown in FIG. That is, the controller 27 changes the automatic control mode from the standby mode to the loading mode.
  • ⁇ ⁇ No detection of a person in step S105 and detection of approach of the transport vehicle 2 in step S108 are transition conditions for transitioning the automatic control mode from the standby mode to the loading mode.
  • the controller 27 transitions the automatic control mode from the standby mode to the loading mode.
  • the controller 27 maintains the automatic control mode in the standby mode without transitioning from the standby mode to the loading mode.
  • the transition condition may further include another condition.
  • step S109 the controller 27 determines whether an end signal has been received.
  • the end signal is transmitted from the remote computer device 4.
  • the end signal is transmitted from the remote computer device 4 to the controller 27 when the operator operates the input device 402.
  • the controller 27 ends the automatic control mode.
  • the controller 27 stops the engine 24 of the work machine 1.
  • the controller 61 of the transport vehicle 2 stops the transport vehicle 2.
  • step S105 when the person 100 enters the periphery of the work machine 1, the controller 27 detects the presence of the person 100 in step S105. When controller 27 detects the presence of person 100, the process proceeds to step S110. In step S110, the controller 27 outputs an alarm signal so that the output device outputs an alarm.
  • the output device is the remote computer device 4. Upon receiving the alarm signal, the remote computer device 4 displays a message indicating an alarm or an image on the display 401. Upon receiving the alarm signal, the remote computer device 4 may output a sound indicating an alarm.
  • the output device is not limited to the remote computer device 4 and may be another device.
  • the output device may be a warning light or a speaker attached to the work machine 1 or disposed outside the work machine 1.
  • the controller 27 may output a command signal so as to light a warning light or emit a warning sound from a speaker.
  • step S109 After causing the output device to output an alarm in step S110, the controller 27 determines in step S109 whether an end signal has been received. When receiving the end signal, the controller 27 stops the automatic control mode. When not receiving the end signal, the controller 27 maintains the automatic control mode in the standby mode.
  • the controller 27 When the presence of a person around the work machine 1 is detected in the standby mode, the controller 27 maintains the standby mode without shifting the automatic control mode to the loading mode even when the approach of the transport vehicle 2 is detected. I do.
  • the controller 27 stops the operation of the work implement 12 and the revolving unit 13.
  • the controller 27 may transmit a command signal to stop the transport vehicle 2 to the controller 61 of the transport vehicle 2 in both the standby mode and the loading mode.
  • the controller 27 performs excavation by the work implement 12 at the predetermined excavation position L1, rotates the revolving unit 13 from the excavation position L1 toward the loading position L2, Loading work is performed by discharging the soil.
  • the controller 27 measures the terrain.
  • the terrain sensor 35 measures the terrain at the excavation position L1 located on the side of the work machine 1.
  • the controller 27 acquires terrain data indicating the terrain at the excavation position L1 measured by the terrain sensor 35. Note that the controller 27 determines whether the revolving unit 13 is stopped or is operating, and when it is determined that the revolving unit 13 is stopped, the terrain sensor 35 measures the terrain. Is also good.
  • step S202 the controller 27 determines whether the excavation amount can be secured.
  • the controller 27 determines whether or not a predetermined amount or more of the material can be obtained by excavation when the work machine 12 and the swing body 13 are operated at the current position of the work machine 1. For example, as illustrated in FIG. 21, the controller 27 determines the trajectory of the work machine 12 when the work machine 12 and the swing body 13 are operated at the current position of the work machine 1 and the terrain at the excavation position L1 indicated by the terrain data. From this, the amount of material that can be excavated at the current position is calculated. In FIG. 21, hatching is given to a range that can be excavated when the work machine 12 is operated. Then, the controller 27 determines that the excavation amount can be secured when the amount of the excavable material is equal to or more than the predetermined amount. When the controller 27 determines that the excavation amount cannot be secured, the process proceeds to step S203.
  • step S203 the controller 27 adjusts the position of the work machine 1. For example, the controller 27 moves the work machine 1 back and forth by a predetermined distance. Then, in step S201, the controller 27 measures the terrain again, and in step S202, determines whether the excavation amount can be secured.
  • step S204 the controller 27 calculates the weight of the material that can be loaded on the transport vehicle 2 (hereinafter, referred to as “loadable weight”).
  • loadable weight the weight of the material that can be loaded on the transport vehicle 2.
  • load amount the weight of the material already loaded on the transport vehicle 2
  • the controller 27 can calculate the weight of the material in the bucket 19 held by the excavation, and the controller 27 integrates the weight of the material in the bucket 19 for each discharge to the transport vehicle 2.
  • the loading amount on the transport vehicle 2 can be grasped.
  • the loading amount on the transport vehicle 2 is zero.
  • step S205 the controller 27 makes an excavation plan.
  • FIG. 22 is a flowchart showing the processing of the excavation plan in the controller 27.
  • step S501 the controller 27 determines whether the loadable weight is larger than the weight of the material that can be excavated in the bucket 19 at one time (hereinafter, referred to as “excavation weight”).
  • the controller 27 stores the volume of the material that can be transported by the bucket 19 at one time (hereinafter, referred to as “digging volume”).
  • the controller 27 calculates the density of the material (an example of the soil) as described later, and calculates the excavation weight by multiplying the density of the material by the excavation volume.
  • the density may be a predetermined initial value.
  • step S501 determines in step S501 that the loadable weight is larger than the excavation weight. If the controller 27 determines in step S501 that the loadable weight is larger than the excavation weight, the process proceeds to step S502. In step S502, the controller 27 determines the excavation volume as the target volume.
  • the target volume is the volume of the material transported by the work machine 12.
  • step S501 determines in step S501 that the loadable weight is not larger than the excavated weight. If the controller 27 determines in step S501 that the loadable weight is not larger than the excavated weight, the process proceeds to step S503. In step S503, the controller 27 determines, as the target volume, a value obtained by dividing the loadable weight by the density of the material.
  • step S504 the controller 27 determines the excavation path PA1 from the current position of the work machine 1, the topographical data, and the target volume.
  • the excavation path PA1 is a target excavation locus of the cutting edge of the work machine 12.
  • the controller 27 determines the excavation path PA1 from the current position of the work machine 1 and the topographical data so that the amount of the material excavated by the work machine 12 matches the target volume.
  • FIG. 23 is a diagram illustrating an example of the current cross section of the terrain T1 and the excavation path PA1.
  • the controller 27 stores target terrain data indicating the target terrain W1 of the current terrain T1 to be worked.
  • the current terrain T1 can be acquired by the terrain sensor 35.
  • a straight line passing through the top of the current terrain T1 and having a predetermined angle (for example, angle of repose) with respect to a horizontal plane may be used as the target terrain W1.
  • the controller 27 determines the excavation start position S1 based on the target landform W1 and the current landform T1. For example, the controller 27 sets the position farthest from the target terrain W1 in the current terrain T1 in the direction perpendicular to the target terrain W1 as the excavation start position S1. Next, the controller 27 sets the intersection of the arc CA1 having the radius X1 around the excavation start position S1 and the current terrain T1 as the excavation end position E1. Next, the depth Y1 corresponding to the length X1 is obtained by multiplying the radius X1 by a predetermined ratio. Then, an arc defined by the radius X1 and the depth Y1 and the volume between the surface of the current topography T1 and the arc (the hatched portion in FIG.
  • the excavation route PA1 includes an excavation start position S1 and an excavation end position E1.
  • the excavation start position S1 and the excavation end position E1 are intersections between the surface of the terrain T1 and the excavation route PA1.
  • step S505 the controller 27 determines the turning path PB1 that connects the cutting edge position of the work implement 12 (hereinafter, referred to as “current position S2”) to the excavation start position S1 based on the terrain data. I do.
  • the turning path PB1 is a target turning trajectory of the cutting edge of the work implement 12.
  • FIG. 24 is a side view when the work machine 1 and the excavation position L1 are viewed from the X direction shown in FIG.
  • the controller 27 determines the turning path PB1 such that the cutting edge of the work implement 12 does not contact the current terrain T1.
  • the turning path PB1 includes an excavation start position S1, an intermediate point MP, and a current position S2.
  • the midway point MP is set, for example, as a point at a certain height above the terrain T1 in a section between the excavation start position S1 and the current position S2.
  • a plurality of intermediate points MP may be set according to the shape of the terrain T1.
  • the controller 27 moves the cutting edge of the work implement 12 from the current position S2 to the excavation start position S1. (Referred to as “turning angle”) TA1 is determined.
  • step S205 the processing of the excavation plan (step S205) is completed, and the processing proceeds to step S206.
  • step S206 the controller 27 performs an automatic downturn.
  • the controller 27 controls the work implement 12 and the revolving superstructure 13 so that the cutting edge of the work implement 12 moves according to the swivel path PB1 determined in the excavation plan. Specifically, the controller 27 moves the cutting edge of the work implement 12 from the current position S2 toward the excavation start position S1 while operating the work implement 12 while rotating the revolving body 13 by the target swing angle TA1.
  • step S207 the controller 27 executes automatic excavation.
  • the controller 27 controls the work implement 12 so that the cutting edge of the work implement 12 moves according to the excavation path PA1 determined in the excavation plan.
  • step S208 the controller 27 corrects the position data of the work machine 1.
  • the controller 27 acquires again the position data of the work machine 1, the posture data of the work machine 12, and the turning angle data from the position sensor 33, the working machine sensors 34a to 34c, and the turning angle sensor 39, and then proceeds to step S102.
  • the position of the work machine 1 acquired in step is corrected.
  • step S209 the controller 27 makes a soil removal plan.
  • the controller 27 determines the target turning angle TA2 and the discharging position P1 from the current position of the work machine 1 and the position of the carrier of the transport vehicle 2.
  • the discharging position P1 indicates the position of the cutting edge of the work machine 12 in the discharging standby posture.
  • the carrier position of the transport vehicle 2 indicates the position of the carrier 53 in a state where the transport vehicle 2 is located at the loading position L2.
  • the controller 27 may store a predetermined carrier position. Alternatively, the controller 27 may calculate the loading position from the loading position L2 and the vehicle size data of the transport vehicle 2.
  • the controller 27 determines the unloading position P1 such that the work machine 12 faces the loading platform 53 and the cutting edge is located a predetermined distance above the loading platform 53.
  • step S210 the controller 27 executes an automatic hoist turning.
  • the controller 27 rotates the revolving body 13 by the target turning angle TA2 toward the discharging position P1, and raises the cutting edge of the work implement 12 toward the discharging position P1. Let it.
  • step S211 the controller 27 measures the weight of the material held by the bucket 19 by the work machine 12 excavated.
  • the controller 27 acquires load data indicating the load applied to the work implement 12 from the load sensors 32a to 32c.
  • the controller 27 can acquire the weight of the material held by the bucket 19 based on the load data.
  • the controller 27 may acquire the weight of the material held by the bucket 19 based only on the load data received from the load sensor 32a that detects the load applied to the boom cylinder 21 among the load sensors 32a to 32c. .
  • the controller 27 calculates the density of the raw material from the terrain data before excavation, the excavation route PA1, and the weight of the raw material held by the bucket 19. Therefore, the controller 27 can calculate the volume of the material excavated by the work implement 12 based on the pre-excavation topographic data and the excavation path PA1. The controller 27 calculates the density of the material by dividing the weight of the material by the calculated volume of the material.
  • step S301 shown in FIG. 8 the controller 27 determines the state of the work machine 1.
  • the controller 27 determines whether the work machine 1 is operating or stopped.
  • the controller 27 determines that the work machine 1 is operating when at least one of the traveling unit 14, the revolving unit 13, and the work machine 12 is operating.
  • the controller 27 determines that the work machine 1 is stopped when the cutting edge of the work machine 12 has reached the earth discharging position P1 and all of the traveling body 14, the revolving body 13, and the work machine 12 are stopped. judge.
  • the controller 27 may determine that the work machine 1 is stopped when the revolving unit 13 and the traveling unit 14 are stopped.
  • the controller 27 executes the image processing 3 in step S302.
  • the controller 27 detects the transport vehicle 2 by the image recognition technology based on the first image data.
  • the controller 27 communicates with the transport vehicle 2 in step S303.
  • the controller 27 receives the position data, the carrier data, and the turning angle data of the transport vehicle 2 via the communication device 38.
  • step S304 the controller 27 determines the state of the transport vehicle 2.
  • the controller 27 determines whether the transport vehicle 2 is operating or stopped at the loading position L2.
  • the controller 27 determines that the transport vehicle 2 is operating when the transport vehicle 2 is running or the bed 53 is turning.
  • the controller 27 determines that the transport vehicle 2 is stopped when the transport vehicle 2 is stopped at the loading position L2 and the luggage carrier 53 does not turn as shown in FIG. .
  • the controller 27 determines the state of the transport vehicle 2 based on the image processing 3 and the position data of the transport vehicle 2 in step S304. Therefore, the first camera 36 and the position sensor 63 correspond to a detection device that detects the operation of the transport vehicle 2. The controller 27 determines whether or not the transport vehicle 2 is stopped based on the first image data. Further, the controller 27 determines whether or not the transport vehicle 2 is stopped based on the position data of the transport vehicle 2. That is, the first image data and the position data of the transport vehicle 2 correspond to operation data indicating the operation of the transport vehicle 2.
  • the controller 27 may determine that the transport vehicle 2 is stopped when the stop of the transport vehicle 2 is detected based on both the image processing 3 and the position data of the transport vehicle 2.
  • the controller 27 may determine that the transport vehicle 2 is operating when the operation of the transport vehicle 2 is detected based on at least one of the image processing 3 and the position data of the transport vehicle 2.
  • step S301 when the work machine 1 is operating in step S301, the controller 27 acquires the position data of the transport vehicle 2 in step S305, and in step 304, the state of the transport vehicle 2 is determined based on only the position data of the transport vehicle 2. Is determined.
  • step 304 If the transport vehicle 2 is operating in step 304, the process returns to step S301.
  • the controller 27 executes the image processing 4.
  • the controller 27 detects the bed position of the transport vehicle 2 based on the first image data by the image recognition technique.
  • FIG. 25 is a diagram illustrating an example of an image captured by the first camera 36 when the transport vehicle 2 stops at the loading position L2.
  • the image indicated by the first image data includes the carrier 53 of the transport vehicle 2.
  • the controller 27 recognizes the carrier 53 in the image and detects the carrier position.
  • step S307 the controller 27 determines an error in the position of the platform.
  • the controller 27 calculates a deviation between the bed position stored by the controller 27 and the bed position detected in step S306. When the deviation is equal to or larger than the predetermined threshold, the controller 27 determines that the error is large. If the error in the platform position is large, the process proceeds to step S308.
  • step S308 the controller 27 corrects the discharging position P1.
  • the controller 27 corrects the earth discharging position P1 determined in step S209 based on the deviation calculated in step S307.
  • the process proceeds to step S309 without correcting the discharging position P1.
  • step S309 the controller 27 executes automatic earth removal.
  • the controller 27 operates the work implement 12 so as to discharge the material held by the bucket 19 onto the carrier 53.
  • step S310 the controller 27 updates the bed position.
  • the controller 27 updates the stored platform position to the platform position detected in step S306.
  • step S401 shown in FIG. 9 the controller 27 determines whether the loading is completed.
  • the controller 27 determines that the loading has been completed when the loading amount of the material on the loading platform 53 reaches the maximum loading weight.
  • the controller 27 calculates the loading amount from the load data. Specifically, the controller 27 calculates the weight of the excavated material from the load data.
  • the controller 27 calculates the total value of the weights of the materials loaded on the loading platform 53 as the loading amount.
  • step S401 when the controller 27 determines that loading is not completed, the process returns to step S201. Then, the processing of steps S201 to S211 and the processing of steps S301 to S310 are repeated. Thereby, the excavation of the material and the loading on the transport vehicle 2 are repeated.
  • the controller 27 performs the measurement of the terrain in step S201 again, and updates the terrain data with the new terrain data acquired by the terrain sensor 35. Further, the controller 27 measures the weight of the material in step S211 again, and calculates and updates the density of the material from the newly measured weight and volume of the material.
  • step S401 determines in step S401 that loading is completed, the process proceeds to step S402.
  • step S402 the controller 27 transmits a command to the transportation vehicle 2 to leave the loading position L2.
  • the transport vehicle 2 starts moving from the loading position L2 toward the dump position L3.
  • step S403 the controller 27 executes the image processing 2. Similarly to step S106, in the image processing 2, the controller 27 detects the presence of the transport vehicle 2 in front of the revolving unit 13 by the image recognition technology based on the first image data. Further, in step S404, the controller 27 communicates with the transport vehicle 2 and acquires the position data of the transport vehicle 2. Here, similarly to steps S303 and S305, the controller 27 receives the position data of the transport vehicle 2 via the communication device 38.
  • step S405 the controller 27 determines whether the withdrawal has been completed.
  • the controller 27 determines whether the separation has been completed based on the image processing 2 and the position data of the transport vehicle 2. As shown in FIG. 18, when the controller 27 detects that the transport vehicle 2 has separated from the work machine 1 by a predetermined distance or more, it determines that the removal has been completed.
  • the controller 27 calculates the distance between the work machine 1 and the transport vehicle 2 based on the first image data.
  • the controller 27 calculates the distance between the work machine 1 and the transport vehicle 2 based on the position data.
  • the controller 27 may determine that the transport vehicle 2 has left the loading position L2 when both the distance calculated from the first image data and the distance calculated from the position data are equal to or greater than a predetermined threshold. .
  • the controller 27 determines that the transport vehicle 2 has departed from the loading position L2 when at least one of the distance calculated from the first image data and the distance calculated from the position data is equal to or greater than a predetermined threshold. You may.
  • step S405 determines in step S405 that the withdrawal has not been completed. If the controller 27 determines in step S405 that the withdrawal has been completed, the process returns to step S109. That is, when the controller 27 determines that the withdrawal has been completed, the controller 27 ends the loading mode and shifts the automatic control mode to the standby mode.
  • the controller 27 of the work machine 1 calculates the volume of the material held by the bucket 19 based on the terrain data and the excavation path PA1, and calculates the weight of the material by the calculated volume of the material. By calculating the density, the density of the material is calculated. Therefore, since the volume of the material can be easily calculated from the topographic data and the excavation route PA1, the density of the material can be obtained simply and accurately.
  • the controller calculates a target volume of the material to be transported by the work implement 12 based on the loadable weight of the material that can be loaded on the transport vehicle 2 and the density of the material, and based on the calculated target volume and the terrain data.
  • the next excavation route PA1 is determined. Therefore, excavation can be performed accurately and efficiently.
  • the work machine 1 is not limited to a hydraulic excavator, and may be another machine such as a wheel loader or a motor grader.
  • the configuration of the work machine 1 is not limited to the above-described embodiment, and may be changed.
  • Work machine 1 may be a vehicle driven by an electric motor.
  • the traveling unit 14 and / or the revolving unit 13 may be driven by an electric motor.
  • the configuration of the work machine 12 may be changed.
  • the work machine 12 is not limited to the bucket 19 and may include other loading attachments such as a grapple, a fork, and a lifting magnet.
  • the transport vehicle 2 may be a vehicle other than the dump truck.
  • the configuration of the transport vehicle 2 is not limited to the above-described embodiment, and may be changed.
  • the transport vehicle 2 may be a vehicle driven by an electric motor.
  • the traveling body 14 and / or the bed 53 may be driven by an electric motor.
  • the carrier 53 of the transport vehicle 2 may not be able to turn.
  • the traveling body 52 of the transport vehicle 2 may include tires instead of crawler tracks.
  • the transport vehicle 2 may be operated manually by an operator instead of being automatically controlled.
  • the terrain sensor 35 may be arranged at a portion other than the side of the revolving unit 13.
  • the terrain sensor 35 is not limited to a lidar, but may be another sensing device such as a radar.
  • the terrain sensor 35 may be a camera, and the controller 27 may recognize the terrain by analyzing an image captured by the camera.
  • the first camera 36 may be arranged in a part other than the front part of the revolving unit 13.
  • the second camera 37 may be arranged at a part other than both sides and the rear part of the revolving unit 13.
  • the number of the second cameras is not limited to three, and may be less than three or more than three.
  • the controller 27 is not limited to one, and may be divided into a plurality of controllers 27.
  • the processing executed by the controller 27 may be executed by being distributed to a plurality of controllers 27. In that case, some of the plurality of controllers 27 may be arranged outside the work machine 1.
  • the controller 27 of the work machine 1 and the controller 61 of the transport vehicle 2 may communicate with each other via another controller instead of directly communicating with each other.
  • the processing in the automatic control mode executed by the controller 27 is not limited to the above-described embodiment, and may be changed. For example, the processing in the standby mode may be changed. The processing in the loading mode may be changed.
  • the controller 27 determines the approach and the departure of the transport vehicle 2 using both the first image data and the position data of the transport vehicle 2.
  • the controller 27 may determine the approach and / or departure of the transport vehicle 2 using only one of the first image data and the position data of the transport vehicle 2.
  • the controller 27 detects the position of the loading bed 53 using both the first image data and the position data of the transport vehicle 2.
  • the controller 27 may detect the position of the loading bed 53 using only one of the first image data and the position data of the transport vehicle 2.
  • the controller 27 calculates the loadable weight based on the load data detected by the load sensors 32a to 32c. However, the controller 27 may calculate the loadable weight based on the image of the bed 53 indicated by the first image data. The controller 27 may detect the amount of the material loaded on the loading platform 53 from the image of the loading platform 53 indicated by the first image data, and calculate the loadable weight from the amount of the loaded material.
  • the controller 27 determines the turning path PB1 so as to connect the current position S2 of the work implement 12 to the excavation start position S1.
  • the controller 27 may set the movement target position above the excavation start position S1, and determine the turning path PB1 so as to connect the current position S2 to the movement target position.
  • the interval between the excavation start position S1 and the movement target position in the vertical direction can be set in advance to a predetermined value (for example, about 20 cm). In this way, by setting the return point of the turning path PB1 to the movement target position vertically offset from the excavation start position S1, the work machine 12 can be prevented from hitting an obstacle such as a rock.
  • the volume of the material in the bucket 19 is obtained using the excavation path PA1 as the target excavation trajectory, but the present invention is not limited to this.
  • the actual excavation path may be calculated from the position of the bucket 19 (specifically, the cutting edge) at the time of actual excavation, and the volume of the material in the bucket 19 may be calculated using the actual excavation path.
  • the controller 27 calculates the volume of the material held by the bucket 19 based on the terrain data and the actual excavation path, and divides the weight of the material by the calculated volume of the material to reduce the density of the material. calculate.
  • the controller 27 calculates the density of the material as an example of the soil quality of the material in order to determine the target volume of the material, but is not limited to this.
  • the controller 27 may calculate at least one of the viscosity and the hardness of the material instead of the density of the material.
  • the viscosity and hardness of the material can each be calculated based on the difference between the digging path PA1 as the target digging trajectory and the actual digging path when actually digging.
  • the controller 27 can acquire the actual excavation route based on the position of the bucket 19 at the time of excavation.
  • the loading operation by the working machine can be performed by the automatic control, and the working efficiency can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

作業機械(1)は、バケット(19)を有する作業機(12)と、地形を計測する地形センサ(35)と、バケット(19)による掘削経路(PA1)を取得し、バケット(19)が抱えている素材の重量を計測するコントローラ(27)とを備える。コントローラ(27)は、地形センサ(35)が計測した地形を示す地形データと掘削経路(PA1)とに基づいて、バケット(19)が抱えている素材の体積を算出し、算出した素材の体積で計測した素材の重量を除すことによって、素材の密度を算出する。

Description

作業機械
 本発明は、作業機械に関する。
 油圧ショベルなどの作業機械によって土砂などの素材を掘削して、ダンプトラックなどの運搬車両に積み込む作業がある。運搬車両は、所定の積込位置で素材を積み込まれる。運搬車両は、所定のダンプ位置まで走行して、ダンプ位置で素材をダンプする。そして、運搬車両は積込位置へ戻り、作業機械によって再び素材が運搬車両に積み込まれる。
 従来、上記のような作業機械による積込作業を自動制御によって行う技術が知られている。例えば、特許文献1では、掘削位置と排土位置とが作業機械のコントローラに予め教示される。
特開2000-192514号公報
 ところで、運搬車両に積み込むことのできる素材の最大積載重量と、既に運搬車両に積み込まれた素材の重量とから算出される積込可能重量に基づいて、掘削する素材の目標体積を算出するために、素材の土質(例えば、密度、粘度、硬さなど)を簡便かつ精度良く取得したいという要請がある。
 本発明は、素材の土質を簡便かつ精度良く取得できる技術を提供することを目的とする。
 第1の態様は、運搬車両に素材を積み込む作業機械である。当該作業機械は、バケットを有する作業機と、地形を計測する地形センサと、コントローラとを備える。コントローラは、バケットによる掘削経路を取得し、バケットが抱えている素材の重量を計測する。コントローラは、地形センサが計測した地形を示す地形データと掘削経路とに基づいて、バケットが抱えている素材の体積を算出し、算出した素材の体積で計測した素材の重量を除すことによって、素材の密度を算出する。
 第2の態様は、バケットを有する作業機と、地形を計測する地形センサと、コントローラとを備える作業機械である。コントローラは、地形センサが計測した地形を示す地形データに基づいて、バケットによる目標掘削経路を決定し、掘削時のバケットの位置に基づいて、実掘削経路を取得する。コントローラは、目標掘削経路と実掘削経路との差に基づいて、素材の粘度及び硬さの少なくとも一方を算出する。
 第3の態様は、作業機械を制御するためにコントローラによって実行される方法である。当該方法は、以下の処理を備える。第1の処理は、作業機械付近の地形を示す地形データを取得することである。第2の処理は、作業機が有するバケットによる掘削経路を取得することである。第3の処理は、掘削経路と地形データとに基づいて、バケットが抱えている素材の体積を算出することである。第4の処理は、バケットが抱えている素材の重量を計測することである。第5の処理は、算出した素材の体積で計測した素材の重量を除すことによって、素材の密度を算出することである。
 第4の態様は、作業機械を制御するためのシステムである。作業機械は、バケットを有する作業機と、地形を計測する地形センサとを備える。当該システムは、バケットによる掘削経路を取得し、バケットが抱えている素材の重量を計測するコントローラを備える。コントローラは、地形センサが計測した地形を示す地形データと掘削経路とに基づいて、バケットが抱えている素材の体積を算出し、算出した素材の体積で計測した素材の重量を除すことによって、素材の密度を算出する。
 本発明によれば、素材の土質を簡便かつ精度良く取得できる技術を提供できる。
作業機械が用いられる作業現場の一例を示す平面図である。 作業機械の側面図である。 作業機械の構成を示すブロック図である。 運搬車両の側面図である。 運搬車両の構成を示すブロック図である。 待機モードでの処理を示すフローチャートである。 積込モードでの処理を示すフローチャートである。 積込モードでの処理を示すフローチャートである。 積込モードでの処理を示すフローチャートである。 自動制御モードにおける作業現場の状況を模式的に示す平面図である。 自動制御モードにおける作業現場の状況を模式的に示す平面図である。 自動制御モードにおける作業現場の状況を模式的に示す平面図である。 自動制御モードにおける作業現場の状況を模式的に示す平面図である。 自動制御モードにおける作業現場の状況を模式的に示す平面図である。 自動制御モードにおける作業現場の状況を模式的に示す平面図である。 自動制御モードにおける作業現場の状況を模式的に示す平面図である。 自動制御モードにおける作業現場の状況を模式的に示す平面図である。 自動制御モードにおける作業現場の状況を模式的に示す平面図である。 第1カメラ或いは第2カメラによって撮影された画像の一例を示す図である。 第1カメラによって撮影された画像の一例を示す図である。 現在の位置で作業機械が掘削可能な素材の範囲を示す図である。 掘削計画の処理を示すフローチャートである。 現在の地形の断面と掘削経路との一例を示す図である。 図14のX方向から作業機械及び掘削位置を見た側面図である。 第1カメラによって撮影された画像の一例を示す図である。
 以下、実施形態に係る作業機械1の制御システムについて、図面を参照しながら説明する。図1は、作業機械1が用いられる作業現場の一例を示す平面図である。作業現場には、作業機械1と運搬車両2とが配置されている。作業機械1は、自動制御により運搬車両2と協働して作業を行う。
 本実施形態において、作業機械1は油圧ショベルである。運搬車両2はダンプトラックである。作業機械1は、作業現場内の所定の掘削位置L1の横に配置されている。運搬車両2は、作業現場内の所定の積込位置L2と所定のダンプ位置L3との間を走行して往復する。作業機械1は、自動制御により、掘削位置L1を掘削して、掘削対象物としての土砂等の素材を、積込位置L2に停車している運搬車両2に積み込む。素材を積み込まれた運搬車両2は、ダンプ位置L3まで走行し、ダンプ位置L3に素材を降ろす。ダンプ位置L3には、ブルドーザなどの他の作業機械3が配置されており、ダンプ位置L3に降ろされた素材を敷き広げる。素材を降ろした運搬車両2は積込位置L2まで走行し、作業機械1は、積込位置L2に停車した運搬車両2に再び素材を積み込む。このような作業が繰り返されることで、掘削位置L1の素材がダンプ位置L3に移送される。
 図2は、作業機械1の側面図である。図2に示すように、作業機械1は、車両本体11と作業機12とを含む。車両本体11は、旋回体13と走行体14とを含む。旋回体13は、走行体14に対して旋回可能に取り付けられている。旋回体13にはキャブ15が配置されている。ただし、キャブ15は省略されてもよい。走行体14は、履帯16を含む。後述するエンジン24の駆動力によって履帯16が駆動されることで、作業機械1は走行する。
 作業機12は、車両本体11の前部に取り付けられている。作業機12は、ブーム17とアーム18とバケット19とを含む。ブーム17は、旋回体13に対して上下方向に動作可能に取り付けられている。アーム18は、ブーム17に対して動作可能に取り付けられている。バケット19は、アーム18に対して動作可能に取り付けられている。作業機12は、ブームシリンダ21と、アームシリンダ22と、バケットシリンダ23とを含む。ブームシリンダ21と、アームシリンダ22と、バケットシリンダ23とは、油圧シリンダであり、後述する油圧ポンプ25からの作動油によって駆動される。ブームシリンダ21は、ブーム17を動作させる。アームシリンダ22は、アーム18を動作させる。バケットシリンダ23は、バケット19を動作させる。
 図3は、作業機械1の制御システムの構成を示すブロック図である。図3に示すように、作業機械1は、エンジン24と、油圧ポンプ25と、動力伝達装置26と、コントローラ27とを含む。
 エンジン24は、コントローラ27からの指令信号により制御される。油圧ポンプ25は、エンジン24によって駆動され、作動油を吐出する。油圧ポンプ25から吐出された作動油は、ブームシリンダ21と、アームシリンダ22と、バケットシリンダ23とに供給される。
 作業機械1は、旋回モータ28を含む。旋回モータ28は、油圧モータであり、油圧ポンプ25からの作動油によって駆動される。旋回モータ28は、旋回体13を旋回させる。なお、図2では、1つの油圧ポンプ25が図示されているが、複数の油圧ポンプが設けられてもよい。
 油圧ポンプ25にはポンプ制御装置29が接続されている。油圧ポンプ25は可変容量ポンプである。ポンプ制御装置29は、油圧ポンプ25の傾転角を制御する。ポンプ制御装置29は、例えば電磁弁を含み、コントローラ27からの指令信号により制御される。コントローラ27は、ポンプ制御装置29を制御することで、油圧ポンプ25の容量を制御する。
 油圧ポンプ25とシリンダ21-23と旋回モータ28とは、制御弁31を介して油圧回路によって接続されている。制御弁31は、コントローラ27からの指令信号によって制御される。制御弁31は、油圧ポンプ25からシリンダ21-23及び旋回モータ28に供給される作動油の流量を制御する。コントローラ27は、制御弁31を制御することで、作業機12の動作を制御する。また、コントローラ27は、制御弁31を制御することで、旋回体13の旋回を制御する。
 動力伝達装置26は、エンジン24の駆動力を走行体14に伝達する。動力伝達装置26は、例えば、トルクコンバーター、或いは複数の変速ギアを有するトランスミッションであってもよい。或いは、動力伝達装置26は、HST(Hydro Static Transmission)、或いはHMT(Hydraulic Mechanical Transmission)などの他の形式のトランスミッションであってもよい。
 コントローラ27は、取得したデータに基づいて作業機械1を制御するようにプログラムされている。コントローラ27は、エンジン24と走行体14と動力伝達装置26とを制御することで、作業機械1を走行させる。コントローラ27は、エンジン24と油圧ポンプ25と制御弁31とを制御することで、作業機12を動作させる。
 コントローラ27はCPU或いはGPU等のプロセッサ271と、記憶装置272とを含む。プロセッサ271は、作業機械1の自動制御のための処理を行う。記憶装置272は、RAM或いはROMなどのメモリ、及び、HDD(Hard Disk Drive)或いはSSD(Solid State Drive)などの補助記憶装置を含む。記憶装置272は、作業機械1の自動制御のためのデータ及びプログラムを記憶している。
 作業機械1は、負荷センサ32a-32cを含む。負荷センサ32a-32cは、作業機12にかかる負荷を検出し、負荷を示す負荷データを出力する。本実施形態では、負荷センサ32a-32cは、油圧センサであり、シリンダ21-23の油圧をそれぞれ検出する。負荷データは、シリンダ21-23の油圧を示す。コントローラ27は、負荷センサ32a-32cと有線或いは無線によって通信可能に接続されている。コントローラ27は、負荷センサ32a-32cから負荷データを受信する。
 作業機械1は、位置センサ33と、作業機センサ34a-34cと、旋回角度センサ39とを含む。位置センサ33は、作業機械1の位置を検出し、作業機械1の位置を示す位置データを出力する。位置センサ33は、GNSS(Global Navigation Satellite System)レシーバとIMU(慣性計測装置:Inertial Measurement Unit)とを含む。GNSSレシーバは、例えばGPS(Global Positioning System)用の受信機である。位置データは、GNSSレシーバが出力する作業機械1の位置を示すデータと、IMUが出力する車両本体11の姿勢を示すデータとを含む。車両本体11の姿勢は、例えば、作業機械1の前後方向の水平に対する角度(ピッチ角)と、作業機械1の横方向の水平に対する角度(ロール角)とを含む。
 作業機センサ34a-34cは、作業機12の姿勢を検出し、作業機12の姿勢を示す姿勢データを出力する。作業機センサ34a-34cは、例えばシリンダ21-23のストローク量を検出するストロークセンサである。作業機12の姿勢データは、シリンダ21-23のストローク量を含む。或いは、作業機センサ34a-34cは、ブーム17、アーム18、及びバケット19のそれぞれの回転角度を検出するセンサなどの他のセンサであってもよい。旋回角度センサ39は、走行体14に対する旋回体13の旋回角度を検出し、旋回角度を示す旋回角度データを出力する。
 コントローラ27は、位置センサ33、作業機センサ34a-34c、及び旋回角度センサ39と有線或いは無線によって通信可能に接続されている。コントローラ27は、位置センサ33と作業機センサ34a-34cと旋回角度センサ39とから、それぞれ作業機械1の位置データと、作業機12の姿勢データと、旋回角度データとを受信する。コントローラ27は、位置データと姿勢データと旋回角度データとから、作業機12のうちバケット19の刃先位置を算出する。例えば、作業機械1の位置データは、位置センサ33のグローバル座標を示す。コントローラ27は、作業機12の姿勢データと旋回角度データとに基づいて、位置センサ33のグローバル座標からバケット19の刃先位置のグローバル座標を算出する。
 作業機械1は、地形センサ35を含む。地形センサ35は、作業機械1の周囲の地形を計測して、地形センサ35が計測した地形を示す地形データを出力する。本実施形態では、地形センサ35は、旋回体13の側部に取り付けられている。地形センサ35は、旋回体13の側方に位置する地形を計測する。地形センサ35は、例えばライダ(LIDAR:Laser Imaging Detection and Ranging)である。ライダは、レーザーを照射して、その反射光を計測することで、地形上の複数の計測点までの距離を測定する。地形データは、作業機械1に対する各計測点の位置を示す。
 作業機械1は、第1カメラ36と、複数の第2カメラ37とを含む。第1カメラ36は、旋回体13の前方に向けて、旋回体13に取り付けられている。第1カメラ36は、旋回体13の前方を撮影する。第1カメラ36はステレオカメラである。第1カメラ36は、撮影した動画を示す第1画像データを出力する。
 複数の第2カメラ37は、それぞれ旋回体13の左側方と右側方と後方とに向けて、旋回体13に取り付けられている。第2カメラ37は、撮影した動画を示す第2画像データを出力する。第2カメラ37は、単眼カメラであってもよい。或いは、第2カメラ37は、第1カメラ36と同様にステレオカメラであってもよい。コントローラ27は、第1カメラ36及び第2カメラ37と有線或いは無線により通信可能に接続されている。コントローラ27は、第1カメラ36から第1画像データを受信する。コントローラ27は、第2カメラ37から第2画像データを受信する。
 作業機械1は、通信装置38を含む。通信装置38は、作業機械1の外部の機器とデータ通信を行う。通信装置38は、作業機械1の外部のリモートコンピュータ機器4と通信を行う。リモートコンピュータ機器4は、作業現場に配置されてもよい。或いは、リモートコンピュータ機器4は、作業現場から離れた管理センタ内に配置されてもよい。リモートコンピュータ機器4は、ディスプレイ401と入力装置402とを含む。
 ディスプレイ401は、作業機械1に関する画像を表示する。ディスプレイ401は、コントローラ27から通信装置38を介して受信した信号に応じた画像を表示する。入力装置402は、オペレータによって操作される。入力装置402は、例えばタッチパネルを含んでもよく、或いは、ハードウェアキーを含んでもよい。リモートコンピュータ機器4は、入力装置402によって入力された指令を示す信号を、通信装置38を介してコントローラ27に送信する。また、通信装置38は、運搬車両2とデータ通信を行う。
 図4は、運搬車両2の側面図である。図4に示すように、運搬車両2は、車両本体51と、走行体52と、荷台53とを含む。車両本体51は、走行体52に支持されている。走行体52は、履帯54を含む。後述するエンジン55の駆動力によって履帯54が駆動されることで、運搬車両2は走行する。荷台53は、車両本体51に支持されている。荷台53は、ダンプ姿勢と運搬姿勢とに動作可能に設けられている。図4において、実線で示す荷台53は、運搬姿勢の荷台53の位置を示している。二点鎖線で示す荷台53’は、ダンプ姿勢の荷台53の位置を示している。運搬姿勢では、荷台53は、概ね水平に配置される。ダンプ姿勢では、荷台53は、運搬姿勢に対して傾斜した状態となる。
 図5は、運搬車両2の制御システムの構成を示すブロック図である。運搬車両2は、エンジン55と、油圧ポンプ56と、動力伝達装置57と、リフトシリンダ58と、旋回モータ59と、コントローラ61と、制御弁62とを含む。コントローラ61は、プロセッサ611と、揮発性記憶部612と、不揮発性記憶部613とを含む。
 エンジン55、油圧ポンプ56、動力伝達装置57、コントローラ61、制御弁62は、それぞれ作業機械1のエンジン24、油圧ポンプ25、動力伝達装置26、コントローラ27、制御弁31と同様の構成であるため、詳細な説明を省略する。
 リフトシリンダ58は、油圧シリンダである。旋回モータ59は、油圧モータである。油圧ポンプ56から吐出された作動油は、リフトシリンダ58と旋回モータ59とに供給される。リフトシリンダ58と旋回モータ59とは、油圧ポンプ56からの作動油によって駆動される。リフトシリンダ58は、荷台53を昇降する。それにより、荷台53の姿勢が、運搬姿勢とダンプ姿勢とに切り換えられる。旋回モータ59は、走行体52に対して車両本体51を旋回させる。コントローラ61は、制御弁62によってリフトシリンダ58を制御することで、荷台53の動作を制御する。また、コントローラ61は、制御弁62によって旋回モータ59を制御することで、車両本体51の旋回を制御する。
 運搬車両2は、位置センサ63と、荷台センサ64と、旋回角度センサ65とを含む。位置センサ63は、作業機械1の位置センサ33と同様に、位置データを出力する。位置データは、運搬車両2の位置を示すデータと、車両本体51の姿勢を示すデータとを含む。
 荷台センサ64は、荷台53の姿勢を検出し、荷台53の姿勢を示す荷台データを出力する。荷台センサ64は、例えばリフトシリンダ58のストローク量を検出するストロークセンサである。荷台データは、リフトシリンダ58のストローク量を含む。或いは、荷台センサ64は、荷台53の傾斜角度を検出するセンサなどの他のセンサであってもよい。旋回角度センサ65は、走行体52に対する車両本体51の旋回角度を検出し、旋回角度を示す旋回角度データを出力する。
 コントローラ61は、位置センサ63と、荷台センサ64と、旋回角度センサ65と、有線或いは無線によって通信可能に接続されている。コントローラ61は、位置センサ63と荷台センサ64と旋回角度センサ65から、それぞれ位置データと荷台データと旋回角度データとを受信する。
 運搬車両2は、通信装置66を含む。運搬車両2のコントローラ61は、通信装置66を介して、作業機械1のコントローラ27とデータ通信を行う。運搬車両2のコントローラ61は、通信装置66を介して、運搬車両2の位置データと荷台データと旋回角度データとを送信する。作業機械1のコントローラ27は、通信装置38を介して、運搬車両2の位置データと荷台データと旋回角度データとを受信する。作業機械1のコントローラ27は、運搬車両2の車両本体51、及び、荷台53の配置及び寸法を示す車両寸法データを記憶している。コントローラ27は、運搬車両2の位置データと荷台データと旋回角度データと車両寸法データとから、荷台53の位置を算出する。
 次に、作業機械1のコントローラ27によって実行される自動制御モードの処理について説明する。自動制御モードでは、コントローラ27は、上述した掘削及び積込の作業を自動で行うように、作業機械1を制御する。図6から図9は、自動制御モードの処理を示すフローチャートである。
 自動制御モードは、積込モードと、積込モード以外の他のモードとを含む。本実施形態において他のモードは、待機モードである。待機モードでは、コントローラ27は、運搬車両2が積込位置L2に到着して停車するまで、作業機械1を待機させる。なお、他のモードは、待機モード以外に、崩れた素材を集めておくモード、他の領域を掘削して素材を新たに増やす掘削モードなどのモードを含んでもよい。
 積込モードでは、コントローラ27は、運搬車両2が積込位置L2で停車しているときに、運搬車両2への積込作業を行うように作業機械1を動作させる。図6は、待機モードでの処理を示すフローチャートである。図7から図9は、積込モードでの処理を示すフローチャートである。図10から図18は、自動制御モードにおける作業現場の状況を模式的に示す平面図である。
 コントローラ27は、自動制御モードの開始指令を受信すると、作業機械1のエンジン24を始動すると共に、図6に示す待機モードの処理を実行する。図10に示すように、自動制御モードの開始指令は、例えばオペレータが上述したリモートコンピュータ機器4の入力装置402を操作することで、リモートコンピュータ機器4から出力される。コントローラ27は、通信装置38を介して開始指令を受信する。また、運搬車両2も、自動制御モードの開始指令を受信する。運搬車両2は、自動制御モードの開始指令を受信すると、積込位置L2に向かって移動を開始する。
 図6に示すように、ステップS101では、コントローラ27は、作業機械1を排土待姿勢で待機させる。すなわち、待機モードでは、コントローラ27は、排土待姿勢で、作業機12と旋回体13と走行体14とを停止状態に維持する。図10に示すように、排土待姿勢では、作業機12が積込位置L2を向くように配置される。すなわち、排土待姿勢では、旋回体13の前方が積込位置L2を向いている。また、排土待姿勢では、バケット19が、運搬車両2の荷台53の高さよりも上方の位置に配置される。
 ステップS102では、コントローラ27は、作業機械1の位置を取得する。ここでは、コントローラ27は、位置センサ33と、作業機センサ34a-34cと、旋回角度センサ39とから、それぞれ作業機械1の位置データと、作業機12の姿勢データと、旋回角度データとを取得する。コントローラ27は、位置データと姿勢データと旋回角度データとから、作業機12のうちバケット19の刃先位置を算出する。
 ステップS103では、コントローラ27は、画像データを取得する。ここでは、コントローラ27は、旋回体13の前方の動画を示す第1画像データを第1カメラ36から取得する。コントローラ27は、旋回体13の両側方及び後方の動画を示す第2画像データを第2カメラ37から取得する。なお、第1カメラ36と第2カメラ37とは、少なくとも自動制御モードの実行中には、常時、撮影を行って、第1画像データと第2画像データとを生成する。コントローラ27は、少なくとも自動制御モードの実行中には、第1カメラ36と第2カメラ37とから、リアルタイムに第1画像データと第2画像データとを取得する。
 ステップS104では、コントローラ27は、画像処理1を実行する。画像処理1は、第1画像データと第2画像データとに基づいて、画像認識技術により、作業機械1の周囲における人の存在を検出する。従って、第1カメラ36と第2カメラ37とは、作業機械1の周囲の領域における人の存在を検出する人検出装置に相当する。
 コントローラ27は、例えばAI(Artificial Intelligence)を用いた画像認識技術により、第1画像データと第2画像データとが示す画像中の人の存在を検出する。図19は、第1カメラ36或いは第2カメラ37によって撮影された画像の一例を示す図である。図19に示すように、第1画像データ又は第2画像データが示す画像に人が含まれるときには、コントローラ27は、画像中の人を認識して検出する。ステップS105では、コントローラ27は、作業機械1の周囲における人の存在が検出されたかを判定する。人の存在が検出されないときには、処理はステップS106に進む。
 ステップS106では、コントローラ27は、画像処理2を実行する。画像処理2では、コントローラ27は、第1画像データに基づいて、画像認識技術により、運搬車両2の存在を検出する。従って、第1カメラ36は、作業機械1への運搬車両2の接近を検出する車両検出装置に相当する。画像認識技術については、ステップS104と同様である。図11に示すように、第1カメラ36の撮影範囲内に運搬車両2が到達したときに、コントローラ27は、運搬車両2の存在を検出する。
 図20は、第1カメラの撮影範囲内に運搬車両2が到達したときに、第1カメラ36によって撮影された画像の一例を示す図である。図20に示すように、第1画像データが示す画像に運搬車両2が含まれるときには、コントローラ27は、画像中の運搬車両2を認識して検出する。
 ステップS107では、コントローラ27は、運搬車両2と通信を行う。ここでは、コントローラ27は、通信装置38を介して、運搬車両2から、運搬車両2の位置データを受信する。また、コントローラ27は、通信装置38を介して、運搬車両2から荷台データと旋回角度データとを受信する。
 ステップS108では、コントローラ27は、運搬車両2の接近が検出されたかを判定する。コントローラ27は、作業機械1から運搬車両2までの距離が所定の閾値以下であるときに、運搬車両2の接近が検出されたと判定する。コントローラ27は、第1画像データを解析することで、作業機械1から運搬車両2までの距離を算出する。或いは、コントローラ27は、作業機械1の位置データと運搬車両2の位置データとから、作業機械1から運搬車両2までの距離を算出してもよい。運搬車両2の接近が検出されたときには、処理は図7に示すステップS201に進む。すなわち、コントローラ27は、自動制御モードを待機モードから積込モードに遷移させる。
 ステップS105において人を検出していないこと、及び、ステップS108において運搬車両2の接近を検出したことは、自動制御モードを待機モードから積込モードに遷移させるための遷移条件である。コントローラ27は、遷移条件が満たされているときに、自動制御モードを待機モードから積込モードに遷移させる。コントローラ27は、遷移条件が満たされていないときには、自動制御モードを待機モードから積込モードに遷移させずに、待機モードに維持する。なお、遷移条件は、他の条件をさらに含んでもよい。
 ステップS108において、コントローラ27が運搬車両2の接近を検出しなかったときには、処理はステップS109に進む。ステップS109では、コントローラ27は、終了信号を受信したかを判定する。終了信号は、リモートコンピュータ機器4から送信される。終了信号は、オペレータが入力装置402を操作することで、リモートコンピュータ機器4からコントローラ27に送信される。終了信号を受信すると、コントローラ27は、自動制御モードを終了する。自動制御モードが終了すると、コントローラ27は、作業機械1のエンジン24を停止させる。また、運搬車両2のコントローラ61は、終了信号を受信すると、運搬車両2を停止させる。
 図12に示すように、作業機械1の周囲に人100が侵入すると、ステップS105において、コントローラ27が人100の存在を検出する。コントローラ27が人100の存在を検出したときには、処理はステップS110に進む。ステップS110では、コントローラ27は、出力装置に警報を出力させるように警報信号を出力する。本実施形態では、出力装置は、リモートコンピュータ機器4である。リモートコンピュータ機器4は、警報信号を受信すると、警報を示すメッセージ、或いは、画像をディスプレイ401に表示する。リモートコンピュータ機器4は、警報信号を受信すると、警報を示す音声を出力してもよい。
 なお、出力装置は、リモートコンピュータ機器4に限らず他の装置であってもよい。例えば、出力装置は、作業機械1に取り付けられた、或いは作業機械の1の外部に配置された警告灯、或いはスピーカーであってもよい。コントローラ27は、人の存在を検出したときには、警告灯を点灯、或いは、スピーカーから警告音を発するように、指令信号を出力してもよい。
 コントローラ27は、ステップS110において出力装置に警報を出力させた後、ステップS109において、終了信号を受信したかを判定する。終了信号を受信したときには、コントローラ27は、自動制御モードを停止させる。終了信号を受信しないときには、コントローラ27は、自動制御モードを待機モードに維持する。
 待機モードにおいて、作業機械1の周囲に人の存在を検出したときには、コントローラ27は、運搬車両2の接近を検出しても、自動制御モードを積込モードに遷移させずに、待機モードに維持する。なお、後述する積込モード中に、人の存在を検出したときには、コントローラ27は、作業機12及び旋回体13の動作を停止させる。なお、コントローラ27は、人の存在を検出したときには、待機モードと積込モードとのいずれにおいても、運搬車両2を停止させる指令信号を運搬車両2のコントローラ61に送信してもよい。
 次に、積込モードでの処理について説明する。コントローラ27は、積込モードにおいて、所定の掘削位置L1で作業機12による掘削を行い、掘削位置L1から積込位置L2に向けて旋回体13と旋回させ、積込位置L2で作業機12から排土することで、積込作業を行う。
 図7に示すように、積込モードでは、ステップS201において、コントローラ27は、地形を計測する。ここでは、図13に示すように、地形センサ35が、作業機械1の側方に位置する掘削位置L1の地形を計測する。コントローラ27は、地形センサ35が計測した掘削位置L1の地形を示す地形データを取得する。なお、コントローラ27は、旋回体13が停止しているのか、或いは動作しているのかを判定し、旋回体13が停止していると判定したときに、地形センサ35による地形の計測を行ってもよい。
 ステップS202では、コントローラ27は、掘削量を確保可能かを判定する。ここでは、コントローラ27は、現在の作業機械1の位置で作業機12及び旋回体13を動作させたときに、所定量以上の素材を掘削により取得できるかを判定する。例えば、図21に示すように、コントローラ27は、現在の作業機械1の位置で作業機12及び旋回体13を動作させたときの作業機12の軌跡と、地形データが示す掘削位置L1の地形とから、現在の位置で掘削可能な素材の量を算出する。図21においては、作業機12を動作させたときに掘削可能な範囲にハッチングが付されている。そして、コントローラ27は、掘削可能な素材の量が所定量以上であるときに、掘削量を確保可能と判定する。コントローラ27が掘削量を確保不可能と判定したときには、処理はステップS203に進む。
 ステップS203では、コントローラ27は、作業機械1の位置を調整する。例えば、コントローラ27は、作業機械1を所定距離、前後に移動させる。そして、ステップS201において、コントローラ27は再び地形を計測し、ステップS202において、掘削量を確保可能かを判定する。
 ステップS202において、コントローラ27が掘削量を確保可能と判定したときには、処理はステップS204に進む。ステップS204では、コントローラ27は、これから運搬車両2に積み込むことのできる素材の重量(以下、「積込可能重量」と呼ぶ)を計算する。コントローラ27は、運搬車両2に積み込み可能な素材の最大積載重量を記憶している。コントローラ27は、最大積載重量と既に運搬車両2に積み込まれた素材の重量(以下、「積込量」と呼ぶ)とに基づいて、積込可能重量を算出する。
 後述のように、コントローラ27は、掘削によって抱え込まれたバケット19内の素材の重量を算出可能であり、コントローラ27は、運搬車両2への排土ごとにバケット19内の素材の重量を積算することで、運搬車両2への積込量を把握することができる。なお、初回掘削時は、運搬車両2への積み込み量はゼロとなる。
 ステップS205では、コントローラ27は、掘削計画を立てる。図22は、コントローラ27における掘削計画の処理を示すフローチャートである。
 ステップS501において、コントローラ27は、バケット19で一回に掘削可能な素材の重量(以下、「掘削重量」と呼ぶ)よりも積込可能重量が大きいかを判定する。コントローラ27は、バケット19で一回に搬送可能な素材の体積(以下、「掘削体積」と呼ぶ)を記憶している。コントローラ27は、後述するように素材の密度(土質の一例)を算出し、素材の密度に掘削体積を乗算することによって、掘削重量を算出する。なお、1回目の掘削の実行時には、密度は所定の初期値であってもよい。
 ステップS501において、掘削重量よりも積込可能重量が大きいとコントローラ27が判定したときには、処理はステップS502に進む。ステップS502では、コントローラ27は、掘削体積を目標体積に決定する。目標体積とは、作業機12によって運搬する素材の体積である。
 ステップS501において、掘削重量よりも積込可能重量が大きくないとコントローラ27が判定したときには、処理はステップS503に進む。ステップS503では、コントローラ27は、積込可能重量を素材の密度で除した値を目標体積に決定する。
 ステップS504において、コントローラ27は、現在の作業機械1の位置と地形データと目標体積とから、掘削経路PA1を決定する。掘削経路PA1は、作業機12の刃先の目標掘削軌跡である。コントローラ27は、現在の作業機械1の位置と地形データとから、作業機12によって掘削される素材の量が目標体積と一致するように、掘削経路PA1を決定する。
 図23は、現在の地形T1の断面と掘削経路PA1との一例を示す図である。コントローラ27は、作業対象である現在の地形T1の目標地形W1を示す目標地形データを記憶している。現在の地形T1は、地形センサ35によって取得することができる。また、目標地形W1として、現在の地形T1の頂部を通り、水平面に対して所定の角度(例えば安息角)を有する直線を用いてもよい。
 コントローラ27は、目標地形W1と現在の地形T1とに基づいて、掘削開始位置S1を決定する。例えば、コントローラ27は、目標地形W1に垂直な方向において、現在の地形T1のうち目標地形W1から最も離れた位置を掘削開始位置S1に設定する。次に、コントローラ27は、掘削開始位置S1を中心とする半径X1の円弧CA1と現在の地形T1との交点を掘削終了位置E1に設定する。次に、半径X1に所定比率を乗算することによって、長さX1に対応する深さY1を求める。そして、半径X1と深さY1とで規定される円弧であって、かつ、現在の地形T1の表面と当該円弧との間の体積(図23においてハッチングを付した部分)が目標体積に一致する円弧を、掘削経路PA1に決定する。深さY1を求めるための所定比率は、シミュレーション結果から掘削効率が最大となる値に予め設定することができる。掘削経路PA1は、掘削開始位置S1と掘削終了位置E1とを含む。掘削開始位置S1と掘削終了位置E1とは、地形T1の表面と掘削経路PA1との交点である。
 ステップS505において、コントローラ27は、地形データに基づいて、排土待姿勢における作業機12の刃先の位置(以下、「現在位置S2」と呼ぶ)から掘削開始位置S1までを結ぶ旋回経路PB1を決定する。旋回経路PB1は、作業機12の刃先の目標旋回軌跡である。図24は、図14に示すX方向から作業機械1及び掘削位置L1を見た側面図である。コントローラ27は、作業機12の刃先が現在の地形T1に接触しないように旋回経路PB1を決定する。旋回経路PB1は、掘削開始位置S1と、途中点MPと、現在位置S2とを含む。途中点MPは、例えば、掘削開始位置S1と現在位置S2との間の区間において、地形T1よりも一定高さ上方の点として設定される。途中点MPは、地形T1の形状に応じて、複数設定されることもある。
 コントローラ27は、現在位置S2と掘削開始位置S1とに基づいて、作業機12の刃先を現在位置S2から掘削開始位置S1まで移動させるために必要となる旋回体13の旋回角度(以下、「目標旋回角度」と呼ぶ)TA1を決定する。
 以上のステップS501-S505によって掘削計画の処理(ステップS205)は完了して、処理はステップS206に進む。
 ステップS206では、コントローラ27は、自動ダウン旋回を実行する。ここでは、図14に示すように、コントローラ27は、掘削計画において決定した旋回経路PB1に従って作業機12の刃先が移動するように、作業機12及び旋回体13を制御する。具体的には、コントローラ27は、旋回体13を目標旋回角度TA1だけ旋回させつつ、作業機12を動作させながら、現在位置S2から掘削開始位置S1に向かって作業機12の刃先を移動させる。
 ステップS207では、コントローラ27は、自動掘削を実行する。ここでは、コントローラ27は、掘削計画において決定した掘削経路PA1に従って作業機12の刃先が移動するように、作業機12を制御する。
 ステップS208では、コントローラ27は、作業機械1の位置データを補正する。ここでは、コントローラ27は、位置センサ33と作業機センサ34a-34cと旋回角度センサ39とから作業機械1の位置データと作業機12の姿勢データと旋回角度データとを再度取得して、ステップS102で取得した作業機械1の位置を補正する。
 ステップS209では、コントローラ27は、排土計画を立てる。ここでは、コントローラ27は、現在の作業機械1の位置と運搬車両2の荷台位置とから、目標旋回角度TA2と排土位置P1とを決定する。排土位置P1は、排土待姿勢での作業機12の刃先の位置を示す。運搬車両2の荷台位置は、運搬車両2が積込位置L2に位置している状態での荷台53の位置を示す。コントローラ27は、予め決定された荷台位置を記憶していてもよい。或いは、コントローラ27は、積込位置L2と運搬車両2の車両寸法データとから、荷台位置を算出してもよい。コントローラ27は、荷台53に向かって作業機12が正対し、且つ、刃先が荷台53よりも所定距離上方に位置するように、排土位置P1を決定する。
 ステップS210では、コントローラ27は、自動ホイスト旋回を実行する。ここでは、図15に示すように、コントローラ27は、排土位置P1に向けて、目標旋回角度TA2分、旋回体13を旋回させると共に、作業機12の刃先を排土位置P1に向けて上昇させる。
 ステップS211では、コントローラ27は、作業機12が掘削してバケット19が抱えている素材の重量を計測する。ここでは、コントローラ27は、作業機12にかかる負荷を示す負荷データを、負荷センサ32a-32cから取得する。コントローラ27は、負荷データに基づいて、バケット19が抱えている素材の重量を取得することができる。或いは、コントローラ27は、負荷センサ32a-32cのうちブームシリンダ21にかかる負荷を検出する負荷センサ32aから受信する負荷データのみに基づいて、バケット19が抱えている素材の重量を取得してもよい。
 また、コントローラ27は、掘削前の地形データと、掘削経路PA1と、バケット19が抱えている素材の重量とから、素材の密度を算出する。従って、コントローラ27は、掘削前の地形データと掘削経路PA1とに基づいて、作業機12が掘削した素材の体積を算出することができる。コントローラ27は、算出した素材の体積で素材の重量を除すことによって、素材の密度を算出する。
 図8に示すステップS301では、コントローラ27は、作業機械1の状態を判定する。ここでは、コントローラ27は、作業機械1が動作中であるのか、停止しているのかを判定する。コントローラ27は、走行体14、旋回体13、及び作業機12の少なくとも1つが動作しているときには、作業機械1が動作中であると判定する。コントローラ27は、作業機12の刃先が排土位置P1に到達しており、走行体14、旋回体13、及び作業機12の全て停止しているときに、作業機械1が停止していると判定する。或いは、コントローラ27は、旋回体13と走行体14とが停止しているときに、作業機械1が停止していると判定してもよい。
 作業機械1が停止しているときには、コントローラ27は、ステップS302において画像処理3を実行する。画像処理3では、コントローラ27は、第1画像データに基づいて画像認識技術により運搬車両2を検出する。また、コントローラ27は、ステップS303において、運搬車両2と通信を行う。ここでは、ステップS107と同様に、コントローラ27は、運搬車両2の位置データと荷台データと旋回角度データとを、通信装置38を介して受信する。
 そして、ステップS304において、コントローラ27は、運搬車両2の状態を判定する。ここでは、コントローラ27は、運搬車両2が動作中であるのか、積込位置L2で停止しているのかを判定する。コントローラ27は、運搬車両2が走行しているか、或いは、荷台53が旋回しているときには運搬車両2が動作中であると判定する。コントローラ27は、図16に示すように運搬車両2が積込位置L2に停車しており、且つ、荷台53が旋回せず停止しているときに、運搬車両2が停止していると判定する。
 ステップS301において、作業機械1が停止しているときには、ステップS304において、コントローラ27は、画像処理3と、運搬車両2の位置データとに基づいて、運搬車両2の状態を判定する。従って、第1カメラ36と位置センサ63とは、運搬車両2の動作を検出する検出装置に相当する。コントローラ27は、第1画像データによって運搬車両2が停止しているかを判定する。また、コントローラ27は、運搬車両2の位置データによって運搬車両2が停止しているかを判定する。すなわち、第1画像データと運搬車両2の位置データとは、運搬車両2の動作を示す動作データに相当する。
 例えば、コントローラ27は、画像処理3及び運搬車両2の位置データとの両方によって運搬車両2の停止が検出されたときに、運搬車両2が停止していると判定してもよい。コントローラ27は、画像処理3及び運搬車両2の位置データとの少なくとも一方によって、運搬車両2の動作が検出されたときに、運搬車両2が動作中であると判定してもよい。
 一方、ステップS301において、作業機械1が動作中であるときには、コントローラ27は、ステップS305において運搬車両2の位置データを取得し、ステップ304において、運搬車両2の位置データのみによって運搬車両2の状態を判定する。
 ステップ304において運搬車両2が動作中であるときには、処理はステップS301に戻る。ステップ304において運搬車両2が停止しているときには、処理はステップS306に進む。ステップS306では、コントローラ27は、画像処理4を実行する。画像処理4では、コントローラ27は、第1画像データに基づいて画像認識技術により運搬車両2の荷台位置を検出する。
 図25は、運搬車両2が積込位置L2に停車したときに、第1カメラ36によって撮影された画像の一例を示す図である。図25に示すように、第1画像データが示す画像は、運搬車両2の荷台53を含む。第1画像データが示す画像に荷台53が含まれるときには、コントローラ27は、画像中の荷台53を認識して荷台位置を検出する。
 ステップS307では、コントローラ27は、荷台位置の誤差を判定する。コントローラ27は、コントローラ27が記憶している荷台位置と、ステップS306で検出した荷台位置との偏差を算出する。コントローラ27は、偏差が所定の閾値以上であるときに、誤差が大きいと判定する。荷台位置の誤差が大きいときには、処理はステップS308に進む。
 ステップS308では、コントローラ27は、排土位置P1を修正する。ここでは、コントローラ27は、ステップS209において決定した排土位置P1を、ステップS307で算出した偏差に基づいて修正する。ステップS307において荷台位置の誤差が小さいときには、排土位置P1の修正を行わずに、処理はステップS309に進む。
 ステップS309では、コントローラ27は、自動排土を実行する。ここでは、コントローラ27は、バケット19が抱えている素材を荷台53上に排出するように、作業機12を動作させる。ステップS310では、コントローラ27は、荷台位置を更新する。コントローラ27は、記憶している荷台位置を、ステップS306で検出した荷台位置に更新する。
 図9に示すステップS401では、コントローラ27は、積込が終了したかを判定する。コントローラ27は、荷台53への素材の積込量が最大積載重量に達したときに、積込が終了したと判定する。コントローラ27は、負荷データから積込量を算出する。詳細には、コントローラ27は、負荷データから掘削した素材の重量を算出する。コントローラ27は、荷台53に積み込まれた素材の重量の合計値を積込量として算出する。
 ステップS401において、積込が終了していないとコントローラ27が判定したときには、処理はステップS201に戻る。そして、ステップS201からステップS211の処理、及び、ステップS301からステップS310の処理が繰り返される。それにより、素材の掘削と運搬車両2への積込とが繰り返される。
 なお、2回目以降の掘削が行われるときも、コントローラ27は、ステップS201における地形の計測を改めて行い、地形センサ35が取得した新たな地形データによって、地形データを更新する。また、コントローラ27は、ステップS211における素材の重量の計測を再度行い、新たに計測した素材の重量と体積とから、素材の密度を算出して更新する。
 ステップS401において、積込が終了したとコントローラ27が判定したときには、処理はステップS402に進む。ステップS402では、図17に示すように、コントローラ27は、運搬車両2に積込位置L2からの離脱指令を送信する。運搬車両2は、離脱指令を受信すると、積込位置L2からダンプ位置L3に向かって移動を開始する。
 ステップS403では、コントローラ27は、画像処理2を実行する。ステップS106と同様に、画像処理2では、コントローラ27は、第1画像データに基づいて、画像認識技術により、旋回体13の前方における運搬車両2の存在を検出する。また、ステップS404において、コントローラ27は、運搬車両2と通信を行い、運搬車両2の位置データを取得する。ここでは、ステップS303及びステップS305と同様に、コントローラ27は、運搬車両2の位置データを通信装置38を介して受信する。
 次にステップS405では、コントローラ27は、離脱が完了したかを判定する。コントローラ27は、画像処理2と運搬車両2の位置データとに基づいて、離脱が完了したかを判定する。図18に示すように、コントローラ27は、運搬車両2が作業機械1から所定距離以上、離れたことを検出したときに、離脱が完了したと判定する。
 例えば、コントローラ27は、第1画像データに基づいて、作業機械1と運搬車両2との間の距離を算出する。コントローラ27は、位置データに基づいて、作業機械1と運搬車両2との間の距離を算出する。コントローラ27は、第1画像データから算出した距離と、位置データから算出した距離との両方が所定の閾値以上であるときに、運搬車両2が積込位置L2から離脱したと判定してもよい。或いは、コントローラ27は、第1画像データから算出した距離と、位置データから算出した距離との少なくとも一方が所定の閾値以上であるときに、運搬車両2が積込位置L2から離脱したと判定してもよい。
 ステップS405において、コントローラ27が、離脱が完了していないと判定したときには、処理はステップS403に戻る。ステップS405において、コントローラ27が、離脱が完了したと判定したときには、処理はステップS109に戻る。すなわち、コントローラ27が、離脱が完了したと判定したときには、コントローラ27は、積込モードを終了して、自動制御モードを待機モードに遷移させる。
 以上説明した本実施形態に係る作業機械1のコントローラ27は、地形データと掘削経路PA1とに基づいて、バケット19が抱えている素材の体積を算出し、算出した素材の体積で素材の重量を除すことによって、素材の密度を算出する。従って、地形データと掘削経路PA1とから容易に素材の体積を算出できるため、素材の密度を簡便かつ精度良く取得することができる。
 コントローラは、運搬車両2に積み込むことのできる素材の積込可能重量と素材の密度とに基づいて作業機12によって運搬する素材の目標体積を算出し、算出した目標体積と地形データとに基づいて次の掘削経路PA1を決定する。従って、精度よく、且つ、効率よく掘削を行うことができる。
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 作業機械1は、油圧ショベルに限らず、ホイールローダ、或いはモータグレーダ等の他の機械であってもよい。作業機械1の構成は、上記の実施形態のものに限らず、変更されてもよい。作業機械1は、電動モータで駆動される車両であってもよい。例えば、走行体14及び/又は旋回体13は、電動モータで駆動されてもよい。作業機12の構成が変更されてもよい。例えば、作業機12は、バケット19に限らず、グラップル、フォーク、リフティングマグネットなどの他の積込用アタッチメントを含んでもよい。
 運搬車両2は、ダンプトラック以外の車両であってもよい。運搬車両2の構成は、上記の実施形態のものに限らず、変更されてもよい。例えば、運搬車両2は、電動モータで駆動される車両であってもよい。例えば、走行体14及び/又は荷台53は、電動モータで駆動されてもよい。運搬車両2の荷台53は旋回不能であってもよい。運搬車両2の走行体52は、履帯ではなく、タイヤを備えてもよい。運搬車両2は自動制御ではなく、オペレータによって手動で運転されてもよい。
 作業機械1及び運搬車両2に備えられる各種のセンサの構成は、上記の実施形態のものに限らず、変更されてもよい。例えば、地形センサ35は、旋回体13の側部以外の部分に配置されてもよい。地形センサ35は、ライダに限らず、レーダーなどの他のセンシング装置であってもよい。或いは、地形センサ35はカメラであり、コントローラ27は、カメラが撮影した画像を解析することで、地形を認識してもよい。
 第1カメラ36は、旋回体13の前部以外の部分に配置されてもよい。第2カメラ37は、旋回体13の両側部及び後部以外の部分に配置されてもよい。第2カメラの数は3つに限らず、3つより少ない、或いは3つより多くてもよい。
 コントローラ27は、一体に限らず、複数のコントローラ27に分かれていてもよい。コントローラ27によって実行される処理は、複数のコントローラ27に分散して実行されてもよい。その場合、複数のコントローラ27の一部は、作業機械1の外部に配置されてもよい。
 作業機械1のコントローラ27と運搬車両2のコントローラ61とは、互いに直接的に通信するのではなく、他のコントローラを介して通信してもよい。コントローラ27によって実行される自動制御モードの処理は、上述した実施形態のものに限らず、変更されてもよい。例えば、待機モードでの処理が変更されてもよい。積込モードでの処理が変更されてもよい。
 上記の実施形態では、コントローラ27は、第1画像データと運搬車両2の位置データとの両方を用いて、運搬車両2の接近及び離脱を判定している。しかし、コントローラ27は、第1画像データと運搬車両2の位置データとのいずれか一方のみを用いて、運搬車両2の接近、及び/又は、離脱を判定してもよい。
 上記の実施形態では、コントローラ27は、第1画像データと運搬車両2の位置データとの両方を用いて、荷台53の位置を検出している。しかし、コントローラ27は、第1画像データと運搬車両2の位置データとのいずれか一方のみを用いて、荷台53の位置を検出してもよい。
 上記の実施形態では、コントローラ27は、負荷センサ32a-32cが検出した負荷データによって積込可能重量を算出している。しかし、コントローラ27は、第1画像データが示す荷台53の画像に基づいて、積込可能重量を算出してもよい。コントローラ27は、第1画像データが示す荷台53の画像から、荷台53に積み込まれた素材の量を検出して、積み込まれた素材の量から積込可能重量を算出してもよい。
 上記の実施形態では、コントローラ27は、作業機12の現在位置S2から掘削開始位置S1までを結ぶように旋回経路PB1を決定している。しかし、コントローラ27は、掘削開始位置S1の上方に移動目標位置を設定し、現在位置S2から移動目標位置までを結ぶように旋回経路PB1を決定してもよい。鉛直方向における掘削開始位置S1と移動目標位置との間隔は、所定値(例えば、20cm程度)に予め設定しておくことができる。このように、旋回経路PB1の帰着点を、掘削開始位置S1から鉛直方向上方にオフセットした移動目標位置に設定することによって、岩などの障害物に作業機12が当たることを抑制できる。
 上記の実施形態では、目標掘削軌跡としての掘削経路PA1を用いてバケット19内の素材の体積を求めたが、これに限定されない。例えば、実際に掘削したときのバケット19(具体的には、刃先)の位置から実掘削経路を算出し、実掘削経路を用いてバケット19内の素材の体積を算出してもよい。この場合、コントローラ27は、地形データと実掘削経路とに基づいて、バケット19が抱えている素材の体積を算出し、算出した素材の体積で素材の重量を除すことによって、素材の密度を算出する。
 上記の実施形態では、コントローラ27は、素材の目標体積を決定するために、素材の土質の一例として、素材の密度を算出することとしたが、これに限られない。コントローラ27は、素材の密度に代えて、素材の粘度及び硬さの少なくとも一方を算出してもよい。素材の粘度及び硬さは、それぞれ、目標掘削軌跡としての掘削経路PA1と、実際に掘削したときの実掘削経路との差に基づいて算出することができる。コントローラ27は、掘削時のバケット19の位置に基づいて、実掘削経路を取得することができる。
 本発明によれば、作業機械による積込作業を自動制御によって行うと共に、作業効率を向上させることができる。
1  作業機械
2  運搬車両
12 作業機
13 旋回体
27 コントローラ
33 位置センサ
35 地形センサ
36 第1カメラ

Claims (7)

  1.  運搬車両に素材を積み込む作業機械であって、
     バケットを有する作業機と、
     地形を計測する地形センサと、
     前記バケットによる掘削経路を取得し、前記バケットが抱えている素材の重量を計測するコントローラと、
    を備え、
     前記コントローラは、前記地形センサが計測した前記地形を示す地形データと前記掘削経路とに基づいて、前記バケットが抱えている素材の体積を算出し、算出した前記素材の体積で計測した前記素材の重量を除すことによって、前記素材の密度を算出する、
    作業機械。
  2.  前記コントローラは、前記運搬車両へ積み込むことのできる素材の重量と前記素材の密度とに基づいて前記作業機によって運搬する素材の目標体積を算出し、算出した前記目標体積と前記地形データとに基づいて前記掘削経路を取得する、
    請求項1に記載の作業機械。
  3.  前記コントローラは、掘削時の前記バケットの位置に基づいて、前記掘削経路を取得する、
    請求項1に記載の作業機械。
  4.  前記コントローラは、前記掘削経路に従って前記バケットが移動するように、前記作業機を制御する、
    請求項1乃至3のいずれかに記載の作業機械。
  5.  バケットを有する作業機と、
     地形を計測する地形センサと、
     前記地形センサが計測した前記地形を示す地形データに基づいて、前記バケットによる目標掘削経路を決定し、掘削時の前記バケットの位置に基づいて、実掘削経路を取得するコントローラと、
    を備え、
     前記コントローラは、前記目標掘削経路と前記実掘削経路との差に基づいて、前記素材の粘度及び硬さの少なくとも一方を算出する、
    作業機械。
  6.  作業機械を制御するためにコントローラによって実行される方法であって、
     前記作業機械付近の地形を示す地形データを取得することと、
     作業機が有するバケットによる掘削経路を取得することと、
     前記掘削経路と前記地形データとに基づいて、前記バケットが抱えている素材の体積を算出することと、
     前記バケットが抱えている素材の重量を計測することと、
     算出した前記素材の体積で計測した前記素材の重量を除すことによって、前記素材の密度を算出することと、
    を備える方法。
  7.  作業機械を制御するためのシステムであって、
     前記作業機械は、バケットを有する作業機と、地形を計測する地形センサとを備え、
     前記システムは、前記バケットによる掘削経路を取得し、前記バケットが抱えている素材の重量を計測するコントローラを備え、
     前記コントローラは、前記地形センサが計測した前記地形を示す地形データと前記掘削経路とに基づいて、前記バケットが抱えている素材の体積を算出し、算出した前記素材の体積で計測した前記素材の重量を除すことによって、前記素材の密度を算出する、
    システム。
PCT/JP2019/013340 2018-07-31 2019-03-27 作業機械 WO2020026521A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980014992.4A CN111771030B (zh) 2018-07-31 2019-03-27 作业机械
DE112019001254.1T DE112019001254T5 (de) 2018-07-31 2019-03-27 Arbeitsmaschine
US16/975,196 US11933017B2 (en) 2018-07-31 2019-03-27 Work machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-144231 2018-07-31
JP2018144231A JP7236826B2 (ja) 2018-07-31 2018-07-31 作業機械

Publications (1)

Publication Number Publication Date
WO2020026521A1 true WO2020026521A1 (ja) 2020-02-06

Family

ID=69231465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013340 WO2020026521A1 (ja) 2018-07-31 2019-03-27 作業機械

Country Status (5)

Country Link
US (1) US11933017B2 (ja)
JP (1) JP7236826B2 (ja)
CN (1) CN111771030B (ja)
DE (1) DE112019001254T5 (ja)
WO (1) WO2020026521A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020114946A1 (de) * 2020-06-05 2021-12-09 Liebherr-Hydraulikbagger Gmbh Verfahren und System zur Bestimmung von Prozessdaten eines von einem Arbeitsgerät durchgeführten Arbeitsprozesses
US11961253B2 (en) * 2020-10-26 2024-04-16 Caterpillar Sarl Determining material volume and density based on sensor data
EP4267807A1 (en) * 2020-12-28 2023-11-01 Volvo Autonomous Solutions AB Method and device for controlling excavator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227233A (ja) * 2004-02-16 2005-08-25 Taisei Corp 地盤密度の測定システム
JP2011017238A (ja) * 2009-07-07 2011-01-27 Kikuo Tokida 油圧ショベルバケットの角度を運転席から目視で簡単に認識できる装置。
US20140088822A1 (en) * 2012-09-21 2014-03-27 Caterpillar Inc. Payload material density calculation and machine using same
WO2015194601A1 (ja) * 2014-06-20 2015-12-23 住友重機械工業株式会社 ショベル及びその制御方法
WO2019031551A1 (ja) * 2017-08-08 2019-02-14 住友建機株式会社 ショベル及びショベルの支援装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192514A (ja) 1998-12-28 2000-07-11 Hitachi Constr Mach Co Ltd 自動運転建設機械およびその運転方法
US20070010925A1 (en) 2003-09-02 2007-01-11 Komatsu Ltd. Construction target indicator device
US9267837B2 (en) 2014-03-31 2016-02-23 Siemens Industry, Inc. Methods and systems for active load weight for mining excavating equipment
JP6666142B2 (ja) * 2015-12-25 2020-03-13 株式会社小松製作所 作業車両および作業車両の制御方法
JP2018111950A (ja) 2017-01-10 2018-07-19 セイコーエプソン株式会社 測定装置、施工機器及び施工システム
CN110382788A (zh) * 2017-03-22 2019-10-25 住友重机械工业株式会社 挖土机、挖土机的管理装置及支援装置
CN207646772U (zh) 2017-12-07 2018-07-24 东北石油大学 一种土木工程称重装置及应用其的密度计算装置和挖掘机
IL257428B (en) * 2018-02-08 2022-04-01 Israel Aerospace Ind Ltd Excavation by unmanned vehicle
JP7073151B2 (ja) 2018-03-19 2022-05-23 住友重機械工業株式会社 ショベル、ショベルの制御方法及びプログラム
US11395452B2 (en) * 2018-06-29 2022-07-26 Deere & Company Method of mitigating compaction and a compaction mitigation system
JP7141894B2 (ja) 2018-09-05 2022-09-26 日立建機株式会社 作業機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227233A (ja) * 2004-02-16 2005-08-25 Taisei Corp 地盤密度の測定システム
JP2011017238A (ja) * 2009-07-07 2011-01-27 Kikuo Tokida 油圧ショベルバケットの角度を運転席から目視で簡単に認識できる装置。
US20140088822A1 (en) * 2012-09-21 2014-03-27 Caterpillar Inc. Payload material density calculation and machine using same
WO2015194601A1 (ja) * 2014-06-20 2015-12-23 住友重機械工業株式会社 ショベル及びその制御方法
WO2019031551A1 (ja) * 2017-08-08 2019-02-14 住友建機株式会社 ショベル及びショベルの支援装置

Also Published As

Publication number Publication date
US11933017B2 (en) 2024-03-19
US20200407939A1 (en) 2020-12-31
CN111771030B (zh) 2022-04-22
JP2020020154A (ja) 2020-02-06
JP7236826B2 (ja) 2023-03-10
DE112019001254T5 (de) 2020-11-26
CN111771030A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2020026522A1 (ja) 作業機械
JP7204366B2 (ja) 作業機械を制御するためのシステム及び方法
WO2020026506A1 (ja) 作業機械を制御するためのシステム及び方法
WO2020026504A1 (ja) 作業機械を制御するためのシステム及び方法
US11914380B2 (en) System including conveyance vehicle and work machine that loads materials onto conveyance vehicle, method and work machine
WO2020026521A1 (ja) 作業機械
WO2020026505A1 (ja) 作業機械を制御するためのシステム及び方法
US11879232B2 (en) System and method for controlling work machine that loads materials onto conveyance vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844659

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19844659

Country of ref document: EP

Kind code of ref document: A1