WO2020026324A1 - Atmospheric pressure plasma treatment apparatus - Google Patents

Atmospheric pressure plasma treatment apparatus Download PDF

Info

Publication number
WO2020026324A1
WO2020026324A1 PCT/JP2018/028549 JP2018028549W WO2020026324A1 WO 2020026324 A1 WO2020026324 A1 WO 2020026324A1 JP 2018028549 W JP2018028549 W JP 2018028549W WO 2020026324 A1 WO2020026324 A1 WO 2020026324A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
irradiated
atmospheric pressure
processing apparatus
tube
Prior art date
Application number
PCT/JP2018/028549
Other languages
French (fr)
Japanese (ja)
Inventor
明洋 東田
神藤 高広
卓也 岩田
陽大 丹羽
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2020533922A priority Critical patent/JP7127127B2/en
Priority to PCT/JP2018/028549 priority patent/WO2020026324A1/en
Publication of WO2020026324A1 publication Critical patent/WO2020026324A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods

Definitions

  • the present invention relates to an atmospheric pressure plasma processing apparatus.
  • Patent Document 1 discloses an apparatus for producing water activated by irradiating water stored in a treatment tank with plasma.
  • Patent Literature 1 when it is desired to generate an amount of activated water exceeding the capacity of the processing tank, a water supply step to the processing tank, a plasma irradiation step, and a water draining step after the plasma irradiation. It is necessary to perform a series of steps in a plurality of cycles, and the operation may be complicated.
  • the present application has been proposed in view of the above problems, and has as its object to provide a plasma processing apparatus capable of generating a desired amount of an activated liquid in a simple process.
  • An atmospheric pressure plasma processing apparatus including: a plasma head that irradiates a plasma gas to the plasma head;
  • FIG. 3 is a diagram illustrating a control system of the atmospheric pressure plasma processing apparatus.
  • the atmospheric pressure plasma processing apparatus 10 includes a plasma head 20, a cover housing 22, a main body 4, a filling device 3, a primary storage bin 6, a waste bin 7, a liquid bag 2, a flow controller 5, and the like.
  • the following description uses the directions shown in FIG.
  • the cover housing 22 is fixed to a mounting table (not shown).
  • the liquid bag 2 is fixed above the cover housing 22, and the primary storage bin 6, the waste bin 7, the filling device 3, and the main body 4 are arranged below the cover housing 22.
  • the liquid bag 2 is filled with a liquid to be irradiated, such as lactec, to which the plasma gas is irradiated.
  • a liquid to be irradiated such as lactec, to which the plasma gas is irradiated.
  • the liquid to be irradiated which has been adjusted to a constant flow rate by the flow rate regulator 5 from the liquid bag 2, flows through the tube 110 according to gravity and is guided inside the cover housing 22.
  • the flow rate is, for example, about several ml / min.
  • the liquid to be irradiated is irradiated with a plasma gas by the plasma head 20 in the irradiation block 140 (FIG. 2) inside the cover housing 22.
  • irradiation with a plasma gas may be referred to as plasma irradiation.
  • the tubes 111 to 113 are connected to a branch pipe 114 having three connection ports.
  • valves 121 and 122 (FIG. 5) are attached to the tubes 112 and 113, respectively. Note that the illustration of the valves 121 and 122 is omitted in FIG.
  • the irradiation liquid irradiated with the plasma gas flows in the tube 111 according to gravity and is guided to the primary storage bin 6 or the waste bin 7.
  • the irradiation liquid irradiated with the plasma gas stored in the primary storage bin 6 passes through the tube 115 and is sealed in the storage bag 8 (FIG. 5) incorporated in the filling device 3.
  • the main unit 4 includes a control device 38 (FIG. 6), a processing gas supply device 74 (FIG.
  • the main body 4 is connected to the plasma head 20 and the cover housing 22 by power cables and gas pipes (not shown), and power and various gases are supplied from the main body 4.
  • the tubes 110 to 113 and 115, the branch pipe 114, the primary storage bin 6, the waste bin 7, and the irradiation block 140 are sterilized in advance.
  • the plasma head 20 includes a cover 50, a block 52, and a pair of electrodes 56,56.
  • the cover 50 is generally in the shape of a closed rectangular tube, and a block 52 is provided inside the cover 50.
  • the block 52 has a generally rectangular parallelepiped shape, and is provided so as to protrude from the lower end of the cover 50.
  • Inside the block 52 a pair of cylindrical concave portions 60 and a reaction chamber 62 are formed inside the block 52.
  • the reaction chamber 62 communicates with the cylindrical recess 60 and opens at the bottom of the block 52.
  • Each of the pair of electrodes 56 is disposed in a columnar space defined by the columnar recess 60 of the block 52. Note that the outer diameter of the electrode 56 is smaller than the inner diameter of the cylindrical recess 60.
  • the plasma head 20 ejects the plasma gas from the ejection port 72 of the block 52.
  • the processing gas is supplied into the reaction chamber 62 by the processing gas supply device 74.
  • a voltage is applied to the pair of electrodes 56, 56, and a current flows between the pair of electrodes 56.
  • a discharge is generated between the pair of electrodes 56, and the discharge turns the processing gas into plasma.
  • the plasma gas is ejected from the ejection port 72 of the block 52.
  • the cover housing 22 includes an upper cover 76 and a lower cover 78.
  • the upper cover 76 has a generally closed cylindrical shape, and a through-hole 79 having a shape corresponding to the block 52 of the plasma head 20 is formed in the lid of the upper cover 76.
  • the cover 50 of the plasma head 20 is fixed upright on the lid of the upper cover 76 so as to cover the through hole 79.
  • the block 52 of the plasma head 20 protrudes toward the inside of the upper cover 76 so as to extend in the Z direction.
  • the plasma gas generated by the plasma head 20 is jetted from the jet port 72 toward the inside of the upper cover 76 in the Z direction.
  • the cover housing 22 is opened and closed by the upper cover 76 being slid up and down by an opening and closing mechanism (not shown).
  • the lower cover 78 of the cover housing 22 has a generally disk shape.
  • the outer diameter of the lower cover 78 is larger than the outer diameter of the upper cover 76, and when the cover housing 22 is closed, the lower cover 78 is sealed with packing (not shown) or the like.
  • the upper cover 76 is formed with the air inlet 130, and the lower cover 78 is formed with the air outlet 135.
  • the intake port 130 is connected to a purge gas supply device 132 via a pipe 131.
  • an inert gas such as argon is supplied from the purge gas supply mechanism 32 into the cover housing 22.
  • a pipe 136 is connected to the exhaust port 135, and gas in the cover housing 22 is exhausted to the outside of the cover housing 22 via the pipe 136.
  • an inert gas is supplied into the cover housing 22 from the purge gas supply device 132, and the inside of the cover housing 22 is purged with the inert gas.
  • the stage 26 is fixed inside the lower cover 78.
  • An irradiation block 140 is provided on the stage 26.
  • a through hole 137 through which the tube 110 is inserted is formed on a side surface of the upper cover 76, and a through hole 138 through which the tube 111 is inserted is formed on the bottom surface of the lower cover 78.
  • the stage 26 has a through hole 27 through which the tube 111 is inserted.
  • the irradiation block 140 (Configuration of irradiation block) Next, the irradiation block 140 will be described with reference to FIGS. The directions shown in FIGS. The direction from left to right is the direction in which the liquid to be irradiated flows.
  • the irradiation block 140 includes an irradiation block main body 141 having a generally rectangular parallelepiped shape, and a lid 142.
  • the size of the irradiation block 140 is, for example, 12 mm ⁇ 30 mm ⁇ 94 mm.
  • the long side direction of the irradiation block 140 is the X direction, and the short side direction is the Y direction.
  • the irradiation block main body 141 is formed with a first groove 143 and a second groove 144 whose surfaces facing the plasma head 20 are open when installed on the cover housing 22.
  • the first groove 143 has a U-shape whose YZ section opens upward.
  • the bottom surface 143a of the first groove 143 is curved.
  • the YZ cross section of the first groove 143 is slightly narrower than the cross-sectional shape of the tube 110, and the tube 110 having flexibility is fitted into the first groove 143, thereby fixing the tube 110.
  • the angle formed between the side surface 144a and the bottom surface 144b of the second groove 144 is substantially a right angle.
  • the lid 142 has a generally flat plate shape, and the dimension in the Y direction is shorter than the dimension of the irradiation block main body 141, and is installed on the irradiation block main body 141.
  • the irradiation block main body 141 has, in addition to the above-described configuration, a protruding portion 145, a discharge portion 146, a concave portion 147, and a locking portion 141c.
  • the protruding portion 145 is formed to protrude upward at a part of the second groove 144. Specifically, at the right end of the second groove 144, it is formed to protrude above the bottom surface 144b.
  • the upper surface 145a of the protrusion 145 is substantially flat.
  • the bottom surface 144b of the second groove 144 is lower than the bottom 143a of the first groove 143, so that a side wall 144c is formed at the left end of the second groove 144.
  • the discharge portion 146 is formed to the right of the protrusion 145.
  • the discharge part 146 has a discharge concave part 146a and a discharge convex part 146b.
  • the discharge recess 146a is formed to be recessed downward from the upper surface 145a, and has a substantially circular cross section in the XY plane.
  • the discharge projection 146b is generally cylindrical, and is formed to protrude downward from the lower surface 141b of the irradiation block main body 141.
  • the discharge convex portion 146b has a discharge port 146c, a base 146d, and a discharge locking portion 146e.
  • the internal space formed in the discharge projection 146b is a discharge port 146c.
  • the discharge port 146c communicates with the discharge recess 146a. Therefore, the liquid to be irradiated flowing into the discharge recess 146a through the upper surface 145a can flow below the discharge port 146c along the discharge recess 146a and the inner wall of the discharge port 146c.
  • a portion of the outer peripheral surface of the discharge projection 146b that is continuous with the lower surface 141b of the irradiation block main body 141 is a base 146d.
  • the outer diameter of the discharge locking portion 146 e formed below the base 146 d is larger than the diameter of the tube 111. Further, the outer diameter of the base 146d is smaller than the outer diameter of the discharge locking portion 146e.
  • the concave portion 147 is formed on the right side of the discharge portion 146, and is formed to be recessed below the upper surface 141 a of the irradiation block main body 141.
  • the locking portions 141c, 141c are formed on the right and left sides of the irradiation block main body 141, and are formed to be recessed upward with respect to the lower surface 141b of the irradiation block main body 141.
  • a convex portion (not shown) projecting upward to be fitted with the locking portions 141c, 141c is formed.
  • the irradiation block 140 is fixed to the stage 26 by fitting the locking portions 141c, 141c and the convex portion of the stage 26. As described above, since the fixing is not performed using the fixing tool, the irradiation block 140 can be easily attached to and detached from the stage 26.
  • the lid 142 covers the projection 145 and the recess 147 of the irradiation block main body 141 and is installed above the irradiation block main body 141.
  • the lid part 142 has a generally flat plate shape, and has a convex part 142b projecting downward from the lower surface 142a on the right side. Further, a surface facing the upper side of the discharge portion 146 is cut out upward.
  • the convex portion 142b has a shape to be fitted with the concave portion 147.
  • the projection 142b of the lid 142 is fitted into the recess 147 of the irradiation block main body 141, whereby the lid 142 is positioned with respect to the irradiation block main body 141.
  • the lid 142 is fixed to the elevating device 150 (FIG. 6), and is moved up and down in the Z direction by the elevating device 150.
  • the lid 142 is above the protrusion 145 and forms a gap 141d with the protrusion 145.
  • a gap 141 d is formed between the upper surface 145 a of the irradiation block main body 141 and the lower surface 142 a of the lid 142, and is fixed to the elevating device 150.
  • the tube 111 connects the discharge part 146 of the irradiation block 140 and the first connection port of the branch pipe 114.
  • the tube 112 connects the second connection port of the branch pipe 114 and the primary storage bin 6.
  • the tube 113 connects the third connection port of the branch pipe 114 to the waste bin 7. That is, the tube 113 branches from a flow path formed by the tubes 111 and 112 and the branch pipe 114 from the irradiation block 140 to the primary storage bin 6.
  • the tube 115 connects the primary storage bin 6 and the storage bag 8.
  • the tube 112 is attached so as to be inclined upward from the branch pipe 114 toward the primary storage bin 6.
  • Valves 121, 122, and 123 are attached to the tubes 112, 113, and 115, respectively.
  • the valves 121 to 123 open and close the flow paths in the tubes 112, 113, and 115, respectively.
  • a sterilizing filter 124 is attached in the path of the tube 115, that is, inside the tube 115.
  • the filling device 3 is openable and closable, and is provided with a through hole 3a through which the tube 115 is inserted.
  • the filling device 3 has an internal space for storing the storage bag 8, and includes a decompression device 151 for decompressing the internal space in a state where the storage bag 8 to which the tube 115 is connected is stored in the internal space.
  • the atmospheric pressure plasma processing apparatus 10 includes a control device 38, a processing gas supply device 74, a purge gas supply device 132, a lifting device 150, a decompression device 151, a switching unit 152, and a remaining amount sensor 153. They are communicably connected, and each unit is controlled by the control device 38.
  • the control device 38 includes a controller 170 mainly composed of a computer, and drive circuits 171 to 175.
  • the drive circuit 171 is a circuit for controlling the power supplied to the electrodes 56, 56, and is supplied from the drive circuit 171 to the electrodes 56, 56 via a power cable (not shown).
  • the drive circuit 172 is a circuit that controls the flow rate of each gas supplied by the processing gas supply device 74 and the purge gas supply device 132.
  • the driving circuits 173 to 175 are circuits for controlling the lifting / lowering device 150, the pressure reducing device 151, and the switching unit 152, respectively.
  • the switching unit 152 controls opening and closing of the valves 121 to 123. Further, the switching unit 152 controls the valves 121 and 122 to switch between the primary storage bin 6 and the waste bin 7 to flow the liquid to be irradiated with the plasma gas.
  • the remaining amount sensor 153 outputs to the controller 170 a signal corresponding to the amount of the liquid to be irradiated irradiated with the plasma gas stored in the primary storage bin 6.
  • the remaining amount sensor 153 may be attached to the outside of the primary storage bin 6 and output a signal corresponding to the liquid level of the liquid to be irradiated stored in the primary storage bin 6.
  • the sterilization state of the primary storage bin 6 can be maintained.
  • the amount of the liquid to be irradiated stored in the primary storage bin 6 can be calculated from the liquid level and a known cross-sectional area inside the primary storage bin 6.
  • Lactec is assumed as the liquid to be irradiated. Lactec activated by irradiation with plasma gas is intended for medical treatment for treating a lesion by being injected into the body. For this reason, it is preferable that the irradiation target liquid irradiated with the plasma gas is sterilized.
  • the control device 38 purges the cover housing 22 with the inert gas by the supply of the inert gas from the purge gas supply device 132.
  • irradiation of plasma gas from the plasma head 20 is started.
  • the processing gas supplied by the processing gas supply device 74 is a gas in which an active gas such as oxygen and an inert gas such as nitrogen are mixed at an arbitrary ratio.
  • the plasma gas includes oxygen plasma.
  • the liquid to be irradiated which has been adjusted to a constant flow rate by the flow rate controller 5, flows into the second groove 144 via the tube 110. Note that the flow rate adjustment in the flow rate regulator 5 may be performed by an operator or may be controlled by the control device 38.
  • the second groove 144 has a side wall 144c formed on the left end, and a protrusion 145 formed on the right end. Therefore, the liquid to be irradiated is stored in the second groove 144 up to the height of the upper surface 145a of the protrusion 145 indicated by the broken line in FIG. Since the second groove 144 is provided below the plasma head 20, the liquid to be irradiated stored in the second groove 144 is activated by irradiating the plasma gas from the plasma head 20. It is known that the treatment effect by the plasma-irradiated liquid is exhibited by irradiating the liquid to be irradiated with the plasma gas for a predetermined time.
  • the plasma gas is irradiated for a predetermined time.
  • the liquid to be irradiated naturally convects in the second groove 144 by being irradiated with the plasma gas.
  • a homogeneous activated liquid to be irradiated that exhibits a therapeutic effect can be obtained.
  • the liquid to be irradiated after passing through the second groove 144 may be referred to as an already irradiated liquid.
  • the irradiated liquid flows down the gap 141d formed between the upper surface 145a and the lower surface 142a, and flows downward from the outlet 146c via the discharge recess 146a.
  • the gap 141d With the configuration having the gap 141d, a stable outflow amount can be obtained.
  • the irradiation block 140 does not have the gap 141d, the following phenomenon occurs because the internal capacity of the second groove 144 is small. Even if the liquid to be irradiated continues to flow into the second groove 144 and the liquid surface thereof has a height of about the upper surface 145a, the irradiated liquid does not flow out of the second groove 144 due to the surface tension without being irradiated.
  • the irradiated liquid When the liquid surface of the liquid rises upward and reaches the limit, the irradiated liquid immediately flows out of the second groove 144. Due to this phenomenon, the amount of outflow from the second groove 144 varies.
  • the formation of the gap 141d allows the liquid to be irradiated to flow out of the second groove 144 through the gap 141d even if a surface tension occurs in the liquid to be irradiated stored in the second groove 144. Therefore, a stable outflow amount can be obtained. Further, by the structure in which the liquid to be irradiated flows out through the gap 141d, it is possible to reduce mixing of a gas such as a plasma gas into the liquid to be irradiated flowing out from the second groove 144.
  • a gas such as a plasma gas
  • the lifting / lowering device 150 adjusts the height of the lid 142 so as to have a width corresponding to a desired amount of the liquid. Height is adjusted.
  • the irradiated liquid flowing out of the irradiation block 140 flows through the tube 111.
  • the control device 38 controls the valve 121 to be closed and the valve 122 to be open.
  • the irradiated liquid flows to the waste bin 7 via the tube 113.
  • the valve 121 is switched to the open state and the valve 122 is switched to the closed state.
  • the irradiated liquid flows to the primary storage bin 6 via the tube 112.
  • the flowing liquid to be irradiated is irradiated with the plasma gas, the irradiated liquid flowing out within a predetermined time after the start of the plasma irradiation may not be sufficiently activated. Therefore, during a predetermined time after the start of the plasma irradiation, the already irradiated liquid is caused to flow into the waste bin 7, and after a predetermined time has elapsed after the start of the plasma irradiation, the already irradiated liquid is caused to flow into the primary storage bin 6, so that the primary storage is performed.
  • the irradiated liquid stored in the bottle 6 can be a sufficiently activated irradiated liquid. The deterioration of the quality of the irradiated liquid sealed in the storage bag 8 can be reduced.
  • valves 121 and 122 are attached to the tubes 112 and 113, respectively, even if the valve 122 is accidentally closed during the period in which the irradiated liquid is to be flowed to the waste bin 7, the valve 121 can be closed. Is closed, it is possible to prevent the already irradiated liquid that has not been sufficiently activated from flowing into the primary storage bin 6.
  • the tube 112 is attached so as to be inclined upward in a direction in which the irradiated liquid flows against the gravity, specifically, from the branch pipe 114 toward the primary storage bin 6.
  • the tube 113 is attached so as to be inclined downward in a direction in which the irradiated liquid flows by gravity, specifically, downward from the branch pipe 114 toward the waste bin 7.
  • the irradiated liquid flows to the waste bin 7 without flowing to the tube 112.
  • the tube 112 is attached without being inclined, the irradiated liquid that may not be sufficiently activated in the section from the branch pipe 114 to the valve 121 in the tube 112 will flow, and It is also conceivable that the irradiated liquid that may not be activated remains in this section. By shortening the section through which the irradiated liquid that may not be sufficiently activated flows, the amount of the irradiated liquid that may not be sufficiently activated mixed into the primary storage bin 6 can be reduced to a very small amount. it can.
  • the control device 38 stops the plasma irradiation of the plasma head 20 and stores the irradiated liquid stored in the primary storage bin 6.
  • the operation of enclosing in the bag 8 is started.
  • the valve 123 By switching the valve 123 from the closed state to the open state and causing the pressure reducing device 151 to reduce the pressure inside the filling device 3 from the atmospheric pressure, the irradiated liquid is sealed in the storage bag 8.
  • the pressure reducing device 151 is controlled to return the pressure inside the filling device 3 to the atmospheric pressure. As a result, a predetermined amount of the irradiated liquid is sealed in the storage bag 8.
  • the valve 123 is closed and the storage bag 8 is replaced. Thereby, at least the sterilized state of the tube 115 from the valve 123 to the primary storage bin 6 can be maintained. Further, the total amount sealed in the storage bag 8 is smaller than the amount of the irradiated liquid stored in the primary storage bin 6. As a result, it is possible to prevent the primary storage bin 6 from being emptied and air from entering the storage bag 8.
  • the tubes 110 to 113, the branch pipe 114, the primary storage bin 6, the waste bin 7, and the irradiation block 140 are sterilized in advance. Since the atmospheric pressure plasma processing apparatus 10 is intended for medical treatment, it is configured to easily maintain a sterilized state. Specifically, the tubes 110 to 113, the branch pipe 114, the primary storage bin 6, and the waste bin 7 are relatively inexpensive and easily replaceable parts. Therefore, in a situation where the plasma processing is performed intermittently with an interval, it is possible to easily maintain the sterilization state of the atmospheric pressure plasma processing apparatus 10 by exchanging these parts.
  • the irradiation block 140 has a configuration in which the tubes 110 and 111 can be easily attached and detached.
  • the irradiation block 140 since the irradiation block 140 is configured to be installed on the stage 26 without using a fixture, the irradiation block 140 can be easily removed from the cover housing 22.
  • the irradiation block 140 is small enough to be put in an autoclave. Therefore, the irradiation block 140 can be easily sterilized by being heated in an autoclave.
  • the liquid to be irradiated is exposed in the cover housing 22, but is sterilized by the sterilizing filter 124 before being sealed in the storage bag 8. Sterilization is maintained. It has been confirmed that the irradiated liquid filtered by the sterilizing filter 124 is not deactivated.
  • the flow path from the liquid bag 2 to the primary storage bin 6 through which the liquid to be irradiated flows formed by the tube 110, the irradiation block 140, the tube 111, the branch pipe 114, the tube 112, and the primary storage bin 6 It is an example of a flow path.
  • the liquid bag 2 and the flow controller 5 are examples of a supply unit.
  • the second groove 144 is an example of a groove.
  • the primary storage bin 6 is an example of a storage container
  • the storage bag 8 is an example of an enclosure
  • the tube 115 is an example of an outflow tube.
  • the tube 113 is an example of a disposal tube.
  • the filling device 3 is an example of a decompression container.
  • the irradiation liquid filled in the liquid bag 2 is adjusted to a constant flow rate by the flow rate regulator 5 and supplied into the cover housing 22 via the tube 110.
  • the liquid to be irradiated flowing into the irradiation block 140 is irradiated with a plasma gas by the plasma head 20.
  • the irradiation block 140 is detachable from the tubes 110 and 111 and the stage 26.
  • the irradiation block 140 can be easily sterilized by, for example, heating with an autoclave.
  • the irradiation block 140 has a second groove 144, a protrusion 145, and a cover 142.
  • the liquid to be irradiated is blocked by the projection 145 and stays in the second groove 144. For this reason, since the plasma gas is irradiated for a predetermined time, a uniform irradiated liquid can be obtained. Further, since the gap 141d is formed between the protruding portion 145 and the lid portion 142, the already-irradiated liquid flows downstream by the capillary action, so that a stable outflow amount can be obtained.
  • the atmospheric pressure plasma processing apparatus 10 includes the primary storage bin 6 and the tube 115, the irradiated liquid can be put in the storage bag 8 without being exposed to the outside air.
  • the tube 115 is provided with the sterilizing filter 124, the irradiated liquid can be sterilized before being sealed in the storage bag 8.
  • the atmospheric pressure plasma processing apparatus 10 further includes a tube 113 that branches off from the tubes 111 and 115 that connect the irradiation block 140 and the primary storage bin 6. Further, the atmospheric pressure plasma processing apparatus 10 includes a switching unit 152 that switches between the primary storage bin 6 and the tube 113 to flow the irradiated liquid. In the atmospheric pressure plasma processing apparatus 10, since the flowing liquid to be irradiated is irradiated with the plasma gas, the irradiated liquid flowing out within a predetermined time after the start of the plasma irradiation may not be sufficiently activated.
  • the switching unit 152 allows the already irradiated liquid to flow into the waste bin 7 via the tube 113 for a predetermined time after the start of the plasma irradiation, so that the already irradiated liquid of stable quality can be stored in the primary storage bin 6. .
  • the tube 113 is attached in a direction in which the irradiated liquid flows by gravity. Thus, the irradiated liquid that may not be sufficiently activated can flow to the waste bin 7 via the tube 113 by gravity.
  • the atmospheric pressure plasma processing apparatus 10 includes the filling device 3 in which the internal space is decompressed while the storage bag 8 to which the tube 115 is connected is housed in the internal space. Thereby, the irradiated liquid can be sealed in the storage bag 8 without exposing the inside of the storage bag 8 to the outside air.
  • the present invention is not limited to the above embodiment, and it is needless to say that various improvements and modifications can be made without departing from the spirit of the present invention.
  • the sterilizing filter 124 is mounted in the tube 115, the present invention is not limited to this. It may be attached to any of the flow paths from the irradiation block 140 to the storage bag 8.
  • the tube 112 is attached so as to incline upward from the branch tube 114 toward the primary storage bin 6, and the tube 113 is attached so as to incline downward from the branch tube 114 toward the waste bin 7.
  • the tube 113 may be configured to be attached in the direction of gravity. Further, the tube 112 may be mounted substantially horizontally, and the tube 113 may be mounted so as to be inclined downward from the branch pipe 114 toward the waste bin 7 or in the direction of gravity. Alternatively, the tube 112 may be attached so as to incline upward from the branch tube 114 toward the primary storage bin 6, and the tube 113 may be attached substantially horizontally.
  • the irradiated liquid that may not be sufficiently activated is flowed to the waste bin 7, so that the irradiated liquid having stable quality can be stored in the primary storage bin 6.

Abstract

The purpose of the present invention is to provide a plasma treatment apparatus capable of generating a desired amount of activated liquid by a simple process. A liquid to be bombarded that is filled in a bag for liquids is adjusted to a prescribed flow rate by a flow rate adjuster and is fed into a cover housing via a tube. Plasma gas is bombarded by a plasma head on said liquid flowing in a bombardment block. By supplying the liquid from the bag for liquids and the flow rate adjuster at a flow rate corresponding to the desired amount, it is possible to generate bombarded liquid on which the desired amount of plasma gas has been bombarded by a simple process.

Description

大気圧プラズマ処理装置Atmospheric pressure plasma processing equipment
 本発明は、大気圧プラズマ処理装置に関するものである。 The present invention relates to an atmospheric pressure plasma processing apparatus.
 特許文献1には、処理槽に貯えられた水にプラズマを照射することによって活性化された水を製造する装置が開示されている。 Patent Document 1 discloses an apparatus for producing water activated by irradiating water stored in a treatment tank with plasma.
特開2009-183867号公報JP 2009-183867 A
 特許文献1に記載の装置では、処理槽の容量を超える量の活性化された水を生成したい場合に、処理槽への水の供給工程、プラズマ照射工程、およびプラズマ照射後の水の排水工程の一連の工程を複数サイクル行う必要が生じ、作業が煩雑となるおそれがある。 In the apparatus described in Patent Literature 1, when it is desired to generate an amount of activated water exceeding the capacity of the processing tank, a water supply step to the processing tank, a plasma irradiation step, and a water draining step after the plasma irradiation. It is necessary to perform a series of steps in a plurality of cycles, and the operation may be complicated.
 本願は、上記の課題に鑑み提案されたものであって、所望の量の活性化された液体を簡素な工程にて生成することができるプラズマ処理装置を提供することを目的とする。 The present application has been proposed in view of the above problems, and has as its object to provide a plasma processing apparatus capable of generating a desired amount of an activated liquid in a simple process.
 本明細書は、プラズマ照射される被照射液体が流れる流路と、被照射液体を流路に一定の流量で流す供給部と、流路内に設けられる照射ブロックと、照射ブロックにおいて被照射液体にプラズマガスを照射するプラズマヘッドと、を備える大気圧プラズマ処理装置を開示する。 The present specification describes a flow path through which an irradiation target liquid to be irradiated with plasma flows, a supply unit through which the irradiation target liquid flows at a constant flow rate, an irradiation block provided in the flow path, and an irradiation block in the irradiation block. An atmospheric pressure plasma processing apparatus including: a plasma head that irradiates a plasma gas to the plasma head;
 本開示によれば、所望の量の活性化された液体を簡素な工程にて生成することができるプラズマ処理装置を提供することができる。 According to the present disclosure, it is possible to provide a plasma processing apparatus that can generate a desired amount of activated liquid in a simple process.
大気圧プラズマ処理装置の概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of an atmospheric pressure plasma processing apparatus. カバーハウジングの内部構成を示す断面図である。It is sectional drawing which shows the internal structure of a cover housing. 照射ブロックを示す斜視図である。It is a perspective view which shows an irradiation block. 照射ブロックの断面図である。It is sectional drawing of an irradiation block. 照射ブロックから充填装置までの構成を示す図である。It is a figure showing composition from an irradiation block to a filling device. 大気圧プラズマ処理装置の制御系統を示す図である。FIG. 3 is a diagram illustrating a control system of the atmospheric pressure plasma processing apparatus.
(大気圧プラズマ処理装置の概略構成)
 図1を用いて、大気圧プラズマ処理装置10の概略構成について説明する。大気圧プラズマ処理装置10は、プラズマヘッド20、カバーハウジング22、本体部4、充填装置3、一次保管ビン6、廃棄ビン7、液体バッグ2、および流量調整器5などを備える。以下の説明には、図1に示す方向を用いる。カバーハウジング22は、不図示の載置台に固定されている。液体バッグ2はカバーハウジング22よりも上方に固定されており、一次保管ビン6、廃棄ビン7、充填装置3、および本体部4は、カバーハウジング22よりも下方に配置されている。
(Schematic configuration of atmospheric pressure plasma processing apparatus)
The schematic configuration of the atmospheric pressure plasma processing apparatus 10 will be described with reference to FIG. The atmospheric pressure plasma processing apparatus 10 includes a plasma head 20, a cover housing 22, a main body 4, a filling device 3, a primary storage bin 6, a waste bin 7, a liquid bag 2, a flow controller 5, and the like. The following description uses the directions shown in FIG. The cover housing 22 is fixed to a mounting table (not shown). The liquid bag 2 is fixed above the cover housing 22, and the primary storage bin 6, the waste bin 7, the filling device 3, and the main body 4 are arranged below the cover housing 22.
 液体バッグ2には、プラズマガスが照射される例えばラクテックなどの被照射液体が充填されている。液体バッグ2から、流量調整器5により一定の流量に調整された被照射液体は、重力に応じてチューブ110内を流れてカバーハウジング22の内部に案内される。尚、流量は例えば数ml/分程度である。被照射液体は、カバーハウジング22の内部で照射ブロック140(図2)において、プラズマヘッド20によりプラズマガスが照射される。以下の説明において、プラズマガスが照射されることをプラズマ照射と記載する場合がある。チューブ111~113は、3つの接続口を有する分岐管114に接続されている。後述するように、チューブ112,113には、それぞれ、バルブ121,122(図5)が取り付けられている。尚、図1においてバルブ121,122の記載は省略されている。そして、プラズマガスが照射された被照射液体は、重力に応じてチューブ111内を流れ、一次保管ビン6もしくは廃棄ビン7へ案内される。一次保管ビン6に貯留されたプラズマガスが照射された被照射液体は、チューブ115内を通り、充填装置3に内蔵された保存バッグ8(図5)に封入される。本体部4は、制御装置38(図6)、処理ガス供給装置74(図6)、パージガス供給装置132(図6)などを備える。本体部4と、プラズマヘッド20およびカバーハウジング22とは、不図示の電力ケーブルおよびガス配管で接続されており、本体部4から電力および各ガスが供給される。尚、チューブ110~113,115、分岐管114、一次保管ビン6、廃棄ビン7、および照射ブロック140は、予め滅菌されている。 The liquid bag 2 is filled with a liquid to be irradiated, such as lactec, to which the plasma gas is irradiated. The liquid to be irradiated, which has been adjusted to a constant flow rate by the flow rate regulator 5 from the liquid bag 2, flows through the tube 110 according to gravity and is guided inside the cover housing 22. The flow rate is, for example, about several ml / min. The liquid to be irradiated is irradiated with a plasma gas by the plasma head 20 in the irradiation block 140 (FIG. 2) inside the cover housing 22. In the following description, irradiation with a plasma gas may be referred to as plasma irradiation. The tubes 111 to 113 are connected to a branch pipe 114 having three connection ports. As described later, valves 121 and 122 (FIG. 5) are attached to the tubes 112 and 113, respectively. Note that the illustration of the valves 121 and 122 is omitted in FIG. Then, the irradiation liquid irradiated with the plasma gas flows in the tube 111 according to gravity and is guided to the primary storage bin 6 or the waste bin 7. The irradiation liquid irradiated with the plasma gas stored in the primary storage bin 6 passes through the tube 115 and is sealed in the storage bag 8 (FIG. 5) incorporated in the filling device 3. The main unit 4 includes a control device 38 (FIG. 6), a processing gas supply device 74 (FIG. 6), a purge gas supply device 132 (FIG. 6), and the like. The main body 4 is connected to the plasma head 20 and the cover housing 22 by power cables and gas pipes (not shown), and power and various gases are supplied from the main body 4. The tubes 110 to 113 and 115, the branch pipe 114, the primary storage bin 6, the waste bin 7, and the irradiation block 140 are sterilized in advance.
 次に、図2を用いて、カバーハウジング22内部の構造について説明する。
(プラズマヘッドの構成)
 プラズマヘッド20は、カバー50と、ブロック52と、1対の電極56,56とを含む。カバー50は、概して、有蓋四角筒形状をなし、カバー50の内部に、ブロック52が配設されている。ブロック52は、概して直方体形状をなしており、カバー50の下端から突出して配設されている。ブロック52の内部には、1対の円柱状の円柱凹部60および反応室62が形成されている。反応室62は、円柱凹部60と連通し、ブロック52の底面に開口している。1対の電極56の各々は、ブロック52の円柱凹部60によって区画される円柱状の空間に配設されている。なお、電極56の外径は、円柱凹部60の内径より小さい。
Next, the structure inside the cover housing 22 will be described with reference to FIG.
(Configuration of plasma head)
The plasma head 20 includes a cover 50, a block 52, and a pair of electrodes 56,56. The cover 50 is generally in the shape of a closed rectangular tube, and a block 52 is provided inside the cover 50. The block 52 has a generally rectangular parallelepiped shape, and is provided so as to protrude from the lower end of the cover 50. Inside the block 52, a pair of cylindrical concave portions 60 and a reaction chamber 62 are formed. The reaction chamber 62 communicates with the cylindrical recess 60 and opens at the bottom of the block 52. Each of the pair of electrodes 56 is disposed in a columnar space defined by the columnar recess 60 of the block 52. Note that the outer diameter of the electrode 56 is smaller than the inner diameter of the cylindrical recess 60.
 プラズマヘッド20は、ブロック52の噴出口72からプラズマガスを噴出する。詳しくは、反応室62の内部に、処理ガス供給装置74によって処理ガスが供給される。この際、反応室62では、1対の電極56,56に電圧が印加されており、1対の電極56間に電流が流れる。これにより、1対の電極56間に放電が生じ、その放電により、処理ガスがプラズマ化される。そして、プラズマガスが、ブロック52の噴出口72から噴出される。 The plasma head 20 ejects the plasma gas from the ejection port 72 of the block 52. Specifically, the processing gas is supplied into the reaction chamber 62 by the processing gas supply device 74. At this time, in the reaction chamber 62, a voltage is applied to the pair of electrodes 56, 56, and a current flows between the pair of electrodes 56. As a result, a discharge is generated between the pair of electrodes 56, and the discharge turns the processing gas into plasma. Then, the plasma gas is ejected from the ejection port 72 of the block 52.
(カバーハウジングの構成)
 カバーハウジング22は、上部カバー76と、下部カバー78とを含む。上部カバー76は、概して有蓋円筒状をなし、上部カバー76の蓋部には、プラズマヘッド20のブロック52に応じた形状の貫通孔79が形成されている。そして、貫通孔79を覆うように、プラズマヘッド20のカバー50が、上部カバー76の蓋部に立設された状態で固定されている。このため、プラズマヘッド20のブロック52が、上部カバー76の内部に向かって、Z方向に延びるように、突出している。これにより、プラズマヘッド20によって発生されたプラズマガスが、噴出口72から、上部カバー76の内部に向かって、Z方向に噴出される。
(Configuration of cover housing)
The cover housing 22 includes an upper cover 76 and a lower cover 78. The upper cover 76 has a generally closed cylindrical shape, and a through-hole 79 having a shape corresponding to the block 52 of the plasma head 20 is formed in the lid of the upper cover 76. Then, the cover 50 of the plasma head 20 is fixed upright on the lid of the upper cover 76 so as to cover the through hole 79. For this reason, the block 52 of the plasma head 20 protrudes toward the inside of the upper cover 76 so as to extend in the Z direction. Thereby, the plasma gas generated by the plasma head 20 is jetted from the jet port 72 toward the inside of the upper cover 76 in the Z direction.
 上部カバー76が、開閉機構(不図示)によって上下方向にスライドされることで、カバーハウジング22の開閉が行われる。カバーハウジング22の下部カバー78は、概して、円板形状とされている。下部カバー78の外径は、上部カバー76の外径より大きくされており、カバーハウジング22が閉じられた際には、不図示のパッキンなどで密閉される構造となっている。 (4) The cover housing 22 is opened and closed by the upper cover 76 being slid up and down by an opening and closing mechanism (not shown). The lower cover 78 of the cover housing 22 has a generally disk shape. The outer diameter of the lower cover 78 is larger than the outer diameter of the upper cover 76, and when the cover housing 22 is closed, the lower cover 78 is sealed with packing (not shown) or the like.
 上部カバー76には吸気口130が形成されており、下部カバー78には排気口135が形成されている。吸気口130は、配管131を介して、パージガス供給装置132と接続されている。そして、パージガス供給機構32からアルゴン等の不活性ガスが、カバーハウジング22の内部に供給される。排気口135には配管136が接続されており、カバーハウジング22内のガスが、配管136を介して、カバーハウジング22の外へ排気される。プラズマ照射の際には、パージガス供給装置132からカバーハウジング22内に、不活性ガスが供給されて、カバーハウジング22内は不活性ガスでパージされる。下部カバー78内部には、ステージ26が固定されている。ステージ26の上に照射ブロック140が設置されている。上部カバー76の側面にはチューブ110が挿通される貫通孔137が形成されており、下部カバー78の底面にはチューブ111が挿通される貫通孔138が形成されている。また、ステージ26には、チューブ111が挿通される貫通孔27が形成されている。 The upper cover 76 is formed with the air inlet 130, and the lower cover 78 is formed with the air outlet 135. The intake port 130 is connected to a purge gas supply device 132 via a pipe 131. Then, an inert gas such as argon is supplied from the purge gas supply mechanism 32 into the cover housing 22. A pipe 136 is connected to the exhaust port 135, and gas in the cover housing 22 is exhausted to the outside of the cover housing 22 via the pipe 136. At the time of plasma irradiation, an inert gas is supplied into the cover housing 22 from the purge gas supply device 132, and the inside of the cover housing 22 is purged with the inert gas. The stage 26 is fixed inside the lower cover 78. An irradiation block 140 is provided on the stage 26. A through hole 137 through which the tube 110 is inserted is formed on a side surface of the upper cover 76, and a through hole 138 through which the tube 111 is inserted is formed on the bottom surface of the lower cover 78. The stage 26 has a through hole 27 through which the tube 111 is inserted.
(照射ブロックの構成)
 次に、照射ブロック140について図3、4を用いて説明する。説明には、図3、4に示す方向を用いる。尚、左から右へ向かう方向が、被照射液体が流れる方向である。照射ブロック140は、概して直方体形状をなす照射ブロック本体部141と、蓋部142とを含む。照射ブロック140の大きさは、例えば12mm×30mm×94mmである。尚、照射ブロック140の長辺方向がX方向であり、短辺方向がY方向である。照射ブロック本体部141には、カバーハウジング22に設置された場合に、プラズマヘッド20と対向する面が開放された第1溝部143および第2溝部144が形成されている。第1溝部143は、YZ断面が上方に向かって開口するU字状である。第1溝部143を構成する底面143aは湾曲している。この第1溝部143のYZ断面は、チューブ110の断面形状よりも若干狭くされており、可撓性を有するチューブ110が第1溝部143に嵌め込まれることで、チューブ110が固定される。第2溝部144を構成する側面144aと底面144bとのなす角は略直角である。また、第2溝部144を構成する底面144bは、第1溝部143を構成する底面143aよりも下方に位置するように形成されている。蓋部142は、概して平板状をなし、Y方向の寸法は、照射ブロック本体部141の寸法よりも短くされており、照射ブロック本体部141の上に設置されている。
(Configuration of irradiation block)
Next, the irradiation block 140 will be described with reference to FIGS. The directions shown in FIGS. The direction from left to right is the direction in which the liquid to be irradiated flows. The irradiation block 140 includes an irradiation block main body 141 having a generally rectangular parallelepiped shape, and a lid 142. The size of the irradiation block 140 is, for example, 12 mm × 30 mm × 94 mm. The long side direction of the irradiation block 140 is the X direction, and the short side direction is the Y direction. The irradiation block main body 141 is formed with a first groove 143 and a second groove 144 whose surfaces facing the plasma head 20 are open when installed on the cover housing 22. The first groove 143 has a U-shape whose YZ section opens upward. The bottom surface 143a of the first groove 143 is curved. The YZ cross section of the first groove 143 is slightly narrower than the cross-sectional shape of the tube 110, and the tube 110 having flexibility is fitted into the first groove 143, thereby fixing the tube 110. The angle formed between the side surface 144a and the bottom surface 144b of the second groove 144 is substantially a right angle. Further, the bottom surface 144b constituting the second groove 144 is formed so as to be located lower than the bottom surface 143a constituting the first groove 143. The lid 142 has a generally flat plate shape, and the dimension in the Y direction is shorter than the dimension of the irradiation block main body 141, and is installed on the irradiation block main body 141.
 図4に示すように、照射ブロック本体部141は、上記構成の他に、突出部145、排出部146、凹部147、および係止部141cを有する。突出部145は第2溝部144の一部において上方に突出して形成されている。詳しくは、第2溝部144の右端において、底面144bよりも上方に突出して形成されている。突出部145の上面145aは、略平面とされている。また、第2溝部144の底面144bは、第1溝部143の底面143aよりも下方とされていることにより、第2溝部144の左端には、側壁144cが形成されている。排出部146は、突出部145の右に形成されている。排出部146は、排出凹部146aおよび排出凸部146bを有する。排出凹部146aは、上面145aから下方に凹んで形成されており、XY平面における断面形状が略円形とされている。排出凸部146bは、概して円筒状であり、照射ブロック本体部141の下面141bから下方に突出して形成されている。排出凸部146bは、排出口146c、基部146d、および排出係止部146eを有する。排出凸部146bに形成された内部空間が排出口146cである。排出口146cは、排出凹部146aと連通している。従って、上面145aの上を通って排出凹部146aへ流れ込む被照射液体は、排出凹部146aおよび排出口146cの内壁を伝って、排出口146cの下方へ流れることができる。 照射 As shown in FIG. 4, the irradiation block main body 141 has, in addition to the above-described configuration, a protruding portion 145, a discharge portion 146, a concave portion 147, and a locking portion 141c. The protruding portion 145 is formed to protrude upward at a part of the second groove 144. Specifically, at the right end of the second groove 144, it is formed to protrude above the bottom surface 144b. The upper surface 145a of the protrusion 145 is substantially flat. Further, the bottom surface 144b of the second groove 144 is lower than the bottom 143a of the first groove 143, so that a side wall 144c is formed at the left end of the second groove 144. The discharge portion 146 is formed to the right of the protrusion 145. The discharge part 146 has a discharge concave part 146a and a discharge convex part 146b. The discharge recess 146a is formed to be recessed downward from the upper surface 145a, and has a substantially circular cross section in the XY plane. The discharge projection 146b is generally cylindrical, and is formed to protrude downward from the lower surface 141b of the irradiation block main body 141. The discharge convex portion 146b has a discharge port 146c, a base 146d, and a discharge locking portion 146e. The internal space formed in the discharge projection 146b is a discharge port 146c. The discharge port 146c communicates with the discharge recess 146a. Therefore, the liquid to be irradiated flowing into the discharge recess 146a through the upper surface 145a can flow below the discharge port 146c along the discharge recess 146a and the inner wall of the discharge port 146c.
 排出凸部146bの外周面において、照射ブロック本体部141の下面141bと連続する部分が基部146dである。基部146dの下方に形成された排出係止部146eの外周の径は、チューブ111の径よりも大きくされている。また、基部146dの外径は、排出係止部146eの外径よりも小さくされている。これにより、可撓性を有するチューブ111が基部146dまで嵌め込まれると、排出係止部146eの外周に沿ってチューブ111が変形し、チューブ111が固定される。凹部147は、排出部146の右方に形成されており、照射ブロック本体部141の上面141aよりも下方に凹んで形成されている。係止部141c,141cは、照射ブロック本体部141の右左に形成されており、照射ブロック本体部141の下面141bに対して上方に凹んで形成されている。ステージ26の照射ブロック140が設置される上面には、係止部141c,141cと嵌め合される上方に突出する凸部(不図示)が形成されている。係止部141c,141cと、ステージ26の凸部とが嵌め合されることにより、ステージ26に照射ブロック140が固定される。このように、固定具を用いる固定ではないため、照射ブロック140はステージ26に対して容易に着脱されることができる。 部分 A portion of the outer peripheral surface of the discharge projection 146b that is continuous with the lower surface 141b of the irradiation block main body 141 is a base 146d. The outer diameter of the discharge locking portion 146 e formed below the base 146 d is larger than the diameter of the tube 111. Further, the outer diameter of the base 146d is smaller than the outer diameter of the discharge locking portion 146e. Thus, when the flexible tube 111 is fitted to the base 146d, the tube 111 is deformed along the outer periphery of the discharge locking portion 146e, and the tube 111 is fixed. The concave portion 147 is formed on the right side of the discharge portion 146, and is formed to be recessed below the upper surface 141 a of the irradiation block main body 141. The locking portions 141c, 141c are formed on the right and left sides of the irradiation block main body 141, and are formed to be recessed upward with respect to the lower surface 141b of the irradiation block main body 141. On the upper surface of the stage 26 on which the irradiation block 140 is installed, a convex portion (not shown) projecting upward to be fitted with the locking portions 141c, 141c is formed. The irradiation block 140 is fixed to the stage 26 by fitting the locking portions 141c, 141c and the convex portion of the stage 26. As described above, since the fixing is not performed using the fixing tool, the irradiation block 140 can be easily attached to and detached from the stage 26.
 蓋部142は、照射ブロック本体部141の突出部145および凹部147を覆って、照射ブロック本体部141の上方に設置される。蓋部142は、概して平板状をなし、右側に下面142aから下方に突出する凸部142bが形成されている。また、排出部146の上方に対向する面は、上方に向かって切り欠かれている。凸部142bは、凹部147と嵌め合される形状とされている。照射ブロック本体部141の凹部147に蓋部142の凸部142bが嵌め合されることにより、蓋部142の照射ブロック本体部141に対する位置決めがなされる。蓋部142は、昇降装置150(図6)に固定されており、昇降装置150によりZ方向に昇降される。蓋部142は、突出部145の上方にあって、突出部145との間で間隙141dを形成する。詳しくは、照射ブロック本体部141の上面145aと、蓋部142の下面142aとの間に間隙141dが形成されて、昇降装置150に固定される。 The lid 142 covers the projection 145 and the recess 147 of the irradiation block main body 141 and is installed above the irradiation block main body 141. The lid part 142 has a generally flat plate shape, and has a convex part 142b projecting downward from the lower surface 142a on the right side. Further, a surface facing the upper side of the discharge portion 146 is cut out upward. The convex portion 142b has a shape to be fitted with the concave portion 147. The projection 142b of the lid 142 is fitted into the recess 147 of the irradiation block main body 141, whereby the lid 142 is positioned with respect to the irradiation block main body 141. The lid 142 is fixed to the elevating device 150 (FIG. 6), and is moved up and down in the Z direction by the elevating device 150. The lid 142 is above the protrusion 145 and forms a gap 141d with the protrusion 145. Specifically, a gap 141 d is formed between the upper surface 145 a of the irradiation block main body 141 and the lower surface 142 a of the lid 142, and is fixed to the elevating device 150.
(照射ブロックから保存バッグまでの構成)
 次に、照射ブロック140から流出した照射液体が保存バッグ8に封入されるまでの構成について、図5を用いて説明する。
 チューブ111は、照射ブロック140の排出部146と分岐管114の第1の接続口とを接続する。チューブ112は、分岐管114の第2の接続口と一次保管ビン6とを接続する。チューブ113は、分岐管114の第3の接続口と廃棄ビン7とを接続する。つまり、チューブ113は、照射ブロック140から一次保管ビン6へ至るチューブ111,112および分岐管114により形成される流路から分岐している。チューブ115は、一次保管ビン6と保存バッグ8とを接続する。チューブ112は、分岐管114から一次保管ビン6へ向かって、上方に傾斜するように取り付けられている。チューブ112,113,115には、それぞれ、バルブ121,122,123が取り付けられている。バルブ121~123は、それぞれ、チューブ112,113,115内の流路を開閉する。また、チューブ115の経路中、即ち内部には、滅菌フィルタ124が取り付けられている。充填装置3は、開閉可能であり、チューブ115が挿通される貫通孔3aが設けられている。また、充填装置3は、保存バッグ8を収納する内部空間を有し、チューブ115が接続された保存バッグ8を内部空間に収納した状態で内部空間を減圧する減圧装置151を備える。
(Configuration from irradiation block to storage bag)
Next, a configuration until the irradiation liquid flowing out of the irradiation block 140 is sealed in the storage bag 8 will be described with reference to FIG.
The tube 111 connects the discharge part 146 of the irradiation block 140 and the first connection port of the branch pipe 114. The tube 112 connects the second connection port of the branch pipe 114 and the primary storage bin 6. The tube 113 connects the third connection port of the branch pipe 114 to the waste bin 7. That is, the tube 113 branches from a flow path formed by the tubes 111 and 112 and the branch pipe 114 from the irradiation block 140 to the primary storage bin 6. The tube 115 connects the primary storage bin 6 and the storage bag 8. The tube 112 is attached so as to be inclined upward from the branch pipe 114 toward the primary storage bin 6. Valves 121, 122, and 123 are attached to the tubes 112, 113, and 115, respectively. The valves 121 to 123 open and close the flow paths in the tubes 112, 113, and 115, respectively. Further, a sterilizing filter 124 is attached in the path of the tube 115, that is, inside the tube 115. The filling device 3 is openable and closable, and is provided with a through hole 3a through which the tube 115 is inserted. Further, the filling device 3 has an internal space for storing the storage bag 8, and includes a decompression device 151 for decompressing the internal space in a state where the storage bag 8 to which the tube 115 is connected is stored in the internal space.
(制御系統)
 大気圧プラズマ処理装置10は、図6に示すように、制御装置38と、処理ガス供給装置74、パージガス供給装置132、昇降装置150、減圧装置151、切替部152、残量センサ153の各部が通信可能に接続されており、制御装置38により、各部が制御されている。制御装置38は、コンピュータを主体とするコントローラ170、駆動回路171~175を有する。尚、駆動回路171は電極56,56へ供給する電力を制御する回路であり、不図示の電力ケーブルを介して駆動回路171から電極56,56へ給電される。駆動回路172は、処理ガス供給装置74およびパージガス供給装置132が供給する各ガスの流量を制御する回路である。駆動回路173~175は、それぞれ、昇降装置150、減圧装置151、切替部152を制御する回路である。切替部152は、バルブ121~123の開閉を制御する。また、切替部152は、バルブ121,122を制御して、プラズマガスが照射された被照射液体を一次保管ビン6と廃棄ビン7との何れに流すかを切替える。残量センサ153は一次保管ビン6に貯留されているプラズマガスが照射された被照射液体の量に応じた信号をコントローラ170へ出力する。例えば、残量センサ153は、一次保管ビン6の外側に取り付けられており、一次保管ビン6に貯留された被照射液体の液面高さに応じた信号を出力するものとすると良い。一次保管ビン6の外側に取り付けられることにより、一次保管ビン6の滅菌状態を維持することができる。尚、一次保管ビン6に貯留されている被照射液体の量は、液面の高さと、既知である一次保管ビン6の内部の断面積から算出することができる。
(Control system)
As shown in FIG. 6, the atmospheric pressure plasma processing apparatus 10 includes a control device 38, a processing gas supply device 74, a purge gas supply device 132, a lifting device 150, a decompression device 151, a switching unit 152, and a remaining amount sensor 153. They are communicably connected, and each unit is controlled by the control device 38. The control device 38 includes a controller 170 mainly composed of a computer, and drive circuits 171 to 175. The drive circuit 171 is a circuit for controlling the power supplied to the electrodes 56, 56, and is supplied from the drive circuit 171 to the electrodes 56, 56 via a power cable (not shown). The drive circuit 172 is a circuit that controls the flow rate of each gas supplied by the processing gas supply device 74 and the purge gas supply device 132. The driving circuits 173 to 175 are circuits for controlling the lifting / lowering device 150, the pressure reducing device 151, and the switching unit 152, respectively. The switching unit 152 controls opening and closing of the valves 121 to 123. Further, the switching unit 152 controls the valves 121 and 122 to switch between the primary storage bin 6 and the waste bin 7 to flow the liquid to be irradiated with the plasma gas. The remaining amount sensor 153 outputs to the controller 170 a signal corresponding to the amount of the liquid to be irradiated irradiated with the plasma gas stored in the primary storage bin 6. For example, the remaining amount sensor 153 may be attached to the outside of the primary storage bin 6 and output a signal corresponding to the liquid level of the liquid to be irradiated stored in the primary storage bin 6. By being attached to the outside of the primary storage bin 6, the sterilization state of the primary storage bin 6 can be maintained. The amount of the liquid to be irradiated stored in the primary storage bin 6 can be calculated from the liquid level and a known cross-sectional area inside the primary storage bin 6.
(プラズマ処理工程)
 次に、大気圧プラズマ処理装置10におけるプラズマ処理工程について説明する。尚、上記したように、本実施形態では、被照射液体としてラクテックが想定されている。そして、プラズマガスが照射されて活性化されたラクテックは、体内に注入されることにより病巣を治療する医療が目的とされている。このため、プラズマガスが照射された被照射液体は滅菌されていることが好ましい。
(Plasma treatment process)
Next, a plasma processing step in the atmospheric pressure plasma processing apparatus 10 will be described. As described above, in the present embodiment, lactec is assumed as the liquid to be irradiated. Lactec activated by irradiation with plasma gas is intended for medical treatment for treating a lesion by being injected into the body. For this reason, it is preferable that the irradiation target liquid irradiated with the plasma gas is sterilized.
 制御装置38は、パージガス供給装置132による不活性ガスの供給により、カバーハウジング22を不活性ガスでパージさせる。また、プラズマヘッド20からプラズマガスの照射を開始させる。尚、処理ガス供給装置74が供給する処理ガスは、酸素等の活性ガスと窒素等の不活性ガスとを任意の割合で混合させたガスである。そして、プラズマガスには酸素プラズマが含まれる。また、流量調整器5により一定の流量に調整された被照射液体が、チューブ110を介して第2溝部144へ流される。尚、流量調整器5における流量調整は、作業者によりされても良く、制御装置38により制御されても良い。 The control device 38 purges the cover housing 22 with the inert gas by the supply of the inert gas from the purge gas supply device 132. In addition, irradiation of plasma gas from the plasma head 20 is started. The processing gas supplied by the processing gas supply device 74 is a gas in which an active gas such as oxygen and an inert gas such as nitrogen are mixed at an arbitrary ratio. The plasma gas includes oxygen plasma. The liquid to be irradiated, which has been adjusted to a constant flow rate by the flow rate controller 5, flows into the second groove 144 via the tube 110. Note that the flow rate adjustment in the flow rate regulator 5 may be performed by an operator or may be controlled by the control device 38.
 図4に示す様に、第2溝部144は、左端に側壁144cが形成され、右端に突出部145が形成されている。このため、図4にて破線で示す突出部145の上面145aの高さ程度まで、被照射液体が第2溝部144内に貯留される。第2溝部144はプラズマヘッド20の下方に設置されるため、第2溝部144に貯留された被照射液体は、プラズマヘッド20からプラズマガスが照射されて活性化される。尚、被照射液体に所定時間、プラズマガスが照射されることで、プラズマ照射された被照射液体による治療効果は発揮されることがわかっている。被照射液体が第2溝部144に貯留されることにより、所定時間プラズマガスが照射される。また、被照射液体は、プラズマガスが照射されることにより、第2溝部144内で自然対流する。これにより、治療効果が発揮される均質な活性化された被照射液体とすることができる。以下の説明において、第2溝部144を通過した後の被照射液体を既照射液体と記載する場合がある。 2As shown in FIG. 4, the second groove 144 has a side wall 144c formed on the left end, and a protrusion 145 formed on the right end. Therefore, the liquid to be irradiated is stored in the second groove 144 up to the height of the upper surface 145a of the protrusion 145 indicated by the broken line in FIG. Since the second groove 144 is provided below the plasma head 20, the liquid to be irradiated stored in the second groove 144 is activated by irradiating the plasma gas from the plasma head 20. It is known that the treatment effect by the plasma-irradiated liquid is exhibited by irradiating the liquid to be irradiated with the plasma gas for a predetermined time. By storing the liquid to be irradiated in the second groove 144, the plasma gas is irradiated for a predetermined time. The liquid to be irradiated naturally convects in the second groove 144 by being irradiated with the plasma gas. As a result, a homogeneous activated liquid to be irradiated that exhibits a therapeutic effect can be obtained. In the following description, the liquid to be irradiated after passing through the second groove 144 may be referred to as an already irradiated liquid.
 毛細管現象により、既照射液体は上面145aと下面142aとの間に形成された間隙141dを伝って、排出凹部146aを経由して排出口146cから下方へ流出する。間隙141dを有する構成とすることにより、安定した流出量とすることができる。照射ブロック140が間隙141dを備えない構成の場合には、第2溝部144の内部容量は僅かであるため、次のような現象が生じる。第2溝部144に継続して被照射液体が流入され、その液面が上面145a程度の高さとなっても、表面張力により、第2溝部144の外に既照射液体は流出せずに被照射液体の液面が上方に盛り上がり、限界に達すると、一気に第2溝部144の外に既照射液体が流出する。この現象により、第2溝部144から流出する流出量にバラツキが生じてしまう。この点、間隙141dが形成されることで、第2溝部144に貯留される被照射液体に表面張力が生じたとしても、間隙141dを伝って被照射液体が第2溝部144の外に流出できるため、安定した流出量とすることができる。また、間隙141dを介して被照射液体が流出する構造によって、第2溝部144から流出する被照射液体にプラズマガスなどのガスが混入するのを低減することができる。尚、照射ブロック本体部141から流出される被照射液体の流出量は、間隙141dの幅により決定されるため、所望の流出量に応じた幅となるように、昇降装置150により蓋部142の高さが調整される。 (4) Due to the capillary action, the irradiated liquid flows down the gap 141d formed between the upper surface 145a and the lower surface 142a, and flows downward from the outlet 146c via the discharge recess 146a. With the configuration having the gap 141d, a stable outflow amount can be obtained. In the case where the irradiation block 140 does not have the gap 141d, the following phenomenon occurs because the internal capacity of the second groove 144 is small. Even if the liquid to be irradiated continues to flow into the second groove 144 and the liquid surface thereof has a height of about the upper surface 145a, the irradiated liquid does not flow out of the second groove 144 due to the surface tension without being irradiated. When the liquid surface of the liquid rises upward and reaches the limit, the irradiated liquid immediately flows out of the second groove 144. Due to this phenomenon, the amount of outflow from the second groove 144 varies. In this regard, the formation of the gap 141d allows the liquid to be irradiated to flow out of the second groove 144 through the gap 141d even if a surface tension occurs in the liquid to be irradiated stored in the second groove 144. Therefore, a stable outflow amount can be obtained. Further, by the structure in which the liquid to be irradiated flows out through the gap 141d, it is possible to reduce mixing of a gas such as a plasma gas into the liquid to be irradiated flowing out from the second groove 144. Since the amount of the liquid to be irradiated flowing out of the irradiation block main body 141 is determined by the width of the gap 141d, the lifting / lowering device 150 adjusts the height of the lid 142 so as to have a width corresponding to a desired amount of the liquid. Height is adjusted.
 図5に移り、照射ブロック140から流出した既照射液体はチューブ111内を流れる。ここで、制御装置38は、プラズマガスの照射の開始時には、バルブ121を閉状態に、バルブ122を開状態に制御する。これにより、既照射液体は、チューブ113を介して廃棄ビン7へ流れる。そして、プラズマガスの照射の開始から所定時間経過後に、バルブ121を開状態に、バルブ122を閉状態に切替える。これにより、既照射液体は、チューブ112を介して一次保管ビン6へ流れる。大気圧プラズマ処理装置10では、流れる被照射液体にプラズマガスが照射されるため、プラズマ照射開始後所定時間内に流出される既照射液体は、十分に活性化されていないおそれがある。そこで、プラズマ照射の開始後所定時間内は、既照射液体を廃棄ビン7へ流し、プラズマ照射の開始後所定時経過後に、既照射液体を一次保管ビン6へ流す制御とすることで、一次保管ビン6に貯留される既照射液体を、十分に活性化された既照射液体とすることができる。保存バッグ8に封入される既照射液体の品質の低下を低減することができる。 に Moving to FIG. 5, the irradiated liquid flowing out of the irradiation block 140 flows through the tube 111. Here, at the start of the plasma gas irradiation, the control device 38 controls the valve 121 to be closed and the valve 122 to be open. As a result, the irradiated liquid flows to the waste bin 7 via the tube 113. After a lapse of a predetermined time from the start of the plasma gas irradiation, the valve 121 is switched to the open state and the valve 122 is switched to the closed state. As a result, the irradiated liquid flows to the primary storage bin 6 via the tube 112. In the atmospheric pressure plasma processing apparatus 10, since the flowing liquid to be irradiated is irradiated with the plasma gas, the irradiated liquid flowing out within a predetermined time after the start of the plasma irradiation may not be sufficiently activated. Therefore, during a predetermined time after the start of the plasma irradiation, the already irradiated liquid is caused to flow into the waste bin 7, and after a predetermined time has elapsed after the start of the plasma irradiation, the already irradiated liquid is caused to flow into the primary storage bin 6, so that the primary storage is performed. The irradiated liquid stored in the bottle 6 can be a sufficiently activated irradiated liquid. The deterioration of the quality of the irradiated liquid sealed in the storage bag 8 can be reduced.
 また、チューブ112,113のそれぞれに、バルブ121,122が取り付けられていることにより、既照射液体を廃棄ビン7へ流すべき期間に、誤ってバルブ122が閉状態とされたとしても、バルブ121が閉状態とされれば、十分に活性化されていない既照射液体が一次保管ビン6に流入してしまうのを防止することができる。また、チューブ112は、既照射液体が重力に逆らって流れる向き、詳しくは分岐管114から一次保管ビン6へ向かって、上方に傾斜するように取り付けられている。さらに、チューブ113は既照射液体が重力により流れる向き、詳しくは分岐管114から廃棄ビン7へ向かって、下方に傾斜するように取り付けられている。これにより、バルブ122が開状態、バルブ121が閉状態とされた場合、既照射液体はチューブ112へ流れることなく廃棄ビン7へ流れることになる。これにより、十分に活性化されていないおそれのある既照射液体の一次保管ビン6への混入量を微量とすることができる。例えば、チューブ112が傾斜せずに取り付けられた場合には、チューブ112における分岐管114からバルブ121までの区間を十分に活性化されていないおそれのある既照射液体が流れることになり、十分に活性化されていないおそれのある既照射液体がこの区間に残留することも考えられる。十分に活性化されていないおそれのある既照射液体が流れる区間を短くすることで、十分に活性化されていないおそれのある既照射液体の一次保管ビン6への混入量を微量とすることができる。 Further, since the valves 121 and 122 are attached to the tubes 112 and 113, respectively, even if the valve 122 is accidentally closed during the period in which the irradiated liquid is to be flowed to the waste bin 7, the valve 121 can be closed. Is closed, it is possible to prevent the already irradiated liquid that has not been sufficiently activated from flowing into the primary storage bin 6. The tube 112 is attached so as to be inclined upward in a direction in which the irradiated liquid flows against the gravity, specifically, from the branch pipe 114 toward the primary storage bin 6. Further, the tube 113 is attached so as to be inclined downward in a direction in which the irradiated liquid flows by gravity, specifically, downward from the branch pipe 114 toward the waste bin 7. Thus, when the valve 122 is opened and the valve 121 is closed, the irradiated liquid flows to the waste bin 7 without flowing to the tube 112. This makes it possible to minimize the amount of the irradiated liquid that may not be sufficiently activated mixed into the primary storage bin 6. For example, if the tube 112 is attached without being inclined, the irradiated liquid that may not be sufficiently activated in the section from the branch pipe 114 to the valve 121 in the tube 112 will flow, and It is also conceivable that the irradiated liquid that may not be activated remains in this section. By shortening the section through which the irradiated liquid that may not be sufficiently activated flows, the amount of the irradiated liquid that may not be sufficiently activated mixed into the primary storage bin 6 can be reduced to a very small amount. it can.
 制御装置38は、例えば一次保管ビン6に貯留された既照射液体の量が所望の量に達すると、プラズマヘッド20のプラズマ照射を停止させ、一次保管ビン6に貯留された既照射液体を保存バッグ8へ封入する作業を開始する。バルブ123を閉状態から開状態に切替え、減圧装置151に充填装置3の内部の気圧を大気圧から減圧させることで、保存バッグ8に既照射液体を封入する。残量センサ153の出力信号により、保存バッグ8に封入された既照射液体の量が所定容量に達したと判断すると、減圧装置151を充填装置3内部の気圧を大気圧に戻すよう制御する。これにより、所定量の既照射液体が保存バッグ8に封入される。尚、封入済みの保存バッグ8から、新たな保存バッグ8への交換の際には、バルブ123が閉状態とされて、保存バッグ8の交換作業が行われる。これにより、少なくとも、バルブ123から一次保管ビン6へ至るチューブ115の滅菌状態が維持されることができる。また、保存バッグ8へ封入される総量は、一次保管ビン6に貯留された既照射液体の量よりも少ない量とされる。これにより、一次保管ビン6が空となり、保存バッグ8へ空気が入り込んでしまうのを防止することができる。 For example, when the amount of the irradiated liquid stored in the primary storage bin 6 reaches a desired amount, the control device 38 stops the plasma irradiation of the plasma head 20 and stores the irradiated liquid stored in the primary storage bin 6. The operation of enclosing in the bag 8 is started. By switching the valve 123 from the closed state to the open state and causing the pressure reducing device 151 to reduce the pressure inside the filling device 3 from the atmospheric pressure, the irradiated liquid is sealed in the storage bag 8. When it is determined from the output signal of the remaining amount sensor 153 that the amount of the irradiated liquid sealed in the storage bag 8 has reached a predetermined volume, the pressure reducing device 151 is controlled to return the pressure inside the filling device 3 to the atmospheric pressure. As a result, a predetermined amount of the irradiated liquid is sealed in the storage bag 8. When the stored storage bag 8 is replaced with a new storage bag 8, the valve 123 is closed and the storage bag 8 is replaced. Thereby, at least the sterilized state of the tube 115 from the valve 123 to the primary storage bin 6 can be maintained. Further, the total amount sealed in the storage bag 8 is smaller than the amount of the irradiated liquid stored in the primary storage bin 6. As a result, it is possible to prevent the primary storage bin 6 from being emptied and air from entering the storage bag 8.
 次に、大気圧プラズマ処理装置10における滅菌処理について説明する。上記では、チューブ110~113、分岐管114、一次保管ビン6、廃棄ビン7、および照射ブロック140は、予め滅菌されていると説明した。大気圧プラズマ処理装置10は、医療を目的とされているため、容易に滅菌状態が維持できる構成とされている。具体的には、チューブ110~113、分岐管114、一次保管ビン6、および廃棄ビン7は、比較的安価であり、交換が容易な部品である。このため、時間を空けて断続的にプラズマ処理が行われる状況においては、これら部品を交換することで、大気圧プラズマ処理装置10の滅菌状態を容易に維持することができる。また、照射ブロック140は、チューブ110,111が容易に着脱可能な構成とされている。また、照射ブロック140は、ステージ26に固定具を用いずに設置される構成であるため、カバーハウジング22から容易に取り外すことができる。また、照射ブロック140は、オートクレーブに入れることが可能な程度に小型である。従って、照射ブロック140は、オートクレーブにて加熱処理されることにより、容易に滅菌処理を行うことができる。また、被照射液体は、カバーハウジング22においては露出されることとなるが、保存バッグ8に封入される前に滅菌フィルタ124にて滅菌されるため、保存バッグ8に封入される既照射液体の滅菌状態は維持される。尚、滅菌フィルタ124にて濾過された既照射液体は、失活されないことが確認されている。 Next, sterilization processing in the atmospheric pressure plasma processing apparatus 10 will be described. In the above, it has been described that the tubes 110 to 113, the branch pipe 114, the primary storage bin 6, the waste bin 7, and the irradiation block 140 are sterilized in advance. Since the atmospheric pressure plasma processing apparatus 10 is intended for medical treatment, it is configured to easily maintain a sterilized state. Specifically, the tubes 110 to 113, the branch pipe 114, the primary storage bin 6, and the waste bin 7 are relatively inexpensive and easily replaceable parts. Therefore, in a situation where the plasma processing is performed intermittently with an interval, it is possible to easily maintain the sterilization state of the atmospheric pressure plasma processing apparatus 10 by exchanging these parts. The irradiation block 140 has a configuration in which the tubes 110 and 111 can be easily attached and detached. In addition, since the irradiation block 140 is configured to be installed on the stage 26 without using a fixture, the irradiation block 140 can be easily removed from the cover housing 22. The irradiation block 140 is small enough to be put in an autoclave. Therefore, the irradiation block 140 can be easily sterilized by being heated in an autoclave. The liquid to be irradiated is exposed in the cover housing 22, but is sterilized by the sterilizing filter 124 before being sealed in the storage bag 8. Sterilization is maintained. It has been confirmed that the irradiated liquid filtered by the sterilizing filter 124 is not deactivated.
 上記実施形態において、液体バッグ2から一次保管ビン6へ至る、チューブ110、照射ブロック140、チューブ111、分岐管114、チューブ112、および一次保管ビン6により形成される被照射液体が流れる流路は流路の一例である。液体バッグ2および流量調整器5は、供給部の一例である。第2溝部144は溝部の一例である。一次保管ビン6は貯留容器の一例であり、保存バッグ8は封入容器の一例であり、チューブ115は流出側管の一例である。チューブ113は廃棄用管の一例である。充填装置3は、減圧収納器の一例である。 In the above embodiment, the flow path from the liquid bag 2 to the primary storage bin 6 through which the liquid to be irradiated flows formed by the tube 110, the irradiation block 140, the tube 111, the branch pipe 114, the tube 112, and the primary storage bin 6 It is an example of a flow path. The liquid bag 2 and the flow controller 5 are examples of a supply unit. The second groove 144 is an example of a groove. The primary storage bin 6 is an example of a storage container, the storage bag 8 is an example of an enclosure, and the tube 115 is an example of an outflow tube. The tube 113 is an example of a disposal tube. The filling device 3 is an example of a decompression container.
 以上、説明した実施形態によれば、以下の効果を奏する。
 液体バッグ2に充填されている被照射液体は、流量調整器5により一定の流量に調整されて、チューブ110を介してカバーハウジング22内に供給される。照射ブロック140に流れる被照射液体は、プラズマヘッド20によりプラズマガスが照射される。液体バッグ2および流量調整器5から所望量に応じた流量の被照射液体が供給されることで、所望量のプラズマガスを照射された被照射液体を簡素な工程にて生成することができる。
According to the embodiment described above, the following effects can be obtained.
The irradiation liquid filled in the liquid bag 2 is adjusted to a constant flow rate by the flow rate regulator 5 and supplied into the cover housing 22 via the tube 110. The liquid to be irradiated flowing into the irradiation block 140 is irradiated with a plasma gas by the plasma head 20. By supplying the liquid to be irradiated at a flow rate corresponding to a desired amount from the liquid bag 2 and the flow controller 5, the liquid to be irradiated irradiated with a desired amount of plasma gas can be generated in a simple process.
 また、照射ブロック140は、チューブ110,111およびステージ26に対して着脱可能である。これにより、照射ブロック140は、例えばオートクレーブによる加熱などにより滅菌処理が容易に行われることができる。 The irradiation block 140 is detachable from the tubes 110 and 111 and the stage 26. Thus, the irradiation block 140 can be easily sterilized by, for example, heating with an autoclave.
 また、照射ブロック140は、第2溝部144と、突出部145と、蓋部142と、を有する。突出部145により被照射液体は堰き止められ、第2溝部144内に滞留する。このため、所定時間プラズマガスが照射されるため、均質な既照射液体とすることができる。また、突出部145と蓋部142との間に間隙141dが形成されるため、毛細管現象により既照射液体が下流へ流れるため、安定した流出量とすることができる。 The irradiation block 140 has a second groove 144, a protrusion 145, and a cover 142. The liquid to be irradiated is blocked by the projection 145 and stays in the second groove 144. For this reason, since the plasma gas is irradiated for a predetermined time, a uniform irradiated liquid can be obtained. Further, since the gap 141d is formed between the protruding portion 145 and the lid portion 142, the already-irradiated liquid flows downstream by the capillary action, so that a stable outflow amount can be obtained.
 また、大気圧プラズマ処理装置10は、一次保管ビン6およびチューブ115を備えるため、外気にさらすことなく、既照射液体を保存バッグ8に入れることができる。 大 Further, since the atmospheric pressure plasma processing apparatus 10 includes the primary storage bin 6 and the tube 115, the irradiated liquid can be put in the storage bag 8 without being exposed to the outside air.
 また、チューブ115に滅菌フィルタ124を備えるため、既照射液体は保存バッグ8に封入される前に滅菌されることができる。 Since the tube 115 is provided with the sterilizing filter 124, the irradiated liquid can be sterilized before being sealed in the storage bag 8.
 また、大気圧プラズマ処理装置10は、照射ブロック140と一次保管ビン6とを接続するチューブ111,115から分岐するチューブ113を備える。また、大気圧プラズマ処理装置10は、既照射液体を一次保管ビン6とチューブ113との何れに流すかを切替える切替部152を備える。大気圧プラズマ処理装置10においては、流れる被照射液体にプラズマガスが照射されるため、プラズマ照射の開始後所定時間内に流出される既照射液体は、十分に活性化されていないおそれがある。切替部152により、プラズマ照射開始後所定時間内は、既照射液体がチューブ113を介して廃棄ビン7に流されることで、品質が安定した既照射液体を一次保管ビン6に貯留する事ができる。また、チューブ113は既照射液体が重力により流れる向きに取り付けられている。これにより、十分に活性化されていないおそれがある既照射液体は、チューブ113を介して、重力により廃棄ビン7へ流れることができる。 The atmospheric pressure plasma processing apparatus 10 further includes a tube 113 that branches off from the tubes 111 and 115 that connect the irradiation block 140 and the primary storage bin 6. Further, the atmospheric pressure plasma processing apparatus 10 includes a switching unit 152 that switches between the primary storage bin 6 and the tube 113 to flow the irradiated liquid. In the atmospheric pressure plasma processing apparatus 10, since the flowing liquid to be irradiated is irradiated with the plasma gas, the irradiated liquid flowing out within a predetermined time after the start of the plasma irradiation may not be sufficiently activated. The switching unit 152 allows the already irradiated liquid to flow into the waste bin 7 via the tube 113 for a predetermined time after the start of the plasma irradiation, so that the already irradiated liquid of stable quality can be stored in the primary storage bin 6. . The tube 113 is attached in a direction in which the irradiated liquid flows by gravity. Thus, the irradiated liquid that may not be sufficiently activated can flow to the waste bin 7 via the tube 113 by gravity.
 また、大気圧プラズマ処理装置10は、チューブ115が接続された保存バッグ8を内部空間に収納した状態で内部空間が減圧される充填装置3を備える。これにより、保存バッグ8の内部を外気にさらすことなく、保存バッグ8に既照射液体を封入することができる。 {Circle around (1)} The atmospheric pressure plasma processing apparatus 10 includes the filling device 3 in which the internal space is decompressed while the storage bag 8 to which the tube 115 is connected is housed in the internal space. Thereby, the irradiated liquid can be sealed in the storage bag 8 without exposing the inside of the storage bag 8 to the outside air.
 尚、本発明は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内での種々の改良、変更が可能であることは言うまでもない。
 例えば、上記では、滅菌フィルタ124は、チューブ115内に取り付けられると説明したが、これに限定されない。照射ブロック140から保存バッグ8へ至る流路の何れかに取り付けられれば良い。
It should be noted that the present invention is not limited to the above embodiment, and it is needless to say that various improvements and modifications can be made without departing from the spirit of the present invention.
For example, although it has been described above that the sterilizing filter 124 is mounted in the tube 115, the present invention is not limited to this. It may be attached to any of the flow paths from the irradiation block 140 to the storage bag 8.
 また、上記では、チューブ112は分岐管114から一次保管ビン6へ向かって上方に傾斜するように取り付けられ、チューブ113は分岐管114から廃棄ビン7へ向かって下方に傾斜するように取り付けられていると説明したがこれに限定されない。チューブ113は重力方向に取り付けられる構成としても良い。また、チューブ112は略水平に取り付けられ、チューブ113は分岐管114から廃棄ビン7へ向かって下方に傾斜するように、あるいは重力方向に取り付けられる構成としても良い。あるいは、チューブ112は分岐管114から一次保管ビン6へ向かって上方に傾斜するように取り付けられ、チューブ113は略水平に取り付けられている構成としても良い。何れの場合にも、十分に活性化されていないおそれがある既照射液体は、廃棄ビン7へ流されるため、品質が安定した既照射液体を一次保管ビン6に貯留する事ができる。 In the above description, the tube 112 is attached so as to incline upward from the branch tube 114 toward the primary storage bin 6, and the tube 113 is attached so as to incline downward from the branch tube 114 toward the waste bin 7. However, it is not limited to this. The tube 113 may be configured to be attached in the direction of gravity. Further, the tube 112 may be mounted substantially horizontally, and the tube 113 may be mounted so as to be inclined downward from the branch pipe 114 toward the waste bin 7 or in the direction of gravity. Alternatively, the tube 112 may be attached so as to incline upward from the branch tube 114 toward the primary storage bin 6, and the tube 113 may be attached substantially horizontally. In any case, the irradiated liquid that may not be sufficiently activated is flowed to the waste bin 7, so that the irradiated liquid having stable quality can be stored in the primary storage bin 6.
 2 液体バッグ
 3 充填装置
 5 流量調整器
 6 一次保管ビン
 8 保存バッグ
 10 大気圧プラズマ処理装置
 110,111,112,113,115 チューブ
 114 分岐管
 140 照射ブロック
 144 第2溝部
2 Liquid bag 3 Filling device 5 Flow rate controller 6 Primary storage bin 8 Storage bag 10 Atmospheric pressure plasma processing device 110, 111, 112, 113, 115 Tube 114 Branch tube 140 Irradiation block 144 Second groove

Claims (7)

  1.  プラズマ照射される被照射液体が流れる流路と、
     前記被照射液体を前記流路に一定の流量で流す供給部と、
     前記流路内に設けられる照射ブロックと、
     前記照射ブロックにおいて前記被照射液体にプラズマガスを照射するプラズマヘッドと、を備える大気圧プラズマ処理装置。
    A flow channel through which the liquid to be irradiated with the plasma flows,
    A supply unit for causing the liquid to be irradiated to flow through the flow path at a constant flow rate,
    An irradiation block provided in the channel,
    An atmospheric pressure plasma processing apparatus comprising: a plasma head configured to irradiate the liquid to be irradiated with a plasma gas in the irradiation block.
  2.  前記照射ブロックは着脱可能である請求項1に記載の大気圧プラズマ処理装置。 The atmospheric pressure plasma processing apparatus according to claim 1, wherein the irradiation block is detachable.
  3.  前記照射ブロックは、
     前記プラズマヘッドと対向する面が開放された溝部と、
     前記溝部の一部において上方に突出する突出部と、
     前記突出部の上方にあって前記突出部との間で間隙を形成する蓋部と、を有する請求項1または2に記載の大気圧プラズマ処理装置。
    The irradiation block,
    A groove having an open surface facing the plasma head,
    A protrusion protruding upward in a part of the groove,
    The atmospheric pressure plasma processing apparatus according to claim 1, further comprising: a lid portion above the projecting portion and forming a gap with the projecting portion.
  4.  前記流路内に設けられ、既照射液体が貯留される貯留容器と、
     前記貯留容器と前記既照射液体が封入される封入容器とを接続する流出側管と、を備える請求項1から3の何れかに記載の大気圧プラズマ処理装置。
    A storage container provided in the flow path and storing the irradiated liquid,
    The atmospheric pressure plasma processing apparatus according to any one of claims 1 to 3, further comprising: an outflow-side pipe connecting the storage container and a sealed container in which the irradiated liquid is sealed.
  5.  前記流出側管の経路中に滅菌フィルタを備える請求項4に記載の大気圧プラズマ処理装置。 The atmospheric pressure plasma processing apparatus according to claim 4, wherein a sterilization filter is provided in a path of the outlet pipe.
  6.  前記照射ブロックと前記貯留容器との間で前記流路から分岐する廃棄用管と、
     前記既照射液体を前記流路と前記廃棄用管との何れに流すかを切替える切替部と、を備え、
     前記廃棄用管は、前記既照射液体が重力により流れる向きに取り付けられている請求項4または5に記載の大気圧プラズマ処理装置。
    A disposal pipe branched from the flow path between the irradiation block and the storage container,
    A switching unit that switches which of the flow path and the waste tube the already irradiated liquid flows,
    The atmospheric pressure plasma processing apparatus according to claim 4, wherein the disposal pipe is attached in a direction in which the irradiated liquid flows by gravity.
  7.  前記封入容器を収納する内部空間を有し、前記流出側管が接続された前記封入容器を前記内部空間に収納した状態で前記内部空間が減圧される減圧収納器を備える請求項4から6の何れかに記載の大気圧プラズマ処理装置。 7. A pressure reducing container having an internal space for accommodating the enclosure, wherein the internal space is decompressed in a state where the enclosure connected to the outflow side pipe is accommodated in the internal space. An atmospheric pressure plasma processing apparatus according to any one of the above.
PCT/JP2018/028549 2018-07-31 2018-07-31 Atmospheric pressure plasma treatment apparatus WO2020026324A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020533922A JP7127127B2 (en) 2018-07-31 2018-07-31 Atmospheric plasma processing equipment
PCT/JP2018/028549 WO2020026324A1 (en) 2018-07-31 2018-07-31 Atmospheric pressure plasma treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/028549 WO2020026324A1 (en) 2018-07-31 2018-07-31 Atmospheric pressure plasma treatment apparatus

Publications (1)

Publication Number Publication Date
WO2020026324A1 true WO2020026324A1 (en) 2020-02-06

Family

ID=69230826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028549 WO2020026324A1 (en) 2018-07-31 2018-07-31 Atmospheric pressure plasma treatment apparatus

Country Status (2)

Country Link
JP (1) JP7127127B2 (en)
WO (1) WO2020026324A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917785A (en) * 1987-07-28 1990-04-17 Juvan Christian H A Liquid processing system involving high-energy discharge
JP2008174297A (en) * 2007-01-22 2008-07-31 Toyo Seikan Kaisha Ltd Method for filling and sealing liquid content into pouch with spout and device for the same
JP2009183867A (en) * 2008-02-06 2009-08-20 Tohoku Univ Method and device for producing functional water
JP2010269246A (en) * 2009-05-21 2010-12-02 Shefco Co Ltd Method for making hydrogen-containing drinking water
JP2010540208A (en) * 2007-07-11 2010-12-24 ジーアール インテレクチュアル リザーブ リミティド ライアビリティ カンパニー Continuous process, apparatus, and resulting nanoparticles and nanoparticle / liquid solutions for processing liquids to produce certain components (eg, nanoparticles) in liquids
JP2013013874A (en) * 2011-07-06 2013-01-24 Nagoya City Plasma treatment device and treatment method
WO2015111465A1 (en) * 2014-01-23 2015-07-30 三菱電機株式会社 Water treatment apparatus and water treatment method
JP2016093770A (en) * 2014-11-13 2016-05-26 輝行 山本 Method for generating hydrogen water, and generator for hydrogen water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917785A (en) * 1987-07-28 1990-04-17 Juvan Christian H A Liquid processing system involving high-energy discharge
JP2008174297A (en) * 2007-01-22 2008-07-31 Toyo Seikan Kaisha Ltd Method for filling and sealing liquid content into pouch with spout and device for the same
JP2010540208A (en) * 2007-07-11 2010-12-24 ジーアール インテレクチュアル リザーブ リミティド ライアビリティ カンパニー Continuous process, apparatus, and resulting nanoparticles and nanoparticle / liquid solutions for processing liquids to produce certain components (eg, nanoparticles) in liquids
JP2009183867A (en) * 2008-02-06 2009-08-20 Tohoku Univ Method and device for producing functional water
JP2010269246A (en) * 2009-05-21 2010-12-02 Shefco Co Ltd Method for making hydrogen-containing drinking water
JP2013013874A (en) * 2011-07-06 2013-01-24 Nagoya City Plasma treatment device and treatment method
WO2015111465A1 (en) * 2014-01-23 2015-07-30 三菱電機株式会社 Water treatment apparatus and water treatment method
JP2016093770A (en) * 2014-11-13 2016-05-26 輝行 山本 Method for generating hydrogen water, and generator for hydrogen water

Also Published As

Publication number Publication date
JP7127127B2 (en) 2022-08-29
JPWO2020026324A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
KR101191549B1 (en) Method and apparatus for cleaning substrate, and program recording medium
US20130098753A1 (en) Plasma generator and method for producing radical, and cleaning and purifying apparatus and small-sized electrical appliance
KR101327787B1 (en) Water treatment apparatus using plasma
KR20170113044A (en) Ozone production apparatus, and ozone treatment apparatus
KR102073815B1 (en) Sterilization Apparatus with Plasma Jet Spray Structure
WO2020026324A1 (en) Atmospheric pressure plasma treatment apparatus
KR20130053205A (en) Water treatment apparatus using plasma
WO2013011761A1 (en) Cleaning apparatus
JP2010046226A (en) Isolator
WO2020100252A1 (en) Plasma irradiation device
JP5688510B2 (en) Hydrogen peroxide gas generator
WO2013061654A1 (en) Solution generation device and ozone water generation device, and sanitary equipment cleaning device equipped with same
CN109071223B (en) Method and apparatus for concentrating ozone gas
KR102103290B1 (en) Ultra violet discharge lamp irradiation apparatus
JP3495356B2 (en) Sterilization and dry cleaning equipment
JP6644911B2 (en) Plasma generator
JP2012055520A (en) Oral cavity washing device
KR101226520B1 (en) Sterillization apparatus
WO2023161991A1 (en) Method for producing plasma processed liquid and plasma irradiation apparatus
WO2023073879A1 (en) Plasma irradiation apparatus and method for manufacturing plasma-processed liquid
WO2023073878A1 (en) Plasma irradiation apparatus and plasma treatment liquid manufacturing method
CN109071224B (en) Method and apparatus for concentrating ozone gas
KR102424693B1 (en) Cleaning liquid regeneration device using nano bubbles and substrate processing apparatus using the device
JP4586217B2 (en) Ozone sterilization method and ozone sterilizer
JP2010069256A (en) Isolator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533922

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928723

Country of ref document: EP

Kind code of ref document: A1