JP2010046226A - Isolator - Google Patents

Isolator Download PDF

Info

Publication number
JP2010046226A
JP2010046226A JP2008212233A JP2008212233A JP2010046226A JP 2010046226 A JP2010046226 A JP 2010046226A JP 2008212233 A JP2008212233 A JP 2008212233A JP 2008212233 A JP2008212233 A JP 2008212233A JP 2010046226 A JP2010046226 A JP 2010046226A
Authority
JP
Japan
Prior art keywords
concentration
gas
unit
exhaust
sterilizing substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008212233A
Other languages
Japanese (ja)
Other versions
JP5341428B2 (en
Inventor
Yasuhiko Yokoi
康彦 横井
Jiro Onishi
二朗 大西
Akifumi Iwama
明文 岩間
Masaki Harada
雅樹 原田
Komei Noguchi
孔明 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008212233A priority Critical patent/JP5341428B2/en
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to CN200980123469.1A priority patent/CN102065909B/en
Priority to PCT/JP2009/003981 priority patent/WO2010021139A1/en
Priority to EP20130161028 priority patent/EP2609938A1/en
Priority to EP09808075.7A priority patent/EP2335741B1/en
Priority to US12/863,080 priority patent/US8658107B2/en
Priority to CN201310082929.9A priority patent/CN103203035B/en
Publication of JP2010046226A publication Critical patent/JP2010046226A/en
Application granted granted Critical
Publication of JP5341428B2 publication Critical patent/JP5341428B2/en
Priority to US14/149,127 priority patent/US9011792B2/en
Priority to US14/665,553 priority patent/US9511363B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • A61L2/208Hydrogen peroxide

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the discharge of a unreacted sterilization substance minimum when applying sterilization treatment between during last time operation and following time operation and to quickly make an isolator the state where the next operation can be started. <P>SOLUTION: The isolator 100 includes an operation chamber 10, a gas feeding section 40, a fan 46, a gas discharge section 50, a sterilization substance reducing treating section 54, a concentration measure section 56, a path 74 having an HEPA filter 20, a sterilization substance feed section 30, and a control section 90. After feeding the sterilization substance to the operation chamber 10 and sterilizing while maintaining the concentration of the sterilization substance in the operation chamber 10 constant, the control section 90 starts air discharge using the fan 46 and makes the air discharge amount when the completion of the air discharge higher than the air discharge amount when the concentration of the sterilization substance reaches the maximum concentration. Thereby, the discharge of the unreacted sterilization substance can be suppressed to minimum and the sterilization treatment time can be shortened by effective air discharge. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アイソレータに関する。   The present invention relates to an isolator.

アイソレータは、無菌環境にある作業室をその内部に有し、作業室において無菌環境であることが要求される作業、たとえば細胞培養などの生体由来材料を対象とする作業を行なうためのものである。ここで、無菌環境とは、作業室で行われる作業に必要な物質以外の混入を回避するために限りなく無塵無菌に近い環境をいう。   The isolator has a work room in an aseptic environment inside, and is used to perform work that is required to be an aseptic environment in the work room, for example, work on biological materials such as cell culture. . Here, the aseptic environment refers to an environment that is almost as dust-free aseptic in order to avoid contamination other than substances necessary for work performed in the work room.

作業室内の無菌環境を確保するために、アイソレータでは気体供給部から取り込まれた空気が気体供給部と作業室との間に設けられたHEPAフィルタ(High Efficiency Particulate Airフィルタ)などの微粒子捕集フィルタを介して作業室に供給される。また、作業室内の空気は作業室と気体排出部との間に設けられた微粒子捕集フィルタを介して気体排出部から排出される。   In order to ensure an aseptic environment in the work chamber, in the isolator, air taken in from the gas supply unit is a particulate collection filter such as a HEPA filter (High Efficiency Particulate Air filter) provided between the gas supply unit and the work chamber. Is supplied to the working room. Further, the air in the work chamber is discharged from the gas discharge portion through a particulate collection filter provided between the work chamber and the gas discharge portion.

また、作業室内における1つの作業が終了した後、次の作業に際して、滅菌物質供給部から滅菌物質としてたとえば過酸化水素を作業室内に噴霧し、作業室内を滅菌している(特許文献1参照)。   In addition, after one work in the work chamber is completed, for example, hydrogen peroxide as a sterilizing material is sprayed from the sterilizing material supply unit into the work chamber to sterilize the work chamber in the next work (see Patent Document 1). .

アイソレータ内の滅菌物質の濃度測定方法としては、滅菌チャンバ内の滅菌剤濃度をリアルタイムに測定するシステムが知られており、これはガス濃度推移が滅菌を達成する条件を満たしているか否かを確認することを目的とする(特許文献2参照)。また、滅菌ガスである過酸化水素ガス発生器の気体流れ上流と下流においてそれぞれ温度と湿度を測定するシステムも知られており、これは滅菌チャンバに供給する過酸化水素ガス濃度を判定することを目的とする(特許文献3参照)。
特開2005−312799号公報 特開2008−68088号公報 特開2007−202628号公報
As a method for measuring the concentration of sterilizing substances in an isolator, a system that measures the concentration of sterilant in the sterilization chamber in real time is known. This confirms whether the gas concentration transition satisfies the conditions for achieving sterilization. It aims at doing (refer patent document 2). Also known is a system that measures temperature and humidity upstream and downstream of the gas flow of a hydrogen peroxide gas generator, which is a sterilization gas, respectively, which determines the concentration of hydrogen peroxide gas supplied to the sterilization chamber. The purpose (see Patent Document 3).
JP 2005-31799 A JP 2008-68088 A JP 2007-202628 A

従来の過酸化水素ガスの置換工程においては、排気量は全行程を通じて一定であり、排出時の滅菌物質の濃度測定が行われていなかった。したがって、排気中の滅菌物質の濃度に応じて排気量を制御することも行われていなかった。そのため、高排気量で排気を行った場合、置換工程の前半において、排出気体中の滅菌物質の濃度を低減する装置(低減処理部)によって効率的な滅菌物質の低減化処理が行えておらず、未反応の滅菌物質が大気中に排出され、作業者等が危険にさらされるおそれがあるという問題があった。一方、低排気量で排気を行った場合、アイソレータ中の滅菌物質の濃度が低下している置換工程の後半において、排気に時間がかかりすぎるという問題があった。   In the conventional hydrogen peroxide gas replacement process, the displacement is constant throughout the entire process, and the concentration of the sterilizing substance at the time of discharge has not been measured. Therefore, the exhaust amount has not been controlled according to the concentration of the sterilizing substance in the exhaust gas. Therefore, when exhaust is performed at a high displacement, in the first half of the replacement process, the device for reducing the concentration of the sterilizing substance in the exhaust gas (reduction processing unit) has not been able to efficiently reduce the sterilizing substance. However, there is a problem that unreacted sterilizing substances are discharged into the atmosphere, and there is a risk that workers and the like may be exposed to danger. On the other hand, when exhaust is performed at a low displacement, there is a problem that exhaust takes too much time in the second half of the replacement process in which the concentration of the sterilizing substance in the isolator is reduced.

本発明はこうした状況に鑑みてなされたものであり、その目的は、アイソレータにおいて前回の作業と次回の作業との間に滅菌処理を施す場合に、より早期にアイソレータを次回の作業が開始可能な状態にすることができる技術、および滅菌物質の大気中への排出を低減する技術の提供にある。   The present invention has been made in view of such circumstances, and the purpose of the present invention is to enable the isolator to start the next work earlier when the sterilization process is performed between the previous work and the next work in the isolator. It is in the provision of a technology that can be put into a state and a technology that reduces the emission of sterilizing substances into the atmosphere.

本発明のある態様は、アイソレータである。このアイソレータは、生体由来材料を対象とする作業を行なうための作業室と、作業室内に気体を供給する気体供給部と、作業室内の気体が排出される気体排出部と、微粒子捕集フィルタを有し、気体供給部と作業室とを連絡する流通路と、作業室内に滅菌物質を供給する滅菌物質供給部と、気体排出部から排出される気体の排気量を調節するための排気手段と、気体排出部から排出される気体に含まれる滅菌物質の濃度を低減する低減処理部と、作業室に滅菌物質を供給して作業室内の滅菌物質の濃度を一定に保ち滅菌を行なった後、排気手段を用いて排気を開始し、滅菌物質の濃度が最高濃度に達した時の排気量よりも排気終了時の排気量を高くする制御部と、を備えることを特徴とする。   One embodiment of the present invention is an isolator. The isolator includes a work chamber for performing work on a biological material, a gas supply unit that supplies gas into the work chamber, a gas discharge unit that discharges gas in the work chamber, and a particulate collection filter. A flow path that communicates between the gas supply unit and the working chamber, a sterilizing substance supply unit that supplies a sterilizing substance into the working chamber, and an exhaust means for adjusting the amount of gas discharged from the gas discharging unit. , After reducing the concentration of the sterilizing substance contained in the gas discharged from the gas discharge unit and supplying the sterilizing substance to the working chamber to maintain a constant concentration of the sterilizing substance in the working chamber, And a control unit that starts exhaust using the exhaust means and makes the exhaust amount at the end of exhaust higher than the exhaust amount when the concentration of the sterilizing substance reaches the maximum concentration.

この態様によれば、アイソレータにおいて前回の作業と次回の作業との間に滅菌処理を施す場合に、効率的な置換工程により、より早期にアイソレータを次回の作業が開始可能な状態にすることができる。また、排出気体中の滅菌物質が所定の濃度に達した場合には排気量が抑えられるため、滅菌物質低減処理部により処理されなかった滅菌物質が大気中に放出されるのを最小限に抑制することができる。その結果、作業者の安全性の向上を図ることができる。   According to this aspect, when the sterilization process is performed between the previous work and the next work in the isolator, the isolator can be brought into a state where the next work can be started earlier by an efficient replacement process. it can. In addition, when the sterilizing substance in the exhaust gas reaches a predetermined concentration, the displacement is suppressed, so that the sterilizing substance that has not been processed by the sterilizing substance reduction processing unit is minimized to the atmosphere. can do. As a result, the worker's safety can be improved.

また、上記態様において、気体排出部に設けられた、気体排出部から排出される気体中に存在する滅菌物質の濃度を測定する濃度測定部をさらに有し、制御部は、濃度測定部により測定された濃度が所定の判定濃度に達するまでは徐々に排気量を増加させ、判定濃度到達後に排気量を所定の範囲に保ち、濃度測定部により測定された濃度の低下率が所定の閾値を上回ったことを条件として、排気量をさらに徐々に増加させてもよい。   Moreover, in the said aspect, it further has the density | concentration measurement part which measures the density | concentration of the sterilization substance which exists in the gas discharged | emitted from the gas discharge part provided in the gas discharge part, and a control part is measured by a concentration measurement part. The exhaust amount is gradually increased until the determined concentration reaches a predetermined determination concentration, and the exhaust amount is kept within a predetermined range after reaching the determination concentration, and the concentration decrease rate measured by the concentration measuring unit exceeds a predetermined threshold. The exhaust amount may be further gradually increased on the condition.

また、上記態様において、気体排出部に設けられた、気体排出部から排出される気体中に存在する滅菌物質の濃度を測定する濃度測定部をさらに有し、制御部は、所定の判定濃度までは徐々に排気量を増加させ、判定濃度到達後に、排気中における滅菌物質の濃度が所定の範囲になるように濃度測定部により測定された濃度を用いて排気量をフィードバックにより制御し、排気量が所定の排気量に達したことを条件として、排気量を固定してもよい。   Moreover, in the said aspect, it further has a density | concentration measurement part which measures the density | concentration of the sterilization substance which exists in the gas discharged | emitted from the gas discharge part provided in the gas discharge part, and a control part is to predetermined | prescribed determination density | concentration. Gradually increases the exhaust volume, and after reaching the judgment concentration, the exhaust volume is controlled by feedback using the concentration measured by the concentration measurement unit so that the concentration of the sterilizing substance in the exhaust gas falls within a predetermined range. The exhaust amount may be fixed on the condition that a predetermined exhaust amount has been reached.

また、上記態様において、濃度測定部が低減処理部の気体流れ下流側に設けられている場合に、低減処理部の気体流れ上流側に設けられた別の濃度測定部をさらに備え、制御部は、濃度測定部を用いて測定された、滅菌物質の低減処理後の排気中における滅菌物質の濃度が、濃度測定部の検出限界に達したことを条件として、別の濃度測定部を用いて低減処理前の排気中における滅菌物質の濃度を測定し、別の濃度測定部で測定された滅菌物質の濃度が別の濃度測定部の検出限界に達したことを条件として、気体排出部による排気を終了してもよい。   Further, in the above aspect, when the concentration measurement unit is provided on the downstream side of the gas flow of the reduction processing unit, the control unit further includes another concentration measurement unit provided on the upstream side of the gas flow of the reduction processing unit. The concentration of the sterilized substance in the exhaust gas after the sterilizing substance reduction process, measured using the concentration measuring unit, is reduced using another concentration measuring unit on condition that the detection limit of the concentration measuring unit has been reached. The concentration of the sterilizing substance in the exhaust before treatment is measured, and the exhaust from the gas discharge unit is exhausted on the condition that the concentration of the sterilized substance measured by another concentration measurement unit has reached the detection limit of another concentration measurement unit. You may end.

また、上記態様において、作業室内の気体が気体排出部から排出され始めてから濃度測定部の検出限界に達するまでに要する時間を計測する計測部を備え、制御部は、測定された時間が所定の閾値を超えた場合に、低減処理部の能力低下を通知してもよい。   Further, in the above aspect, the apparatus further includes a measuring unit that measures a time required for the gas in the working chamber to reach the detection limit of the concentration measuring unit after the gas starts to be discharged from the gas discharging unit, and the control unit has a predetermined time. When the threshold value is exceeded, a reduction in capability of the reduction processing unit may be notified.

また、上記態様において、滅菌物質は、過酸化水素であってもよい。   In the above embodiment, the sterilizing substance may be hydrogen peroxide.

なお、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。   A combination of the above-described elements as appropriate can also be included in the scope of the invention for which patent protection is sought by this patent application.

本発明によれば、滅菌処理に要する時間を短縮することができるとともに、滅菌物質の大気中への排出を低減することができる。   According to the present invention, the time required for the sterilization treatment can be shortened, and the discharge of the sterilized substance into the atmosphere can be reduced.

以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。   The present invention will be described below based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

(実施形態1)
図1は、実施形態1に係るアイソレータ100の構成を示す模式図である。実施形態1のアイソレータ100は、細胞抽出、細胞培養などの生体由来材料を対象とする作業を行なうための作業室10と、作業室10内に気体を供給する気体供給部40と、アイソレータ100内の気体を排出する気体排出部50と、作業室10内に滅菌物質を供給する滅菌物質供給部30と、これらの制御を行なう制御部90とを備えている。ここで、生体由来材料とは、細胞を含む生物そのもの、あるいは生物を構成する物質、または生物が生産する物質などを含む材料を意味する。
(Embodiment 1)
FIG. 1 is a schematic diagram illustrating a configuration of an isolator 100 according to the first embodiment. The isolator 100 according to the first embodiment includes a work chamber 10 for performing work on biological materials such as cell extraction and cell culture, a gas supply unit 40 that supplies gas into the work chamber 10, and the isolator 100. The gas discharge part 50 which discharges | emits this gas, the sterilization substance supply part 30 which supplies a sterilization substance in the working chamber 10, and the control part 90 which performs these control are provided. Here, the living body-derived material means a material including a living organism including a cell itself, a substance constituting the living organism, or a substance produced by the living organism.

気体供給部40には、吸気口42、三方弁44、およびファン46が設けられている。吸気口42を経由して外部から空気が取り込まれる。三方弁44は、経路70を経由して吸気口42の気体流れ下流側、および経路80を経由して滅菌物質送出部36の気体流れ下流側に接続されている。また、三方弁44は、経路72を経由してファン46の気体流れ上流側に接続されている。三方弁44は、経路70から経路72方向、または経路80から経路72方向への気体流路の排他的な切り換えが可能である。吸気口42を経由して取り込まれた空気、または経路80を経由して送出された滅菌物質を含む気体は、三方弁44を経由してファン46に取り込まれる。   The gas supply unit 40 is provided with an air inlet 42, a three-way valve 44, and a fan 46. Air is taken in from the outside via the air inlet 42. The three-way valve 44 is connected to the gas flow downstream side of the intake port 42 via the path 70 and to the gas flow downstream side of the sterilizing substance delivery part 36 via the path 80. The three-way valve 44 is connected to the upstream side of the gas flow of the fan 46 via a path 72. The three-way valve 44 can exclusively switch the gas flow path from the path 70 to the path 72 or from the path 80 to the path 72. Air taken in via the air inlet 42 or gas containing a sterilizing substance delivered via the path 80 is taken into the fan 46 via the three-way valve 44.

ファン46は、経路72を経由して三方弁44方向から取り込んだ気体を、経路74を経由して作業室10方向へ送り出す。ファン46は、制御部90によるON/OFFの切換え制御が可能である。なお、ファン46は排気量を連続的に調節可能である。   The fan 46 sends the gas taken in from the direction of the three-way valve 44 via the path 72 to the direction of the work chamber 10 via the path 74. The fan 46 can be switched on and off by the control unit 90. The fan 46 can continuously adjust the exhaust amount.

作業室10には前面扉12が開閉可能に設けられている。また前面扉12の所定の位置には、作業室10内で作業を行なうための作業用グローブ14が設けられている。作業者は前面扉12に設けられた図示しない開口部から作業用グローブ14に手を挿入して、作業用グローブ14を通じて作業室10内で作業を行なうことができる。作業室10には、ファン46から送出された気体が気体供給口16から取り込まれ、気体排出口18から気体が排出される。気体供給口16にはHEPAフィルタ20が、気体排出口18にはHEPAフィルタ22が、それぞれ設けられている。これらにより作業室10の無菌状態が確保される。作業室10から出た気体は、気体排出口18、HEPAフィルタ22、および経路76を経由し、気体排出部50に送出される。   The work room 10 is provided with a front door 12 that can be opened and closed. A work glove 14 for performing work in the work chamber 10 is provided at a predetermined position of the front door 12. An operator can perform a work in the work chamber 10 through the work glove 14 by inserting a hand into the work glove 14 from an opening (not shown) provided in the front door 12. In the work chamber 10, the gas sent from the fan 46 is taken in from the gas supply port 16, and the gas is discharged from the gas discharge port 18. The gas supply port 16 is provided with a HEPA filter 20, and the gas discharge port 18 is provided with a HEPA filter 22. As a result, the sterility of the working chamber 10 is ensured. The gas discharged from the work chamber 10 is sent to the gas discharge unit 50 via the gas discharge port 18, the HEPA filter 22, and the path 76.

気体排出部50には、気体流れに従って、三方弁52、滅菌物質低減処理部54、濃度測定部56、および排気口58が、この順に設けられている。   According to the gas flow, the gas discharge unit 50 is provided with a three-way valve 52, a sterilizing substance reduction processing unit 54, a concentration measurement unit 56, and an exhaust port 58 in this order.

三方弁52は、経路76を経由して作業室10の気体流れ下流側に、経路82を経由して滅菌物質低減処理部54の気体流れ上流側に接続されている。また、三方弁52は、経路78を経由して滅菌物質送出部36の気体流れ上流側に接続されている。三方弁52は、経路76から経路82方向、または経路76から経路78方向への気体流路の排他的な切り換えが可能であり、経路76を経由して取り込まれた気体が、経路82方向または経路78方向へ送出される。   The three-way valve 52 is connected to the gas flow downstream side of the working chamber 10 via the path 76 and to the gas flow upstream side of the sterilizing substance reduction processing unit 54 via the path 82. The three-way valve 52 is connected to the upstream side of the gas flow of the sterilizing substance delivery unit 36 via a path 78. The three-way valve 52 can exclusively switch the gas flow path from the path 76 to the path 82, or from the path 76 to the path 78, and the gas taken in via the path 76 is in the direction of the path 82 or It is sent in the direction of the path 78.

滅菌物質低減処理部54は、三方弁52を経由して送出された気体に含まれる滅菌物質の濃度の低減化処理を行なう。滅菌物質低減処理部54はたとえば白金などの金属触媒を含むが、活性炭などを含んでもよい。   The sterilizing substance reduction processing unit 54 performs processing for reducing the concentration of the sterilizing substance contained in the gas sent via the three-way valve 52. The sterilization substance reduction processing unit 54 includes a metal catalyst such as platinum, but may include activated carbon.

濃度測定部56は、滅菌物質低減処理部54の気体流れ下流に設けられ、低減処理後の滅菌物質の排出気体中における濃度を測定する。測定結果は濃度測定部56から制御部90に送信される。滅菌物質低減処理部54で低減処理された気体は、排気口58からアイソレータ100内の外部へ排出される。   The concentration measurement unit 56 is provided downstream of the sterilization substance reduction processing unit 54 in the gas flow, and measures the concentration of the sterilization substance after the reduction process in the exhaust gas. The measurement result is transmitted from the concentration measurement unit 56 to the control unit 90. The gas reduced by the sterilizing substance reduction processing unit 54 is discharged from the exhaust port 58 to the outside of the isolator 100.

作業室10の外部には、作業室10に滅菌物質を供給する滅菌物質供給部30が設けられている。滅菌物質供給部30は、作業室10に滅菌物質を供給してアイソレータ100内を循環させることで、作業室10および経路を無菌環境とすることができる。ここで、無菌環境とは、作業室で行われる作業に必要な物質以外の混入を回避するために限りなく無塵無菌に近い環境をいう。本実施形態において滅菌物質は過酸化水素である。   A sterilizing substance supply unit 30 that supplies a sterilizing substance to the working chamber 10 is provided outside the working chamber 10. The sterilizing substance supply unit 30 supplies the sterilizing substance to the working chamber 10 and circulates the inside of the isolator 100, so that the working chamber 10 and the path can be made aseptic environment. Here, the aseptic environment refers to an environment that is almost as dust-free aseptic in order to avoid contamination other than substances necessary for work performed in the work room. In this embodiment, the sterilizing substance is hydrogen peroxide.

図1に示すように、滅菌物質供給部30は、三方弁52および経路78の気体流れ下流側に位置し、かつ経路80および三方弁44の気体流れ上流側に位置する。滅菌物質供給部30は、滅菌物質供給タンク32、ポンプ34、および滅菌物質送出部36を有する。滅菌物質供給タンク32は、滅菌物質として過酸化水素水を貯蔵する。ポンプ34は、滅菌物質供給タンク32に貯蔵された過酸化水素水を滅菌物質供給管33を経由して汲み上げ、滅菌物質供給管35を経由して送出する。滅菌物質送出部36は、経路78を経由して三方弁52の気体流れ下流側と、経路80を経由して三方弁44の気体流れ上流側と、それぞれ接続されている。滅菌物質送出部36は、供給された過酸化水素水から、過酸化水素ガスまたはミストを発生させる。発生した過酸化水素ガスまたはミストは、経路80に送出される。   As shown in FIG. 1, the sterilizing substance supply unit 30 is located on the gas flow downstream side of the three-way valve 52 and the path 78 and on the gas flow upstream side of the path 80 and the three-way valve 44. The sterilizing substance supply unit 30 includes a sterilizing substance supply tank 32, a pump 34, and a sterilizing substance delivery unit 36. The sterilizing substance supply tank 32 stores hydrogen peroxide as a sterilizing substance. The pump 34 pumps up the hydrogen peroxide solution stored in the sterilizing substance supply tank 32 via the sterilizing substance supply pipe 33 and sends it through the sterilizing substance supply pipe 35. The sterilizing substance delivery unit 36 is connected to the downstream side of the gas flow of the three-way valve 52 via the path 78 and to the upstream side of the gas flow of the three-way valve 44 via the path 80. The sterilizing substance delivery unit 36 generates hydrogen peroxide gas or mist from the supplied hydrogen peroxide solution. The generated hydrogen peroxide gas or mist is sent to the path 80.

図2は、滅菌物質送出部36の模式図である。滅菌物質送出部36の具体的な構成につき、本図を用いて説明する。滅菌物質送出部36は、制御基板202、過酸化水素水タンク204、水封キャップ206、過酸化水素水槽208、超音波発振子210を有する。   FIG. 2 is a schematic diagram of the sterilizing substance delivery unit 36. A specific configuration of the sterilizing substance delivery unit 36 will be described with reference to this drawing. The sterilizing substance delivery unit 36 includes a control substrate 202, a hydrogen peroxide solution tank 204, a water seal cap 206, a hydrogen peroxide solution tank 208, and an ultrasonic oscillator 210.

制御基板202は、ポンプ34を制御するための基板である。過酸化水素水タンク204は、過酸化水素水を一時的に保存する容器である。水封キャップ206は、過酸化水素水タンク204から過酸化水素水槽208への供給量を調節するためのキャップである。過酸化水素水槽208は、底部に超音波発振子210を備え、過酸化水素水タンク204から供給された過酸化水素水を一時的に保存する水槽である。超音波発振子210は、超音波振動により過酸化水素ガスまたはミストを発生させるための発振子である。図1に示す滅菌物質供給タンク32には過酸化水素水が収容されており、たとえば制御基板202によってポンプ34が制御されて、滅菌物質供給タンク32から滅菌物質供給管33および35を経由して、過酸化水素水タンク204に過酸化水素水が供給される。   The control board 202 is a board for controlling the pump 34. The hydrogen peroxide tank 204 is a container that temporarily stores hydrogen peroxide. The water seal cap 206 is a cap for adjusting the supply amount from the hydrogen peroxide tank 204 to the hydrogen peroxide tank 208. The hydrogen peroxide tank 208 includes an ultrasonic oscillator 210 at the bottom, and is a water tank that temporarily stores the hydrogen peroxide solution supplied from the hydrogen peroxide tank 204. The ultrasonic oscillator 210 is an oscillator for generating hydrogen peroxide gas or mist by ultrasonic vibration. The sterilizing substance supply tank 32 shown in FIG. 1 contains hydrogen peroxide water. For example, the pump 34 is controlled by the control board 202, and the sterilizing substance supply tank 32 passes through the sterilizing substance supply pipes 33 and 35. The hydrogen peroxide solution is supplied to the hydrogen peroxide solution tank 204.

過酸化水素水タンク204に供給された過酸化水素水は、制御基板202による制御の下、水封キャップ206を経由して過酸化水素水槽208に供給される。そして、過酸化水素水槽208内の過酸化水素水に対して、超音波発振子210を用いて超音波振動を与えることにより、過酸化水素ガス(ミスト)203を発生させる。発生させた過酸化水素ガス(ミスト)203は、経路80を経由して作業室10に向けて送り出されるが、大部分はすみやかに気化し、作業室10内では過酸化水素ガスまたはミストとして存在する。以下、過酸化水素ミストを含めて過酸化水素ガスという場合がある。   The hydrogen peroxide solution supplied to the hydrogen peroxide solution tank 204 is supplied to the hydrogen peroxide solution tank 208 via the water seal cap 206 under the control of the control board 202. Then, hydrogen peroxide gas (mist) 203 is generated by applying ultrasonic vibration to the hydrogen peroxide solution in the hydrogen peroxide solution tank 208 using the ultrasonic oscillator 210. The generated hydrogen peroxide gas (mist) 203 is sent out toward the work chamber 10 via the path 80, but most of the gas is quickly vaporized and exists in the work chamber 10 as hydrogen peroxide gas or mist. To do. Hereinafter, hydrogen peroxide gas including hydrogen peroxide mist may be referred to.

なお、滅菌物質送出部36は、本実施形態のような過酸化水素ガスまたはミストを発生させる構成に限られず、たとえば、滴下した過酸化水素水に空気を当てて気化させることで過酸化水素ガスまたはミストを発生させる過酸化水素ガス発生器などであってもよい。また、滅菌物質は過酸化水素に限定されず、たとえばオゾンなどの活性酸素種を含む物質であってもよい。   The sterilizing substance delivery unit 36 is not limited to the configuration that generates hydrogen peroxide gas or mist as in the present embodiment. For example, the sterilizing substance delivery unit 36 applies hydrogen to the dropped hydrogen peroxide solution to vaporize the hydrogen peroxide gas. Alternatively, a hydrogen peroxide gas generator that generates mist may be used. The sterilizing substance is not limited to hydrogen peroxide, and may be a substance containing an active oxygen species such as ozone.

図1に戻り、制御部90の説明を行なう。制御部90は、計測部92および記録部94を備える。制御部90は滅菌物質送出部36による滅菌物質の送出の制御を行なう。また、制御部90は、三方弁44および52の弁の開閉を制御することで気体流路の切換えを行なう。   Returning to FIG. 1, the controller 90 will be described. The control unit 90 includes a measurement unit 92 and a recording unit 94. The control unit 90 controls the sterilizing substance delivery by the sterilizing substance delivery unit 36. The control unit 90 also switches the gas flow path by controlling the opening and closing of the three-way valves 44 and 52.

具体的には、制御部90は、三方弁44の弁の開閉を制御して、経路70から経路72方向、または経路80から経路72方向への気体流路の排他的な切り換えを制御する。また、制御部90は、三方弁52の弁の開閉を制御して、経路76から経路82方向、または経路76から経路78方向への気体流路の排他的な切り換えを制御する。さらに、制御部90は、濃度測定部56から測定結果を受信し、受信した測定結果に基づき濃度測定部56による排出気体中の過酸化水素ガスの濃度測定結果に応じてファン46の回転数を調節し、排気量を連続的に制御する。計測部92は滅菌処理の開始から終了までに要する時間を計測する。記録部94は計測した時間を記録する。制御部90は、計測部92および記録部94を用いて、滅菌物質低減処理部54の性能劣化の判定を行なう。   Specifically, the control unit 90 controls the opening and closing of the three-way valve 44 to control exclusive switching of the gas flow path from the path 70 to the path 72 or from the path 80 to the path 72. The control unit 90 controls the opening and closing of the three-way valve 52 to control exclusive switching of the gas flow path from the path 76 to the path 82 or from the path 76 to the path 78. Further, the control unit 90 receives the measurement result from the concentration measurement unit 56 and, based on the received measurement result, controls the rotation speed of the fan 46 according to the concentration measurement result of the hydrogen peroxide gas in the exhaust gas by the concentration measurement unit 56. Adjust and continuously control the displacement. The measuring unit 92 measures the time required from the start to the end of the sterilization process. The recording unit 94 records the measured time. The control unit 90 uses the measurement unit 92 and the recording unit 94 to determine the performance deterioration of the sterilizing substance reduction processing unit 54.

(気体流路の切換え)
アイソレータ100の気体流路は、制御部90が三方弁44および52の弁の開閉を制御することにより、以下の2通りに切り換えられる。すなわち、過酸化水素ガスをアイソレータ100内に循環させる場合には、三方弁44は、経路80から経路72方向にのみ開状態となり、経路70から経路72方向には閉状態となる。また、三方弁52は、経路76から経路78方向にのみ開状態となり、経路76から経路82方向には閉状態となる。これにより、過酸化水素ガスは滅菌物質送出部36から経路80、三方弁44、経路72、ファン46、経路74、HEPAフィルタ20、および気体供給口16を通って作業室10に入り、気体排出口18、HEPAフィルタ22、経路76、三方弁52、および経路78を通って滅菌物質送出部36に戻るという循環経路が形成される。
(Change of gas flow path)
The gas flow path of the isolator 100 is switched in the following two ways by the controller 90 controlling the opening and closing of the three-way valves 44 and 52. That is, when the hydrogen peroxide gas is circulated in the isolator 100, the three-way valve 44 is opened only in the direction from the path 80 to the path 72, and is closed in the direction from the path 70 to the path 72. Further, the three-way valve 52 is opened only in the direction from the path 76 to the path 78, and is closed in the direction from the path 76 to the path 82. As a result, the hydrogen peroxide gas enters the working chamber 10 from the sterilizing substance delivery section 36 through the path 80, the three-way valve 44, the path 72, the fan 46, the path 74, the HEPA filter 20, and the gas supply port 16. A circulation path is formed through the outlet 18, the HEPA filter 22, the path 76, the three-way valve 52, and the path 78 to return to the sterilizing substance delivery unit 36.

一方、作業室内の空気の置換を行なう場合には、三方弁44は、経路70から経路72方向にのみ開状態となり、経路80から経路72方向には閉状態となる。また、三方弁52は、経路76から経路82の方向にのみ開状態となり、経路76から経路78方向には閉状態となる。これにより、空気は吸気口42から経路70、三方弁44、経路72、ファン46、経路74、HEPAフィルタ20、および気体供給口16を通って作業室10に入り、気体排出口18、HEPAフィルタ22、経路76、三方弁52、経路82、および滅菌物質低減処理部54を通って排気口58から排出されるという経路が形成される。   On the other hand, when the air in the working chamber is replaced, the three-way valve 44 is opened only in the direction from the path 70 to the path 72 and is closed in the direction from the path 80 to the path 72. The three-way valve 52 is opened only in the direction from the path 76 to the path 82, and is closed in the direction from the path 76 to the path 78. As a result, the air enters the working chamber 10 from the intake port 42 through the path 70, the three-way valve 44, the path 72, the fan 46, the path 74, the HEPA filter 20, and the gas supply port 16, and the gas exhaust port 18, HEPA filter. 22, the path 76, the three-way valve 52, the path 82, and the sterilizing substance reduction processing unit 54 are discharged from the exhaust port 58.

(滅菌処理)
アイソレータ100では、作業室10内における1つの作業(前回の作業)が終了した後、次回の作業に際して作業室10内および前回の作業に用いられた流通路の滅菌処理が行われる。滅菌処理は、前処理工程と、滅菌工程と、置換工程とを含む。
(Sterilization)
In the isolator 100, after one work in the work chamber 10 (previous work) is completed, the sterilization process of the flow path used in the work chamber 10 and the previous work is performed in the next work. The sterilization process includes a pretreatment process, a sterilization process, and a replacement process.

前処理工程では、滅菌物質供給部30から過酸化水素ガスが作業室10内に供給され、作業室10内における過酸化水素ガスの濃度が作業室10内の滅菌に必要な濃度以上に維持される。前処理工程において作業室10内における過酸化水素ガスが所定濃度以上となった後、滅菌工程が開始される。   In the pretreatment process, the hydrogen peroxide gas is supplied from the sterilizing substance supply unit 30 into the work chamber 10, and the concentration of the hydrogen peroxide gas in the work chamber 10 is maintained to be higher than the concentration required for sterilization in the work chamber 10. The After the hydrogen peroxide gas in the working chamber 10 reaches a predetermined concentration or more in the pretreatment process, the sterilization process is started.

滅菌工程では、滅菌物質供給部30から作業室10へと過酸化水素ガスを送り、三方弁52を経由して再び滅菌物質供給部30に戻るという循環により滅菌を行なう。より具体的には、滅菌工程では、三方弁44は経路80から経路72方向にのみ開状態に切換え、経路70から経路72方向には閉状態とされる。一方、三方弁52は、経路76から経路78方向にのみ開状態に切換えられ、経路76から経路82方向には閉状態とされる。これにより、アイソレータ100内には、滅菌物質送出部36から出た気体が三方弁44を経由して作業室10内に入り、三方弁52を経由して滅菌物質送出部36に戻るという気体流路が形成され、過酸化水素ガスがアイソレータ100内を循環する。   In the sterilization process, sterilization is performed by circulating hydrogen peroxide gas from the sterilizing substance supply unit 30 to the working chamber 10 and returning to the sterilizing substance supply unit 30 again via the three-way valve 52. More specifically, in the sterilization process, the three-way valve 44 is switched to the open state only from the path 80 toward the path 72 and is closed from the path 70 toward the path 72. On the other hand, the three-way valve 52 is switched to the open state only from the path 76 in the direction of the path 78, and is closed in the direction from the path 76 to the path 82. As a result, a gas flow in which gas emitted from the sterilizing substance delivery unit 36 enters the working chamber 10 via the three-way valve 44 and returns to the sterilization substance delivery unit 36 via the three-way valve 52 in the isolator 100. A path is formed and hydrogen peroxide gas circulates in the isolator 100.

置換工程では、吸気口42を経由して取り込んだ空気を作業室10内に供給し、作業室10内の気体を押し出すことにより、作業室10内の気体が置換される。より具体的には、置換工程では制御部90は、三方弁44を吸気口42から作業室10方向にのみ開状態に切換え、三方弁52を作業室10から排気口58方向にのみ開状態に切換える。また、制御部90は、ファン46をONとする。これにより、アイソレータ100内には、吸気口42から取り込まれた空気が、経路70からHEPAフィルタ20を通過して作業室10内に至り、作業室10内からHEPAフィルタ22を通過して排気口58から排出されるという気体流路が形成される。その結果、作業室10内の気体が空気に置換され、作業室10内の過酸化水素ガスは作業室10から除去される。   In the replacement process, the air taken in via the air inlet 42 is supplied into the work chamber 10 and the gas in the work chamber 10 is pushed out to replace the gas in the work chamber 10. More specifically, in the replacement process, the control unit 90 switches the three-way valve 44 from the intake port 42 to the working chamber 10 direction and opens the three-way valve 52 from the working chamber 10 to the exhaust port 58 only. Switch. Further, the control unit 90 turns on the fan 46. As a result, the air taken in from the air inlet 42 into the isolator 100 passes through the HEPA filter 20 from the path 70 to the work chamber 10, and passes through the HEPA filter 22 from the work chamber 10 to the exhaust port. A gas flow path is formed to be discharged from 58. As a result, the gas in the work chamber 10 is replaced with air, and the hydrogen peroxide gas in the work chamber 10 is removed from the work chamber 10.

その際、作業室10から押し出された過酸化水素ガスは、滅菌物質低減処理部54によって低減処理されることにより、排気口58からアイソレータ100の外部への過酸化水素ガスの流出が低減される。この際、制御部90は、ファン46による排気量を濃度測定部56における濃度測定結果に基づき調節する。また、置換工程では、アイソレータ100内の作業室10以外の領域、たとえば気体供給部40内に残存する過酸化水素ガスや前回の作業に用いられた流通路内のHEPAフィルタ20および22に吸着している過酸化水素も除去される。   At this time, the hydrogen peroxide gas pushed out from the working chamber 10 is reduced by the sterilizing substance reduction processing unit 54, so that the outflow of the hydrogen peroxide gas from the exhaust port 58 to the outside of the isolator 100 is reduced. . At this time, the control unit 90 adjusts the exhaust amount by the fan 46 based on the concentration measurement result in the concentration measurement unit 56. Further, in the replacement process, it is adsorbed to a region other than the working chamber 10 in the isolator 100, for example, the hydrogen peroxide gas remaining in the gas supply unit 40 or the HEPA filters 20 and 22 in the flow passage used in the previous work. Hydrogen peroxide that is present is also removed.

置換工程において、作業室10内の過酸化水素ガスが所定濃度以下となった場合に、次回の作業が開始可能となる。ここで、次回の作業を開始することができる過酸化水素ガスの濃度は、次回の作業に用いられる生体由来材料に、作業上無視できない程度の影響を与えない濃度である。この濃度は、たとえばACGIH(American Conference of Governmental Industrial Hygienists)によって規定されている1ppm(TWA:時間加重平均値)以下の濃度である。あるいは作業室10内の過酸化水素ガスが所定濃度以下となる時間を実験的に求め、求められた時間の経過後に次回の作業を開始可能とするようにしてもよい。   In the replacement process, when the hydrogen peroxide gas in the work chamber 10 becomes a predetermined concentration or less, the next work can be started. Here, the concentration of the hydrogen peroxide gas at which the next operation can be started is a concentration that does not affect the biological material used for the next operation to a degree that cannot be ignored in the operation. This concentration is, for example, a concentration of 1 ppm (TWA: time-weighted average value) or less defined by ACGIH (American Conference of Global Industrial Hygienists). Alternatively, the time during which the hydrogen peroxide gas in the working chamber 10 is less than or equal to a predetermined concentration may be experimentally obtained so that the next operation can be started after the lapse of the determined time.

(置換工程における排気量の制御)
次に、置換工程における過酸化水素ガスの濃度および排気量の変化について説明する。図3は、実施形態1に係る排気制御を示す模式図である。上段、中断、下段は、それぞれ、実施形態1に係るアイソレータ100の、置換工程における過酸化水素ガスの濃度、該濃度の変化率として微分成分、および排気量の継時的変化を示す。
(Control of displacement in replacement process)
Next, changes in the concentration of hydrogen peroxide gas and the displacement in the replacement process will be described. FIG. 3 is a schematic diagram illustrating exhaust control according to the first embodiment. The upper stage, the interruption, and the lower stage respectively show the concentration of the hydrogen peroxide gas in the replacement step, the differential component as the change rate of the concentration, and the change over time of the displacement of the isolator 100 according to the first embodiment.

滅菌物質低減処理部54の気体流れ下流側に設けられた濃度測定部56により、図3の下段に示すように、過酸化水素ガスの濃度が測定される。これをもとに、制御部90による指令により、ファン46の回転数を増減させることにより、排気許容濃度が所定の閾値を超えないように、以下のように気体排出部50の排気量が制御される。まず排気開始(I)後、ファン46の回転数を増大することにより、徐々に排気量を増加させる(II)。次に排気中の過酸化水素ガスの濃度が所定の判定濃度Aまで到達(III)後、ファン46の回転数を所定の範囲内に保つことにより、図3の上段に示すように、排気量を所定の範囲内に維持させる(IV)。図3の下段に示すように、排気中の過酸化水素ガスの濃度が時刻Taにおいて最高濃度に到達後、さらに排気を続け、図3の中段に示すように、時刻Tbにおいて、過酸化水素ガスの濃度の微分成分(減少率)が所定の閾値を上回ったことを確認後(V)、再びファン46の回転数を増大することにより、図3の上段に示すように、排気量を徐々に増加させる(VI)。さらに、図3の下段に示すように、排気中の過酸化水素ガスの濃度が所定の判定濃度Aまで降下(VII)後、図3の上段に示すように、排気が終了するまで最大排気量にて排出を継続する(VIII)。排気許容濃度は実験によって定めてもよい。所定の判定濃度Aは排気許容濃度の約40%であることが望ましいが、実験によって定めてもよい。また、過酸化水素ガス濃度の減少率の微分成分は通常負の特定の値を閾値とするが、これに限られず、実験によって定めてもよい。ここで、図3の上段に示すように排気量が最大出力に達し、かつ図3の下段に示すように過酸化水素ガスの濃度が濃度計測部の検出限界を下回って計測されなくなったら、制御部90によりファン46の回転数を低減させ、排気を終了する。上記検出限界に達した後、作業室10の容積をXm、ファン46の排気能力をYm/secとした場合に、X/Y×5〜X/Y×10sec後、すなわち作業室10内の気体を5回〜10回入れ換える時間をさらに経過した後に排気を終了するようにしてもよい。 As shown in the lower part of FIG. 3, the concentration of the hydrogen peroxide gas is measured by the concentration measurement unit 56 provided on the downstream side of the gas flow of the sterilization substance reduction processing unit 54. Based on this, the exhaust amount of the gas discharge unit 50 is controlled as follows so that the allowable exhaust concentration does not exceed a predetermined threshold value by increasing or decreasing the rotation speed of the fan 46 according to a command from the control unit 90. Is done. First, after the start of exhaust (I), the exhaust amount is gradually increased (II) by increasing the rotational speed of the fan 46. Next, after the concentration of the hydrogen peroxide gas in the exhaust gas reaches a predetermined judgment concentration A (III), the exhaust amount is maintained as shown in the upper part of FIG. 3 by keeping the rotational speed of the fan 46 within a predetermined range. Is maintained within a predetermined range (IV). As shown in the lower part of FIG. 3, after the concentration of the hydrogen peroxide gas in the exhaust gas reaches the maximum concentration at time Ta, the exhaustion is further continued. As shown in the middle part of FIG. After confirming that the differential component (decrease rate) of the concentration exceeds the predetermined threshold value (V), the exhaust amount is gradually reduced as shown in the upper part of FIG. Increase (VI). Further, as shown in the lower part of FIG. 3, after the concentration of hydrogen peroxide gas in the exhaust gas falls to a predetermined judgment concentration A (VII), the maximum exhaust amount is exhausted until the exhausting is finished, as shown in the upper part of FIG. The discharge is continued at (VIII). The allowable exhaust concentration may be determined by experiment. The predetermined determination concentration A is preferably about 40% of the allowable exhaust concentration, but may be determined by experiment. In addition, the differential component of the decrease rate of the hydrogen peroxide gas concentration is usually a specific negative value as a threshold value, but is not limited to this and may be determined by experiment. Here, when the displacement reaches the maximum output as shown in the upper part of FIG. 3 and the concentration of hydrogen peroxide gas is not measured below the detection limit of the concentration measuring unit as shown in the lower part of FIG. The rotation speed of the fan 46 is reduced by the unit 90, and the exhaust is finished. After reaching the detection limit, when the volume of the working chamber 10 is Xm 3 and the exhaust capacity of the fan 46 is Ym 3 / sec, after X / Y × 5 to X / Y × 10 sec, that is, in the working chamber 10 Exhaust may be terminated after a further time has elapsed to replace the gas 5 to 10 times.

(滅菌物質低減処理部の性能劣化に対する対処)
図4は、滅菌実施回数と滅菌処理時間の関係を表すものであり、実施形態1に係る滅菌物質低減処理部54の能力判定を示す模式図である。
(Measures against performance deterioration of the sterilization substance reduction processing unit)
FIG. 4 shows the relationship between the number of sterilization implementations and the sterilization processing time, and is a schematic diagram showing the capability determination of the sterilizing substance reduction processing unit 54 according to the first embodiment.

計測部92は、滅菌処理の開始から終了まで、すなわち滅菌処理の開始から、濃度測定部56の検出限界に達してから所定の時間を経過したときまでの時間(処理時間)を計測する。記録部94は、この計測結果を滅菌回数に対応づけて記録する。ここで得られた各滅菌処理時間(縦軸)を滅菌実施回数(横軸)に対しプロットしたものが図4のグラフ(a)である。ここで、制御部90は、計測部92により計測し記録部94により記録された処理時間が、所定の閾値(b)を上回っているかを判定し、処理時間が当該閾値を上回った場合、滅菌物質低減処理部54の性能が低下した旨の通知を行なう。これにより、適切な時期に当該処理部の交換が行え、常に性能が所定の水準以上の滅菌物質低減処理部54を用い、過酸化水素ガスの濃度低減を図ることができる。なお、滅菌処理に要する時間の閾値(b)は実験により定めてもよい、また、滅菌物質低減処理部54の性能の低下を通知するだけではなく、自動的に交換する装置などをさらに備えていてもよい。   The measuring unit 92 measures the time (processing time) from the start to the end of the sterilization process, that is, from the start of the sterilization process until a predetermined time elapses after reaching the detection limit of the concentration measuring unit 56. The recording unit 94 records this measurement result in association with the number of sterilizations. The graph (a) in FIG. 4 is a plot of each sterilization treatment time (vertical axis) obtained here versus the number of sterilization operations (horizontal axis). Here, the control unit 90 determines whether the processing time measured by the measuring unit 92 and recorded by the recording unit 94 exceeds a predetermined threshold (b), and if the processing time exceeds the threshold, sterilization is performed. Notification is made that the performance of the substance reduction processing unit 54 has deteriorated. Thus, the processing unit can be replaced at an appropriate time, and the concentration of hydrogen peroxide gas can be reduced by using the sterilizing substance reduction processing unit 54 whose performance is always higher than a predetermined level. Note that the threshold (b) of the time required for the sterilization process may be determined by experiment, and further includes a device that automatically replaces the sterilization substance reduction processing unit 54 in addition to notifying a decrease in performance. May be.

従来のアイソレータでは、置換工程の開始直後、急激に作業室内の過酸化水素ガスの濃度は低下するが、その後、過酸化水素ガスの濃度の低下率は著しく減少していた。これは、一定の排気量で排気を行っていたため、アイソレータ内の過酸化水素ガスが低濃度になる置換工程の後半において、効率的な排気を行えなかったためである。これにより、結果的に置換工程に時間がかかり、作業室が使用可能な状態となるまで長時間を要していた。一方、図1に示す実施形態1のアイソレータ100は、置換工程において徐々に排気量を増加させ、作業室10内の過酸化水素ガスが所定濃度に達した後、排気量を所定の範囲内に保ち、過酸化水素ガスの濃度低下率が所定の閾値以上になったことを確認した後、再度排気量を徐々に増加させる。これにより、置換工程の前半では、未分解の過酸化水素の大気中への排出を最小限に抑えることができるため、作業者等の安全性が確保され、かつ効率的な排気ができる。また、置換工程の後半では、従来一定の排気量で過酸化水素ガスを排出していたため効率的に排気が行えていなかったが、本実施形態における排気量の制御により、排出される過酸化水素ガスが低濃度の場合における排気が効率的に行えるようになった。この排気量の制御により、前回の作業と次回の作業との間に滅菌処理を施す場合に、置換工程に要する時間を短縮でき、より早期にアイソレータ100を次回の作業が開始可能な状態にすることができる。   In the conventional isolator, the concentration of the hydrogen peroxide gas in the working chamber rapidly decreases immediately after the start of the replacement process, but thereafter, the rate of decrease in the concentration of hydrogen peroxide gas has been significantly reduced. This is because the exhaust was performed with a constant exhaust amount, so that efficient exhaust could not be performed in the second half of the replacement process in which the hydrogen peroxide gas in the isolator becomes low in concentration. As a result, the replacement process takes time, and a long time is required until the working chamber becomes usable. On the other hand, the isolator 100 of the first embodiment shown in FIG. 1 gradually increases the exhaust amount in the replacement step, and after the hydrogen peroxide gas in the working chamber 10 reaches a predetermined concentration, the exhaust amount is within a predetermined range. Then, after confirming that the concentration reduction rate of the hydrogen peroxide gas has reached a predetermined threshold value or more, the exhaust amount is gradually increased again. Thereby, in the first half of the replacement process, the discharge of undecomposed hydrogen peroxide into the atmosphere can be minimized, so that the safety of workers and the like is ensured and efficient exhaust is possible. Further, in the latter half of the replacement process, the hydrogen peroxide gas was conventionally discharged at a constant displacement, so that the exhaust could not be performed efficiently. However, by the control of the displacement in this embodiment, the discharged hydrogen peroxide Evacuation can be performed efficiently when the gas concentration is low. By controlling the exhaust amount, when sterilization is performed between the previous work and the next work, the time required for the replacement process can be shortened, and the isolator 100 can be started sooner. be able to.

また、計測部92による計測結果に基づき滅菌物質低減処理部54の性能が低下した旨を通知することにより、上述した排出気体からの安全性の確保および滅菌時間の短縮をより確実に行なうことができる。   In addition, by notifying that the performance of the sterilization substance reduction processing unit 54 has deteriorated based on the measurement result by the measurement unit 92, it is possible to more reliably secure the safety from the exhaust gas and shorten the sterilization time. it can.

(実施形態2)
実施形態2では、フィードバックにより排気量を制御する点が実施形態1と異なる。それ以外のアイソレータ100の構成、および滅菌処理における動作などについては実施形態1と同様であるため、同一の図面を用いるとともに説明は適宜省略する。
(Embodiment 2)
The second embodiment is different from the first embodiment in that the displacement is controlled by feedback. The other configurations of the isolator 100, the operation in the sterilization process, and the like are the same as those in the first embodiment, and therefore the same drawings are used and the description thereof is omitted as appropriate.

図5は、実施形態2に係る排気制御を示す模式図である。具体的には、アイソレータ100の、フィードバックによる置換工程における過酸化水素ガス濃度、および排気量の継時的変化を示す。   FIG. 5 is a schematic diagram illustrating exhaust control according to the second embodiment. Specifically, the hydrogen peroxide gas concentration and displacement of the isolator 100 in the replacement step by feedback are shown over time.

気体排出部50の気体流れ下流側に設けられた過酸化水素ガスの濃度を測定する濃度測定部56により、過酸化水素ガスの濃度が測定される(図5の下段参照)。この測定結果をもとに、制御部90による指令によりファン46の回転数を増減させることにより、気体排出部50の排気量が制御される。   The concentration of the hydrogen peroxide gas is measured by the concentration measuring unit 56 that measures the concentration of the hydrogen peroxide gas provided on the gas flow downstream side of the gas discharge unit 50 (see the lower part of FIG. 5). Based on the measurement result, the exhaust amount of the gas discharge unit 50 is controlled by increasing or decreasing the rotation speed of the fan 46 according to a command from the control unit 90.

図5の上段に示すように、まず排気開始後にファン46の回転数を増大することにより、徐々に排気量を増加させる(I)。次に、図5の下段に示すように、排気中の過酸化水素ガスの濃度が所定の判定濃度Bに到達(II)後、回転数を増減することにより、排気量をフィードバックにより制御する。ここで、図5の上段に示すように、濃度測定部56により測定された過酸化水素ガスの濃度の上下動に応じてファン46の回転数を増減させることにより、排気量を制御する(III)。   As shown in the upper part of FIG. 5, first, the exhaust amount is gradually increased by increasing the rotational speed of the fan 46 after the start of exhaust (I). Next, as shown in the lower part of FIG. 5, after the concentration of hydrogen peroxide gas in the exhaust gas reaches a predetermined determination concentration B (II), the exhaust amount is controlled by feedback by increasing or decreasing the rotation speed. Here, as shown in the upper part of FIG. 5, the exhaust amount is controlled by increasing or decreasing the rotational speed of the fan 46 in accordance with the vertical movement of the concentration of the hydrogen peroxide gas measured by the concentration measuring unit 56 (III ).

すなわち、排気中の過酸化水素ガスの濃度が所定の判定濃度Bを超えた場合には、ファン46の回転数を下げ、排気量を減少させる。一方、排気中の過酸化水素ガスの濃度が所定の判定濃度Bを下回った場合には、ファン46の回転数を上げ、排気量を増加させる。これにより、図5の下段に示すように、排出気体中の過酸化水素ガスの濃度を所定の範囲に保つ。以降、図5上段に示すように、排気量を多少増減させつつも次第に増加させ、排気量を最大出力とし、これを維持する(IV)。濃度測定部56による検出限界到達後、図5上段に示すように最大排気量にてさらに排出を継続した後(V)、排気を終了させる(VI)。所定の判定濃度Bは排気許容濃度の約50%であることが望ましいが、実験によって定めてもよい。また、判定濃度Bは特定の値ではなく、上限と下限の定まった特定の範囲であってもよい。この場合は排気中の過酸化水素ガスの濃度が上限の値を上回った場合に排気量を下げ、下限の値を下回った場合に排気量を上げるよう制御すればよい。なお、本実施形態によっても、実施形態1と同様の効果が得られる。   That is, when the concentration of the hydrogen peroxide gas in the exhaust gas exceeds a predetermined determination concentration B, the rotational speed of the fan 46 is decreased to reduce the exhaust amount. On the other hand, when the concentration of the hydrogen peroxide gas in the exhaust gas falls below the predetermined determination concentration B, the rotational speed of the fan 46 is increased and the exhaust amount is increased. Thereby, as shown in the lower part of FIG. 5, the concentration of the hydrogen peroxide gas in the exhaust gas is maintained within a predetermined range. Thereafter, as shown in the upper part of FIG. 5, the exhaust amount is gradually increased while being slightly increased or decreased, and the exhaust amount is set to the maximum output and maintained (IV). After reaching the detection limit by the concentration measuring unit 56, as shown in the upper part of FIG. 5, the exhaust is further continued at the maximum displacement (V), and then the exhaust is terminated (VI). The predetermined determination concentration B is preferably about 50% of the allowable exhaust concentration, but may be determined by experiment. Further, the determination density B may not be a specific value but may be a specific range in which an upper limit and a lower limit are determined. In this case, the exhaust amount may be controlled to be lowered when the concentration of the hydrogen peroxide gas in the exhaust exceeds the upper limit value, and the exhaust amount may be controlled to increase when the concentration falls below the lower limit value. Note that the present embodiment can provide the same effects as those of the first embodiment.

(実施形態3)
実施形態3では、滅菌物質低減処理部54の気体流れ上流側に過酸化水素ガスの濃度を測定する別の濃度測定部60(図6参照)がさらに設けられている点が実施形態1と異なる。それ以外のアイソレータ300の構成、および滅菌処理における動作などについては実施形態1および2と同様であるため、同一の記号を用いるとともに説明は適宜省略する。
(Embodiment 3)
The third embodiment is different from the first embodiment in that another concentration measuring unit 60 (see FIG. 6) for measuring the concentration of hydrogen peroxide gas is further provided on the upstream side of the gas flow of the sterilizing substance reduction processing unit 54. . Other configurations of the isolator 300 and operations in the sterilization process are the same as those in the first and second embodiments, and therefore, the same symbols are used and description thereof is omitted as appropriate.

図6は、実施形態3に係るアイソレータの構成を示す模式図である。図7は、実施形態3に係る排気制御、つまり置換工程における過酸化水素ガス濃度および排気量の継時的変化を示す模式図である。図7には、濃度1(高濃度)、濃度2(中濃度)、濃度3(低濃度)の3つのパターンが示されている。図8は、図7の過酸化水素ガスの濃度の検出限界領域Cを拡大した模式図である。Mは、滅菌物質低減処理部54の気体流れ下流側の濃度測定部56を用いて測定された、過酸化水素ガスの濃度の継時的変化を示す。一方、Nは、滅菌物質低減処理部54の気体流れ上流側に設けられた別の濃度測定部60を用いて測定された、過酸化水素ガスの濃度の継時的変化を示す。   FIG. 6 is a schematic diagram illustrating a configuration of an isolator according to the third embodiment. FIG. 7 is a schematic diagram showing the exhaust control according to the third embodiment, that is, the change over time in the hydrogen peroxide gas concentration and the exhaust amount in the replacement step. FIG. 7 shows three patterns of density 1 (high density), density 2 (medium density), and density 3 (low density). FIG. 8 is an enlarged schematic diagram of the hydrogen peroxide gas concentration detection limit region C of FIG. M represents a change over time in the concentration of the hydrogen peroxide gas measured using the concentration measuring unit 56 on the downstream side of the gas flow of the sterilizing substance reduction processing unit 54. On the other hand, N represents a change over time in the concentration of the hydrogen peroxide gas measured using another concentration measuring unit 60 provided on the upstream side of the gas flow of the sterilizing substance reduction processing unit 54.

本実施形態では、図8に示すように、滅菌物質低減処理部54の気体流れ下流側に設けられた濃度測定部56による測定値(M)が時刻T1において検出限界に達した後に、滅菌物質低減処理部54の気体流れ上流側に設けられた濃度測定部60を用いて(N)、濃度測定部60が時刻T2において検出限界に達するまで濃度測定を行ない、排気を終了する。濃度測定部60による測定結果に基づき滅菌物質低減処理部54の気体流れ下流側の過酸化水素ガスの濃度を濃度測定部56の検出限界到達後も行なうことにより、濃度測定部56の検出限界を低くした場合と同様の効果を得ることができる。なお、気体流れ下流側に設けられた濃度測定部56を備えず、濃度測定部60のみを備えていてもよい。この場合は、濃度測定部60による測定結果に基づき実施形態1および2と同様の効果を奏するよう、制御部90による制御を行えばよい。   In this embodiment, as shown in FIG. 8, after the measurement value (M) by the concentration measurement unit 56 provided on the downstream side of the gas flow of the sterilization substance reduction processing unit 54 reaches the detection limit at time T1, the sterilization substance Using the concentration measurement unit 60 provided on the upstream side of the gas flow of the reduction processing unit 54 (N), the concentration measurement is performed until the concentration measurement unit 60 reaches the detection limit at time T2, and the exhaust is terminated. Based on the measurement result by the concentration measurement unit 60, the detection limit of the concentration measurement unit 56 is set by performing the concentration of the hydrogen peroxide gas on the downstream side of the gas flow of the sterilizing substance reduction processing unit 54 even after reaching the detection limit of the concentration measurement unit 56. The same effect as when it is lowered can be obtained. Note that the concentration measuring unit 56 provided on the downstream side of the gas flow may not be provided, and only the concentration measuring unit 60 may be provided. In this case, the control by the control unit 90 may be performed so that the same effect as in the first and second embodiments is obtained based on the measurement result by the concentration measurement unit 60.

本発明は、上述の実施形態1ないし3に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。   The present invention is not limited to the first to third embodiments described above, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. These forms can also be included in the scope of the present invention.

たとえば、上述の各実施形態に係るアイソレータ100は、HEPAフィルタ20を昇温させるための加熱手段としての図示しないヒータを備えていてもよい。これによれば、HEPAフィルタ20に吸着している過酸化水素がより剥離しやすくなる。また、HEPAフィルタ20に過酸化水素が液体状態で吸着している場合には、液体状態の過酸化水素が気化する際に気化熱として熱が奪われ、温度が低下して過酸化水素の気化が抑制される状態を回避することができる。ヒータのON/OFFおよび加熱量は、制御部によって制御するようにしてもよい。ヒータによるHEPAフィルタ20の加熱量は、ヒータの加熱による作業室10内の温度変化がたとえば5℃以下に抑えられる程度であることが好ましい。また、ヒータによるHEPAフィルタ20の加熱は、たとえば置換工程において前回の作業に用いられていない流通路に気体流路を切換えた後に、前回の作業に用いられた流通路のHEPAフィルタに対して行われる。   For example, the isolator 100 according to each of the above embodiments may include a heater (not shown) as a heating unit for raising the temperature of the HEPA filter 20. According to this, the hydrogen peroxide adsorbed on the HEPA filter 20 becomes easier to peel off. Further, when hydrogen peroxide is adsorbed to the HEPA filter 20 in a liquid state, when the hydrogen peroxide in the liquid state is vaporized, heat is taken away as the heat of vaporization, and the temperature is lowered to vaporize the hydrogen peroxide. It is possible to avoid a state in which is suppressed. The heater ON / OFF and the heating amount may be controlled by the control unit. The heating amount of the HEPA filter 20 by the heater is preferably such that the temperature change in the work chamber 10 due to the heating of the heater is suppressed to, for example, 5 ° C. or less. Further, the heating of the HEPA filter 20 by the heater is performed on the HEPA filter of the flow path used in the previous work after the gas flow path is switched to the flow path not used in the previous work in the replacement process, for example. Is called.

なお、上記の実施形態1ないし3では、HEPAフィルタ20および22は作業室10の側面に設置されているが、これらのフィルタの位置は作業室10から離れていてもよい。   In the first to third embodiments, the HEPA filters 20 and 22 are installed on the side surface of the work chamber 10. However, the positions of these filters may be separated from the work chamber 10.

なお、上記の実施形態1ないし3では、吸気ファンであるファン46のみを用い、当該ファンに排気ファンとしての機能も持たせたが、ファンは吸気ファンに限定されず、排気ファンであってもよく、また吸気ファンと排気ファンの両方を備えてもよい。後者の場合、吸気ファンの排気量は排気ファンの排気量と同程度となるよう、制御部90により制御されればよい。   In the first to third embodiments described above, only the fan 46 that is an intake fan is used and the fan also has a function as an exhaust fan. However, the fan is not limited to the intake fan, and may be an exhaust fan. In addition, both an intake fan and an exhaust fan may be provided. In the latter case, the control unit 90 may control the exhaust amount of the intake fan to be approximately the same as the exhaust amount of the exhaust fan.

なお、上記の実施形態1ないし3では、パスボックス、およびパスボックス内の空気を制御するための三方弁およびファンが設置されていないが、これらを備えるアイソレータであってもよい。ここでパスボックスとは、作業室の壁面に設置され、前室と作業室間で工具や物品を受け渡しする際、塵埃等の出入りを避け、作業室へ埃が入り込むのを最小限に抑えることができる装置をいう。   In the first to third embodiments, the pass box and the three-way valve and the fan for controlling the air in the pass box are not installed, but an isolator including these may be used. Here, the pass box is installed on the wall surface of the work room, and when passing tools and articles between the front room and the work room, avoid entering and leaving dust and minimize entry of dust into the work room. A device that can be used.

なお、上記の実施形態1ないし3では、これらの実施形態と同様の効果を示すものであれば、流路が切り替わるように複数の弁を用いたものでもよく、三方弁でなくてもよい。   In the first to third embodiments described above, a plurality of valves may be used so that the flow path is switched as long as the same effects as those of these embodiments are exhibited, and the three-way valve may not be used.

実施形態1に係るアイソレータの構成を示す模式図である。1 is a schematic diagram illustrating a configuration of an isolator according to a first embodiment. 滅菌物質送出部の模式図である。It is a schematic diagram of a sterilization substance delivery part. 実施形態1に係る排気制御を示す模式図である。3 is a schematic diagram illustrating exhaust control according to Embodiment 1. FIG. 実施形態1に係る滅菌物質低減処理部の能力判定を示す模式図である。It is a schematic diagram which shows the capability determination of the sterilization substance reduction process part which concerns on Embodiment 1. FIG. 実施形態2に係る排気制御を示す模式図である。6 is a schematic diagram illustrating exhaust control according to Embodiment 2. FIG. 実施形態3に係るアイソレータの構成を示す模式図である。FIG. 6 is a schematic diagram illustrating a configuration of an isolator according to a third embodiment. 実施形態3に係る排気制御を示す模式図である。10 is a schematic diagram illustrating exhaust control according to Embodiment 3. FIG. 図7の過酸化水素ガスの濃度の検出限界領域Cを拡大した模式図である。It is the schematic diagram which expanded the detection limit area | region C of the density | concentration of the hydrogen peroxide gas of FIG.

符号の説明Explanation of symbols

10 作業室、 12 前面扉、 14 作業用グローブ、 16 気体供給口、 18 気体排出口、 20、22 HEPAフィルタ、 30 滅菌物質供給部、 32 滅菌物質供給タンク、 33、35 滅菌物質供給管、 34 ポンプ、 36 滅菌物質送出部、 40 気体供給部、 42 吸気口、 44、52 三方弁、 46 ファン、 50 気体排出部、 54 滅菌物質低減処理部、 56、60 濃度測定部、 58 排気口、 70、72、74、76、78、80、82 経路、 90 制御部、 92 計測部、 94 記録部、 100、300 アイソレータ、 202 制御基板、 203 過酸化水素ガス(ミスト)、 204 過酸化水素水タンク、 206 水封キャップ。   DESCRIPTION OF SYMBOLS 10 Working room, 12 Front door, 14 Work glove, 16 Gas supply port, 18 Gas discharge port, 20, 22 HEPA filter, 30 Sterilization substance supply part, 32 Sterilization substance supply tank, 33, 35 Sterilization substance supply pipe, 34 Pump, 36 Sterilization substance delivery section, 40 Gas supply section, 42 Intake port, 44, 52 Three-way valve, 46 Fan, 50 Gas discharge section, 54 Sterilization substance reduction processing section, 56, 60 Concentration measurement section, 58 Exhaust opening, 70 , 72, 74, 76, 78, 80, 82 path, 90 control unit, 92 measurement unit, 94 recording unit, 100, 300 isolator, 202 control substrate, 203 hydrogen peroxide gas (mist), 204 hydrogen peroxide water tank 206 Water seal cap.

Claims (6)

生体由来材料を対象とする作業を行なうための作業室と、
前記作業室内に気体を供給する気体供給部と、
前記作業室内の気体が排出される気体排出部と、
微粒子捕集フィルタを有し、前記気体供給部と前記作業室とを連絡する流通路と、
前記作業室内に滅菌物質を供給する滅菌物質供給部と、
前記気体排出部から排出される気体の排気量を調節するための排気手段と、
前記気体排出部から排出される気体に含まれる前記滅菌物質の濃度を低減する低減処理部と、
作業室に前記滅菌物質を供給して前記作業室内の滅菌物質の濃度を一定に保ち滅菌を行なった後、前記排気手段を用いて排気を開始し、前記滅菌物質の濃度が最高濃度に達した時の排気量よりも排気終了時の排気量を高くする制御部と、
を備えることを特徴とするアイソレータ。
A working room for performing work on biological materials;
A gas supply unit for supplying gas into the working chamber;
A gas discharge part for discharging the gas in the working chamber;
A flow passage having a particulate collection filter, and communicating the gas supply unit and the working chamber;
A sterilizing substance supply unit for supplying a sterilizing substance into the working chamber;
An exhaust means for adjusting the exhaust amount of the gas discharged from the gas discharge unit;
A reduction processing unit for reducing the concentration of the sterilizing substance contained in the gas discharged from the gas discharge unit;
After supplying the sterilizing substance to the working chamber and performing sterilization while keeping the concentration of the sterilizing substance constant in the working chamber, exhausting was started using the exhaust means, and the concentration of the sterilizing substance reached the maximum concentration A control unit that makes the exhaust amount at the end of exhaust higher than the exhaust amount at the time,
An isolator comprising:
前記気体排出部に設けられた、前記気体排出部から排出される気体中に存在する前記滅菌物質の濃度を測定する濃度測定部をさらに有し、
前記制御部は、
前記濃度測定部により測定された濃度が所定の判定濃度に達するまでは徐々に前記排気量を増加させ、
前記判定濃度到達後に前記排気量を所定の範囲に保ち、
前記濃度測定部により測定された濃度の低下率が所定の閾値を上回ったことを条件として、排気量をさらに徐々に増加させることを特徴とする請求項1に記載のアイソレータ。
A concentration measuring unit for measuring a concentration of the sterilizing substance provided in the gas discharged from the gas discharging unit provided in the gas discharging unit;
The controller is
The exhaust amount is gradually increased until the concentration measured by the concentration measuring unit reaches a predetermined determination concentration,
Keeping the displacement in a predetermined range after reaching the judgment concentration,
2. The isolator according to claim 1, wherein the displacement is further increased gradually on condition that the concentration decrease rate measured by the concentration measuring unit exceeds a predetermined threshold value.
前記気体排出部に設けられた、前記気体排出部から排出される気体中に存在する前記滅菌物質の濃度を測定する濃度測定部をさらに有し、
前記制御部は、
所定の判定濃度までは徐々に排気量を増加させ、
前記判定濃度到達後に、排気中における滅菌物質の濃度が所定の範囲になるように前記濃度測定部により測定された濃度を用いて前記排気量をフィードバックにより制御し、前記排気量が所定の排気量に達したことを条件として、排気量を固定することを特徴とする請求項1に記載のアイソレータ。
A concentration measuring unit for measuring a concentration of the sterilizing substance provided in the gas discharged from the gas discharging unit provided in the gas discharging unit;
The controller is
Gradually increase the displacement until a predetermined judgment concentration,
After the determination concentration is reached, the exhaust amount is controlled by feedback using the concentration measured by the concentration measuring unit so that the concentration of the sterilizing substance in the exhaust gas falls within a predetermined range, and the exhaust amount is a predetermined exhaust amount. 2. The isolator according to claim 1, wherein the displacement is fixed on condition that the pressure reaches the value of 2.
前記濃度測定部が前記低減処理部の気体流れ下流側に設けられている場合に、前記低減処理部の気体流れ上流側に設けられた別の濃度測定部をさらに備え、
前記制御部は、
前記濃度測定部を用いて測定された、前記滅菌物質の低減処理後の排気中における前記滅菌物質の濃度が、前記濃度測定部の検出限界に達したことを条件として、
前記別の濃度測定部を用いて低減処理前の排気中における前記滅菌物質の濃度を測定し、
前記別の濃度測定部で測定された前記滅菌物質の濃度が前記別の濃度測定部の検出限界に達したことを条件として、前記気体排出部による排気を終了することを特徴とする請求項2または3に記載のアイソレータ。
When the concentration measurement unit is provided on the downstream side of the gas flow of the reduction processing unit, the concentration measurement unit further includes another concentration measurement unit provided on the upstream side of the gas flow of the reduction processing unit,
The controller is
The concentration of the sterilizing substance in the exhaust gas after the sterilizing substance reduction process, measured using the concentration measuring unit, has reached the detection limit of the concentration measuring unit.
Measure the concentration of the sterilizing substance in the exhaust before the reduction process using the other concentration measuring unit,
The exhaust by the gas discharge unit is terminated on condition that the concentration of the sterilized substance measured by the another concentration measurement unit reaches a detection limit of the another concentration measurement unit. Or the isolator according to 3.
前記作業室内の気体が前記気体排出部から排出され始めてから前記濃度測定部の検出限界に達するまでに要する時間を計測する計測部を備え、
前記制御部は、測定された時間が所定の閾値を超えた場合に、前記低減処理部の能力低下を通知することを特徴とする請求項1ないし4のいずれか1項に記載のアイソレータ。
A measuring unit for measuring the time required for the gas in the working chamber to reach the detection limit of the concentration measuring unit after being started to be discharged from the gas discharging unit;
5. The isolator according to claim 1, wherein when the measured time exceeds a predetermined threshold, the control unit notifies a reduction in the capability of the reduction processing unit.
前記滅菌物質は、過酸化水素であることを特徴とする請求項1ないし5のいずれか1項に記載のアイソレータ。   The isolator according to any one of claims 1 to 5, wherein the sterilizing substance is hydrogen peroxide.
JP2008212233A 2008-08-20 2008-08-20 Isolator Expired - Fee Related JP5341428B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2008212233A JP5341428B2 (en) 2008-08-20 2008-08-20 Isolator
PCT/JP2009/003981 WO2010021139A1 (en) 2008-08-20 2009-08-20 Isolator
EP20130161028 EP2609938A1 (en) 2008-08-20 2009-08-20 Isolator with sterilant reduction unit
EP09808075.7A EP2335741B1 (en) 2008-08-20 2009-08-20 Isolator with sterilisation means and controller
CN200980123469.1A CN102065909B (en) 2008-08-20 2009-08-20 Isolator
US12/863,080 US8658107B2 (en) 2008-08-20 2009-08-20 Isolator
CN201310082929.9A CN103203035B (en) 2008-08-20 2009-08-20 Isolator
US14/149,127 US9011792B2 (en) 2008-08-20 2014-01-07 Isolator
US14/665,553 US9511363B2 (en) 2008-08-20 2015-03-23 Isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212233A JP5341428B2 (en) 2008-08-20 2008-08-20 Isolator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013164754A Division JP5877178B2 (en) 2013-08-08 2013-08-08 Isolator

Publications (2)

Publication Number Publication Date
JP2010046226A true JP2010046226A (en) 2010-03-04
JP5341428B2 JP5341428B2 (en) 2013-11-13

Family

ID=42063845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212233A Expired - Fee Related JP5341428B2 (en) 2008-08-20 2008-08-20 Isolator

Country Status (1)

Country Link
JP (1) JP5341428B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125823A1 (en) * 2010-03-31 2011-10-13 三洋電機株式会社 Hydrogen peroxide gas production device
JP2012532715A (en) * 2009-07-14 2012-12-20 ノバルティス アーゲー Surface decontamination of pre-filled containers in secondary packaging
JP2013223811A (en) * 2013-08-08 2013-10-31 Panasonic Healthcare Co Ltd Isolator
US8765064B2 (en) 2009-07-30 2014-07-01 Panasonic Healthcare Co., Ltd. Sterile substance supplying apparatus
CN104226383A (en) * 2014-09-03 2014-12-24 天津开发区合普工贸有限公司 Test device with jolt for simulating low-pressure low-oxygen severe environment
WO2015019595A1 (en) * 2013-08-07 2015-02-12 パナソニックヘルスケアホールディングス株式会社 Isolator
WO2018215704A1 (en) * 2017-05-24 2018-11-29 Disposable-Lab Single-use isolator with laminar flow and double filtration

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267418A (en) * 1985-09-20 1987-03-27 Chiyoda Seisakusho:Kk Method for inspecting leakage of gas sterilizer
JPH01268557A (en) * 1988-04-21 1989-10-26 Shimizu Corp System for sterilizing many sterilizing chambers
JP2005312799A (en) * 2004-04-30 2005-11-10 Shibuya Kogyo Co Ltd Sterilization method
JP2006068122A (en) * 2004-08-31 2006-03-16 Shibuya Kogyo Co Ltd Isolator system
JP2007105597A (en) * 2005-10-12 2007-04-26 Dalton Corp Isolator
JP2008145337A (en) * 2006-12-12 2008-06-26 Shionogi & Co Ltd Isolator system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267418A (en) * 1985-09-20 1987-03-27 Chiyoda Seisakusho:Kk Method for inspecting leakage of gas sterilizer
JPH01268557A (en) * 1988-04-21 1989-10-26 Shimizu Corp System for sterilizing many sterilizing chambers
JP2005312799A (en) * 2004-04-30 2005-11-10 Shibuya Kogyo Co Ltd Sterilization method
JP2006068122A (en) * 2004-08-31 2006-03-16 Shibuya Kogyo Co Ltd Isolator system
JP2007105597A (en) * 2005-10-12 2007-04-26 Dalton Corp Isolator
JP2008145337A (en) * 2006-12-12 2008-06-26 Shionogi & Co Ltd Isolator system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532715A (en) * 2009-07-14 2012-12-20 ノバルティス アーゲー Surface decontamination of pre-filled containers in secondary packaging
US8765064B2 (en) 2009-07-30 2014-07-01 Panasonic Healthcare Co., Ltd. Sterile substance supplying apparatus
WO2011125823A1 (en) * 2010-03-31 2011-10-13 三洋電機株式会社 Hydrogen peroxide gas production device
JP5604511B2 (en) * 2010-03-31 2014-10-08 パナソニックヘルスケア株式会社 Hydrogen peroxide gas generator
WO2015019595A1 (en) * 2013-08-07 2015-02-12 パナソニックヘルスケアホールディングス株式会社 Isolator
JP2013223811A (en) * 2013-08-08 2013-10-31 Panasonic Healthcare Co Ltd Isolator
CN104226383A (en) * 2014-09-03 2014-12-24 天津开发区合普工贸有限公司 Test device with jolt for simulating low-pressure low-oxygen severe environment
CN104226383B (en) * 2014-09-03 2016-03-23 天津开发区合普工贸有限公司 Band jolts simulation low pressure hypoxemia adverse circumstances experimental provision
WO2018215704A1 (en) * 2017-05-24 2018-11-29 Disposable-Lab Single-use isolator with laminar flow and double filtration
FR3066712A1 (en) * 2017-05-24 2018-11-30 Disposable-Lab ISOLATOR FOR SINGLE USE, LAMINAR FLOW AND DOUBLE FILTRATION
GB2577835A (en) * 2017-05-24 2020-04-08 Solo Containment Ltd Single-use isolator with laminar flow and double filtration
GB2577835B (en) * 2017-05-24 2022-02-16 Solo Containment Ltd Double-filtration laminar-flow single-use isolator

Also Published As

Publication number Publication date
JP5341428B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5341428B2 (en) Isolator
WO2010021139A1 (en) Isolator
JP4911632B2 (en) Isolator
JP5694964B2 (en) Gas sterilization apparatus and gas sterilization method
JP5462025B2 (en) Isolator, automatic cell culture device, and isolator sterilization method
JP4380411B2 (en) Sterilization method
KR102316664B1 (en) Sterilized work system
US8883085B2 (en) Isolator
JP2010508952A (en) Sterilization of objects using ozone
JP2010169366A (en) Isolator
JP2007505715A (en) System and method for increasing the concentration of disinfectant in an area
JP2006116095A (en) System for introducing and discharging gas for decontamination
US9775924B2 (en) Decontamination process device and decontamination process method
JP2014195713A (en) Isolator and control method of isolator
JP5189433B2 (en) Isolator
JP5877178B2 (en) Isolator
JP4911631B2 (en) Isolator
JP2008188043A (en) Sterilization gas permeation device
JP6531810B2 (en) Sterile working system
KR102439328B1 (en) Autoclave Sterilization Process of First Containers Made of Glass
JP2007245106A (en) Gas treatment system
JP2003339639A (en) Sterilizer for endoscope
JP5770872B2 (en) Isolator
CN105980071B (en) Isolator for processing medical substances and method for sterilizing isolator
JP2020156628A (en) Food machine, and method for sterilizing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120425

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130808

R150 Certificate of patent or registration of utility model

Ref document number: 5341428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees