WO2020025682A1 - Dispositif de stockage de gaz par sorption - Google Patents

Dispositif de stockage de gaz par sorption Download PDF

Info

Publication number
WO2020025682A1
WO2020025682A1 PCT/EP2019/070645 EP2019070645W WO2020025682A1 WO 2020025682 A1 WO2020025682 A1 WO 2020025682A1 EP 2019070645 W EP2019070645 W EP 2019070645W WO 2020025682 A1 WO2020025682 A1 WO 2020025682A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage
gas
sorption
layer
storage structure
Prior art date
Application number
PCT/EP2019/070645
Other languages
English (en)
Inventor
Michael Francis Levy
Jorn OUBRAHAM
Carsten Pohlmann
Jean-Baptiste Dementhon
Original Assignee
Aaqius & Aaqius Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aaqius & Aaqius Sa filed Critical Aaqius & Aaqius Sa
Publication of WO2020025682A1 publication Critical patent/WO2020025682A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen

Definitions

  • the invention relates to the storage of gas by sorption.
  • the invention relates more specifically to a device for storing gas by sorption, a system for storing and / or supplying gas, and a method for manufacturing a device for storing gas by sorption.
  • gas storage devices may include a solid material for storing a gas.
  • Solid storage devices must have particular properties, in order to respond to the constraints induced by the gas and linked to the conditions of its use.
  • Gas stored in solid form can, for example, when used as an energy carrier, power a fuel cell. In the mobility sector, it can also be used in a motor vehicle.
  • the storage structures are sized in different ways depending on the choice of storage material and its size. Some of these materials allow both to store and destock gas, depending on the temperature and pressure conditions to which these materials are subjected. Generally, such materials store gas during an exothermic reaction, and destock it during an endothermic reaction. These reactions take place, for example, by sorption of the gas on the material.
  • the destocking reaction being endothermic, it is necessary to heat the storage material to a given temperature to recover the gas. This can jeopardize the safety of the user as well as the mechanical behavior of the enclosures receiving such a material.
  • the destocked gas must be able to be easily recovered.
  • the known systems are however exposed to efficiency problems, in particular with regard to the homogenization of the transfer of heat from the heating means to all of the storage material. For example, the portion of the material furthest from said heating means is less well heated than the closest portion.
  • the known systems are also exposed to problems of robustness and longevity of operation of the storage structures, but also of safety of use, of manufacturing complexity, and of economic and energy efficiency in the implementation of said systems.
  • An object of the invention is to overcome at least one of the aforementioned drawbacks.
  • Another object of the invention is to improve the thermal insulation of a gas storage structure.
  • Another object of the invention is to promote the recovery of destocked gas from a gas storage device.
  • the invention notably proposes a device for storing gas by sorption comprising:
  • an enclosure comprising an outer wall, a structure for storing gas by sorption being disposed inside the enclosure, and a thermally insulating layer disposed between the storage structure and the outer wall of the enclosure, said layer being further configured to diffuse gas.
  • Such a device guarantees the isolation of the enclosure containing the storage structure while promoting the transfer of gas from the structure to an external entity.
  • the device according to the invention can also include the following characteristics: the insulating layer comprises a porous structure,
  • the insulating layer comprises a grooved structure
  • the insulating layer is a film
  • the insulating layer is formed at the level of an internal wall of the enclosure, for example by treating said wall, or by depositing an additional coating,
  • the sorption gas storage structure comprises a sorption gas storage material, said storage structure further having a circumferential edge, the storage device further comprising heating means configured to heat the storage material, and facilitate the desorption of the gas, said heating means comprising:
  • a second heating part arranged in the storage structure, at a distance from the circumferential edge on the one hand, and from the first heating part on the other hand,
  • the first heating part and the second heating part defining between them a space in which a first portion of the storage structure extends
  • the first heating part and the second heating part are connected to each other by a third heating part
  • the storage structure has a preferred direction defining a longitudinal axis, the heating means having a substantially annular structure along the longitudinal axis,
  • compositions and / or distributions of the storage material in the first portion of the storage structure are different from the compositions and / or distributions of the storage material in the rest of the storage structure, with a view to optimizing the distribution of the heat from the heating means within the storage structure, and
  • the storage structure includes:
  • each first layer comprising the material for storing gas by sorption under pre-pressed powder form
  • each second layer comprising a material:
  • thermally conductive with thermal conductivity greater than that of the storage material, with a view to increasing the heat transfers within the storage structure
  • the invention further relates to a method of manufacturing a device as described above comprising the steps of:
  • the invention also relates to a gas storage and / or supply system comprising a device as described above, and a gas use unit.
  • FIG. 1 shows a sectional view of a first example of a gas storage device according to the invention
  • FIG. 2 is a top view of a second example of a gas storage device according to the invention.
  • FIG. 3 is a top view of a third example of a gas storage device according to the invention.
  • FIG. 4 represents a sectional view of a fourth example of a gas storage device according to the invention.
  • FIG. 5 is an enlarged sectional view of a fifth example of a gas storage device according to the invention.
  • FIG. 6 is an enlarged sectional view of a sixth example of a gas storage device according to the invention.
  • FIG. 7 schematically illustrates a gas storage and / or supply system according to the invention.
  • FIG. 8 is a flowchart illustrating an example of implementation of a method of manufacturing a gas storage device according to the invention.
  • the gas stored can be of any kind and of any type.
  • the storage device 1 can store alone, or in combination, hydrogen, ammonia, water vapor, oxygen, and / or carbon dioxide.
  • a sorption gas storage device 1 includes a sorption gas storage structure 10 which may include a sorption storage material.
  • the sorption storage structure can also comprise a circumferential edge B which surrounds said storage structure 10.
  • the storage structure of sorption gas 10 may include a first layer 100 and a second layer 200.
  • the first layer 100 can, in this case, be configured to store gas by sorption. To do this, it can comprise a material for storage by sorption.
  • the storage material can be in pre-compressed powder form. Indeed, this shape facilitates the transport of the storage material because it is then easier to handle and has a smaller volume. In addition, this shape is more suitable for the sorption storage operation, because it is more stable, facilitates heat transfer, makes the expansion of the storage material more homogeneous.
  • the material can have an optimized porosity in order to increase the volumetric storage capacity of the storage structure, but also to accommodate variations in volume of the second layer 200.
  • the porosity of the storage material is between 10 vol.% and 50 vol.%, and is preferably between 25 vol.% and 35 vol.%.
  • porosity is meant the ratio of the volume of air not occupied by the storage material within a given volume of the storage material, over said given volume.
  • the porosity corresponds to the ratio of the volume not occupied by the storage material, over its apparent volume, that is to say that the porosity is equal to the ratio between the theoretical density at which the apparent density is subtracted from the theoretical density.
  • the pre-compressed powder form makes it possible to control the porosity of the storage material.
  • the storage material can include:
  • a material suitable for forming a metal hydride preferably of the Mghh, NaAIFU, LiNFh, and / or LiBFU type, and / or
  • a material suitable for forming an intermediate alloy preferably of the TiMn2, TiCr2, LaNi 5 , FeTi, TiV, and / or TiZr type, and / or
  • a material suitable for forming a hydroxide preferably of the CaO, and / or Ca (OH) 2 type, or
  • a material suitable for forming an oxide preferably of the PbO, and / or CaO type.
  • the applicant has in fact noticed that the above materials are particularly suitable for storing and / or supplying gas such as hydrogen, ammonia, water vapor, oxygen, and / or carbon dioxide. This is not, however, limiting, since such materials can also be particularly suitable for other types of gas.
  • the storage material can also comprise a material for metastable storage of gas by sorption.
  • metastable is meant a material which, in usual pressure ranges (that is to say less than 200 bars), is always in a gas desorption regime.
  • a metastable storage material differs from that of a reversible storage material. To illustrate this difference, it is usual to compare the equilibrium absorption or adsorption or desorption curves for these two types of gas, i.e. the curves representing the equilibrium absorption pressure. , adsorption or desorption as a function of the gas concentration within the storage material, for example at a given temperature. For each gas:
  • the material is in the loading zone and therefore captures gas
  • the material is in the discharge zone and therefore releases gas.
  • the equilibrium curve of the reversible storage material typically depends on the temperature: the higher the temperature, the higher the equilibrium pressure and the larger the discharge area.
  • the curve has a first section of increasing low pressures, a second section of medium pressures substantially stable or more weakly increasing, and a third section of high pressures again increasing.
  • the second section is typically much less than 200 bars.
  • the equilibrium curve of the metastable storage material has a first section of increasing low pressures, a second section of medium pressures substantially stable or more weakly increasing, and a third section of high pressures again increasing.
  • the second section is typically much greater than that of a reversible storage material, for example much greater than 200 bars, for example of the order of several thousand bars.
  • the metastable storage material is typically always desorbing gas and not capturing it.
  • the metastable storage material typically comprises a material for forming a hydride, preferably a metal hydride, for example alane, for example at least one alane phase, for example alpha alane, for example alpha prime alane, and / or borazane (BH Q N) and / or 1,2-di-amineborane (also called EDAB, BH 3 NH2CH2CH2NH2BH 3 ), and / or lithium hydride (LiH) and / or aluminum and lithium hydride (UAIH4).
  • a metal hydride for example alane, for example at least one alane phase, for example alpha alane, for example alpha prime alane, and / or borazane (BH Q N) and / or 1,2-di-amineborane (also called EDAB, BH 3 NH2CH2CH2NH2BH 3 ), and / or lithium hydride (LiH) and / or aluminum and lithium hydr
  • the second layer 200 can, for its part, comprise a material:
  • thermally conductive with thermal conductivity greater than that of the storage material, with a view to increasing the heat transfers within the storage structure 10,
  • the second layer 200 Thanks to the second layer 200, the phenomena of sorption and desorption of gas by the storage material, which involve significant heat flows, are facilitated. In fact, the heat transfers are thus distributed homogeneously throughout the entire storage structure 10, which reinforces its efficiency and durability. In fact, the heat can be transported and easily extracted from the first layer 100, which ensures the rapid storage and / or destocking of the gas within the storage structure 10. The energy stored by a given mass of material of storage is therefore increased.
  • the dimensions, the shape, and the relative positioning of the first layer 100 and of the second layer 200 make it possible in particular to optimize the heat transfers within the storage structure 10. For example, when the first layer 100 and the second layer 200 extend in a preferred longitudinal direction, as can be seen in FIG.
  • the layer thickness in the longitudinal direction is a lever for possible optimization of the heat flows within the storage structure 10.
  • providing a porosity gradient of storage material within the first layer 100, in a radial direction relative to the longitudinal direction also constitutes a possible way of optimizing the heat exchanges within the storage structure 10.
  • the radial direction constitutes a preferred direction of heat exchange within of the storage structure 10.
  • most of the heat emitted or received by the first layer 100 is transferred by the second layer 200.
  • the second layer 200 can act as a buffer during the operation of the storage structure 10.
  • the second layer 200 can compensate for variations in the volume of the storage material during the sorption and desorption phases of gas. , and thus preserves the mechanical coherence of the storage structure 10.
  • the volumetric capacity of the storage material is advantageously increased, since it is no longer necessary to provide empty spaces within the storage structure 10
  • the second layer 200 makes it possible to distribute the mechanical forces arising from variations in the volume of the storage material in operation.
  • the second layer 200 may comprise a matrix comprising graphite, for example natural graphite, for example expanded natural graphite.
  • the second layer 200 can comprise a metal, for example aluminum or copper. The applicant has in fact noticed that these materials have adequate compressibility and / or heat transfer properties to fulfill the functions of the second layer 200.
  • the storage structure 10 may comprise the first layer 100 and the second layer 200, alternately.
  • the storage structure 10 then comprises an alternation of first layers 100 and second layers 200, the first layers 100 preferably being separated in pairs by one of the second layers 200.
  • the plurality of first layers 100 and the plurality of second layers 200 are arranged in an alternating pattern.
  • the alternating distribution in particular facilitates the distribution of thermal and mechanical stresses within the storage structure 10.
  • an alternating structure is easily reproducible on an industrial scale, both at the manufacturing and maintenance stage of the storage structure.
  • storage 10. can easily be adapted according to storage and / or gas supply performance needs.
  • such a distribution allows a compactness of the storage structure 10 which can prove to be particularly advantageous for applications such as transport, for example automobile.
  • the storage structure 10 comprises alternating wafers, each first layer 100 and / or each second layer 200 preferably forming a wafer. Privileged, but however optional, the wafers are mechanically independent of each other.
  • Such a configuration can in particular facilitate the handling of the different elements of the storage structure during the various operations associated with the manufacture, maintenance and / or recycling of the storage structure 10.
  • the configuration in wafer promotes geometric optimization distribution and distribution of materials within the storage structure 10.
  • this configuration is more suited to the operation of sorption storage, because it is more stable, facilitates heat transfer, makes the material expand more homogeneous storage.
  • the gas can be better distributed throughout the entire storage structure 10 when loading the storage material.
  • a sorption gas storage device 1 may further comprise heating means 3 configured to heat the storage material and facilitate the desorption of the gas.
  • the heating means 3 may comprise a device suitable for routing a heat fluid, such as water.
  • a heat fluid such as water.
  • a heating device can take the form of a radiator, or a cylindrical shell of revolution, with a double wall, surrounding the storage structure 1.
  • a gas utilization unit 6 which releases energy in the form of heat (eg fuel cell, combustion engine, exhaust line, etc.)
  • such a heating device may include a closed circuit of heat fluid connecting the storage structure 1 to the gas use unit 6.
  • the heat emitted by the gas use unit 6 is captured by the heat fluid in circulation, then radiated within the storage structure 1, by means of the same circulating heat fluid.
  • This type of means of heating 3 thus offers the advantage of being optimized energetically, that is to say it allows not to expend a surplus of energy during the operation of the storage device 1. In addition, this makes it possible to reduce the dimensions of a possible cooling system for the gas use unit 6.
  • the heating means 3 comprise means of ventilation by the air surrounding the storage device 1.
  • the ventilation means indeed offer the advantage of being simple and inexpensive.
  • the heating means 3 may comprise a resistor, for example of the electrical type, connected to an electric power generator.
  • This type of heating means 3 is simple and quick to implement.
  • a resistance also offers the advantage of being easily modular according to the desired applications.
  • the heating means 3 can include:
  • a first heating part 30 arranged in the storage structure 10, at a distance from the circumferential edge B, and
  • a second heating part 32 also arranged in the storage structure, at a distance from the circumferential edge on the one hand, and from the first heating part 30 on the other hand.
  • first heating part 30 and the second heating part 32 are not directly in contact with the circumferential edge B, nor with each other.
  • the first heating part 30 and the second heating part 32 define between them a space, in which a first portion 1 1 of the storage structure 10 extends.
  • This arrangement of the heating means 3 within the storage structure 10 makes it possible to release a central volume V c and a peripheral volume V p of the storage structure 10.
  • the heating means 3 are neither arranged at a wall of the storage structure 10, nor in the center of said storage structure 10, it is possible to heat the storage structure 10 more homogeneously.
  • the heat flows emitted by the heating means 3 benefit the entire storage structure 10.
  • the gas stored and / or supplied is therefore better distributed throughout the entire storage structure 10, so that it is possible to extend the life of the storage device 10.
  • the first heating part 30 and the second heating part 32 can also be connected to each other by a third heating part 34.
  • the heating means 3 can have a substantially annular section, as in FIG. 1, or in the form of an S, as in FIG. 2. In this way, it is possible to optimize the segmentation of the storage structure 10 between the first portion 11 and the rest of the storage structure 10. For example, with reference to FIG. 1, it is possible to completely isolate the first portion 11 from the rest of the storage structure 10.
  • the storage structure 10 may include a second portion 12 extending to the circumferential edge B of the storage structure 10, and connected to the first portion 11.
  • the first portion 1 1 is not isolated from the rest of the storage structure 10. This configuration advantageously makes it possible to facilitate the diffusion of gas after desorption.
  • compositions and / or distributions of the storage material in the first portion 11 of the storage structure 10 may be different from the compositions and / or distributions of the storage material in the rest of the storage structure storage 10.
  • the first portion 1 1 will tend to heat more quickly than the rest of the storage structure 10. Consequently, it is possible to have storage and / or second layer materials 200 whose mechanical and / or are more suitable for rapid heating within the first portion 1 1, and vice versa in the rest of the storage structure 10.
  • the storage structure 10 may have a preferred direction defining a longitudinal axis XX.
  • the heating means 3 can have a substantially annular structure along the longitudinal axis XX. In this way the distribution of heat within the first portion 1 1 and within the rest of the storage structure 10 is optimized. In fact, the heat tends to propagate radially with respect to the longitudinal axis XX. Also, an annular structure of the heating means 3 guarantees the best possible distribution of heat transfers within the storage structure 10.
  • the heating means 3 are centered around the longitudinal axis XX, in order to guarantee symmetrical homogeneity of the heat distribution.
  • a gas discharge conduit 400 may be provided within the first portion 1 1. This is not, however, limiting since, as an alternative or in addition, a gas evacuation conduit 400 can also be provided in the rest of the storage structure 10. In any event, such conduits 400 facilitate the transport of the gas during its desorption from the storage material.
  • the storage device 10 can also comprise an enclosure 4 comprising an outer wall 40, the storage structure 10 being arranged inside the enclosure 4.
  • the presence of a such an enclosure 4 facilitates the transport and use of the storage device 1.
  • the enclosure 4 enhances the safety of use of the storage device 1, by protecting a user from possible gas leaks and / or high intensity thermal transfers.
  • the storage device 1 can advantageously comprise a thermally insulating layer 42, disposed between the storage structure 10 and the outer wall 40 of the enclosure 4.
  • This thermally insulating layer 42 is, moreover, configured to diffuse gas.
  • the insulating layer 42 can be in contact with the storage structure 10, in order to further facilitate the diffusion of the gas, but also to improve the compactness of the storage device 1.
  • the insulating layer 42 can also be separated from the storage structure 10, for example by a free space, comprising neither storage material 10, nor second layer material 200, and which can be initially occupied by gas. This latter configuration can be encountered when the storage structure materials 10 are not compatible with the insulating layer material 42, or when it is preferable to increase the thermal insulation thanks to the free space.
  • the insulating layer 42 may, in one embodiment, comprise a porous structure, for example with a decreasing porosity gradient from the storage structure 10 towards the external wall 40 of the enclosure 4. This embodiment is illustrated in particular in FIG. 5. In this way, the portion of insulating layer 42 closest to the storage material can effectively evacuate the gas after desorption, while the portion of insulating layer 42 closest to the enclosure 4 can effectively isolate heat. released by the storage structure 10.
  • the insulating layer 42 may comprise a grooved structure.
  • grooves 420 are for example formed at the wall of the insulating layer 42 which opens onto the storage structure 10.
  • the insulating layer 42 can be formed at the level of an internal wall 44 of the enclosure 4, for example by treating said wall 44, or by depositing an additional coating.
  • Such a configuration simplifies the assembly process of the storage device 1.
  • this embodiment can advantageously lead to a reduction in the maintenance costs of the storage device.
  • the insulating layer 42 can be a film.
  • the insulating layer 42 has a very thin thickness relative to the thickness of the enclosure 4, for example less than 25% of the thickness of the enclosure, of the order of 10% of the thickness of the enclosure, preferably 5% of this thickness. This configuration makes it possible on the one hand to improve the compactness and lightness of the storage device 1, and on the other hand to facilitate its manufacture and maintenance.
  • the use of a metastable storage material is advantageous when the storage device comprises the insulating layer 42.
  • the volume variations of a metastable sorption storage material are small compared to other sorption gas storage materials. Consequently, the use of a metastable material presents less risk for the mechanical coherence of the insulating layer 42.
  • One or more gas evacuation conduits 400 may also be provided within the insulating layer 42, as visible in FIG. 1, in order to facilitate the transport of the gas outside the storage device 1, after desorption.
  • a gas storage and / or supply system 5 comprises a sorption gas storage device 1 according to any of the previously described embodiments, and a gas utilization unit 6 .
  • the gas utilization unit 6 can, for example, be a motor vehicle fuel cell when the stored gas is hydrogen.
  • a method of manufacturing E of a gas storage device by sorption 1 comprises a step of compression E1 of a powder of gas storage material by sorption so as to form a first layer of gas storage material 100 by sorption in pre-compressed powder form.
  • a method E may include a step E2 of disposing a second layer 200 adjacent to the first layer 100, said second layer 200 comprising a thermally conductive material, with thermal conductivity greater than that of the storage material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention porte sur un dispositif de stockage de gaz par sorption (1) comprenant: - une enceinte (4) comprenant une paroi extérieure (40), une structure de stockage de gaz par sorption (10) étant disposée à l'intérieur de l'enceinte (4), et - une couche isolante thermiquement (42) disposée entre la structure de stockage (10) et la paroi extérieure (40) de l'enceinte (4), ladite couche (42) étant en outre configurée pour diffuser du gaz.

Description

DISPOSITIF DE STOCKAGE DE GAZ PAR SORPTION
DOMAINE DE L’INVENTION L’invention concerne le stockage de gaz par sorption.
L’invention vise plus spécifiquement un dispositif de stockage de gaz par sorption, un système de de stockage et/ou de fourniture de gaz, et un procédé de fabrication d’un dispositif de stockage de gaz par sorption.
ETAT DE LA TECHNIQUE
L’utilisation de gaz dans l’industrie, qu’il s’agisse du secteur de la mobilité, de l’énergie, de la chimie ou de la production, est soumise à de multiples contraintes. A cet égard, de nombreux dispositifs de stockage de gaz ont déjà été proposés. Certains de ces dispositifs peuvent comprendre un matériau solide permettant de stocker un gaz.
De tels dispositifs de stockage solide doivent présenter des propriétés particulières, afin de répondre aux contraintes induites par le gaz et liées aux conditions de son utilisation. Le gaz stocké sous forme solide peut, par exemple, lorsqu’il est utilisé comme vecteur énergétique, alimenter une pile à combustible. Dans le secteur de la mobilité, il peut également être utilisé au sein d’un véhicule à moteur.
Suivant l’utilisation visée, les structures de stockages sont dimensionnées de différentes manières de par le choix du matériau de stockage et sa taille. Certains de ces matériaux permettent à la fois de stocker et de déstocker du gaz, suivant les conditions de température et de pression auxquelles ces matériaux sont soumis. De manière générale, de tels matériaux stockent du gaz au cours d’une réaction exothermique, et le déstockent au cours d’une réaction endothermique. Ces réactions ont par exemple lieu par sorption du gaz sur le matériau.
En tout état de cause, la réaction de déstockage étant endothermique, il est nécessaire de chauffer le matériau de stockage à une température donnée pour récupérer le gaz. Ceci peut mettre en cause la sécurité de l’utilisateur ainsi que la tenue mécanique des enceintes accueillant un tel matériau. En outre, le gaz déstocké doit pouvoir être récupéré facilement.
Les systèmes connus sont toutefois exposés à des problèmes d’efficacité, notamment en ce qui concerne d’homogénéisation du transfert de chaleur depuis les moyens chauffants vers l’intégralité du matériau de stockage. Par exemple, la portion du matériau la plus éloignée desdits moyens de chauffage est moins bien chauffée que la portion la plus proche. Les systèmes connus sont en outre exposés à des problèmes de robustesse et de longévité de fonctionnement des structures de stockage, mais aussi de sûreté d’utilisation, de complexité de fabrication, et de rendement économique et énergétique dans la mise en oeuvre desdits systèmes.
DESCRIPTION DE L’INVENTION Un but de l’invention est de pallier au moins un des inconvénients précités.
Un autre but de l’invention est d’améliorer l’isolation thermique d’une structure de stockage de gaz.
Un autre but de l’invention est de favoriser la récupération de gaz déstocké à partir d’un dispositif de stockage de gaz.
L’invention propose notamment un dispositif de stockage de gaz par sorption comprenant :
- une enceinte comprenant une paroi extérieure, une structure de stockage de gaz par sorption étant disposée à l’intérieur de l’enceinte, et - une couche isolante thermiquement disposée entre la structure de stockage et la paroi extérieure de l’enceinte, ladite couche étant en outre configurée pour diffuser du gaz.
Un tel dispositif garantit l’isolation de l’enceinte contenant la structure de stockage tout en favorisant le transfert du gaz depuis la structure vers une entité extérieure.
Le dispositif selon l’invention peut en outre comprendre les caractéristiques suivantes : - la couche isolante comprend une structure poreuse,
- la couche isolante comprend une structure rainurée,
- la couche isolante est un film,
- la couche isolante est formée au niveau d’une paroi interne de l’enceinte, par exemple par traitement de ladite paroi, ou par dépôt d’un revêtement additionnel,
- la structure de stockage de gaz par sorption comprend un matériau de stockage de gaz par sorption, ladite structure de stockage présentant en outre un bord circonférentiel, le dispositif de stockage comprenant en outre des moyens de chauffage configurés pour chauffer le matériau de stockage, et faciliter la désorption du gaz, lesdits moyens de chauffage comprenant :
o une première partie chauffante agencée dans la structure de stockage, à distance du bord circonférentiel,
o une deuxième partie chauffante agencée dans la structure de stockage, à distance du bord circonférentiel d’une part, et de la première partie chauffante d’autre part,
la première partie chauffante et la deuxième partie chauffante définissant entre elles un espace dans lequel une première portion de la structure de stockage s’étend,
- la première partie chauffante et la deuxième partie chauffante sont reliées l’une à l’autre par une troisième partie chauffante,
- la structure de stockage présente une direction privilégiée définissant un axe longitudinal, les moyens de chauffage présentant une structure substantiellement annulaire le long de l’axe longitudinal,
- les compositions et/ou répartitions du matériau de stockage dans la première portion de la structure de stockage sont différentes des compositions et/ou répartitions du matériau de stockage dans le reste de la structure de stockage, en vue d’optimiser la répartition de la chaleur issue des moyens de chauffage au sein de la structure de stockage, et
- la structure de stockage comprend :
o une pluralité de premières couches, chaque première couche comprenant le matériau de stockage de gaz par sorption sous forme pulvérulente pré-com pressée, et
o une pluralité de deuxièmes couches, chaque deuxième couche comprenant un matériau :
compressible en vue de se déformer sous l’action d’efforts exercés par le matériau de stockage lors de variations de volume du matériau de stockage au cours de phases de sorption et de désorption de gaz, et
thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure des stockage,
les premières et les deuxièmes couches étant disposées selon un motif alterné. L’invention porte en outre sur un procédé de fabrication d’un dispositif tel que précédemment décrit comprenant les étapes de :
- compression d’une poudre de matériau de stockage de gaz par sorption de sorte à former une première couche de matériau de stockage de gaz par sorption sous forme pulvérulente pré-compressée,
- disposition d’une deuxième couche adjacente à la première couche, ladite deuxième couche comprenant un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage.
L’invention porter par ailleurs sur un système de stockage et/ou de fourniture de gaz comprenant un dispositif tel que précédemment décrit, et une unité d’utilisation de gaz.
DESCRIPTION DES FIGURES
D’autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre et en regard des dessins annexés donnés à titre d’exemple non limitatif et sur lesquels :
- la figure 1 représente une vue en coupe d’un premier exemple d’un dispositif de stockage de gaz selon l’invention,
- la figure 2 est une vue de dessus d’un deuxième exemple d’un dispositif de stockage de gaz selon l’invention,
- la figure 3 est une vue de dessus d’un troisième exemple d’un dispositif de stockage de gaz selon l’invention,
- la figure 4 représente une vue en coupe d’un quatrième exemple d’un dispositif de stockage de gaz selon l’invention,
- la figure 5 est une vue en coupe agrandie d’un cinquième exemple d’un dispositif de stockage de gaz selon l’invention,
- la figure 6 est une vue en coupe agrandie d’un sixième exemple d’un dispositif de stockage de gaz selon l’invention,
- la figure 7 illustre schématiquement un système de stockage et/ou de fourniture de gaz selon l’invention, et
- la figure 8 est un organigramme illustrant un exemple de mise en oeuvre d’un procédé de fabrication d’un dispositif de stockage de gaz selon l’invention.
DESCRIPTION DETAILLEE DE L’INVENTION
En référence aux figures, on va maintenant décrire un dispositif de stockage de gaz par sorption 1 , un système de stockage et/ou de fourniture de gaz 5, ainsi qu’un procédé E de fabrication d’un dispositif de stockage de gaz par sorption.
Le gaz stocké peut être de toute nature et de tout type. Par exemple, le dispositif de stockage 1 peut stocker seul, ou en combinaison, de l’hydrogène, de l’ammoniac, de la vapeur d’eau, de l’oxygène, et/ou du dioxyde de carbone.
Structure de stockage de gaz
En référence à la figure 1 , un dispositif de stockage de gaz par sorption 1 comprend une structure de stockage de gaz par sorption 10 pouvant comprendre un matériau de stockage par sorption.
La structure de stockage par sorption peut en outre comprendre un bord circonférentiel B qui entoure ladite structure de stockage 10.
Par ailleurs, en référence aux figures 1 et 4 à 6, la structure de stockage de gaz par sorption 10 peut comprendre une première couche 100 et une deuxième couche 200.
La première couche 100 peut, dans ce cas, être configurée pour stocker du gaz par sorption. Pour ce faire, elle peut comprendre un matériau de stockage par sorption.
Avantageusement, le matériau de stockage peut être sous forme pulvérulente pré- compressé. En effet, cette forme facilite le transport du matériau de stockage car il est alors plus facile à manipuler et présente un volume plus faible. En outre, cette forme est plus adaptée au fonctionnement de stockage par sorption, car elle plus stable, facilite le transfert de chaleur, rend l’expansion du matériau de stockage plus homogène.
En outre, le matériau peut présenter une porosité optimisée en vue d’augmenter la capacité de stockage volumétrique de la structure de stockage, mais aussi de s’accommoder des variations de volume de la deuxième couche 200. Par exemple la porosité du matériau de stockage est comprise entre 10 vol.% et 50 vol.%, et vaut de préférence entre 25 vol.% et 35 vol.%. Par porosité on entend le rapport du volume d’air non occupé par le matériau de stockage au sein d’un volume donné du matériau de stockage, sur ledit volume donné. En d’autres termes, la porosité correspond au rapport du volume non occupé par le matériau de stockage, sur son volume apparent, c’est-à-dire que la porosité est égale au rapport entre la densité théorique à laquelle la densité apparente est retranchée, sur la densité théorique. En tout état de cause, la forme pulvérulente pré-compressée permet de contrôler la porosité du matériau de stockage.
De plus, le matériau de stockage peut comprendre :
- un matériau adapté pour former un hydrure métallique, de préférence du type Mghh, NaAIFU, LiNFh, et/ou LiBFU, et/ou
- un matériau adapté pour forme un alliage intermédiaire, de préférence du type TiMn2, TiCr2, LaNi5, FeTi, TiV, et/ou TiZr, et/ou
- un matériau adapté pour former un sel d’ammoniac, de préférence du type BaCh, et/ou CaCh, ou
- un matériau adapté pour former un hydroxyde, de préférence du type CaO, et/ou Ca(OH)2, ou
- un matériau adapté pour former un oxyde, de préférence du type PbO, et/ou CaO. Le demandeur s’est en effet aperçu que les matériaux ci-dessus sont particulièrement adaptés pour stocker et/ou fournir du gaz tel que de l’hydrogène, de l’ammoniac, de la vapeur d’eau de l’oxygène, et/ou du dioxyde de carbone. Ceci n’est cependant pas limitatif, puisque de tels matériaux peuvent également être particulièrement adaptés pour d’autres types de gaz.
En tout état de cause, le matériau de stockage peut également comprendre un matériau de stockage métastable de gaz par sorption.
Par métastable, on entend un matériau qui, dans des domaines usuels de pression (c’est-à-dire moins de 200 bars), est toujours en régime de désorption de gaz.
Le fonctionnement d’un matériau de stockage métastable diffère en effet de celui d’un matériau de stockage réversible. Pour illustrer cette différence, il est usuel de comparer les courbes d’équilibre d’absorption ou d’adsorption ou de désorption de ces deux types de gaz, c’est-à-dire les courbes représentant la pression d’équilibre d’absorption, d’adsorption ou de désorption en fonction de la concentration en gaz au sein du matériau de stockage, par exemple à une température donnée. Pour chaque gaz :
- au-dessus de la courbe, le matériau est en zone de charge et capte donc du gaz, et
- au-dessous de la courbe, le matériau est en zone de décharge et libère donc du gaz.
La courbe d’équilibre du matériau de stockage réversible dépend typiquement de la température : plus la température est élevée, plus la pression d’équilibre est élevée et plus la zone de décharge s’agrandit. La courbe présente une première section de pressions basses croissante, une deuxième section de pressions moyennes sensiblement stable ou plus faiblement croissante, et une troisième section de pressions hautes à nouveau croissante. La deuxième section est typiquement bien inférieure à 200 bars.
La courbe d’équilibre du matériau de stockage métastable présente une première section de pressions basses croissante, une deuxième section de pressions moyennes sensiblement stable ou plus faiblement croissante, et une troisième section de pressions hautes à nouveau croissante. La deuxième section est typiquement bien supérieure à celle d’un matériau de stockage réversible, par exemple bien supérieure à 200 bars, par exemple de l’ordre de plusieurs milliers de bars. Ainsi dans des conditions de fonctionnement ou usuelles, le matériau de stockage métastable est typiquement toujours en train de désorber du gaz et non d’en capter.
A cet égard, lorsque le gaz est de l’hydrogène, le matériau de stockage métastable comprend typiquement un matériau pour former un hydrure, de préférence un hydrure métallique, par exemple de l’alane, par exemple au moins une phase d’alane, par exemple de l’alane alpha, par exemple de l’alane alpha prime, et/ou du borazane (BHQN) et/ou du 1 ,2-di-amineborane (aussi appelé EDAB, BH3NH2CH2CH2NH2BH3), et/ou de l’hydrure de lithium (LiH) et/ou de l’hydrure d’aluminium et de lithium (UAIH4).
La deuxième couche 200 peut, quant à elle, comprendre un matériau :
thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage 10, et
compressible en vue de se déformer sous l’action d’efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phase de sorption et de désorption de gaz.
Grâce à la deuxième couche 200, les phénomènes de sorption et de désorption de gaz par le matériau de stockage, qui impliquent d’importants flux de chaleur, sont facilités. En effet, les transferts thermiques sont ainsi répartis de manière homogène à travers toute la structure de stockage 10, ce qui en renforce l’efficacité et la pérennité. De fait, la chaleur peut être acheminée et extraite facilement de la première couche 100, ce qui assure le stockage et/ou le déstockage rapide du gaz au sein de la structure de stockage 10. L’énergie stockée par une masse donnée de matériau de stockage en est donc augmentée. Avantageusement, les dimensions, la forme, et le positionnement relatif de première couche 100 et de deuxième couche 200 permettent notamment d’optimiser les transferts thermiques au sein de la structure de stockage 10. Par exemple, lorsque la première couche 100 et la deuxième couche 200 s’étendent suivant une direction longitudinale privilégiée, comme visible sur la figure 1 , l’épaisseur de couche suivant la direction longitudinale est un levier d’optimisation possible des flux de chaleur au sein de la structure de stockage 10. Alternativement, ou en combinaison, prévoir un gradient de porosité de matériau de stockage au sein de la première couche 100, dans une direction radiale par rapport à la direction longitudinale, constitue également une voie d’optimisation possible des échanges thermiques au sein de la structure de stockage 10. En effet, on observe que, lorsque la première couche 100 et la deuxième couche 200 s’étendent suivant une direction longitudinale, la direction radiale constitue une direction privilégiée d’échange de chaleur au sein de la structure de stockage 10. En tout état de cause, la plupart de la chaleur émise ou reçue par la première couche 100 est transférée par la deuxième couche 200.
En outre, la deuxième couche 200 peut assurer un rôle de tampon lors du fonctionnement de la structure de stockage 10. En effet, la deuxième couche 200 peut compenser des variations de volume du matériau de stockage lors des phases de sorption et de désorption de gaz, et préserve ainsi la cohérence mécanique de la structure de stockage 10. De cette manière, la capacité volumétrique du matériau de stockage est avantageusement augmentée, puisqu’il n’est plus nécessaire de ménager des espaces vides au sein de la structure de stockage 10. Enfin, la deuxième couche 200 permet de répartir les efforts mécaniques nés des variations de volume du matériau de stockage en fonctionnement.
Par ailleurs, la deuxième couche 200 peut comprendre une matrice comprenant du graphite, par exemple du graphite naturel, par exemple du graphite naturel expansé. Alternativement, ou en complément, la deuxième couche 200 peut comprendre un métal, par exemple de l’aluminium ou du cuivre. Le demandeur s’est en effet aperçu que ces matériaux présentaient des propriétés de compressibilité et/ou de transferts thermiques adéquats pour remplir les fonctions de la deuxième couche 200.
Structure en alternance
Comme visible sur les figures 1 et 4 à 6, la structure de stockage 10 peut comprendre la première couche 100 et la deuxième couche 200, en alternance. De manière privilégiée, la structure de stockage 10 comprend alors une alternance de premières couches 100 et de deuxièmes couches 200, les premières couches 100 étant de préférence séparées deux à deux par une des deuxièmes couches 200. En d’autres termes, la pluralité de premières couches 100 et la pluralité de deuxièmes couches 200 sont disposées selon un motif alterné. La répartition en alternance facilite notamment la répartition des contraintes thermiques et mécaniques au sein de la structure de stockage 10. En outre, une structure en alternance est aisément reproductible à l'échelle industrielle, tant au stade de fabrication que de maintenance de la structure de stockage 10. De plus, une telle structure peut facilement être adaptée suivant les besoins en performance de stockage et/ou de fourniture de gaz. Enfin, une telle répartition autorise une compacité de la structure de stockage 10 qui peut s’avérer particulièrement avantageuse pour des applications telles que le transport, par exemple automobile.
Avantageusement, la structure de stockage 10 comprend une alternance de galettes, chaque première couche 100 et/ou chaque deuxième couche 200 formant de préférence une galette. De manière privilégiée, mais toutefois optionnelle, les galettes sont mécaniquement indépendantes les unes des autres. Une telle configuration peut notamment faciliter la manipulation des différents éléments de la structure de stockage lors des différentes opérations associées à la fabrication, la maintenance et/ou le recyclage de la structure de stockage 10. En outre, la configuration en galette favorise une optimisation géométrique de la répartition et de la distribution des matériaux au sein de la structure de stockage 10. De plus, cette configuration est plus adaptée au fonctionnement de stockage par sorption, car elle plus stable, facilite le transfert de chaleur, rend l’expansion du matériau de stockage plus homogène. Ainsi, le gaz peut être mieux distribué à travers toute la structure de stockage 10 lors du chargement du matériau de stockage.
Moyens de chauffage
En référence à la figure 1 , un dispositif de stockage de gaz par sorption 1 peut en outre comprendre des moyens de chauffage 3 configurés pour chauffer le matériau de stockage et faciliter la désorption du gaz.
Les moyens de chauffage 3 peuvent comprendre un dispositif propre à faire cheminer un fluide calorifique, tel que de l’eau. Par exemple, un tel dispositif peut prendre la forme d’un radiateur, ou d’une coque cylindrique de révolution, à double paroi, entourant la structure de stockage 1 . Lorsque le dispositif de stockage 1 est relié à unité d’utilisation de gaz 6 qui dégage de l’énergie sous forme de chaleur (e.g. pile à combustible, moteur à combustion, ligne d’échappement, etc.), un tel dispositif de chauffage peut comprendre un circuit fermé de fluide calorifique reliant la structure de stockage 1 à l’unité d’utilisation de gaz 6. En fonctionnement, la chaleur émise par l’unité d’utilisation de gaz 6 est captée par le fluide calorifique en circulation, puis rayonnée au sein de la structure de stockage 1 , par l’intermédiaire du même fluide calorifique en circulation. Ceci permet à la fois de refroidir l’unité d’utilisation de gaz 6, mais aussi de faciliter la désorption du gaz par chauffage. Ce type de moyens de chauffage 3 offre ainsi l’avantage d’être optimisé énergétiquement, c’est-à-dire qu’il permet de ne pas dépenser un surplus d’énergie lors du fonctionnement du dispositif de stockage 1. En outre, cela permet de réduire les dimensions d’un éventuel système de refroidissement de l’unité d’utilisation de gaz 6.
Alternativement, ou en complément, les moyens de chauffage 3 comprennent des moyens de ventilation par l’air entourant le dispositif de stockage 1. Les moyens de ventilation offrent en effet l’avantage d’être simples et peu coûteux.
Alternativement, ou en complément, les moyens de chauffage 3 peuvent comprendre une résistance, par exemple de type électrique, reliée à un générateur de puissance électrique. Ce type de moyen de chauffage 3 est simple et rapide à mettre en oeuvre. Une résistance offre en outre l’avantage d’être modulable facilement suivant les applications recherchées.
Alternativement, ou en complément, lorsque le gaz stocké est un combustible, et que le dispositif de stockage 1 est relié, en plus de l’unité d’utilisation du gaz 6, à une unité de combustion de gaz (non représentée), il est possible de relier les moyens de chauffage 3 à ladite unité de combustion de gaz, de sorte à récupérer la chaleur dégagée par la combustion du gaz. Ce type de moyens de chauffage 3, dédié au dispositif de stockage 1 , permet d’augmenter très rapidement la température au sein de la structure de stockage 10. Comme visible sur les figures 1 à 3, les moyens de chauffage 3 peuvent comprendre :
une première partie chauffante 30 agencée dans la structure de stockage 10, à distance du bord circonférentiel B, et
une deuxième partie chauffante 32, également agencée dans la structure de stockage, à distance du bord circonférentiel d’une part, et de la première partie chauffante 30 d’autre part.
Par « à distance », on comprend que la première partie chauffante 30 et la deuxième partie chauffante 32 ne sont pas directement en contact avec le bord circonférentiel B, ni l’une avec l’autre. Ainsi, la première partie chauffante 30 et la deuxième partie chauffante 32 définissent entre elles un espace, dans lequel une première portion 1 1 de la structure de stockage 10 s’étend.
Cette disposition des moyens de chauffage 3 au sein de la structure de stockage 10 permet de dégager un volume central Vc et un volume périphérique Vp de la structure de stockage 10. Comme les moyens de chauffage 3 ne sont ni disposés au niveau d’une paroi de la structure de stockage 10, ni au centre de ladite structure de stockage 10, il est possible de chauffer la structure de stockage 10 de manière plus homogène. Ainsi, les flux de chaleur émis par les moyens de chauffage 3 bénéficient à l’ensemble de la structure de stockage 10. Le gaz stocké et/ou fourni est donc mieux réparti à travers toute la structure de stockage 10, si bien qu’il est possible d’allonger la durée de vie du dispositif de stockage 10.
La première partie chauffante 30 et la deuxième partie chauffante 32 peuvent en outre être reliées l’une à l’autre par une troisième partie chauffante 34. Ainsi, les moyens de chauffage 3 peuvent présenter une section substantiellement annulaire, comme sur la figure 1 , ou en forme de S, comme sur la figure 2. De cette manière, il est possible d’optimiser la segmentation de la structure de stockage 10 entre la première portion 1 1 et le reste de la structure de stockage 10. Par exemple, en référence à la figure 1 , il est possible d’isoler totalement la première portion 1 1 du reste de la structure de stockage 10.
Par ailleurs, comme visible sur les figures 2 et 3, la structure de stockage 10 peut comprendre une deuxième portion 12 s’étendant jusqu’au bord circonférentiel B de la structure de stockage 10, et reliée à la première portion 1 1 . Dans ce cas, la première portion 1 1 n’est pas isolée du reste de la structure de stockage 10. Cette configuration permet avantageusement de faciliter la diffusion de gaz après désorption.
Comme également visible sur la figure 1 , les compositions et/ou répartitions du matériau de stockage dans la première portion 1 1 de la structure de stockage 10 peuvent être différentes des compositions et/ou répartitions du matériau de stockage dans le reste de la structure de stockage 10. Ainsi, il est possible d’optimiser la répartition de la chaleur issue des moyens de chauffage 3 au sein de la structure de stockage 10, entre la première portion 1 1 et le reste de la structure de stockage 10. En effet, en fonctionnement, la première portion 1 1 aura tendance à chauffer plus rapidement que le reste de la structure de stockage 10. Par conséquent, il est possible de disposer des matériaux de stockage et/ou de deuxième couche 200 dont les propriétés mécaniques et/ou thermiques sont plus adaptées à une chauffe rapide au sein de la première portion 1 1 , et vice-versa dans le reste de la structure de stockage 10.
En référence à la figure 1 , la structure de stockage 10 peut présenter une direction privilégiée définissant un axe longitudinal X-X. Une telle configuration rend le dispositif de stockage 10 particulièrement facile à stocker et/ou à transporter. Dans cette configuration, comme visible sur la figure 1 , les moyens de chauffage 3 peuvent présenter une structure substantiellement annulaire le long de l’axe longitudinal X-X. De cette manière la répartition de la chaleur au sein de la première portion 1 1 et au sein du reste de la structure de stockage 10 est optimisée. En effet, la chaleur a tendance à se propager radialement par rapport à l’axe longitudinal X-X. Aussi, une structure annulaire des moyens de chauffage 3 garantit la meilleure répartition possible des transferts thermiques au sein de la structure de stockage 10. Avantageusement, dans ce cas, les moyens de chauffage 3 sont centrés autour de l’axe longitudinal X-X, afin de garantir une homogénéité symétrique de la répartition de la chaleur.
Enceinte et évacuation de gaz
En référence à la figure 1 , un conduit d’évacuation de gaz 400 peut être ménagé au sein de la première portion 1 1 . Ceci n’est cependant pas limitatif puisque, à titre d’alternative ou en complément, un conduit d’évacuation de gaz 400 peut également être ménagé dans le reste de la structure de stockage 10. En tout état de cause, de tels conduits 400 facilitent le transport du gaz lors de sa désorption du matériau de stockage.
En référence aux figures 1 , et 4 à 6, le dispositif de stockage 10 peut également comprendre une enceinte 4 comprenant une paroi extérieure 40, la structure de stockage 10 étant disposée à l’intérieur de l’enceinte 4. La présence d’une telle enceinte 4 facilite le transport et l’utilisation du dispositif de stockage 1 . En outre, l’enceinte 4 renforce la sûreté d’utilisation du dispositif de stockage 1 , en protégeant un utilisateur d’éventuelles fuites de gaz et/ou de transferts thermiques d’intensité élevées.
En vue de renforcer la protection de l’utilisateur, mais aussi de faciliter la diffusion du gaz lors de sa désorption du matériau de stockage, le dispositif de stockage 1 peut avantageusement comprendre une couche isolante thermiquement 42, disposée entre la structure de stockage 10 et la paroi extérieure 40 de l’enceinte 4. Cette couche isolante thermiquement 42 est, en outre, configurée pour diffuser du gaz. En outre, la couche isolante 42 peut être en contact avec la structure de stockage 10, afin de faciliter davantage la diffusion du gaz, mais aussi d’améliorer la compacité du dispositif de stockage 1 . Ceci n’est cependant pas limitatif, puisque la couche isolante 42 peut également être séparé de la structure de stockage 10, par exemple par un espace libre, ne comportant ni matériau de stockage 10, ni matériau de deuxième couche 200, et pouvant être initialement occupé par du gaz. Cette dernière configuration peut être rencontrée lorsque les matériaux de structure de stockage 10 ne sont pas compatibles avec le matériau de couche isolante 42, ou lorsqu’il est préférable d’augmenter l’isolation thermique grâce à l’espace libre.
La couche isolante 42 peut, dans un mode de réalisation, comprendre une structure poreuse, par exemple avec un gradient de porosité décroissant depuis la structure de stockage 10 vers la paroi extérieur 40 de l’enceinte 4. Ce mode de réalisation est notamment illustré en figure 5. De cette manière, la portion de couche isolante 42 la plus proche du matériau de stockage peut évacuer efficacement le gaz après désorption, tandis que la portion de couche isolante 42 la plus proche de l’enceinte 4 peut isoler efficacement de la chaleur dégagée par la structure de stockage 10.
Alternativement, ou en combinaison, la couche isolante 42 peut comprendre une structure rainurée. En référence à la figure 6, des rainures 420 sont par exemple ménagées au niveau de la paroi de la couche isolante 42 qui débouche sur la structure de stockage 10. Ainsi, la portion de couche isolante 42 la plus proche du matériau de stockage peut également évacuer efficacement le gaz après désorption, tandis que la portion de couche isolante 42 la plus proche de l’enceinte peut isoler efficacement de la chaleur dégagée par la structure de stockage 10.
En outre, la couche isolante 42 peut être formée au niveau d’une paroi interne 44 de l’enceinte 4, par exemple par traitement de ladite paroi 44, ou par dépôt d’un revêtement additionnel. Une telle configuration permet de simplifier le processus d’assemblage du dispositif de stockage 1 . En outre, ce mode de réalisation peut avantageusement aboutir à une réduction des coûts de maintenance du dispositif de stockage.
Par ailleurs, la couche isolante 42 peut être un film. Dans ce cas, la couche isolante 42 présente une épaisseur très fine par rapport à l’épaisseur de l’enceinte 4, par exemple moins de 25% de l’épaisseur de l’enceinte, de l’ordre de 10% de l’épaisseur de l’enceinte, de préférence 5% de cette épaisseur. Cette configuration permet d’une part d’améliorer la compacité et la légèreté du dispositif de stockage 1 , et d’autre part d’en faciliter la fabrication et la maintenance.
En tout état de cause, l’utilisation d’un matériau de stockage métastable est avantageuse lorsque le dispositif de stockage comprend la couche isolante 42. En effet, en fonctionnement, les variations de volume d’un matériau métastable de stockage par sorption sont faibles par rapport aux autres matériaux de stockage de gaz par sorption. Par conséquent, l’utilisation d’un matériau métastable présente moins de risque pour la cohérence mécanique de la couche isolante 42.
Un ou plusieurs conduits d’évacuation des gaz 400 peuvent en outre être ménagés au sein de la couche isolante 42, comme visible sur la figure 1 , afin de faciliter le transport du gaz en dehors du dispositif de stockage 1 , après la désorption.
Système de stockage et/ou de fourniture de gaz
En référence à la figure 7, un système de stockage et/ou de fourniture de gaz 5 comprend un dispositif de stockage de gaz par sorption 1 selon l’un quelconque des modes de réalisation précédemment décrits, et une unité d’utilisation de gaz 6.
L’unité d’utilisation de gaz 6 peut, par exemple, être une pile à combustible de véhicule automobile lorsque le gaz stocké est de l’hydrogène.
Procédé de fabrication d’un dispositif de stockage
En référence à la figure 8, un procédé de fabrication E d’un dispositif de stockage de gaz par sorption 1 selon l’un quelconque des modes de réalisation précédemment décrit comprend une étape de compression E1 d’une poudre de matériau de stockage de gaz par sorption de sorte à former une première couche de matériau 100 de stockage de gaz par sorption sous forme pulvérulente pré- compressée. En outre, un tel procédé E peut comprendre une étape de disposition E2 d’une deuxième couche 200 adjacente à la première couche 100, ladite deuxième couche 200 comprenant un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage.

Claims

REVENDICATIONS
1. Dispositif de stockage de gaz par sorption (1 ) comprenant :
- une enceinte (4) comprenant une paroi extérieure (40), une structure de stockage de gaz par sorption (10) étant disposée à l’intérieur de l’enceinte (4), et
- une couche isolante thermiquement (42) disposée entre la structure de stockage (10) et la paroi extérieure (40) de l’enceinte (4), ladite couche (42) étant en outre configurée pour diffuser du gaz.
2. Dispositif de stockage (1 ) selon la revendication 1 , dans lequel la couche isolante (42) comprend une structure poreuse.
3. Dispositif de stockage (1 ) selon l’une des revendications 1 et 2, dans lequel la couche isolante (42) comprend une structure rainurée.
4. Dispositif de stockage (1 ) selon l’une des revendications 1 à 3, dans lequel la couche isolante (42) est un film.
5. Dispositif de stockage (1 ) selon l’une des revendications 1 à 4, dans lequel la couche isolante (42) est formée au niveau d’une paroi interne (44) de l’enceinte (4), par exemple par traitement de ladite paroi (44), ou par dépôt d’un revêtement additionnel.
6. Dispositif de stockage (1 ) selon l’une des revendications 1 à 5, dans lequel la structure de stockage de gaz par sorption (10) comprend un matériau de stockage de gaz par sorption, ladite structure de stockage (10) présentant en outre un bord circonférentiel (B), le dispositif de stockage (1 ) comprenant en outre des moyens de chauffage (3) configurés pour chauffer le matériau de stockage, et faciliter la désorption du gaz, lesdits moyens de chauffage (3) comprenant :
- une première partie chauffante (30) agencée dans la structure de stockage (10), à distance du bord circonférentiel (B), - une deuxième partie chauffante (32) agencée dans la structure de stockage (10), à distance du bord circonférentiel (B) d’une part, et de la première partie chauffante (30) d’autre part,
la première partie chauffante (30) et la deuxième partie chauffante (32) définissant entre elles un espace dans lequel une première portion (1 1 ) de la structure de stockage (10) s’étend.
7. Dispositif de stockage selon la revendication 6, dans lequel la première partie chauffante (30) et la deuxième partie chauffante (32) sont reliées l’une à l’autre par une troisième partie chauffante (34).
8. Dispositif de stockage (1 ) selon l’une des revendications 6 et 7, dans lequel la structure de stockage (10) présente une direction privilégiée définissant un axe longitudinal (X-X), les moyens de chauffage (3) présentant une structure substantiellement annulaire le long de l’axe longitudinal (X-X).
9. Dispositif de stockage (1 ) selon l’une des revendications 6 à 8, dans lequel les compositions et/ou répartitions du matériau de stockage dans la première portion (11 ) de la structure de stockage (10) sont différentes des compositions et/ou répartitions du matériau de stockage dans le reste de la structure de stockage (10), en vue d’optimiser la répartition de la chaleur issue des moyens de chauffage (3) au sein de la structure de stockage (10).
10. Dispositif de stockage (1 ) selon l’une des revendications 1 à 9, dans lequel la structure de stockage (10) comprend :
• une pluralité de premières couches (100), chaque première couche (100) comprenant le matériau de stockage de gaz par sorption sous forme pulvérulente pré-com pressée, et
• une pluralité de deuxièmes couches (200), chaque deuxième couche (200) comprenant un matériau :
o compressible en vue de se déformer sous l’action d’efforts exercés par le matériau de stockage lors de variations de volume du matériau de stockage au cours de phases de sorption et de désorption de gaz, et o thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure des stockage (10), les premières (100) et les deuxièmes (200) couches étant disposées selon un motif alterné.
11. Procédé de fabrication (E) d’un dispositif (1 ) selon l’une des revendications 1 à 10 comprenant les étapes de :
• compression (E1 ) d’une poudre de matériau de stockage de gaz par sorption de sorte à former une première couche (100) de matériau de stockage de gaz par sorption sous forme pulvérulente pré-compressée,
• disposition (E2) d’une deuxième couche (200) adjacente à la première couche (100), ladite deuxième couche (200) comprenant un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage.
12. Système de stockage et/ou de fourniture de gaz (5) comprenant un dispositif (1 ) selon l’une des revendications 1 à 10, et une unité d’utilisation de gaz (6).
PCT/EP2019/070645 2018-07-31 2019-07-31 Dispositif de stockage de gaz par sorption WO2020025682A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857184 2018-07-31
FR1857184A FR3084720A1 (fr) 2018-07-31 2018-07-31 Dispositif de stockage de gaz par sorption

Publications (1)

Publication Number Publication Date
WO2020025682A1 true WO2020025682A1 (fr) 2020-02-06

Family

ID=63896375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/070645 WO2020025682A1 (fr) 2018-07-31 2019-07-31 Dispositif de stockage de gaz par sorption

Country Status (2)

Country Link
FR (1) FR3084720A1 (fr)
WO (1) WO2020025682A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB870254A (en) * 1958-07-14 1961-06-14 Union Carbide Corp Improvements in storing acetylene
US6748748B2 (en) * 2002-06-10 2004-06-15 Nanomix, Inc. Hydrogen storage and supply system
EP1809570A2 (fr) * 2004-09-21 2007-07-25 Westinghouse Savannah River Company Microbilles de verre creuses a paroi poreuse utilisees pour le stockage d'hydrogene
WO2016135133A1 (fr) * 2015-02-27 2016-09-01 Basf Se Véhicule comprenant un système de stockage et un moteur à combustion, le système de stockage comprend un récipient et au moins une cuve de stockage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB870254A (en) * 1958-07-14 1961-06-14 Union Carbide Corp Improvements in storing acetylene
US6748748B2 (en) * 2002-06-10 2004-06-15 Nanomix, Inc. Hydrogen storage and supply system
EP1809570A2 (fr) * 2004-09-21 2007-07-25 Westinghouse Savannah River Company Microbilles de verre creuses a paroi poreuse utilisees pour le stockage d'hydrogene
WO2016135133A1 (fr) * 2015-02-27 2016-09-01 Basf Se Véhicule comprenant un système de stockage et un moteur à combustion, le système de stockage comprend un récipient et au moins une cuve de stockage

Also Published As

Publication number Publication date
FR3084720A1 (fr) 2020-02-07

Similar Documents

Publication Publication Date Title
CA2746971C (fr) Reservoir adiabatique d'hydrure metallique
EP3271962B1 (fr) Procédé de gestion thermique d'un système pour la cogénération d'électricité et de chaleur et système associé
US20030019765A1 (en) Metal hydride storage canister design and its manufacture
WO2006048573A1 (fr) Module de pile a combustible a interconnecteurs flexibles
EP2477940A1 (fr) Réservoir de stockage et de déstockage d'hydrogène et/ou de chaleur
EP2235424A2 (fr) Réservoir de stockage d'hydrogène
EP3235022A1 (fr) Accumulateur au lithium avec emballage isolant thermiquement a deux couches et avec caloduc pour la gestion thermique
WO2020025662A1 (fr) Dispositif de stockage de gaz par sorption
FR2683094A1 (fr) Batterie a oxyde metallique-hydrogene ayant des modules s'etendant longitudinalement par rapport a une receptacle sous pression.
CA2935694A1 (fr) Systeme de stockage reversible d'h2 avec reservoir contenant des hydrures metalliques, a equilibrage de pression
FR3037942A1 (fr) Procede d’hydruration d’un compose intermetallique et dispositif d’hydruration.
WO2020025682A1 (fr) Dispositif de stockage de gaz par sorption
EP1286406A2 (fr) Réservoir de stockage d'hydrure métallique et sa fabrication
BE1027327B1 (fr) Compresseur a etat solide et procede pour fournir une contre-pression sur un empilement de cellules de compresseur a l'etat solide
FR2694658A1 (fr) Batterie à oxyde métallique-hydrogène avec récipient extérieur sous pression.
WO2022101569A1 (fr) Dispositif de serrage pour un empilement electrochimique, et assemblage forme par le dispositif de serrage et l'empilement electrochimique
EP3830467A1 (fr) Dispositif de stockage de gaz par sorption
EP2669981B1 (fr) Générateur compact de courant électrique comportant une pile à combustible et source d'hydrogène intégrée
FR3084721A1 (fr) Dispositif de stockage d'hydrogene par sorption
WO2023152046A1 (fr) Dispositif de stockage d'hydrogène sous forme solide
EP1501144B1 (fr) Cellule de pile à combustible à forte surface active
FR3063333A1 (fr) Systeme de stockage et de fourniture d'hydrogene
WO2024170839A1 (fr) Plaque de refroidissement de cellules d'un dispositif de stockage electrique
EP3101084A1 (fr) Produit pour réacteur thermochimique
WO2020084249A1 (fr) Dispositif electrochimique comprenant un ensemble electrochimique dispose dans une enceinte de confinement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19745164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19745164

Country of ref document: EP

Kind code of ref document: A1