WO2020025660A1 - Dispositif de stockage de gaz par sorption - Google Patents
Dispositif de stockage de gaz par sorption Download PDFInfo
- Publication number
- WO2020025660A1 WO2020025660A1 PCT/EP2019/070601 EP2019070601W WO2020025660A1 WO 2020025660 A1 WO2020025660 A1 WO 2020025660A1 EP 2019070601 W EP2019070601 W EP 2019070601W WO 2020025660 A1 WO2020025660 A1 WO 2020025660A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- storage
- gas
- storage structure
- sorption
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C11/00—Use of gas-solvents or gas-sorbents in vessels
- F17C11/005—Use of gas-solvents or gas-sorbents in vessels for hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28033—Membrane, sheet, cloth, pad, lamellar or mat
- B01J20/28035—Membrane, sheet, cloth, pad, lamellar or mat with more than one layer, e.g. laminates, separated sheets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C11/00—Use of gas-solvents or gas-sorbents in vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/012—Hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0165—Applications for fluid transport or storage on the road
- F17C2270/0168—Applications for fluid transport or storage on the road by vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0165—Applications for fluid transport or storage on the road
- F17C2270/0184—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Definitions
- the invention relates to the storage of gas by sorption.
- the invention relates more specifically to a sorption gas storage structure, a sorption gas storage device, a gas storage and / or supply system, and an associated method.
- gas storage devices may include a solid material for storing a gas.
- Solid storage devices must have particular properties, in order to respond to the constraints induced by the gas and linked to the conditions of its use.
- Gas stored in solid form can, for example, when used as an energy carrier, power a fuel cell. In the mobility sector, it can also be used in a motor vehicle.
- the storage structures are sized in different ways depending on the choice of storage material and its size. It is for example known to provide a storage material in powdered form compressed within stacked boxes.
- the management of the storage material is an essential issue to guarantee the performance of such devices.
- it is for example known to have the storage material inside an enclosure.
- An object of the invention is to overcome at least one of the drawbacks listed above.
- Another object of the invention is to allow optimized gas storage, for example more efficient or more robust, in a storage material.
- Another object of the invention is to facilitate the handling of a gas storage structure, in particular during its manufacture.
- Another object of the invention is to simplify the manufacture, maintenance and / or recycling of a gas storage structure, in particular by reducing the costs associated with these operations.
- Another object of the invention is to reduce the mechanical stresses within a gas storage structure.
- Another object of the invention is to facilitate heat exchange within a gas storage structure.
- Another object of the invention is to provide a storage structure which can be easily adapted to the needs in terms of storage performance and / or gas supply.
- the invention notably proposes a structure for storing gas by sorption comprising:
- a first layer comprising a sorption storage material
- a second layer comprising:
- a first part of the second layer in contact with the first layer, and comprising a thermally conductive material, of thermal conductivity greater than that of the storage material, with a view to increasing the heat transfers within the storage structure, and a second part of the second layer, comprising a material:
- thermally conductive with thermal conductivity greater than that of the storage material, with a view to increasing the heat transfers within the storage structure.
- the second layer acts as a buffer during the operation of the storage structure, in order to distribute the mechanical stresses optimally within said structure.
- This is particularly advantageous when the storage of gas by sorption is reversible.
- the alternation of the sorption and desorption phases causes cyclic variations in the volume of the storage material which are compensated for by the material of the second part of the second layer.
- this compensation can be obtained during several successive cycles, during which the material of the second part of the second layer can spread again after being compressed, unlike the interstices described in US 2005/018847 which are crushed so irreversible.
- the device according to the invention can also comprise at least one of the following characteristics, taken alone or in combination:
- the first part material has a lower porosity than the second part material
- the storage material is in pre-compressed powder form
- the first part is a first underlay and / or the second part is a second underlay
- the second sublayer is disposed between the first sublayer and a third sublayer of the second layer, in contact with another of the at least one first layer, and comprising a thermally conductive material , of thermal conductivity higher than that of the storage material, with a view to increasing the heat transfers within the storage structure,
- the structure comprises an alternation of first layers and of second layers, preferably the first layers being separated two by two by one of the second layers,
- the structure comprises alternating wafers, preferably wafers which are mechanically independent of each other, preferably each first layer and / or each second layer forming a wafer, and
- the sorption storage material is a reversible sorption gas storage material
- the second layer is adapted to compensate by elastic deformation the respiration of the first layer during storage and / or supply of gas.
- the subject of the invention is also a device for storing gas by sorption comprising:
- the storage structure being arranged inside the enclosure.
- the invention also relates to a gas storage and / or supply system comprising a storage device as described above, and a gas utilization unit.
- the invention also relates to a method for storing and / or supplying gases by means of a storage structure as previously described, or of a storage device as previously described, or of a storage system. and / or gas supply as previously described, comprising a step of storing gas by sorption by the first layer.
- the device according to the invention can also comprise at least one of the following characteristics, taken alone or in combination:
- the method further comprises the steps of:
- FIG. 1 represents a gas storage structure according to an exemplary embodiment of the invention
- FIG. 2 shows the evolution of a second layer of the storage structure of Figure 1, during the operation of said structure
- FIG. 3 illustrates a gas storage device according to an exemplary embodiment of the invention
- FIG. 4 represents a gas storage and / or supply system according to an exemplary embodiment of the invention.
- FIG. 5 is a flowchart illustrating a method of storing and / or supplying gas according to an exemplary implementation of the invention.
- the gas stored can be of any kind and of any type.
- the storage structure can store alone, or in combination, hydrogen, ammonia, water vapor, oxygen, and / or carbon dioxide.
- a sorption gas storage structure 10 comprises a first layer 100 and a second layer 200.
- the first layer 100 is configured to store gas by sorption. To do this, it can comprise a material for storage by sorption.
- the sorption storage material can be a reversible or irreversible sorption gas storage material.
- reversible is meant that a material initially charged by sorption and which has been at least partially discharged by sorption can be at least partially recharged in the medium in which the material is placed.
- the gas can only be desorbed once and can no longer be absorbed again by the material.
- the storage material can be in pre-compressed powder form. Indeed, this shape facilitates the transport of the storage material because it is then easier to handle and has a smaller volume. In addition, this shape is more suitable for the sorption storage operation, because it is more stable, facilitates heat transfer, makes the expansion of the storage material more homogeneous.
- the material can have an optimized porosity in order to increase the volumetric storage capacity of the storage structure, but also to accommodate variations in volume of the second layer 200.
- the porosity of the storage material is between 10 vol.% and 50 vol.%, and is preferably between 25 vol.% and 35 vol.%.
- porosity is meant the ratio of the volume not occupied by the storage material within a given volume of the storage material, over said given volume.
- the porosity corresponds to the ratio of the volume not occupied by the storage material, over its apparent volume, that is to say that the porosity is equal to the ratio between the theoretical density at which the apparent density is subtracted from the theoretical density.
- the pre-compressed powder form makes it possible to control the porosity of the storage material.
- the storage material can include:
- a material suitable for forming a metal hydride preferably of the Mghh, NaAlhU, LiNhh, and / or LiBhU type, and / or a material suitable for forming an intermediate alloy, preferably of the TiMn2, TiC, LaNi 5 , FeTi, TiV, and / or TiZr type, and / or
- - a material suitable for forming an oxide, preferably of the PbO, and / or CaO type.
- the above materials are particularly suitable for storing and / or supplying gas such as hydrogen, ammonia, water vapor, oxygen, and / or carbon dioxide. This is not, however, limiting, since such materials can also be particularly suitable for other types of gas.
- the second layer 200 can, for its part, comprise a material:
- the second layer 200 Thanks to the second layer 200, the phenomena of sorption and desorption of gas by the storage material, which involve significant heat flows, are facilitated. In fact, the heat transfers are thus distributed homogeneously throughout the entire storage structure 10, which reinforces its efficiency and durability. In fact, the heat can be transported and easily extracted from the first layer 100, which ensures the rapid storage and / or destocking of the gas within the storage structure 10. The energy stored by a given mass of material of storage is therefore advantageously increased.
- the dimensions, the shape, and the relative positioning of the first layer 100 and of the second layer 200 make it possible in particular to optimize the heat transfers within the storage structure 10. For example, when the first layer 100 and the second layer 200 extend in a preferred longitudinal direction, as visible in FIG.
- the layer thickness in a section orthogonal to the longitudinal direction is a lever for possible optimization of the heat flows at within the storage structure 10.
- providing a porosity gradient of storage material within the first layer 100, in a radial direction relative to the longitudinal direction also constitutes a possible optimization path. heat exchanges within the storage structure 10. Indeed, it is observed that, when the first layer 100 and the second layer 200 extend in a longitudinal direction, the radial direction constitutes a preferred direction of heat exchange at within the storage structure 10. In any event, most of the heat emitted or received by the first layer 100 is transferred by the second layer 200.
- the second layer 200 acts as a buffer during the operation of the storage structure 10.
- the second layer 200 compensates for the variations in volume of the storage material during the sorption and desorption phases of gas, and thus preserves the mechanical coherence of the storage structure 10.
- the volumetric capacity of the storage material is advantageously increased, since it is no longer necessary to provide empty spaces within the storage structure 10, as in the storage system described in document US 2005/0188847.
- the second layer 200 makes it possible to distribute the mechanical forces arising from variations in the volume of the storage material in operation.
- the gas can be conveyed and / or extracted from the storage material by any suitable diffuser (not shown).
- the diffuser extends in a longitudinal direction which corresponds to the preferred direction of the storage structure 10, and the gas is distributed from and / or to the storage material in a direction radial to this preferred direction.
- the storage structure 10 comprises the first layer 100 and the second layer 200, alternately.
- the storage structure 10 comprises an alternation of first layers 100 and second layers 200, the first layers 100 preferably being separated in pairs by one of the second layers 200.
- the alternating distribution notably facilitates the distribution of the stresses thermal and mechanical within the storage structure 10.
- an alternating structure is easily reproducible on an industrial scale, both at the manufacturing and maintenance stage of the storage structure 10.
- such a structure can easily be adapted according to the needs in terms of storage performance and / or gas supply.
- such a distribution allows a compactness of the storage structure 10 which can prove to be particularly advantageous for applications such as transport, for example automobile.
- the storage structure 10 comprises alternating wafers, each first layer 100 and / or each second layer 200 preferably forming a wafer. Privileged, but however optional, the wafers are mechanically independent of each other.
- Such a configuration can in particular facilitate the handling of the different elements of the storage structure during the various operations associated with the manufacture, maintenance and / or recycling of the storage structure 10.
- the configuration in wafer promotes geometric optimization distribution and distribution of materials within the storage structure 10.
- this configuration is more suited to the operation of sorption storage, because it is more stable, facilitates heat transfer, makes the material expand more homogeneous storage.
- the gas can be better distributed throughout the entire storage structure 10 when loading the storage material.
- the second layer 200 may comprise a first part of the second layer 201, 203 in contact with the first layer 100, and a second part of the second layer 202.
- the first part 201, 203 can then comprise a thermally conductive material, of thermal conductivity greater than that of the storage material, with a view to increasing the heat transfers within the storage structure.
- the second part 202 may, for its part, comprise a compressible material in order to deform under the action of forces exerted by the storage material during variations in the volume of the storage material during the sorption and desorption phase. gas.
- the second part material 202 is advantageously of greater compressibility than the first part material.
- the second part material 202 is also thermally conductive, with a higher thermal conductivity than that of the storage material, with a view to increasing the heat transfers within the storage structure 10.
- the functions of the second layer 200 are then partially distributed between the first part 201, 203 and the second part 202.
- each of these functions can be optimized independently of each other, which improves the efficiency overall of the storage structure 10, and makes it possible more to adapt the storage structure 10 as a function of gas supply and / or storage needs.
- the presence of a thermally conductive material in each of the two parts 201, 202, 203 guarantees that the heat exchanges within the storage structure 10 are facilitated in order to distribute the heat evenly throughout the storage structure. 10.
- the first part material 201, 203 can be identical to the second part material 202. This allows an advantageous cost reduction and a simplification of the manufacture of the storage structure 10. Alternatively, the first part material 201, 203 can be different from the second part material 202. This promotes the adaptation of the storage structure 10 in order to optimize its storage and / or supply capacities for a given gas.
- first part material 201, 203, and / or the second part material 202 can comprise a matrix comprising graphite, for example natural graphite, for example expanded natural graphite.
- first part material 201, 203 may comprise a metal, for example aluminum or copper.
- second part material 202 may comprise a foam. The applicant has in fact noticed that these materials have adequate compressibility and / or heat transfer properties to fulfill the functions he
- first part 201, 203 and / or second part 202 of a storage structure 10 10.
- the first part material 201, 203 may furthermore have a lower porosity than the second part material 202.
- the porosity indeed constitutes a parameter influencing both the compressibility and the thermal properties of a material. Consequently, this difference in porosity favors the deformation of the second part 202 under the action of forces exerted by the storage material during variations in the volume of the storage material during the sorption and gas desorption phase, and allows the first part 201, 203 to increase the heat transfers within the storage structure 10. More specifically, the first part material 201, 203 can have a porosity of less than 50%, preferably less than 15%, and preferably less than 5%.
- the mechanical properties of the second layer 200 change during the various operating cycles of the storage structure 10.
- the first operating cycles of the storage structure 10 will make it possible to activate the first layer 100. More precisely, during the first loading and / or unloading cycles of the storage structure 10, the storage material included in the first layer 100 will acquire its full storage capacity by sorption. This initial conditioning can be implemented during loading and / or unloading cycles which may be of long duration and / or carried out at high temperature and / or carried out at high pressure. In this regard, it should be noted that, when the storage material is in pre-compressed powder form, activation is facilitated since the number and duration of the first loading and / or unloading cycles decrease.
- the quantity of gas stored, then supplied, by the first layer 100 increases, as and when successive loading and / or unloading, until reaching an expected level of storage under given temperature and pressure conditions.
- This expected level corresponds to the maximum quantity of gas that it is possible to store in the first layer 100 at a given temperature and pressure.
- the storage material is activated.
- this or these first operating cycles cause significant changes in the volume of the first layer. This leads to a plastic compression of the second layer 200, essentially by plastic compression of the second part of the second layer 202, as visible in FIG. 2.
- the volume variations of the first layer 100, during storage and / or supply of gas, are less significant than during the activation of the storage material. This is called breathing of the first layer 100.
- These small variations in volume are compensated for by an elastic deformation of the second layer 200 as visible in FIG. 2.
- the first part 201, 203 may have, before activation of the storage material, a thickness of less than 5 millimeters, preferably of approximately 2 millimeters, and in a preferred manner of approximately 1 millimeters.
- the second part 202 can, for its part, present, before activation of the storage material, a thickness of between 2 and 10 millimeters, preferably between 2 and 8 millimeters, and preferably between 2 and 4 millimeters. The applicant has in fact noticed that these thicknesses guarantee the best thermal conductivity within the storage structure 10, but also a good compensation for the forces exerted by the storage material during variations in the volume of the storage material during gas sorption and desorption phases.
- the plastic compression of the second layer 200 leads to a reduction in height of the second layer 200 of the order of 20 to 60% relative to its initial height, before activation, and the elastic compression leads to a reduction in height of the second layer 200 of the order of 80 to 99% relative to its initial height, before activation.
- the second part material 202 may have, before activation of the storage material, a porosity greater than 70%, preferably more than 80%, and more preferably more than 95% and, after activation of the storage material, a porosity greater than 20%, preferably more than 30%, and preferably between 45% and 60%.
- these porosities guarantee the best thermal conductivity within the storage structure, but also good compensation for the forces exerted by the storage material during variations in the volume of the storage material during gas sorption and desorption phases.
- the first part 201, 203 can be a first sub-layer and / or the second part 202 can be a second sub-layer.
- the functions of the second layer 200 can be ensured while retaining a good compactness of the storage structure 10.
- the second layer 202 can also be structured in angular sectors, each sector corresponding to one or the other of the first part 201, 203 and of the second part 202.
- the second sublayer 202 can be disposed between the first sublayer 201 and a third sublayer of second layer 203, in contact with another of the at least one first layer 100, and comprising a thermally conductive material, of thermal conductivity greater than that of the storage material, with a view to increasing the heat transfers within the storage structure.
- the second sublayer 202 is not in contact with the first layer 100. This configuration allows optimization of the heat transfers through the storage structure 10.
- a sorption gas storage device 30 comprises a storage structure 10 according to any one of the embodiments previously described, and an enclosure 40, the storage structure 10 being arranged inside. of enclosure 40.
- the presence of the enclosure 40 facilitates the transport and handling of the storage structure 10, but also its integration within global structures, such as a car for example.
- the presence of the second layer 200 makes it possible to alleviate the mechanical and thermal stresses that the storage structure 10 exerts on the enclosure 40, in operation.
- a storage device 30 has increased robustness.
- a gas storage and / or supply system 50 comprises a sorption gas storage device 30 according to any of the previously described embodiments, and a gas utilization unit 60 .
- the gas utilization unit 60 can, for example, be a fuel cell of a motor vehicle when the stored gas is hydrogen.
- a method of storing and / or supplying gas E by means of a sorption gas storage structure 10 and / or a sorption gas storage device 30 and / or d a gas storage and / or supply system 50 comprises a step of storing gas by sorption E1 by the first layer 100.
- the method E further comprises the steps of plastic compression E2 of the second layer materials 200 and of elastic compression and / or decompression E3 of said second layer materials 200.
- steps E2, E3 correspond to the activation processes E2 then of E3 breathing previously described.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
L'invention porte surune structure de stockage de gaz par sorption (10) comprenant : -une première couche (100) comprenant un matériau de stockage par sorption, -une deuxième couche (200) comprenant: °une première partie de deuxième couche (201, 203), en contact avec la première couche (100), et °une deuxième partie de deuxième couche (202).
Description
l
DISPOSITIF DE STOCKAGE DE GAZ PAR SORPTION
DOMAINE DE L’INVENTION L’invention concerne le stockage de gaz par sorption.
L’invention vise plus spécifiquement une structure de stockage de gaz par sorption, un dispositif de stockage de gaz par sorption, un système de stockage et/ou de fourniture de gaz, et un procédé associé. ETAT DE LA TECHNIQUE
L’utilisation de gaz dans l’industrie, qu’il s’agisse du secteur de la mobilité, de l’énergie, de la chimie ou de la production, est soumise à de multiples contraintes. A cet égard, de nombreux dispositifs de stockage de gaz ont déjà été proposés. Certains de ces dispositifs peuvent comprendre un matériau solide permettant de stocker un gaz.
De tels dispositifs de stockage solide doivent présenter des propriétés particulières, afin de répondre aux contraintes induites par le gaz et liées aux conditions de son utilisation. Le gaz stocké sous forme solide peut, par exemple, lorsqu’il est utilisé comme vecteur énergétique, alimenter une pile à combustible. Dans le secteur de la mobilité, il peut également être utilisé au sein d’un véhicule à moteur.
Suivant l’utilisation visée, les structures de stockages sont dimensionnées de différentes manières de par le choix du matériau de stockage et sa taille. Il est par exemple connu de prévoir un matériau de stockage sous forme pulvérulente compressée au sein de coffrets empilés.
En tout état de cause, la gestion du matériau de stockage est un enjeu essentiel pour garantir la performance de tels dispositifs. A cet égard, il est par exemple connu de disposer le matériau de stockage à l’intérieur d’une enceinte.
Les systèmes connus sont toutefois exposés à des problèmes d’efficacité et d’homogénéisation du comportement du matériau de stockage, de robustesse et de longévité de fonctionnement des structures de stockage, de sûreté d’utilisation, de complexité de fabrication, et de rendement économique et énergétique dans la mise en oeuvre desdits systèmes.
A titre d’exemple, le document US 2005/0188847 décrit une enceinte au sein de laquelle un échangeur de chaleur s’étend. L’échangeur comprend des tuyaux sur lesquels des ailettes sont fixées transversalement, délimitant entre elles des interstices dont certains sont remplis d’un alliage pour le stockage d’hydrogène sous forme solide. Les interstices vides restants sont, quant à eux, configurés pour être écrasés du fait de l’expansion de l’alliage, et ce de manière irréversible.
DESCRIPTION DE L’INVENTION Un but de l’invention est de pallier au moins un des inconvénients listés ci- avant.
Un autre but de l’invention est de permettre un stockage de gaz optimisé, par exemple plus efficace ou plus robuste, dans un matériau de stockage.
Un autre but de l’invention est de faciliter la manipulation d’une structure de stockage de gaz, notamment lors de sa fabrication.
Un autre but de l’invention est de simplifier la fabrication, la maintenance et/ou le recyclage d’une structure de stockage de gaz, notamment en réduisant les coûts associés à ces opérations.
Un autre but de l’invention est de réduire les contraintes mécaniques au sein d’une structure de stockage de gaz.
Un autre but de l’invention est de faciliter les échanges thermiques au sein d’une structure de stockage de gaz.
Un autre but de l’invention est de proposer une structure de stockage qui puisse être facilement adaptée aux besoins en performance de stockage et/ou de fourniture de gaz.
L’invention propose notamment une structure de stockage de gaz par sorption comprenant :
- une première couche comprenant un matériau de stockage par sorption, - une deuxième couche comprenant :
o une première partie de deuxième couche, en contact avec la première couche, et comprenant un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage, et
o une deuxième partie de deuxième couche, comprenant un matériau :
■ compressible en vue de se déformer sous l’action d’efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phases de sorption et de désorption du gaz,
■ de compressibilité supérieure à celle du matériau de première partie, et
■ thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure des stockage.
Dans une telle structure, grâce à la deuxième couche, les phénomènes de sorption et de désorption de gaz par le matériau de stockage, qui impliquent d’importants flux de chaleur, sont facilités. En outre, la deuxième couche assure un rôle de tampon lors du fonctionnement de la structure de stockage, afin de répartir les contraintes mécaniques de manière optimale, au sein de ladite structure. Ceci est particulièrement avantageux lorsque le stockage de gaz par sorption est réversible. En effet, l’alternance des phases de sorption et de désorption entraîne des variations cycliques du volume du matériau de stockage qui sont compensées par le matériau de deuxième partie de deuxième couche. En outre, cette compensation peut être obtenue lors de plusieurs cycles successifs, lors desquels le matériau de deuxième partie de deuxième couche peut s’étendre à nouveau après avoir été compressé, contrairement aux interstices décrits dans US 2005/018847 qui s’écrasent de manière irréversible.
Avantageusement, mais facultativement, le dispositif selon l’invention peut en outre comprendre au moins l’une des caractéristiques suivantes, prises seules ou en combinaison :
- le matériau de première partie présente une porosité plus faible que le matériau de deuxième partie,
- le matériau de stockage est sous forme pulvérulente pré-com pressée,
- la première partie est une première sous-couche et/ou la deuxième partie
est une deuxième sous-couche,
- pour au moins une deuxième couche, la deuxième sous couche est disposée entre la première sous-couche et une troisième sous-couche de deuxième couche, en contact avec une autre de l’au moins une première couche, et comprenant un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage,
- la structure comprend une alternance de premières couches et de deuxièmes couches, de préférence les premières couches étant séparées deux à deux par une des deuxièmes couches,
- la structure comprend une alternance de galettes, de préférence de galettes mécaniquement indépendantes les unes des autres, de préférence chaque première couche et/ou chaque deuxième couche formant une galette, et
- le matériau de stockage par sorption est un matériau de stockage réversible de gaz par sorption,
- la deuxième couche est adaptée pour compenser par une déformation élastique la respiration de la première couche lors du stockage et/ou de la fourniture de gaz.
L’invention a également pour objet un dispositif de stockage de gaz par sorption comprenant :
- une structure de stockage telle que précédemment décrite,
- une enceinte, la structure de stockage étant disposée à l’intérieur de l’enceinte.
L’invention a également pour objet un système de stockage et/ou de fourniture de gaz comprenant un dispositif de stockage tel que précédemment décrit, et une unité d’utilisation de gaz.
L’invention a également pour objet un procédé de stockage et/ou de fourniture de gaz au moyen d’une structure de stockage telle que précédemment décrite, ou d’un dispositif de stockage tel que précédemment décrit, ou d’un système de stockage
et/ou de fourniture de gaz tel que précédemment décrit, comprenant une étape de stockage de gaz par sorption par la première couche.
Avantageusement, mais facultativement, le dispositif selon l’invention peut en outre comprendre au moins l’une des caractéristiques suivantes, prises seules ou en combinaison :
- le procédé comprend en outre les étapes de :
o compression plastique des matériaux de la deuxième couche, et o compression et/ou décompression élastique des matériaux de la deuxième couche.
DESCRIPTION DES FIGURES D’autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre et en regard des dessins annexés donnés à titre d’exemple non limitatif et sur lesquels :
- la figure 1 représente une structure de stockage de gaz selon un exemple de mode de réalisation de l’invention,
- la figure 2 représente l’évolution d’une deuxième couche de la structure de stockage de la figure 1 , au cours du fonctionnement de ladite structure,
- la figure 3 illustre un dispositif de stockage de gaz selon un exemple de mode de réalisation de l’invention,
- la figure 4 représente un système de stockage et/ou de fourniture de gaz selon un exemple de mode de réalisation de l’invention, et
- la figure 5 est un organigramme illustrant un procédé de stockage et/ou de fourniture de gaz selon un exemple de mise en oeuvre de l’invention.
DESCRIPTION DETAILLEE DE L’INVENTION
En référence aux figures, on va maintenant décrire une structure et un dispositif de stockage de gaz par sorption, ainsi qu’un système et procédé de stockage et/ou de fourniture de gaz.
Le gaz stocké peut être de toute nature et de tout type. Par exemple, la structure de stockage peut stocker seul, ou en combinaison, de l’hydrogène, de
l’ammoniac, de la vapeur d’eau, de l’oxygène, et/ou du dioxyde de carbone.
Structure de stockage
En référence à la figure 1 , une structure de stockage de gaz par sorption 10 comprend une première couche 100 et une deuxième couche 200.
La première couche 100 est configurée pour stocker du gaz par sorption. Pour ce faire, elle peut comprendre un matériau de stockage par sorption.
Le matériau de stockage par sorption peut être un matériau de stockage réversible ou irréversible de gaz par sorption. Par réversible, on entend qu’un matériau initialement chargé par sorption et qui a été au moins partiellement déchargé par sorption peut être au moins partiellement rechargé dans le milieu dans lequel est placé le matériau. Dans le cas d’une sorption irréversible, le gaz ne peut être désorbé qu’une seule fois et ne peut plus être absorbé à nouveau par le matériau.
Avantageusement, le matériau de stockage peut être sous forme pulvérulente pré- compressé. En effet, cette forme facilite le transport du matériau de stockage car il est alors plus facile à manipuler et présente un volume plus faible. En outre, cette forme est plus adaptée au fonctionnement de stockage par sorption, car elle plus stable, facilite le transfert de chaleur, rend l’expansion du matériau de stockage plus homogène.
En outre, le matériau peut présenter une porosité optimisée en vue d’augmenter la capacité de stockage volumétrique de la structure de stockage, mais aussi de s’accommoder des variations de volume de la deuxième couche 200. Par exemple la porosité du matériau de stockage est comprise entre 10 vol.% et 50 vol.%, et vaut de préférence entre 25 vol.% et 35 vol.%. Par porosité on entend le rapport du volume non occupé par le matériau de stockage au sein d’un volume donné du matériau de stockage, sur ledit volume donné. En d’autres termes, la porosité correspond au rapport du volume non occupé par le matériau de stockage, sur son volume apparent, c’est-à-dire que la porosité est égale au rapport entre la densité théorique à laquelle la densité apparente est retranchée, sur la densité théorique. En tout état de cause, la forme pulvérulente pré-compressée permet de contrôler la porosité du matériau de stockage.
De plus, le matériau de stockage peut comprendre :
- un matériau adapté pour former un hydrure métallique, de préférence du type Mghh, NaAlhU, LiNhh, et/ou LiBhU, et/ou
- un matériau adapté pour forme un alliage intermédiaire, de préférence du type TiMn2, TiC , LaNi5, FeTi, TiV, et/ou TiZr, et/ou
- un matériau adapté pour former un sel d’ammoniac, de préférence du type BaCh, et/ou CaCh, ou
- un matériau adapté pour former un hydroxyde, de préférence du type
CaO, et/ou Ca(OH)2, ou
- un matériau adapté pour former un oxyde, de préférence du type PbO, et/ou CaO.
Le demandeur s’est en effet aperçu que les matériaux ci-dessus sont particulièrement adaptés pour stocker et/ou fournir du gaz tel que de l’hydrogène, de l’ammoniac, de la vapeur d’eau de l’oxygène, et/ou du dioxyde de carbone. Ceci n’est cependant pas limitatif, puisque de tels matériaux peuvent également être particulièrement adaptés pour d’autres types de gaz.
La deuxième couche 200 peut, quant à elle, comprendre un matériau :
- thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage 10, et
compressible en vue de se déformer sous l’action d’efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phase de sorption et de désorption de gaz.
Grâce à la deuxième couche 200, les phénomènes de sorption et de désorption de gaz par le matériau de stockage, qui impliquent d’importants flux de chaleur, sont facilités. En effet, les transferts thermiques sont ainsi répartis de manière homogène à travers toute la structure de stockage 10, ce qui en renforce l’efficacité et la pérennité. De fait, la chaleur peut être acheminée et extraite facilement de la première couche 100, ce qui assure le stockage et/ou le déstockage rapide du gaz au sein de la structure de stockage 10. L’énergie stockée par une masse donnée de matériau de stockage est donc avantageusement augmentée. Avantageusement, les dimensions, la forme, et le positionnement relatif de première couche 100 et de deuxième couche 200 permettent notamment d’optimiser les transferts thermiques au sein de la structure de stockage 10. Par exemple, lorsque la première couche 100 et la deuxième couche 200 s’étendent suivant une direction longitudinale privilégiée, comme visible sur la figure 1 , l’épaisseur de couche suivant une section orthogonale à la direction longitudinale est un levier d’optimisation possible des flux de chaleur au
sein de la structure de stockage 10. Alternativement, ou en combinaison, prévoir un gradient de porosité de matériau de stockage au sein de la première couche 100, dans une direction radiale par rapport à la direction longitudinale, constitue également une voie d’optimisation possible des échanges thermiques au sein de la structure de stockage 10. En effet, on observe que, lorsque la première couche 100 et la deuxième couche 200 s’étendent suivant une direction longitudinale, la direction radiale constitue une direction privilégiée d’échange de chaleur au sein de la structure de stockage 10. En tout état de cause, la plupart de la chaleur émise ou reçue par la première couche 100 est transférée par la deuxième couche 200.
En outre, la deuxième couche 200 assure un rôle de tampon lors du fonctionnement de la structure de stockage 10. En effet, la deuxième couche 200 compense les variations de volume du matériau de stockage lors des phases de sorption et de désorption de gaz, et préserve ainsi la cohérence mécanique de la structure de stockage 10. De cette manière, la capacité volumétrique du matériau de stockage est avantageusement augmentée, puisqu’il n’est plus nécessaire de ménager des espaces vides au sein de la structure de stockage 10, comme dans le système de stockage décrit dans le document US 2005/0188847. Enfin, la deuxième couche 200 permet de répartir les efforts mécaniques nés des variations de volume du matériau de stockage en fonctionnement.
Le gaz peut être acheminé et/ou extrait du matériau de stockage par tout diffuseur approprié (non représenté). Avantageusement le diffuseur s’étend suivant une direction longitudinale qui correspond à la direction privilégiée de la structure de stockage 10, et le gaz est distribué depuis et/ou vers le matériau de stockage dans une direction radiale à cette direction privilégiée.
Structure en alternance
Comme visible sur la figure 1 , dans un mode de réalisation, la structure de stockage 10 comprend la première couche 100 et la deuxième couche 200, en alternance. De manière privilégiée, la structure de stockage 10 comprend une alternance de premières couches 100 et de deuxièmes couches 200, les premières couches 100 étant de préférence séparées deux à deux par une des deuxièmes couches 200. La répartition en alternance facilite notamment la répartition des contraintes thermiques et mécaniques au sein de la structure de stockage 10. En outre, une structure en alternance est aisément reproductible à l'échelle industrielle,
tant au stade de fabrication que de maintenance de la structure de stockage 10. De plus, une telle structure peut facilement être adaptée suivant les besoins en performance de stockage et/ou de fourniture de gaz. Enfin, une telle répartition autorise une compacité de la structure de stockage 10 qui peut s’avérer particulièrement avantageuse pour des applications telles que le transport, par exemple automobile.
Avantageusement, la structure de stockage 10 comprend une alternance de galettes, chaque première couche 100 et/ou chaque deuxième couche 200 formant de préférence une galette. De manière privilégiée, mais toutefois optionnelle, les galettes sont mécaniquement indépendantes les unes des autres. Une telle configuration peut notamment faciliter la manipulation des différents éléments de la structure de stockage lors des différentes opérations associées à la fabrication, la maintenance et/ou le recyclage de la structure de stockage 10. En outre, la configuration en galette favorise une optimisation géométrique de la répartition et de la distribution des matériaux au sein de la structure de stockage 10. De plus, cette configuration est plus adaptée au fonctionnement de stockage par sorption, car elle plus stable, facilite le transfert de chaleur, rend l’expansion du matériau de stockage plus homogène. Ainsi, le gaz peut être mieux distribué à travers toute la structure de stockage 10 lors du chargement du matériau de stockage.
Parties de deuxième couche
Toujours en référence à la figure 1 , dans un mode de réalisation, la deuxième couche 200 peut comprendre une première partie de deuxième couche 201 , 203 en contact avec la première couche 100, et une deuxième partie de deuxième couche 202.
Dans cette configuration, la première partie 201 , 203 peut alors comprendre un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage. La deuxième partie 202 peut, quant à elle, comprendre un matériau compressible en vue de se déformer sous l’action d’efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phase de sorption et de désorption de gaz. En outre, le matériau de deuxième partie 202 est avantageusement de compressibilité supérieure au matériau de première partie. Par compressibilité, on comprend la capacité d’un matériau à
diminuer son volume lorsqu’il est soumis à un effort de compression donné. Ainsi, pour un même effort de compression, la diminution en volume du matériau de deuxième partie 202 est plus importante que la diminution en volume du matériau de première partie 201 , 203. En d’autres termes, pour obtenir un taux de diminution donné du volume du matériau de première partie 201 , 203 et du matériau de deuxième partie 202, des efforts de compression plus importants sont nécessaires pour le matériau de première partie 201 , 203 que pour le matériau de deuxième partie 202. En tout état de cause, le matériau de deuxième partie 202 est également thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage 10.
Les fonctions de la deuxième couche 200 sont alors partiellement réparties entre la première partie 201 , 203 et la deuxième partie 202. De cette manière, chacune de ces fonctions peut être optimisée indépendamment l’une de l’autre, ce qui améliore l’efficacité globale de la structure de stockage 10, et permet davantage d’adapter la structure de stockage 10 en fonction des besoins en fourniture et/ou stockage de gaz. En outre, la présence d’un matériau thermiquement conducteur dans chacun des deux parties 201 , 202, 203 garantit que les échanges thermiques au sein de la structure de stockage 10 sont facilités afin de répartir la chaleur de manière homogène dans toute la structure de stockage 10.
Le matériau de première partie 201 , 203 peut être identique au matériau de deuxième partie 202. Ceci permet une avantageuse réduction de coût et une simplification de la fabrication de la structure de stockage 10. Alternativement, le matériau de première partie 201 , 203 peut être différent du matériau de deuxième partie 202. Ceci favorise l’adaptation de la structure de stockage 10 afin d’optimiser ses capacités de stockage et/ou de fourniture d’un gaz donné.
Par ailleurs, le matériau de première partie 201 , 203, et/ou le matériau de deuxième partie 202, peuvent comprendre une matrice comprenant du graphite, par exemple du graphite naturel, par exemple du graphite naturel expansé. Alternativement, ou en complément, le matériau de première partie 201 , 203 peut comprendre un métal, par exemple de l’aluminium ou du cuivre. Alternativement, ou en complément, le matériau de deuxième partie 202 peut comprendre une mousse. Le demandeur s’est en effet aperçu que ces matériaux présentaient des propriétés de compressibilité et/ou de transferts thermiques adéquats pour remplir les fonctions
il
de première partie 201 , 203 et/ou de deuxième partie 202 d’une structure de stockage 10.
Le matériau de première partie 201 , 203 peut en outre présenter une porosité plus faible que le matériau de deuxième partie 202. La porosité constitue en effet un paramètre influençant à la fois la compressibilité et les propriétés thermiques d’un matériau. Par conséquent, cette différence de porosité favorise la déformation de la deuxième partie 202 sous l’action d’efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phase de sorption et de désorption de gaz, et permet à la première partie 201 , 203 d’augmenter les transferts thermiques au sein de la structure de stockage 10. Plus précisément, le matériau de première partie 201 , 203 peut présenter une porosité inférieure à 50%, de préférence inférieure à 15%, et de manière privilégiée moins de 5%.
En référence à la figure 2, les propriétés mécaniques de la deuxième couche 200 évoluent au cours des différents cycles de fonctionnement de la structure de stockage 10.
En fait, les premiers cycles de fonctionnement de la structure de stockage 10 vont permettre d’activer la première couche 100. Plus précisément, lors des premiers cycles de chargement et/ou déchargement de la structure de stockage 10, le matériau de stockage compris dans la première couche 100 va acquérir sa pleine capacité de stockage par sorption. Ce conditionnement initial peut être mis en oeuvre lors de cycles de chargement et/ou de déchargement pouvant être de longue durée et/ou réalisés à haute température et/ou réalisés à haute pression. A cet égard, il convient de noter que, lorsque le matériau de stockage est sous forme pulvérulente pré- compressée, l’activation est facilitée car le nombre et la durée des premiers cycles de chargement et/ou déchargement diminuent. Progressivement, la quantité de gaz stockée, puis fournie, par la première couche 100 augmente, au fur et à mesure des chargements et/ou déchargements successifs, jusqu’à atteindre un niveau de stockage attendu dans des conditions de température et de pression donnée. Ce niveau attendu correspond à la quantité maximale de gaz qu’il est possible de stocker dans la première couche 100 à température et pression données. Une fois ce niveau atteint, le matériau de stockage est activé. Or, ce ou ces premiers cycles de fonctionnement entraînent des modifications importantes du volume de première couche. Ceci amène à une compression plastique de deuxième couche 200, essentiellement par compression plastique de la deuxième partie de deuxième
couche 202, comme visible sur la figure 2.
Par la suite, les variations de volume de la première couche 100, lors du stockage et/ou de la fourniture de gaz, sont moins importants que lors de l’activation du matériau de stockage. On parle alors de respiration de la première couche 100. Ces faibles variations de volume sont compensées par une déformation élastique de la deuxième couche 200 comme visible sur la figure 2.
Ainsi, la première partie 201 , 203 peut présenter, avant activation du matériau de stockage, une épaisseur inférieure à 5 millimètres, de préférence d’environ 2 millimètres, et de manière privilégiée d’environ 1 millimètres. La deuxième partie 202 peut, quant à elle, présenter, avant activation du matériau de de stockage, une épaisseur comprise entre 2 et 10 millimètres, de préférence comprise entre 2 et 8 millimètres, et de manière privilégiée comprise entre 2 et 4 millimètres. Le demandeur s’est en effet aperçu que ces épaisseurs garantissent la meilleure conductivité thermique au sein de la structure de stockage 10, mais aussi une bonne compensation des efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phases de sorption et de désorption du gaz. En tout état de cause, la compression plastique de deuxième couche 200 conduit à une réduction de hauteur de la deuxième couche 200 de l’ordre de 20 à 60 % par rapport à sa hauteur initiale, avant activation, et la compression élastique conduit à une réduction de hauteur de la deuxième couche 200 de l’ordre de 80 à 99 % par rapport à sa hauteur initiale, avant activation.
En outre, le matériau de deuxième partie 202 peut présenter, avant activation du matériau de stockage, une porosité supérieure à 70%, de préférence plus de 80%, et de manière privilégiée plus de 95% et, après activation du matériau de stockage, une porosité supérieure à 20%, de préférence plus de 30%, et de manière privilégiée comprise entre 45% et 60%. Le demandeur s’est en effet aperçu que ces porosités garantissent la meilleure conductivité thermique au sein de la structure de stockage, 10 mais aussi une bonne compensation des efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phases de sorption et de désorption du gaz.
Comme visible sur la figure 1 , la première partie 201 , 203 peut être une première sous-couche et/ou la deuxième partie 202 peut être une deuxième sous- couche. Ceci garantit une homogénéité structurelle qui facilite les opérations de fabrication, de maintenance et/ou de recyclage de la structure de stockage 10. En
outre, les fonctions de la deuxième couche 200 peuvent être assurées tout en conservant une bonne compacité de la structure de stockage 10. Ceci n’est cependant pas limitatif, puisque d’autres formes de première partie 201 , 203 et de deuxième partie 202 sont envisageables. Par exemple, la deuxième couche 202 peut également être structurée en secteurs angulaires, chaque secteur correspondant à l’une ou l’autre de la première partie 201 , 203 et de la deuxième partie 202.
Avantageusement, en référence à la figure 1 , pour au moins une deuxième couche 200, la deuxième sous-couche 202 peut être disposée entre la première sous- couche 201 et une troisième sous-couche de deuxième couche 203, en contact avec une autre de l’au moins une première couche 100, et comprenant un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage. Dans cette configuration de deuxième couche 200 en « sandwich », la deuxième sous-couche 202 n’est pas en contact avec la première couche 100. Cette configuration autorise une optimisation des transferts thermiques à travers la structure de stockage 10.
Dispositif de stockage
En référence à la figure 3, un dispositif de stockage de gaz par sorption 30 comprend une structure de stockage 10 selon l’un quelconque des modes de réalisation précédemment décrits, et une enceinte 40, la structure de stockage 10 étant disposée à l’intérieur de l’enceinte 40.
La présence de l’enceinte 40 facilite le transport et la manipulation de la structure de stockage 10, mais aussi son intégration au sein de structures globales, telles qu’une voiture par exemple. En outre, la présence de la deuxième couche 200 permet d’alléger les contraintes mécaniques et thermiques que la structure de stockage 10 exerce sur l’enceinte 40, en fonctionnement. Ainsi, un tel dispositif de stockage 30 présente une robustesse accrue. Système de stockage et/ou de fourniture de gaz
En référence à la figure 4, un système de stockage et/ou de fourniture de gaz 50 comprend un dispositif de stockage de gaz par sorption 30 selon l’un quelconque des modes de réalisation précédemment décrits, et une unité d’utilisation de gaz 60.
L’unité d’utilisation de gaz 60 peut, par exemple, être une pile à combustible
de véhicule automobile lorsque le gaz stocké est de l’hydrogène.
Procédé de stockage et/ou de fourniture de gaz
En référence à la figure 5, un procédé de stockage et/ou de fourniture de gaz E au moyen d’une structure de stockage de gaz par sorption 10 et/ou d’un dispositif de stockage de gaz par sorption 30 et/ou d’un système de stockage et/ou de fourniture de gaz 50, selon l’un quelconque des modes de réalisation précédemment décrit comprend une étape de stockage de gaz par sorption E1 par la première couche 100.
Avantageusement, le procédé E comprend en outre les étapes de compression plastique E2 des matériaux de deuxième couche 200 et de compression et/ou décompression élastique E3 desdits matériaux de deuxième couche 200. Ces étapes E2, E3 correspondent aux processus d’activation E2 puis de respiration E3 précédemment décrites.
Claims
1. Structure de stockage de gaz par sorption (10) comprenant :
une première couche (100) comprenant un matériau de stockage par sorption,
une deuxième couche (200) comprenant :
o une première partie de deuxième couche (201 , 203), en contact avec la première couche (100), et comprenant un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage (10), et o une deuxième partie de deuxième couche (202), comprenant un matériau :
■ compressible en vue de se déformer sous l’action d’efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phases de sorption et de désorption du gaz,
■ de compressibilité supérieure à celle du matériau de première partie (201 , 203), et
■ thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure des stockage (10).
2. Structure de stockage (10) selon la revendication 1 , dans laquelle le matériau de première partie (201 , 203) présente une porosité plus faible que le matériau de deuxième partie (202).
3. Structure de stockage (10) selon l’une des revendications 1 et 2, dans laquelle le matériau de stockage est sous forme pulvérulente pré-compressée.
4. Structure de stockage (10) selon l’une des revendications 1 à 3, dans laquelle la première partie (201 , 203) est une première sous-couche (201 , 203) et/ou la deuxième partie (202) est une deuxième sous-couche (202).
5. Structure de stockage (10) selon la revendication 4, dans laquelle pour au moins une deuxième couche (200), la deuxième sous couche (202) est disposée entre la première sous-couche (201 ) et une troisième sous-couche de deuxième couche (203), en contact avec une autre de l’au moins une première couche (100), et comprenant un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage (10).
6. Structure de stockage (10) selon l’une des revendications 1 à 5, dans laquelle la structure (10) comprend une alternance de premières couches (100) et de deuxièmes couches (200), de préférence les premières couches (100) étant séparées deux à deux par une des deuxièmes couches (200).
7. Structure de stockage (10) selon l’une des revendications 1 à 6, dans laquelle la structure (10) comprend une alternance de galettes, de préférence de galettes mécaniquement indépendantes les unes des autres, de préférence chaque première couche (100) et/ou chaque deuxième couche (200) formant une galette.
8. Dispositif de stockage de gaz par sorption (30) comprenant :
une structure de stockage (10) selon l’une des revendications 1 à 7, une enceinte (40), la structure de stockage (10) étant disposée à l’intérieur de l’enceinte (40).
9. Système de stockage et/ou de fourniture de gaz (50) comprenant un dispositif de stockage (30) selon la revendication 8, et une unité d’utilisation de gaz (60).
10. Procédé de stockage et/ou de fourniture de gaz (E) au moyen d’une structure de stockage (10) selon l’une des revendications 1 à 7, ou d’un dispositif de stockage (30) selon la revendication 8, ou d’un système (50) selon la revendication 9, comprenant une étape de stockage de gaz par sorption (E1 ) par la première couche (100).
11. Procédé de stockage et/ou de fourniture de gaz (E) selon la revendication 10, comprenant en outre les étapes de :
compression plastique (E2) des matériaux de la deuxième couche (200), et
compression et/ou décompression élastique (E3) des matériaux de la deuxième couche (200).
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021505633A JP2021533310A (ja) | 2018-07-31 | 2019-07-31 | 収着ガス貯蔵装置 |
CN201980064884.8A CN112805498A (zh) | 2018-07-31 | 2019-07-31 | 吸附式气体储存设备 |
EP19745157.8A EP3830467A1 (fr) | 2018-07-31 | 2019-07-31 | Dispositif de stockage de gaz par sorption |
US17/264,819 US20210293382A1 (en) | 2018-07-31 | 2019-07-31 | Device for storing gas by sorption |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1857181A FR3084722A1 (fr) | 2018-07-31 | 2018-07-31 | Dispositif de stockage de gaz par sorption |
FR1857181 | 2018-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020025660A1 true WO2020025660A1 (fr) | 2020-02-06 |
Family
ID=63896372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/070601 WO2020025660A1 (fr) | 2018-07-31 | 2019-07-31 | Dispositif de stockage de gaz par sorption |
Country Status (7)
Country | Link |
---|---|
US (1) | US20210293382A1 (fr) |
EP (1) | EP3830467A1 (fr) |
JP (1) | JP2021533310A (fr) |
CN (1) | CN112805498A (fr) |
FR (1) | FR3084722A1 (fr) |
MA (1) | MA53317A (fr) |
WO (1) | WO2020025660A1 (fr) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4667815A (en) * | 1985-01-21 | 1987-05-26 | Mannesmann Aktiengesellschaft | Hydrogen storage |
US20050018847A1 (en) | 2003-06-30 | 2005-01-27 | Garay Juan A. | Method and system for fair exchange of user information |
US20050188847A1 (en) | 2004-02-27 | 2005-09-01 | Katsuyoshi Fujita | Hydrogen storage tank |
WO2015091550A1 (fr) * | 2013-12-17 | 2015-06-25 | Commissariat à l'énergie atomique et aux énergies alternatives | Reservoir de stockage d'hydrogene a hydrures metalliques a echanges thermiques |
US20150211683A1 (en) * | 2012-08-09 | 2015-07-30 | Aaqius & Aaqius Sa | Ammonia storage unit and associated structure and system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI259252B (en) * | 2005-11-14 | 2006-08-01 | Ind Tech Res Inst | Hydrogen pressurization device |
EP2695859B1 (fr) * | 2012-08-09 | 2015-09-16 | Aaqius & Aaqius S.A. | Structure de stockage d'ammoniac et systèmes et procédé associés |
US9006137B2 (en) * | 2013-05-13 | 2015-04-14 | Ford Global Technologies, Llc | Adsorbent material with anisotropic layering |
-
2018
- 2018-07-31 FR FR1857181A patent/FR3084722A1/fr active Pending
-
2019
- 2019-07-31 JP JP2021505633A patent/JP2021533310A/ja active Pending
- 2019-07-31 EP EP19745157.8A patent/EP3830467A1/fr not_active Withdrawn
- 2019-07-31 US US17/264,819 patent/US20210293382A1/en not_active Abandoned
- 2019-07-31 MA MA053317A patent/MA53317A/fr unknown
- 2019-07-31 WO PCT/EP2019/070601 patent/WO2020025660A1/fr unknown
- 2019-07-31 CN CN201980064884.8A patent/CN112805498A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4667815A (en) * | 1985-01-21 | 1987-05-26 | Mannesmann Aktiengesellschaft | Hydrogen storage |
US20050018847A1 (en) | 2003-06-30 | 2005-01-27 | Garay Juan A. | Method and system for fair exchange of user information |
US20050188847A1 (en) | 2004-02-27 | 2005-09-01 | Katsuyoshi Fujita | Hydrogen storage tank |
US20150211683A1 (en) * | 2012-08-09 | 2015-07-30 | Aaqius & Aaqius Sa | Ammonia storage unit and associated structure and system |
WO2015091550A1 (fr) * | 2013-12-17 | 2015-06-25 | Commissariat à l'énergie atomique et aux énergies alternatives | Reservoir de stockage d'hydrogene a hydrures metalliques a echanges thermiques |
Also Published As
Publication number | Publication date |
---|---|
FR3084722A1 (fr) | 2020-02-07 |
MA53317A (fr) | 2022-01-26 |
US20210293382A1 (en) | 2021-09-23 |
JP2021533310A (ja) | 2021-12-02 |
EP3830467A1 (fr) | 2021-06-09 |
CN112805498A (zh) | 2021-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3017498B1 (fr) | Dispositif de gestion thermique de la batterie d'un vehicule electrique | |
EP3270088B1 (fr) | Conteneur d'un systeme de stockage et de restitution de la chaleur comportant au moins deux modules en beton | |
EP3270087B1 (fr) | Conteneur d'un systeme de stockage et de restitution de la chaleur comportant une double paroi en beton | |
CA2912253C (fr) | Unite de stockage d'ammoniac et structure et systeme associes | |
EP3235022A1 (fr) | Accumulateur au lithium avec emballage isolant thermiquement a deux couches et avec caloduc pour la gestion thermique | |
FR3014998A1 (fr) | Reservoir de stockage d'hydrogene a hydrures metalliques a echanges thermiques ameliores | |
EP3830468A1 (fr) | Dispositif de stockage de gaz par sorption | |
WO2020025660A1 (fr) | Dispositif de stockage de gaz par sorption | |
FR3091789A1 (fr) | Pack-batterie comprenant une pluralite d’accumulateurs relies electriquement entre eux et un systeme de circulation de fluide dielectrique assurant a la fois le refroidissement des accumulateurs et leur serrage | |
FR3084721A1 (fr) | Dispositif de stockage d'hydrogene par sorption | |
FR2953820A1 (fr) | Dispositif de stockage d'hydrogene a hydrures metalliques | |
WO2020025682A1 (fr) | Dispositif de stockage de gaz par sorption | |
US11732844B2 (en) | Hydrogen storage tank and fuel cell system, as well as motor vehicle having such a hydrogen storage tank and fuel cell system | |
FR2687507A1 (fr) | Electrode de nickel portant une couche d'oxyde de cobalt de passivation, procede pour sa production et son utilisation dans une cellule d'accumulation electrique. | |
FR3034261A1 (fr) | Batterie electrique modulaire comprenant un dispositif de regulation thermique | |
WO2018154051A1 (fr) | Dispositif de stockage d'hydrogène | |
EP3994409A1 (fr) | Systeme de stockage et de recuperation de chaleur a l'axe horizontal | |
FR3063333A1 (fr) | Systeme de stockage et de fourniture d'hydrogene | |
FR2735618A1 (fr) | Anode en alliage de stockage d'hydrogene et procede pour sa fabrication | |
FR3059080A1 (fr) | Reservoir de stockage d'hydrogene sous la forme d'hydrure metallique offrant un confinement de la poudre ameliore | |
FR2937966A1 (fr) | Cartouche d'hydrogene a base d'hydrure metallique constituee d'une paroi interne compressible | |
WO2024192527A1 (fr) | Module de batterie à pression hydraulique régulée | |
Potter et al. | Rapid Discharge of Solid-State Hydrogen Storage Using Porous Silicon and Metal Foam | |
WO2024133114A1 (fr) | Système de serrage autonome pour un empilement à oxydes solides | |
EP4187141A1 (fr) | Réservoir a hydrogène pourvu d'un système de capture d'hydrogène gazeux |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19745157 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021505633 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019745157 Country of ref document: EP Effective date: 20210301 |