WO2020025045A1 - 信息传输的方法、装置、设备和计算机可读存储介质 - Google Patents

信息传输的方法、装置、设备和计算机可读存储介质 Download PDF

Info

Publication number
WO2020025045A1
WO2020025045A1 PCT/CN2019/099025 CN2019099025W WO2020025045A1 WO 2020025045 A1 WO2020025045 A1 WO 2020025045A1 CN 2019099025 W CN2019099025 W CN 2019099025W WO 2020025045 A1 WO2020025045 A1 WO 2020025045A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink physical
physical channels
pucch
channel
end position
Prior art date
Application number
PCT/CN2019/099025
Other languages
English (en)
French (fr)
Inventor
苟伟
韩祥辉
郝鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP19845559.4A priority Critical patent/EP3832918B1/en
Priority to JP2021505388A priority patent/JP7101865B2/ja
Priority to US17/264,359 priority patent/US11770832B2/en
Priority to KR1020217003749A priority patent/KR20210027474A/ko
Publication of WO2020025045A1 publication Critical patent/WO2020025045A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • H04L1/0018Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement based on latency requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • This application relates to, but is not limited to, the field of communications, and in particular, to a method, an apparatus, a device, and a computer-readable storage medium for information transmission.
  • the solution mechanism is usually: first determine whether the multiple uplink physical channels meet timing requirements, and the timing requirement is: the first symbol of the earliest physical channel among the multiple uplink physical channels.
  • Tn is the decoding time of the channel or signal corresponding to each uplink channel and the preparation time for transmitting data in multiple uplink physical channels.
  • PUCCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • format 1 Physical Uplink Control Channel
  • format 2 Physical Uplink Control Channel
  • format 3 Physical Uplink Control Channel
  • HARQ-ACK Hybrid Automatic Automatic Repeat Request
  • the combined uplink physical channel may be a new uplink physical channel, but the new uplink physical channel must meet the timing requirements determined by the original multiple uplink physical channels.
  • the combination of multiple uplink physical channels into one or two uplink physical channels refers to multiplexing information carried by multiple uplink physical channels to one or two uplink physical channels.
  • the timeliness of the uplink physical channels may be affected.
  • the embodiments of the present application provide a method, an apparatus, a device, and a computer-readable storage medium for information transmission to ensure the timeliness of an uplink physical channel.
  • An embodiment of the present application provides a method for transmitting information, including:
  • the information is transmitted through the one or more first uplink physical channels.
  • An embodiment of the present application further provides an information transmission device, including:
  • a multiplexing module configured to multiplex information carried by the multiple uplink physical channels to one or more first uplink physical channels when there are multiple uplink physical channels in a time slot;
  • a transmission module configured to transmit the information through the one or more first uplink physical channels if it is determined that an end position of the one or more first uplink physical channels meets a restriction condition.
  • An embodiment of the present application further provides an information transmission device, including a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor implements the information transmission method when the program is executed .
  • An embodiment of the present application further provides a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to perform the method for transmitting information.
  • Figure 1 is a schematic diagram of timing requirements
  • FIG. 2 is a flowchart of a method for transmitting information according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a restriction condition 1 in an application example 1;
  • FIG. 4 is a schematic diagram of restriction condition two in application example one
  • FIG. 5 is a schematic diagram of restriction condition 3 in application example 1;
  • FIG. 6 is a schematic diagram of an application example two
  • Example 8 is a schematic diagram of Example 1 in Application Example 4.
  • Example 9 is a schematic diagram of Example 2 in Application Example 4.
  • Example 10 is a schematic diagram of Example 3 in Application Example 4;
  • Example 11 is a schematic diagram of Example 3 in Application Example 4.
  • FIG. 12 is a schematic diagram of an information transmission apparatus according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an information transmission device according to an embodiment of the present application.
  • T1 is the time to decode DCI_1 and prepare to transmit information in PUCCH
  • T2 is the time to decode PDSCH and prepare to transmit information in PUCCH2.
  • PUCCH1 and PUCCH2 meet the timing requirements, and then PUCCH1 and PUCCH2 are merged.
  • the PUCCH obtained by the combination is assumed to be PUCCH3.
  • PUCCH3 is also required to meet the timing requirements determined by PUCCH1 and PUCCH2, that is, the first symbol of PUCCH3 cannot be earlier than T1 and T2 Any one of the end time points (the start time of T1 and T2 is the end time of DCI_1 and the end time of PDSCH, respectively).
  • PUCCH4 in FIG. 1 cannot be used as a PUCCH where PUCCH1 and PUCCH2 are combined, because its first symbol is earlier than the end time point of T2, that is, it does not meet the timing requirements for determining PUCCH1 and PUCCH2.
  • NR New Radio
  • URLLC low latency communication
  • the simplest way is to use time division for UE (User Equipment, User Equipment) Configure a PUCCH that transmits HARQ-ACK multiple times.
  • data transmission in the original PULCCH or PUSCH of URLLC may be delayed or advanced, especially when the delay occurs, which may affect URLLC timing requirements.
  • the timing of subsequent URLLC retransmissions may lag behind the original plan, which may affect the timeliness of URLLC transmission.
  • the method for transmitting information in this embodiment of the present application includes:
  • Step 101 When there are multiple uplink physical channels in a time slot, the information carried by the multiple uplink physical channels is multiplexed to one or more first uplink physical channels.
  • the plurality of uplink physical channels may include a PUCCH and / or a PUSCH.
  • the first uplink physical channel is an uplink physical channel obtained by multiplexing the plurality of uplink physical channels to obtain information.
  • the method may further include: determining that at least one of the following situations exists:
  • the multiple uplink physical channels overlap in the time domain
  • the plurality of uplink physical channels include a URLLC channel.
  • the embodiments of the present application may not need to confirm the above two cases, but only when the multiple uplink physical channels overlap in the time domain or the multiple uplink physical channels include URLLC.
  • the channel is used, the effect of the embodiment of the present application is more remarkable.
  • the step 101 may include:
  • multiple multiplexing multiplexing information carried by the plurality of uplink physical channels to one or more second uplink physical channels, and multiplexing information carried by the one or more second uplink physical channels to the One or more first uplink physical channels.
  • the second uplink physical channel refers to an uplink physical channel obtained in the multiplexing process, between the second uplink physical channel, or the second uplink physical channel and the original multiple uplinks.
  • One or more of the physical channels are multiplexed to obtain the first uplink physical channel.
  • the multiple uplink physical channels include multiple PUCCHs, and the multiplexing of the information carried by the multiple uplink physical channels to one or more first uplink physical channels may be performed in at least one of the following ways: One for reuse:
  • a PUCCH carrying the same uplink control information (Uplink Control Information) type is preferentially multiplexed.
  • a PUCCH carrying HARQ-ACK is multiplexed to obtain one PUCCH. If the multiplexed PUCCH overlaps with other uplink physical channels in time domain, and then multiplexes with other uplink physical channels; if the multiplexed PUCCH does not overlap with other uplink physical channels in time domain, it will no longer multiplex with other uplink physical channels.
  • the other uplink physical channels herein may include at least one of the following: PUCCH and PUSCH channels of other UCI types.
  • the PUCCH of other UCI types may be one or more of the multiple uplink physical channels, or may be other UCI types (such as PUCCH of CSI or SR other than HARQ-ACK) to be multiplexed to obtain PUCCH (ie Second uplink physical channel).
  • the PUCCH carrying the HARQ-ACK is multiplexed (it can also be supported for PUCCH multiplexing of different UCI types), it is performed in a "two-by-two multiplexing" manner.
  • the "two-to-two multiplexing" method refers to: among the PUCCHs to be multiplexed, the two PUCCHs with the earliest time are selected for multiplexing.
  • PUCCHs that are selected according to the earliest time principle, then they are selected from the selected according to the number of symbols Further screening in the PUCCH (for example, a large number of symbols is selected first), and if more than 2 PUCCHs are still selected, then further screening is performed from the selected PUCCH according to the PUCCH frequency domain position (for example, physical resources corresponding to the frequency domain position) A block with a small RB index is selected first), and 2 PUCCHs are finally selected for multiplexing.
  • PUCCH frequency domain position for example, physical resources corresponding to the frequency domain position
  • the PUCCH with the earlier time among the two selected PUCCHs is no longer multiplexed with the PUCCH with the later time, and the PUCCH with the earlier time is removed from the PUCCH to be multiplexed at this time, and the PUCCH with the later time is deleted Multiplexing with the remaining PUCCH as a new PUCCH to be multiplexed, still in accordance with the above principles, and so on.
  • the plurality of uplink physical channels includes a plurality of physical uplink control channels PUCCH
  • the multiplexing information carried by the plurality of uplink physical channels to one or more first uplink physical channels includes:
  • the UCI obtained by the concatenation is concatenated according to the UCI type.
  • the PUCCH to be multiplexed is uniformly multiplexed. Bits of the same type of UCI are first concatenated, and then UCI information of different types of UCI is concatenated and then concatenated according to different types of UCI information. The order can be HARQ-ACK bits, followed by SR bits (if any), followed by CSI bits (if any).
  • the concatenation between UCI information of PUCCH carrying the same type of UCI can be performed using 3 dimensions (priority order): PUCCH time sequence, PUCCH symbol number, and PUCCH frequency domain position.
  • the PUCCH resource can be determined at one time, and the process is simple.
  • the sequence of the UCIs carrying the PUCCH of the same UCI type is serially connected to each other (also can be used as part of the UCI type, such as HARQ-ACK, other UCIs are not used): the time sequence takes precedence, The second is the number of PUCCH symbols, and the second is the frequency-domain position of the PUCCH (if the PUCCH frequency-domain frequency hopping is calculated based on the frequency-domain position of the first frequency hopping).
  • the PUCCH frequency-domain position is given priority, followed by time sequence, and the number of symbols.
  • PUCCH2 for format 1 of one HARQ-ACK and PUCCH3 (for format 2, 3, or 4) of another HARQ-ACK are time-multiplexed (PUCCH2 is earlier than PUCCH3 in time)
  • PUCCH3 for format 2, 3, or 4
  • the base station and the UE agree to implement multiplexing (assuming the aforementioned timing relationship is satisfied): first multiplex PUCCH1 and PUCCH3, get the multiplexed PUCCH, and then determine the Whether the used PUCCH and PUCCH2 overlap in time domain, such as time domain overlap, and then multiplex them; if they do not overlap in time domain, both PUCCH2 and the multiplexed PUCCH can be sent.
  • the existing mechanism can be used for multiplexing, that is, the information carried by the PUCCH is directly multiplexed into the PUSCH.
  • step 102 it is determined that the end positions of the one or more first uplink physical channels meet a restriction condition, and the information is transmitted through the one or more first uplink physical channels.
  • the determining that the end positions of the one or more first uplink physical channels meet a restriction condition includes at least one of the following:
  • An end position of the one or more first uplink physical channels is not later than a latest end position of the plurality of uplink physical channels
  • the plurality of uplink physical channels includes a URLLC channel, and an end position of the one or more first uplink physical channels is no later than a latest end position of the URLLC channel;
  • the plurality of uplink physical channels includes a URLLC channel, and there is an interval duration between an end position of the one or more first uplink physical channels and transmission of a subsequent channel or a subsequent signal of the URLLC channel, and the interval duration includes: A duration of decoding the corresponding first uplink physical channel and a duration of preparing transmission data of the subsequent channel or subsequent signal.
  • the transmission of the subsequent channel or the subsequent signal is determined according to the URLLC channel position.
  • the timeliness of the uplink physical channel is ensured, and the timing is more compact and efficient.
  • the one or more first uplink physical channels may also be required to meet the foregoing timing requirements.
  • the method further includes: determining that an end position of the one or more second uplink physical channels satisfies the restriction condition.
  • the second uplink physical channel obtained in the multiplexing process also needs to meet this restriction condition, that is:
  • An end position of the one or more second uplink physical channels is not later than a latest end position of the plurality of uplink physical channels
  • the plurality of uplink physical channels includes a URLLC channel, and an end position of the one or more second uplink physical channels is no later than a latest end position of the URLLC channel;
  • the plurality of uplink physical channels includes a URLLC channel, and a transmission interval between an end position of the one or more second uplink physical channels and a subsequent channel or a subsequent signal of the URLLC channel includes: decoding the corresponding second uplink physical channel The length of time for which data is transmitted on the channel and the subsequent channel or subsequent signal is prepared.
  • the method for transmitting information in the embodiments of the present application can be applied to a UE and a base station.
  • the multiplexing mode and restriction conditions are mutually agreed between the UE and the base station.
  • the UE multiplexes multiple uplink physical channels according to the multiplexing mode.
  • the base station sends information to the base station through the first uplink physical channel.
  • the base station determines the position of the first uplink physical channel in a multiplexed manner.
  • the position of the uplink physical channel receives information.
  • multiplexing between channels is called merging.
  • Application example 1 shows the enhancements required in the original timing.
  • the specific enhancements include three types.
  • multiple uplink physical channels (including PUCCH and / or PUSCH) overlap in time domain (or multiple uplink physical channels that do not overlap in time domain), and the earliest uplink physical channel among multiple uplink physical channels
  • Tn is: the time required to process the channel or signal corresponding to each uplink physical channel in the multiple uplink physical channels and the time to prepare data for each uplink physical channel in the multiple uplink physical channels (may also continue to include other processing needs Time, but does not affect the principle of the timing requirements).
  • the start of Tn is the end position of a channel or signal corresponding to each uplink physical channel in the multiple uplink physical channels, respectively.
  • the multiple uplink physical channels are combined to obtain a first uplink physical channel.
  • the first uplink physical channel may meet the timing requirements determined by the multiple uplink physical channels, or may not meet the timing requirements. Timing requirements.
  • the first uplink physical channel satisfies one or more of the following restrictions:
  • Constraint one The end position of the one or more first uplink physical channels is not later than the latest end position of the plurality of uplink physical channels.
  • PUCCH1 and PUCCH2 overlap in a time slot (PUCCH1 and PUCCH2 represent multiple uplink physical channels described above, and PUCCH1 and PUCCH2 are in time division, and time domain overlap is also possible), and PUCCH1 corresponds to the channel or The signal is DCI_1, and the channel or signal corresponding to PUCCH2 is the PDSCH scheduled by DCI_2.
  • T1 is the time to decode DCI_1 and prepare to transmit information in PUCCH1
  • T2 is the time to decode PDSCH and prepare to transmit information in PUCCH2.
  • the starting position of the first symbol of the earliest PUCCH1 in the overlapping PUCCH1 and PUCCH2 is not earlier than the end time point of any of T1 and T2. Therefore, PUCCH1 and PUCCH2 meet the timing requirements, and then PUCCH1 and PUCCH2 are merged.
  • the PUCCH obtained by the combination is assumed to be PUCCH3.
  • PUCCH3 must also meet the timing requirements determined by PUCCH1 and PUCCH2, that is, the first symbol of PUCCH3 cannot be earlier than T1 and T2. End point of any one.
  • PUCCH3 must satisfy that the end position of PUCCH is not later than the latest end position in PUCCH1 and PUCCH2 (that is, the end position of PUCCH3 is not later than the end position of PUCCH2). It can be seen from FIG. 3 that PUCCH4 cannot be used as a PUCCH where PUCCH1 and PUCCH2 are combined, because its end position is later than the end position of PUCCH2.
  • the plurality of uplink physical channels includes a URLLC channel, and an end position of the one or more first uplink physical channels is not later than a latest end position of the URLLC channel.
  • This limitation condition introduces a case where an uplink physical channel of URLLC is included in the multiple uplink physical channels. This is because the scheme proposed in this article can better reflect the advantages and gains in URLLC business. It can also be understood that when the UE includes the uplink physical channel of the URLLC among the multiple uplink physical channels, the method of the embodiment of the present application is adopted, and when the uplink physical channel of the URLLC is not included, the existing method is adopted. That is to say, the base station and the UE determine corresponding solutions according to the service types corresponding to the multiple uplink physical channels.
  • PUCCH1 is for URLLC service.
  • the end position of the uplink physical channel determined after PUCCH1 and PUCCH2 are merged here is not later than PUCCH1 (because PUCCH1 is URLLC-related, if there are multiple uplink physical channels that are URLLC, then the URLLC uplink must be selected
  • the latest end position in the physical channel is the end position of PUCCH1) here.
  • the end position of PUCCH3 is not later than the end position of PUCCH1, and PUCCH3 meets the requirements (if the first condition is met, then both PUCCH3 and PUCCH4 meet the requirements; if the existing method is used, PUCCH3, PUCCH4, and PUCCH5 all meet the requirements).
  • Constraint condition three The plurality of uplink physical channels includes a URLLC channel, and the end interval between the end position of the one or more first uplink physical channels and the subsequent channel or subsequent signal of the URLLC channel is J, and the J Including: a duration of decoding the corresponding first uplink physical channel and preparing transmission data of the subsequent channel or subsequent signal. That is, the corresponding first uplink physical channel can be decoded within the J duration and transmission data of the subsequent related channel or signal is ready. Wherein, the transmission of the subsequent channel or the subsequent signal is determined according to the URLLC channel position.
  • PUCCH1 in the multiple uplink physical channels is URLLC service
  • the subsequent related channel or signal of PUCCH1 is re-PDSCH (re-PDSCH indicates the previous PDSCH)
  • Retransmission that is, if PUCCH1 feedback is negative acknowledgement (Negative Acknowledgement, NACK), the base station will retransmit PDSCH at re-PDSCH).
  • the position of the re-PDSCH is related to the end time of the PUCCH1 transmission. According to different UE capabilities and timing requirements of URLLC, in some cases, the timing position arranged by the base station for the UE is not allowed to move back and forth.
  • the re-PDSCH in FIG. 5 is arranged according to the end position of PUCCH1 (that is, according to the interval between the end position of PUCCH1 and re-PDSCH, the base station can handle the decoding of PUCCH1 and the data preparation of re-PDSCH.
  • the data preparation may be prepared before the base station, this time can be ignored), but if the first uplink physical channel is PUCCH5, because the interval between PUCCH5 and the originally scheduled re-PDSCH is small, if the base station cannot process within this interval Good PUCCH5 decoding and re-PDSCH data preparation cause delays in re-PDSCH transmission time, which will affect the timeliness of URLLC. In this way, PUCCH5 cannot be selected as the PUCCH determined after the multiple uplink physical channels are combined.
  • the interval between the end position of the uplink physical channel determined after the PUCCH1 and PUCCH2 are merged and the subsequent related channels or signals of PUCCH1 is J, and at least the J duration must be able to process PUCCH1 decoding and re -PDSCH data preparation.
  • the determined uplink physical channel is suitable.
  • PUCCH3 in FIG. 5 definitely meets the requirements, because the interval between PUCCH3 and re-PDSCH in the figure is larger than the original interval between PUCCH1 and re-PDSCH, so there is sufficient data preparation time.
  • PUCCH4 in FIG. 5 may also be satisfied. This depends on the processing capability of the device to determine whether data can be prepared within the interval.
  • the time limit for the PDSCH of the service there is a time limit for the PDSCH of the service to be transmitted from the beginning to the correct reception by the UE (if the PDSCH transmitted for the first time is incorrectly decoded by the UE, the time limit includes the first One transmission of PDSCH, UE decoding error, UE feedback NACK, the base station retransmits the PDSCH, and the UE decodes the retransmitted PDSCH correctly.
  • the time limit duration is M, and M can be determined according to service requirements.
  • the latest starting position of the re-PDSCH can be derived according to the above M, and from the above, the ending position of J can be determined.
  • the ending position of J is the starting position of re-PDSCH).
  • Restriction four Compared with restriction three, it is more lenient. It can support the UE to receive the possible re-PDSCH immediately after sending the ACK / NACK PUCCH1.
  • the base station side receives the ACK / NACK PUCCH1, and the PUCCH1 is not actually decoded, and the re-PDSCH is directly sent to the UE. That is, after the UE sends the ACK / NACK PUCCH1, it can immediately receive the re-PDSCH sent by the base station; or, the UE has not sent the ACK / NACK PUCCH1, and cannot receive the re-PDSCH; or, the UE sends the ACK / NACK.
  • the base station Before PUCCH1 ends, the base station is not allowed to send re-PDSCH.
  • This limitation actually allows the J duration in the third condition to be Jmin (a duration where Jmin is close to 0, which can include: the handover time for the UE to switch from uplink transmission to downlink reception. That is, the base station determines that the UE sends ACK / NACK PUCCH1 At the end, the base station sends the re-PDSCH directly.
  • the re-PDSCH data can be prepared beforehand. That is, when the base station plans to send the re-PDSCH in this way, it can prepare the re-PDSCH data in advance and send it after the UE sends ACK / NACK PUCCH1.
  • re-PDSCH but it cannot be a negative number, where a negative number indicates that the end position of the PUCCH determined after the merge is later than the start position of the re-PDSCH.
  • the timeliness of service transmission needs to be considered. For example, there is a time limit for the PDSCH of a service to start to be correctly received by the UE (if the PDSCH transmitted for the first time is incorrectly decoded by the UE, the time limit includes the first PDSCH transmission, UE decoding error, UE feedback NACK, base station retransmits the PDSCH, UE decodes and retransmits the PDSCH correctly), it can be assumed here that the time limit duration is M, and M can be determined according to the service requirements.
  • the latest starting position of the re-PDSCH can be derived from the above M, and from the above, the ending position of J can be determined ( The ending position of J is the starting position of re-PDSCH).
  • the end position of the first uplink physical channel satisfies the limiting condition.
  • the end position of the second uplink physical channel also needs to meet the restriction condition, which is not repeated here.
  • Application Example 2 focuses on describing how to combine multiple uplink physical channels when the constraints are met.
  • Method A UCIs of the same type are merged first, and the PUCCH obtained after the merge is determined, and then merged with other PUCCHs;
  • Method B According to the "two by two” rule.
  • the “two-by-two merge” mechanism refers to: among the PUCCHs to be merged, the two PUCCHs with the earliest time are selected for merging. If the two PUCCHs selected according to the earliest time principle are more than two, then the selected PUCCH is selected from the selected PUCCH according to the number of symbols Further screening (for example, if the number of symbols is the highest, it is selected first). If the number of selected PUCCHs is still more than 2, select further PUCCHs according to the frequency domain position of the PUCCH (for example, the physical resource block corresponding to the frequency domain position has a small RB index). Is preferred), and finally 2 PUCCHs are selected for merging.
  • the merged PUCCH and the remaining PUCCH are merged as a new PUCCH to be merged, and still follow the above principles; otherwise , The PUCCH with the earlier time in the selected 2 PUCCHs is no longer merged with the PUCCH with the later time, at this time, the PUCCH with the earlier time is removed from the PUCCH to be merged, and the PUCCH with the later time and the remaining PUCCH are regarded as new The PUCCH to be merged is still merged according to the above principles.
  • the PUCCHs of the same UCI type are preferentially merged.
  • PUCCH1 and PUCCH2 are ACK / NACK, and are merged into one PUCCH.
  • the merged PUCCH may be the PUCCH resource indicated by the DCI for the UE. That is, the UCI information in PUCCH1 and PUCCH2 is concatenated, and then corresponding to the new UCI bits, the PUCCH set is determined according to the number of bits, and then the PUCCH resource information indicated in the DCI is used to find in the determined PUCCH set.
  • the aforementioned “two-by-two merging” principle is observed. In FIG.
  • the UCI information of PUCCH1 is placed in front of PUCCH2 and concatenated.
  • Both PUCCH3 and PUCCH4 are CSI information, and can also be performed in accordance with the principle of "merge two by two", or they can be merged in accordance with other principles, such as the priority of the CSI carried.
  • the PUCCH merged with PUCCH1 and PUCCH2 if the PUCCH merged with PUCCH3 and PUCCH4 still overlaps, then their two PUCCHs continue to merge, and if they do not overlap, they can be sent separately.
  • Application Example 3 focuses on describing how to combine multiple uplink physical channels when the constraints are met.
  • Unified PUCCH to be merged. Including: the bits of UCI of the same type are connected in series first, then the UCI information after concatenation is re-connected according to different types of UCI information, and the concatenation order of different types of UCI information is HARQ-ACK bit, followed by SR bit (If any), followed by CSI bits (if any).
  • the concatenation of UCI information of PUCCHs of the same type of UCI can be performed using three dimensions: PUCCH time sequence, number of PUCCH symbols, and position of PUCCH frequency domain.
  • the sequence of UCI serial connection of PUCCH of the same UCI type is (can also be used as part of UCI type, such as this type of concatenation for HARQ-ACK, other UCI does not use this Concatenation type): time order first, followed by the number of PUCCH symbols, followed by the frequency domain position of the PUCCH (if PUCCH frequency domain frequency hopping is calculated based on the frequency domain position of the first frequency hopping).
  • other methods may also be considered: for example, the PUCCH frequency domain position is given priority, followed by time sequence, and the number of symbols, etc.
  • the merge process according to this embodiment is:
  • the ACK / NACK (also called HARQ-ACK) information of PUCCH1 and PUCCH2 is concatenated.
  • the concatenation order is time first, followed by the number of symbols, followed by the frequency domain position.
  • the ACK / NACK of PUCCH1 is serially connected to the ACK / NACK of PUCCH2 to form ACK / NACK information after concatenation.
  • the SRs in PUCCH5 and PUCCH6 are concatenated.
  • the concatenation method is the same as the ACK / NACK concatenation.
  • the concatenation method is the same as ACK / NACK.
  • each UCI type is connected in series according to the above-mentioned serial connection mode, that is, for example, it is also possible that two PUCCH1 and PUCCH2 of ACK / NACK are connected in series as described above, and two of SR PUCCH can be serially connected in other ways, CSI can also be serialized in other ways, and then the ACK / NACK concatenation result, SR concatenation result, and CSI concatenation result are concatenated in the order of ACK / NACK, SR, and CSI. Pick up.
  • the finally concatenated UCI information is sent on a PUCCH.
  • the PUCCH is determined based on the final concatenated UCI bit number and the PUCCH set, and the PUCCH resource indication information in the DCI. In this way, it is avoided to determine PUCCH resources for each type of UCI type information after concatenation, but to determine PUCCH resources for the last time.
  • the process is simple.
  • the merging mechanism in related technologies can be basically reused, but there are merger problems in some cases:
  • Short PUCCH refers to PF0, PF2, and long PUCCH refers to PF1, PF3, and PF4
  • short PUCCH refers to PF0, PF2, and long PUCCH refers to PF1, PF3, and PF4
  • the SR will be sent on the PUCCH with the number 2, that is, there is no conflict between the merged PUCCH and the PUCCH with the number 3. There is no problem at this time.
  • Solution 1 All numbers of HARQ-ACK and SR are jointly coded, and then the corresponding resource set (resource set) is selected according to the final UCI bit number, and transmitted according to the PUCCH resource indicated in the DCI.
  • the disadvantage is that the HARQ-ACK sending of number 2 may be delayed, but if the above timing requirements are met, the delay will not affect the subsequent transmission of subsequent data.
  • Solution 2 PUCCHs numbered 1 and 2 are merged, but the HARQ-ACK time domain resource is used, and the SR code domain resource is used to send the positive SR + HARQ-ACK. This merge is different from the merge mechanism in related technologies.
  • Solution 3 For case 3, PUCCHs numbered 1 and 3 are merged first. At this time, the merged PUCCH is PUCCH 3, and there is no conflict at this time. However, in addition, the merging rule needs to be determined. If a HARQ-ACK PUCCH colliding with an SR has Format 0, it will be merged with HARQ-ACK Format 0 first; if an SR collides with multiple HARQ-ACK Format 0s, it will be merged in the order of numbering. For Case 4, if two HARQ-ACK PUCCHs in long format overlap with one SR, the SR is dropped.
  • Solution 4 For case 3 and 4, discard the SR. At this time, the SR is long PUCCH. You can choose to discard the SR.
  • Option 5 Use Option 1 in Example 1.
  • Solution 6 If the SR is a long PUCCH, the SR is dropped. PUCCHs numbered 2 and 3 can be sent separately.
  • Solution 7 UCI joint coding of PUCCHs numbered 1 and 2, then select the corresponding resource set according to the final UCI bit number, and send it according to the PUCCH resource indicated in the DCI. Then get a PUCCH and PUCCH with the number 3 to determine whether to merge (if it overlaps, merge again).
  • Solution 8 If the SR is a short PUCCH, then Solution 1 in Example 1. If the SR is a long PUCCH, the SR is discarded, and PUCCHs numbered 2 and 3 can be sent separately.
  • Solution 9 The SR is first merged with the PUCCH with the number 3 (that is, PF2 / 3/4). If the obtained PUCCH overlaps with the number 2 and then merges with the number 2, otherwise the PUCCH and the number 2 are sent separately. PUCCH.
  • Solution 10 The CSI is placed in the PUCCH of the HARQ-ACK with the number 2 and is jointly coded.
  • the length of the PUCCH used after the joint coding is always the same or does not increase.
  • the base station ensures that its newly selected PUCCH does not conflict with the subsequent PUCCH.
  • Solution 11 Drop the PUCCH of the CSI, and directly send PUCCHs with the numbers 2 and 3.
  • an embodiment of the present application further provides an apparatus for transmitting information, including:
  • the multiplexing module 21 is configured to multiplex information carried by the multiple uplink physical channels to one or more first uplink physical channels when there are multiple uplink physical channels in a timeslot;
  • the transmission module 22 is configured to determine that an end position of the one or more first uplink physical channels meets a restriction condition, and transmit the information through the one or more first uplink physical channels.
  • the multiplexing module 21 is configured to determine that at least one of the following conditions exists, and then multiplex the information carried by the multiple uplink physical channels to one or more first physical channels:
  • the multiple uplink physical channels overlap in the time domain
  • the plurality of uplink physical channels include a high-reliability low-latency communication URLLC channel.
  • the transmission module 22 is configured to determine that the end positions of the one or more first uplink physical channels meet a restriction condition according to at least one of the following:
  • An end position of the one or more first uplink physical channels is not later than a latest end position of the plurality of uplink physical channels
  • the plurality of uplink physical channels includes a URLLC channel, and an end position of the one or more first uplink physical channels is no later than a latest end position of the URLLC channel;
  • the plurality of uplink physical channels includes a URLLC channel, and there is an interval duration between an end position of the one or more first uplink physical channels and transmission of subsequent channels or subsequent signals of the URLLC channel, and the interval duration includes: A duration of decoding the corresponding first uplink physical channel and a duration of preparing transmission data of the subsequent channel or subsequent signal.
  • the multiplexing module 21 is configured to:
  • multiple multiplexing multiplexing information carried by the plurality of uplink physical channels to one or more second uplink physical channels, and multiplexing information carried by the one or more second uplink physical channels to the One or more first uplink physical channels.
  • the multiplexing module 21 is further configured to determine that an end position of the one or more second uplink physical channels meets the restriction condition.
  • the multiple uplink physical channels include multiple PUCCHs
  • the multiplexing module 21 is configured to multiplex the information carried by the multiple uplink physical channels to one or more in at least one of the following ways: First uplink physical channels:
  • the multiple PUCCHs are multiplexed in a pair-by-multiplex manner.
  • the multiple uplink physical channels include multiple PUCCHs
  • the multiplexing module 21 is configured to:
  • the UCIs in the PUCCH carrying the same UCI type are serially connected, and the UCIs obtained by the serialization are serially connected according to the UCI type.
  • the multiplexing module 21 is configured to:
  • PUCCH time sequence PUCCH symbol number, PUCCH frequency domain position.
  • the multiplexing module 21 is configured to:
  • the UCI types are concatenated in sequence: HARQ-ACK, HARQ-ACK, scheduling request SR, and channel state information CSI.
  • the timeliness of the uplink physical channel is ensured, and the timing is more compact and efficient.
  • an embodiment of the present application further provides a device for information transmission, including a memory 31, a processor 32, and a computer program 33 stored on the memory 31 and executable on the processor 32.
  • the processor 32 A method for implementing the information transmission when the computer program is executed.
  • the information transmission device may be applied to a UE or a base station.
  • An embodiment of the present application further provides a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to perform the method for transmitting information.
  • the above storage medium may include, but is not limited to, a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk, etc.
  • Various media that can store program code may include, but is not limited to, a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk, etc.
  • All or some steps, systems, and functional modules / units in the methods disclosed above may be implemented as software, firmware, hardware, and appropriate combinations thereof.
  • the division between functional modules / units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical The components execute cooperatively.
  • Some or all components may be implemented as software executed by a processor, such as a digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit.
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • Computer storage media includes volatile and nonvolatile, removable and non-removable implemented in any method or technology used to store information such as computer-readable instructions, data structures, program modules or other data.
  • Computer storage media includes, but is not limited to, RAM, ROM, Electrically Erasable Programmable Read-Only Memory (EEPROM), flash memory or other memory technologies, and Compact Disc Read-Only Memory (CD) -ROM), Digital Video Disk (DVD) or other optical disk storage, magnetic case, magnetic tape, disk storage or other magnetic storage device, or any other device that can be used to store desired information and can be accessed by a computer medium.
  • the communication medium typically contains computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本文公开了一种信息传输的方法、装置、设备和计算机可读存储介质,其中,所述方法包括:在时隙中存在多个上行物理信道的情况下,将所述多个上行物理信道承载的信息复用至一个或多个第一上行物理信道;在确定所述一个或多个第一上行物理信道的结束位置满足限制条件的情况下,通过所述一个或多个第一上行物理信道传输所述信息。

Description

信息传输的方法、装置、设备和计算机可读存储介质
本申请要求在2018年08月02日提交中国专利局、申请号为201810871291.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及但不限于通信领域,尤指一种信息传输的方法、装置、设备和计算机可读存储介质。
背景技术
当多个上行物理信道重叠时,解决机制通常为:先确定所述多个上行物理信道是否满足定时要求,定时要求为:所述多个上行物理信道中最早的物理信道的第一个符号的起始时刻,不早于所述多个上行物理信道中每个物理信道对应的信道或信号之后Tn时长的结束点中的任意一个(n=0,1,2....,表示不同的上行物理信道)。Tn为每个上行信道对应的信道或信号的解码时间以及多个上行物理信道中传输数据的准备时间。在上述定时条件满足的情况下:将所有上行物理信道合并为一个上行物理信道进行传输;或者合并为两个上行物理信道进行传输,当合并为两个上行物理信道时,其中一个为短PUCCH(Physical Uplink Control Channel,物理上行控制信道)格式(格式0或格式2),一个为长PUCCH格式(格式1,3,4),且两个不同上行物理信道同时传输HARQ-ACK(Hybrid Automatic Repeat request-Acknowledgement,混合自动重传请求-确认信息)。合并后的上行物理信道可以是一个新的上行物理信道,但是这个新的上行物理信道要满足原来的多个上行物理信道确定的定时要求。
其中,多个上行物理信道合并成一个或两个上行物理信道,是指将多个上行物理信道承载的信息复用至一个或两个上行物理信道。
但是,按照上述多个上行物理信道重叠的解决机制,有可能会影响上行物理信道的及时性。
发明内容
本申请实施例提供了一种信息传输的方法、装置、设备和计算机可读存储介质,以保障上行物理信道的及时性。
本申请实施例提供了一种信息传输的方法,包括:
在时隙中存在多个上行物理信道的情况下,将所述多个上行物理信道承载 的信息复用至一个或多个第一上行物理信道;
在确定所述一个或多个第一上行物理信道的结束位置满足限制条件的情况下,通过所述一个或多个第一上行物理信道传输所述信息。
本申请实施例还提供一种信息传输的装置,包括:
复用模块,设置为在时隙中存在多个上行物理信道的情况下,将所述多个上行物理信道承载的信息复用至一个或多个第一上行物理信道;
传输模块,设置为在确定所述一个或多个第一上行物理信道的结束位置满足限制条件的情况下,通过所述一个或多个第一上行物理信道传输所述信息。
本申请实施例还提供一种信息传输的设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现所述信息传输的方法。
本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行所述信息传输的方法。
附图说明
图1是定时要求的示意图;
图2是本申请实施例的信息传输的方法的流程图;
图3是应用实例一中限制条件一的示意图;
图4是应用实例一中限制条件二的示意图;
图5是应用实例一中限制条件三的示意图;
图6是应用实例二的示意图;
图7是应用实例三的示意图;
图8是应用实例四中例1的示意图;
图9是应用实例四中例2的示意图;
图10是应用实例四中例3的示意图;
图11是应用实例四中例3的示意图;
图12是本申请实施例的信息传输的装置的示意图;
图13是本申请实施例的信息传输的设备的示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
一个例子参考图1。假设有PUCCH1和PUCCH2时域重叠在一个时隙中,且PUCCH1对应信道或信号为下行控制信息(Downlink Control Information,DCI)_1,PUCCH2对应的信道或信号为DCI_2调度的PDSCH(Physical Uplink Shared Channel,物理上行共享信道)。T1是解码DCI_1以及准备PUCCH1中传输信息的时间,T2为解码PDSCH并准备PUCCH2中传输信息的时间。然后定义要求为重叠的PUCCH1和PUCCH2中最早的PUCCH1的第一个符号起始位置不早于T1和T2中任意一个的结束时刻点。所以PUCCH1和PUCCH2满足定时要求,然后PUCCH1和PUCCH2合并,合并得到的PUCCH,这里假设为PUCCH3,PUCCH3也被要求满足PUCCH1和PUCCH2确定的定时要求,即PUCCH3的第一个符号不能早于T1和T2中任意一个的结束时刻点(T1,T2的起始时刻分别DCI_1的结束时刻,PDSCH的结束时刻)。可以看出,图1中PUCCH4是不能作为PUCCH1和PUCCH2合并的PUCCH的,因为它的第一个符号早于了T2的结束时刻点,即不满足PUCCH1和PUCCH2确定定时要求。
在NR(New Radio,新空口)中,正在讨论支持高可靠低时延通信(Ultra Reliable Low Latency Communication,URLLC)业务传输,该业务对于传输时间要求非常高,例如,一次数据传输,从发送端的数据到达到被接收端接收,要求在1ms内完成。同时该业务要求很高的传输可靠性和快速的HARQ-ACK反馈。
所以,正在讨论在一个时隙中,支持多次发送HARQ-ACK的可能性(NR中要求在一个时隙中只能发送一次HARQ_ACK),最简单的做法就是通过时分方式为UE(User Equipment,用户设备)配置多次传输HARQ-ACK的PUCCH。
但是,按照已有的多个上行物理信道重叠的解决机制,有可能导致原本URLLC的PUCCH或PUSCH中的数据传输被延迟或提前,尤其是延迟发生时,将可能影响URLLC的时序要求。例如,导致后续URLLC的重传时机比原本计划的滞后,这将可能影响URLLC传输的及时性。
在一个时隙中多个上行物理信道重叠时,其中包含URLLC的HARQ-ACK或CSI(Channel State Information,信道状态信息)或SR(Scheduling Request,调度请求)的PUCCH/PUSCH时,也同样会出现上述情况。
如图2所示,本申请实施例信息传输的方法,包括:
步骤101,时隙中存在多个上行物理信道时,将所述多个上行物理信道承载的信息复用至一个或多个第一上行物理信道。
其中,所述多个上行物理信道可以包括PUCCH和/或PUSCH。
其中,所述第一上行物理信道是将所述多个上行物理信道进行复用,得到的用于传输信息的上行物理信道。
在一实施例中,所述步骤101之前,还可以包括:确定存在如下情况中的至少之一:
所述多个上行物理信道存在时域上的重叠;
所述多个上行物理信道包括URLLC信道。
其中,上述两种情况并不是必须的,即本申请实施例也可以无需确认上述两种情况,只是当所述多个上行物理信道存在时域上的重叠或所述多个上行物理信道包括URLLC信道时,本申请实施例效果更为显著。
在一实施例中,所述步骤101可以包括:
直接将所述多个上行物理信道承载的信息复用至所述一个或多个第一上行物理信道,或者
进行多次复用,将所述多个上行物理信道承载的信息复用至一个或多个第二上行物理信道,将所述一个或多个第二上行物理信道承载的信息复用至所述一个或多个第一上行物理信道。
其中,所述第二上行物理信道是指在复用过程中得到的上行物理信道,在所述第二上行物理信道之间,或者所述第二上行物理信道与原有的所述多个上行物理信道中的一个或多个进行复用,得到所述第一上行物理信道。
在一实施例中,所述多个上行物理信道包括多个PUCCH,所述将所述多个上行物理信道承载的信息复用至一个或多个第一上行物理信道,可以采用如下方式至少之一进行复用:
(1)优先复用承载同一上行控制信息(Uplink Control Information,UCI)类型的PUCCH。
(2)按照两两复用的方式复用所述多个PUCCH。
例如,在所述多个上行物理信道中,复用承载HARQ-ACK的PUCCH,得到一个PUCCH。复用得到的PUCCH如和其他上行物理信道时域重叠,再和其他上行物理信道复用;复用得到的PUCCH如不和其他上行物理信道时域重叠, 不再和其他上行物理信道复用。
这里的其他上行物理信道可包括下述至少之一:其他UCI类型的PUCCH,PUSCH信道。这里,其他UCI类型的PUCCH可以是来自所述多个上行物理信道中一个或多个,也可以是其他UCI类型(例如除了HARQ-ACK之外的CSI或SR的PUCCH)复用得到PUCCH(即第二上行物理信道)。
承载HARQ-ACK的PUCCH进行复用时(对于不同UCI类型的PUCCH复用也可以支持),按照“两两复用”的方式进行。“两两复用”方式是指:在待复用的PUCCH中,选择时间最早的两个PUCCH进行复用,如果按照时间最早原则被选中的PUCCH超过两个,再按照符号数量原则从被选中的PUCCH中进一步筛选(例如符号数量多的优先被选择),如果仍然被选中的PUCCH仍然超过2个,再按照PUCCH的频域位置从选中的PUCCH中进一步筛选(例如频域位置对应的物理资源块RB索引小的被优先选择),最终选择2个PUCCH复用。可选的,复用前判断被选择的2个PUCCH是否时域重叠,如果是,则进行复用,复用后得到的PUCCH和剩余的PUCCH作为新的待复用的PUCCH进行复用,仍然按照上述原则;否则,将被选中的2个PUCCH中时间早的PUCCH不再和时间晚的PUCCH复用,此时待复用PUCCH中剔除所述时间早的PUCCH,将所述时间晚的PUCCH和剩余的PUCCH作为新的待复用的PUCCH进行复用,仍然按照上述原则,以此类推。
在一实施例中,所述多个上行物理信道包括多个物理上行控制信道PUCCH,所述将所述多个上行物理信道承载的信息复用至一个或多个第一上行物理信道,包括:
将承载同一UCI类型的PUCCH中的UCI进行串接;
将串接得到的UCI按照UCI类型进行串接。
本实施例中,将待复用的PUCCH进行统一进行复用。同类型的UCI的比特先串接,然后不同类型UCI串接后的UCI信息再按照不同类型的UCI信息再串接。顺序可以依次为HARQ-ACK比特,之后是SR比特(如果有),之后是CSI比特(如果有)。
其中,承载同一类型UCI的PUCCH的UCI信息之间的串接可以使用3个维度(优先级顺序)进行:PUCCH时间顺序、PUCCH符号数量、PUCCH频域位置。
这种方式中,能够一次确定PUCCH资源,过程简单。
几个可能的例子如下:承载同一UCI类型的PUCCH的UCI的彼此串接的先后顺序为(也可以被使用为部分UCI类型,例如为HARQ-ACK使用,其他 UCI不使用):时间顺序优先、其次是PUCCH符号数量、其次是PUCCH的频域位置(如果PUCCH频域跳频,按照第一个跳频的频域位置计算)。对于同一UCI的PUCCH的UCI信息之间串接也可以考虑其他方式,例如:PUCCH频域位置优先、其次是时间顺序、符号数量等。
另外,对于一些特定情况下PUCCH重叠,除了上述的方式外,还可以采用下面的复用方式:
例如,在一个时隙中,当一个HARQ-ACK的PUCCH2(为格式1)和另一个HARQ-ACK的PUCCH3(为格式2、3或4)时分复用(PUCCH2时间上早于PUCCH3),且同时与一个SR或CSI的PUCCH3时域重叠,则基站和UE约定采用下面的方式实现复用(假设满足前述的定时关系):先复用PUCCH1和PUCCH3,得到复用后的PUCCH,然后判断复用后的PUCCH与PUCCH2是否时域重叠,如时域重叠,再复用它们;如不时域重叠,在PUCCH2和所述复用后的PUCCH均可以发送。也可以描述为:先复用SR或CSI的PUCCH和格式2、3、4的PUCCH(此时不限制PUCCH2和PUCCH3的先后顺序),得到一个PUCCH,然后判断得到的PUCCH和格式1的PUCCH是否时域重叠,如重叠,则再将它们进行复用;如不重叠,则分别发送它们。后面的描述更加具有广泛性。
在这个特定情况下,采用这种方式复用,可以更加高效。如果仅仅使用“两两复用”机制,则会有PUCCH3被丢弃的问题或无法复用的情况。
另外,在所述多个上行物理信道包括PUCCH和PUSCH时,可以采用已有机制进行复用,即:直接将PUCCH承载的信息复用到所述PUSCH中。
步骤102,确定所述一个或多个第一上行物理信道的结束位置满足限制条件,通过所述一个或多个第一上行物理信道传输所述信息。
在一实施例中,所述确定所述一个或多个第一上行物理信道的结束位置满足限制条件,包括如下至少之一:
所述一个或多个第一上行物理信道的结束位置不晚于所述多个上行物理信道最晚的结束位置;
所述多个上行物理信道包括URLLC信道,所述一个或多个第一上行物理信道的结束位置不晚于所述URLLC信道最晚的结束位置;
所述多个上行物理信道包括URLLC信道,所述一个或多个第一上行物理信道的结束位置与所述URLLC信道的后续信道或后续信号的传输之间存在间隔时长,所述间隔时长包括:解码相应的所述第一上行物理信道的时长和准备所 述后续信道或后续信号的传输数据的时长。
其中,所述后续信道或后续信号的传输置为按照所述URLLC信道位置确定的。
在本申请实施例中,通过使第一上行物理信道的结束位置满足限制条件,保证了上行物理信道的及时性,使得时序更加紧凑、高效。
另外,也可以要求所述一个或多个第一上行物理信道满足上述定时要求。
在一实施例中,所述方法还包括:确定所述一个或多个第二上行物理信道的结束位置满足所述限制条件。
也就是说,在复用过程中得到的第二上行物理信道,也要求满足该限制条件,即:
所述一个或多个第二上行物理信道的结束位置不晚于所述多个上行物理信道最晚的结束位置;
所述多个上行物理信道包括URLLC信道,所述一个或多个第二上行物理信道的结束位置不晚于所述URLLC信道最晚的结束位置;
所述多个上行物理信道包括URLLC信道,所述一个或多个第二上行物理信道的结束位置与所述URLLC信道的后续信道或后续信号的传输间隔包括:解码相应的所述第二上行物理信道且准备所述后续信道或后续信号的传输数据的时长。
本申请实施例的信息传输的方法可以应用于UE和基站,复用方式和限制条件由UE和基站相互约定,UE按照复用方式复用多个上行物理信道,在得到的第一上行物理信道的结束位置满足限制条件时,通过第一上行物理信道发送信息至基站;基站按照复用方式确定第一上行物理信道的位置,在第一上行物理信道的结束位置满足限制条件时,按照第一上行物理信道的位置接收信息。下面以一些应用实例进行说明。在应用实例中,信道之间复用称为合并。
应用实例一
应用实例一中给出在原有定时要求的增强,具体的增强(限制条件)包括三种。
在时隙中,多个上行物理信道(包括PUCCH和/或PUSCH)出现时域重叠(也可以是不时域重叠的多个上行物理信道),且多个上行物理信道中时间最早的上行物理信道的第一个符号不早于Tn(n=1,2,3...,n值对应多个上行物理信道中的一个)的结束时刻点。Tn分别为:多个上行物理信道中每个上行物理信道对应的信道或信号被处理需要时间以及为多个上行物理信道中每个上行物 理信道中准备数据的时间(也可以继续包含其他处理需要的时间但是不影响该定时要求确定的原则)。Tn的起始分别为所述多个上行物理信道中每个上行物理信道对应的信道或信号的结束位置。满足上述定时要求后,所述多个上行物理信道被合并,合并得到第一上行物理信道,该第一上行物理信道可以满足所述多个上行物理信道确定的定时要求,也可以不满足所述定时要求。
所述第一上行物理信道满足如下限制条件中的一个或多个:
限制条件一:所述一个或多个第一上行物理信道的结束位置不晚于所述多个上行物理信道最晚的结束位置。
参考图3,假设有PUCCH1和PUCCH2时域重叠在一个时隙中(PUCCH1和PUCCH2代表上述的多个上行物理信道,且PUCCH1和PUCCH2时分,不时域重叠,也可以的),且PUCCH1对应信道或信号为DCI_1,PUCCH2对应的信道或信号为DCI_2调度的PDSCH。T1是解码DCI_1以及准备PUCCH1中传输信息的时间,T2为解码PDSCH并准备PUCCH2中传输信息的时间。重叠的PUCCH1和PUCCH2中最早的PUCCH1的第一个符号起始位置不早于T1和T2中任意一个的结束时刻点。所以PUCCH1和PUCCH2满足定时要求,然后PUCCH1和PUCCH2合并,合并得到的PUCCH,这里假设为PUCCH3,PUCCH3也要满足PUCCH1和PUCCH2确定的定时要求,即PUCCH3的第一个符号不能早于T1和T2中任意一个的结束时刻点。且PUCCH3要满足PUCCH的结束位置不晚于PUCCH1和PUCCH2中结束位置最晚的(即PUCCH3结束位置不晚于PUCCH2的结束位置)。从图3可以看出,PUCCH4是不能作为PUCCH1和PUCCH2合并的PUCCH的,因为它的结束位置晚于PUCCH2的结束位置了。
限制条件二:所述多个上行物理信道包括URLLC信道,所述一个或多个第一上行物理信道的结束位置不晚于所述URLLC信道最晚的结束位置。
本限制条件引入了在所述多个上行物理信道中包含URLLC的上行物理信道的情况。这是因为本文提出的方案在URLLC业务时,更能体现出优势和增益。也可以理解UE在多个上行物理信道中包含URLLC的上行物理信道时,采用本申请实施例的方法,在不包含URLLC的上行物理信道时,采用已有方法。即提出基站和UE根据所述的多个上行物理信道对应的业务类型确定对应的解决方案。
参考图4,这里假设PUCCH1为URLLC业务的。按照类似图1的描述,这里PUCCH1和PUCCH2合并后确定的上行物理信道的结束位置不晚于PUCCH1(因为PUCCH1是URLLC相关的,如果有多个上行物理信道是URLLC的,那么要选择URLLC的上行物理信道中结束位置最晚的作为这里的PUCCH1)的结束位置。因此,PUCCH3的结束位置不晚于PUCCH1的结束位置,PUCCH3满 足要求(如果按照限制条件一,则PUCCH3,PUCCH4均满足要求,如果按照已有方式,则PUCCH3,PUCCH4,PUCCH5均满足要求)。
限制条件三:所述多个上行物理信道包括URLLC信道,所述一个或多个第一上行物理信道的结束位置与所述URLLC信道的后续信道或后续信号的传输间隔时长为J,所述J包括:解码相应的所述第一上行物理信道且准备所述后续信道或后续信号的传输数据的时长。也就是说,J时长内能够解码相应的第一上行物理信道且准备好所述后续相关信道或信号的传输数据。其中,所述后续信道或后续信号的传输置为按照所述URLLC信道位置确定的。
参考图5,这里假设所述多个上行物理信道(即PUCCH1和PUCCH2)中的PUCCH1为URLLC业务的,且这里PUCCH1后续相关信道或信号为图中的re-PDSCH(re-PDSCH表示前面的PDSCH的重传,即PUCCH1如果反馈为否定确认(Negative Acknowledgement,NACK),那么基站会在re-PDSCH处重传PDSCH)。re-PDSCH的位置是与PUCCH1的发送结束时刻有关的,根据不同的UE能力和URLLC的时序要求,一些情况下,基站为UE安排的时序位置是不允许前后移动,如果前后移动后,有可能造成URLLC的时序不满足传输及时性的要求。例如,图5中的re-PDSCH按照PUCCH1的结束位置安排好了(即按照PUCCH1结束位置和re-PDSCH之间的间隔,基站能够处理PUCCH1的解码和re-PDSCH的数据准备。如果re-PDSCH数据准备可能是基站之前准备好的,这个时间可以忽略),但是如果第一上行物理信道是PUCCH5,由于PUCCH5和原本安排的re-PDSCH之间的间隔较小,如果基站不能在这个间隔内处理好PUCCH5的解码和re-PDSCH的数据准备,导致re-PDSCH传输时刻延迟,这样将影响URLLC的及时性,这样,PUCCH5是不能被选择作为所述多个上行物理信道合并后确定的PUCCH。
所以,按照类似图1的描述,这里PUCCH1和PUCCH2合并后确定的上行物理信道的结束位置与PUCCH1后续相关信道或信号之间的间隔时长为J,J时长内至少要能够处理完PUCCH1解码和re-PDSCH的数据准备。这样,所述确定的上行物理信道是合适的。按照限制条件三,图5中的PUCCH3肯定满足要求,因为PUCCH3和图中re-PDSCH之间的间隔比原来的PUCCH1和re-PDSCH之间的间隔还大,所以有足够的数据准备时间。图5中PUCCH4也可能满足,这个就要根据设备的处理能力来判断是否可以在所述间隔内准备好数据了。
这里有一个要求,即按照业务的传输及时性要求,例如,对于业务的PDSCH从开始传输至被UE正确接收是有时间限制的(如果第一次传输的PDSCH被UE错误解码,时间限制包括第一次传输PDSCH,UE解码错误,UE反馈NACK,基站重传该PDSCH,UE解码重传的PDSCH正确),这里可以假设时间限制的 时长为M,M根据业务的需求可以确定,这样在限制条件三中,PDSCH被传输后,如果PDSCH对应的PUCCH反馈的是NACK,那么re-PDSCH的最晚的起始位置能被根据上述的M推导得出,从可以确定上述J的结束位置能被确定(J的结束位置就是re-PDSCH的起始位置)。
限制条件四:相对于限制条件三,更加宽松。它能够支持UE发送完ACK/NACK的PUCCH1后,立即接收可能的re-PDSCH,对应的,基站侧接收ACK/NACK的PUCCH1,实际未解码PUCCH1,就直接发送re-PDSCH给UE。即UE发送完ACK/NACK的PUCCH1后,最早可以立即接收基站发送的re-PDSCH;或者说,UE未发送ACK/NACK的PUCCH1结束,不能接收re-PDSCH;或者说,UE发送ACK/NACK的PUCCH1结束之前,基站不允许发送re-PDSCH。这种限制,实际上允许限制条件三中的J时长为Jmin(Jmin接近0的一个时长,它能包括:UE从上行发送转为下行接收的切换时间。即基站判断UE发送ACK/NACK的PUCCH1结束,基站直接发送re-PDSCH,re-PDSCH的数据可以是之前事先准备好,即基站计划这样发送re-PDSCH时,可以事先准备re-PDSCH数据,在UE发送ACK/NACK的PUCCH1结束后发送re-PDSCH),但不能为负数,其中负数表示合并后确定的PUCCH的结束位置晚于re-PDSCH的起始位置。
同样的,业务的传输及时性要求要被考虑,例如,对于业务的PDSCH从开始传输至被UE正确接收是有时间限制的(如果第一次传输的PDSCH被UE错误解码,时间限制包括第一次传输PDSCH,UE解码错误,UE反馈NACK,基站重传该PDSCH,UE解码重传的PDSCH正确),这里可以假设时间限制的时长为M,M根据业务的需求可以确定,这样在限制条件四中,PDSCH被传输后,如果PDSCH对应的PUCCH反馈的是NACK,那么re-PDSCH的最晚的起始位置能被根据上述的M推导得出,从可以确定上述J的结束位置能被确定(J的结束位置就是re-PDSCH的起始位置)。
上述应用实例描述的是第一上行物理信道的结束位置满足限制条件。在其他实例中,第二上行物理信道的结束位置也要满足限制条件,此处不再赘述。
应用实例二
应用实例二中重点描述满足限制条件的情况下,多个上行物理信道如何合并。
在时隙中出现多个PUCCH资源时(没有强制要求必须时域重叠,因为URLLC有可能在时隙中出现时分的HARQ-ACK的PUCCH),将这些PUCCH合并,合并时采用有下面方式至少之一(可以结合使用):
方式A:同类型UCI先合并,在确定合并得到的PUCCH再与其他的PUCCH合并;
方式B:按照“两两合并”规则。“两两合并”机制是指:在待合并的PUCCH中,选择时间最早的两个PUCCH进行合并,如果按照时间最早原则被选中的PUCCH超过两个,再按照符号数量原则从被选中的PUCCH中进一步筛选(例如符号数量多的优先被选择),如果被选中的PUCCH仍然超过2个,再按照PUCCH的频域位置从选中的PUCCH中进一步筛选(例如频域位置对应的物理资源块RB索引小的被优先选择),最终选择2个PUCCH合并。可选的,合并前判断被选择的2个PUCCH是否时域重叠,如果是,则进行合并,合并后得到的PUCCH和剩余的PUCCH作为新的待合并的PUCCH进行合并,仍然按照上述原则;否则,将被选中的2个PUCCH中时间早的PUCCH不再和时间晚的PUCCH合并,此时待合并PUCCH中剔除所述时间早的PUCCH,将所述时间晚的PUCCH和剩余的PUCCH作为新的待合并的PUCCH进行合并,仍然按照上述原则。
参考图6,4个PUCCH之间进行合并时,优先合并相同UCI类型的PUCCH,例如PUCCH1和PUCCH2是ACK/NACK的,合并为一个PUCCH,合并的PUCCH可以是DCI中为UE指示的PUCCH资源。也就是,PUCCH1和PUCCH2中的UCI信息串接,然后对应新的UCI比特数,根据比特数确定PUCCH集合,然后在使用DCI中指示的PUCCH资源信息在该确定PUCCH集合中寻找。合并过程中,遵守前述的“两两合并”原则,图6中,即PUCCH1的UCI信息放置在PUCCH2的前面串接。PUCCH3和PUCCH4都是CSI信息,也可以按照“两两合并”原则进行,也可以按照其他原则合并,例如根据承载的CSI的优先级。最终,PUCCH1和PUCCH2合并的PUCCH,如果和PUCCH3和PUCCH4合并的PUCCH还重叠,那么它们两个PUCCH继续合并,如果不重叠,可以各自发送。
参考图6,也可以是,只将HARQ-ACK的PUCCH进行合并得到确定的PUCCH,然后将所述确定的PUCCH和对于其他UCI类型的PUCCH按照相关技术进行处理(参考3GPP TS38.213vf20)。
应用实例三
应用实例三中重点描述满足限制条件的情况下,多个上行物理信道如何合并。
将待合并的PUCCH进行统一合并。包括:同类型的UCI的比特先各自串接,将串接后的UCI信息再按照不同类型的UCI信息再串接,不同类型的UCI信息串接顺序依次为HARQ-ACK比特,之后是SR比特(如果有),之后是 CSI比特(如果有)。同一类型UCI的PUCCH的UCI信息之间的串接可以使用3个维度进行:PUCCH时间顺序、PUCCH符号数量、PUCCH频域位置。几个可能的例子如下:同一UCI类型的PUCCH的UCI的彼此串接的先后顺序为(也可以被使用为部分UCI类型,例如为HARQ-ACK使用这种串接类型,其他UCI不使用这种串接类型):时间顺序优先、其次是PUCCH符号数量、其次是PUCCH的频域位置(如果PUCCH频域跳频,按照第一个跳频的频域位置计算)。对于同一UCI的PUCCH的UCI信息之间串接也可以考虑其他方式:例如,PUCCH频域位置优先、其次是时间顺序、其次符号数量等。
参考图7,如果确定图7中的6个PUCCH进行合并,那么按照本实施例的合并过程为:
先将PUCCH1和PUCCH2的ACK/NACK(也称HARQ-ACK)信息串接。串接顺序为时间优先,其次符号数量,其次是频域位置。此时PUCCH1的ACK/NACK之后串接PUCCH2的ACK/NACK,构成串接后的ACK/NACK信息。然后PUCCH5和PUCCH6中的SR进行串接,串接方法和ACK/NACK串接相同。然后是PUCCH3和PUCCH4的CSI串接,串接方法和ACK/NACK相同。然后将ACK/NACK的串接结果、SR的串接结果和CSI的串接结果再按照ACK/NACK、SR和CSI顺序串接。本方式中,并不强制要求每种UCI类型都按照上述的串接方式进行串接,也就是说,例如,也可以,ACK/NACK的两个PUCCH1和PUCCH2按照上述方式串接,SR的两个PUCCH可以按照其他方式串接,CSI也可以按照其他方式串接,然后将ACK/NACK的串接结果、SR的串接结果和CSI的串接结果再按照ACK/NACK、SR和CSI顺序串接。
最终串接的UCI信息在一个PUCCH发送,该PUCCH是根据最终串接的UCI比特数确定PUCCH集合再结合DCI中的PUCCH资源指示信息确定的。这种方式中,避免为每种UCI类型信息串接后确定PUCCH资源,而是最后确定一次PUCCH资源,过程简单。
应用实例四
本应用实例中针对合并机制给出一些特殊原则。
由于URLLC业务的特性,将会引入一个时隙中有两个HARQ-ACK的PUCCH的情况(不管是否时域重叠)。从相关技术中的合并机制来看,可以基本重用相关技术中的合并机制,但对于部分情况存在合并问题:
例1:
结合图8,Short/long PUCCH SR与多个1~2比特HARQ-ACK PUCCH的碰撞机制(short PUCCH是指PF0,PF2,long PUCCH是指PF1,PF3,PF4)。 对于情况(case)1、2,在相关技术中的合并机制下,SR会在编号为2的PUCCH上发送,即合并后的PUCCH与编号3的PUCCH不存在冲突,此时没有问题。
存在问题的是下面的case 3和case4,①和②合并后结果是:如果是positive SR则在①的PUCCH上发送HARQ-ACK,此时无法利用已有机制进一步与编号3的PUCCH进行合并。对于case3和4,可以采用下面的合并方案之一。
方案1:所有编号的HARQ-ACK和SR联合编码,然后按照最终的UCI比特数选择对应的resource set(资源集),按照DCI中指示的PUCCH资源进行发送。缺点是可能导致编号2的HARQ-ACK发送延迟,但是如果满足上述的定时要求,虽然延迟了但也不会影响后续数据的继续发送。
方案2:编号为1和2的PUCCH合并,但采用HARQ-ACK的时域资源,采用SR的码域资源发送positive SR+HARQ-ACK。这种合并不同于相关技术中的合并机制。
方案3:对于case3,编号为1和3的PUCCH先进行合并,此时合并后的PUCCH为3号PUCCH,此时不存在冲突。但额外的,需要确定合并规则为,如果一个SR碰撞的HARQ-ACK PUCCH存在Format 0,则先跟HARQ-ACK Format 0合并;如果SR与多个HARQ-ACK Format 0碰撞,按照编号顺序合并。对于Case 4,两个长格式的HARQ-ACK PUCCH与一个SR重叠,则丢掉SR。
方案4:对于case3和4,丢掉SR,此时SR为long PUCCH,可以选择丢掉SR
例2:
结合图9,Short/long PUCCH SR与至少一个大于2比特HARQ-ACK PUCCH的碰撞机制。
除case2外,其他case可以按照相关技术中的合并机制进行合并,不存在问题。对于case2,不能采用相关技术中的机制合并。可以采用如下方案之一:
方案5:采用示例1中的方案1。
方案6:如果SR是long PUCCH,则丢掉SR。编号为2和3的PUCCH可以分别发送。
方案7:编号为1和2的PUCCH的UCI联合编码,然后按照最终的UCI比特数选择对应的resource set,按照DCI中指示的PUCCH资源进行发送。然后得到一个PUCCH再和编号为3的PUCCH确定是否合并(重叠的话就再合并)。
方案8:如果SR是short PUCCH,则示例1中的方案1,如果SR是long  PUCCH,则丢掉SR,编号为2和3的PUCCH可以分别发送。
方案9:SR先跟编号为3的PUCCH(即PF2/3/4)合并,得到的PUCCH如果和编号为2的重叠,再和编号为2的合并,否则分别发送得到的PUCCH和编号为2的PUCCH。
例3:
结合图10和11,Short/long PUCCH CSI与多个1~2比特HARQ-ACK PUCCH的合并,采用下面方案之一:
方案10:CSI放置在编号为2的HARQ-ACK的PUCCH中且联合编码,其联合编码后使用的PUCCH的长度始终保持不变或者不会增加。或者,基站确保其新选择的PUCCH不会与后面的PUCCH存在冲突。
方案11:丢掉CSI的PUCCH,直接发送编号为2和3的PUCCH。
如图12所示,本申请实施例还提供一种信息传输的装置,包括:
复用模块21,用于时隙中存在多个上行物理信道时,将所述多个上行物理信道承载的信息复用至一个或多个第一上行物理信道;
传输模块22,用于确定所述一个或多个第一上行物理信道的结束位置满足限制条件,通过所述一个或多个第一上行物理信道传输所述信息。
在一实施例中,所述复用模块21,用于确定存在以下情况至少之一,则将所述多个上行物理信道承载的信息复用至一个或多个第一物理信道:
所述多个上行物理信道存在时域上的重叠;
所述多个上行物理信道包括高可靠低时延通信URLLC信道。
在一实施例中,所述传输模块22,用于按照如下至少之一确定所述一个或多个第一上行物理信道的结束位置满足限制条件:
所述一个或多个第一上行物理信道的结束位置不晚于所述多个上行物理信道最晚的结束位置;
所述多个上行物理信道包括URLLC信道,所述一个或多个第一上行物理信道的结束位置不晚于所述URLLC信道最晚的结束位置;
所述多个上行物理信道包括URLLC信道,所述一个或多个第一上行物理信道的结束位置与所述URLLC信道的后续信道或后续信号的传输之间存在间隔时长,所述间隔时长包括:解码相应的所述第一上行物理信道的时长和准备所述后续信道或后续信号的传输数据的时长。
在一实施例中,所述复用模块21,用于:
直接将所述多个上行物理信道承载的信息复用至所述一个或多个第一上行物理信道,或者
进行多次复用,将所述多个上行物理信道承载的信息复用至一个或多个第二上行物理信道,将所述一个或多个第二上行物理信道承载的信息复用至所述一个或多个第一上行物理信道。
在一实施例中,所述复用模块21,还用于:确定所述一个或多个第二上行物理信道的结束位置满足所述限制条件。
在一实施例中,所述多个上行物理信道包括多个PUCCH,所述复用模块21,用于采用如下方式至少之一将所述多个上行物理信道承载的信息复用至一个或多个第一上行物理信道:
优先复用承载同一上行控制信息UCI类型的PUCCH;
按照两两复用的方式复用所述多个PUCCH。
在一实施例中,所述多个上行物理信道包括多个PUCCH,所述复用模块21,用于:
将承载同一UCI类型的PUCCH中的UCI进行串接,将串接得到的UCI按照UCI类型进行串接。
在一实施例中,所述复用模块21,用于:
依次按照如下优先级顺序将承载同一UCI类型的PUCCH中的UCI进行串接:
PUCCH时间顺序、PUCCH符号数量、PUCCH频域位置。
在一实施例中,所述复用模块21,用于:
依次按照UCI类型:混合自动重传请求-确认信息HARQ-ACK、调度请求SR、信道状态信息CSI的顺序进行串接。
在本申请实施例中,通过使第一上行物理信道的结束位置满足限制条件,保证了上行物理信道的及时性,使得时序更加紧凑、高效。
如图13所示,本申请实施例还提供一种信息传输的设备,包括存储器31、处理器32及存储在存储器31上并可在处理器32上运行的计算机程序33,所述处理器32执行所述计算机程序时实现所述信息传输的方法。
所述信息传输的设备可以应用于UE也可以应用于基站。
本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令, 所述计算机可执行指令用于执行所述信息传输的方法。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、电可擦只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他存储器技术、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Video Disk,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (15)

  1. 一种信息传输的方法,包括:
    在时隙中存在多个上行物理信道的情况下,将所述多个上行物理信道承载的信息复用至一个或多个第一上行物理信道;
    在确定所述一个或多个第一上行物理信道的结束位置满足限制条件的情况下,通过所述一个或多个第一上行物理信道传输所述信息。
  2. 如权利要求1所述的方法,其中,所述多个上行物理信道存在以下至少一种情况:
    所述多个上行物理信道存在时域上的重叠;
    所述多个上行物理信道包括高可靠低时延通信URLLC信道。
  3. 如权利要求1所述的方法,其中,所述一个或多个第一上行物理信道的结束位置满足限制条件,包括如下至少之一:
    所述一个或多个第一上行物理信道的结束位置不晚于所述多个上行物理信道最晚的结束位置;
    所述多个上行物理信道包括URLLC信道,所述一个或多个第一上行物理信道的结束位置不晚于所述URLLC信道最晚的结束位置;
    所述多个上行物理信道包括URLLC信道,所述一个或多个第一上行物理信道的结束位置与所述URLLC信道的后续信道或后续信号的传输之间存在间隔时长,所述间隔时长包括:解码所述第一上行物理信道的时长和准备所述后续信道或后续信号的传输数据的时长。
  4. 如权利要求1所述的方法,其中,所述将所述多个上行物理信道承载的信息复用至一个或多个第一上行物理信道,包括:
    直接将所述多个上行物理信道承载的信息复用至所述一个或多个第一上行物理信道;或者,
    将所述多个上行物理信道承载的信息复用至一个或多个第二上行物理信道,以及将所述一个或多个第二上行物理信道承载的信息复用至所述一个或多个第一上行物理信道。
  5. 如权利要求4所述的方法,还包括:确定所述一个或多个第二上行物理信道的结束位置满足所述限制条件。
  6. 如权利要求1所述的方法,其中,所述多个上行物理信道包括多个物理上行控制信道PUCCH;所述将所述多个上行物理信道承载的信息复用至一个或多个第一上行物理信道,包括如下至少一种方式:
    优先复用承载同一上行控制信息UCI类型的PUCCH;
    按照两两复用的方式复用所述多个PUCCH。
  7. 如权利要求1所述的方法,其中,所述多个上行物理信道包括多个PUCCH;
    所述将所述多个上行物理信道承载的信息复用至一个或多个第一上行物理信道,包括:
    基于多个UCI类型,将承载同一UCI类型的PUCCH中的UCI进行串接;
    将每个UCI类型对应的串接得到的UCI,按照所述多个UCI类型的串接顺序进行串接。
  8. 如权利要求7所述的方法,其中,所述将承载同一UCI类型的PUCCH中的UCI进行串接,包括:
    依次按照如下优先级顺序将承载同一UCI类型的PUCCH中的UCI进行串接:
    PUCCH时间顺序、PUCCH符号数量以及PUCCH频域位置。
  9. 如权利要求7所述的方法,其中,所述将每个UCI类型对应的串接得到的UCI,按照所述多个UCI类型的串接顺序进行串接,包括:
    依次按照所述UCI类型为混合自动重传请求-确认信息HARQ-ACK、调度请求SR以及信道状态信息CSI的串接顺序,将每个所述UCI类型对应的串接得到的UCI进行串接。
  10. 一种信息传输的装置,包括:
    复用模块,设置为在时隙中存在多个上行物理信道的情况下,将所述多个上行物理信道承载的信息复用至一个或多个第一上行物理信道;
    传输模块,设置为在确定所述一个或多个第一上行物理信道的结束位置满足限制条件的情况下,通过所述一个或多个第一上行物理信道传输所述信息。
  11. 如权利要求10所述的装置,其中,所述复用模块,还设置为确定所述多个上行物理信道存在以下至少一种情况:
    所述多个上行物理信道存在时域上的重叠;
    所述多个上行物理信道包括高可靠低时延通信URLLC信道。
  12. 如权利要求10所述的装置,其中,所述传输模块,是设置为确定如下至少之一:
    所述一个或多个第一上行物理信道的结束位置不晚于所述多个上行物理信道最晚的结束位置;
    所述多个上行物理信道包括URLLC信道,所述一个或多个第一上行物理信道的结束位置不晚于所述URLLC信道最晚的结束位置;
    所述多个上行物理信道包括URLLC信道,所述一个或多个第一上行物理信道的结束位置与所述URLLC信道的后续信道或后续信号的传输之间存在间隔时长,所述间隔时长包括:解码所述第一上行物理信道的时长和准备所述后续信道或后续信号的传输数据的时长。
  13. 如权利要求10所述的装置,其中,所述多个上行物理信道包括多个PUCCH,所述复用模块,是设置为:
    基于多个UCI类型,将承载同一UCI类型的PUCCH中的UCI进行串接;将每个UCI类型对应的串接得到的UCI按照所述多个UCI类型的串接顺序进行串接。
  14. 一种信息传输的设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1~9中任意一项所述的方法。
  15. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~9中任意一项所述的方法。
PCT/CN2019/099025 2018-08-02 2019-08-02 信息传输的方法、装置、设备和计算机可读存储介质 WO2020025045A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19845559.4A EP3832918B1 (en) 2018-08-02 2019-08-02 Information transmission method, apparatus and device, and computer-readable storage medium
JP2021505388A JP7101865B2 (ja) 2018-08-02 2019-08-02 情報伝送方法、装置、デバイスおよびコンピュータ可読記憶媒体
US17/264,359 US11770832B2 (en) 2018-08-02 2019-08-02 Information transmission method, device and apparatus and computer-readable storage medium
KR1020217003749A KR20210027474A (ko) 2018-08-02 2019-08-02 정보 전송 방법, 장치, 기기 및 컴퓨터 판독 가능 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810871291.XA CN110798291B (zh) 2018-08-02 2018-08-02 一种信息传输的方法、装置、设备和计算机可读存储介质
CN201810871291.X 2018-08-02

Publications (1)

Publication Number Publication Date
WO2020025045A1 true WO2020025045A1 (zh) 2020-02-06

Family

ID=69231506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099025 WO2020025045A1 (zh) 2018-08-02 2019-08-02 信息传输的方法、装置、设备和计算机可读存储介质

Country Status (6)

Country Link
US (1) US11770832B2 (zh)
EP (1) EP3832918B1 (zh)
JP (1) JP7101865B2 (zh)
KR (1) KR20210027474A (zh)
CN (1) CN110798291B (zh)
WO (1) WO2020025045A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4102755A4 (en) * 2020-03-10 2023-07-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD, APPARATUS AND DEVICE FOR TRANSMITTING INFORMATION
CN113518458A (zh) * 2020-04-09 2021-10-19 北京三星通信技术研究有限公司 上行数据和控制信息的传输方法及其设备
CN113543330B (zh) * 2020-04-22 2022-12-09 北京紫光展锐通信技术有限公司 信道资源的传输方法及设备
CN114079553B (zh) * 2020-08-19 2023-02-21 维沃移动通信有限公司 上行传输方法、设备及可读存储介质
CN114826509B (zh) * 2021-01-18 2024-05-10 大唐移动通信设备有限公司 上行传输方法、装置及处理器可读存储介质
CN115175324A (zh) * 2021-04-02 2022-10-11 大唐移动通信设备有限公司 一种信道复用方法、装置及通信设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103124428A (zh) * 2011-11-17 2013-05-29 电信科学技术研究院 一种上行功率控制方法及装置
CN103516491A (zh) * 2012-06-29 2014-01-15 电信科学技术研究院 一种发送和接收反馈信息的方法、系统及装置
WO2015142037A1 (en) * 2014-03-18 2015-09-24 Samsung Electronics Co., Ltd. Power control method and user equipment in a system configured with serving cells having d2d sub-frames
CN105917709A (zh) * 2014-01-15 2016-08-31 Lg电子株式会社 控制无线通信中的上行链路功率的方法和装置
CN106067845A (zh) * 2015-04-09 2016-11-02 北京三星通信技术研究有限公司 复用上行信息的方法
CN106455103A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 资源配置方法和资源配置装置
CN107896390A (zh) * 2016-10-04 2018-04-10 上海朗帛通信技术有限公司 一种用于低延迟的 ue、基站中的方法和装置
CN108023721A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种数据传输方法和装置
CN108347318A (zh) * 2017-01-23 2018-07-31 华为技术有限公司 一种上行传输方法及装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101494002B1 (ko) * 2007-06-11 2015-02-16 삼성전자주식회사 이동통신 시스템에서 자원 할당 및 그에 따른 수신 장치 및방법
CN103828319B (zh) 2011-09-23 2017-08-15 Lg电子株式会社 在无线通信系统中发送上行链路控制信息的方法和装置
CN107276715A (zh) * 2016-04-01 2017-10-20 中兴通讯股份有限公司 一种传输信号的方法和装置
CN107371184B (zh) * 2016-05-13 2020-08-11 中兴通讯股份有限公司 资源配置方法、装置及基站
KR20190017994A (ko) * 2016-06-15 2019-02-20 콘비다 와이어리스, 엘엘씨 새로운 라디오를 위한 업로드 제어 시그널링
CN107888349A (zh) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 一种时隙时分复用方法及装置、信息传输方法及装置
CN108347290A (zh) * 2017-01-22 2018-07-31 中兴通讯股份有限公司 信息传输方法、装置及终端
US10148337B2 (en) * 2017-02-01 2018-12-04 Samsung Electronics Co., Ltd. Beam management of downlink data channel and downlink control channel for 5G next radio systems
CN108633066B (zh) * 2017-03-24 2021-12-03 华为技术有限公司 通信方法及其网络设备、终端设备
US11374712B2 (en) * 2017-05-03 2022-06-28 Lg Electronics Inc. Method for receiving reference signal in wireless communication system and device therefor
KR102364954B1 (ko) * 2017-05-04 2022-02-18 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 상향 제어 채널의 자원 지시 방법 및 장치
US10805136B2 (en) * 2017-05-13 2020-10-13 Qualcomm Incorporated Multiplexing paging signals with synchronization signals in new radio
US10972238B2 (en) * 2017-06-09 2021-04-06 Apple Inc. System and method for phase tracking reference signal (PT-RS) multiplexing
KR20190027705A (ko) * 2017-09-07 2019-03-15 엘지전자 주식회사 무선 통신 시스템에서 자원 할당 방법 및 상기 방법을 이용하는 장치
CN110034893A (zh) * 2018-01-12 2019-07-19 维沃移动通信有限公司 一种uci发送方法和移动终端
JP7099835B2 (ja) * 2018-03-13 2022-07-12 シャープ株式会社 端末装置、基地局装置、および、通信方法
US11849451B2 (en) * 2018-07-25 2023-12-19 Panasonic Intellectual Property Corporation Of America Terminal, base station, and communication method
US11671941B2 (en) * 2018-07-26 2023-06-06 Lg Electronics Inc. Method and apparatus for transmitting signal by sidelink terminal in wireless communication system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103124428A (zh) * 2011-11-17 2013-05-29 电信科学技术研究院 一种上行功率控制方法及装置
CN103516491A (zh) * 2012-06-29 2014-01-15 电信科学技术研究院 一种发送和接收反馈信息的方法、系统及装置
CN105917709A (zh) * 2014-01-15 2016-08-31 Lg电子株式会社 控制无线通信中的上行链路功率的方法和装置
WO2015142037A1 (en) * 2014-03-18 2015-09-24 Samsung Electronics Co., Ltd. Power control method and user equipment in a system configured with serving cells having d2d sub-frames
CN106067845A (zh) * 2015-04-09 2016-11-02 北京三星通信技术研究有限公司 复用上行信息的方法
CN107896390A (zh) * 2016-10-04 2018-04-10 上海朗帛通信技术有限公司 一种用于低延迟的 ue、基站中的方法和装置
CN108023721A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种数据传输方法和装置
CN106455103A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 资源配置方法和资源配置装置
CN108347318A (zh) * 2017-01-23 2018-07-31 华为技术有限公司 一种上行传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP TS38.213VF20

Also Published As

Publication number Publication date
US11770832B2 (en) 2023-09-26
CN110798291A (zh) 2020-02-14
US20210307046A1 (en) 2021-09-30
EP3832918B1 (en) 2024-05-22
JP7101865B2 (ja) 2022-07-15
EP3832918A1 (en) 2021-06-09
KR20210027474A (ko) 2021-03-10
CN110798291B (zh) 2022-04-15
JP2021533631A (ja) 2021-12-02
EP3832918A4 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
WO2020025045A1 (zh) 信息传输的方法、装置、设备和计算机可读存储介质
RU2746224C1 (ru) Способ и оборудование для передачи и приема сигнала в системе мобильной связи
US20220279538A1 (en) Method and apparatus for transmitting information on an uplink channel
KR20220047997A (ko) 전송 방법, 장치, 통신 노드 및 매체
US11387946B2 (en) Reliable ultra-low latency communications
CN110505698B (zh) 信道配置方法及终端、存储介质、电子装置
WO2019192285A1 (zh) 上行传输、通信方法、装置及基站、终端、存储介质
US10873437B2 (en) Systems and methods for frequency-division duplex transmission time interval operation
WO2020088676A1 (zh) Harq-ack码本确定方法及装置、终端、存储介质
KR20190099040A (ko) 무선 통신 방법 및 장치
US11882561B2 (en) Control information transmission techniques
WO2013097347A1 (zh) 混合自动重传请求应答信息的发送方法和装置
CN108604952A (zh) 反馈信息发送方法及装置
US20220174666A1 (en) Systems and methods for transmitting signals
EP3523917B1 (en) Uplink control information multiplexing
US20220158774A1 (en) Systems and methods for determining feedback codebook
US8675692B2 (en) Method for acquiring processing time of wireless signal
WO2013159597A1 (zh) 数据传输方法、用户设备及基站
US20210307004A1 (en) Service conflict processing method, user terminal and computer readable storage medium
KR20240041915A (ko) 방법들, 통신 디바이스들, 및 기반구조 장비
JP7389109B2 (ja) 端末、基地局、送信方法及び受信方法
WO2018028057A1 (zh) 数据传输方法和通信装置
WO2024099392A1 (zh) 一种信息处理方法、装置、设备及可读存储介质
US20230353299A1 (en) Multiplexing for coverage enhancement
US20220103308A1 (en) Feedback information processing method and related device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217003749

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019845559

Country of ref document: EP

Effective date: 20210302