WO2020024850A1 - 光学装置以及光谱检测设备 - Google Patents

光学装置以及光谱检测设备 Download PDF

Info

Publication number
WO2020024850A1
WO2020024850A1 PCT/CN2019/097336 CN2019097336W WO2020024850A1 WO 2020024850 A1 WO2020024850 A1 WO 2020024850A1 CN 2019097336 W CN2019097336 W CN 2019097336W WO 2020024850 A1 WO2020024850 A1 WO 2020024850A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
channel
monochromatic
color light
optical
Prior art date
Application number
PCT/CN2019/097336
Other languages
English (en)
French (fr)
Inventor
孟宪芹
王维
谭纪风
孟宪东
陈小川
高健
王方舟
梁蓬霞
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/631,722 priority Critical patent/US11536606B2/en
Publication of WO2020024850A1 publication Critical patent/WO2020024850A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0294Multi-channel spectroscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • G01J3/0259Monolithic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/1838Holographic gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/1895Generating the spectrum; Monochromators using diffraction elements, e.g. grating using fiber Bragg gratings or gratings integrated in a waveguide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/107Subwavelength-diameter waveguides, e.g. nanowires
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1286Polychromator in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • G01J2003/2826Multispectral imaging, e.g. filter imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12164Multiplexing; Demultiplexing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching

Definitions

  • the present disclosure relates to the technical field of optical detection, and in particular, to an optical device and a spectrum detection device.
  • microfluidics to reflect, transmit, or absorb light at specific wavelengths can achieve material calibration or quantitative analysis.
  • the existing spectrometer equipment is usually too large and can only be used in the laboratory. Therefore, it is desirable to provide a miniaturized spectrometer, increase the spectral range of the spectrometer, and reduce the cost of the spectrometer, thereby increasing the use range of the spectrometer.
  • An embodiment of the present disclosure provides an optical device including an optical waveguide, the optical waveguide including: a multi-color optical channel configured to transmit a multi-color light beam, and an input of the multi-color optical channel is provided for receiving an incoming multi-color light channel.
  • a light incident surface of the colored light beam; a dispersing device is arranged in the optical path downstream of the multi-color light channel, and the dispersing device is configured to separate the multi-color light beam from the multi-color light channel into a plurality of monochromatic light beams;
  • a plurality of monochromatic light channels arranged downstream of the dispersing device in an optical path, the plurality of monochromatic light channels being configured to respectively conduct a plurality of monochromatic light beams of different colors from the dispersing device,
  • the emitting ends of the plurality of monochromatic light channels are respectively provided with a monochromatic light emitting surface configured to output the monochromatic light beam.
  • the optical device further includes a substrate, wherein the multi-color light channel, the dispersion device, and a plurality of monochrome light channels are arranged on the same substrate.
  • the optical device further includes: a first cladding layer disposed on a first side surface of the multi-color light channel; and a second cladding layer disposed on a second side surface of the multi-color light channel, the second A side surface is disposed opposite to the first side surface and closer to the substrate than the first side surface, wherein a refractive index of the first cladding layer and a refractive index of the second cladding layer are both lower than The refractive index of the multi-color light channel is described.
  • the second cladding layer is integrated with the substrate.
  • the multi-color light channel, the dispersion device, and a plurality of monochromatic light channels are arranged in the same layer.
  • each of the plurality of monochromatic optical channels includes a sub-optical waveguide.
  • the materials of the multi-color light channel, the dispersive device, and the plurality of monochromatic light channels are the same.
  • the dispersive device includes a reflective blazed grating.
  • the optical device further includes: a reflective layer disposed on a side of the grating surface of the reflective blazed grating facing away from the light emitting surface of the complex color light channel.
  • the light incident surface is provided with a transmissive grating or the multi-color light channel includes a reflective inclined surface adjacent to the light incident surface.
  • a reflective bevel or a transmissive grating is provided in the first cladding layer, and the reflective bevel or the transmissive grating is located upstream of the light incident surface in the optical path and is configured to guide the incident light beam. Into the light incident surface.
  • a monochromatic light emitting surface of each monochromatic light channel is provided with a halftone dot or an extraction grating for outputting one monochromatic light beam among the plurality of monochromatic light beams.
  • the optical device further comprises a light source for emitting the multi-color light beam, wherein the light incident surface is arranged to receive the multi-color light beam from the light source.
  • An embodiment of the present disclosure provides a spectrum detection apparatus including the optical device according to any one of the above embodiments and a measurement device disposed opposite to the optical device; wherein the measurement device includes a microfluidic channel and A plurality of light sensing units; the plurality of monochromatic light channels are arranged on one side of the microfluidic channel; the plurality of light sensing units are arranged on the microfluidic channel and the plurality of monochrome light channels The other side of the channel is opposite; the light-receiving surface of each light sensing unit faces the exit surface of a monochromatic light channel.
  • the substrate of the optical device is a first substrate
  • the measurement device further includes a second substrate
  • the plurality of light sensing units and the microfluidic channel are arranged on the second substrate.
  • the multi-color light channel, the dispersion device, a plurality of monochromatic light channels, a microfluidic channel, and a plurality of light sensing units are arranged on the same substrate.
  • FIG. 1 is a top view of an optical device according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view of the optical device shown in FIG. 1 along line A-A ′;
  • FIG. 3 is a top view of an optical device according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a partial structure of a monochromatic light channel according to an embodiment of the present disclosure
  • FIG. 5 is a top view of an optical device according to another embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view of a spectrum detection device according to an embodiment of the present disclosure.
  • FIG. 7 is a top view of the measurement device in the embodiment shown in FIG. 6; FIG.
  • FIG. 8 is a top view of a spectrum detection device according to another embodiment of the present disclosure.
  • FIGS. 9A-9C are schematic structural diagrams of steps of a method for manufacturing an optical device according to an embodiment of the present disclosure.
  • 10A-10G are schematic structural diagrams of steps of a method for manufacturing an optical device according to another embodiment of the present disclosure.
  • 11A and 11B illustrate exemplary structures in which a reflective grating is formed near a light incident surface of a multi-color light channel, or a transmission grating is formed near the light incident surface of the multi-color light channel;
  • 11C and 11D illustrate exemplary structures forming a reflective bevel or a transmission grating on the first cladding layer, respectively;
  • FIG. 12 shows a flowchart of an embodiment of a method for manufacturing an optical device according to an embodiment of the present disclosure
  • FIG. 13 shows a flowchart of still another embodiment of a manufacturing method of an optical device according to an embodiment of the present disclosure.
  • FIG. 14 shows a flowchart of still another embodiment of a manufacturing method of an optical device according to an embodiment of the present disclosure.
  • the relative position relationship may also be corresponding.
  • an element such as a layer, film, region, or substrate is referred to as being “on” or “under” another element, the element can be “directly on” or “under” the other element, or There may be intermediate elements.
  • the optical device 100 includes an optical waveguide for transmitting light, and the optical waveguide includes a multi-color optical channel 101, a dispersion device 102, and a plurality of monochromatic optical channels 103.
  • the multi-color light channel 101 is configured to transmit the multi-color light beam 10.
  • the input end of the multi-color light channel 101 is provided with a light incident surface 1011 for receiving an incident multi-color light beam.
  • the light incident surface 1011 is configured to receive an incident multi-color light beam 10 (shown by an arrow in FIG. 1).
  • a dispersion device 102 is arranged downstream of the multi-color light channel 101 in an optical path, and is configured to split the multi-color light beam 10 from the multi-color light channel 101 into a plurality of monochromatic light beams.
  • the polychromatic light channel 101 can provide a polychromatic light beam to the dispersion device 102 through the polychromatic light exit surface 1012.
  • a plurality of monochromatic light channels 103 of the monochromatic light beam are arranged downstream of the dispersing device 102 in an optical path, and the plurality of monochromatic light channels 103 are configured to respectively conduct a plurality of different colors from the dispersing device 102. Monochromatic beam.
  • the emitting ends of the plurality of monochromatic light channels 103 are respectively provided with a monochromatic light emitting surface 1031 configured to output the monochromatic light beam.
  • the plurality of monochromatic light channels 103 may output the plurality of monochromatic light beams, for example, for irradiating a microfluid.
  • the plurality of monochromatic light channels 103 may include a first color light channel, a second color light channel, a third color light channel, and the like.
  • the optical device 100 may further include a substrate 108, and the multi-color light channel 101, the dispersion device 102, and a plurality of monochromatic light channels 103 are arranged on the same substrate 108.
  • the integrated structure of an optical waveguide including a multi-color light channel, a dispersion device, and a monochromatic light channel can reduce the size of the optical device.
  • it can be used to implement a glass substrate-based spectral detection device (such as a spectrometer), and it is especially suitable for microfluidic detection. .
  • the multi-color light channel 101, the dispersion device 102, and a plurality of monochrome light channels 103 may be arranged in the same layer, as shown in FIG. 2.
  • the optical device includes a multi-color light channel, a dispersive device, and a plurality of monochromatic light channels arranged in the same layer, which can simplify the basic structure of the spectrum test and a manufacturing method thereof.
  • the optical device described in the embodiments of the present disclosure can be applied to the fields of physics, chemistry, biology, medicine, agronomy, etc., for material analysis or molecular analysis.
  • two or more objects “arranged in the same layer” means that the two or more objects are disposed on the same surface or in the same layer. In some embodiments of the present disclosure, two or more objects “arranged in the same layer” also mean that the two or more objects are formed from the same material (eg, but not limited to, via the same patterning process).
  • the multi-color light channel 101, the dispersion device 102, and a plurality of monochrome light channels 103 are arranged in the same layer.
  • the multi-color light channel 101, the dispersive device 102, and the plurality of monochromatic light channels 103 are located on the same surface or in the same layer.
  • the multi-color light channel 101, the dispersive device 102, and the plurality of monochromatic light channels 103 are formed of a same layer of material. This can simplify the process.
  • each monochromatic optical channel is a sub-optical waveguide. This facilitates the structural integration of multiple monochromatic optical channels 103. For example, a plurality of such sub-optical waveguides can be combined to form an optical waveguide column.
  • the optical device 100 further includes: a first cladding (or upper cladding) disposed on a first side surface (upper surface in FIG. 2) of the multi-color light channel 101.
  • the second side surface of the multi-color light channel 101 is opposite to the first side surface and is closer to the substrate 108 than the first side surface.
  • the refractive index of the first cladding layer 104 and the refractive index of the second cladding layer 105 are lower than the refractive index of the multi-color light channel 101.
  • the second cladding layer is composed of the substrate 108, or the second cladding layer 105 and the substrate 108 are integrally structured. This approach helps to simplify the process.
  • the embodiments of the present disclosure are not limited thereto.
  • the second cladding layer may also be formed of other structures such as a transparent resin layer (such as being located between the second side surface of the multi-color light channel 101 and the substrate 108).
  • the first cladding layer and the second cladding layer can also serve as a protective layer to avoid damage to the multi-color light channel.
  • the optical device 100 includes an undercladding layer 105 disposed on a lower surface of the multicolor light channel 101; the underclad layer 105 is formed of a substrate 108; and the multicolor light A channel 101, a dispersion device 102, and a plurality of monochrome light channels 103 are arranged on the substrate 108.
  • the material layer arranged on the substrate can be patterned using, for example, a patterning process, thereby obtaining a multi-color light channel, a dispersion device, and a plurality of monochrome light channels. This further simplifies the basic structure of the spectral test and its manufacturing method.
  • the materials of the multi-color light channel 101, the dispersion device 102, and the plurality of monochromatic light channels 103 are the same.
  • the multi-color light channel, the dispersive device, and the plurality of monochromatic light channels are formed using the same material.
  • silicon nitride SiNx
  • SiNx silicon nitride
  • a layer of silicon nitride can be formed on a glass substrate, and then the layer of silicon nitride is patterned by a patterning process, so as to obtain a multi-color light channel 101, a dispersion device 102, and a plurality of single colors as shown in FIG. Light channel 103.
  • the light beam can be effectively confined to a multi-color light channel, a dispersion device, and a plurality of monochromatic light channels. This further simplifies the basic structure of the spectrum test and its manufacturing method.
  • the dispersion device 102 is a reflective blazed grating; the grating surface 1021 of the reflective blazed grating faces the multi-color light exit surface 1012 of the multi-color light channel.
  • the light beam from the polychromatic light channel is incident on the grating surface of the dispersion device 102.
  • the grating surface separates the light beam from the multi-color light channel into a plurality of monochromatic light beams.
  • a plurality of different line types represent a plurality of monochromatic light beams having different wavelengths.
  • the light incident surface and the multi-color light exit surface of the reflective blazed grating are adjacent.
  • the light incident surface of the reflective blazed grating is coupled to the multi-color light exit surface 1012 of the multi-color light channel 101, and the light emitted surface of the reflective blazed grating is coupled to the light incident surfaces of the plurality of monochromatic light channels 103.
  • the above arrangement is merely an embodiment, and the embodiments of the present disclosure are not limited thereto.
  • the positions of the light incident surface and the light exit surface of the reflective blazed grating may be adjusted according to actual needs.
  • the dispersion device may also be a holographic grating. Holographic gratings can be designed and optimized for different incident angles and positions to obtain gratings with different parameters.
  • the dispersion device may also be a linear gradient filter or the like. The light exit surface of the dispersive device is arranged such that the separated plurality of monochromatic light beams are coupled to the plurality of monochromatic light channels 103.
  • the optical device 100 further includes: a multi-color light emitting surface 1012 arranged on the grating surface 1021 and facing away from the multi-color light channel 101- Side of the reflective layer 106.
  • the reflective layer 106 may be formed on the outer side of the grating surface 1021 (that is, the side of the multi-color light emitting surface 1012 facing away from the multi-color light channel 101) by using a sputtering process, for example.
  • the material of the reflective layer 106 may be a reflective material such as aluminum or silver.
  • the light incident surface 1011 of the multi-color light channel 101 is provided with a transmission grating 107 for inputting light.
  • the transmissive grating 107 can be made using, for example, a nano-imprint process, thereby increasing the dispersion of incident light and further enhancing the color separation effect of the dispersion device 102.
  • the multi-color light channel 101 is provided with a reflective inclined surface 117 adjacent to the light incident surface 1011 for an input light beam.
  • the reflective inclined surface 117 may be designed according to the direction of the incident light beam and the position of the light source, so that the incident light enters the multi-color light channel 101 at a desired angle.
  • the light incident surface 1011 of the multi-color light channel 101 may be an end surface or a surface on one side (such as an upper surface, a lower surface, or a peripheral surface), and accordingly, the transmission grating 107 or the reflective inclined surface 117 may be correspondingly provided on, for example, the upper surface, the lower surface, or the peripheral surface.
  • FIG. 11A illustrates a case where the reflective inclined surface 117 is disposed on the upper surface of the multi-color light channel 101, and the light beam reflected by the reflective inclined surface 117 into the multi-color light channel 101 is transmitted as parallel as possible to the upper and lower surfaces of the multi-color light channel to reduce optical loss.
  • FIG. 11A illustrates a case where the reflective inclined surface 117 is disposed on the upper surface of the multi-color light channel 101, and the light beam reflected by the reflective inclined surface 117 into the multi-color light channel 101 is transmitted as parallel as possible to the upper and lower surfaces of the multi-color light channel to reduce optical loss.
  • 11B shows a case where the transmission grating 107 is disposed on the upper surface of the multi-color light channel 101. Due to the diffraction effect of the transmission grating 107, the light beam entering the multi-color light channel 101 has a certain inclination angle so that the light beam is multi-colored. The side wall of 101 satisfies the condition of total reflection, and the transmission grating 107 has a certain diffusion effect on the light beam.
  • the transmission grating 107 or the reflective inclined surface 117 may also be formed in the first cladding layer 104, as shown in FIGS. 11C and 11D.
  • the reflective inclined surface 117 or the transmission grating 107 is located upstream of the light incident surface 1011 of the multi-color light channel 101 in the optical path and is configured to guide the incident light beam into the light incident surface 1011.
  • the orthographic projection of the reflective inclined surface 117 or the transmissive grating 107 on the plane where the light incident surface 1011 of the multi-color light channel 101 is located is within the light incident surface 1011.
  • the monochromatic light emitting surface 1031 of each monochromatic light channel 103 is provided with a halftone dot 1032 or an extraction grating 1033 for outputting one monochromatic light beam among a plurality of monochromatic light beams.
  • the halftone dot 1032 or the extraction grating 1033 can be used to extract a monochromatic light beam from the light emitting surface 1031 located at the bottom of the monochromatic light channel 103, that is, the extracted monochromatic light beam is emitted toward the lower cladding layer 105.
  • an inclined plane may also be arranged on the light exit surface of each monochromatic light channel, so that the monochromatic light beam leaves the monochromatic light channel 103 in a desired direction.
  • the optical device 200 may further include a light source 201 for emitting the incident light beam, wherein the light incident surface 1011 of the multi-color light channel 101 is arranged to receive light from the light incident surface 1011.
  • the incident light beam of the light source 201 can be used as a light source system.
  • the light source system can be used as a light source of a miniature spectrometer, thereby effectively reducing the thickness and volume of the miniature spectrometer.
  • the light source system can be made based on a glass substrate and a patterning process, so the patterning process can be used to prepare a light source system with desired parameters, which further improves the compatibility of the light source system.
  • the light source 201 may be a light emitting diode or a composite light source composed of a plurality of light emitting diodes (or laser diodes), so as to provide the optical device with a multi-color light having a certain spectral range.
  • the light source system 200 can also use daylight or ambient light as incident light, so as to obtain a plurality of monochromatic light beams through the optical device.
  • the light beam incident into the multicolor light channel 101 may be a multicolor light beam (for example, a broad-spectrum light beam such as a white light beam) having a certain spectral range. The embodiment is not limited to this.
  • Embodiments of the present disclosure also provide a spectrum detection device.
  • the spectrum detection device 300 includes the optical devices 100 and 200 according to any one of the above embodiments and a measurement device 150 disposed opposite to the optical devices 100 and 200.
  • the optical device 100 adopts the arrangement shown in FIGS. 1 and 2, but the optical device in the present disclosure is not limited thereto.
  • the measurement device 150 includes a microfluidic channel 151 and a plurality of light sensing units 152; the plurality of monochromatic light channels 103 are arranged on one side of the microfluidic channel 151; The plurality of light sensing units 152 are disposed on the other side of the microfluidic channel 151 opposite to the plurality of monochrome light channels 103; the light receiving surface 1521 of each light sensing unit 152 faces a single color A monochromatic light emitting surface 1031 of the light channel 103 is emitted.
  • the plurality of light sensing units 152 correspond to the plurality of monochrome light channels 103 one-to-one.
  • Each light sensing unit 152 may include one or more light sensors. After the monochromatic light beam output by each monochromatic light channel 103 passes through the microfluidic channel 151, the intensity or wavelength of the monochromatic light beam will change. By using the light sensing unit 152 corresponding to the monochromatic light channel 103, it is possible to obtain change information of a monochromatic light beam, thereby obtaining a spectrum measurement result.
  • the measurement device 150 further includes a second substrate 153 and the plurality of light sensing units. 152 and the microfluidic channel 151 are disposed on the second substrate.
  • the optical device 100 and the measurement device 150 are arranged in a stack, so a plurality of light sensing units 152 shown in FIG. 6 are arranged below the microfluidic channel 151.
  • the optical device 100 and the measurement device 150 may also be arranged on the same side of the first substrate 108.
  • the multi-color light channel 101, the dispersion device 102, the plurality of monochromatic light channels 103, the microfluidic channel 151, and the plurality of light sensing units 152 are all arranged on the same substrate 108. side.
  • the polychromatic light channel 101, the dispersion device 102, a plurality of monochromatic light channels 103, a microfluidic channel 151, and a plurality of light sensing units 152 may be located on the same substrate, for example, Can be arranged on the same floor.
  • a patterning process may be used to form a pattern of a multi-color light channel 101, a dispersion device 102, a plurality of monochrome light channels 103, and a microfluidic channel 151 on the surface of the substrate 108, and then arrange a plurality of light sensing units 152 on One side of the microfluidic channel 151.
  • the pattern of the microfluidic channel 151 includes two parallel walls and a groove between the two walls.
  • a hydrophobic layer or a hydrophilic layer may be arranged inside the microfluidic channel 151 (that is, the surface of the groove), so that the microfluidic fluid flows or stays in the microfluidic channel 151 as needed.
  • the Teflon-AF hydrophobic layer can make the microfluid not adhere to the microfluidic channel as much as possible, and enhance the fluidity of the microfluid.
  • Embodiments of the present disclosure also provide a method for manufacturing an optical device. As shown in FIG. 12, the method includes:
  • a multi-color light channel, a dispersion device, and a plurality of monochrome light channels are formed on a substrate.
  • the multi-color light channel may be configured to transmit a multi-color light beam, and an input end of the multi-color light channel is provided with a light incident surface for receiving an incident multi-color light beam; a dispersion device is arranged in the optical path on the light path. Downstream of a multi-color light channel, the dispersion device is configured to separate the multi-color light beam from the multi-color light channel into a plurality of monochromatic light beams; the plurality of monochromatic light channels are arranged downstream of the dispersion device in an optical path.
  • the plurality of monochromatic optical channels are configured to respectively conduct a plurality of monochromatic light beams of different colors from the dispersing device, and output ends of the plurality of monochromatic optical channels are respectively configured to output the monochromatic Monochromatic light exit surface of the light beam.
  • the optical device includes a multi-color light channel, a dispersion device, and a plurality of monochromatic light channels arranged on the same substrate, which simplifies the basic structure of the spectrum test and a manufacturing method thereof.
  • the optical device described in the embodiments of the present disclosure can be applied to the fields of physics, chemistry, biology, medicine, agronomy, etc., for material analysis or molecular analysis.
  • the substrate may be a glass substrate having a thickness of 0.5-0.7 mm and a length and width of 10 mm * 10 mm, respectively. Therefore, a miniature spectrometer can be implemented on a glass substrate with a size of about 10 mm * 10 mm by means of a patterning process.
  • the method further includes: forming a first cladding layer on a surface of the multi-color light channel facing away from the substrate, and a refractive index of the upper cladding layer is less than a refraction of the multi-color light channel. rate.
  • the step of forming a multi-color light channel, a dispersion device, and a plurality of monochromatic light channels on a substrate includes: forming a first material layer 109 on the substrate 108 ( As shown in FIG. 9B), the first material layer 109 is subjected to a patterning process to form the multi-color light channel 101, the dispersion device 102, and a plurality of monochromatic light channels 103 (as shown in FIG. 9C).
  • the substrate 108 is a glass substrate.
  • the material of the first material layer 109 may be silicon nitride.
  • a first material layer 109 (also referred to as a waveguide layer) may be deposited on the surface of the substrate 108, a hard mask layer (such as an aluminum layer) 110 may be deposited on the surface of the first material layer 109, and then the hard mask
  • a first photoresist layer 111 is coated (eg, spin-coated) (as shown in FIG. 10A).
  • the first photoresist layer 111, the hard mask layer, and the first material layer 109 are patterned one by one to form the multi-color light channel 101, the dispersion device 102, and a plurality of monochrome light channels 103.
  • EBL electron beam direct-write lithography
  • NIP nanoimprint
  • the hard mask layer is etched by wet etching to form a hard mask, and then dry etching (for example, inductively coupled plasma, ICP or reactive ionetching, RIE) is used to etch the polychromatic light channel 101, the dispersion device 102, and A plurality of monochromatic light channels 103 (as shown in FIG. 10B).
  • dry etching for example, inductively coupled plasma, ICP or reactive ionetching, RIE
  • an area that needs deep etching (that is, a peripheral area of the grating) may be further exposed (for example, using a digital exposure process).
  • the peripheral region forms a deep trench.
  • the method may further include:
  • the second photoresist layer 112 is patterned (eg, using a photolithography process) and a channel is etched on the substrate 108 based on the patterned second photoresist layer 112.
  • the unnecessary hard mask layer 110 may then be removed (as shown in FIG. 10D).
  • the side of the grating surface of the dispersion device 102 (for example, the reflective blazed grating) facing away from the light emitting surface of the polychromatic light channel may be )
  • a (eg, metal) reflective layer 106 is deposited (as shown in FIG. 10E).
  • the material of the reflective layer may be, for example, aluminum or silver.
  • the metal reflective layer 106 deposited on other regions may be removed using, for example, a photolithography process (as shown in FIG. 10F).
  • a first cladding layer 104 may be further formed on a surface of the multi-color light channel 101 facing away from the substrate 108. This can be achieved, for example, by spin-coating a resin with a lower refractive index on the upper surface of the multi-color light channel 101 to form the first cladding layer 104.
  • the first cladding layer 104 may further cover the light incident surface 1011 of the multi-color light channel.
  • a reflective bevel 117 or a transmissive grating 107 (for example, by an electron beam direct writing or a nano-imprint process) may also be formed on the first cladding layer 104.
  • the reflective bevel 117 or the transmissive grating 107 may be formed on the first cladding layer 104. It is located upstream of the light incident surface 1011 in the optical path and is configured to guide the incident light beam into the light incident surface 1011, thereby improving light input efficiency (as shown in FIG. 10G).
  • the step of forming the dispersion device may include forming a reflective blazed grating using a nano-imprint process.
  • the grating surface of the reflective blazed grating faces the light emitting surface of the multi-color light of the multi-color light channel.
  • Utilizing the nano-imprint process can reduce the cost and improve the accuracy and performance of the dispersion device.
  • an optical device and a manufacturing method thereof, a light source system, and a detection device are provided.
  • the optical device includes a multi-color light channel, a dispersion device, and a plurality of monochromatic light channels arranged in the same layer, simplifying spectrum testing Basic structure and its manufacturing method.
  • the optical device described in the embodiments of the present disclosure can be applied to the fields of physics, chemistry, biology, medicine, agronomy, etc., for material analysis or molecular analysis.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本公开提供了一种光学装置以及光谱检测装置。该光学装置包括:光波导,其包括:复色光通道,配置成传输复色光束,在复色光通道的输入端设置有用于接收入射的复色光束的入光面;色散装置,在光路中布置在复色光通道的下游,色散装置配置为将来自复色光通道的复色光束分离成多个单色光束;以及多个单色光通道,在光路中布置在色散装置的下游,多个单色光通道配置为分别传导来自色散装置的不同颜色的多个单色光束,在多个单色光通道的出射端分别设置有配置成输出单色光束的单色光出光面。

Description

光学装置以及光谱检测设备
相关申请的交叉引用
本申请要求于2018年7月31日递交中国专利局的、申请号为201810867241.4的 中国专利申请的权益,该申请的全部内容以引用方式并入本文。
技术领域
本公开涉及光学检测技术领域,尤其涉及一种光学装置以及一种光谱检测设备。
背景技术
利用微流体对特定波长光的反射、透射、或吸收,可以实现物质标定或者定量分析。但是,现有光谱仪设备通常体积过大,只能在实验室中应用。因此,希望提供微型化的光谱仪、增加光谱仪的光谱范围、降低光谱仪的成本,从而增加光谱仪的使用范围。
公开内容
本公开的实施例提供了一种光学装置,包括:光波导,所述光波导包括:复色光通道,配置成传输复色光束,在所述复色光通道的输入端设置有用于接收入射的复色光束的入光面;色散装置,在光路中布置在所述复色光通道的下游,所述色散装置配置为将来自所述复色光通道的所述复色光束分离成多个单色光束;以及多个单色光通道,在光路中布置在所述色散装置的下游,所述多个单色光通道配置为分别传导来自所述色散装置的不同颜色的多个单色光束,在所述多个单色光通道的出射端分别设置有配置成输出所述单色光束的单色光出光面。
在一些实施例中,所述光学装置还包括基板,其中,所述复色光通道、色散装置以及多个单色光通道布置在同一所述基板上。
在一些实施例中,所述光学装置还包括:设置在复色光通道的第一侧表面的第一包层;以及设置在复色光通道的第二侧表面的第二包层,所述第二侧表面与所述第一侧表面相反设置且比所述第一侧表面更靠近所述基板,其中,所述第一包层的折射率和所述第二包层的折射率均低于所述复色光通道的折射率。
在一些实施例中,所述第二包层与所述基板为一体结构。
在一些实施例中,所述复色光通道、色散装置以及多个单色光通道布置在同一层中。
在一些实施例中,所述多个单色光通道中的每个单色光通道包括子光波导。
在一些实施例中,所述复色光通道、色散装置以及多个单色光通道的材料相同。
在一些实施例中,所述色散装置包括反射式闪耀光栅。
在一些实施例中,所述光学装置还包括:布置在所述反射式闪耀光栅的光栅面的背对所述复色光通道的复色光出光面一侧的反射层。
在一些实施例中,所述入光面设置有透射式光栅或所述复色光通道包括与所述入光面相邻的反射斜面。
在一些实施例中,所述第一包层中设置有反射斜面或透射式光栅,所述反射斜面或透射式光栅在光路中位于所述入光面的上游并配置成将所述入射光束引导入所述入光面。
在一些实施例中,每个单色光通道的单色光出光面设置有用于输出所述多个单色光束中的一个单色光束的网点或提取光栅。
在一些实施例中,所述光学装置还包括用于发出所述复色光束的光源,其中,所述入光面布置成接收来自所述光源的所述复色光束。
本公开的实施例提供了一种光谱检测设备,包括根据上述实施例中任一实施例所述的光学装置和与所述光学装置相对设置的测量装置;其中所述测量装置包括微流体通道和多个光传感单元;所述多个单色光通道布置在所述微流体通道的一侧;所述多个光传感单元布置在所述微流体通道的与所述多个单色光通道相反的另一侧;每个光传感单元的光接收面面对一个单色光通道的出射面。
在一些实施例中,所述光学装置的基板为第一基板,所述测量装置进一步包括第二基板,所述多个光传感单元和所述微流体通道布置在所述第二基板上。
在一些实施例中,所述复色光通道、色散装置、多个单色光通道、微流体通道以及多个光传感单元布置在同一基板上。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提 下,还可以根据这些附图获得其他的附图。
图1为根据本公开实施例的光学装置的俯视图;
图2为如图1所示的光学装置沿A-A′线的剖视图;
图3为根据本公开另一实施例的光学装置的俯视图;
图4为根据本公开实施例的单色光通道的局部结构示意图;
图5为根据本公开另一实施例的光学装置的俯视图;
图6为根据本公开实施例的光谱检测设备的剖视图;
图7为图6所示实施例中的测量装置的俯视图;
图8为根据本公开另一实施例的光谱检测设备的俯视图;
图9A-9C为根据本公开实施例的光学装置的制作方法的各步骤的结构示意图;
图10A-10G为根据本公开另一实施例的光学装置的制作方法的各步骤的结构示意图;
图11A和11B分别示出了在复色光通道的入光面附近形成反射斜面或复色光通道的入光面上形成透射性光栅的示例性结构;
图11C和11D分别示出了第一包层上形成反射斜面或透射性光栅的示例性结构;
图12示出了根据本公开实施例的光学装置的制作方法的一种实施例的流程图;
图13示出了根据本公开实施例的光学装置的制作方法的又一种实施例的流程图;以及
图14示出了根据本公开实施例的光学装置的制作方法的再一种实施例的流程图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在说明书和附图中,相同或相似的附图标记指代相同或相似的部件或构件。为了清晰起见,附图不一定按比例绘制,并且附图中可能省略了一些公知部件和结构。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。措词“一” 或“一个”不排除多个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”“顶”或“底”等等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。当诸如层、膜、区域或衬底基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
本公开的实施例提供了一种光学装置。如图1和图2所示,所述光学装置100包括:用于传导光的光波导,所述光波导包括复色光通道101、色散装置102以及多个单色光通道103。复色光通道101配置成传输所述复色光束10。在所述复色光通道101的输入端设置有用于接收入射的复色光束的入光面1011。该入光面1011配置成接收入射的复色光束10(如图1中的箭头所示)。色散装置102在光路中布置在所述复色光通道101的下游,所述色散装置102配置为将来自所述复色光通道101的复色光束10分离成多个单色光束。复色光通道101可通过复色光出射面1012将复色光束提供给色散装置102。所述单色光束多个单色光通道103在光路中布置在所述色散装置102的下游,所述多个单色光通道103配置为分别传导来自所述色散装置102的不同颜色的多个单色光束。在所述多个单色光通道103的出射端分别设置有配置成输出所述单色光束的单色光出光面1031。多个单色光通道103可以将所述多个单色光束分别输出,例如用于照射微流体等。作为示例,多个单色光通道103可以包括第一颜色光通道、第二颜色光通道、第三颜色光通道等等。
在一些实施例中,该光学装置100还可以包括基板108,所述复色光通道101、色散装置102以及多个单色光通道103布置在同一所述基板108上。
采用包括复色光通道、色散装置和单色光通道的光波导的集成结构,能够将光学装置小型化,例如可以用于实现基于玻璃基板的光谱检测装置(如光谱仪),尤其适用于微流体检测。
在一些实施例中,所述复色光通道101、色散装置102、以及多个单色光通道103可以布置在同一层中,如图2所示。在本公开的实施例中,光学装置包括布置在同一层中的复色光通道、色散装置、以及多个单色光通道,可以简化光谱测试的基础结构及其制作方法。本公开实施例所述的光学装置可以应用于物理、化学、生物、医学、农学等领域,用于物质分析或者分子分析。
在本公开的上下文中,两个或多个物体“布置在同一层中”指的是该两个或多个物体设置在同一表面上或位于同一层中。在本公开的一些实施例中,两个或多个物体“布置在同一层中”也表示该两个或多个物体由同一材料(例如但不限于,经由同一图案化工艺)来形成。
在一些实施例中,如图2和图6所示,所述复色光通道101、色散装置102、以及多个单色光通道103布置在同一层中。在一些实施例中,所述复色光通道101、色散装置102、以及多个单色光通道103位于同一表面上或位于同一层中。在一些实施例中,所述复色光通道101、色散装置102、以及多个单色光通道103由同一层材料形成。这可以简化工艺。
在一些实施例中,如图1-6和图8所示,每个单色光通道是子光波导。这有利于多个单色光通道103在结构上的整合,例如多个这样的子光波导组合在一起可以形成一光波导列。
在一些实施例中,如图2所示,所述光学装置100还包括:设置在复色光通道101的第一侧表面(在图2中是上表面)的第一包层(或称上包层)104以及设置在复色光通道101的第二侧表面(在图2中是下表面)的第二包层(下包层)105。复色光通道101的所述第二侧表面与所述第一侧表面相反设置且比所述第一侧表面更靠近所述基板108。所述第一包层104的折射率和所述第二包层105的折射率低于所述复色光通道101的折射率。这有利于在复色光通道101与第一包层104和第二包层中每一者的界面处产生全反射。在图2的实施例中,第二包层由基板108构成,或称第二包层105与基板108为一体结构。这种方式利于简化工艺。然而,本公开的实施例不限于此,例如,第二包层也可以由透明的树脂层等其他结构(如位于复色光通道101的第二侧表面和基板108之间)形成。
根据全内反射的原理,通过布置第一包层和/或第二包层,进入复色光通道的光能够被更有效地限制在复色光通道中。由此,提高了光利用率。此外,所述第一包层和第二包层还能充当保护层,避免所述复色光通道的损坏。
在一些实施例中,如图1和图2所示,所述光学装置100包括设置在复色光通道101下表面的下包层105;所述下包层105由基板108形成;所述复色光通道101、色散装置102、以及多个单色光通道103布置在所述基板108上。
利用上述布置,可以使用例如图案化工艺,将布置在基板上的材料层图案化,从而获得复色光通道、色散装置和多个单色光通道。由此,进一步简化了光谱测试的基 础结构及其制作方法。
在一些实施例中,所述复色光通道101、色散装置102以及多个单色光通道103的材料相同。
在一些实施例中,所述复色光通道、色散装置以及多个单色光通道是利用同一种材料形成的。例如,可以在玻璃基板或SiO 2基板上使用氮化硅(SiNx)来制作复色光通道、色散装置、以及多个单色光通道。具体地,可以在玻璃基板上形成一层氮化硅,然后利用图案化工艺将该层氮化硅图案化,从而获得如图1所示的复色光通道101、色散装置102以及多个单色光通道103。由于玻璃的折射率约为1.52,氮化硅的折射率约为1.9,因此光束能够被有效地限制在复色光通道、色散装置以及多个单色光通道中。由此,进一步简化了光谱测试的基础结构及其制作方法。
在一些实施例中,如图1所示,所述色散装置102是反射式闪耀光栅;所述反射式闪耀光栅的光栅面1021面对所述复色光通道的复色光出射面1012。
利用上述布置,来自复色光通道的光束入射到色散装置102的所述光栅面。所述光栅面将来自复色光通道的光束分离为多个单色光束。如图1所示,多种不同的线型表示多个具有不同波长的单色光束。在图1所示的实施例中,所述反射式闪耀光栅的光入射面和复色光出光面是相邻的。所述反射式闪耀光栅的光入射面与所述复色光通道101的复色光出光面1012耦合,所述反射式闪耀光栅的光出射面与所述多个单色光通道103的光入射面耦合。上述布置形式仅仅是一个实施例,本公开的实施例不限于此。例如,可以根据实际需要来调整所述反射式闪耀光栅的光入射面和光出射面的位置。
在一些实施例中,所述色散装置还可以是全息光栅。全息光栅可以对应不同的入光角度和位置进行设计和优化,获得不同参数的光栅。在一些实施例中,所述色散装置还可以是线性渐变滤光片等元件。所述色散装置的光出射面布置为使得分离的多个单色光束耦合到所述多个单色光通道103。
可选地,在一些实施例中,如图1和图2所示,所述光学装置100还包括:布置在所述光栅面1021的背对所述复色光通道101的复色光出光面1012一侧的反射层106。
利用上述布置,进一步提高了反射式闪耀光栅的光利用率。可以利用例如溅射工艺在所述光栅面1021的外侧(即背对所述复色光通道101的复色光出光面1012一侧)形成反射层106。所述反射层106的材料可以是铝、银等反射材料。
在一些实施例中,如图1所示,所述复色光通道101的入光面1011设置有用于输入光的透射式光栅107。可以使用例如纳米压印工艺来制作所述透射式光栅107,从而增加入射光的色散,进一步增强所述色散装置102的分色效果。在一些实施例中,如图3所示,所述复色光通道101设置有与的入光面1011相邻的用于输入光束的反射斜面117。可以根据入射光束的方向和光源的位置来设计所述反射斜面117,使得入射光以希望的角度进入所述复色光通道101。
需要说明的是,复色光通道101的入光面1011可以是端面,也可以位于某一侧的表面(例如上表面、下表面或周侧的表面),相应地,透射式光栅107或者反射斜面117也可以相应地设置于例如上表面、下表面或周侧的表面。图11A示出了反射斜面117设置在复色光通道101的上表面的情形,被反射斜面117反射到复色光通道101中的光束尽可能与复色光通道的上下表面平行传输以减小光学损失。图11B示出了透射式光栅107设置在复色光通道101的上表面的情形,由于透射式光栅107的衍射作用,进入复色光通道101中的光束具有一定的倾角以使在光束被复色光通道101的侧壁反射时满足全反射条件,且透射式光栅107对光束具有一定的扩散作用。在设有第一包层104的情况下,透射式光栅107或者反射斜面117也可以形成于第一包层104中,如图11C和11D所示。在此情况下,所述反射斜面117或透射式光栅107在光路中位于复色光通道101的入光面1011的上游并配置成将所述入射光束引导入所述入光面1011。作为示例,所述反射斜面117或透射式光栅107在复色光通道101的入光面1011所在平面上的正投影位于所述入光面1011内。上述实施例仅为示例性的,本公开的实施例不限于此。
在一些实施例中,如图4所示,每个单色光通道103的单色光出光面1031设置有用于输出多个单色光束中的一个单色光束的网点1032或提取光栅1033。在图4的实施例中,利用网点1032或提取光栅1033,能够从位于单色光通道103底部的出光面1031提取单色光束,即,提取的单色光束是朝向下包层105出射的。在其他实施例中,还可以在每个单色光通道的出光面布置斜面,使得单色光束以希望的方向离开所述单色光通道103。
在一些实施例中,如图5所示,所述光学装置200还可以包括用于发出所述入射光束的光源201,其中,所述复色光通道101的入光面1011布置成接收来自所述光源201的所述入射光束。在这种实施例中,该光学装置200可以用作一种光源系统。
所述光源系统可以用作微型光谱仪的光源,从而有效地减小微型光谱仪的厚度和 体积。此外,可以基于玻璃基板和图案化工艺来制作所述光源系统,因此可以利用图案化工艺来制备具有期望的参数的光源系统,进一步改进光源系统的兼容性。
所述光源201可以是发光二极管,或者是由多个发光二极管(或激光二极管)构成的复合光源,从而为所述光学装置提供具有一定光谱范围的复色光。本领域技术人员能够理解,所述光源系统200还可以利用日光或环境光作为入射光,从而经由所述光学装置获得多个单色光束。需要说明的是,根据本公开的实施例的光学装置100、200中入射到复色光通道101中的光束可以是具有一定光谱范围的复色光束(例如白光光束等宽光谱光束),但本公开的实施例不限于此。
本公开的实施例还提供了一种光谱检测设备。如图6所示,所述光谱检测设备300包括如以上任一实施例所述的光学装置100、200和与所述光学装置100、200相对设置的测量装置150。在图6的实施例中,所述光学装置100采用的是图1和图2所示的布置方式,但本公开中的光学装置并不局限于此。如图6和图7所示,所述测量装置150包括微流体通道151和多个光传感单元152;所述多个单色光通道103布置在所述微流体通道151的一侧;所述多个光传感单元152布置在所述微流体通道151的与所述多个单色光通道103相反的另一侧;每个光传感单元152的光接收面1521面对一个单色光通道103的出单色光出光面1031。
在一些实施例中,所述多个光传感单元152与所述多个单色光通道103一一对应。每个光传感单元152可以包括一个或多个光传感器。每个单色光通道103输出的单色光束在穿过所述微流体通道151之后,该单色光束的强度或波长将发生变化。利用与单色光通道103对应的光传感单元152,能够获得单色光束的变化信息,从而获得光谱测量结果。
在一些实施例中,如图6和图7所示,假定所述光学装置100的基板108为第一基板,则所述测量装置150进一步包括第二基板153,所述多个光传感单元152和所述微流体通道151布置在所述第二基板上。
在图6和图7所示的实施例中,光学装置100和测量装置150是层叠布置的,因此图6中所示的多个光传感单元152布置在所述微流体通道151的下方。作为示例,光学装置100和测量装置150也可以布置在第一基板108的同一侧。例如,在一些实施例中,如图8所示,复色光通道101、色散装置102、多个单色光通道103、微流体通道151和多个光传感单元152都布置在基板108的同一侧。
此外,在图8所示的实施例中,所述复色光通道101、色散装置102、多个单色光 通道103、微流体通道151和多个光传感单元152可以位于同一基板上,例如可布置在同一层中。例如,可以使用例如图案化工艺,在基板108的表面形成复色光通道101、色散装置102、多个单色光通道103和微流体通道151的图案,然后将多个光传感单元152布置在微流体通道151的一侧。其中,微流体通道151的图案包括两个平行的墙体和所述两个墙体之间的凹槽。在微流体通道151的内部(即,所述凹槽的表面)可以布置疏水层或亲水层,使微流体在微流体通道151内根据需要流动或者短暂滞留。例如特氟龙-AF疏水层可以使微流体尽可能不粘附在微流体通道内,增强微流体的流动性。
本公开的实施例还提供了一种光学装置的制作方法。如图12所示,所述方法包括:
提供基板108(参见图9A);以及
在基板上形成复色光通道、色散装置以及多个单色光通道。
如前所述,所述复色光通道可以配置成传输复色光束,在所述复色光通道的输入端设置有用于接收入射的复色光束的入光面;色散装置在光路中布置在所述复色光通道的下游,所述色散装置配置为将来自所述复色光通道的所述复色光束分离成多个单色光束;多个单色光通道在光路中布置在所述色散装置的下游,所述多个单色光通道配置为分别传导来自所述色散装置的不同颜色的多个单色光束,在所述多个单色光通道的出射端分别设置有配置成输出所述单色光束的单色光出光面。
在本公开的实施例中,光学装置包括布置在同一基板上的复色光通道、色散装置、以及多个单色光通道,简化了光谱测试的基础结构及其制作方法。本公开实施例所述的光学装置可以应用于物理、化学、生物、医学、农学等领域,用于物质分析或者分子分析。
例如,基板可以是0.5-0.7mm厚、长宽分别为10mm*10mm的玻璃基板。因此可以借助于图案化工艺,在尺寸约为10mm*10mm的玻璃基板上实现微型光谱仪。
在一些实施例中,所述方法还包括:在所述复色光通道的背对所述基板一侧的表面形成第一包层,所述上包层的折射率小于所述复色光通道的折射率。
例如,如图13所示,在一些实施例中,所述在基板上形成复色光通道、色散装置以及多个单色光通道的步骤包括:在所述基板108上形成第一材料层109(如图9B所示),对所述第一材料层109进行一次图案化工艺以形成所述复色光通道101、色散装置102以及多个单色光通道103(如图9C所示)。
例如,基板108是玻璃基板。第一材料层109的材料可以是氮化硅。可以在基板 108的表面沉积第一材料层109(也可称为波导层),在第一材料层109的表面沉积硬掩模(hard mask)层(例如铝层)110,然后在硬掩模上涂覆(如旋涂)第一光刻胶层111(如图10A所示)。
接下来,对于第一光刻胶层111、硬掩模层及第一材料层109逐一进行图案化以形成所述复色光通道101、色散装置102以及多个单色光通道103。例如,用电子束直写光刻(electron beam direct-write lithography,EBL)或者纳米压印(nanoimprint,NIP)的方式在第一光刻胶层上压出对应于复色光通道101、色散装置102(例如反射式闪耀光栅)以及多个单色光通道103的图案。用湿法刻蚀刻硬掩模层以形成硬掩模,再用干法刻蚀(例如,inductively coupled plasma,ICP或reactive ion etching,RIE)的方法刻蚀出复色光通道101、色散装置102以及多个单色光通道103(如图10B所示)。
在一些实施例中,为了获得理想的光栅轮廓(例如,更加陡峭的侧面),可以进一步(例如采用数字曝光工艺)对需要深刻蚀的区域(即光栅的周边区域)进行曝光,由此在光栅的周边区域形成深沟道。具体地,如图14所示,所述方法可以进一步包括:
在形成有所述复色光通道101、色散装置102以及多个单色光通道103的基板108上涂覆第二光刻胶层112(如图10C所示);以及
对第二光刻胶层112进行图案化(例如利用光刻工艺)并基于经过图案化的第二光刻胶层112在基板108上蚀刻出沟道。
然后可以去除不需要的硬掩模层110(如图10D所示)。
在一些实施例中,为了获得更高的光利用率,如图14所示,可以在色散装置102(例如反射式闪耀光栅的光栅面的背对所述复色光通道的复色光出光面一侧)沉积(如金属)反射层106(如图10E所示)。所述反射层的材料例如可以是铝或银。沉积在其他区域上的金属反射层106可以利用例如光刻工艺移除(如图10F所示)。
在一些实施例中,如图14所示,还可以在所述复色光通道101的背对所述基板108一侧的表面形成第一包层104。这例如可以通过在复色光通道101的上表面旋涂具有较低折射率的树脂来形成第一包层104。所述第一包层104可以进一步覆盖所述复色光通道的入光面1011。如图14所示,还可以在所述第一包层104上形成反射斜面117或透射式光栅107(例如通过电子束直写或纳米压印工艺),所述反射斜面117或透射式光栅107在光路中位于所述入光面1011的上游并配置成将所述入射光束引导入所述入光面1011,从而提高光的输入效率(如图10G所示)。
在一些实施例中,形成色散装置的步骤可以包括:利用纳米压印工艺形成反射式 闪耀光栅。所述反射式闪耀光栅的光栅面面对所述复色光通道的复色光出光面。
利用纳米压印工艺,能够减少了成本,并提高色散装置的精度和性能。
根据本公开的实施例提供的光学装置及其制作方法、光源系统、以及检测装置,光学装置包括布置在同一层中的复色光通道、色散装置、以及多个单色光通道,简化了光谱测试的基础结构及其制作方法。本公开实施例所述的光学装置可以应用于物理、化学、生物、医学、农学等领域,用于物质分析或者分子分析。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种光学装置,包括:
    光波导,所述光波导包括:
    复色光通道,配置成传输复色光束,在所述复色光通道的输入端设置有用于接收入射的复色光束的入光面;
    色散装置,在光路中布置在所述复色光通道的下游,所述色散装置配置为将来自所述复色光通道的所述复色光束分离成多个单色光束;以及
    多个单色光通道,在光路中布置在所述色散装置的下游,所述多个单色光通道配置为分别传导来自所述色散装置的不同颜色的多个单色光束,在所述多个单色光通道的出射端分别设置有配置成输出所述单色光束的单色光出光面。
  2. 如权利要求1所述的光学装置,还包括基板,其中,所述复色光通道、色散装置以及多个单色光通道布置在同一所述基板上。
  3. 如权利要求2所述的光学装置,还包括:
    设置在复色光通道的第一侧表面的第一包层;以及
    设置在复色光通道的第二侧表面的第二包层,所述第二侧表面与所述第一侧表面相反设置且比所述第一侧表面更靠近所述基板,
    其中,所述第一包层的折射率和所述第二包层的折射率均低于所述复色光通道的折射率。
  4. 如权利要求3所述的光学装置,其中,所述第二包层与所述基板为一体结构。
  5. 如权利要求1所述的光学装置,其中,所述复色光通道、色散装置以及多个单色光通道布置在同一层中。
  6. 如权利要求1所述的光学装置,其中,所述多个单色光通道中的每个单色光通道包括子光波导。
  7. 如权利要求1-6中任一项所述的光学装置,其中,所述复色光通道、色散装置以及多个单色光通道的材料相同。
  8. 如权利要求1-7中任一项所述的光学装置,其中,所述色散装置包括反射式闪耀光栅。
  9. 如权利要求8所述的光学装置,还包括:布置在所述反射式闪耀光栅的光栅面 的背对所述复色光通道的复色光出光面一侧的反射层。
  10. 如权利要求1-9中任一项所述的光学装置,其中,所述入光面设置有透射式光栅或所述复色光通道包括与所述入光面相邻的反射斜面。
  11. 如权利要求3-9中任一项所述的光学装置,其中,所述第一包层中设置有反射斜面或透射式光栅,所述反射斜面或透射式光栅在光路中位于所述入光面的上游并配置成将所述入射光束引导入所述入光面。
  12. 如权利要求1-10中任一项所述的光学装置,其中,每个单色光通道的单色光出光面设置有用于输出所述多个单色光束中的一个单色光束的网点或提取光栅。
  13. 如权利要求1-12中任一项所述的光学装置,还包括用于发出所述复色光束的光源,其中,所述入光面布置成接收来自所述光源的所述复色光束。
  14. 一种光谱检测设备,包括如权利要求1-13中任一项所述的光学装置和与所述光学装置相对设置的测量装置;其中所述测量装置包括微流体通道和多个光传感单元;所述多个单色光通道布置在所述微流体通道的一侧;所述多个光传感单元布置在所述微流体通道的与所述多个单色光通道相反的另一侧;每个光传感单元的光接收面面对一个单色光通道的出射面。
  15. 根据权利要求14所述的光谱检测设备,其中,所述光学装置的基板为第一基板,所述测量装置进一步包括第二基板,所述多个光传感单元和所述微流体通道布置在所述第二基板上。
  16. 根据权利要求14所述的光谱检测设备,其中,所述复色光通道、色散装置、多个单色光通道、微流体通道以及多个光传感单元布置在同一基板上。
PCT/CN2019/097336 2018-07-31 2019-07-23 光学装置以及光谱检测设备 WO2020024850A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/631,722 US11536606B2 (en) 2018-07-31 2019-07-23 Optical device and spectral detection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810867241.4 2018-07-31
CN201810867241.4A CN110780382B (zh) 2018-07-31 2018-07-31 光学结构及其制作方法、光源系统、以及检测装置

Publications (1)

Publication Number Publication Date
WO2020024850A1 true WO2020024850A1 (zh) 2020-02-06

Family

ID=69230941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097336 WO2020024850A1 (zh) 2018-07-31 2019-07-23 光学装置以及光谱检测设备

Country Status (3)

Country Link
US (1) US11536606B2 (zh)
CN (1) CN110780382B (zh)
WO (1) WO2020024850A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3186617A4 (en) * 2014-08-27 2018-04-25 Pacific Biosciences Of California, Inc. Arrays of integrated analytcal devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1285924A (zh) * 1997-07-23 2001-02-28 康宁股份有限公司 光学部件的制造方法及由该方法制成的光学部件
US20020176171A1 (en) * 2001-03-22 2002-11-28 Orazio Berolo Resolution enhanced optical spectrometer having a fixed number of photodetector elements
CN102804008A (zh) * 2009-12-23 2012-11-28 科途嘉光电公司 减小反射光栅中的光学损耗
CN107250767A (zh) * 2015-04-30 2017-10-13 惠普发展公司,有限责任合伙企业 光学光谱仪

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE88014T1 (de) * 1985-01-07 1993-04-15 Siemens Ag Monolithisch integrierter wdm-demultiplexmodul und ein verfahren zur herstellung eines solchen moduls.
US4715027A (en) * 1986-05-29 1987-12-22 Polaroid Corporation Integrated optic multi/demultiplexer
FR2609180B1 (fr) * 1986-12-31 1989-11-03 Commissariat Energie Atomique Multiplexeur-demultiplexeur utilisant un reseau concave elliptique et realise en optique integree
DE4103914C2 (de) * 1990-02-09 1995-06-08 Heidenhain Gmbh Dr Johannes Interferometer
US5228103A (en) * 1992-08-17 1993-07-13 University Of Maryland Monolithically integrated wavelength division multiplexing laser array
US5608826A (en) * 1994-06-09 1997-03-04 Apa Optics, Inc. Wavelength division multiplexed optical modulator and multiplexing method using same
US5581639A (en) * 1995-05-04 1996-12-03 National Research Council Of Canada Raman-nath diffraction grating
US6583874B1 (en) 1999-10-18 2003-06-24 Komatsu, Ltd. Spectrometer with holographic and echelle gratings
US6650809B2 (en) * 2001-02-06 2003-11-18 Metrophotonics Inc. Multiple band optical multiplexer and demultiplexer
WO2003098280A2 (en) * 2002-05-17 2003-11-27 Nanoventions, Inc. Planar optical waveguide
CN1246715C (zh) * 2002-06-25 2006-03-22 浙江大学 基于多个子光栅的平顶型蚀刻衍射光栅波分复用器件
WO2004015411A1 (en) * 2002-08-08 2004-02-19 Nanostream, Inc. Systems and methods for high-throughput microfluidic sample analysis
US7324195B2 (en) * 2004-01-08 2008-01-29 Valorbec Societe Em Commandite Planar waveguide based grating device and spectrometer for species-specific wavelength detection
WO2006010367A2 (en) * 2004-07-26 2006-02-02 Danmarks Tekniske Universitet On-chip spectroscopy
US7483140B1 (en) * 2004-12-10 2009-01-27 University Of Central Florida Research Foundation, Inc. Micro integrated planar optical waveguide type SPR sensor
US7330614B1 (en) * 2004-12-10 2008-02-12 Lightsmyth Technologies Inc. Integrated optical spectrometer incorporating sets of diffractive elements
US7136160B2 (en) * 2005-01-27 2006-11-14 Hewlett-Packard Development Company, L.P. Integrated system and method for transversal enhanced Raman Spectroscopy
US7361501B2 (en) * 2005-09-30 2008-04-22 Intel Corporation Miniaturized spectrometer using optical waveguide and integrated Raman system on-chip
US7447403B2 (en) * 2005-10-19 2008-11-04 Mcgill University Integrated etched multilayer grating based wavelength demultiplexer
US20090097022A1 (en) * 2007-08-24 2009-04-16 Dynamic Throughput Inc. Discovery tool with integrated microfluidic biomarker optical detection array device and methods for use
CN101216579A (zh) 2008-01-07 2008-07-09 浙江大学 一种偏振不敏感阵列波导光栅
US8629981B2 (en) * 2008-02-01 2014-01-14 Palo Alto Research Center Incorporated Analyzers with time variation based on color-coded spatial modulation
CN100565258C (zh) * 2008-06-30 2009-12-02 重庆大学 基于mems闪耀光栅的波分复用器/解复用器
CA2731413A1 (en) * 2008-07-21 2010-01-28 Valorbec S.E.C. A microfluidic device and method for fabricating the microfluidic device
US8561456B2 (en) * 2008-09-12 2013-10-22 The Boeing Company Fluid detection with a spectrometer-on-a-chip
FR2937426B1 (fr) * 2008-10-20 2012-12-07 Commissariat Energie Atomique Structure et procede d'alignement d'une fibre optique sur un guide d'ondes optique
WO2010141104A2 (en) * 2009-01-20 2010-12-09 The Regents Of The University Of California Localized droplet heating with surface electrodes in microfluidic chips
CN101832927B (zh) * 2010-05-28 2011-10-05 天津大学 采用光栅辅助耦合器阵列的多通道光微流体传感器
EP2694933B1 (en) * 2011-04-06 2019-08-28 Klein Medical Limited Spectroscopic analyser
US9366647B2 (en) 2013-03-14 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Optical detection for bio-entities
CN103196887B (zh) 2013-03-27 2015-01-28 中国科学院重庆绿色智能技术研究院 一种有机农药检测用高通量微流控装置及其水样检测方法
TWI486625B (zh) 2013-05-16 2015-06-01 Univ Nat Central 數位全像顯微鏡
US9410893B2 (en) * 2013-11-22 2016-08-09 Taiwan Semiconductor Manufacturing Company, Ltd. Bio-chip package with waveguide integrated spectrometer
CN103698283A (zh) 2013-12-27 2014-04-02 中国科学院电子学研究所 多通道光谱检测系统及其检测方法
CN107209107A (zh) * 2015-04-30 2017-09-26 惠普发展公司有限责任合伙企业 微流体光学流体传感器
CN104950133B (zh) * 2015-07-06 2017-12-15 浙江大学 微流体流速传感芯片、检测系统及检测方法
CN105319629B (zh) * 2015-11-03 2017-10-20 浙江大学 通道损耗均匀且通带响应平坦的蚀刻衍射光栅器件
CN205537958U (zh) 2016-01-27 2016-08-31 浙江大学 一种基于蚀刻衍射光栅的成像光谱仪
US9909926B2 (en) * 2016-05-31 2018-03-06 Ams Sensors Uk Limited Chemical sensor
CN206680492U (zh) 2017-04-11 2017-11-28 西南大学 玻璃基微流控细胞芯片led诱导透射式荧光检测系统
EP3431940B1 (en) * 2017-07-18 2023-12-20 AIP Leibniz-Institut für Astrophysik Spectrometer comprising at least two separate wavgeguides having different effective optical path lengths
CN108956469B (zh) * 2018-08-15 2021-01-26 京东方科技集团股份有限公司 一种光谱仪系统和光谱分析方法
CN109261233B (zh) * 2018-11-19 2020-11-10 京东方科技集团股份有限公司 微流控芯片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1285924A (zh) * 1997-07-23 2001-02-28 康宁股份有限公司 光学部件的制造方法及由该方法制成的光学部件
US20020176171A1 (en) * 2001-03-22 2002-11-28 Orazio Berolo Resolution enhanced optical spectrometer having a fixed number of photodetector elements
CN102804008A (zh) * 2009-12-23 2012-11-28 科途嘉光电公司 减小反射光栅中的光学损耗
CN107250767A (zh) * 2015-04-30 2017-10-13 惠普发展公司,有限责任合伙企业 光学光谱仪

Also Published As

Publication number Publication date
US11536606B2 (en) 2022-12-27
US20200386618A1 (en) 2020-12-10
CN110780382B (zh) 2021-03-02
CN110780382A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
Marchetti et al. Coupling strategies for silicon photonics integrated chips
Nie et al. CMOS-compatible broadband co-propagative stationary Fourier transform spectrometer integrated on a silicon nitride photonics platform
Cheben et al. A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides
KR101983228B1 (ko) 광학 어셈블리, 광학 스펙트로미터 어셈블리, 및 광학 스펙트로미터 어셈블리를 제조하는 방법
US9228900B2 (en) Multi-function spectrometer-on-chip with a single detector array
US20050141808A1 (en) Optical off-chip interconnects in multichannel planar waveguide devices
Momeni et al. Planar photonic crystal microspectrometers in silicon-nitride for the visible range
WO2020088642A1 (zh) 分光装置及其制作方法、光色散方法和光谱仪
EP3567416A1 (en) Photonic crystal spectrometer
US11156752B2 (en) Optical filter including metal nanostructures, optical device including metal nanostructures, and method for producing optical filter including metal nanostructures
Hu et al. Integrated microspectrometer for fluorescence based analysis in a microfluidic format
Bock et al. Demonstration of a curved sidewall grating demultiplexer on silicon
CN106199836A (zh) 一种基于硅基波导光栅的带宽可调滤波器
WO2020098540A1 (zh) 光调制装置和单通道光谱检测系统
Lo et al. A concave blazed-grating-based smartphone spectrometer for multichannel sensing
WO2020024850A1 (zh) 光学装置以及光谱检测设备
Cheben et al. A 100-channel near-infrared SOI waveguide microspectrometer: Design and fabrication challenges
CN114965362A (zh) 一种基于双层凹型光栅结构的高通量集成光学传感器
Wang et al. Visible (400-to 700-nm) chirped-grating-coupled waveguide spectrometer
JP2002162345A (ja) 分光機能を持った光導波路型spr現象計測チップ及びspr現象測定装置
Maikisch et al. Compact silicon diffractive sensor: design, fabrication, and prototype
Pottier et al. Design and properties of concave diffraction gratings based on elliptical Bragg mirrors
Liu et al. Path-folded infrared spectrometer consisting of 10 sub-gratings and a two-dimensional InGaAs detector
Fedeli et al. Mid-Infrared Platforms for Chemical Sensing
CA2653710C (en) Tapered waveguide coupler and spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19845318

Country of ref document: EP

Kind code of ref document: A1