WO2020024839A1 - 一种量子点三色led显示屏及其制备方法 - Google Patents

一种量子点三色led显示屏及其制备方法 Download PDF

Info

Publication number
WO2020024839A1
WO2020024839A1 PCT/CN2019/097151 CN2019097151W WO2020024839A1 WO 2020024839 A1 WO2020024839 A1 WO 2020024839A1 CN 2019097151 W CN2019097151 W CN 2019097151W WO 2020024839 A1 WO2020024839 A1 WO 2020024839A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
substrate
blue light
led display
display screen
Prior art date
Application number
PCT/CN2019/097151
Other languages
English (en)
French (fr)
Inventor
林健源
历志辉
Original Assignee
深圳Tcl新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳Tcl新技术有限公司 filed Critical 深圳Tcl新技术有限公司
Publication of WO2020024839A1 publication Critical patent/WO2020024839A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Definitions

  • the invention relates to the field of semiconductor light emitting diodes, in particular to a quantum dot three-color LED display screen and a preparation method thereof.
  • LED is a kind of semiconductor light-emitting diode. Because of its excellent properties such as high brightness, high light efficiency, and long life, LED has been widely used in the lighting, backlight and display industries.
  • TFT-LCD thin film transistor liquid crystal displays
  • TFT-LCD has an absolute leading position in the display field because of their lower costs, mature manufacturing processes and better display effects.
  • TFT-LCD has many disadvantages that cannot be overcome, such as slow response time, low energy utilization, poor viewing angle, and small color gamut coverage.
  • the display market is currently paying more and more attention to mini-LEDs and micro-LEDs. Its display performance is better than TFT-LCD and OLED screens. It has the advantages of low power consumption, high brightness, high resolution, and color saturation.
  • an object of the present invention is to provide a quantum dot three-color LED display screen and a preparation method thereof, which aim to solve the problems of low production efficiency and display effects of the existing three-color LED display screens that need to be improved.
  • a quantum dot three-color LED display screen includes a blue light chip, a stacked substrate, a support substrate, and a lens.
  • the blue light chip is directly prepared on a side of the substrate close to the support substrate, and the support substrate is close to One side of the lens is evenly coated with a transparent material, a green quantum dot material, and a red quantum dot material; three blue light chips are provided at corresponding positions of each pixel region on the substrate, and the three blue light chips are respectively corresponding to the support substrate above Transparent material, green quantum dot material and red quantum dot material, each lens corresponds to a blue light chip on a substrate.
  • a spacer layer is further provided between adjacent blue light chips on the substrate.
  • the material of the spacer layer is an opaque resin.
  • the blue light chips are all made of GaN material.
  • the lens material is a light-transmitting resin.
  • a barrier layer is further provided between the support substrate and the lens.
  • a material of the barrier layer is silicon dioxide.
  • the quantum dot three-color LED display screen wherein the green quantum dot material and the red quantum dot material are independently selected from one of group II-VI compounds, group III-V compounds, and perovskite quantum dots, or Multiple.
  • the quantum dot three-color LED display screen wherein the group II-VI compound is one or more of GaAs, InN, GaN, GaP, InP, and InAs.
  • the quantum dot three-color LED display screen wherein the III-V group compounds CdSe, CdTe, MgTe, CaS, CaSe, MgS, MgSe, CaTe, BaSe, BaTe, ZnS, SrS, SrSe, ZnSe, ZnTe, One or more of SrTe, BaS, and CdS.
  • the quantum dot three-color LED display screen wherein the perovskite quantum dots are one or more of CsPbX 3 and CH 3 NH 3 PbX 3 , wherein X is one of Cl, Br or I Species.
  • a method for preparing a quantum dot three-color LED display screen comprising the steps of:
  • each lens corresponds to a blue light chip on a substrate.
  • the method for manufacturing a quantum dot three-color LED display screen wherein the step provides a substrate with a plurality of blue light chips evenly arranged on its surface, and three blue light chips are provided at corresponding positions of each pixel region on the substrate. Also includes:
  • Pre-distributed metal traces on the substrate for driving the blue light chip to emit light Pre-distributed metal traces on the substrate for driving the blue light chip to emit light
  • Photoresist coating, exposure, development, crystal growth, and laser cutting are sequentially performed on the substrate to obtain a blue light chip uniformly distributed on the substrate;
  • the blue light chip is communicated with a pre-distributed metal trace through wire bonding.
  • the method for manufacturing a quantum dot three-color LED display screen wherein after connecting the blue light chip with a pre-distributed metal trace through wire bonding, the method further includes: on the substrate where the blue light chip is uniformly distributed. Septum photoresist coating, exposure, and development processes are sequentially performed, so that a spacer layer is further provided between adjacent blue light chips on the substrate.
  • the method for preparing a quantum dot three-color LED display screen wherein the transparent material, the green quantum dot material, and the red quantum dot material are uniformly coated on a support substrate, and the transparent material and the green quantum dot material are coated on the support substrate. And the step of depositing a barrier layer on the surface of the red quantum dot material, specifically including:
  • a green quantum dot material and a red quantum dot material are sequentially printed on the quantum dot printing area of the supporting substrate to obtain a supporting substrate in which a transparent material, a green quantum dot material, and a red quantum dot material are sequentially arranged.
  • the present invention provides a quantum dot three-color LED display screen, which includes a substrate, a support substrate, and a lens disposed in a stack.
  • a blue light chip is uniformly disposed on a side of the substrate near the support substrate, and the support
  • a transparent material, a green quantum dot material, and a red quantum dot material are evenly coated on a side of the substrate near the lens; three blue light chips are provided at corresponding positions of each pixel region on the substrate, and the three blue light chips are respectively supported correspondingly above
  • the transparent material, the green quantum dot material, and the red quantum dot material on the substrate, and each lens corresponds to a blue light chip on the substrate.
  • a blue light chip is directly prepared on a substrate, and then the substrate, the supporting substrate and the lens are spliced and combined to obtain the quantum dot three-color LED display screen, which has high production efficiency and good display effect. And there are no technical or process bottlenecks.
  • FIG. 1 is a schematic diagram of assembling an LED chip to an LED panel in the prior art.
  • FIG. 2 is a schematic structural diagram of a quantum dot tri-color LED display screen according to a preferred embodiment of the present invention.
  • FIG. 3 is a flowchart of a preferred embodiment of a method for manufacturing a quantum dot three-color LED display screen.
  • FIG. 4 is a schematic diagram of preparing a uniformly distributed blue light chip on a substrate according to the present invention.
  • FIG. 5 is a schematic diagram of preparing a transparent material, a green quantum dot material, a red quantum dot material, and a barrier layer on a supporting substrate according to the present invention.
  • FIG. 6 is a schematic diagram of splicing the substrate in FIG. 4, the supporting substrate in FIG. 5, and a lens prepared in advance according to the present invention.
  • the invention provides a quantum dot three-color LED display screen and a preparation method thereof.
  • the present invention is further described in detail below. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not intended to limit the present invention.
  • the present invention provides a quantum dot tri-color LED display screen with high production efficiency and excellent display effect.
  • the quantum dot tri-color LED display screen includes a blue light chip 40 and a laminated lining. Bottom 10, support substrate 20 and lens 30, the blue light chip 40 is directly prepared on the side of the substrate 10 near the support substrate 20, and the side of the support substrate 20 near the lens 30 is uniformly coated with a transparent material 50 and green quantum dots Material 60 and red quantum dot material 70; three blue light chips 40 are provided at corresponding positions of each pixel region on the substrate 10, and the three blue light chips 40 respectively correspond to the transparent material 50 and the green quantum dot material on the supporting substrate 60 and a red quantum dot material 70, each lens 30 corresponds to a blue light chip 40 on the substrate 10.
  • the present invention combines quantum dot technology with LED display technology to manufacture a quantum dot three-color LED display screen with high production efficiency and excellent display effect.
  • the quantum dot tri-color LED display screen of the present invention when a blue light chip receives a bias voltage and emits blue light, the blue light directly passes through the transparent material, and the emitted light is still blue light; the blue light passes through the green quantum dot material, and the emitted light is green Light; blue light passes through the red quantum dot material, and the emitted light is red, so that three-color display of red, green, and blue is achieved, and gray scale display is achieved by adjusting the voltage applied to the blue light chip.
  • the blue light excited by the blue light chip itself has high purity
  • the red and green light emitted by the quantum dot material also has high purity, narrow half-peak width and other characteristics. The overall display effect will be better than that of the traditional LED display.
  • the blue light chips are all made of a GaN material, and the same light emitting material can be used to avoid a large difference in light attenuation caused by the difference in light emitting materials; further, the present invention uses a GaN blue light chip to excite the green quantum Dots and red quantum dots emit green light and red light, respectively, instead of the existing way of using a single green light chip to emit green light and red light chip to emit red light, which can realize the adjustable green spectrum, red spectrum and ultra-high color gamut. display.
  • a spacer layer 80 for preventing light mixing is further provided between adjacent blue light chips 40 on the substrate 10, and the material of the spacer layer is opaque. Resin materials.
  • the function of the spacer layer is to keep the space structure between the support substrate and the substrate consistent and stable. Further, since the spacer layer is opaque, it also significantly reduces the risk of light mixing between adjacent blue light chips.
  • a barrier layer 90 is further provided between the support substrate 20 and the lens 30.
  • the quantum dot material is unstable and is easily affected by oxygen, heat, humidity and the like to reduce its luminous efficiency
  • a barrier layer needs to be provided on the surface of the quantum dot material to block water vapor and oxygen.
  • the green quantum dot material and the red quantum dot material are both disposed on a support substrate made of quartz material with high light transmittance and flatness, the support substrate itself has a good function of blocking water vapor and oxygen, so It is not necessary to provide a barrier layer under the quantum dot material.
  • the material of the barrier layer is silicon dioxide.
  • the lens material is a highly translucent resin-based material
  • the green quantum dot material and the red quantum dot material are independently selected from a group II-VI compound, a group III-V compound, and perovskite
  • the mineral quantum dots are not limited thereto.
  • the group II-VI compound is one or more of GaAs, InN, GaN, GaP, InP, and InAs, but is not limited thereto;
  • One or more of the group III-V compounds CdSe, CdTe, MgTe, CaS, CaSe, MgS, MgSe, CaTe, BaSe, BaTe, ZnS, SrS, SrSe, ZnSe, ZnTe, SrTe, BaS, and CdS But it is not limited to this.
  • the perovskite quantum dots are one or more of CsPbX 3 and CH 3 NH 3 PbX 3 , but are not limited thereto, wherein X is one of Cl, Br or I.
  • the present invention also provides a method for preparing a quantum dot tri-color LED display screen, as shown in FIG. 3, including the steps:
  • the blue light chip is directly prepared on a substrate, and three blue light chips are provided at corresponding positions of each pixel region on the substrate;
  • each lens corresponds to a blue light chip on a substrate.
  • FIG. 4 provides a schematic diagram of preparing a uniformly distributed blue light chip on a substrate.
  • metal traces for driving the light emission of the blue light chip are distributed on the substrate in advance;
  • photoresist coating, exposure, and development operations are sequentially performed on the substrate;
  • steps 5-7 crystal growth, laser cutting, and wire bonding are performed on the substrate in order to obtain the substrate.
  • the blue light chips are evenly distributed on the bottom, and the wire bonding communicates the blue light chips with the pre-distributed metal traces; in step 8-9, the spacers are sequentially performed on the substrate with the blue light chips uniformly distributed.
  • the photoresist coating, exposure, and development processes make a spacer layer for preventing light mixing between adjacent blue light chips on the substrate.
  • step 10-11 transparent material is evenly coated on the support substrate, and then exposure and development operations are performed to expose the support substrate to the quantum dot printing area; in step 12, in the The quantum dot printed area of the supporting substrate is printed with green quantum dot materials and red quantum dot materials in order to obtain a supporting substrate in which transparent materials, green quantum dot materials, and red quantum dot materials are sequentially arranged.
  • step 13 on the supporting substrate, A barrier layer is sputtered on the surface of the transparent material, the green quantum dot material, and the red quantum dot material to block water vapor and oxygen from affecting the quantum dot light emitting efficiency.
  • step 14 the substrate, the supporting substrate, and a lens provided in advance are spliced and combined in order, so that three blue light chips are provided at corresponding positions of each pixel region on the substrate.
  • the tops correspond to the transparent material, the green quantum dot material, and the red quantum dot material on the supporting substrate, and each lens corresponds to a blue light chip on the substrate.
  • the present invention in the method for preparing a quantum dot three-color LED display screen provided by the present invention, when the substrate is grown, a laser cutting process is directly used to form a single LED chip, and then the substrate with the LED chip uniformly distributed and the supporting substrate and the lens are directly.
  • the quantum dot tri-color LED display screen can be prepared by splicing.
  • the present invention does not have the LED chip transfer process in the traditional production mode, which greatly simplifies the preparation process of the three-color LED display screen, greatly improves the production efficiency of the three-color LED display screen, and improves its display effect.
  • the present invention provides a quantum dot three-color LED display screen, which includes a substrate, a support substrate, and a lens that are stacked, and a blue light chip is evenly disposed on a side of the substrate near the support substrate.
  • the side of the supporting substrate near the lens is evenly coated with transparent material, green quantum dot material, and red quantum dot material; three blue light chips are arranged at corresponding positions of each pixel region on the substrate, and the three blue light chips are respectively above the blue light chip.
  • each lens corresponds to a blue light chip on the substrate.
  • the pre-prepared substrate, supporting substrate, and lens are sequentially spliced and combined to obtain the quantum dot three-color LED display screen, which has high production efficiency, good display effect, and has no technical and process bottleneck limitations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种量子点三色LED显示屏及其制备方法,其中,所述量子点三色LED显示屏包括蓝光芯片(40)、叠层设置的衬底(10)、支撑基板(20)以及透镜(30),所述蓝光芯片(40)直接制备在衬底(10)靠近支撑基板(20)的一面,所述支撑基板(20)靠近透镜(30)的一面均匀地涂布有透明材料(50)、绿色量子点材料(60)以及红色量子点材料(70);所述衬底(10)上每颗像素区域对应位置设置有三个蓝光芯片(40),所述三个蓝光芯片(40)上方分别对应支撑基板(20)上的透明材料(50)、绿色量子点材料(60)以及红色量子点材料(70),所述每个透镜(30)对应衬底(10)上的一个蓝光芯片(40)。预先将蓝光芯片(40)直接制备在衬底(10)上,然后将衬底(10)、支撑基板(20)以及透镜(30)进行拼接组合便可制得所述量子点三色LED显示屏,其生产效率高、显示效果佳,且无技术与制程瓶颈限制。

Description

一种量子点三色LED显示屏及其制备方法 技术领域
本发明涉及半导体发光二极管领域,尤其涉及一种量子点三色LED显示屏及其制备方法。
背景技术
LED为一种半导体发光二极管,由于其具有亮度高、光效高、寿命长等优异性能,目前已广泛应用于照明、背光以及显示行业。
目前薄膜晶体管液晶显示器(thin film transistor-liquid crystal display,TFT-LCD)因为其成本较低,制造工艺成熟且显示效果较佳,所以在显示领域占据绝对的领导地位。但是TFT-LCD还有很多弊端无法克服,比如响应时间慢,能量利用率低,视角差,色域覆盖率小等。
显示市场目前对mini-LED与micro-LED关注度越来越高,其显示性能要优于TFT-LCD与OLED屏幕,具有低功耗高亮度,高解析度和色彩饱和度等优势,但是因为使用的LED颗数巨大(比如4K则需要使用3840x2160x3=24883200颗LED),如此巨量的LED要组装到LED面板上需要数月的时间,其生产效率低,维修困难,显示效果还有待于提高。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种量子点三色LED显示屏及其制备方法,旨在解决现有三色LED显示屏生产效率低、显示效果还有待于提高的问题。
本发明的技术方案如下:
一种量子点三色LED显示屏,其中,包括蓝光芯片、叠层设置的衬底、支撑基板以及透镜,所述蓝光芯片直接制备在所述衬底靠近支撑基板的一面,所述支撑基板靠近透镜的一面均匀地涂布有透明材料、绿色量子点材料以及红色量子点材料;所述衬底上每颗像素区域对应位置设置有三个蓝光芯片,所述三个蓝光 芯片上方分别对应支撑基板上的透明材料、绿色量子点材料以及红色量子点材料,所述每个透镜对应衬底上的一个蓝光芯片。
所述的量子点三色LED显示屏,其中,所述衬底上相邻蓝光芯片之间还设置有隔垫层。
所述的量子点三色LED显示屏,其中,所述隔垫层材料为不透光的树脂。
所述的量子点三色LED显示屏,其中,所述蓝光芯片均采用GaN材料制成。
所述的量子点三色LED显示屏,其中,所述透镜材料为透光树脂。
所述的量子点三色LED显示屏,其中,所述支撑基板和透镜之间还设置有阻隔层。
所述的量子点三色LED显示屏,其中,所述阻隔层的材料为二氧化硅。
所述的量子点三色LED显示屏,其中,所述绿色量子点材料和红色量子点材料独立地选自Ⅱ-Ⅵ族化合物、Ⅲ-Ⅴ族化合物和钙钛矿量子点中的一种或多种。
所述的量子点三色LED显示屏,其中,所述Ⅱ-Ⅵ族化合物为GaAs、InN、GaN、GaP、InP和InAs中中的一种或多种。
所述的量子点三色LED显示屏,其中,所述Ⅲ-Ⅴ族化合物CdSe、CdTe、MgTe、CaS、CaSe、MgS、MgSe、CaTe、BaSe、BaTe、ZnS、SrS、SrSe、ZnSe、ZnTe、SrTe、BaS和CdS中的一种或多种。
所述的量子点三色LED显示屏,其中,所述钙钛矿量子点为CsPbX 3和CH 3NH 3PbX 3中的一种或多种,其中,X为Cl,Br或I中的一种。
一种量子点三色LED显示屏的制备方法,其中,包括步骤:
将蓝光芯片直接制备在衬底上,所述衬底上每颗像素区域对应位置设置有三个蓝光芯片;
在一支撑基板上均匀涂布透明材料、绿色量子点材料以及红色量子点材料,并在所述透明材料、绿色量子点材料以及红色量子点材料表面沉积一阻隔层;
将所述衬底、支撑基板以及预先提供的透镜依次拼接组合,使得所述衬底上每颗像素区域对应位置设置的三个蓝光芯片上方分别对应支撑基板上的透明材料、绿色量子点材料以及红色量子点材料,所述每个透镜对应衬底上的一个蓝光芯片。
所述的量子点三色LED显示屏的制备方法,其中,所述步骤提供一种表面 均匀设置有若干蓝光芯片的衬底,所述衬底上每颗像素区域对应位置设置有三个蓝光芯片,还包括:
预先在衬底上分布用于驱动蓝光芯片发光的金属走线;
在所述衬底上依次进行光阻涂布、曝光、显影、长晶、激光切割处理,得到在衬底上均匀分布的蓝光芯片;
通过导线焊接将所述蓝光芯片与预先分布的金属走线连通。
所述的量子点三色LED显示屏的制备方法,其中,所述通过导线焊接将所述蓝光芯片与预先分布的金属走线连通之后还包括:在所述均匀分布有蓝光芯片的衬底上依次进行隔垫物光阻涂布,曝光、显影处理,使得衬底上相邻蓝光芯片之间还设置有隔垫层。
所述的量子点三色LED显示屏的制备方法,其中,所述在一支撑基板上均匀涂布透明材料、绿色量子点材料以及红色量子点材料,并在所述透明材料、绿色量子点材料以及红色量子点材料表面沉积一阻隔层的步骤,具体包括:
预先在支撑基板上均匀涂布透明材料,然后进行曝光、显影操作,使支撑基板露出量子点印刷区域;
在所述支撑基板的量子点印刷区域依次印刷绿色量子点材料和红色量子点材料,得到依次排列有透明材料、绿色量子点材料以及红色量子点材料的支撑基板。
有益效果:本发明提供了一种量子点三色LED显示屏,包括叠层设置的衬底、支撑基板以及透镜,所述衬底上靠近支撑基板的一面均匀地设置有蓝光芯片,所述支撑基板靠近透镜的一面均匀地涂布有透明材料、绿色量子点材料以及红色量子点材料;所述衬底上每颗像素区域对应位置设置有三个蓝光芯片,所述三个蓝光芯片上方分别对应支撑基板上的透明材料、绿色量子点材料以及红色量子点材料,所述每个透镜对应衬底上的一个蓝光芯片。本发明先将蓝光芯片直接制备在衬底上,然后将所述衬底、支撑基板以及透镜进行拼接组合便可制得所述量子点三色LED显示屏,其生产效率高、显示效果佳,且无技术与制程瓶颈限制。
附图说明
图1为现有技术中将LED芯片组装到LED面板上的示意图。
图2为本发明一种量子点三色LED显示屏较佳实施例的结构示意图。
图3为一种量子点三色LED显示屏的制备方法较佳实施例的流程图。
图4为本发明在衬底上制备均匀分布的蓝光芯片的示意图。
图5为本发明在支撑基板上制备透明材料、绿色量子点材料、红色量子点材料以及阻隔层的示意图。
图6为本发明将图4中的衬底、图5中的支撑基板以及预先制备的透镜进行拼接的示意图。
具体实施方式
本发明提供了一种量子点三色LED显示屏及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
现有技术中,当采用mini-LED或者micro-LED做显示使用时,其LED必需是多芯片型,也就是说,红光LED、绿光LED和蓝光LED必需组合成一颗显示像素,如图1所示,必须转移三次以上才能形成一颗有效的显示像素,这种情况下,当要组装一种4K显示屏时,则需要使用3840x2160x3=24883200颗LED,如此巨量的LED要组装到LED面板上需要数月的时间,其生产效率低,维修困难,且显示效果还有待于提高。
基于此,本发明提供了一种生产效率高且显示效果优异的量子点三色LED显示屏,如图2所示,所述量子点三色LED显示屏包括蓝光芯片40、叠层设置的衬底10、支撑基板20以及透镜30,所述蓝光芯片40直接制备在衬底10靠近支撑基板20的一面,所述支撑基板20靠近透镜30的一面均匀地涂布有透明材料50、绿色量子点材料60以及红色量子点材料70;所述衬底10上每颗像素区域对应位置设置有三个蓝光芯片40,所述三个蓝光芯片40上方分别对应支撑基板上的透明材料50、绿色量子点材料60以及红色量子点材料70,所述每个透镜30对应衬底10上的一个蓝光芯片40。
具体来讲,本发明将量子点技术与LED显示技术结合,制造出了一种生产效率高、显示效果优异的量子点三色LED显示屏。在本发明量子点三色LED显 示屏中,当蓝光芯片上接收到偏置电压后发蓝光,蓝光直接透过透明材料,出射光仍为蓝光;蓝光透过绿色量子点材料,出射光为绿光;蓝光通过红色量子点材料,出射光为红光,这样就实现了红绿蓝的三色显示,通过调整加在蓝光芯片上的电压即实现了灰阶显示。同时,蓝光芯片本身激发出的蓝光具有很高的纯度,量子点材料发出的红、绿光也是具有高纯度,半峰宽窄等特点,总体显示效果会较传统的LED显示屏更好。
优选地,在本发明中,所述蓝光芯片均采用GaN材料制成,采用相同的发光材料可避免发光材料差异引起的光衰较大的差异;进一步地,本发明采用GaN蓝光芯片激发绿色量子点和红色量子点分别发出绿光和红光替代现有采用单独绿光芯片发绿光、红光芯片发红光的方式,即可实现绿色光谱、红色光谱可调且能实现超高色域显示。
优选地,在本发明中,如图2所示,所述衬底10上相邻蓝光芯片40之间还设置有用于防止混光的隔垫层80,所述隔垫层材料为不透光的树脂类材料。如图2所示,所述隔垫层的作用是使支撑基板与衬底之间的空间结构维持一致并保持稳定。进一步,由于隔垫层是不透光的,其也明显降低了相邻蓝光芯片之间发生混光的风险。
优选地,在本发明中,如图2所示,所述支撑基板20和透镜30之间还设置有阻隔层90。具体来讲,由于量子点材料不稳定,易受氧气、热、潮湿等影响从而降低其发光效率,因此需要在量子点材料表面设置阻隔层来阻隔水汽、氧气等。同时,由于绿色量子点材料和红色量子点材料均是设置在由透光度高、平坦度佳的石英材料制备的支撑基板上,所述支撑基板本身具有良好的阻隔水汽、氧气的作用,因此,不需要再在量子点材料的下层设置阻隔层。
更优选地,所述阻隔层的材料为二氧化硅。
优选地,在本发明中,所述透镜材料为高透光的树脂类材料,所述绿色量子点材料和红色量子点材料独立地选自Ⅱ-Ⅵ族化合物、Ⅲ-Ⅴ族化合物和钙钛矿量子点中的一种或多种,但不限于此。
具体地,所述Ⅱ-Ⅵ族化合物为GaAs、InN、GaN、GaP、InP和InAs中中的一种或多种,但不限于此;
所述Ⅲ-Ⅴ族化合物CdSe、CdTe、MgTe、CaS、CaSe、MgS、MgSe、CaTe、 BaSe、BaTe、ZnS、SrS、SrSe、ZnSe、ZnTe、SrTe、BaS和CdS中的一种或多种,但不限于此。
所述钙钛矿量子点为CsPbX 3和CH 3NH 3PbX 3中的一种或多种,但不限于此,其中,X为Cl,Br或I中的一种。
进一步地,基于上述量子点三色LED显示屏,本发明还提供一种量子点三色LED显示屏的制备方法,其中,如图3所示,包括步骤:
S10、将蓝光芯片直接制备在衬底上,所述衬底上每颗像素区域对应位置设置有三个蓝光芯片;
S20、在一支撑基板上均匀涂布透明材料、绿色量子点材料以及红色量子点材料,并在所述透明材料、绿色量子点材料以及红色量子点材料表面沉积一阻隔层;
S30、将所述衬底、支撑基板以及预先提供的透镜依次拼接组合,使得所述衬底上每颗像素区域对应位置设置的三个蓝光芯片上方分别对应支撑基板上的透明材料、绿色量子点材料以及红色量子点材料,所述每个透镜对应衬底上的一个蓝光芯片。
具体来讲,图4提供了在衬底上制备均匀分布的蓝光芯片的示意图,如图4所示,在步骤1中,预先在衬底上分布用于驱动蓝光芯片发光的金属走线;在步骤2-4中,则依次在衬底上进行光阻涂布、曝光、显影操作;在步骤5-7中,则依次在衬底上进行长晶、激光切割以及导线焊接处理,得到在衬底上均匀分布的蓝光芯片,所述导线焊接将所述蓝光芯片与预先分布的金属走线连通;在步骤8-9中,则在所述均匀分布有蓝光芯片的衬底上依次进行隔垫物光阻涂布,曝光、显影处理,使得衬底上相邻蓝光芯片之间还设置有用于防止混光的隔垫层。
进一步地,如图5所示,在步骤10-11中,先在支撑基板上均匀涂布透明材料,然后进行曝光、显影操作,使支撑基板露出量子点印刷区域;在步骤12中,在所述支撑基板的量子点印刷区域依次印刷绿色量子点材料和红色量子点材料,得到依次排列有透明材料、绿色量子点材料以及红色量子点材料的支撑基板;在步骤13中,在所述支撑基板的透明材料、绿色量子点材料以及红色量子点材料表面溅镀一阻隔层用以阻隔水汽、氧气等影响量子点发光效率。
更进一步地,如图6所示,在步骤14中,将所述衬底、支撑基板以及预先 提供的透镜依次拼接组合,使得所述衬底上每颗像素区域对应位置设置的三个蓝光芯片上方分别对应支撑基板上的透明材料、绿色量子点材料以及红色量子点材料,所述每个透镜对应衬底上的一个蓝光芯片。
本发明提供的量子点三色LED显示屏的制备方法中,当衬底长晶后直接使用激光切割处理形成单颗的LED芯片,然后将均匀分布有LED芯片的衬底与支撑基板与透镜直接拼接即可制备所述量子点三色LED显示屏。显然,本发明没有传统生产方式上的LED芯片转移过程,这极大地简化了三色LED显示屏的制备过程,极大地提升了三色LED显示屏的生产效率,并且提升了其显示效果。
综上所述,本发明提供了一种量子点三色LED显示屏,包括叠层设置的衬底、支撑基板以及透镜,所述衬底上靠近支撑基板的一面均匀地设置有蓝光芯片,所述支撑基板靠近透镜的一面均匀地涂布有透明材料、绿色量子点材料以及红色量子点材料;所述衬底上每颗像素区域对应位置设置有三个蓝光芯片,所述三个蓝光芯片上方分别对应支撑基板上的透明材料、绿色量子点材料以及红色量子点材料,所述每个透镜对应衬底上的一个蓝光芯片。本发明将预先制备好的衬底、支撑基板以及透镜依次进行拼接组合便可制得所述量子点三色LED显示屏,其生产效率高、显示效果佳,且无技术与制程瓶颈限制。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (15)

  1. 一种量子点三色LED显示屏,其特征在于,包括蓝光芯片、叠层设置的衬底、支撑基板以及透镜,所述蓝光芯片直接制备在所述衬底靠近支撑基板的一面,所述支撑基板靠近透镜的一面均匀地涂布有透明材料、绿色量子点材料以及红色量子点材料;所述衬底上每颗像素区域对应位置设置有三个蓝光芯片,所述三个蓝光芯片上方分别对应支撑基板上的透明材料、绿色量子点材料以及红色量子点材料,所述每个透镜对应衬底上的一个蓝光芯片。
  2. 根据权利要求1所述的量子点三色LED显示屏,其特征在于,所述衬底上相邻蓝光芯片之间还设置有隔垫层。
  3. 根据权利要求2所述的量子点三色LED显示屏,其特征在于,所述隔垫层材料为不透光的树脂。
  4. 根据权利要求1所述的量子点三色LED显示屏,其特征在于,所述蓝光芯片均采用GaN材料制成。
  5. 根据权利要求1所述的量子点三色LED显示屏,其特征在于,所述透镜材料为透光树脂。
  6. 根据权利要求1所述的量子点三色LED显示屏,其特征在于,所述支撑基板和透镜之间还设置有阻隔层。
  7. 根据权利要求3所述的量子点三色LED显示屏,其特征在于,所述阻隔层的材料为二氧化硅。
  8. 根据权利要求1所述的量子点三色LED显示屏,其特征在于,所述绿色量子点材料和红色量子点材料独立地选自Ⅱ-Ⅵ族化合物、Ⅲ-Ⅴ族化合物和钙钛矿量子点中的一种或多种。
  9. 根据权利要求8所述的量子点三色LED显示屏,其特征在于,所述Ⅱ-Ⅵ族化合物为GaAs、InN、GaN、GaP、InP和InAs中的一种或多种。
  10. 根据权利要求8所述的量子点三色LED显示屏,其特征在于,所述Ⅲ-Ⅴ族化合物CdSe、CdTe、MgTe、CaS、CaSe、MgS、MgSe、CaTe、BaSe、BaTe、ZnS、SrS、SrSe、ZnSe、ZnTe、SrTe、BaS和CdS中的一种或多种。
  11. 根据权利要求8所述的量子点三色LED显示屏,其特征在于,所述钙钛矿量子点为CsPbX 3和CH 3NH 3PbX 3中的一种或多种,其中,X为Cl,Br或I中的一种。
  12. 一种如权利要求1-11任一所述的量子点三色LED显示屏的制备方法,其特征在于,包括步骤:
    将蓝光芯片直接制备在衬底上,所述衬底上每颗像素区域对应位置设置有三个蓝光芯片;
    在一支撑基板上均匀涂布透明材料、绿色量子点材料以及红色量子点材料,并在所述透明材料、绿色量子点材料以及红色量子点材料表面沉积一阻隔层;
    将所述衬底、支撑基板以及预先提供的透镜依次拼接组合,使得所述衬底上每颗像素区域对应位置设置的三个蓝光芯片上方分别对应支撑基板上的透明材料、绿色量子点材料以及红色量子点材料,所述每个透镜对应衬底上的一个蓝光芯片。
  13. 根据权利要求12所述的量子点三色LED显示屏的制备方法,其特征在于,所述步骤提供一种表面均匀设置有若干蓝光芯片的衬底,所述衬底上每颗像素区域对应位置设置有三个蓝光芯片,还包括:
    预先在衬底上分布用于驱动蓝光芯片发光的金属走线;
    在所述衬底上依次进行光阻涂布、曝光、显影、长晶、激光切割处理,得到在衬底上均匀分布的蓝光芯片;
    通过导线焊接将所述蓝光芯片与预先分布的金属走线连通。
  14. 根据权利要求13所述的量子点三色LED显示屏的制备方法,其特征在于,所述通过导线焊接将所述蓝光芯片与预先分布的金属走线连通之后还包括:
    在所述均匀分布有蓝光芯片的衬底上依次进行隔垫物光阻涂布,曝光、显影处理,使得衬底上相邻蓝光芯片之间还设置有隔垫层。
  15. 根据权利要求13所述的量子点三色LED显示屏的制备方法,其特征在于,所述在一支撑基板上均匀涂布透明材料、绿色量子点材料以及红色量子点材料,并在所述透明材料、绿色量子点材料以及红色量子点材料表面沉积一阻隔层的步骤,具体包括:
    预先在支撑基板上均匀涂布透明材料,然后进行曝光、显影操作,使支撑基板露出量子点印刷区域;
    在所述支撑基板的量子点印刷区域依次印刷绿色量子点材料和红色量子点材料,得到依次排列有透明材料、绿色量子点材料以及红色量子点材料的支撑基 板;
    在所述支撑基板的透明材料、绿色量子点材料以及红色量子点材料表面溅镀形成所述阻隔层。
PCT/CN2019/097151 2018-07-31 2019-07-22 一种量子点三色led显示屏及其制备方法 WO2020024839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810858159.5 2018-07-31
CN201810858159.5A CN110783360A (zh) 2018-07-31 2018-07-31 一种量子点三色led显示屏及其制备方法

Publications (1)

Publication Number Publication Date
WO2020024839A1 true WO2020024839A1 (zh) 2020-02-06

Family

ID=69230935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097151 WO2020024839A1 (zh) 2018-07-31 2019-07-22 一种量子点三色led显示屏及其制备方法

Country Status (2)

Country Link
CN (1) CN110783360A (zh)
WO (1) WO2020024839A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635514A (zh) * 2021-01-20 2021-04-09 上海大学 一种柔性Micro LED显示屏及其封装方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652616A (zh) * 2020-12-21 2021-04-13 深圳扑浪创新科技有限公司 一种led显示装置及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103605234A (zh) * 2013-11-29 2014-02-26 Tcl集团股份有限公司 一种量子点彩色滤光片及液晶显示装置
CN103779375A (zh) * 2014-02-19 2014-05-07 京东方科技集团股份有限公司 全彩led显示面板及其制造方法、显示器
US20140204319A1 (en) * 2013-01-22 2014-07-24 Beijing Boe Optoelectronics Technology Co., Ltd. Display device and manufacturing method thereof
CN207149560U (zh) * 2017-08-12 2018-03-27 左洪波 Micro‑LED蓝光显示屏封装结构
CN109411458A (zh) * 2018-11-14 2019-03-01 易美芯光(北京)科技有限公司 一种micro led显示器件及其制作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3399266B2 (ja) * 1996-12-13 2003-04-21 豊田合成株式会社 全色発光型発光ダイオードランプ
WO2011121662A1 (ja) * 2010-03-31 2011-10-06 パナソニック株式会社 表示パネル装置及び表示パネル装置の製造方法
US9831387B2 (en) * 2014-06-14 2017-11-28 Hiphoton Co., Ltd. Light engine array
KR102524805B1 (ko) * 2016-02-12 2023-04-25 삼성전자주식회사 광원 모듈, 디스플레이 패널 및 이를 구비한 디스플레이 장치
KR102650341B1 (ko) * 2016-11-25 2024-03-22 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
CN106876562B (zh) * 2017-03-30 2020-03-24 广东普加福光电科技有限公司 一种新型微缩化led结构及其制备方法
CN107275462A (zh) * 2017-06-23 2017-10-20 深圳Tcl新技术有限公司 Led、背光模组以及液晶显示装置
CN108321284B (zh) * 2017-12-29 2021-02-23 华南师范大学 一种直下式量子点白光led背光模组及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140204319A1 (en) * 2013-01-22 2014-07-24 Beijing Boe Optoelectronics Technology Co., Ltd. Display device and manufacturing method thereof
CN103605234A (zh) * 2013-11-29 2014-02-26 Tcl集团股份有限公司 一种量子点彩色滤光片及液晶显示装置
CN103779375A (zh) * 2014-02-19 2014-05-07 京东方科技集团股份有限公司 全彩led显示面板及其制造方法、显示器
CN207149560U (zh) * 2017-08-12 2018-03-27 左洪波 Micro‑LED蓝光显示屏封装结构
CN109411458A (zh) * 2018-11-14 2019-03-01 易美芯光(北京)科技有限公司 一种micro led显示器件及其制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635514A (zh) * 2021-01-20 2021-04-09 上海大学 一种柔性Micro LED显示屏及其封装方法

Also Published As

Publication number Publication date
CN110783360A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
US9823510B2 (en) Quantum dot color film substrate, manufacturing method thereof and LCD apparatus
CN111509025A (zh) 基于量子点的显示面板及其制备方法、显示装置
US10756144B2 (en) Electroluminescent device having stacked micro light emitting diode unit and organic light emitting diode unit, display device and manufacturing method thereof
WO2018196090A1 (zh) Led显示面板
US10483431B2 (en) Light source module and display device
WO2021227098A1 (zh) 背光模组和显示面板
CN110692097A (zh) 全彩led显示面板
WO2019140707A1 (zh) 一种白光led及其制备方法和应用
TWI480660B (zh) 顯示裝置
WO2020024839A1 (zh) 一种量子点三色led显示屏及其制备方法
CN112310143A (zh) 量子点微led显示器件及其制备方法
CN106373951A (zh) Rgb全彩光源、全彩色发光器件及显示装置
WO2020248404A1 (zh) 微型发光二极管及显示面板
WO2021243750A1 (zh) 显示面板及其制造方法
KR102448600B1 (ko) 디스플레이 디바이스
CN207851469U (zh) 显示面板及显示装置
KR20230027132A (ko) 발광 소자 및 이를 이용한 표시 장치
WO2016138699A1 (zh) 背光模组及具有该背光模组的液晶显示装置
US10276756B2 (en) LED display panel
US10978509B2 (en) Display panel and manufacturing method thereof
KR20210078766A (ko) 마이크로 엘이디 표시 장치 및 이의 제조방법
KR20140089879A (ko) 액정 표시 장치
CN113888991B (zh) 一种发光面板、显示面板、背光模组和显示装置
TWI740379B (zh) 發光模組
CN206293438U (zh) Rgb全彩光源、全彩色发光器件及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844390

Country of ref document: EP

Kind code of ref document: A1