WO2020024790A1 - 映射反馈信息的方法和装置 - Google Patents

映射反馈信息的方法和装置 Download PDF

Info

Publication number
WO2020024790A1
WO2020024790A1 PCT/CN2019/096198 CN2019096198W WO2020024790A1 WO 2020024790 A1 WO2020024790 A1 WO 2020024790A1 CN 2019096198 W CN2019096198 W CN 2019096198W WO 2020024790 A1 WO2020024790 A1 WO 2020024790A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
feedback information
target
mapping
frame structure
Prior art date
Application number
PCT/CN2019/096198
Other languages
English (en)
French (fr)
Inventor
彭淑燕
纪子超
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020024790A1 publication Critical patent/WO2020024790A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and in particular, to a method and an apparatus for mapping feedback information.
  • SL side link
  • Communication on a side link refers to a technology in which devices can perform direct communication without transmitting or forwarding through network-side equipment such as a base station.
  • Sidelink communication can improve resource utilization and network capacity, so it has a wide range of application prospects.
  • NR New Radio
  • the reliability requirements are very high, for example: extended sensors (advanced driving), remote driving (remote driving) in NR SL
  • the reliability needs to reach 99.99% or higher, so the feedback mechanism needs to be introduced in NR SL.
  • uplink control information UCI
  • CHannel physical uplink shared channel
  • it can include up to three pieces of information: Hybrid automatic repeat confirmation (Hybrid Automatic Repeat Repeat) acknowledge, HARQ-ACK), channel state information part 1 (Channel information part 1, CSI part 1), channel state information part 2 (Channel information part 2, CSI part 2).
  • HARQ-ACK is mapped from a resource element (RE) corresponding to a first symbol after a symbol of a first demodulation reference signal (DMRS) sequence is carried;
  • CSI Part 1 is mapped from the RE corresponding to the first non-bearing DMRS (non-DMRS) symbol of the PUSCH;
  • CSI 2 is mapped from the RE after CSI part1, and it is not mapped to the RE where DMRS and HARQ-ACK are mapped. on.
  • AGC Automatic Gain Control
  • the demodulation performance of the data transmitted on the RE corresponding to the first symbol is poor. If the mapping mechanism of the feedback information in the prior art is used in the SL, the probability of successful demodulation of the feedback information mapped on the RE corresponding to the symbol of the AGC is relatively low.
  • Embodiments of the present invention provide a method and an apparatus for mapping feedback information, which are used to solve the comparison of the probability of successful demodulation of the feedback information mapped on the RE corresponding to the symbol of the AGC if the mapping mechanism of feedback information in the prior art is used Low problem.
  • an embodiment of the present invention provides a method for mapping feedback information, including:
  • the starting position of the target RE corresponds to a first symbol, and the first symbol is associated with a symbol carrying a demodulation reference signal DMRS sequence in a frame structure of the SL.
  • an apparatus for mapping feedback information including:
  • a mapping unit configured to map feedback information on a target resource element RE of the side link SL;
  • the start position of the target RE corresponds to a first symbol, and the first symbol is associated with a symbol carrying a demodulation reference signal DMRS sequence in a frame structure of the SL.
  • an embodiment of the present invention provides a device for mapping feedback information, including a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the processor executes, the steps of the method for mapping feedback information as described in the first aspect are implemented.
  • an embodiment of the present invention provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the mapping feedback information according to the first aspect is implemented. Method steps.
  • the method for mapping feedback information maps the feedback information on the target resource element RE of the side link SL, because the start position of the target RE corresponds to the first symbol, and the first symbol corresponds to the SL
  • the symbols that carry the DMRS sequence are associated in the frame structure of the frame. That is, in the embodiment of the present invention, the starting position of the target RE that maps the feedback information is determined according to the symbols that carry the DMRS sequence in the SL frame structure. In the prior art, the CSI part 1 is directly mapped on the RE corresponding to the symbol of the first non-bearing DMRS sequence of the PUSCH. In the embodiment of the present invention, the starting position of the target RE of the mapping feedback information is determined according to the symbol of the DMRS sequence.
  • the embodiment of the present invention can reduce or avoid sending feedback information by using the RE corresponding to the symbol of the AGC in the frame structure of the SL to improve the probability of successful demodulation of the feedback information. Therefore, the embodiments of the present invention can solve the problem of using the feedback information in the prior art.
  • the mapping mechanism may cause a problem that the feedback information mapped on the RE corresponding to the AGC symbol has a low probability of successful demodulation.
  • FIG. 1 is a schematic diagram of a location of an RE mapping feedback information in the prior art
  • FIG. 2 is a schematic diagram of a possible structure of a communication system according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of steps in a method for mapping feedback information according to an embodiment of the present invention.
  • FIG. 4 is one of the schematic diagrams of the location of the RE mapping the feedback information according to the embodiment of the present invention.
  • FIG. 5 is a second schematic diagram of a location of an RE mapping feedback information according to an embodiment of the present invention.
  • FIG. 6 is a third schematic diagram of a location of an RE that maps feedback information according to an embodiment of the present invention.
  • FIG. 7 is a fourth schematic position diagram of an RE that maps feedback information according to an embodiment of the present invention.
  • FIG. 8 is a fifth schematic diagram of a location of an RE that maps feedback information according to an embodiment of the present invention.
  • FIG. 9 is a sixth schematic diagram of a location of an RE that maps feedback information according to an embodiment of the present invention.
  • FIG. 10 is a seventh schematic diagram of a location of an RE that maps feedback information according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram 8 of a location of an RE that maps feedback information according to an embodiment of the present invention.
  • FIG. 12 is a ninth schematic diagram of a location of an RE that maps feedback information according to an embodiment of the present invention.
  • FIG. 13 is a tenth schematic diagram of a location of an RE that maps feedback information according to an embodiment of the present invention.
  • FIG. 14 is a eleventh schematic diagram of a location of an RE that maps feedback information according to an embodiment of the present invention.
  • FIG. 15 is a twelfth schematic diagram of a location of an RE that maps feedback information according to an embodiment of the present invention.
  • FIG. 16 is a thirteenth schematic diagram of a location of an RE that maps feedback information according to an embodiment of the present invention.
  • FIG. 17 is a fourteenth schematic diagram of a location of an RE that maps feedback information according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of an apparatus for mapping feedback information according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram of a hardware structure of an apparatus for mapping feedback information according to an embodiment of the present invention.
  • the words “first” and “second” are used to distinguish the same or similar items having substantially the same functions or functions. Personnel can understand that the words “first” and “second” do not limit the number and execution order.
  • words such as “exemplary” or “such as” are used as examples, illustrations or descriptions. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present invention should not be construed as more preferred or more advantageous than other embodiments or designs. Rather, the use of the words “exemplary” or “for example” is intended to present the relevant concept in a concrete manner. In the embodiments of the present invention, unless otherwise stated, the meaning of "a plurality" means two or more.
  • HARQ-ACK is mapped on the resource element (RE) corresponding to the first symbol after the first symbol carrying the DMRS sequence;
  • CSI part 1 is mapped on the first non-bearing DMRS of the PUSCH ( non-DMRS) on the RE corresponding to the symbol;
  • CSI part 2 starts to be mapped on the RE after CSI part1 and will not be mapped on the RE on which DMRS and HARQ-ACK are mapped.
  • AGC automatic gain control
  • the demodulation performance of data sent on the RE corresponding to the symbol used for AGC is poor. If the mapping mechanism of the feedback information in the prior art is used in the SL, the probability that the feedback information mapped on the RE corresponding to the symbol of the AGC is successfully demodulated is relatively low.
  • embodiments of the present invention provide a method and an apparatus for mapping feedback information.
  • the method includes: mapping the feedback information on a target resource element RE of a side link SL.
  • the first symbol corresponds, and the first symbol is associated with a symbol carrying a DMRS sequence in the SL frame structure, that is, in the embodiment of the present invention, the starting position of the target RE where the feedback information is mapped is related to the SL frame structure
  • the symbol carrying the DMRS sequence is determined.
  • the symbol bearing the DMRS sequence is used.
  • the starting position of the target RE where the feedback information is mapped is determined. Therefore, in the embodiment of the present invention, it is possible to reduce or avoid sending the feedback information using the RE corresponding to the AGC symbol in the SL frame structure, thereby improving the probability of successful demodulation of the feedback information.
  • the embodiment of the present invention can solve the probability that the mapping mechanism of feedback information in the prior art will be used to make the feedback information mapped on the RE corresponding to the symbol of AGC demodulate successfully. Relatively low issue.
  • the technical solution provided in this application can be applied to various communication systems, for example, a 5G communication system, a future evolution system, or a variety of communication convergence systems.
  • M2M machine-to-machine
  • eMBB enhanced mobile Internet
  • ultra-high reliability and ultra-low-latency communication ultra Reliable & Low Latency (Communication, uRLLC)
  • Massive Machine Type Communication (mMTC) Massive Machine Type Communication
  • These scenarios include, but are not limited to, scenarios such as communication between the UE and the UE, or communication between the network-side device and the network-side device, or communication between the network-side device and the UE.
  • FIG. 2 shows a schematic diagram of a possible structure of a communication system according to an embodiment of the present invention.
  • the communication system may include a network-side device 11 (the network-side device is used as a base station in FIG. 2 as an example), a first terminal device 12, and a second terminal device 13 (the first terminal is shown in FIG. 2).
  • the device and the second terminal device are both mobile phones as an example).
  • a wireless connection is established between the network-side device 11 and the first terminal device 12 and the second terminal device 13 through Radio Resource Control (RRC), and the first terminal device 12 and the second terminal device 13 are established.
  • RRC Radio Resource Control
  • the network-side device 11 in the communication system may be a base station, a core network device, a transmission and reception node (Transmission and Reception Point, TRP), a relay station, or an access point.
  • the network-side device 11 may also be a base transceiver station (BTS) in a Global System for Mobile Communication (GSM) or Code Division Multiple Access (CDMA) network, It can also be NB (NodeB) in Wideband Code Division Multiple Access (WCDMA), or it can be eNB or eNodeB (evolutional NodeB) in LTE.
  • the network-side device 11 may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario.
  • the network-side device 11 may also be a base station (gNB) in a 5G communication system or a network-side device in a future evolved network.
  • the first terminal device 12 and the second terminal device 13 may be wireless UEs, which may be devices that provide voice and / or other business data connectivity to users, handheld devices with wireless communication functions, computing devices, or connected to wireless devices. Other modem processing equipment, vehicle-mounted equipment, wearable equipment, UEs in the future 5G network, or UEs in the future evolved PLMN network, etc.
  • a wireless UE can communicate with one or more core networks via a Radio Access Network (RAN).
  • the wireless UE can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • Wireless terminals can also be mobile devices, UE terminals, Access terminal, wireless communication equipment, terminal unit, terminal station, mobile station, mobile station, mobile station, remote station, remote station, remote terminal, subscriber unit Subscriber station, subscriber station, user agent, terminal device, etc.
  • FIG. 2 illustrates that the terminal device is a mobile phone.
  • the communication system shown in FIG. 2 is only a possible structural diagram of the communication system involved in the embodiment of the present invention, and the embodiment of the present invention is not limited thereto.
  • the communication system involved in the embodiment of the present invention is also It may be another system, for example, only the first terminal device 12 and the second terminal device 13 are included, and a sidelink is established between the first terminal device 12 and the second terminal device 13, and the network-side device 11 is not included.
  • the execution subject of the method for mapping feedback information provided by the embodiment of the present invention may be the receiver device of the communication on the sidelink.
  • An embodiment of the present invention provides a method for mapping feedback information. Specifically, referring to FIG. 3, the method for mapping feedback information includes the following steps:
  • the starting position of the target RE corresponds to a first symbol, and the first symbol is associated with a symbol carrying a DMRS sequence in a frame structure of the SL.
  • the symbols in the embodiments of the present invention specifically refer to Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • step S11 (the feedback information is mapped on the target RE of the SL) in the above embodiment is described in detail below.
  • the first symbol is an N-th non-bearing DMRS sequence symbol after the target symbol, or the first symbol is a previous symbol of the target symbol;
  • the target symbol is the first symbol in the frame structure of the SL that carries the DMRS sequence, and N is a positive integer.
  • the SL includes a feedback message.
  • the feedback information in the SL may be HARQ-ACK or CSI.
  • the SL includes feedback information
  • the first symbol is an N-th non-bearing DMRS sequence symbol after the target symbol, or the first symbol is a previous symbol of the target symbol
  • the above step S11 mapping the feedback information on the target RE of the SL
  • the third symbol is located before a symbol for protecting a time slot GP in a frame structure of the SL.
  • the last symbol in the frame structure of the SL is used as an example for GP.
  • the first non-bearing DMRS sequence symbol after the target symbol is the fourth symbol (symbol 3) in the SL frame structure, so HARQ-ACK is the fourth symbol in the SL frame structure.
  • symbol 3) The corresponding REs start to be mapped, and are sequentially mapped to the REs corresponding to the seventh symbol in the SL frame structure in the ascending order of the symbol numbers in the SL frame structure.
  • the last symbol in the frame structure is used as an example for GP.
  • the second non-bearing DMRS sequence symbol after the target symbol is the fifth symbol (symbol 4) in the SL frame structure, so the CSI slave SL's fifth symbol (symbol) in the frame structure 4)
  • the corresponding REs start to be mapped, and are sequentially mapped to the REs corresponding to the eighth symbol (symbol 7) in the frame structure of the SL in the increasing order of the symbol numbers in the frame structure of the SL.
  • the previous symbol (symbol 1) with the first symbol as the target symbol, and the first symbol carrying the DMRS sequence is the third symbol in the frame structure of SL (Symbol 2)
  • the feedback information included in the SL is HARQ-ACK
  • the third symbol is the fifth symbol (symbol 4) of the frame structure of the SL
  • the symbols in the frame structure of the SL are used for GP is shown as an example.
  • the previous symbol of the target symbol is the second symbol (symbol 1) in the SL frame structure
  • the HARQ-ACK is the RE corresponding to the second symbol (symbol 1) in the SL frame structure.
  • Begin mapping and sequentially map to the RE corresponding to the fifth symbol in the frame structure of the SL in order of increasing number of symbols in the frame structure of the SL.
  • the SL includes feedback information
  • the first symbol is an N-th non-bearing DMRS sequence symbol after the target symbol, or the first symbol is a previous symbol of the target symbol
  • the above step S11 mapping the feedback information on the target RE of the SL
  • the fourth symbol is located before the first symbol.
  • the last symbol in the frame structure is used as an example for GP.
  • the first non-bearing DMRS sequence symbol after the target symbol is the fourth symbol (symbol 3) in the SL frame structure, so the CSI first starts with the fourth symbol in the SL frame structure ( Symbol 3)
  • the corresponding RE starts to be mapped, and is sequentially mapped to the RE corresponding to the previous symbol of the GP symbol in the frame structure of the SL in ascending order of the symbol number in the SL frame structure, and then from the SL.
  • the RE corresponding to the first symbol (symbol 0) of the non-bearing DMRS sequence in the frame structure of the frame starts to be mapped, and is sequentially mapped to the corresponding to the fourth symbol (symbol 1) in the ascending order of the symbol numbers in the SL frame structure. RE.
  • step S11 (the mapping of the feedback information in the SL to the target RE for transmission) includes:
  • the preset threshold may be the number of REs that can be transmitted by the PSSCH of the SL, or an upper limit of the number of REs that are predefined to transmit feedback information, and the specific value of the preset threshold is not limited in this embodiment of the present invention.
  • the first symbol is an N-th non-bearing DMRS sequence symbol after the target symbol, or the first symbol is a previous symbol of the target symbol;
  • the target symbol is the first symbol in the SL that carries the DMRS sequence, and N is a positive integer.
  • the method for mapping feedback information provided in the embodiment of the present invention further includes:
  • the at least two feedback information are jointly encoded.
  • the feedback information in the SL may include: HARQ-ACK and CSI, or the feedback information in the SL may include: HARQ-ACK, CSI part1, and CSI part2.
  • the SL includes at least two pieces of feedback information, and the at least two pieces of feedback information are jointly encoded; and the first symbol is an N-th non-bearing DMRS sequence symbol after the target symbol, or the
  • the above step S11 mapping the feedback information on the target RE of the SL
  • the above step S11 includes:
  • the third symbol is located before the symbol for the GP in the frame structure of the SL.
  • SL includes two pieces of feedback information, HARQ-ACK and CSI
  • the first symbol carrying the DMRS sequence is the third symbol in the frame structure of SL (symbol 2)
  • the third symbol is the tenth symbol of the frame structure of the SL (symbol 9)
  • the The last symbol in the frame structure of SL is used as an example for GP.
  • the first non-bearing DMRS sequence symbol after the target symbol is the fourth symbol (symbol 3) in the SL frame structure, so the joint coding sequence of HARQ-ACK and CSI is derived from the SL frame structure
  • the RE corresponding to the fourth symbol (symbol 3) in the mapping starts, and is sequentially mapped to the RE corresponding to the tenth symbol (symbol 9) in the SL frame structure in the ascending order of the symbol numbers in the SL frame structure.
  • SL includes three pieces of feedback information: HARQ-ACK, CSI part1, and CSI part2, and the first symbol is a target non-bearing DMRS sequence after the first symbol.
  • Symbol (N 1), the first symbol carrying the DMRS sequence is the third symbol (symbol 2) in the frame structure of SL, and the third symbol is the eleventh symbol (symbol of the frame structure of SL) 10)
  • the last symbol in the SL frame structure is used as an example for GP.
  • the first non-bearing DMRS sequence symbol after the target symbol is the fourth symbol (symbol 3) in the SL frame structure.
  • the joint coding sequence of HARQ-ACK, CSI part1, and CSI part2 is from
  • the RE corresponding to the fourth symbol (symbol 3) in the SL frame structure starts to map, and is mapped to the 11th symbol (symbol 10) in the SL frame structure in order of increasing number of symbols in the SL frame structure.
  • RE The RE corresponding to the fourth symbol (symbol 3) in the SL frame structure starts to map, and is mapped to the 11th symbol (symbol 10) in the SL frame structure in order of increasing number of symbols in the SL frame structure.
  • the SL includes at least two pieces of feedback information, and the at least two pieces of feedback information are jointly encoded; and the first symbol is an N-th non-bearing DMRS sequence symbol after the target symbol, or the
  • the above step S11 mapping the feedback information on the target RE of the SL
  • the above step S11 includes:
  • the fourth symbol is located before the first symbol.
  • the SL in FIG. 10 includes: HARQ-ACK, CSI part1, and CSI part2, and the first symbol is a previous symbol of a target symbol and a first symbol carrying a DMRS sequence Is the third symbol (symbol 2) in the SL frame structure, the fourth symbol is the first symbol (symbol 0) in the SL frame structure, and the last symbol in the SL frame structure is GP is shown as an example.
  • the first non-bearing DMRS sequence symbol after the target symbol is the fourth symbol (symbol 3) in the SL frame structure.
  • the joint coding sequence of HARQ-ACK, CSI part1, and CSI part2 is first Mapping starts from the RE corresponding to the fourth symbol (symbol 3) in the SL frame structure, and maps to the penultimate symbol corresponding to the SL frame structure in ascending order of the symbol number in the SL frame structure.
  • RE and then start mapping from the first non-bearing DMRS sequence symbol (symbol 0) in the SL frame structure, and map to the fourth symbol in the order of increasing number of symbols in the SL frame structure. (Symbol 0) The corresponding RE.
  • step S11 (the mapping of the feedback information in the SL to the target RE for transmission) includes:
  • the preset threshold may be the number of REs that can be transmitted by the PSSCH of the SL, or an upper limit of the number of REs that are predefined to transmit feedback information.
  • the specific value of the preset threshold is not limited in this embodiment of the present invention.
  • the SL includes at least two pieces of feedback information, and the at least two pieces of feedback information are independently encoded;
  • Step S11 mapping the feedback information on the target RE of the SL in the above embodiment includes:
  • the second target feedback information is mapped on the target RE of the SL by performing rate matching or data puncturing on the resource to which the first target feedback information is mapped.
  • the first target feedback information and the second target feedback information are both feedback information in the at least two pieces of feedback information, and the transmission priority of the second target feedback information is lower than the first target feedback. Information transmission priority.
  • the feedback information with lower transmission priority performs rate matching or data puncturing on the resources that map the feedback information with higher transmission priority.
  • SL includes three feedback information: SL-FI part1, SL-FI part2, and SL-FI part3, and the transmission priority relationship of SL-FI part1, SL-FI part2, and SL-FI part3 is: SL-FI part1 > SL-FI part2 > SL-FI part3; then SL-FI part2 can perform rate matching or punching on the resources mapped to SL-FI part1, and SL-FI part3 can map the resources and / or mapping of SL-FI part1 SL-FI part2 resources perform rate matching or puncturing.
  • the transmission priority of the second target feedback information is lower than the transmission priority of the first target feedback information, which may specifically include the following two cases:
  • the first target feedback information and the second target feedback information are independent of each other.
  • the information size of the second target feedback information can be known.
  • step S11 mapping the feedback information on the target RE of the SL
  • step S11 mapping the feedback information on the target RE of the SL in the above embodiment further includes:
  • the third symbol is located before the symbol for protecting the time slot GP in the frame structure of the SL.
  • the SL includes at least two pieces of feedback information, and the at least two pieces of feedback information are independently encoded, and the second target feedback information is mapped by performing rate matching or data puncturing on a resource mapping the first target feedback information.
  • step S11 maps feedback information in the above embodiment
  • the first symbol is an N-th non-bearing DMRS sequence symbol after the target symbol, or the first symbol is a previous symbol of the target symbol; N is a positive integer.
  • the RE resource performs rate matching, the third symbol is the tenth symbol (symbol 9) of the frame structure of the SL, and the last symbol in the frame structure of the SL is used as an example for the GP. As shown in FIG.
  • the first non-bearing DMRS sequence symbol after the target symbol is the fourth symbol (symbol 3) in the SL frame structure, so first from the SL symbol (symbol 3) in the frame structure 3)
  • the corresponding RE starts to map HARQ-ACK.
  • the CSI performs rate matching on the RE resources mapped to HARQ-ACK, and maps to SL in order of the increasing number of symbols in the SL frame structure.
  • the first symbol is the previous symbol of the target symbol
  • the first symbol carrying the DMRS sequence is the third symbol in the frame structure (symbol 2).
  • the SL includes three feedback information: HARQ-ACK, CSI part1 and CSI part2.
  • the transmission priority of HARQ-ACK is higher than the transmission priority of CSI part1, and the transmission priority of CSI part1 is higher than the transmission priority of CSI part2.
  • CSI part1 performs rate matching on the RE resource mapping HARQ-ACK
  • CSI part2 performs rate matching on the RE resource mapping CSI part1
  • the third symbol is the tenth symbol (symbol 9) of the frame structure of the SL
  • the last symbol in the frame structure of the SL is used as an example for GP.
  • the previous symbol of the target symbol is the second symbol (symbol 1) in the frame structure of SL, so first start with the RE corresponding to the second symbol (symbol 1) in the SL frame structure.
  • the HARQ-ACK is mapped. After the HARQ-ACK mapping is completed, CSI part1 performs rate matching on the RE resources mapped to HARQ-ACK.
  • CSI part2 After the CSI part1 mapping is completed, CSI part2 performs rate matching on the RE resources mapped to CSI part1. Maps to the RE corresponding to the 8th symbol (symbol 7) in the frame structure of SL in order of increasing number of symbols in the frame structure of SL.
  • the SL includes at least two pieces of feedback information, and the at least two pieces of feedback information are independently encoded, and the second target feedback information is mapped by performing rate matching or data puncturing on a resource mapping the first target feedback information.
  • the feedback information in the SL is mapped on the RE corresponding to the first symbol to the third symbol on the target RE of the SL
  • step S11 the feedback information is mapped on the SL in the above embodiment
  • the target RE can include:
  • the first feedback information is the feedback information with the highest transmission priority among the at least two feedback information
  • the second feedback information is the feedback information with the second highest transmission priority among the at least two feedback information
  • the first One symbol is the Nth non-bearing DMRS sequence symbol after the target symbol, and the second symbol is the previous symbol of the target symbol; N is a positive integer.
  • the symbol (symbol 7) and the last symbol in the frame structure of the SL are used as an example for the GP. As shown in FIG.
  • Mapping After HARQ-ACK mapping is completed, the CSI is mapped from the RE corresponding to the second symbol (symbol 1) in the SL's frame structure, and the RE resources mapped to HARQ-ACK are rate-matched. The ascending order of the symbol numbers in the frame structure of the frame is sequentially mapped to the RE corresponding to the eighth symbol (symbol 7) in the frame structure of the SL.
  • the above-mentioned step S11 (the mapping of the feedback information on the target RE of the SL) further includes:
  • the third feedback information is mapped from the RE corresponding to the second symbol.
  • the transmission priority of HARQ-ACK is higher than the transmission priority of CSI part1.
  • the transmission priority of CSI part1 is higher than the transmission priority of CSI part2.
  • RE resources are rate-matched, CSI part2 is rate-matched for RE resources mapped to CSI, part1 and RE resources mapped to HARQ-ACK, and the third symbol is the eleventh symbol (symbol 10) of the frame structure of the SL.
  • the last symbol in the frame structure of SL is used as an example for GP.
  • the first symbol carrying the DMRS sequence is the third symbol in the frame structure of SL (symbol 2)
  • the first symbol is the fourth symbol in the frame structure of SL (symbol 3)
  • the second symbol is the second symbol (symbol 1) in the SL frame structure. Therefore, the HARQ-ACK is mapped from the RE corresponding to the fourth symbol (symbol 3) in the SL frame structure.
  • the CSI part1 mapping is started from the RE corresponding to the second symbol (symbol 1) in the SL frame structure, and the RE resource mapping HARQ-ACK is mapped.
  • mapping CSI part2 Starting from the RE corresponding to the second symbol (symbol 1) in the SL frame structure, mapping CSI part2, and performing rate matching on the RE resource mapping HARQ-ACK and the RE resource mapping CSI part1, and according to the SL frame
  • the ascending order of the symbol numbers in the structure is sequentially mapped to the RE corresponding to the 11th symbol (symbol 10) in the frame structure of the SL.
  • step S11 the feedback information is The mapping on the target RE of the SL
  • the feedback information is The mapping on the target RE of the SL
  • the first feedback information is the feedback information with the highest transmission priority among the at least two feedback information
  • the second feedback information is the feedback information with the second highest transmission priority among the at least two feedback information
  • the first One symbol is the Nth non-bearing DMRS sequence symbol after the target symbol
  • N is a positive integer.
  • the symbol (symbol 7) and the last symbol in the frame structure of the SL are used as an example for the GP. As shown in FIG.
  • the first symbol carrying the DMRS sequence is the third symbol in the frame structure of SL
  • the first symbol is the fourth symbol (symbol 3) in the frame structure of SL, so first from The RE corresponding to the fourth symbol (symbol 3) in the SL frame structure starts to map HARQ-ACK.
  • the CSI performs rate matching on the resources mapped to HARQ-ACK, and follows the SL frame.
  • the ascending order of the symbol numbers in the structure is sequentially mapped to the RE corresponding to the eighth symbol (symbol 7) in the frame structure of the SL.
  • the above-mentioned step S11 (the mapping of the feedback information on the target RE of the SL) further includes:
  • the second symbol is a first non-bearing DMRS sequence symbol in a frame structure of the SL.
  • the first symbol (symbol 2) in the frame structure in which the first symbol bearing the DMRS sequence is SL, and the SL includes HARQ-ACK, CSI part1, and
  • the three feedback information of CSI part2 the transmission priority of HARQ-ACK is higher than the transmission priority of CSI part1, the transmission priority of CSI part1 is higher than the transmission priority of CSI part2, and the rate of RE resources mapped to HARQ-ACK by CSI part1 Matching, CSI part2 performs rate matching on the RE resource mapping CSI part1 and the RE resource mapping HARQ-ACK
  • the third symbol is the 11th symbol (symbol 10) of the frame structure of the SL, and the frame of the SL
  • the last symbol in the structure is used as an example for GP.
  • the first symbol carrying the DMRS sequence is the third symbol (symbol 2) in the frame structure of SL
  • the first symbol is the fourth symbol (symbol 3) in the frame structure of SL
  • the second symbol is the second symbol (symbol 1) in the SL frame structure.
  • the HARQ-ACK is mapped from the RE corresponding to the fourth symbol (symbol 3) in the SL frame structure.
  • the CSI part1 mapping performs rate matching on the HARQ-ACK RE resources.
  • the CSI part2 is mapped from the RE corresponding to the second symbol (symbol 1) in the SL frame structure.
  • step S11 mapping the feedback information on the target RE of the SL in the above embodiment includes:
  • the symbols of the DMRS sequence are carried on the RE corresponding to the fourth symbol.
  • the first target feedback information and the second target feedback information are both feedback information in the at least two pieces of feedback information, and the transmission priority of the second target feedback information is lower than the first target feedback.
  • Priority of information transmission the first target feedback information and the second target feedback information are both feedback information in the at least two feedback information, and the first feedback information is in the at least two feedback information Transmitting the highest priority feedback information, the second feedback information is the feedback information with the second highest transmission priority among the at least two feedback information, and the first symbol is the N-th non-bearer DMRS sequence after the target symbol Symbol, the second symbol is the previous symbol of the target symbol; N is a positive integer.
  • At least two pieces of feedback information are included in the SL, and the at least two pieces of feedback information are independently encoded, and the second target feedback information is obtained by rate matching or data puncturing the resource mapping the first target feedback information.
  • the target RE mapped on the SL, and mapping the first feedback information from the RE corresponding to the first symbol, mapping the second feedback information from the RE corresponding to the second symbol, and mapping from the second symbol
  • loopback mapping is performed on the feedback information in the SL.
  • the first symbol carrying the DMRS sequence is the third symbol (symbol 2) in the frame structure of the SL
  • the fourth symbol is the first symbol (symbol 0) of the frame structure of the SL
  • the last symbol in the frame structure of SL is used as an example for GP.
  • the first symbol carrying the DMRS sequence is the third symbol (symbol 2) in the SL frame structure, the first symbol is the fourth symbol (symbol 3) in the SL frame structure ),
  • the second symbol is the second symbol (symbol 1) in the frame structure of the SL, so first, HARQ-ACK is mapped from the RE corresponding to the fourth symbol (symbol 3) in the SL frame structure.
  • the CSI part1 mapping is started from the RE corresponding to the second symbol (symbol 1) in the SL frame structure, and the RE resource mapping HARQ-ACK is matched for rate matching.
  • CSI part2 After the CSI part1 mapping is completed, CSI part2 performs rate matching on the RE resources mapped to CSI part1, and sequentially maps to the RE corresponding to the penultimate symbol in the SL frame structure in ascending order of the symbol number in the SL frame structure, and The RE corresponding to the first symbol of the non-bearing DMRS sequence in the SL frame structure starts to be sequentially mapped to the RE corresponding to the fourth symbol (symbol 0) in ascending order of the symbol numbers in the SL frame structure.
  • the method for mapping feedback information maps the feedback information on the target resource element RE of the side link SL, because the start position of the target RE corresponds to the first symbol, and the first symbol corresponds to the SL
  • the symbols that carry the DMRS sequence are associated in the frame structure of the frame. That is, in the embodiment of the present invention, the starting position of the target RE that maps the feedback information is determined according to the symbols that carry the DMRS sequence in the SL frame structure. In the prior art, the CSI part 1 is directly mapped on the RE corresponding to the symbol of the first non-bearing DMRS sequence of the PUSCH. In the embodiment of the present invention, the starting position of the target RE of the mapping feedback information is determined according to the symbol of the DMRS sequence.
  • the embodiment of the present invention can reduce or avoid sending feedback information by using the RE corresponding to the symbol of the AGC in the frame structure of the SL to improve the probability of successful demodulation of the feedback information. Therefore, the embodiments of the present invention can solve the problem of using the feedback information in the prior art.
  • the mapping mechanism may cause a problem that the feedback information mapped on the RE corresponding to the AGC symbol has a low probability of successful demodulation.
  • the device 180 includes:
  • a mapping unit 181 configured to map feedback information on a target resource element RE of the side link SL;
  • the start position of the target RE corresponds to a first symbol, and the first symbol is associated with a symbol carrying a demodulation reference signal DMRS sequence in a frame structure of the SL.
  • the first symbol is an N-th non-bearing DMRS sequence symbol after the target symbol, or the first symbol is a previous symbol of the target symbol;
  • the target symbol is the first symbol in the frame structure of the SL that carries the DMRS sequence, and N is a positive integer.
  • mapping unit 181 is further configured to jointly encode the at least two pieces of feedback information when the SL includes at least two pieces of feedback information.
  • the SL includes at least two pieces of feedback information, and the at least two pieces of feedback information are independently encoded;
  • the mapping unit 181 is specifically configured to map the second target feedback information to the target RE of the SL by performing rate matching or data puncturing on the resource mapping the first target feedback information;
  • the first target feedback information and the second target feedback information are both feedback information in the at least two pieces of feedback information, and the transmission priority of the second target feedback information is lower than that of the first target feedback information. Transmission priority.
  • mapping unit 181 is specifically configured to map the at least two pieces of feedback information from an RE corresponding to the first symbol;
  • the first symbol is an N-th non-bearing DMRS sequence symbol after the target symbol, or the first symbol is a previous symbol of the target symbol, and the target symbol is the first bearer in the SL frame structure.
  • the symbol of the DMRS sequence, N is a positive integer.
  • the mapping unit 181 is specifically configured to map the first feedback information from the RE corresponding to the first symbol, and map the second feedback information from the RE corresponding to the second symbol;
  • the first feedback information is the feedback information with the highest transmission priority among the at least two feedback information
  • the second feedback information is the feedback information with the second highest transmission priority among the at least two feedback information
  • the first A symbol is the Nth non-bearing DMRS sequence symbol after the target symbol
  • the second symbol is the previous symbol of the target symbol
  • the target symbol is the first symbol of the DMRS sequence in the SL frame structure.
  • N is a positive integer.
  • the SL further includes third feedback information
  • the mapping unit 181 is specifically configured to map the third feedback information from the RE corresponding to the second symbol.
  • mapping unit 181 is specifically configured to map the first feedback information and the second feedback information starting from the RE corresponding to the first symbol;
  • the first feedback information is the feedback information with the highest transmission priority among the at least two feedback information
  • the second feedback information is the feedback information with the second highest transmission priority among the at least two feedback information
  • the first One symbol is the Nth non-bearing DMRS sequence symbol after the target symbol
  • the target symbol is the first symbol carrying the DMRS sequence in the SL frame structure
  • N is a positive integer
  • the SL further includes third feedback information
  • the mapping unit 181 is specifically configured to map the third feedback information from an RE corresponding to a second symbol
  • the second symbol is a first non-bearing DMRS sequence symbol in a frame structure of the SL.
  • mapping unit 181 is specifically configured to map the feedback information in the SL on the RE corresponding to the first symbol to the third symbol;
  • the third symbol is located before a symbol for protecting a time slot GP in a frame structure of the SL.
  • the mapping unit 181 is specifically configured to map the feedback information in the side link SL to the RE corresponding to the previous symbol of the GP symbol in the frame structure of the first symbol to the SL, And the first non-bearing DMRS sequence symbol in the SL frame structure to the RE corresponding to the fourth symbol;
  • the fourth symbol is located before the first symbol.
  • the mapping unit 181 is further configured to discard part of the data in the feedback information in the SL if the number of REs required to map the feedback information in the SL is greater than a preset threshold, and The remaining data in the feedback information in the SL is mapped and transmitted on the target RE.
  • the apparatus for mapping feedback information maps feedback information on a target resource element RE of a side link SL, because a start position of the target RE corresponds to a first symbol, and the first symbol corresponds to the SL
  • the symbols that carry the DMRS sequence are associated in the frame structure of the frame. That is, in the embodiment of the present invention, the starting position of the target RE that maps the feedback information is determined according to the symbols that carry the DMRS sequence in the SL frame structure.
  • the CSI part 1 is directly mapped on the RE corresponding to the symbol of the first non-bearing DMRS sequence of the PUSCH.
  • the starting position of the target RE of the mapping feedback information is determined according to the symbol of the DMRS sequence. Therefore, The embodiment of the present invention can reduce or avoid sending feedback information by using the RE corresponding to the symbol of the AGC in the frame structure of the SL to improve the probability of successful demodulation of the feedback information. Therefore, the embodiments of the present invention can solve the problem of using the feedback information in the prior art.
  • the mapping mechanism may cause a problem that the feedback information mapped on the RE corresponding to the AGC symbol has a low probability of successful demodulation.
  • FIG. 19 is a schematic diagram of a hardware structure of a device for mapping feedback information according to an embodiment of the present invention.
  • the device 190 for mapping feedback information includes, but is not limited to, a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, The sensor 105, the display unit 106, the user input unit 107, the interface unit 108, the memory 109, the processor 110, and the power supply 111 and other components.
  • the device for mapping feedback information may include more or fewer components than shown in the figure, or Combine certain components, or different component arrangements.
  • the device for mapping feedback information includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, a pedometer, and the like.
  • the radio frequency unit 101 is configured to map feedback information on a target resource element RE of the side link SL;
  • the start position of the target RE corresponds to a first symbol, and the first symbol is associated with a symbol carrying a demodulation reference signal DMRS sequence in a frame structure of the SL.
  • the radio frequency unit 101 may be used to receive and send signals during the transmission and reception of information or during a call. Specifically, the downlink data from the base station is received and processed by the processor 110; The uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 101 can also communicate with a network and other devices through a wireless communication system.
  • the device 190 for mapping feedback information provides users with wireless broadband Internet access through the network module 102, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 103 may convert audio data received by the radio frequency unit 101 or the network module 102 or stored in the memory 109 into audio signals and output them as sound. Moreover, the audio output unit 103 may also provide audio output (for example, call signal reception sound, message reception sound, etc.) related to a specific function performed by the device 190 mapping the feedback information.
  • the audio output unit 103 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 104 is used for receiving audio or video signals.
  • the input unit 104 may include a graphics processing unit (GPU) 1041 and a microphone 1042.
  • the graphics processor 1041 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode Data is processed.
  • the processed image frames may be displayed on the display unit 106.
  • the image frames processed by the graphics processor 1041 may be stored in the memory 109 (or other storage medium) or transmitted via the radio frequency unit 101 or the network module 102.
  • the microphone 1042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to a mobile communication base station via the radio frequency unit 101 in the case of a telephone call mode and output.
  • the device 190 for mapping feedback information further includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light.
  • the proximity sensor can turn off the display when the device 190 mapping the feedback information moves to the ear.
  • an accelerometer sensor can detect the magnitude of acceleration in multiple directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary.
  • sensor 105 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, humidity Meters, thermometers, infrared sensors, etc., are not repeated here.
  • the display unit 106 is configured to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 107 may be configured to receive inputted numeric or character information and generate key signal inputs related to user settings and function control of a device that maps feedback information.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072.
  • Touch panel 1071 also known as touch screen, can collect user's touch operations on or near it (such as the user using a finger, stylus, etc. any suitable object or accessory on touch panel 1071 or near touch panel 1071 operating).
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it
  • the processor 110 receives and executes a command sent by the processor 110.
  • various types such as resistive, capacitive, infrared, and surface acoustic wave can be used to implement the touch panel 1071.
  • the user input unit 107 may also include other input devices 1072.
  • other input devices 1072 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, and details are not described herein again.
  • the touch panel 1071 may be overlaid on the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near the touch panel 1071, the touch panel 1071 transmits the touch operation to the processor 110 to determine the type of the touch event.
  • the type of event provides a corresponding visual output on the display panel 1061.
  • the touch panel 1071 and the display panel 1061 are two independent components to implement the input and output functions of the device for mapping feedback information, in some embodiments, the touch panel 1071 and the display can be The panel 1061 is integrated to implement the input and output functions of the device that maps the feedback information, which is not specifically limited here.
  • the interface unit 108 is an interface for connecting an external device with the device 190 mapping the feedback information.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, and audio input / output (I / O) port, video I / O port, headphone port, and more.
  • the interface unit 108 may be used for receiving input (e.g., data information, power, etc.) from an external device and transmitting the received input to one or more elements within the device 190 mapping the feedback information or may be used for mapping feedback Data is transmitted between the information device 190 and an external device.
  • the memory 109 may be used to store software programs and various data.
  • the memory 109 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 109 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 110 is a control center of a device that maps feedback information, and connects various parts of the entire device that maps feedback information by using various interfaces and lines. By running or executing software programs and / or modules stored in the memory 109 and calling storage, The data in the memory 109 performs various functions of the device that maps the feedback information and processes the data, thereby performing overall monitoring of the device that maps the feedback information.
  • the processor 110 may include one or more processing units; optionally, the processor 110 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 110.
  • the device 190 for mapping feedback information may further include a power source 111 (such as a battery) for supplying power to multiple components.
  • a power source 111 such as a battery
  • the power source 111 may be logically connected to the processor 110 through a power management system, thereby implementing management charging and discharging through the power management system. And power management functions.
  • the apparatus 190 for mapping feedback information includes some functional modules that are not shown, and details are not described herein again.
  • an embodiment of the present invention further provides a device for mapping feedback information, including a processor 110, a memory 109, and a computer program stored in the memory 109 and executable on the processor 110 as shown in FIG.
  • a device for mapping feedback information including a processor 110, a memory 109, and a computer program stored in the memory 109 and executable on the processor 110 as shown in FIG.
  • the computer program is executed by the processor 110, the processes of the embodiment of the method for mapping feedback information described above are implemented, and the same technical effects can be achieved. To avoid repetition, details are not repeated here.
  • An embodiment of the present invention further provides a computer-readable storage medium on which a computer program is stored.
  • the computer-readable storage medium may include a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种映射反馈信息的方法和装置,涉及通信技术领域,用于解决若沿用现有技术中反馈信息的映射机制,则用于AGC的符号对应的RE上映射的反馈信息的解调成功概率比较低的问题。该方法包括:将反馈信息映射在旁链路SL的目标资源元RE上;其中,所述目标RE的起始位置与第一符号对应,所述第一符号与所述SL的帧结构中承载解调参考信号DMRS序列的符号相关联。本发明实施例用于对反馈信息进行映射。

Description

映射反馈信息的方法和装置
本申请要求于2018年08月02日提交中国国家知识产权局、申请号为201810871447.4、申请名称为“映射反馈信息的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种映射反馈信息的方法和装置。
背景技术
旁链路(sidelink,SL)上的通信是指装置之间不需要经过基站等网络侧设备的传输或转发,就可以进行直连通信的一种技术。通过sidelink通信可以提高资源利用率和网络容量,因此具有广泛的应用前景。
在新空口(New Radio,NR)SL的很多场景下对可靠性的要求都非常的高,例如:在NR SL的扩展传感器(extened sensors)、高级驱动(advanced driving)、远程驱动(remote driving)等场景下,可靠性的需要达到99.99%或更高,因此在NR SL需要引入反馈机制。现有技术中,当上行控制信息(Uplink Control Information,UCI)复用在物理上行共享信道(Physical Uplink Shared CHannel)上时,最多可以包含三部分信息:混合自动重传确认(Hybrid Automatic Repeat reQuest-acknowledge,HARQ-ACK),信道状态信息部分1(Channel State Information part 1,CSI part1),信道状态信息部分2(Channel State Information part 2,CSI part2)。参照图1所示,其中,HARQ-ACK从第一个承载解调参考信号(Demodulation Reference Signals,DMRS)序列的符号后的第一个符号对应的资源元(Resource Element,RE)开始映射;CSI part 1从PUSCH的第一个非承载DMRS(non-DMRS)的符号对应的RE开始映射;CSI part 2从CSI part1后的RE开始映射,且不会映射在映射了DMRS和HARQ-ACK的RE上。由于在SL帧结构中第一个符号用于自动增益控制(Automatic Gain Control,AGC),第一个符号的时间用于调整接收信号的增益,使得输入放大器的信号在其功率放大器的线性范围内,因此第一个符号对应的RE上发送的数据的解调性能较差。若在SL中沿用现有技术中反馈信息的映射机制,则会使得用于AGC的符号对应的RE上映射的反馈信息解调成功的概率比较低。
发明内容
本发明实施例提供一种映射反馈信息的方法和装置,用于解决若沿用现有技术中反馈信息的映射机制,则用于AGC的符号对应的RE上映射的反馈信息解调成功的概率比较低的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本发明实施例提供了一种映射反馈信息的方法,包括:
将反馈信息映射在旁链路SL的目标资源元RE上;
其中,所述目标RE的起始位置与第一符号对应,所述第一符号与所述SL的帧结 构中承载解调参考信号DMRS序列的符号相关联。
第二方面,本发明实施例提供了一种映射反馈信息的装置,包括:
映射单元,用于将反馈信息映射在旁链路SL的目标资源元RE上;
其中,所述目标RE的起始位置与第一符号对应,所述第一符号与所述SL的帧结构中承载解调参考信号DMRS序列的符号相关联。
第三方面,本发明实施例提供了一种映射反馈信息的装置,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的映射反馈信息的方法的步骤。
第四方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的映射反馈信息的方法的步骤。
本发明实施例提供的映射反馈信息的方法将反馈信息映射在旁链路SL的目标资源元RE上,由于所述目标RE的起始位置与第一符号对应,且第一符号与所述SL的帧结构中承载DMRS序列的符号相关联,即在本发明实施例中,映射反馈信息的目标RE的起始位置是与根据SL的帧结构中承载DMRS序列的符号确定的,相比于现有技术中直接将CSI part 1映射在PUSCH的第一个非承载DMRS序列的符号对应的RE上,本发明实施例中根据承载DMRS序列的符号确定映射反馈信息的目标RE的起始位置,因此本发明实施例可以减少或避免使用SL的帧结构中的用于AGC的符号对应的RE发送反馈信息,提高反馈信息的成功解调概率,因此本发明实施例可以解决沿用现有技术中反馈信息的映射机制会使得用于AGC的符号对应的RE上映射的反馈信息解调成功的概率比较低的问题。
附图说明
图1为现有技术中映射反馈信息的RE的位置示意图;
图2为本发明实施例所涉及的通信系统的一种可能的结构示意图;
图3为本发明实施例提供的映射反馈信息的方法的步骤流程图;
图4为本发明实施例提供的映射反馈信息的RE的位置示意图之一;
图5为本发明实施例提供的映射反馈信息的RE的位置示意图之二;
图6为本发明实施例提供的映射反馈信息的RE的位置示意图之三;
图7为本发明实施例提供的映射反馈信息的RE的位置示意图之四;
图8为本发明实施例提供的映射反馈信息的RE的位置示意图之五;
图9为本发明实施例提供的映射反馈信息的RE的位置示意图之六;
图10为本发明实施例提供的映射反馈信息的RE的位置示意图之七;
图11为本发明实施例提供的映射反馈信息的RE的位置示意图之八;
图12为本发明实施例提供的映射反馈信息的RE的位置示意图之九;
图13为本发明实施例提供的映射反馈信息的RE的位置示意图之十;
图14为本发明实施例提供的映射反馈信息的RE的位置示意图之十一;
图15为本发明实施例提供的映射反馈信息的RE的位置示意图之十二;
图16为本发明实施例提供的映射反馈信息的RE的位置示意图之十三;
图17为本发明实施例提供的映射反馈信息的RE的位置示意图之十四;
图18为本发明实施例提供的映射反馈信息的装置的示意性结构图;
图19为本发明实施例提供的映射反馈信息的装置的硬件结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。如果不加说明,本文中的“多个”是指两个或两个以上。
为了便于清楚描述本发明实施例的技术方案,在本发明实施例中,采用了“第一”、“第二”等字样对功能或作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。在本发明实施例中,除非另有说明,“多个”的含义是指两个或者两个以上。
现有技术中,HARQ-ACK映射在第一个承载DMRS序列的符号后的第一个符号对应的资源元(Resource Element,RE)上;CSI part 1映射在PUSCH的第一个非承载DMRS(non-DMRS)的符号对应的RE上;CSI part 2在CSI part1后的RE开始映射,且不会映射在映射了DMRS和HARQ-ACK的RE上。由于在SL帧结构中第一个符号用于自动增益控制(automatic gain control,AGC),第一个符号的时间用于调整接收信号的增益,使得输入放大器的信号在其功率放大器的线性范围内,因此用于AGC的符号对应的RE上发送的数据的解调性能较差。若在SL中沿用现有技术中反馈信息的映射机制,则会使用于AGC的符号对应的RE上映射的反馈信息解调成功的概率比较低。
为了解决该问题,本发明实施例提供一种映射反馈信息的方法及装置,该方法包括:将反馈信息映射在旁链路SL的目标资源元RE上,由于所述目标RE的起始位置与第一符号对应,且第一符号与所述SL的帧结构中承载DMRS序列的符号相关联,即在本发明实施例中,映射反馈信息的目标RE的起始位置是与根据SL的帧结构中承载DMRS序列的符号确定的,相比于现有技术中直接将CSI part 1映射在PUSCH的第一个非承载DMRS序列的符号对应的RE上,本发明实施例中根据承载DMRS序列的符号确定映射反馈信息的目标RE的起始位置,因此本发明实施例可以减少或避免使用SL的帧结构中的用于AGC的符号对应的RE发送反馈信息,提高反馈信息的成功解调概率,因此本发明实施例可以解决沿用现有技术中反馈信息的映射机制会使得用于AGC的符号对应的RE上映射的反馈信息解调成功的概率比较低的问题。
本申请提供的技术方案可以应用于各种通信系统,例如,5G通信系统,未来演进系统或者多种通信融合系统等等。可以包括多种应用场景,例如,机器对机器(Machine to Machine,M2M)、D2M、宏微通信、增强型移动互联网(enhance Mobile Broadband,eMBB)、超高可靠性与超低时延通信(ultra Reliable&Low Latency Communication,uRLLC)以及海量物联网通信(Massive Machine Type Communication,mMTC)等场景。这些场景包括但不限于:UE与UE之间的通信,或网络侧设备与网络侧设备之间的通信,或网络侧设备与UE间的通信等场景中。本发明实施例可以应用于与5G通信系统中的网络侧设备与UE之间的通信,或UE与UE之间的通信,或网络侧设备与网络侧设备之间的通信。
图2示出了本发明实施例所涉及的通信系统的一种可能的结构示意图。如图2所示,该通信系统可以包括:网络侧设备11(图2中以网络侧设备为基站为例示出)、第一终端设备12以及第二终端设备13(图2中以第一终端设备和第二终端设备均为手机为例示出)。其中,网络侧设备11与第一终端设备12和第二终端设备13之间均通过无线资源控制(Radio Resource Control,RRC)建立无线连接,第一终端设备12和第二终端设备13之间建立sidelink。
本发明实施例所涉及的通信系统中的网络侧设备11可以为基站、核心网设备、发射接收节点(Transmission and Reception Point,TRP)、中继站或接入点等。此外,网络侧设备11还可以是全球移动通信系统(Global System for Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)网络中的基站收发信台(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的NB(NodeB),还可以是LTE中的eNB或eNodeB(evolutional NodeB)。网络侧设备11还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器。网络侧设备11还可以是5G通信系统中的基站(gNB)或未来演进网络中的网络侧设备。
第一终端设备12和第二终端设备13可以为无线UE,该无线UE可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的UE或者未来演进的PLMN网络中的UE等。无线UE可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线UE可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据,以及个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备,无线终端也可以为移动设备、UE终端、接入终端、无线通信设备、终端单元、终端站、移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远方站、远程终端(Remote Terminal)、订户单元(Subscriber Unit)、订户站(Subscriber Station)、用户代理(User Agent)、终端装置等。作为一种实例,在本发明实施例中,图2以终端设备是手机为例示出。
需要说明的是,图2所示通信系统仅为本发明实施例所涉及的通信系统的一种可能的结构示意图,本发明实施例并不限定于此,本发明实施例所涉及的通信系统还可能为其他系统,例如:仅包括上述第一终端设备12和第二终端设备13,并且第一终端设备12和第二终端设备13之间建立sidelink,而并不包括网络侧设备11。
本发明实施例提供的映射反馈信息的方法的执行主体可以为上述在sidelink上的通信的接收端设备。
本发明实施例提供了一种映射反馈信息的方法,具体的,参照图3所示,该映射反馈信息的方法包括以下步骤:
S11、将反馈信息映射在SL的目标RE上。
其中,所述目标RE的起始位置与第一符号对应,所述第一符号与所述SL的帧结构中承载DMRS序列的符号相关联。
本发明实施例中的符号(symbol)具体是指正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。
具体的,以下对上述实施例中的步骤S11(将反馈信息映射在SL的目标RE上)进行详细说明。
实现方式一、
可选的,所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,或者所述第一符号为目标符号的前一个符号;
所述目标符号为所述SL的帧结构中第一个承载DMRS序列的符号,N为正整数。
可选的,SL中包括一个反馈信息。
具体的,当SL中包括一个反馈信息时,该SL中的反馈信息可以为HARQ-ACK或者CSI。
可选的,在所述SL中包括一个反馈信息,且所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,或者所述第一符号为目标符号的前一个符号的情况下,上述步骤S11(将反馈信息映射在SL的目标RE上)包括:
将所述SL中的反馈信息映射在所述第一符号到第三符号对应的RE上;
所述第三符号位于所述SL的帧结构中用于保护时隙GP的符号之前。
示例性的,参照图4所示,图4中以所述第一符号为目标符号之后的第一个非承载DMRS序列的符号(N=1)、第一个承载DMRS序列的符号为所述SL的帧结构中的第3个符号(符号2)、所述SL中包括的反馈信息为HARQ-ACK、所述第三符号为所述SL的帧结构的第7个符号(符号6)、所述SL的帧结构中最后一个符号用于GP为例示出。如图4所示,目标符号之后的第一个非承载DMRS序列的符号为SL的帧结构中的第4个符号(符号3),因此HARQ-ACK从SL的帧结构中的第4个符号(符号3)对应的RE开始映射,并按照SL的帧结构中的符号编号递增顺序依次映射至SL的帧结构中的第7个符号对应的RE。
示例性的,参照图5所示,图5中以所述第一符号为目标符号之后的第二个非承载DMRS序列的符号(N=2)、第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2)、所述SL中包括的反馈信息为CSI、所述第三符号为所述SL的帧结构的第8个符号(符号7)、所述SL的帧结构中最后一个符号用于GP为例示出。 如图5所示,目标符号之后的第二个非承载DMRS序列的符号为SL的帧结构中的第5个符号(符号4),因此CSI从SL的帧结构中的第5个符号(符号4)对应的RE开始映射,并按照SL的帧结构中的符号编号递增顺序依次映射至SL的帧结构中的第8个符号(符号7)对应的RE。
示例性的,参照图6所示,图6中以所述第一符号为目标符号的前一个符号(符号1)、第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2)、所述SL中包括的反馈信息为HARQ-ACK、所述第三符号为所述SL的帧结构的第5个符号(符号4)、所述SL的帧结构中符号用于GP为例示出。如图6所示,目标符号的前一个符号为SL的帧结构中的第2个符号(符号1),因此HARQ-ACK从SL的帧结构中的第2个符号(符号1)对应的RE开始映射,并按照SL的帧结构中的符号编号递增顺序依次映射至SL的帧结构中的第5个符号对应的RE。
可选的,在所述SL中包括一个反馈信息,且所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,或者所述第一符号为目标符号的前一个符号的情况下,上述步骤S11(将反馈信息映射在SL的目标RE上)包括:
将旁链路SL中的反馈信息映射在所述第一符号到所述SL的帧结构中用于GP的符号的前一个符号对应的RE,以及所述SL的帧结构中的第一个非承载DMRS序列的符号到第四符号对应的RE上;
所述第四符号位于所述第一符号之前。
示例性的,参照图7所示,图7中以所述第一符号为目标符号之后的第一个非承载DMRS序列的符号(N=1)、第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2)、所述SL中包括的反馈信息为CSI、所述第四符号为所述SL的帧结构的第2个符号(符号1)、所述SL的帧结构中最后一个符号用于GP为例示出。如图7所示,目标符号之后的第一个非承载DMRS序列的符号为SL的帧结构中的第4个符号(符号3),因此CSI首先从SL的帧结构中的第4个符号(符号3)对应的RE开始映射,并按照SL的帧结构中的符号编号递增顺序依次映射至所述SL的帧结构中用于GP的符号的前一个符号对应的RE,然后再从所述SL的帧结构中的第一个非承载DMRS序列的符号(符号0)对应的RE开始映射,并按照SL的帧结构中的符号编号递增顺序依次映射至所述第四符号(符号1)对应的RE。
可选的,上述步骤S11(所述将SL中的反馈信息映射在目标RE上传输),包括:
在映射所述SL中的反馈信息需要的RE的数量大于预设阈值的情况下,丢弃所述SL中的反馈信息中的部分数据,并将所述SL中的反馈信息中剩余数据映射在目标RE上传输。
具体的,预设阈值可以为SL的PSSCH可传输数据的RE的数量,或者预定义的传输反馈信息的RE数量的上限值,本发明实施例中对预设阈值的具体数值不作限定。
实现方式二、
可选的,所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,或者所述第一符号为目标符号的前一个符号;
所述目标符号为所述SL中第一个承载DMRS序列的符号,N为正整数。
可选的,本发明实施例提供的反馈信息的映射方法还包括:
在所述SL中包括至少两个反馈信息的情况下,对所述至少两个反馈信息联合编码。
示例性的,当SL中包括至少两个两个反馈信息时,SL中的反馈信息可以包括:HARQ-ACK和CSI,或者SL中的反馈信息可以包括:HARQ-ACK、CSI part1、CSI part2。
可选的,在所述SL中包括至少两个反馈信息,所述至少两个反馈信息联合编码;且所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,或者所述第一符号为目标符号的前一个符号的情况下,上述步骤S11(将反馈信息映射在SL的目标RE上)包括:
将所述SL中的反馈信息映射在所述第一符号到第三符号对应的RE上;
所述第三符号位于所述SL的帧结构中用于GP的符号之前。
示例性的,参照图8所示,图8中以SL中包括HARQ-ACK和CSI两个反馈信息、所述第一符号为目标符号之后的第一个非承载DMRS序列的符号(N=1)、第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2)、所述第三符号为所述SL的帧结构的第10个符号(符号9)、所述SL的帧结构中最后一个符号用于GP为例示出。如图8所示,目标符号之后的第一个非承载DMRS序列的符号为SL的帧结构中的第4个符号(符号3),因此HARQ-ACK和CSI的联合编码序列从SL的帧结构中的第4个符号(符号3)对应的RE开始映射,并按照SL的帧结构中的符号编号递增顺序依次映射至SL的帧结构中的第10个符号(符号9))对应的RE。
示例性的,参照图9所示,图9中以SL中包括HARQ-ACK、CSI part1以及CSI part2三个反馈信息、所述第一符号为目标符号的之后的第一个非承载DMRS序列的符号(N=1)、第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2)、所述第三符号为所述SL的帧结构的第11个符号(符号10)、所述SL的帧结构中最后一个符号用于GP为例示出。如图9所示,目标符号之后的第一个非承载DMRS序列的符号为SL的帧结构中的第4个符号(符号3),因此HARQ-ACK、CSI part1以及CSI part2的联合编码序列从SL的帧结构中的第4个符号(符号3)对应的RE开始映射,并按照SL的帧结构中的符号编号递增顺序依次映射至SL的帧结构中的第11个符号(符号10)对应的RE。
可选的,在所述SL中包括至少两个反馈信息,所述至少两个反馈信息联合编码;且所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,或者所述第一符号为目标符号的前一个符号的情况下,上述步骤S11(将反馈信息映射在SL的目标RE上)包括:
将旁链路SL中的反馈信息映射在所述第一符号到所述SL的帧结构中用于GP的符号的前一个符号对应的RE,以及所述SL的帧结构中的第一个非承载DMRS序列的符号到第四符号对应的RE上;
所述第四符号位于所述第一符号之前。
示例性的,参照图10所示,图10中以SL中包括:HARQ-ACK、CSI part1以及CSI part2,且所述第一符号为目标符号的前一个符号、第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2)、所述第四符号为所述SL的帧结构的第1个符号(符号0)、所述SL的帧结构中最后一个符号用于GP为例示出。如图10所 示,目标符号之后的第一个非承载DMRS序列的符号为SL的帧结构中的第4个符号(符号3),因此HARQ-ACK、CSI part1以及CSI part2的联合编码序列首先从SL的帧结构中的第4个符号(符号3)对应的RE开始映射,并按照SL的帧结构中的符号编号递增顺序依次映射至所述SL的帧结构中的倒数第二个符号对应的RE,然后再从所述SL的帧结构中的第一个非承载DMRS序列的符号(符号0)开始映射,并按照SL的帧结构中的符号编号递增顺序依次映射至所述第四符号(符号0)对应的RE。
可选的,上述步骤S11(所述将SL中的反馈信息映射在目标RE上传输),包括:
在映射所述SL中的反馈信息需要的RE的数量大于预设阈值的情况下,丢弃所述SL中的反馈信息中的部分数据,并将所述SL中的反馈信息中剩余数据映射在目标RE上传输。
具体的,预设阈值可以为SL的PSSCH可传输数据的RE的数量,或者预定义的传输反馈信息的RE数量的上限值,本发明实施例中对预设阈值的具体数值不作限定。
实现方式三、
所述SL中包括至少两个反馈信息,所述至少两个反馈信息独立编码;
上述实施例中的步骤S11(将反馈信息映射在SL的目标RE上),包括:
通过对映射第一目标反馈信息的资源进行速率匹配或数据打孔,将第二目标反馈信息映射在所述SL的所述目标RE上。
其中,所述第一目标反馈信息和所述第二目标反馈信息均为所述至少两个反馈信息中的反馈信息,所述第二目标反馈信息的传输优先级低于所述第一目标反馈信息的传输优先级。
即,传输优先级较低的反馈信息对映射传输优先级较高的反馈信息的资源进行速率匹配或数据打孔。
例如:SL中包括SL-FI part1、SL-FI part2以及SL-FI part3三个反馈信息,且SL-FI part1、SL-FI part2以及SL-FI part3的传输优先级的关系为:SL-FI part1>SL-FI part2>SL-FI part3;则SL-FI part2可以对映射SL-FI part1的资源进行速率匹配或打孔,SL-FI part3可以对映射SL-FI part1的资源和/或映射SL-FI part2的资源进行速率匹配或打孔。
示例性的,所述第二目标反馈信息的传输优先级低于所述第一目标反馈信息的传输优先级具体可以包括以下两种情况下:
1、第一目标反馈信息与第二目标反馈信息相互独立。
2、通过解析第一目标反馈信息可以知晓映射第二目标反馈信息的信息大小。
可选的,上述实施例中的步骤S11(将反馈信息映射在SL的目标RE上),还包括:
将所述SL中的反馈信息映射在所述第一符号到第三符号对应的RE上;
其中,所述第三符号位于所述SL的帧结构中用于保护时隙GP的符号之前。
具体的,在所述SL中包括至少两个反馈信息,所述至少两个反馈信息独立编码,通过对映射第一目标反馈信息的资源进行速率匹配或数据打孔,将第二目标反馈信息映射在所述SL的所述目标RE上、将所述SL中的反馈信息映射在所述第一符号到第三符号对应的RE上的情况下,上述实施例中的步骤S11(将反馈信息映射在SL的目标RE上)具体可以为:
从所述第一符号对应的RE开始对所述至少两个反馈信息进行映射;
所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,或者所述第一符号为目标符号的前一个符号;N为正整数。
示例性的,参照图11所示,图11中以所述第一符号为目标符号之后的第一个非承载DMRS序列的符号(N=1)、第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2)、所述SL中包括HARQ-ACK和CSI两个反馈信息、HARQ-ACK的传输优先级高于CSI的传输优先级、CSI对映射HARQ-ACK的RE资源进行速率匹配、所述第三符号为所述SL的帧结构的第10个符号(符号9)、所述SL的帧结构中最后一个符号用于GP为例示出。如图11所示,目标符号之后的第一个非承载DMRS序列的符号为SL的帧结构中的第4个符号(符号3),因此首先从SL的帧结构中的第4个符号(符号3)对应的RE开始对HARQ-ACK进行映射,在HARQ-ACK映射完成后,CSI对映射HARQ-ACK的RE资源进行速率匹配,并按照SL的帧结构中的符号编号递增顺序依次映射至SL的帧结构中的第10个符号(符号9)对应的RE。
示例性的,参照图12所示,图12中以所述第一符号为目标符号的前一个符号、第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2)、所述SL中包括HARQ-ACK、CSI part1以及CSI part2三个反馈信息、HARQ-ACK的传输优先级高于CSI part1的传输优先级、CSI part1的传输优先级高于CSI part2的传输优先级、CSI part1对映射HARQ-ACK的RE资源进行速率匹配、CSI part2对映射CSI part1的RE资源进行速率匹配、所述第三符号为所述SL的帧结构的第10个符号(符号9)、所述SL的帧结构中最后一个符号用于GP为例示出。如图12所示,目标符号的前一个符号为SL的帧结构中的第2个符号(符号1),因此首先从SL的帧结构中的第2个符号(符号1)对应的RE开始对HARQ-ACK进行映射,在HARQ-ACK映射完成后,CSI part1对映射HARQ-ACK的RE资源进行速率匹配,在CSI part1映射完成后,CSI part2再对映射CSI part1的RE资源进行速率匹配,并按照SL的帧结构中的符号编号递增顺序依次映射至SL的帧结构中的第8个符号(符号7)对应的RE。
具体的,在所述SL中包括至少两个反馈信息,所述至少两个反馈信息独立编码,通过对映射第一目标反馈信息的资源进行速率匹配或数据打孔,将第二目标反馈信息映射在所述SL的目标RE上、将所述SL中的反馈信息映射在所述第一符号到第三符号对应的RE上的情况下,上述实施例中的步骤S11(将反馈信息映射在SL的目标RE上可以包括:
从所述第一符号对应的RE开始对第一反馈信息进行映射,从第二符号对应的RE开始对第二反馈信息进行映射;
所述第一反馈信息为所述至少两个反馈信息中传输优先级最高的反馈信息,所述第二反馈信息为所述至少两个反馈信息中传输优先级次高的反馈信息,所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,所述第二符号为目标符号的前一个符号;N为正整数。
示例性的,参照图13所示,图13中以第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2)、N=1、所述SL中包括HARQ-ACK和CSI两个反馈信息、HARQ-ACK的传输优先级高于CSI的传输优先级、CSI对映射HARQ-ACK的 RE资源进行速率匹配、所述第三符号为所述SL的帧结构的第8个符号(符号7)、所述SL的帧结构中最后一个符号用于GP为例示出。如图13所示,由于第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2)且N=1,因此第一符号为SL的帧结构中的第4个符号(符号3),第二符号为SL的帧结构中的第2个符号(符号1),因此首先从SL的帧结构中的第4个符号(符号3)对应的RE开始对HARQ-ACK进行映射,在HARQ-ACK映射完成后,从SL的帧结构中的第2个符号(符号1)对应的RE开始对CSI进行映射,并对映射HARQ-ACK的RE资源进行速率匹配,且按照SL的帧结构中的符号编号递增顺序依次映射至SL的帧结构中的第8个符号(符号7)对应的RE。
进一步,在上述实现方式中,当所述SL中还包括第三反馈信息时,上述步骤S11(所述将反馈信息映射在SL的目标RE上),还包括:
从第二符号对应的RE开始映射所述第三反馈信息。
示例性的,参照图14所示,图14中以第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2)、N=1、所述SL中包括HARQ-ACK、CSI part1以及CSI part2三个反馈信息、HARQ-ACK的传输优先级高于CSI part1的传输优先级、CSI part1的传输优先级高于CSI part2的传输优先级、CSI part1对映射HARQ-ACK的RE资源进行速率匹配、CSI part2对映射CSI part1的RE资源以及映射HARQ-ACK的RE资源进行速率匹配、所述第三符号为所述SL的帧结构的第11个符号(符号10)、所述SL的帧结构中最后一个符号用于GP为例示出。如图14所示,由于第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2),因此第一符号为SL的帧结构中的第4个符号(符号3),第二符号为SL的帧结构中的第2个符号(符号1),因此首先从SL的帧结构中的第4个符号(符号3)对应的RE开始对HARQ-ACK进行映射,在HARQ-ACK映射完成后,从SL的帧结构中的第2个符号(符号1)对应的RE开始对CSI part1映射,并对映射HARQ-ACK的RE资源进行速率匹配,最后在CSI part1映射完成后,从SL的帧结构中的第2个符号(符号1)对应的RE开始对CSI part2映射,并对映射HARQ-ACK的RE资源以及映射CSI part1的RE资源进行速率匹配,且按照SL的帧结构中的符号编号递增顺序依次映射至SL的帧结构中的第11个符号(符号10)对应的RE。
可选的,具体的,在所述SL中包括至少两个反馈信息,所述至少两个反馈信息独立编码,通过对映射第一目标反馈信息的资源进行速率匹配或数据打孔,将第二目标反馈信息映射在所述SL的目标RE、将所述SL中的反馈信息映射在所述第一符号到第三符号对应的RE上的情况下,上述实施例中的步骤S11(将反馈信息映射在SL的目标RE上)具体可以为:
从所述第一符号对应的RE开始对第一反馈信息和第二反馈信息进行映射;
所述第一反馈信息为所述至少两个反馈信息中传输优先级最高的反馈信息,所述第二反馈信息为所述至少两个反馈信息中传输优先级次高的反馈信息;所述第一符号为目标符号之后的第N个非承载DMRS序列的符号;N为正整数。
示例性的,参照图15所示,图15中以第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2)、N=1、所述SL中包括HARQ-ACK和CSI两个反馈 信息、HARQ-ACK的传输优先级高于CSI的传输优先级、CSI对映射HARQ-ACK的RE资源进行速率匹配、所述第三符号为所述SL的帧结构的第8个符号(符号7)、所述SL的帧结构中最后一个符号用于GP为例示出。如图15所示,由于第一个承载DMRS序列的符号为SL的帧结构中的第3个符号,因此第一符号为SL的帧结构中的第4个符号(符号3),因此首先从SL的帧结构中的第4个符号(符号3)对应的RE开始对HARQ-ACK进行映射,在HARQ-ACK映射完成后,CSI对映射HARQ-ACK的资源进行速率匹配,且按照SL的帧结构中的符号编号递增顺序依次映射至SL的帧结构中的第8个符号(符号7)对应的RE。
进一步,在上述实施例中,当所述SL中还包括第三反馈信息时,上述步骤S11(所述将反馈信息映射在SL的目标RE上),还包括:
从第二符号对应的RE开始映射所述第三反馈信息;
所述第二符号为所述SL的帧结构中第一个非承载DMRS序列的符号。
示例性的,参照图16所示,图16中以第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2)、所述SL中包括HARQ-ACK、CSI part1以及CSI part2三个反馈信息、HARQ-ACK的传输优先级高于CSI part1的传输优先级、CSI part1的传输优先级高于CSI part2的传输优先级、CSI part1对映射HARQ-ACK的RE资源进行速率匹配、CSI part2对映射CSI part1的RE资源和映射HARQ-ACK的RE资源进行速率匹配、所述第三符号为所述SL的帧结构的第11个符号(符号10)、所述SL的帧结构中最后一个符号用于GP为例示出。如图16所示,由于第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2),因此第一符号为SL的帧结构中的第4个符号(符号3),第二符号为SL的帧结构中的第2个符号(符号1),首先从SL的帧结构中的第4个符号(符号3)对应的RE开始对HARQ-ACK进行映射,在HARQ-ACK映射完成后,CSI part1映射对HARQ-ACK的RE资源进行速率匹配,最后在CSI part1映射完成后,从SL的帧结构中的第2个符号(符号1)对应的RE开始对CSI part2映射,并对映射HARQ-ACK的RE资源以及映射CSI part1的RE资源进行速率匹配,且按照SL的帧结构中的符号编号递增顺序依次映射至SL的帧结构中的第11个符号(符号10)对应的RE。
可选的,在所述SL中包括至少两个反馈信息,所述至少两个反馈信息独立编码,且通过对映射第一目标反馈信息的资源进行速率匹配或数据打孔,将第二目标反馈信息映射在所述SL的目标RE,且从所述第一符号对应的RE开始对第一反馈信息进行映射,从第二符号对应的RE开始对第二反馈信息进行映射,从第二符号对应的RE开始映射所述第三反馈信息的情况下,上述实施例中的步骤S11(将反馈信息映射在SL的目标RE上),包括:
将旁链路SL中的反馈信息映射在所述第一符号到所述SL的帧结构中用于GP的符号的前一个符号对应的RE,以及所述SL的帧结构中的第一个非承载DMRS序列的符号到第四符号对应的RE上。
其中,所述第一目标反馈信息和所述第二目标反馈信息均为所述至少两个反馈信息中的反馈信息,所述第二目标反馈信息的传输优先级低于所述第一目标反馈信息的传输优先级,所述第一目标反馈信息和所述第二目标反馈信息均为所述至少两个反馈 信息中的反馈信息,所述第一反馈信息为所述至少两个反馈信息中传输优先级最高的反馈信息,所述第二反馈信息为所述至少两个反馈信息中传输优先级次高的反馈信息,所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,所述第二符号为目标符号的前一个符号;N为正整数。
即,在在所述SL中包括至少两个反馈信息,所述至少两个反馈信息独立编码,且通过对映射第一目标反馈信息的资源进行速率匹配或数据打孔,将第二目标反馈信息映射在所述SL的目标RE,且从所述第一符号对应的RE开始对第一反馈信息进行映射,从第二符号对应的RE开始对第二反馈信息进行映射,从第二符号对应的RE开始映射所述第三反馈信息的情况下,对SL中的反馈信息进行回环映射。
示例性的,参照图17所示,图17中以SL中包括:HARQ-ACK、CSI part1以及CSI part2、所述第一符号为目标符号之后的第一个非承载DMRS序列的符号(N=1)、第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2)、所述第四符号为所述SL的帧结构的第1个符号(符号0)、所述SL的帧结构中最后一个符号用于GP为例示出。如图17所示,由于第一个承载DMRS序列的符号为SL的帧结构中的第3个符号(符号2),第一符号为所述SL的帧结构中的第4个符号(符号3)、第二符号为所述SL的帧结构中的第2个符号(符号1),因此首先从SL的帧结构中的第4个符号(符号3)对应的RE开始映射HARQ-ACK,在HARQ-ACK映射完成后,从SL的帧结构中的第2个符号(符号1)对应的RE开始对CSI part1映射,并对映射HARQ-ACK的RE资源进行速率匹配,在CSI part1映射完成后,CSI part2对映射CSI part1的RE资源进行速率匹配,并且在按照SL的帧结构中的符号编号递增顺序依次映射至所述SL的帧结构中的倒数第二个符号对应的RE,然后在从所述SL的帧结构中的第一个非承载DMRS序列的符号对应的RE开始,按照SL的帧结构中的符号编号递增顺序依次映射至所述第四符号(符号0)对应的RE。
本发明实施例提供的映射反馈信息的方法将反馈信息映射在旁链路SL的目标资源元RE上,由于所述目标RE的起始位置与第一符号对应,且第一符号与所述SL的帧结构中承载DMRS序列的符号相关联,即在本发明实施例中,映射反馈信息的目标RE的起始位置是与根据SL的帧结构中承载DMRS序列的符号确定的,相比于现有技术中直接将CSI part 1映射在PUSCH的第一个非承载DMRS序列的符号对应的RE上,本发明实施例中根据承载DMRS序列的符号确定映射反馈信息的目标RE的起始位置,因此本发明实施例可以减少或避免使用SL的帧结构中的用于AGC的符号对应的RE发送反馈信息,提高反馈信息的成功解调概率,因此本发明实施例可以解决沿用现有技术中反馈信息的映射机制会使得用于AGC的符号对应的RE上映射的反馈信息解调成功的概率比较低的问题。
本发明再一实施例提供一种映射反馈信息的装置180,具体的,参照图18所示,该装置180包括:
映射单元181,用于将反馈信息映射在旁链路SL的目标资源元RE上;
其中,所述目标RE的起始位置与第一符号对应,所述第一符号与所述SL的帧结构中承载解调参考信号DMRS序列的符号相关联。
可选的,所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,或者 所述第一符号为目标符号的前一个符号;
所述目标符号为所述SL的帧结构中第一个承载DMRS序列的符号,N为正整数。
可选的,所述映射单元181,还用于在所述SL中包括至少两个反馈信息的情况下,对所述至少两个反馈信息联合编码。
可选的,所述SL中包括至少两个反馈信息,所述至少两个反馈信息独立编码;
所述映射单元181,具体用于通过对映射第一目标反馈信息的资源进行速率匹配或数据打孔,将第二目标反馈信息映射在所述SL的目标RE;
所述第一目标反馈信息和所述第二目标反馈信息均为所述至少两个反馈信息中的反馈信息,所述第二目标反馈信息的传输优先级低于所述第一目标反馈信息的传输优先级。
可选的,所述映射单元181,具体用于从所述第一符号对应的RE开始对所述至少两个反馈信息进行映射;
所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,或者所述第一符号为目标符号的前一个符号,所述目标符号为所述SL的帧结构中第一个承载DMRS序列的符号,N为正整数。
可选的,所述映射单元181,具体用于从所述第一符号对应的RE开始对第一反馈信息进行映射,从第二符号对应的RE开始对第二反馈信息进行映射;
所述第一反馈信息为所述至少两个反馈信息中传输优先级最高的反馈信息,所述第二反馈信息为所述至少两个反馈信息中传输优先级次高的反馈信息,所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,所述第二符号为目标符号的前一个符号,所述目标符号为所述SL的帧结构中第一个承载DMRS序列的符号,N为正整数。
可选的,所述SL中还包括第三反馈信息;
所述映射单元181,具体用于从第二符号对应的RE开始映射所述第三反馈信息。
可选的,所述映射单元181,具体用于从所述第一符号对应的RE开始对第一反馈信息和第二反馈信息进行映射;
所述第一反馈信息为所述至少两个反馈信息中传输优先级最高的反馈信息,所述第二反馈信息为所述至少两个反馈信息中传输优先级次高的反馈信息;所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,所述目标符号为所述SL的帧结构中第一个承载DMRS序列的符号,N为正整数。
可选的,所述SL中还包括第三反馈信息;
所述映射单元181,具体用于从第二符号对应的RE开始映射所述第三反馈信息;
所述第二符号为所述SL的帧结构中第一个非承载DMRS序列的符号。
可选的,所述映射单元181,具体用于将所述SL中的反馈信息映射在所述第一符号到第三符号对应的RE上;
所述第三符号位于所述SL的帧结构中用于保护时隙GP的符号之前。
可选的,所述映射单元181,具体用于将旁链路SL中的反馈信息映射在所述第一符号到所述SL的帧结构中用于GP的符号的前一个符号对应的RE,以及所述SL的帧结构中的第一个非承载DMRS序列的符号到第四符号对应的RE上;
所述第四符号位于所述第一符号之前。
可选的,所述映射单元181,还用于在映射所述SL中的反馈信息需要的RE的数量大于预设阈值的情况下,丢弃所述SL中的反馈信息中的部分数据,并将所述SL中的反馈信息中剩余数据映射在目标RE上传输。
本发明实施例提供的映射反馈信息的装置将反馈信息映射在旁链路SL的目标资源元RE上,由于所述目标RE的起始位置与第一符号对应,且第一符号与所述SL的帧结构中承载DMRS序列的符号相关联,即在本发明实施例中,映射反馈信息的目标RE的起始位置是与根据SL的帧结构中承载DMRS序列的符号确定的,相比于现有技术中直接将CSI part 1映射在PUSCH的第一个非承载DMRS序列的符号对应的RE上,本发明实施例中根据承载DMRS序列的符号确定映射反馈信息的目标RE的起始位置,因此本发明实施例可以减少或避免使用SL的帧结构中的用于AGC的符号对应的RE发送反馈信息,提高反馈信息的成功解调概率,因此本发明实施例可以解决沿用现有技术中反馈信息的映射机制会使得用于AGC的符号对应的RE上映射的反馈信息解调成功的概率比较低的问题。
图19为实现本发明实施例的一种映射反馈信息的装置的硬件结构示意图,该映射反馈信息的装置190包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110以及电源111等部件。本领域技术人员可以理解,图19中示出的映射反馈信息的装置结构并不构成对映射反馈信息的装置的限定,映射反馈信息的装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,映射反馈信息的装置包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备以及计步器等。
射频单元101,用于将反馈信息映射在旁链路SL的目标资源元RE上;
其中,所述目标RE的起始位置与第一符号对应,所述第一符号与所述SL的帧结构中承载解调参考信号DMRS序列的符号相关联。
应理解的是,本发明实施例中,射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信系统与网络和其他设备通信。
映射反馈信息的装置190通过网络模块102为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元103可以将射频单元101或网络模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与映射反馈信息的装置190执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103包括扬声器、蜂鸣器以及受话器等。
输入单元104用于接收音频或视频信号。输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像 数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或网络模块102进行发送。麦克风1042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。
映射反馈信息的装置190还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在映射反馈信息的装置190移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测多个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别映射反馈信息的装置姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器105还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息以及产生与映射反馈信息的装置的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作)。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,接收处理器110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。具体地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1071可覆盖在显示面板1061上,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图19中,触控面板1071与显示面板1061是作为两个独立的部件来实现映射反馈信息的装置的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现映射反馈信息的装置的输入和输出功能,具体此处不做限定。
接口单元108为外部装置与映射反馈信息的装置190连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输 入(例如,数据信息、电力等等)并且将接收到的输入传输到映射反馈信息的装置190内的一个或多个元件或者可以用于在映射反馈信息的装置190和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是映射反馈信息的装置的控制中心,利用各种接口和线路连接整个映射反馈信息的装置的多个部分,通过运行或执行存储在存储器109内的软件程序和/或模块以及调用存储在存储器109内的数据,执行映射反馈信息的装置的各种功能和处理数据,从而对映射反馈信息的装置进行整体监控。处理器110可包括一个或多个处理单元;可选的,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
映射反馈信息的装置190还可以包括给多个部件供电的电源111(比如电池),可选的,电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电以及功耗管理等功能。
另外,映射反馈信息的装置190包括一些未示出的功能模块,在此不再赘述。
可选的,本发明实施例还提供一种映射反馈信息的装置,包括如图19所示的处理器110,存储器109,存储在存储器109上并可在所述处理器110上运行的计算机程序,该计算机程序被处理器110执行时实现上述映射反馈信息的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例中的映射反馈信息的方法的多个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,该计算机可读存储介质可以包括只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可 以是手机,计算机,服务器,空调器,或者网络侧设备等)执行本申请多个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (26)

  1. 一种映射反馈信息的方法,其特征在于,包括:
    将反馈信息映射在旁链路SL的目标资源元RE上;
    其中,所述目标RE的起始位置与第一符号对应,所述第一符号与所述SL的帧结构中承载解调参考信号DMRS序列的符号相关联。
  2. 根据权利要求1所述的方法,其特征在于,所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,或者所述第一符号为目标符号的前一个符号;
    所述目标符号为所述SL的帧结构中第一个承载DMRS序列的符号,其中N为正整数。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    在所述SL中包括至少两个反馈信息的情况下,对所述至少两个反馈信息联合编码。
  4. 根据权利要求1所述的方法,其特征在于,所述SL中包括至少两个反馈信息,所述至少两个反馈信息独立编码;
    所述将反馈信息映射在SL的目标RE上,包括:
    通过对映射第一目标反馈信息的资源进行速率匹配或数据打孔,将第二目标反馈信息映射在所述SL的所述目标RE上;
    所述第一目标反馈信息和所述第二目标反馈信息均为所述至少两个反馈信息中的反馈信息,所述第二目标反馈信息的传输优先级低于所述第一目标反馈信息的传输优先级。
  5. 根据权利要求4所述的方法,其特征在于,所述将反馈信息映射在SL的目标RE上,包括:
    从所述第一符号对应的RE开始对所述至少两个反馈信息进行映射;
    所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,或者所述第一符号为目标符号的前一个符号,所述目标符号为所述SL中第一个承载DMRS序列的符号,N为正整数。
  6. 根据权利要求4所述的方法,其特征在于,所述将反馈信息映射在SL的目标RE上,包括:
    从所述第一符号对应的RE开始对第一反馈信息进行映射,从第二符号对应的RE开始对第二反馈信息进行映射;
    所述第一反馈信息为所述至少两个反馈信息中传输优先级最高的反馈信息,所述第二反馈信息为所述至少两个反馈信息中传输优先级次高的反馈信息,所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,所述第二符号为目标符号的前一个符号,所述目标符号为所述SL的帧结构中第一个承载DMRS序列的符号,N为正整数。
  7. 根据权利要求6所述的方法,其特征在于,所述SL中还包括第三反馈信息;
    所述将反馈信息映射在SL的目标RE上,还包括:
    从第二符号对应的RE开始映射所述第三反馈信息。
  8. 根据权利要求4所述的方法,其特征在于,所述将反馈信息映射在SL的目标RE上,包括:
    从所述第一符号对应的RE开始对第一反馈信息和第二反馈信息进行映射;
    所述第一反馈信息为所述至少两个反馈信息中传输优先级最高的反馈信息,所述第二反馈信息为所述至少两个反馈信息中传输优先级次高的反馈信息;所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,所述目标符号为所述SL的帧结构中第一个承载DMRS序列的符号,N为正整数。
  9. 根据权利要求8所述的方法,其特征在于,所述SL中还包括第三反馈信息;
    所述将反馈信息映射在SL的目标RE上,还包括:
    从第二符号对应的RE开始映射所述第三反馈信息;
    所述第二符号为所述SL的帧结构中第一个非承载DMRS序列的符号。
  10. 根据权利要求2-8任一项所述的方法,其特征在于,所述将反馈信息映射在SL的目标RE上,包括:
    将所述SL中的反馈信息映射在所述第一符号到第三符号对应的RE上;
    所述第三符号位于所述SL的帧结构中用于保护时隙GP的符号之前。
  11. 根据权利要求2-8任一项所述的方法,其特征在于,所述将反馈信息映射在SL的目标RE上,包括:
    将所述反馈信息映射在所述第一符号到所述SL的帧结构中用于GP的符号的前一个符号对应的RE,以及所述SL的帧结构中的第一个非承载DMRS序列的符号到第四符号对应的RE上;
    所述第四符号位于所述第一符号之前。
  12. 根据权利要求2-8任一项所述的方法,其特征在于,所述将反馈信息映射在SL的目标RE上,包括:
    在映射所述SL中的反馈信息需要的RE的数量大于预设阈值的情况下,丢弃所述SL中的反馈信息中的部分数据;
    将所述SL中的反馈信息中剩余数据映射在目标RE上传输。
  13. 一种映射反馈信息的装置,其特征在于,包括:
    映射单元,用于将反馈信息映射在旁链路SL的目标资源元RE上;
    其中,所述目标RE的起始位置与第一符号对应,所述第一符号与所述SL的帧结构中承载解调参考信号DMRS序列的符号相关联。
  14. 根据权利要求13所述的装置,其特征在于,所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,或者所述第一符号为目标符号的前一个符号;
    所述目标符号为所述SL的帧结构中第一个承载DMRS序列的符号,N为正整数。
  15. 根据权利要求14所述的装置,其特征在于,所述映射单元,还用于在所述SL中包括至少两个反馈信息的情况下,对所述至少两个反馈信息联合编码。
  16. 根据权利要求13所述的装置,其特征在于,所述SL中包括至少两个反馈信息,所述至少两个反馈信息独立编码;
    所述映射单元,具体用于通过对映射第一目标反馈信息的资源进行速率匹配或数据打孔,将第二目标反馈信息映射在所述SL的所述目标RE上;
    所述第一目标反馈信息和所述第二目标反馈信息均为所述至少两个反馈信息中的反馈信息,所述第二目标反馈信息的传输优先级低于所述第一目标反馈信息的传输优 先级。
  17. 根据权利要求16所述的装置,其特征在于,
    所述映射单元,具体用于从所述第一符号对应的RE开始对所述至少两个反馈信息进行映射;
    所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,或者所述第一符号为目标符号的前一个符号,所述目标符号为所述SL的帧结构中第一个承载DMRS序列的符号,N为正整数。
  18. 根据权利要求16所述的装置,其特征在于,
    所述映射单元,具体用于从所述第一符号对应的RE开始对第一反馈信息进行映射,从第二符号对应的RE开始对第二反馈信息进行映射;
    所述第一反馈信息为所述至少两个反馈信息中传输优先级最高的反馈信息,所述第二反馈信息为所述至少两个反馈信息中传输优先级次高的反馈信息,所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,所述第二符号为目标符号的前一个符号,所述目标符号为所述SL的帧结构中第一个承载DMRS序列的符号,N为正整数。
  19. 根据权利要求18所述的装置,其特征在于,所述SL中还包括第三反馈信息;
    所述映射单元,具体用于从第二符号对应的RE开始映射所述第三反馈信息。
  20. 根据权利要求16所述的装置,其特征在于,
    所述映射单元,具体用于从所述第一符号对应的RE开始对第一反馈信息和第二反馈信息进行映射;
    所述第一反馈信息为所述至少两个反馈信息中传输优先级最高的反馈信息,所述第二反馈信息为所述至少两个反馈信息中传输优先级次高的反馈信息;所述第一符号为目标符号之后的第N个非承载DMRS序列的符号,所述目标符号为所述SL的帧结构中第一个承载DMRS序列的符号,N为正整数。
  21. 根据权利要求20所述的装置,其特征在于,所述SL中还包括第三反馈信息;
    所述映射单元,具体用于从第二符号对应的RE开始映射所述第三反馈信息;
    所述第二符号为所述SL的帧结构中第一个非承载DMRS序列的符号。
  22. 根据权利要求14-20任一项所述的装置,其特征在于,
    所述映射单元,具体用于将所述SL中的反馈信息映射在所述第一符号到第三符号对应的RE上;
    所述第三符号位于所述SL的帧结构中用于保护时隙GP的符号之前。
  23. 根据权利要求14-20任一项所述的装置,其特征在于,
    所述映射单元,具体用于将旁链路SL中的反馈信息映射在所述第一符号到所述SL的帧结构中用于GP的符号的前一个符号对应的RE,以及所述SL的帧结构中的第一个非承载DMRS序列的符号到第四符号对应的RE上;
    所述第四符号位于所述第一符号之前。
  24. 根据权利要求14-20任一项所述的装置,其特征在于,
    所述映射单元,还用于在映射所述SL中的反馈信息需要的RE的数量大于预设阈值的情况下,丢弃所述SL中的反馈信息中的部分数据,并将所述SL中的反馈信息中 剩余数据映射在目标RE上传输。
  25. 一种映射反馈信息的装置,其特征在于,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至12中任一项所述的映射反馈信息的方法的步骤。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至12中任一项所述的映射反馈信息的方法的步骤。
PCT/CN2019/096198 2018-08-02 2019-07-16 映射反馈信息的方法和装置 WO2020024790A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810871447.4A CN110798292B (zh) 2018-08-02 2018-08-02 映射反馈信息的方法和装置
CN201810871447.4 2018-08-02

Publications (1)

Publication Number Publication Date
WO2020024790A1 true WO2020024790A1 (zh) 2020-02-06

Family

ID=69231385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096198 WO2020024790A1 (zh) 2018-08-02 2019-07-16 映射反馈信息的方法和装置

Country Status (2)

Country Link
CN (1) CN110798292B (zh)
WO (1) WO2020024790A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115913471A (zh) * 2021-09-29 2023-04-04 维沃软件技术有限公司 物理旁链路反馈信道的传输方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969361A (zh) * 2010-09-30 2011-02-09 中兴通讯股份有限公司 传输周期反馈报告的方法和装置
WO2014201614A1 (zh) * 2013-06-17 2014-12-24 华为技术有限公司 上行控制信息传输方法、用户设备和基站
CN106961744A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 上行控制信息的发送方法及装置
CN106992847A (zh) * 2016-01-20 2017-07-28 中兴通讯股份有限公司 上行数据发送、接收方法、装置、终端及基站
CN107666374A (zh) * 2016-07-27 2018-02-06 普天信息技术有限公司 一种sPUCCH的HARQ‑ACK信息的传输方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9769806B2 (en) * 2012-01-17 2017-09-19 Texas Instruments Incorporated Resource configuration for EPDCCH
US10477565B2 (en) * 2014-12-23 2019-11-12 Lg Electronics Inc. Method for transceiving enhanced physical downlink control channel in wireless access system supporting unlicensed band, and device supporting same
CN106603455A (zh) * 2015-10-14 2017-04-26 普天信息技术有限公司 一种上行参考符号的传输方法、系统和用户设备
CN106982184B (zh) * 2016-01-15 2020-11-10 中兴通讯股份有限公司 一种实现测量参考符号传输的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969361A (zh) * 2010-09-30 2011-02-09 中兴通讯股份有限公司 传输周期反馈报告的方法和装置
WO2014201614A1 (zh) * 2013-06-17 2014-12-24 华为技术有限公司 上行控制信息传输方法、用户设备和基站
CN106961744A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 上行控制信息的发送方法及装置
CN106992847A (zh) * 2016-01-20 2017-07-28 中兴通讯股份有限公司 上行数据发送、接收方法、装置、终端及基站
CN107666374A (zh) * 2016-07-27 2018-02-06 普天信息技术有限公司 一种sPUCCH的HARQ‑ACK信息的传输方法

Also Published As

Publication number Publication date
CN110798292B (zh) 2021-01-08
CN110798292A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
US11546091B2 (en) Method for determining HARQ-ACK codebook and user equipment
CN110234124B (zh) 信息传输方法及终端设备
US20210153259A1 (en) Random access method and related device
WO2020029782A1 (zh) Pusch重复传输时的跳频方法、终端及网络设备
CN112788783B (zh) 一种中继连接建立方法及设备
CN110890943B (zh) 确定方法、终端设备及网络设备
CN111800794B (zh) 解调参考信号位置的确定方法及设备
WO2020038194A1 (zh) 解调参考信号天线端口映射方法、终端设备及网络设备
WO2020029760A1 (zh) 资源配置方法和装置
WO2020029783A1 (zh) Pusch和sr处理方法及设备
WO2019214420A1 (zh) 业务调度方法、终端及网络设备
CN113473610B (zh) 一种反馈方法及设备
WO2020156395A1 (zh) 随机接入方法及装置
CN110620640B (zh) 一种数据传输方法、终端及节点设备
CN111130706B (zh) 一种反馈信息传输方法和设备
CN109587260B (zh) 一种资源获取方法、装置以及系统
WO2020024790A1 (zh) 映射反馈信息的方法和装置
WO2020151708A1 (zh) 信息传输方法及终端
CN111800826B (zh) 一种rohc反馈处理方法及用户设备
CN110740108B (zh) 信息传输方法和装置
WO2020134221A1 (zh) 功率调整方法、终端设备及网络设备
WO2020015679A1 (zh) Csi上报方法、终端及网络设备
WO2019154358A1 (zh) Harq-ack码本的确定方法和终端
EP4013160A1 (en) Resource configuration method, apparatus, and system
WO2021017755A1 (zh) 数据发送方法及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843687

Country of ref document: EP

Kind code of ref document: A1