WO2020024786A1 - 用于锂离子电池的灭火方法、灭火系统、电子设备及存储介质 - Google Patents
用于锂离子电池的灭火方法、灭火系统、电子设备及存储介质 Download PDFInfo
- Publication number
- WO2020024786A1 WO2020024786A1 PCT/CN2019/096070 CN2019096070W WO2020024786A1 WO 2020024786 A1 WO2020024786 A1 WO 2020024786A1 CN 2019096070 W CN2019096070 W CN 2019096070W WO 2020024786 A1 WO2020024786 A1 WO 2020024786A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fire extinguishing
- battery
- ion battery
- lithium ion
- fire
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C3/00—Fire prevention, containment or extinguishing specially adapted for particular objects or places
- A62C3/16—Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C37/00—Control of fire-fighting equipment
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C37/00—Control of fire-fighting equipment
- A62C37/04—Control of fire-fighting equipment with electrically-controlled release
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C37/00—Control of fire-fighting equipment
- A62C37/36—Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device
- A62C37/38—Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device by both sensor and actuator, e.g. valve, being in the danger zone
- A62C37/40—Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device by both sensor and actuator, e.g. valve, being in the danger zone with electric connection between sensor and actuator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/26—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- This document relates to the field of lithium battery safety protection, and more specifically, for example, to a fire extinguishing method, a fire extinguishing system, an electronic device, and a storage medium for a lithium ion battery.
- Lithium-ion batteries have the advantages of large capacity, high operating voltage, long cycle life, small size, and light weight, and are used in many scenarios.
- the power battery of the power supply requires a large capacity and voltage.
- Multiple unit batteries need to be installed in the battery box, and the battery pack is formed in series and parallel to meet the requirements of the power source.
- the lithium-ion battery system composed of multiple battery boxes needs to be strengthened to reduce or eliminate potential safety hazards.
- the traditional extinguishing technology adopted is not easy to extinguish, and the battery performance of battery cabinets, battery boxes and battery cells are different.
- the intensity and the fire are often different.
- the amount of fire extinguishing agent cannot be controlled according to the size of the fire, which is not economical.
- This article provides a fire-extinguishing method, fire-extinguishing system, electronic equipment, and storage medium for lithium-ion batteries to solve the problem that the fires in the lithium-ion battery fire-extinguishing technology existing in related technologies cannot be completely and efficiently extinguished. And technical problems with wasted fire extinguishing agents.
- a fire extinguishing method for a lithium ion battery including:
- the environmental parameter value and the preset threshold value of each environmental parameter determine the safety level of the lithium ion battery, and issue a fire extinguishing instruction to the fire extinguishing device according to a preset fire control program, wherein the fire control program is related to lithium ion
- the fire control program is related to lithium ion
- a fire extinguishing strategy corresponding to the safety level of the battery, the fire extinguishing strategy includes the number of shots of the fire extinguishing device, the amount of each shot, and the time interval between each shot;
- the system includes a data acquisition unit, a data transmission unit, a data processing unit, and a fire extinguishing device;
- the data acquisition unit is configured to collect real-time environmental parameter values inside the battery box in which the lithium-ion battery is placed and send the environmental parameter values to the data transmission unit, wherein the environmental parameters include temperature, smoke concentration, and flame intensity;
- the data transmission unit is connected to the data acquisition unit and the data processing unit, and the data transmission unit is configured to transmit the environmental parameter values collected by the data acquisition unit to the data processing unit;
- the data processing unit is connected to the data transmission unit, and the data processing unit is configured to determine the safety level of the lithium ion battery according to the transmitted environmental parameter value and a preset threshold value of each environmental parameter, and according to a pre-written
- the fire control program issues a fire extinguishing instruction to the fire extinguishing device;
- the fire extinguishing control program is a fire extinguishing strategy corresponding to the safety level of the lithium ion battery, and the fire extinguishing strategy includes the number of shots of the fire extinguishing device, the amount of each shot, and the amount of each shot.
- the fire extinguishing device is configured to perform a fire extinguishing action according to a fire extinguishing instruction of the data processing unit.
- This article also provides an electronic device, including:
- At least one processor At least one processor
- a memory configured to store at least one fire extinguishing program
- the at least one processor When the at least one fire extinguishing program is executed by the at least one processor, the at least one processor implements the fire extinguishing method as described above.
- This document also provides a computer-readable storage medium storing computer-executable instructions, the computer-executable instructions being used to perform the fire fighting method as described above.
- FIG. 1 is a flowchart of a fire extinguishing method for a lithium ion battery according to an alternative embodiment herein;
- FIG. 2 is a schematic structural diagram of a fire extinguishing system for a lithium ion battery according to an optional embodiment herein;
- FIG. 3 is a schematic structural diagram of an electronic device according to an optional embodiment of the present invention.
- FIG. 1 is a flowchart of a fire extinguishing method for a lithium ion battery according to an alternative embodiment herein. As shown in FIG. 1, this alternative embodiment provides a fire extinguishing method 100 for a lithium-ion battery. The method 100 starts from step 101.
- step 101 the threshold value based on the threshold value Y t, smoke density and energy level setting type lithium ion battery of environmental parameters in the temperature T S F Y s and flame intensity threshold value Y f;
- the safety level of the fire suppression system can be determined based on the thresholds of all environmental parameters, among which:
- the security level is level one
- the safety level is judged to be level two;
- the safety level is judged to be three.
- the fire control program includes:
- the fire extinguishing device is configured to extinguish the fired lithium ion battery in accordance with the first number of shots of the fire extinguishing device, the first amount of each shot, and the first time interval between each shot. Open fire inside the battery box, and cool the inside of the battery box according to the first number of injections of the fire extinguishing device, the first amount of each injection, and the first time interval between each injection;
- the fire extinguishing device is configured to align the battery box in which the lithium ion battery is placed according to the number of second injections of the fire extinguishing device, the second amount of each injection, and the second time interval between each injection. Cooling down internally;
- step 102 the environmental parameter values inside the battery box where the lithium ion battery is placed are collected in real time, wherein the environmental parameters include temperature, smoke concentration and flame intensity.
- the real-time collection of the environmental parameter values inside the battery box where the lithium-ion battery is placed refers to real-time detection of the temperature inside the battery through a temperature sensor, a smoke sensor, and a flame sensor located inside the battery box where the lithium-ion battery is placed,
- the smoke concentration and the flame intensity, and the detected temperature inside the battery, the smoke concentration and the flame intensity are converted into an identifiable signal.
- step 103 the safety level of the lithium-ion battery is determined according to the environmental parameter value and a preset threshold value of each environmental parameter, and a fire extinguishing instruction is issued to the fire extinguishing device according to a preset fire extinguishing control program, wherein the fire extinguishing control program It is a fire extinguishing strategy corresponding to the safety level of the lithium ion battery, and the fire extinguishing strategy includes the number of shots of the fire extinguishing device, the amount of each shot, and the time interval between each shot;
- step 104 the fire extinguishing device is caused to perform a fire extinguishing action according to the fire extinguishing instruction.
- a fire control program corresponding to a safety level of two is started to cool the battery. At this time, the battery is started. Cooling-type fire extinguishing agent, and judge the battery temperature and battery ambient temperature change through the temperature sensor, and stop spraying when the temperature drops below 65 °C.
- the corresponding fire protection control program with a safety level of 1 is started to reduce the oxygen content in the air and suppress the spread of the fire.
- the suffocating fire extinguishing agent is started to extinguish the fire and pass the flame sensor. Determine whether to extinguish the open flame.
- the initial flame of the battery is extinguished, close the space around the battery and continue to spray asphyxiating fire extinguishing agent.
- the battery cabinet is filled with asphyxiating fire extinguishing agent, stop spraying and keep it for 5min-10min.
- FIG. 2 is a schematic structural diagram of a fire extinguishing system for a lithium ion battery according to an alternative embodiment herein.
- the fire extinguishing system 200 for a lithium ion battery according to this optional embodiment includes a data acquisition unit, a data transmission unit, a data processing unit, and a fire extinguishing device;
- Parameter setting unit 201 is set based on the threshold value Y t type lithium ion battery and the energy level set temperature T, the threshold value Y s and flame intensity smoke density S F of the threshold value Y f, and determines the fire extinguishing system based on the threshold values of all ambient parameters Security level, where:
- the safety level is level one
- the safety level is level two;
- the safety level is three levels.
- the data acquisition unit 202 is configured to collect real-time environmental parameter values inside the battery box in which the lithium-ion battery is placed and send them to the data transmission unit, wherein the environmental parameters include temperature, smoke concentration, and flame intensity;
- the data transmission unit 203 is connected to the data acquisition unit and the data processing unit, and is configured to transmit the environmental parameter values collected by the data acquisition unit to the data processing unit;
- the data processing unit 204 is connected to the data transmission unit, and is set to determine the safety level of the lithium-ion battery according to the transmitted environmental parameter value and the preset threshold value of each environmental parameter, and send it to the fire extinguishing device according to a pre-written fire control program.
- Fire extinguishing instructions; the fire extinguishing control program 205 is a fire extinguishing strategy corresponding to the safety level of the lithium ion battery, and the fire extinguishing strategy includes the number of shots of the fire extinguishing device, the amount of each shot, and the time interval between each shot;
- the fire extinguishing device 206 is configured to perform a fire extinguishing action according to a fire extinguishing instruction of the data processing unit.
- the data acquisition unit 202 includes a temperature sensor, a smoke sensor, and a flame sensor.
- the temperature sensor is set to detect the temperature inside the battery in real time; the smoke sensor is set to detect the smoke concentration inside the battery in real time; the flame sensor is set to detect the flame inside the battery in real time strength.
- the fire control program 205 includes:
- the fire extinguishing device 206 includes:
- the cooling type fire extinguishing device 261 is configured to cool the inside of the battery box in which the lithium ion battery is placed;
- the suffocation type fire extinguishing device 262 is configured to extinguish an open flame in the battery box by spraying a suffocation type fire extinguishing agent inside the battery box in which the lithium ion battery is placed.
- the number of fire extinguishing devices and the number of data acquisition units in the fire extinguishing system are determined according to the type and energy level of the lithium ion battery.
- two bottles of fire extinguishing agent are provided, one bottle is a cooling fire extinguishing agent (for example, dry ice), and one bottle is a suffocating fire extinguishing agent (for example: heptafluoropropane).
- a cooling fire extinguishing agent for example, dry ice
- a suffocating fire extinguishing agent for example: heptafluoropropane
- Two or more temperature sensors are placed inside the battery pack. One smoke sensor and one flame sensor are placed on the top of the battery box.
- Two cooling type fire extinguishing agent spray probes and two suffocating type fire extinguishing agent spray probes are placed on the four corners of the battery box.
- a 1MWh lithium-ion battery system in an energy storage power station it is composed of 10 cabinets, each cabinet is a 0.1MWh battery module, and the entire battery system is equipped with two sets of fire extinguishing systems.
- a cooling type fire extinguishing system (for example: fine water mist fire extinguishing system) consisting of several cooling type fire extinguishing devices, and a set of asphyxiating type fire extinguishing system (for example: perfluorinated ketone) composed of multiple asphyxiating fire extinguishing devices, in each cabinet
- a cooling type fire extinguishing system for example: fine water mist fire extinguishing system
- asphyxiating type fire extinguishing system for example: perfluorinated ketone
- more than two temperature sensors are placed in each battery box.
- One smoke sensor and one flame sensor are placed on the top of the battery box.
- Two cooling type fire extinguishing agent spray probes and two suffocating types are
- a battery cabinet is placed inside the container.
- the entire battery system is equipped with two sets of fire extinguishing systems.
- One set is a cooling type fire extinguishing system composed of multiple cooling type fire extinguishing devices (for example, : Fine water mist fire extinguishing system), 1 set of suffocating fire extinguishing system (for example: perfluorinated ketone) composed of multiple suffocating fire extinguishing devices, 2 in each cabinet and each battery box
- a smoke sensor and a flame sensor are placed on the top of the battery box, and two cooling type fire extinguishing agent spray probes and two suffocating type fire extinguishing agent spray probes are placed on the four corners of the battery box.
- FIG. 3 is a schematic diagram of a hardware structure of an electronic device according to an embodiment. As shown in FIG. 12, the electronic device includes: one or more processors 210 and a memory 220. One processor 210 is taken as an example in FIG. 12.
- the electronic device may further include an input device 230 and an output device 240.
- the processor 210, the memory 220, the input device 230, and the output device 240 in the electronic device may be connected through a bus or other manners.
- the connection through the bus is taken as an example.
- the memory 220 is a computer-readable storage medium, and may be configured to store software programs, computer-executable programs, and modules.
- the processor 210 executes various functional applications and data processing by running software programs, instructions, and modules stored in the memory 220 to implement any one of the methods in the above embodiments.
- the memory 220 may include a storage program area and a storage data area, wherein the storage program area may store an operating system and application programs required for at least one function; the storage data area may store data created according to the use of the electronic device, and the like.
- the memory may include volatile memory such as Random Access Memory (RAM), and may also include non-volatile memory, such as at least one disk storage device, flash memory device, or other non-transitory solid-state storage device.
- RAM Random Access Memory
- the memory 220 may be a non-transitory computer storage medium or a transient computer storage medium.
- the non-transitory computer storage medium for example, at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
- the memory 220 may optionally include a memory remotely disposed with respect to the processor 210, and these remote memories may be connected to the electronic device through a network. Examples of the above network may include the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
- the input device 230 may be configured to receive inputted numeric or character information and generate key signal inputs related to user settings and function control of the electronic device.
- the output device 240 may include a display device such as a display screen.
- This embodiment also provides a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to execute the foregoing method.
- All or part of the processes in the method of the above embodiment can be completed by executing related hardware through a computer program.
- the program can be stored in a non-transitory computer-readable storage medium.
- the method can include the method described above.
- the process of the embodiment, wherein the non-transitory computer-readable storage medium may be a magnetic disk, an optical disc, a read-only memory (ROM), or a RAM.
- ROM read-only memory
- RAM random access memory
- the fire extinguishing method and fire extinguishing system for the lithium ion battery determine the safety level of the lithium ion battery by collecting the environmental parameters in the battery box where the lithium ion battery is placed in real time and comparing with the set environmental parameter threshold.
- a fire suppression command is issued to urge the fire suppression device to set the number of shots of the fire suppression device in accordance with the corresponding fire suppression strategy, the amount of each shot, and the time between each shot At intervals, the interior of the battery box is cooled and / or an open flame is extinguished.
- this article can aim at battery packs of different battery types and energy levels by collecting environmental parameter values in real time and comparing with the set environmental parameter thresholds to determine the battery safety level, and according to a pre-written fire control program Fire extinguishing control strategies corresponding to different safety levels in the fire control not only make the fire extinguish faster, but also effectively prevent the fire from re-ignition. At the same time, the precise control of the fire extinguishing device by the fire extinguishing control program saves the use of fire extinguishing agents to the greatest extent. .
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
- Fire Alarms (AREA)
Abstract
本文提供一种用于锂离子电池的灭火方法、灭火系统、电子设备及存储介质,所述方法包括:实时采集放置锂离子电池的电池箱内部的环境参数值;根据所述环境参数值和预先设置的每个环境参数的阈值,确定锂离子电池的安全等级,并根据预先设置的灭火控制程序,向灭火装置发出灭火指令,其中,灭火控制程序是与锂离子电池的安全等级对应的灭火策略;使灭火装置根据灭火指令执行灭火动作。
Description
本公开要求在2018年07月30日提交中国专利局、申请号为201810853120.4的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
本文涉及锂电池安全防护领域,并且更具体地,例如涉及一种用于锂离子电池的灭火方法、灭火系统、电子设备及存储介质。
锂离子电池具有容量大、工作电压高、循环寿命长、体积小、重量轻等优点,应用于较多场景。在电动汽车和储能系统中,电源的动力电池要求具有较大的容量和电压,需要将多个单体电池装置于电池箱内,通过串、并联形成电池组来达到动力源的要求。多个电池箱组合构成的锂离子电池系统,需要加强检测,减小或消除安全隐患。
锂离子电池由于能量密度高,以及电池本身的结构特点,一旦发生燃烧不易扑灭,并且对于大批量电池集中放置的场景,比如电池箱、电池模块、电池货架等,当电池开始燃烧可能会引发连锁反应,使相邻电池陆续引燃,酿成火灾,这种情况下电池的燃烧更不易扑灭。
对于锂离子电池的燃烧,采用的传统的扑灭技术不易扑灭,并且电池柜、电池箱和电池单元的电池性能存在差异,当发生火灾隐患或明火时,往往力度和火势大小不一,如果用传统的扑灭方式,一方面无法保证大火的高效完全扑灭,或者电池明火一次扑灭后是否复燃,后续电池会不会出现连锁反应,同时由于不能根据火势大小控制灭火剂用量,经济性不高。
因此,需要一种能保证锂离子电池的明火高效完全地扑灭,同时又能节省灭火剂的灭火方法和策略。
发明内容
本文提供了一种用于锂离子电池的灭火方法、灭火系统、电子设备及存储介质,以解决相关技术中存在的锂离子电池灭火技术中存在的大火无法高效完全扑灭、明火一次扑灭后复燃以及灭火剂浪费的技术问题。
本文提供了一种用于锂离子电池的灭火方法,所述方法包括:
实时采集放置锂离子电池的电池箱内部的环境参数值,其中,所述环境参数包括温度、烟雾浓度和火焰强度;
根据所述环境参数值和预先设置的每个环境参数的阈值,确定锂离子电池的安全等级,并根据预先设置的灭火控制程序,向灭火装置发出灭火指令,其中,灭火控制程序是与锂离子电池的安全等级对应的灭火策略,所述灭火策略包括灭火装置的喷射次数、每次的喷射量、每次喷射之间的时间间隔;
使灭火装置根据灭火指令执行灭火动作。
本文还提供一种用于锂离子电池的灭火系统,所述系统包括数据采集单元、数据传输单元、数据处理单元和灭火装置;
所述数据采集单元,设置为实时采集放置锂离子电池的电池箱内部的环境参数值并发送至所述数据传输单元,其中,所述环境参数包括温度、烟雾浓度和火焰强度;
所述数据传输单元与所述数据采集单元和所述数据处理单元连接,所述数据传输单元设置为将所述数据采集单元采集的环境参数值传输至所述数据处理单元;
所述数据处理单元与所述数据传输单元连接,所述数据处理单元设置为根据传输的环境参数值和预先设置的每个环境参数的阈值,确定锂离子电池的安全等级,并根据预先编写的灭火控制程序,向灭火装置发出灭火指令;所述灭 火控制程序是与锂离子电池的安全等级对应的灭火策略,所述灭火策略包括灭火装置的喷射次数、每次的喷射量、每次喷射之间的时间间隔;
所述灭火装置设置为根据所述数据处理单元的灭火指令执行灭火动作。
本文还提供了一种电子设备,包括:
至少一个处理器;
存储器,设置为存储至少一个灭火程序,
当所述至少一个灭火程序被所述至少一个处理器执行,使得所述至少一个处理器实现如前所述的灭火方法。
本文还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如前所述的灭火方法。
通过参考下面的附图,可以更为完整地理解本文的示例性实施方式:
图1为根据本文可选实施方式的用于锂离子电池的灭火方法的流程图;
图2为根据本文可选实施方式的用于锂离子电池的灭火系统的结构示意图;
图3为本文可选实施方式的一种电子设备的结构示意图。
现在参考附图介绍本文的示例性实施方式,然而,本文可以用许多不同的形式来实施,并且不局限于此处描述的实施例。对于表示在附图中的示例性实施方式中的术语并不是对本文的限定。在附图中,相同的单元/元件使用相同的附图标记。
除非另有说明,此处使用的术语(包括科技术语)对所属技术领域的技术 人员具有通常的理解含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
图1为根据本文可选实施方式的用于锂离子电池的灭火方法的流程图。如图1所示,本可选实施方式提供一种用于锂离子电池的灭火方法100,所述方法100从步骤101开始。
在步骤101,根据锂离子电池的类型和能量等级设置环境参数中温度T的阈值Y
t、烟雾浓度S的阈值Y
s和火焰强度F的阈值Y
f;
可以根据所有环境参数的阈值确定灭火系统的安全等级,其中:
基于F>Y
f的判断结果,安全等级为一级;
基于F≤Y
f且T>Y
t,或者基于F≤Y
f且S>Y
s的判断结果,判断安全等级为二级;
基于F≤Y
f,T≤Y
t且S≤Y
s时的判断结果,判断安全等级为三级。
所述灭火控制程序包括:
基于安全等级为一级的判断结果,使灭火装置按照设置的灭火装置的第一喷射次数、每次的第一喷射量、每次喷射之间的第一时间间隔扑灭放置起火的锂离子电池的电池箱内部的明火,并按照设置的灭火装置的第一喷射次数、每次的第一喷射量、每次喷射之间的第一时间间隔对所述电池箱内部进行降温;
基于安全等级为二级的判断结果,使灭火装置按照设置的灭火装置的第二喷射次数、每次的第二喷射量、每次喷射之间的第二时间间隔对放置锂离子电池的电池箱内部进行降温;
基于安全等级为三级的判断结果,使灭火装置不执行灭火动作。
在步骤102,实时采集放置锂离子电池的电池箱内部的环境参数值,其中, 所述环境参数包括温度、烟雾浓度和火焰强度。
可选地,所述实时采集放置锂离子电池的电池箱内部的环境参数值是指通过位于放置锂离子电池的电池箱内部的温度传感器、烟雾传感器和火焰传感器实时检测所述电池内部的温度、烟雾浓度和火焰强度,并将检测到的所述电池内部的温度、烟雾浓度和火焰强度转化为可识别信号。
在步骤103,根据所述环境参数值和预先设置的每个环境参数的阈值,确定锂离子电池的安全等级,并根据预先设置的灭火控制程序,向灭火装置发出灭火指令,其中,灭火控制程序是与锂离子电池的安全等级对应的灭火策略,所述灭火策略包括灭火装置的喷射次数、每次的喷射量、每次喷射之间的时间间隔;
在步骤104,使灭火装置根据灭火指令执行灭火动作。
在本可选实施方式中,当电池的温度上升到大于等于65℃或烟浓度达到阈值,被烟雾传感器感知时,启动安全等级为二级对应的灭火控制程序对电池进行降温,此时,启动降温型灭火剂,并通过温度传感器判断电池温度、电池周围温度变化,当温度下降到65℃以下后停止喷射。
当电池箱内的火焰传感器检测到明火燃烧时,启动安全等级为一级对应的灭火控制程序以降低空气中的氧含量、抑制火势蔓延,此时,启动窒息型灭火剂灭火,并通过火焰传感器判断是否扑灭明火,在电池初期火焰被扑灭后,关闭电池周围空间,继续喷射窒息型灭火剂,使电池柜体内充满窒息型灭火剂后停止喷射,保持5min-10min,这期间持续喷射降温型灭火剂,这期间如果出现复燃,则重新启动窒息型灭火剂,直到二次扑灭为止,二次扑灭后继续保持5-10min;之后,启动风扇或者打开电池柜体空间,使柜体内因燃烧产生的热量散失出去,通过温度传感器判断柜体内电池温度是否降低至阈值,当降低至阈 值后,继续监测电池温度,如电池温度上升,则继续喷射降温型灭火剂,直至电池温度开始下降。当电池温度降低至阈值以下并且温度无上升趋势,保持30min-1h后,启动风扇或打开柜体空间,防止人员靠近,继续通过温度传感器检测,直到电池温度降至室温,解除火灾状态。
图2为根据本文可选实施方式的用于锂离子电池的灭火系统的结构示意图。如图2所示,本可选实施方式所述的用于锂离子电池的灭火系统200包括数据采集单元、数据传输单元、数据处理单元和灭火装置;
参数设置单元201,设置为根据锂离子电池的类型和能量等级设置温度T的阈值Y
t、烟雾浓度S的阈值Y
s和火焰强度F的阈值Y
f,并根据所有环境参数的阈值确定灭火系统的安全等级,其中:
当F>Y
f时,安全等级为一级;
当F≤Y
f且T>Y
t或者F≤Y
f且S>Y
s时,安全等级为二级;
当F≤Y
f,T≤Y
t且S≤Y
s时,安全等级为三级。
数据采集单元202设置为实时采集放置锂离子电池的电池箱内部的环境参数值并发送至数据传输单元,其中,所述环境参数包括温度、烟雾浓度和火焰强度;
数据传输单元203与数据采集单元和数据处理单元连接,设置为将数据采集单元采集的环境参数值传输至数据处理单元;
数据处理单元204与数据传输单元连接,设置为根据传输的环境参数值和预先设置的每个环境参数的阈值,确定锂离子电池的安全等级,并根据预先编写的灭火控制程序,向灭火装置发出灭火指令;所述灭火控制程序205是与锂离子电池的安全等级对应的灭火策略,所述灭火策略包括灭火装置的喷射次数、每次的喷射量、每次喷射之间的时间间隔;
灭火装置206设置为根据数据处理单元的灭火指令执行灭火动作。
可选地,所述数据采集单元202包括温度传感器、烟雾传感器和火焰传感器。
需要说明的是,所述温度传感器设置为实时检测所述电池内部的温度;所述烟雾传感器设置为实时检测所述电池内部的烟雾浓度;所述火焰传感器设置为实时检测所述电池内部的火焰强度。
可选地,所述灭火控制程序205包括:
基于安全等级为一级的判断结果,使灭火装置按照设置的灭火装置的喷射次数、每次的喷射量、每次喷射之间的时间间隔扑灭放置起火的锂离子电池的电池箱内部的明火,并按照设置的灭火装置的喷射次数、每次的喷射量、每次喷射之间的时间间隔对所述电池箱内部进行降温;
基于安全等级为二级的判断结果,使灭火装置按照设置的灭火装置的喷射次数、每次的喷射量、每次喷射之间的时间间隔对放置锂离子电池的电池箱内部进行降温;
基于安全等级为三级的判断结果,使灭火装置不执行灭火动作。
可选地,所述灭火装置206包括:
降温型灭火装置261,设置为对放置锂离子电池的电池箱内部进行降温;
窒息型灭火装置262,设置为通过在放置锂离子电池的电池箱内部喷射窒息型灭火剂来扑灭所述电池箱内的明火。
可选地,所述灭火系统中的灭火装置的数量和数据采集单元的数量为根据锂离子电池的类型和能量等级确定。
在本可选实施方式中,对10kWh锂离子电池箱,配置2瓶灭火剂,1瓶是降温型灭火剂(例如:干冰),1瓶是窒息型灭火剂(例如:七氟丙烷),电池箱 内在电池组内部放入2个以上温度传感器,电池箱顶部放入1个烟雾传感器、1个火焰传感器,在电池箱顶部四角放置2个降温型灭火剂喷射探头、2个窒息型灭火剂喷射探头。
在本可选实施方式中,对于储能电站1MWh锂离子电池系统,其有10个柜体组成,每个柜体为0.1MWh电池模块,整个电池系统配置两套灭火系统,1套是由多个降温型灭火装置组成的降温型灭火系统(例如:细水雾灭火系统)、1套是由多个窒息型灭火装置组成的窒息型灭火系统(例如:全氟化酮),在每个柜体内部,每个电池箱体内放入2个以上温度传感器,电池箱顶部放入1个烟雾传感器、1个火焰传感器,在电池箱顶部四角放置2个降温型灭火剂喷射探头、2个窒息型灭火剂喷射探头。
在本可选实施方式中,对于集装箱式1MWh锂离子电池系统,集装箱内部放置电池机柜,整个电池系统配置两套灭火系统,1套是由多个降温型灭火装置组成的降温型灭火系统(例如:细水雾灭火系统)、1套是由多个窒息型灭火装置组成的窒息型灭火系统(例如:采用全氟化酮),在每个柜体内部,每个电池箱体内放入2个以上温度传感器,电池箱顶部放入1个烟雾传感器、1个火焰传感器,在电池箱顶部四角放置2个降温型灭火剂喷射探头、2个窒息型灭火剂喷射探头。
图3是一实施例提供的一种电子设备的硬件结构示意图,如图12所示,该电子设备包括:一个或多个处理器210和存储器220。图12中以一个处理器210为例。
所述电子设备还可以包括:输入装置230和输出装置240。
所述电子设备中的处理器210、存储器220、输入装置230和输出装置240可以通过总线或者其他方式连接,图3中以通过总线连接为例。
存储器220作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块。处理器210通过运行存储在存储器220中的软件程序、指令以及模块,从而执行多种功能应用以及数据处理,以实现上述实施例中的任意一种方法。
存储器220可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器可以包括随机存取存储器(Random Access Memory,RAM)等易失性存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件或者其他非暂态固态存储器件。
存储器220可以是非暂态计算机存储介质或暂态计算机存储介质。该非暂态计算机存储介质,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器220可选包括相对于处理器210远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例可以包括互联网、企业内部网、局域网、移动通信网及其组合。
输入装置230可设置为接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。输出装置240可包括显示屏等显示设备。
本实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述方法。
上述实施例方法中的全部或部分流程可以通过计算机程序来执行相关的硬件来完成的,该程序可存储于一个非暂态计算机可读存储介质中,该程序在执行时,可包括如上述方法的实施例的流程,其中,该非暂态计算机可读存储介质可以为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或RAM 等。通常地,在权利要求中使用的所有术语都根据他们在技术领域的通常含义被解释,除非在其中被另外明确地定义。所有的参考“一个/所述/该[装置、组件等]”都被开放地解释为所述装置、组件等中的至少一个实例,除非另外明确地说明。这里公开的任何方法的步骤都没必要以公开的准确的顺序运行,除非明确地说明。
本文技术方案提供的用于锂离子电池的灭火方法及灭火系统,通过实时采集放置锂离子电池的电池箱内的环境参数,并与设置的环境参数的阈值比较,确定锂离子电池的安全等级,并根据预先编写的灭火控制程序中与安全等级相对应的灭火策略,发出灭火命令,促使灭火装置按照对应的灭火策略设置的灭火装置的喷射次数、每次的喷射量、每次喷射之间的时间间隔对所述电池箱内部进行降温和/或扑灭明火。和相关技术相比,本文可以针对不同电池类型和能量等级的电池组,通过实时采集环境参数值,并与设置的环境参数阈值进行比较,确定电池的安全等级,并根据预先编写的灭火控制程序中不同安全等级对应的灭火控制策略来进行灭火,不仅使明火扑灭的速度更快,而且能有效阻止明火复燃,同时灭火控制程序对灭火装置的精确控制,最大限度地节约了灭火剂的使用。
Claims (11)
- 一种用于锂离子电池的灭火方法,所述方法包括:实时采集放置锂离子电池的电池箱内部的环境参数值,其中,所述环境参数包括温度、烟雾浓度和火焰强度;根据所述环境参数值和预先设置的每个环境参数的阈值,确定锂离子电池的安全等级,并根据预先设置的灭火控制程序,向灭火装置发出灭火指令,其中,灭火控制程序是与锂离子电池的安全等级对应的灭火策略,所述灭火策略包括灭火装置的喷射次数、每次的喷射量、每次喷射之间的时间间隔;使灭火装置根据灭火指令执行灭火动作。
- 根据权利要求1所述的方法,其中,实时采集放置锂离子电池的电池箱内部的环境参数值之前还包括:根据锂离子电池的类型和能量等级设置环境中参数温度T的阈值Y t、烟雾浓度S的阈值Y s和火焰强度F的阈值Y f;根据所述环境参数值和预先设置的每个环境参数的阈值,包括:基于F>Y f时的判断结果,判断安全等级为一级;基于F≤Y f且T>Y t,或者基于F≤Y f且S>Y s时的判断结果,判断安全等级为二级;基于F≤Y f,T≤Y t且S≤Y s时的判断结果,判断安全等级为三级;所述灭火控制程序包括:基于安全等级为一级的判断结果,使灭火装置按照设置的灭火装置的第一喷射次数、每次的第一喷射量、每次喷射之间的第一时间间隔扑灭放置起火的锂离子电池的电池箱内部的明火,并按照设置的灭火装置的第一喷射次数、每次的第一喷射量、每次喷射之间的第一时间间隔对所述电池箱内部进行降温;基于安全等级为二级的判断结果,使灭火装置按照设置的灭火装置的第二 喷射次数、每次的第二喷射量、每次喷射之间的第二时间间隔对放置锂离子电池的电池箱内部进行降温;基于安全等级为三级的判断结果,使灭火装置不执行灭火动作。
- 根据权利要求1或者2所述的灭火方法,其中,所述实时采集放置锂离子电池的电池箱内部的环境参数值,包括:通过位于放置锂离子电池的电池箱内部的温度传感器、烟雾传感器和火焰传感器实时检测所述电池内部的温度、烟雾浓度和火焰强度,并将检测到的所述电池内部的温度、烟雾浓度和火焰强度转化为可识别信号。
- 一种用于锂离子电池的灭火系统,所述系统包括数据采集单元、数据传输单元、数据处理单元和灭火装置;所述数据采集单元,设置为实时采集放置锂离子电池的电池箱内部的环境参数值并发送至所述数据传输单元,其中,所述环境参数包括温度、烟雾浓度和火焰强度;所述数据传输单元与所述数据采集单元和所述数据处理单元连接,所述数据传输单元设置为将所述数据采集单元采集的环境参数值传输至所述数据处理单元;所述数据处理单元与所述数据传输单元连接,所述数据处理单元设置为根据传输的环境参数值和预先设置的每个环境参数的阈值,确定锂离子电池的安全等级,并根据预先编写的灭火控制程序,向灭火装置发出灭火指令;所述灭火控制程序是与锂离子电池的安全等级对应的灭火策略,所述灭火策略包括灭火装置的喷射次数、每次的喷射量、每次喷射之间的时间间隔;所述灭火装置设置为根据所述数据处理单元的灭火指令执行灭火动作。
- 根据权利要求4所述的灭火系统,其中,所述数据采集单元包括温度传 感器、烟雾传感器和火焰传感器;所述温度传感器设置为实时检测所述电池内部的温度;所述烟雾传感器设置为实时检测所述电池内部的烟雾浓度;所述火焰传感器设置为实时检测所述电池内部的火焰强度。
- 根据权利要求4所述的灭火系统,其中,所述系统还包括参数设置单元,所述参数设置单元设置为根据锂离子电池的类型和能量等级设置温度T的阈值Y t、烟雾浓度S的阈值Y s和火焰强度F的阈值Y f。
- 根据权利要求6所述的灭火系统,其中,所述灭火控制程序包括:基于安全等级为一级的判断结果,使灭火装置按照设置的灭火装置的第一喷射次数、每次的第一喷射量、每次喷射之间的第一时间间隔扑灭放置起火的锂离子电池的电池箱内部的明火,并按照设置的灭火装置的第一喷射次数、每次的第一喷射量、每次喷射之间的第一时间间隔对所述电池箱内部进行降温;基于安全等级为二级的判断结果,使灭火装置按照设置的灭火装置的第二喷射次数、每次的第二喷射量、每次喷射之间的第二时间间隔对放置锂离子电池的电池箱内部进行降温;基于安全等级为三级的判断结果,使灭火装置不执行灭火动作。
- 根据权利要求4所述的灭火系统,其中,所述灭火装置包括:降温型灭火装置,设置为对放置锂离子电池的电池箱内部进行降温;窒息型灭火装置,设置为通过在放置锂离子电池的电池箱内部喷射窒息型灭火剂来扑灭所述电池箱内的明火。
- 根据权利要求4所述的系统,其中,所述灭火系统中的灭火装置的数量和数据采集单元的数量为根据锂离子电池的类型和能量等级确定。
- 一种电子设备,包括:至少一个处理器;存储器,设置为存储至少一个灭火程序,当所述至少一个灭火程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1‐3中任一所述的灭火方法。
- 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如权利要求1‐3任一所述的灭火方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/486,452 US20210205643A1 (en) | 2018-07-30 | 2019-07-16 | Fire extinguishing method and fire extinguishing system for lithium ion battery, electronic device and storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810853120.4A CN109260626A (zh) | 2018-07-30 | 2018-07-30 | 一种用于锂离子电池的灭火方法及灭火系统 |
CN201810853120.4 | 2018-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020024786A1 true WO2020024786A1 (zh) | 2020-02-06 |
Family
ID=65148220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/096070 WO2020024786A1 (zh) | 2018-07-30 | 2019-07-16 | 用于锂离子电池的灭火方法、灭火系统、电子设备及存储介质 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210205643A1 (zh) |
CN (1) | CN109260626A (zh) |
WO (1) | WO2020024786A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117065262A (zh) * | 2023-10-17 | 2023-11-17 | 江苏安之技科技发展有限公司 | 一种电气设备自动灭火防复燃系统及方法 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109260626A (zh) * | 2018-07-30 | 2019-01-25 | 中国电力科学研究院有限公司 | 一种用于锂离子电池的灭火方法及灭火系统 |
CN109847233A (zh) * | 2019-03-14 | 2019-06-07 | 河海大学常州校区 | 客车锂电池箱火灾预警与防护装置 |
CN110013626A (zh) * | 2019-04-01 | 2019-07-16 | 北京工业大学 | 一种车载锂离子电池包分级式灭火系统及其控制策略 |
CN110165110A (zh) * | 2019-05-08 | 2019-08-23 | 国网电力科学研究院武汉南瑞有限责任公司 | 具有防火隔离功能的锂电池储能集装箱及其防火隔离方法 |
CN110327566B (zh) * | 2019-05-22 | 2021-07-13 | 浙江南都电源动力股份有限公司 | 消防设备及其智能消防方法 |
CN110420415A (zh) * | 2019-08-27 | 2019-11-08 | 应急管理部天津消防研究所 | 一种两次喷放灭火剂抑制三元锂离子电池火灾的方法 |
CN110559576A (zh) * | 2019-09-10 | 2019-12-13 | 上海联界汽车科技有限公司 | 一种锂离子电池箱火灾抑制方法及系统 |
CN111388915B (zh) * | 2020-03-20 | 2021-06-29 | 应急管理部天津消防研究所 | 抑制锂离子电池热失控火灾方法、装置、设备及存储介质 |
CN111467715B (zh) * | 2020-03-26 | 2022-08-09 | 中国电力科学研究院有限公司 | 一种用于锂离子储能电池模块的灭火方法和系统 |
CN111729222A (zh) * | 2020-06-18 | 2020-10-02 | 速博达(深圳)自动化有限公司 | 防爆灭火装置 |
CN111888692A (zh) * | 2020-08-12 | 2020-11-06 | 南方电网调峰调频发电有限公司 | 一种储能消防系统和方法 |
CN112309069A (zh) * | 2020-10-19 | 2021-02-02 | 格林美(武汉)新能源汽车服务有限公司 | 一种锂电池包的起火预警方法、设备、系统及存储介质 |
CN112717306A (zh) * | 2021-03-31 | 2021-04-30 | 中国电力科学研究院有限公司 | 一种用于储能电站或电池集装箱的灭火系统及方法 |
CN113593194B (zh) * | 2021-07-23 | 2022-05-20 | 东北大学 | 一种储能用锂离子电池热失控预警方法及预警消防系统 |
CN114191747B (zh) * | 2021-11-23 | 2023-07-21 | 湖南省驰普新能源科技有限公司 | 一种可控锂离子电池灭火方法、装置、设备及存储介质 |
US20230211195A1 (en) * | 2021-12-30 | 2023-07-06 | Microsoft Technology Licensing, Llc | Battery Fire Control |
CN116637316B (zh) * | 2023-06-01 | 2024-07-09 | 广东电网有限责任公司 | 一种电化学储能站电池柜消防控制系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130264073A1 (en) * | 2012-04-10 | 2013-10-10 | Greg Ling | Integrated Thermal Event Suppression Apparatus |
CN106807003A (zh) * | 2017-03-10 | 2017-06-09 | 北京惟泰安全设备有限公司 | 电池仓灭火系统及新能源汽车 |
CN107019863A (zh) * | 2017-06-16 | 2017-08-08 | 倍登新能源科技(苏州)有限公司 | 应用于汽车动力电池的自动灭火装置 |
CN107320872A (zh) * | 2017-08-04 | 2017-11-07 | 公安部上海消防研究所 | 一种被动式电动汽车动力电池包防火灾保护装置及方法 |
CN206642231U (zh) * | 2017-04-06 | 2017-11-17 | 深圳市瀚路新能源汽车有限公司 | 灭火装置及系统 |
CN108091947A (zh) * | 2017-12-18 | 2018-05-29 | 清华大学 | 电动车用动力电池组安全防控系统 |
CN109260626A (zh) * | 2018-07-30 | 2019-01-25 | 中国电力科学研究院有限公司 | 一种用于锂离子电池的灭火方法及灭火系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102526913A (zh) * | 2011-12-12 | 2012-07-04 | 上海东锐风电技术有限公司 | 风电机舱消防系统 |
CN204092883U (zh) * | 2014-10-14 | 2015-01-14 | 四川宏源德石化有限公司 | 车辆安全防护监控系统 |
CN104307131A (zh) * | 2014-10-14 | 2015-01-28 | 四川宏源德石化有限公司 | 车辆安全防护监控系统整体解决的方法 |
CN105811029B (zh) * | 2016-04-21 | 2018-06-12 | 江苏九龙汽车制造有限公司 | 带有主动安全系统的汽车动力锂电池箱及配套的控制方法 |
CN107757399A (zh) * | 2017-09-22 | 2018-03-06 | 北京精密机电控制设备研究所 | 一种具有安全管理的电池管理系统 |
CN107670204A (zh) * | 2017-09-25 | 2018-02-09 | 深圳市科陆电子科技股份有限公司 | 一种储能系统及其控制方法 |
-
2018
- 2018-07-30 CN CN201810853120.4A patent/CN109260626A/zh active Pending
-
2019
- 2019-07-16 US US16/486,452 patent/US20210205643A1/en not_active Abandoned
- 2019-07-16 WO PCT/CN2019/096070 patent/WO2020024786A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130264073A1 (en) * | 2012-04-10 | 2013-10-10 | Greg Ling | Integrated Thermal Event Suppression Apparatus |
CN106807003A (zh) * | 2017-03-10 | 2017-06-09 | 北京惟泰安全设备有限公司 | 电池仓灭火系统及新能源汽车 |
CN206642231U (zh) * | 2017-04-06 | 2017-11-17 | 深圳市瀚路新能源汽车有限公司 | 灭火装置及系统 |
CN107019863A (zh) * | 2017-06-16 | 2017-08-08 | 倍登新能源科技(苏州)有限公司 | 应用于汽车动力电池的自动灭火装置 |
CN107320872A (zh) * | 2017-08-04 | 2017-11-07 | 公安部上海消防研究所 | 一种被动式电动汽车动力电池包防火灾保护装置及方法 |
CN108091947A (zh) * | 2017-12-18 | 2018-05-29 | 清华大学 | 电动车用动力电池组安全防控系统 |
CN109260626A (zh) * | 2018-07-30 | 2019-01-25 | 中国电力科学研究院有限公司 | 一种用于锂离子电池的灭火方法及灭火系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117065262A (zh) * | 2023-10-17 | 2023-11-17 | 江苏安之技科技发展有限公司 | 一种电气设备自动灭火防复燃系统及方法 |
CN117065262B (zh) * | 2023-10-17 | 2023-12-12 | 江苏安之技科技发展有限公司 | 一种电气设备自动灭火防复燃系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
US20210205643A1 (en) | 2021-07-08 |
CN109260626A (zh) | 2019-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020024786A1 (zh) | 用于锂离子电池的灭火方法、灭火系统、电子设备及存储介质 | |
Liu et al. | Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating | |
CN111467715B (zh) | 一种用于锂离子储能电池模块的灭火方法和系统 | |
CN110634262A (zh) | 一种磷酸铁锂储能电站电池预制舱火灾预警方法 | |
CN109939390A (zh) | 一种基于气体灭火与机械通风散热的电化学储能站预制舱内灭火系统及方法 | |
WO2019085283A1 (zh) | 电池包存储装置及用于其的控制方法 | |
WO2020200311A1 (zh) | 储能箱及其控制方法和储能站 | |
US20220336921A1 (en) | Battery system and fire extinguishing method for battery system | |
CN112043993A (zh) | 一种储能电池舱消防系统及其灭火方法 | |
WO2023124436A1 (zh) | 储能系统及其控制方法 | |
CN110559576A (zh) | 一种锂离子电池箱火灾抑制方法及系统 | |
CN212593613U (zh) | 一种储能电池舱消防系统 | |
Andersson et al. | Lion Fire: Extinguishment and mitigation of fires in Li-ion batteries at sea | |
KR20210060160A (ko) | 자동 소화 장치를 갖는 배터리 충전 시스템 | |
CN114712758A (zh) | 一种锂电池储能站全过程火灾探测及自动灭火方法 | |
CN114709500A (zh) | 一种用于储能电池簇箱的多级火灾预警系统及方法 | |
CN111467714A (zh) | 一种用于电化学储能系统灭火的方法及系统 | |
CN117277116B (zh) | 一种基于物联网的智能供电配电装置及其方法 | |
CN108245804A (zh) | 一种电池包适时灭火方法及灭火系统 | |
CN110824962A (zh) | 一种数据集装箱的智能监控系统 | |
CN113521605A (zh) | 一种电池仓储自动灭火装置及系统 | |
CN112947268A (zh) | 动力电池试验安全防护系统、方法及监控系统 | |
CN202942566U (zh) | 用于风机电力柜的自动灭火装置 | |
CN212756898U (zh) | 高低温箱自动消防灭火系统 | |
CN117599369A (zh) | 一种机场换电站消防系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19843752 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19843752 Country of ref document: EP Kind code of ref document: A1 |