WO2020024637A1 - 一种刚度可调气弹簧 - Google Patents

一种刚度可调气弹簧 Download PDF

Info

Publication number
WO2020024637A1
WO2020024637A1 PCT/CN2019/085590 CN2019085590W WO2020024637A1 WO 2020024637 A1 WO2020024637 A1 WO 2020024637A1 CN 2019085590 W CN2019085590 W CN 2019085590W WO 2020024637 A1 WO2020024637 A1 WO 2020024637A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
gas spring
gas
stiffness
variable
Prior art date
Application number
PCT/CN2019/085590
Other languages
English (en)
French (fr)
Inventor
陈刚
Original Assignee
陈刚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810867768.7A external-priority patent/CN110792716A/zh
Priority claimed from CN201821233981.4U external-priority patent/CN208778560U/zh
Application filed by 陈刚 filed Critical 陈刚
Publication of WO2020024637A1 publication Critical patent/WO2020024637A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/06Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction

Definitions

  • the invention relates to the adjustment and quantification of an adjustable stiffness gas spring, and is particularly suitable for spring stiffness control of an adjustable stiffness suspension of an automobile using compressed gas as an elastic medium.
  • the non-linear stiffness characteristics of gas springs make them have better vibration and vibration isolation performance, and their applications are becoming more and more common.
  • the stiffness of the gas spring is determined by the volume and pressure of the gas storage chamber. When the pressure of the gas chamber is basically unchanged, the larger the volume of the gas chamber, the smaller the stiffness, and the smaller the volume of the gas chamber, the greater the stiffness. Changing the volume and pressure of the air chamber usually requires a gas pump and its supporting facilities to achieve it, resulting in a complicated structure and high cost.
  • variable stiffness gas spring used for vehicle suspension because the stiffness adjustment needs to be calculated according to the load, and the appropriate stiffness is adjusted according to the load, the volume change measurement of the variable stiffness gas spring becomes particularly important.
  • stepless adjustment the volume change It is more difficult to measure the quantity, and the quantitative control of the increase and decrease of the stiffness value becomes particularly complicated, especially the control that requires simultaneous increase and decrease of the stiffness is more difficult.
  • the method adopted by the present invention is to connect a variable volume air chamber to a gas spring through a connecting pipe connected with a throttle valve or a shut-off valve, and control the volume change of the variable volume air chamber to change the stiffness of the gas spring through the power provided by the power source.
  • a variable volume air volume measuring device is added to calculate the effective volume of the variable volume air volume, and according to the current pressure of the gas spring, the current variable volume air volume, and the initial gas storage The total volume, initial gas storage pressure, current pressure and other parameters are used to quantitatively calculate and control the stiffness of the gas spring.
  • the instantaneous stiffness of the gas spring is less affected by the variable volume gas chamber;
  • the smaller the valve diameter the faster the pressure change rate of the gas spring, and the less the instantaneous stiffness of the gas spring is affected by the variable volume air chamber.
  • the volume of the variable volume air chamber changes, which causes a pressure difference between the gas spring and the variable volume air chamber. Due to the continuous effect of the pressure difference, the gas in the gas spring slowly enters and exits the variable volume through the throttle valve Air chamber until the pressure difference disappears.
  • the instantaneous stiffness refers to the stiffness of the gas spring in a short period of time.
  • a variable stiffness gas spring using a throttle valve is used. Under a constant pressure, the total volume of the variable volume air chamber and the gas spring is constant, that is, under a constant pressure. Next, when the time is long enough, its stiffness is constant.
  • the throttle valve due to the role of the throttle valve, when the load of the gas spring changes sharply, the air flow on the gas spring side cannot enter and exit the variable volume air chamber in time, so that the basic of the variable volume air chamber will not affect the stiffness of the gas spring and make the stiffness of the gas spring short. The time is almost only related to the volume of the gas spring and the current pressure.
  • changing the stiffness of the gas spring in this article refers to the variable stiffness gas spring using a throttle valve, which refers to changing its instantaneous stiffness under a certain pressure, that is, The instantaneous stiffness of the gas spring is adjusted by changing the volume of the variable volume air chamber.
  • the shut-off valve When the gas spring using the shut-off valve needs to adjust the stiffness, the shut-off valve is opened and closed to change the volume of the variable volume air chamber. After the stiffness adjustment is completed, the shut-off valve is closed. After the valve is closed, the stiffness of the gas spring is no longer affected by the variable air chamber volume. influences.
  • Power source refers to the device that provides variable capacity power for the variable volume air chamber, including a hydraulic source, a push rod motor, a linear motor, a motor that drives the rack and pinion to linear motion by the motor's rotary motion, and a manual adjustment device.
  • Variable-capacity gas chambers include: liquid-gas accumulators, hydraulic cylinder-cylinders, single-acting cylinders, and other gas-storage devices with variable volumes; liquid-gas accumulators are made by changing the charge of the liquid-storage chamber in the liquid-gas accumulator. The amount of fluid changes its air chamber volume. Hydraulic cylinder-cylinder is formed by filling one chamber of a hydraulic cylinder or a cylinder and inflating another chamber. It changes the volume of the air chamber by changing the filling amount of the filling chamber. The single-acting cylinder directly changes the volume of the air chamber by changing the position of the piston.
  • Gas spring refers to the components with elastic functions that use compressed gas as the energy storage medium, including: liquid gas accumulators, airbag-type support springs, piston gas struts, etc .; when a liquid gas accumulator is used as a gas spring, its compressed gas It is an energy storage medium and hydraulic oil is a force transmission medium.
  • a liquid gas accumulator is used as a gas spring, a hydraulic cylinder that communicates with the liquid storage chamber of the liquid gas accumulator is usually used as the actuator of the gas spring to elasticize the gas spring. Potential energy is converted into kinetic energy.
  • An adjustable stiffness gas spring includes: a power source, a variable volume air chamber, a throttle valve or a shut-off valve, a gas spring, a connecting pipe, etc .; it is characterized in that the variable volume air chamber is connected with a throttle valve or The connecting pipe of the shut-off valve is in communication with the gas spring, and the volume of the variable volume air chamber driven by the power source changes the stiffness of the gas spring.
  • Solution 2 The adjustable stiffness gas spring according to solution 1, further comprising a measuring device for measuring the volume of the variable-capacity air chamber.
  • the volume of the variable volume air chamber is measured by the volumetric measuring device, and then the relevant known conditions, such as the current pressure and the initial pressure, can be measured. , The total volume under the initial pressure, etc. to calculate the current stiffness of the gas spring. Equipped with a variable volume air chamber volume measuring device, so that the user can arbitrarily set and measure the stiffness of the gas spring.
  • the gas storage chamber of the liquid-gas accumulator is used as the variable-capacity gas chamber.
  • a hydraulic cylinder is installed in the liquid inlet and outlet pipelines, and one of the chambers of the hydraulic cylinder supplies liquid to the liquid-gas accumulator.
  • the hydraulic cylinder has a measuring piston stroke. The device calculates the volume of liquid entering and exiting the liquid-gas accumulator by measuring the stroke of the piston, thereby calculating the volume of the variable-capacity gas chamber.
  • variable-capacity air chamber If a hydraulic cylinder-cylinder or a single-acting cylinder is used as the variable-capacity air chamber, a device for measuring the piston stroke can be directly installed, and the volume on the cylinder side can be calculated by measuring the piston stroke to calculate the volume of the variable-capacity air chamber.
  • the adjustable stiffness gas spring described in schemes 1 and 2 is characterized in that the variable volume air chamber is mainly composed of a single-acting cylinder, and the piston displacement of the single-acting cylinder is driven by a motor to change the cylinder volume to change the gas spring. Stiffness.
  • the power source includes: a putter motor, a linear motor, or a motor that drives the rack and pinion to move linearly.
  • the multi-variable-stiffness gas spring composed of the adjustable stiffness gas spring as described in schemes 1 and 2 is characterized in that the volume change adjustment device of the variable-capacity air chamber is linked, that is, one of the variable-capacity air chambers When the volume changes, the volume of other linked variable-capacity air chambers changes synchronously.
  • the method is:
  • variable-capacity gas chamber is a liquid-gas accumulator
  • multiple (parallel) hydraulic cylinders are used to supply liquid to the variable-capacity gas chamber to increase and decrease the volume of the gas reservoir simultaneously.
  • variable volume air chamber is a hydraulic cylinder-cylinder combined air reservoir or single-acting cylinder
  • the hydraulic cylinder-cylinder or single-acting cylinder is operated in parallel to increase and decrease the volume in the cylinder simultaneously.
  • the structure of the adjustable stiffness gas spring is simpler, easier to implement, and lower in cost
  • the quantitative change of the effective volume of the variable stiffness gas spring can be calculated quantitatively, and any rigidity can be accurately adjusted and measured within the adjustable range of stiffness according to the needs;
  • Figure 1 Schematic diagram of an adjustable stiffness gas spring consisting of two liquid-gas accumulators and a hydraulic source
  • FIG. 1 Schematic diagram of adjustable stiffness gas spring composed of hydraulic cylinder, two-liquid gas accumulator and hydraulic source
  • FIG. 1 Schematic diagram of adjustable stiffness gas spring composed of hydraulic cylinder-cylinder, hydraulic source and liquid-gas accumulator
  • Figure 4 Schematic diagram of adjustable stiffness gas spring composed of single-acting cylinder and liquid-gas accumulator
  • FIG. 1 Schematic diagram of adjustable stiffness gas spring composed of multiple hydraulic cylinders, hydraulic source and liquid gas accumulator
  • Preferred solution 1 (Figure 1) Adjustable stiffness gas spring composed of two liquid gas accumulators and hydraulic source
  • the adjustable stiffness gas spring of this solution includes: a two-liquid gas accumulator (4, 9), a connecting pipe (7) connected with a throttle valve (6), a hydraulic source with a solenoid valve (1), and a hydraulic cylinder ( 11) Wait.
  • the gas storage chambers (5, 8) of the two liquid gas accumulators (4, 9) are connected through a connecting pipe (7) in series with a throttle valve (6), and the hydraulic source controls the in and out of the liquid gas storage
  • the volume of the liquid in the liquid storage chamber (3) can be used to control the volume of the gas storage chamber (variable volume air chamber) (5), so as to control the gas storage volume of the gas storage chamber (gas spring) (8),
  • the stiffness of the chamber (gas spring) (8) varies.
  • the gas storage chamber (gas spring) (8) performs elastic potential energy and kinetic energy conversion through a hydraulic cylinder (11).
  • the adjustable stiffness gas spring of this solution includes: two-liquid gas energy storage (4, 9), flow meter (19), connecting pipe (7) connected with a throttle valve (6), and a solenoid valve (1) Hydraulic source, hydraulic cylinder (11), etc.
  • the gas storage chambers (5, 8) of the two liquid gas accumulators (4, 9) are connected through a connecting pipe (7) connected with a throttle valve (6), and the liquid flow of the hydraulic source passes through the flow
  • the meter (19) measures the volume of the gas storage chamber (variable volume gas chamber) (5) in and out of the liquid gas storage (4) of the liquid gas accumulator (4) after measuring, thereby controlling the gas storage chamber (gas spring
  • the amount of gas stored in (8) changes the stiffness of the gas storage chamber (gas spring) (8).
  • the flow meter is used to measure the amount of liquid flowing into and out of the liquid-gas accumulator (4), and indirectly measures the volume of the gas storage chamber (variable volume air chamber) (5).
  • the gas spring performs elastic potential energy and kinetic energy conversion through a hydraulic cylinder (11).
  • the adjustable stiffness gas spring of this solution includes: a hydraulic cylinder-cylinder (13), a connecting pipe (7) in series with a throttle valve (6), a hydraulic source with a solenoid valve (1), and a liquid-gas accumulator (9 ), Hydraulic cylinder (11), etc.
  • the hydraulic cylinder-cylinder (13) 's gas storage chamber (variable volume air chamber) (5) is connected to the liquid-gas accumulator (9) through a connecting pipe (7) in series with a throttle valve (6).
  • the gas storage chamber (gas spring) (8) communicates, and the hydraulic source controls the hydraulic cylinder piston (14) to move left and right, so as to control the volume of the hydraulic cylinder-cylinder (13) gas storage chamber (variable volume air chamber) (5). Therefore, the gas storage volume of the gas-gas accumulator (gas spring) (8) is controlled, and the stiffness of the gas storage chamber (gas spring) (8) is changed.
  • the gas storage chamber (gas spring) (8) performs elastic potential energy and kinetic energy conversion through a hydraulic cylinder (11).
  • Preferred solution 4 ( Figure 4) Adjustable stiffness gas spring composed of a cylinder, a push rod motor and a liquid gas accumulator
  • the adjustable stiffness gas spring of this solution includes: a cylinder (20), a connecting pipe (7) in series with a throttle valve (6), a push rod motor, a hydraulic cylinder (11), a liquid gas accumulator (9), and the like.
  • the gas storage chamber (variable volume air chamber) (5) of the cylinder (20) stores the gas through the connecting pipe (7) with a throttle valve (6) and the liquid gas accumulator (9).
  • the chamber (gas spring) (8) communicates, and the push rod motor drives the piston (14) to move left and right, thereby controlling the volume of the gas storage chamber (variable volume air chamber) (5) of the cylinder (20), thereby controlling the liquid gas storage
  • the amount of gas stored in the gas storage chamber (gas spring) (8) changes the stiffness of the gas storage chamber (gas spring) (8).
  • the gas storage chamber (gas spring) (8) performs elastic potential energy and kinetic energy conversion through a hydraulic cylinder (11).
  • Preferred solution 5 ( Figure 5) Adjustable stiffness gas spring composed of four synchronous hydraulic cylinder-cylinder, hydraulic source and four liquid-gas accumulators
  • the adjustable stiffness gas spring of this solution includes: four synchronous hydraulic cylinders-cylinders (16), a connecting pipe (7) with a throttle valve (6), four liquid-gas accumulators (9), and four hydraulic pressures. Cylinder (11) and so on.
  • the hydraulic cylinder-cylinder gas storage chamber is connected to the gas storage chamber of the liquid gas accumulator (9) in groups through a connecting pipe (7) connected with a throttle valve (6).
  • the hydraulic source controls four
  • the hydraulic cylinder (16) pistons move synchronously left and right to control the volume of the hydraulic cylinder-cylinder gas storage chamber (variable volume air chamber) to change synchronously, so as to control the liquid-gas energy storage tank (gas spring) (8)
  • the gas storage capacity makes the stiffness of the four gas springs synchronously change.
  • the gas spring performs elastic potential energy and kinetic energy conversion through a hydraulic cylinder (11).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

一种刚度可调气弹簧,将一变容气室(5)通过串有节流阀或关断阀(6)的连接管(7)与气弹簧相连,通过动力源提供的动力控制变容气室(5)的容积变化来改变气弹簧的刚度,在需要对气弹簧的刚度进行量化调节时,则增加变容气室(5)容积计量装置计算变容气室(5)的有效容积,并根据气弹簧的当前压力大小、初始压力,初始容积大小等参数量化计算并控制气弹簧的刚度。

Description

一种刚度可调气弹簧 技术领域
本发明涉及一种刚度可调气体弹簧的调节和量化,特别适用于以压缩气体为弹性介质的汽车可调刚度悬挂的弹簧刚度控制。
背景技术
气弹簧的非线性刚度特性,使其具有较好的减振和隔振性能,应用越来越普遍。气弹簧的刚度由储气室的容积大小和压力大小共同决定的,当气室压力基本不变时,则气室的容积越大刚度越小,气室的容积越小刚度越大。改变气室的容积和压力大小通常需要加气泵及其配套设施来实现,导致其结构较为复杂,成本高。
此外,用于车辆悬挂的变刚度气弹簧,由于刚度调节需要根据负载计算,按负载调节合适的刚度,则变刚度气簧的容积变化量计量便显得特别重要,采用无级调节时,容积变化量的计量较为困难,增减刚度值的量化控制变得特别复杂,特别是需要同步增减刚度的控制则更为困难。
技术问题
  一、 解决实现刚度无级的调节气弹簧结构复杂,成本高的问题;
   二、 解决气弹簧的刚度变化不能量化计算的问题;
   三、 解决车用悬挂需要多个气弹簧同步变刚度较难实现的问题。
技术解决方案
本发明采用的方法是将一变容气室通过串有节流阀或关断阀的连接管与气弹簧相连,通过动力源提供的动力控制变容气室的容积变化来改变气弹簧的刚度,在需要对气弹簧的刚度进行量化调节时,则增加变容气室容积计量装置计算变容气室的有效容积,并根据气弹簧的当前压力大小, 当前变容气室容积,初始储气总容积,初始储气压力,当前压力等参数量化计算并控制气弹簧的刚度。
气弹簧采用节流阀时,由于节流阀的作用,气弹簧内压力快速变化对变容气室内的压力影响较小,即气弹簧的瞬时刚度受变容气室的影响较小;节流阀的通径越小,气弹簧的压力变化速率越快,则气弹簧的瞬时刚度受变容气室的影响越小。 调节气弹簧的瞬时刚度时,由于变容气室的容积改变,使气弹簧和变容气室形成压差,由于压差的持续作用,使气弹簧内的气体经过节流阀缓慢进出变容气室,直到压差消失。
瞬时刚度指气弹簧短时间内的刚度,本文中采用节流阀的变刚度气弹簧,在压力一定的情况下,变容气室和气弹簧的总容积是不变的,即在压力一定的情况下, 时间足够长时,其刚度是不变的。但是由于节流阀的作用,气弹簧的负载急剧变化时,气弹簧侧的气流不能及时进出变容气室,使变容气室的基本不会影响气弹簧的刚度,使气弹簧的刚度短时间内几乎只与气弹簧的容积和当前压力相关,因此,本文中的改变气弹簧的刚度对于采用节流阀的变刚度气弹簧指的是在压力一定的情况下,改变其瞬时刚度,即通过变容气室的容积变化来调节气弹簧的瞬时刚度。
 使用关断阀的气弹簧需要调节刚度时打开关断阀,改变变容气室的容积,刚度调节完成后,关闭关断阀,阀门关闭后气弹簧的刚度不再受可变气室容积大小影响。
动力源:指为变容气室提供变容动力的装置,包括液压源、推杆电机、直线电机、由电机旋转运动带动齿轮齿条转直线运动的电机、以及手动调节装置等。
变容气室包括:液气储能器,液压缸-气缸,单作用气缸等带有可变容积的储气装置;液气储能器是通过改变液气储能器内储液室的充液量改变其气室容积的。液压缸-气缸是由液压缸或气缸的一腔室充液,另一腔室充气构成的,它是通过改变充液室的充液量改变气室容积的。单作用气缸是通过改变活塞位置直接改变气室容积的。
气弹簧:指用压缩气作为储能介质具有弹性功能的部件,包括:液气储能器,气囊式支撑弹簧,活塞式气撑杆等;液气储能器作为气弹簧时,其压缩气为储能介质,液压油为力传递介质;使用液气储能器作为气弹簧时,通常由与液气储能器的储液室相通的液压缸作为气弹簧的执行元件将气弹簧的弹性势能转换为动能。
方案1.  一种可调刚度气弹簧包括:动力源、变容气室、 节流阀或关断阀、气弹簧、连接管等;其特征是:变容气室通过串有节流阀或关断阀的连接管与气弹簧相通,动力源驱动变容气室的容积改变使气弹簧的刚度变化。
方案2.  如方案1所述的可调刚度气弹簧,其特征是:还包括有测量变容气室容积的计量装置。
由于变容气室与气弹簧的总容积在压力一定的情况下是不变的,通过容积计量装置测量出变容气室的容积,则可根据相关的已知条件,如当前压力、初始压力、初始压力下的总容积等计算当前气弹簧的刚度。装有变容气室容积计量装置,使用户可以根据需要任意设定和测量气弹簧的刚度。
采用液气储能器的储气室作为变容气室的,在进出液管路上装液压缸,由液压缸的其中一腔室给液气储能器供液,液压缸上有测量活塞行程的装置,通过测量活塞行程计算进出液气储能器的液量,以此计算变容气室的容积。
采用液压缸-气缸或单作用气缸的作为变容气室的,可以直接加装测量活塞行程的装置,通过测量活塞行程计算气缸侧的容积,以此计算变容气室的容积。
活塞行程测量或活塞位置测量方法较多,可以通过测量活塞杆伸出液压缸的长度计算,也可以在活塞上加装磁环,在缸筒外通过磁感应测量活塞位置。
还可以采用其它计量方法计量变容气室的有效容积,如在变容气室进出液连接管上加装流量计。
方案3.如方案1,2所述的可调刚度气弹簧其特征是:液压源为变容气室的动力源,液气储能器的储气室为变容气室,由液压源控制进出液气储能器的液量来改变变容气室的容积,以此改变刚度。增加液气储能器内的液量,气弹簧的容积变大,刚度变小;减少液气储能器内的液量,气弹簧的容积变小,刚度变大。
方案4. 如方案1,2所述的可调刚度气弹簧,其特征是:液压源为变容气室的动力源,液压缸-气缸的储气室为变容气室,由液压源控制液压缸-气缸进出储液室侧的液量来改变气缸侧变容气室的容积,以此改变气弹簧的刚度。增加液压缸内的液量,气弹簧的容积变大,刚度变小;减少液压缸内的液量,气弹簧的容积变小,刚度变大。
方案5. 如方案1,2所述的可调刚度气弹簧其特征是:变容气室主要由单作用气缸构成,由电机驱动带动单作用气缸的活塞位移使气缸容积改变以此改变气弹簧刚度。
单作用气缸的活塞位置左移则气弹簧的容积变小,刚度变大,活塞位置右移则气弹簧的容积变大,刚度变小。
动力源包括:推杆电机、直线电机或由电机带动齿轮齿条转直线运动的电机等。
方案6. 如方案1,2所述的可调刚度气弹簧构成的多联变刚度气弹簧,其特征是:变容气室的容积变化调节装置是联动的,即其中一个变容气室的容积变化则其它的联动的变容气室的容积是同步变化的, 其方法是:
1.  变容气室为液气储能器时,采用多联(并联)液压缸同步给变容气室供液,使储气器的容积同步增减。
2.  变容气室为液压缸-气缸组合式储气器或单作用气缸时,将液压缸-气缸或单作用气缸并联作动, 使气缸内的容积同步增减。
有益效果
 一、 使可调刚度气弹簧的结构更简单,更容易实现,成本更低;
   二、 使可变刚度气弹簧的有效容积变化量实现量化计算,可以根据需要在刚度可调范围内实现任意刚度准确调节计量;
   三、 使多个气弹簧同步变刚度变得简单易行,而且可以实现刚度量化计算。
附图说明
图1. 由两个液气储能器和液压源构成的可调刚度气弹簧示意图
图2. 由液压缸、两液气储能器和液压源构成的可调刚度气弹簧示意图
 图3. 由液压缸-气缸、液压源和液气储能器构成的可调刚度气弹簧示意图
图4. 由单作用气缸和液气储能器构成的可调刚度气弹簧示意图
图5. 由多联液压缸、液压源和液气储能器构成的可调刚度气弹簧示意图
图示编号名称:
1-电磁阀                  2-液压泵                 3-储液室          
4-液气储能器(变容气室)          5-储气室(变容气室)     6-节流阀 
7-连接管                             8-储气室(气弹簧)   
  9-液气储能器(液气弹簧)         11- 液压缸         
13-液压缸-气缸                   14-活塞             
16-四联同步液压缸-气缸            17-液压缸-气缸的储液室进出油口 
18- 液压缸-气缸的储气室进出气口   19-流量计   20-气缸
本发明的实施方式
优选方案1:(图1)由两个液气储能器和液压源构成的可调刚度气弹簧
本方案的可调刚度气弹簧包括:两液气储能器(4,9)、串有节流阀(6)的连接管(7)、带电磁阀(1)的液压源、液压缸(11)等。
如图1所示:两液气储能器(4,9)的储气室(5,8)通过串有节流阀(6)的连接管(7)相通,液压源控制进出液气储能器储液室(3)的液量,以此控制储气室(变容气室)(5)的容积大小,从而控制储气室 (气弹簧) (8)的储气量,使储气室 (气弹簧) (8)的刚度变化。储气室 (气弹簧) (8)通过液压缸(11)进行弹性势能和动能转换。
优选方案2:(图2)由两个液气储能器和液压源构成的可调刚度气弹簧
本方案的可调刚度气弹簧包括:两液气储能器(4,9)、流量计(19)、串有节流阀(6)的连接管(7)、带电磁阀(1)的液压源、液压缸(11)等。
如图2所示:两液气储能器(4,9)的储气室(5,8)通过串有节流阀(6)的连接管(7)相通,液压源的液流通过流量计(19)计量后进出液气储能器(4)的储液室(3),以此控制储气室(变容气室)(5)的容积大小,从而控制储气室 (气弹簧) (8)的储气量,使储气室 (气弹簧) (8)的刚度变化。流量计用于计量进出液气储能器(4)的液量,间接计量储气室(变容气室)(5)的容积大小。
气弹簧通过液压缸(11)进行弹性势能和动能转换。
优选方案3:(图3)由液压缸-气缸、液压源和液气储能器构成的可调刚度气弹簧
本方案的可调刚度气弹簧包括:液压缸-气缸(13)、串有节流阀(6)的连接管(7)、带电磁阀(1)的液压源、液气储能器(9)、液压缸(11)等。
如图3所示:  液压缸-气缸(13)的储气室(变容气室)(5)通过串有节流阀(6)的连接管(7)与液气储能器(9)储气室 (气弹簧) (8)相通,液压源控制液压缸活塞(14)左右移动,以此控制液压缸-气缸(13)的储气室(变容气室)(5)的容积大小,从而控制液气储能器储气室 (气弹簧) (8)的储气量,使储气室 (气弹簧) (8)的刚度变化。储气室 (气弹簧) (8)通过液压缸(11)进行弹性势能和动能转换。
液压缸-气缸(13)的储气室(变容气室)(5)的容积需要计量时,在活塞上加磁环,通过缸外电磁感应方式测量活塞的位置,根据活塞的位置,以及液压缸的缸径等参数计算其容积。
优选方案4:(图4)由气缸、推杆电机和液气储能器构成的可调刚度气弹簧
本方案的可调刚度气弹簧包括:气缸(20)、串有节流阀(6)的连接管(7)、推杆电机、液压缸(11)、液气储能器(9)等。
如图4所示:气缸(20)的储气室(变容气室)(5)通过串有节流阀(6)的连接管(7)与液气储能器(9)的储气室 (气弹簧) (8)相通,推杆电机带动活塞(14)左右移动,以此控制气缸(20)的储气室(变容气室)(5)的容积大小,从而控制液气储能器储气室(气弹簧)(8)的储气量,使储气室 (气弹簧) (8)的刚度变化。储气室 (气弹簧) (8)通过液压缸(11)进行弹性势能和动能转换。
优选方案5:(图5)由四联同步液压缸-气缸、液压源和四个液气储能器构成的可调刚度气弹簧
本方案的可调刚度气弹簧包括:四联同步液压缸-气缸(16)、串有节流阀(6)的连接管(7)、四个液气储能器(9)、四个液压缸(11)等。
如图5所示:液压缸-气缸的储气室通过串有节流阀(6)的连接管(7)与液气储能器(9)的储气室分组相通,液压源控制四个液压缸(16)活塞同步左右移动,以此控制液压缸-气缸的储气室(变容气室)的容积大小同步变化,从而控制液气储能器储气室 (气弹簧) (8)的储气量,使四个气弹簧的刚度同步变化。气弹簧通过液压缸(11)进行弹性势能和动能转换。

Claims (6)

  1. 一种可调刚度气弹簧包括:动力源、变容气室、 节流阀或关断阀、气弹簧、连接管;其特征是:变容气室通过串有节流阀或关断阀的连接管与气弹簧相通,动力源驱动变容气室的容积改变使气弹簧的刚度变化。
  2. 如权利要求1所述的可调刚度气弹簧,其特征是:还包括有测量变容气室容积的计量装置。
  3. 如权利要求1或2所述的可调刚度气弹簧,其特征是:液压源为变容气室的动力源,液气储能器的储气室为变容气室,由液压源控制进出液气储能器的液量来改变变容气室的容积,以此改变刚度。
  4. 如权利要求1或2所述的可调刚度气弹簧,其特征是:液压源为变容气室的动力源,液压缸-气缸的储气室为变容气室,由液压源控制进出液压缸-气缸的储液缸侧的液量来改变气缸侧变容气室的容积,以此改变气弹簧的刚度。
  5. 如权利要求1或2所述的可调刚度气弹簧,其特征是:变容气室主要由单作用气缸构成,由动力源驱动单作用气缸的活塞位移使气缸容积改变,以此改变气弹簧刚度。
  6. 由多个权利要求1或2所述的可调刚度气弹簧构成的多联变刚度气弹簧,其特征是:变容气室的容积变化调节装置是联动的,即其中一个变容气室的容积变化则其它的联动的变容气室的容积是同步变化的。 
PCT/CN2019/085590 2018-08-02 2019-05-05 一种刚度可调气弹簧 WO2020024637A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810867768.7A CN110792716A (zh) 2018-08-02 2018-08-02 一种刚度可调气弹簧
CN201810867768.7 2018-08-02
CN201821233981.4U CN208778560U (zh) 2018-08-02 2018-08-02 一种刚度可调气弹簧
CN201821233981.4 2018-08-02

Publications (1)

Publication Number Publication Date
WO2020024637A1 true WO2020024637A1 (zh) 2020-02-06

Family

ID=69232144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085590 WO2020024637A1 (zh) 2018-08-02 2019-05-05 一种刚度可调气弹簧

Country Status (1)

Country Link
WO (1) WO2020024637A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6092816A (en) * 1997-04-11 2000-07-25 Tokico Ltd Vehicle height adjusting apparatus and cylinder system used therefor
CN201080985Y (zh) * 2007-10-16 2008-07-02 洪昌喜 一种可调式减振器
DE102010011912A1 (de) * 2010-03-18 2011-09-22 Daimler Ag Gasfederdämpfervorrichtung mit einer Motorgeneratorpumpeneinheit
CN202220820U (zh) * 2011-08-29 2012-05-16 泰兴市昊星汽车电子科技有限公司 可变刚度空气弹簧装置
FR3042445A1 (fr) * 2015-10-14 2017-04-21 Peugeot Citroen Automobiles Sa Suspension a ressort metallique et hydropneumatique pour vehicule
CN208778560U (zh) * 2018-08-02 2019-04-23 陈刚 一种刚度可调气弹簧

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6092816A (en) * 1997-04-11 2000-07-25 Tokico Ltd Vehicle height adjusting apparatus and cylinder system used therefor
CN201080985Y (zh) * 2007-10-16 2008-07-02 洪昌喜 一种可调式减振器
DE102010011912A1 (de) * 2010-03-18 2011-09-22 Daimler Ag Gasfederdämpfervorrichtung mit einer Motorgeneratorpumpeneinheit
CN202220820U (zh) * 2011-08-29 2012-05-16 泰兴市昊星汽车电子科技有限公司 可变刚度空气弹簧装置
FR3042445A1 (fr) * 2015-10-14 2017-04-21 Peugeot Citroen Automobiles Sa Suspension a ressort metallique et hydropneumatique pour vehicule
CN208778560U (zh) * 2018-08-02 2019-04-23 陈刚 一种刚度可调气弹簧

Similar Documents

Publication Publication Date Title
CN101852220B (zh) 可控式高压大流量发生装置及其控制方法
CN104832466B (zh) 一种变面积比压力倍增装置及调节方法
CN208778560U (zh) 一种刚度可调气弹簧
CN203297461U (zh) 可变参数油气弹簧
CN103195856A (zh) 可变参数油气弹簧
CN103061425A (zh) 一种串、并联多级阀粘滞阻尼方法及阻尼器
CN102927269A (zh) 一种压力容器变容积恒压保持装置
WO2020024637A1 (zh) 一种刚度可调气弹簧
Wu et al. Investigation of accumulator main parameters of hydraulic excitation system
CN110792716A (zh) 一种刚度可调气弹簧
CN201206575Y (zh) 一种模拟双向加载的液压阻尼装置
Li et al. Damping characteristic analysis and experiment of air suspension with auxiliary chamber
CN103423217B (zh) 一种低噪声的液压负载模拟装置
CN202927028U (zh) 一种压力容器变容积恒压保持装置
CN110966344A (zh) 一种hvac机械间自调节液压隔振系统
Xu et al. Investigation on a novel high frequency two-dimensional (2D) rotary valve variable mechanism for fluid pulse-width-modulation application
CN107943126B (zh) 一种仿生血管测试系统
CN109268325A (zh) 面向超越负载可精确保位控制的电液驱动单元
CN101943239B (zh) 单溢流限载双阶段液压阻尼器
Shi et al. Modelling and study on the output flow characteristics of expansion energy used hydropneumatic transformer
CN101943238B (zh) 双溢流液压阻尼器
CN101558255A (zh) 用于控制变速器的设备和方法
CN201535338U (zh) 液压阻尼器
Saleem Pilot operated cartridge valve-Dynamic characteristics measurements for energy efficient operation and application
CN220600325U (zh) 一种单出杆粘滞阻尼器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843405

Country of ref document: EP

Kind code of ref document: A1